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Prequel





1

Introduction / User Guide

Not written as of yet. Topics to mention.

1. A better and more general integral.

a) Convergence Theorems
b) Integration over diverse collection of sets. (See probability theory.)
c) Integration relative to different weights or densities including singular

weights.
d) Characterization of dual spaces.
e) Completeness.

2. Infinite dimensional Linear algebra.
3. ODE and PDE.
4. Harmonic and Fourier Analysis.
5. Probability Theory





2

Set Operations

Let N denote the positive integers, N0 := N∪{0} be the non-negative in-
tegers and Z = N0 ∪ (−N) – the positive and negative integers including 0, Q
the rational numbers, R the real numbers (see Chapter 3 below), and C the
complex numbers. We will also use F to stand for either of the fields R or C.

Notation 2.1 Given two sets X and Y, let Y X denote the collection of all
functions f : X → Y. If X = N, we will say that f ∈ Y N is a sequence
with values in Y and often write fn for f (n) and express f as {fn}∞n=1 . If
X = {1, 2, . . . , N}, we will write Y N in place of Y {1,2,...,N} and denote f ∈ Y N
by f = (f1, f2, . . . , fN ) where fn = f(n).

Notation 2.2 More generally if {Xα : α ∈ A} is a collection of non-empty sets,
let XA =

∏
α∈A

Xα and πα : XA → Xα be the canonical projection map defined

by πα(x) = xα. If If Xα = X for some fixed space X, then we will write
∏
α∈A

Xα

as XA rather than XA.

Recall that an element x ∈ XA is a “choice function,” i.e. an assignment
xα := x(α) ∈ Xα for each α ∈ A. The axiom of choice (see Appendix ??.)
states that XA 6= ∅ provided that Xα 6= ∅ for each α ∈ A.

Notation 2.3 Given a set X, let 2X denote the power set of X – the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2X is that if we think of 2
meaning {0, 1} , then an element of a ∈ 2X = {0, 1}X is completely determined
by the set

A := {x ∈ X : a(x) = 1} ⊂ X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.

For A ∈ 2X let
Ac := X \A = {x ∈ X : x /∈ A}

and more generally if A,B ⊂ X let

B \A := {x ∈ B : x /∈ A} = A ∩Bc.

We also define the symmetric difference of A and B by

A4B := (B \A) ∪ (A \B) .

As usual if {Aα}α∈I is an indexed collection of subsets of X we define the union
and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and

∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 2.4 We will also write
∐
α∈I Aα for ∪α∈IAα in the case that

{Aα}α∈I are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For example
let {An}∞n=1 be a sequence of subsets from X and define

{An i.o.} := {x ∈ X : # {n : x ∈ An} =∞} and

{An a.a.} := {x ∈ X : x ∈ An for all n sufficiently large}.

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost
always.) Then x ∈ {An i.o.} iff

∀N ∈ N ∃ n ≥ N 3 x ∈ An

and this may be expressed as

{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff

∃ N ∈ N 3 ∀ n ≥ N, x ∈ An

which may be written as

{An a.a.} = ∪∞N=1 ∩n≥N An.

Definition 2.5. A set X is said to be countable if is empty or there is an
injective function f : X → N, otherwise X is said to be uncountable.

Lemma 2.6 (Basic Properties of Countable Sets).
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1. If A ⊂ X is a subset of a countable set X then A is countable.
2. Any infinite subset Λ ⊂ N is in one to one correspondence with N.
3. A non-empty set X is countable iff there exists a surjective map, g : N→ X.
4. If X and Y are countable then X × Y is countable.
5. Suppose for each m ∈ N that Am is a countable subset of a set X, then
A = ∪∞m=1Am is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2X is uncountable for any infinite set X.

Proof. 1. If f : X → N is an injective map then so is the restriction, f |A,
of f to the subset A. 2. Let f (1) = minΛ and define f inductively by

f(n+ 1) = min (Λ \ {f(1), . . . , f(n)}) .

Since Λ is infinite the process continues indefinitely. The function f : N → Λ
defined this way is a bijection.

3. If g : N→ X is a surjective map, let

f(x) = min g−1 ({x}) = min {n ∈ N : f(n) = x} .

Then f : X → N is injective which combined with item
2. (taking Λ = f(X)) shows X is countable. Conversely if f : X → N is

injective let x0 ∈ X be a fixed point and define g : N → X by g(n) = f−1(n)
for n ∈ f (X) and g(n) = x0 otherwise.

4. Let us first construct a bijection, h, from N to N×N. To do this put the
elements of N× N into an array of the form

(1, 1) (1, 2) (1, 3) . . .
(2, 1) (2, 2) (2, 3) . . .
(3, 1) (3, 2) (3, 3) . . .

...
...

...
. . .


and then “count” these elements by counting the sets {(i, j) : i+ j = k} one
at a time. For example let h (1) = (1, 1) , h(2) = (2, 1), h (3) = (1, 2), h(4) =
(3, 1), h(5) = (2, 2), h(6) = (1, 3) and so on. If f : N→X and g : N→Y are
surjective functions, then the function (f × g) ◦ h : N→X × Y is surjective
where (f × g) (m,n) := (f (m), g(n)) for all (m,n) ∈ N× N.

5. If A = ∅ then A is countable by definition so we may assume A 6= ∅.
With out loss of generality we may assume A1 6= ∅ and by replacing Am by
A1 if necessary we may also assume Am 6= ∅ for all m. For each m ∈ N let
am : N→Am be a surjective function and then define f : N×N→ ∪∞m=1Am by
f(m,n) := am(n). The function f is surjective and hence so is the composition,
f ◦ h : N→ ∪∞m=1Am, where h : N→ N× N is the bijection defined above.

6. Let us begin by showing 2N = {0, 1}N is uncountable. For sake of

contradiction suppose f : N → {0, 1}N is a surjection and write f (n) as

(f1 (n) , f2 (n) , f3 (n) , . . . ) . Now define a ∈ {0, 1}N by an := 1 − fn(n). By
construction fn (n) 6= an for all n and so a /∈ f (N) . This contradicts the as-
sumption that f is surjective and shows 2N is uncountable. For the general
case, since Y X0 ⊂ Y X for any subset Y0 ⊂ Y, if Y X0 is uncountable then so
is Y X . In this way we may assume Y0 is a two point set which may as well
be Y0 = {0, 1} . Moreover, since X is an infinite set we may find an injective
map x : N → X and use this to set up an injection, i : 2N → 2X by setting
i (A) := {xn : n ∈ N} ⊂ X for all A ⊂ N. If 2X were countable we could find
a surjective map f : 2X → N in which case f ◦ i : 2N → N would be surjec-
tive as well. However this is impossible since we have already seed that 2N is
uncountable.

We end this section with some notation which will be used frequently in the
sequel.

Notation 2.7 If f : X → Y is a function and E ⊂ 2Y let

f−1E := f−1 (E) := {f−1(E)|E ∈ E}.

If G ⊂ 2X , let
f∗G := {A ∈ 2Y |f−1(A) ∈ G}.

Definition 2.8. Let E ⊂ 2X be a collection of sets, A ⊂ X, iA : A→ X be the
inclusion map (iA(x) = x for all x ∈ A) and

EA = i−1
A (E) = {A ∩ E : E ∈ E} .

2.1 Exercises

Let f : X → Y be a function and {Ai}i∈I be an indexed family of subsets of Y,
verify the following assertions.

Exercise 2.1. (∩i∈IAi)c = ∪i∈IAci .

Exercise 2.2. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 2.3. f−1(∪i∈IAi) = ∪i∈If−1(Ai).

Exercise 2.4. f−1(∩i∈IAi) = ∩i∈If−1(Ai).

Exercise 2.5. Find a counterexample which shows that f(C ∩ D) = f(C) ∩
f(D) need not hold.
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2.2 Appendix: Zorn’s Lemma and the Hausdorff Maximal
Principle

Definition 2.9. A partial order ≤ on X is a relation with following properties;

1. If x ≤ y and y ≤ z then x ≤ z.
2. If x ≤ y and y ≤ x then x = y.
3. x ≤ x for all x ∈ X.

Example 2.10. Let Y be a set and X = 2Y . There are two natural partial orders
on X.

1. Ordered by inclusion, A ≤ B is A ⊂ B and
2. Ordered by reverse inclusion, A ≤ B if B ⊂ A.

Definition 2.11. Let (X,≤) be a partially ordered set we say X is linearly or
totally ordered if for all x, y ∈ X either x ≤ y or y ≤ x. The real numbers R
with the usual order ≤ is a typical example.

Definition 2.12. Let (X,≤) be a partial ordered set. We say x ∈ X is a max-
imal element if for all y ∈ X such that y ≥ x implies y = x, i.e. there is no
element larger than x. An upper bound for a subset E of X is an element
x ∈ X such that x ≥ y for all y ∈ E.

Example 2.13. Let

X =
{
a = {1} b = {1, 2} c = {3} d = {2, 4} e = {2}

}
ordered by set inclusion. Then b and d are maximal elements despite that fact
that b � d and d � b. We also have;

1. If E = {a, c, e}, then E has no upper bound.
2. If E = {a, e}, then b is an upper bound.
3. If E = {e}, then b and d are upper bounds.

Theorem 2.14. The following are equivalent.

1. The axiom of choice: to each collection, {Xα}α∈A , of non-empty sets
there exists a “choice function,” x : A →

∐
α∈A

Xα such that x(α) ∈ Xα for

all α ∈ A, i.e.
∏
α∈AXα 6= ∅.

2. The Hausdorff Maximal Principle: Every partially ordered set has a
maximal (relative to the inclusion order) linearly ordered subset.

3. Zorn’s Lemma: If X is partially ordered set such that every linearly or-
dered subset of X has an upper bound, then X has a maximal element.1

Proof. (2⇒ 3) Let X be a partially ordered subset as in 3 and let F =
{E ⊂ X : E is linearly ordered} which we equip with the inclusion partial
ordering. By 2. there exist a maximal element E ∈ F . By assumption, the
linearly ordered set E has an upper bound x ∈ X. The element x is maximal,
for if y ∈ Y and y ≥ x, then E ∪ {y} is still an linearly ordered set containing
E. So by maximality of E, E = E∪{y} , i.e. y ∈ E and therefore y ≤ x showing
which combined with y ≥ x implies that y = x.2

(3⇒ 1) Let {Xα}α∈A be a collection of non-empty sets, we must show∏
α∈AXα is not empty. Let G denote the collection of functions g : D(g) →∐
α∈AXα such that D(g) is a subset of A, and for all α ∈ D(g), g(α) ∈ Xα.

Notice that G is not empty, for we may let α0 ∈ A and x0 ∈ Xα and then set
D(g) = {α0} and g(α0) = x0 to construct an element of G. We now put a partial
order on G as follows. We say that f ≤ g for f, g ∈ G provided that D(f) ⊂ D(g)
and f = g|D(f). If Φ ⊂ G is a linearly ordered set, let D(h) = ∪g∈ΦD(g) and for
α ∈ D(g) let h(α) = g(α). Then h ∈ G is an upper bound for Φ. So by Zorn’s
Lemma there exists a maximal element h ∈ G. To finish the proof we need only
show that D(h) = A. If this were not the case, then let α0 ∈ A \ D(h) and
x0 ∈ Xα0

. We may now define D(h̃) = D(h) ∪ {α0} and

h̃(α) =

{
h(α) if α ∈ D(h)
x0 if α = α0.

Then h ≤ h̃ while h 6= h̃ violating the fact that h was a maximal element.
(1⇒ 2) Let (X,≤) be a partially ordered set. Let F be the collection of

linearly ordered subsets of X which we order by set inclusion. Given x0 ∈ X,
1 If X is a countable set we may prove Zorn’s Lemma by induction. Let {xn}∞n=1

be an enumeration of X, and define En ⊂ X inductively as follows. For n = 1 let
E1 = {x1}, and if En have been chosen, let En+1 = En∪{xn+1} if xn+1 is an upper
bound for En otherwise let En+1 = En. The set E = ∪∞n=1En is a linearly ordered
(you check) subset of X and hence by assumption E has an upper bound, x ∈ X. I
claim that his element is maximal, for if there exists y = xm ∈ X such that y ≥ x,
then xm would be an upper bound for Em−1 and therefore y = xm ∈ Em ⊂ E.
That is to say if y ≥ x, then y ∈ E and hence y ≤ x, so y = x. (Hence we may view
Zorn’s lemma as a “ jazzed” up version of induction.)

2 Similarly one may show that 3 ⇒ 2. Let F = {E ⊂ X : E is linearly ordered}
and order F by inclusion. If M⊂ F is linearly ordered, let E = ∪M =

⋃
A∈M

A. If

x, y ∈ E then x ∈ A and y ∈ B for some A,B ⊂ M. Now M is linearly ordered
by set inclusion so A ⊂ B or B ⊂ A i.e. x, y ∈ A or x, y ∈ B. Since A and B
are linearly order we must have either x ≤ y or y ≤ x, that is to say E is linearly
ordered. Hence by 3. there exists a maximal element E ∈ F which is the assertion
in 2.
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8 2 Set Operations

{x0} ∈ F is linearly ordered set so that F 6= ∅. Fix an element P0 ∈ F . If
P0 is not maximal there exists P1 ∈ F such that P0  P1. In particular we
may choose x /∈ P0 such that P0 ∪ {x} ∈ F . The idea now is to keep repeating
this process of adding points x ∈ X until we construct a maximal element P
of F . We now have to take care of some details. We may assume with out
loss of generality that F̃ = {P ∈ F : P is not maximal} is a non-empty set.
For P ∈ F̃ , let P ∗ = {x ∈ X : P ∪ {x} ∈ F} . As the above argument shows,
P ∗ 6= ∅ for all P ∈ F̃ . Using the axiom of choice, there exists f ∈

∏
P∈F̃ P

∗.
We now define g : F → F by

g(P ) =

{
P if P is maximal

P ∪ {f(x)} if P is not maximal.
(2.1)

The proof is completed by Lemma 2.15 below which shows that g must have a
fixed point P ∈ F . This fixed point is maximal by construction of g.

Lemma 2.15. The function g : F → F defined in Eq. (2.1) has a fixed point.3

Proof. The idea of the proof is as follows. Let P0 ∈ F be chosen arbi-
trarily. Notice that Φ =

{
g(n)(P0)

}∞
n=0
⊂ F is a linearly ordered set and it is

therefore easily verified that P1 =
∞⋃
n=0

g(n)(P0) ∈ F . Similarly we may repeat

the process to construct P2 =
∞⋃
n=0

g(n)(P1) ∈ F and P3 =
∞⋃
n=0

g(n)(P2) ∈ F , etc.

etc. Then take P∞ = ∪∞n=0Pn and start again with P0 replaced by P∞. Then
keep going this way until eventually the sets stop increasing in size, in which
case we have found our fixed point. The problem with this strategy is that we
may never win. (This is very reminiscent of constructing measurable sets and
the way out is to use measure theoretic like arguments.)

Let us now start the formal proof. Again let P0 ∈ F and let F1 = {P ∈
F : P0 ⊂ P}. Notice that F1 has the following properties:

1. P0 ∈ F1.
2. If Φ ⊂ F1 is a totally ordered (by set inclusion) subset then ∪Φ ∈ F1.
3. If P ∈ F1 then g(P ) ∈ F1.

Let us call a general subset F ′ ⊂ F satisfying these three conditions a tower
and let

F0 = ∩{F ′ : F ′ is a tower} .
3 Here is an easy proof if the elements of F happened to all be finite sets and there

existed a set P ∈ F with a maximal number of elements. In this case the condition
that P ⊂ g(P ) would imply that P = g(P ), otherwise g(P ) would have more
elements than P.

Standard arguments show that F0 is still a tower and clearly is the smallest
tower containing P0. (Morally speaking F0 consists of all of the sets we were
trying to constructed in the “idea section” of the proof.) We now claim that
F0 is a linearly ordered subset of F . To prove this let Γ ⊂ F0 be the linearly
ordered set

Γ = {C ∈ F0 : for all A ∈ F0 either A ⊂ C or C ⊂ A} .

Shortly we will show that Γ ⊂ F0 is a tower and hence that F0 = Γ. That is
to say F0 is linearly ordered. Assuming this for the moment let us finish the
proof.

Let P ≡ ∪F0 which is in F0 by property 2 and is clearly the largest element
in F0. By 3. it now follows that P ⊂ g(P ) ∈ F0 and by maximality of P, we
have g(P ) = P, the desired fixed point. So to finish the proof, we must show
that Γ is a tower. First off it is clear that P0 ∈ Γ so in particular Γ is not
empty. For each C ∈ Γ let

ΦC := {A ∈ F0 : either A ⊂ C or g(C) ⊂ A} .

We will begin by showing that ΦC ⊂ F0 is a tower and therefore that ΦC = F0.
1. P0 ∈ ΦC since P0 ⊂ C for all C ∈ Γ ⊂ F0. 2. If Φ ⊂ ΦC ⊂ F0 is totally
ordered by set inclusion, then AΦ := ∪Φ ∈ F0. We must show AΦ ∈ ΦC , that
is that AΦ ⊂ C or C ⊂ AΦ. Now if A ⊂ C for all A ∈ Φ, then AΦ ⊂ C and
hence AΦ ∈ ΦC . On the other hand if there is some A ∈ Φ such that g(C) ⊂ A
then clearly g(C) ⊂ AΦ and again AΦ ∈ ΦC . 3. Given A ∈ ΦC we must show
g(A) ∈ ΦC , i.e. that

g(A) ⊂ C or g(C) ⊂ g(A). (2.2)

There are three cases to consider: either A  C, A = C, or g(C) ⊂ A. In the
case A = C, g(C) = g(A) ⊂ g(A) and if g(C) ⊂ A then g(C) ⊂ A ⊂ g(A) and
Eq. (2.2) holds in either of these cases. So assume that A  C. Since C ∈ Γ,
either g(A) ⊂ C (in which case we are done) or C ⊂ g(A). Hence we may
assume that

A  C ⊂ g(A).

Now if C were a proper subset of g(A) it would then follow that g(A)\A would
consist of at least two points which contradicts the definition of g. Hence we
must have g(A) = C ⊂ C and again Eq. (2.2) holds, so ΦC is a tower. It is now
easy to show Γ is a tower. It is again clear that P0 ∈ Γ and Property 2. may be
checked for Γ in the same way as it was done for ΦC above. For Property 3., if
C ∈ Γ we may use ΦC = F0 to conclude for all A ∈ F0, either A ⊂ C ⊂ g(C)
or g(C) ⊂ A, i.e. g(C) ∈ Γ. Thus Γ is a tower and we are done.

Page: 8 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



3

A Brief Review of Real and Complex Numbers

Although it is assumed that the reader of this book is familiar with the
properties of the real numbers, R, nevertheless I feel it is instructive to define
them here and sketch the development of their basic properties. It will most
certainly be assumed that the reader is familiar with basic algebraic properties
of the natural numbers N and the ordered field of rational numbers,

Q =
{m
n

: m,n ∈ Z : n 6= 0
}
.

As usual, for q ∈ Q, we define

|q| =
{
q if q ≥ 0
−q if q ≤ 0.

Notice that if q ∈ Q and |q| ≤ n−1 := 1
n for all n, then q = 0. Since if q 6= 0,

then |q| = m
n for some m,n ∈ N and hence |q| ≥ 1

n . A similar argument shows
q ≥ 0 iff q ≥ − 1

n for all n ∈ N. These trivial remarks will be used in the future
without further reference.

Definition 3.1. A sequence {qn}∞n=1 ⊂ Q converges to q ∈ Q if |q − qn| → 0
as n → ∞, i.e. if for all N ∈ N, |q − qn| ≤ 1

N for a.a. n. As usual if {qn}∞n=1

converges to q we will write qn → q as n→∞ or q = limn→∞ qn.

Definition 3.2. A sequence {qn}∞n=1 ⊂ Q is Cauchy if |qn − qm| → 0 as
m,n → ∞. More precisely we require for each N ∈ N that |qm − qn| ≤ 1

N
for a.a. pairs (m,n) .

Exercise 3.1. Show that all convergent sequences {qn}∞n=1 ⊂ Q are Cauchy
and that all Cauchy sequences {qn}∞n=1 are bounded – i.e. there exists M ∈ N
such that

|qn| ≤M for all n ∈ N.

Exercise 3.2. Suppose {qn}∞n=1 and {rn}∞n=1 are Cauchy sequences in Q.

1. Show {qn + rn}∞n=1 and {qn · rn}∞n=1 are Cauchy.
Now assume that {qn}∞n=1 and {rn}∞n=1 are convergent sequences in Q.

2. Show {qn + rn}∞n=1 {qn · rn}
∞
n=1 are convergent in Q and

lim
n→∞

(qn + rn) = lim
n→∞

qn + lim
n→∞

rn and

lim
n→∞

(qnrn) = lim
n→∞

qn · lim
n→∞

rn.

3. If we further assume qn ≤ rn for all n, show limn→∞ qn ≤ limn→∞ rn. (It
suffices to consider the case where qn = 0 for all n.)

The rational numbers Q suffer from the defect that they are not complete,
i.e. not all Cauchy sequences are convergent. In fact, according to Corollary
3.14 below, “most” Cauchy sequences of rational numbers do not converge to a
rational number.

Exercise 3.3. Use the following outline to construct a Cauchy sequence
{qn}∞n=1 ⊂ Q which is not convergent in Q.

1. Recall that there is no element q ∈ Q such that q2 = 2.1 To each n ∈ N let
mn ∈ N be chosen so that

m2
n

n2
< 2 <

(mn + 1)
2

n2
(3.1)

and let qn := mn
n .

2. Verify that q2
n → 2 as n→∞ and that {qn}∞n=1 is a Cauchy sequence in Q.

3. Show {qn}∞n=1 does not have a limit in Q.

3.1 The Real Numbers

Let C denote the collection of Cauchy sequences a = {an}∞n=1 ⊂ Q and say
a, b ∈ C are equivalent (write a ∼ b) iff limn→∞ |an − bn| = 0. (The reader
should check that “ ∼ ” is an equivalence relation.)

Definition 3.3. A real number is an equivalence class, ā := {b ∈ C : b ∼ a}
associated to some element a ∈ C. The collection of real numbers will be denoted
by R. For q ∈ Q, let i (q) = ā where a is the constant sequence an = q for all
n ∈ N. We will simply write 0 for i (0) and 1 for i (1) .

1 This fact also shows that the intermediate value theorem, (see Theorem 35.50 be-
low.) fails when working with continuous functions defined over Q.
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Exercise 3.4. Given ā, b̄ ∈ R show that the definitions

−ā = (−a), ā+ b̄ := (a+ b) and ā · b̄ := a · b

are well defined. Here −a, a + b and a · b denote the sequences {−an}∞n=1 ,
{an + bn}∞n=1 and {an · bn}∞n=1 respectively. Further verify that with these op-
erations, R becomes a field and the map i : Q→ R is injective homomorphism
of fields. Hint: if ā 6= 0 show that ā may be represented by a sequence a ∈ C
with |an| ≥ 1

N for all n and some N ∈ N. For this representative show the

sequence a−1 :=
{
a−1
n

}∞
n=1
∈ C. The multiplicative inverse to ā may now be

constructed as: 1
ā = ā−1 :=

{
a−1
n

}∞
n=1

.

Definition 3.4. Let ā, b̄ ∈ R. Then

1. ā > 0 if there exists an N ∈ N such that an >
1
N for a.a. n.

2. ā ≥ 0 iff either ā > 0 or ā = 0. Equivalently (as the reader should verify),
ā ≥ 0 iff for all N ∈ N, an ≥ − 1

N for a.a. n.
3. Write ā > b̄ or b̄ < ā if ā− b̄ > 0
4. Write ā ≥ b̄ or b̄ ≤ ā if ā− b̄ ≥ 0.

Exercise 3.5. Show “ ≥ ” make R into a linearly ordered field and the map
i : Q→ R preserves order. Namely if ā, b̄ ∈ R then

1. exactly one of the following relations hold: ā < b̄ or ā > b̄ or ā = b̄.
2. If ā ≥ 0 and b̄ ≥ 0 then ā+ b̄ ≥ 0 and ā · b̄ ≥ 0.
3. If q, r ∈ Q then q ≤ r iff i (q) ≤ i (r) .

The absolute value of a real number ā is defined analogously to that of a
rational number by

|ā| =
{
ā if ā ≥ 0
−ā if ā < 0

.

Observe this definition is consistent with our previous definition of the absolute
value on Q, namely i (|q|) = |i (q)| . Also notice that ā = 0 (i.e. a ∼ 0 where 0
denotes the constant sequence of all zeros) iff for all N ∈ N, |an| ≤ 1

N for a.a.
n. This is equivalent to saying |ā| ≤ i

(
1
N

)
for all N ∈ N iff ā = 0.

Definition 3.5. A sequence {ān}∞n=1 ⊂ R converges to ā ∈ R if |ā− ān| → 0
as n → ∞, i.e. if for all N ∈ N, |ā− ān| ≤ i

(
1
N

)
for a.a. n. As before (for

rational numbers) if {ān}∞n=1 converges to ā we will write ān → ā as n → ∞
or ā = limn→∞ ān.

Exercise 3.6. Given ā, b̄ ∈ R show∣∣āb̄∣∣ = |ā|
∣∣b̄∣∣ and

∣∣ā+ b̄
∣∣ ≤ |ā|+ ∣∣b̄∣∣ .

The latter inequality being referred to as the triangle inequality.

By exercise 3.6,
|ā| =

∣∣ā− b̄+ b̄
∣∣ ≤ ∣∣ā− b̄∣∣+

∣∣b̄∣∣
and hence

|ā| −
∣∣b̄∣∣ ≤ ∣∣ā− b̄∣∣

and by reversing the roles of ā and b̄ we also have

−
(
|ā| −

∣∣b̄∣∣) =
∣∣b̄∣∣− |ā| ≤ ∣∣b̄− ā∣∣ =

∣∣ā− b̄∣∣ .
Therefore, ∣∣|ā| − ∣∣b̄∣∣∣∣ ≤ ∣∣ā− b̄∣∣
and consequently if {ān}∞n=1 ⊂ R converges to ā ∈ R then

||ān| − |ā|| ≤ |ān − ā| → 0 as n→∞.

Remark 3.6. The field i (Q) is dense in R in the sense that if ā ∈ R there exists
{qn}∞n=1 ⊂ Q such that i (qn)→ ā as n→∞. Indeed, simply let qn = an where
a represents ā. Since a is a Cauchy sequence, to any N ∈ N there exists M ∈ N
such that

− 1

N
≤ am − an ≤

1

N
for all m,n ≥M

and therefore

−i
(

1

N

)
≤ i (am)− ā ≤ i

(
1

N

)
for all m ≥M.

This shows

|i (qm)− ā| = |i (am)− ā| ≤ i
(

1

N

)
for all m ≥M

and since N is arbitrary it follows that i (qm)→ ā as m→∞.

Definition 3.7. A sequence {ān}∞n=1 ⊂ R is Cauchy if |ān − ām| → 0 as
m,n → ∞. More precisely we require for each N ∈ N that |ām − ān| ≤ i

(
1
N

)
for a.a. pairs (m,n) .

Exercise 3.7. The analogues of the results in Exercises 3.1 and 3.2 hold with
Q replaced by R. (We now say a subset Λ ⊂ R is bounded if there exists M ∈ N
such that |λ| ≤ i (M) for all λ ∈ Λ.)

For the purposes of real analysis the most important property of R is that
it is “complete.”

Theorem 3.8. The ordered field R is complete, i.e. all Cauchy sequences in
R are convergent.
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Proof. Suppose that {ā (m)}∞m=1 is a Cauchy sequence in R. By Remark
3.6, we may choose qm ∈ Q such that

|ā (m)− i (qm)| ≤ i
(
m−1

)
for all m ∈ N.

Given N ∈ N, choose M ∈ N such that |ā (m)− ā (n)| ≤ i
(
N−1

)
for all m,n ≥

M. Then

|i (qm)− i (qn)| ≤ |i (qm)− ā (m)|+ |ā (m)− ā (n)|+ |ā (n)− i (qn)|
≤ i
(
m−1

)
+ i
(
n−1

)
+ i
(
N−1

)
and therefore

|qm − qn| ≤ m−1 + n−1 +N−1 for all m,n ≥M.

It now follows that q = {qm}∞m=1 ∈ C and therefore q represents a point q̄ ∈ R.
Using Remark 3.6 and the triangle inequality,

|ā (m)− q̄| ≤ |ā (m)− i (qm)|+ |i (qm)− q̄|
≤ i
(
m−1

)
+ |i (qm)− q̄| → 0 as m→∞

and therefore limm→∞ ā (m) = q̄.

Definition 3.9. A number M ∈ R is an upper bound for a set Λ ⊂ R if
λ ≤M for all λ ∈ Λ and a number m ∈ R is an lower bound for a set Λ ⊂ R
if λ ≥ m for all λ ∈ Λ. Upper and lower bounds need not exist. If Λ has an
upper (lower) bound, Λ is said to be bounded from above (below).

Theorem 3.10. To each non-empty set Λ ⊂ R which is bounded from above
(below) there is a unique least upper bound denoted by supΛ ∈ R (respectively
greatest lower bound denoted by inf Λ ∈ R).

Proof. Suppose Λ is bounded from above and for each n ∈ N, let mn ∈ Z
be the smallest integer such that i

(
mn
2n

)
is an upper bound for Λ. The sequence

qn := mn
2n is Cauchy because qm ∈ [qn − 2−n, qn] ∩Q for all m ≥ n, i.e.

|qm − qn| ≤ 2−min(m,n) → 0 as m,n→∞.

Passing to the limit, n→∞, in the inequality i (qn) ≥ λ, which is valid for all
λ ∈ Λ implies

q̄ = lim
n→∞

i (qn) ≥ λ for all λ ∈ Λ.

Thus q̄ is an upper bound for Λ. If there were another upper bound M ∈ R for
Λ such that M < q̄, it would follow that M ≤ i (qn) < q̄ for some n. But this is
a contradiction because {qn}∞n=1 is a decreasing sequence, i (qn) ≥ i (qm) for all
m ≥ n and therefore i (qn) ≥ q̄ for all n. Therefore q̄ is the unique least upper
bound for Λ. The existence of lower bounds is proved analogously.

Proposition 3.11. If {an}∞n=1 ⊂ R is an increasing (decreasing) sequence
which is bounded from above (below), then {an}∞n=1 is convergent and

lim
n→∞

an = sup {an : n ∈ N}
(

lim
n→∞

an = inf {an : n ∈ N}
)
.

If Λ ⊂ R is a set bounded from above then there exists {λn} ⊂ Λ such that
λn ↑M := supΛ, as n→∞, i.e. {λn} is increasing and limn→∞ λn = M.

Proof. Let M := sup {an : n ∈ N} , then for each N ∈ N there must exist
m ∈ N such that M − i

(
N−1

)
< am ≤M. Since an is increasing, it follows that

M − i
(
N−1

)
< an ≤M for all n ≥ m.

From this we conclude that lim an exists and lim an = M. If M = supΛ, for
each n ∈ N we may choose λn ∈ Λ such that

M − i
(
n−1

)
< λn ≤M. (3.2)

By replacing λn by max {λ1, . . . , λn}2 if necessary we may assume that λn is
increasing in n. It now follows easily from Eq. (3.2) that limn→∞ λn = M.

3.1.1 The Decimal Representation of a Real Number

Let α ∈ R or α ∈ Q, m, n ∈ Z and S :=
∑m
k=n α

k. If α = 1 then
∑m
k=n α

k =
m− n+ 1 while for α 6= 1,

αS − S = αm+1 − αn

and solving for S gives the important geometric summation formula,

m∑
k=n

αk =
αm+1 − αn

α− 1
if α 6= 1. (3.3)

Taking α = 10−1 in Eq. (3.3) implies

m∑
k=n

10−k =
10−(m+1) − 10−n

10−1 − 1
=

1

10n−1

1− 10−(m−n+1)

9

and in particular, for all M ≥ n,

lim
m→∞

m∑
k=n

10−k =
1

9 · 10n−1
≥

M∑
k=n

10−k.

Let D denote those sequences α ∈ {0, 1, 2, . . . , 9}Z with the following prop-
erties:
2 The notation, maxΛ, denotes supΛ along with the assertion that supΛ ∈ Λ. Sim-

ilarly, minΛ = inf Λ along with the assertion that inf Λ ∈ Λ.
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12 3 A Brief Review of Real and Complex Numbers

1. there exists N ∈ N such that α−n = 0 for all n ≥ N and
2. αn 6= 0 for some n ∈ Z.

Associated to each α ∈ D is the sequence a = a (α) defined by

an :=

n∑
k=−∞

αk10−k.

Since for m > n,

|am − an| =

∣∣∣∣∣
m∑

k=n+1

αk10−k

∣∣∣∣∣ ≤ 9

m∑
k=n+1

10−k ≤ 9
1

9 · 10n
=

1

10n
,

it follows that

|am − an| ≤
1

10min(m,n)
→ 0 as m,n→∞.

Therefore a = a (α) ∈ C and we may define a map D : {±1} × D→ R defined
by D (ε, α) = εa (α). As is customary we will denote D (ε, α) = εa (α) as

ε · αm . . . α0.α1α2 . . . αn . . . (3.4)

where m is the largest integer in Z such that αk = 0 for all k < m. If m > 0
the expression in Eq. (3.4) should be interpreted as

ε · 0.0 . . . 0αmαm+1 . . . .

An element α ∈ D has a tail of all 9’s starting at N ∈ N if αn = 9 and for all
n ≥ N and αN−1 6= 9. If α has a tail of 9’s starting at N ∈ N, then for n > N,

an (α) =

N−1∑
k=−∞

αk10−k + 9

n∑
k=N

10−k

=

N−1∑
k=−∞

αk10−k +
9

10N−1
· 1− 10−(n−N)

9

→
N−1∑
k=−∞

αk10−k + 10−(N−1) as n→∞.

If α′ is the digits in the decimal expansion of
∑N−1
k=−∞ αk10−k + 10−(N−1), then

α′ ∈ D′ := {α ∈ D : α does not have a tail of all 9’s} .

and we have just shown that D (ε, α) = D (ε, α′) . In particular this implies

D ({±1} × D′) = D ({±1} × D) . (3.5)

Theorem 3.12 (Decimal Representation). The map

D : {±1} × D′→ R\ {0}

is a bijection.

Proof. Suppose D (ε, α) = D (δ, β) for some (ε, α) and (δ, β) in {±1} × D.
Since D (ε, α) > 0 if ε = 1 and D (ε, α) < 0 if ε = −1 it follows that ε = δ. Let
a = a (α) and b = a (β) be the sequences associated to α and β respectively.
Suppose that α 6= β and let j ∈ Z be the position where α and β first disagree,
i.e. αn = βn for all n < j while αj 6= βj . For sake of definiteness suppose
βj > αj . Then for n > j we have

bn − an = (βj − αj) 10−j +

n∑
k=j+1

(βk − αk) 10−k

≥ 10−j − 9

n∑
k=j+1

10−k ≥ 10−j − 9
1

9 · 10j
= 0.

Therefore bn−an ≥ 0 for all n and lim (bn − an) = 0 iff βj = αj + 1 and βk = 9
and αk = 0 for all k > j. In summary, D (ε, α) = D (δ, β) with α 6= β implies
either α or β has an infinite tail of nines which shows that D is injective when
restricted to {±1}×D′. To see that D is surjective it suffices to show any b̄ ∈ R
with 0 < b̄ < 1 is in the range of D. For each n ∈ N, let an = .α1 . . . αn with
αi ∈ {0, 1, 2, . . . , 9} such that

i (an) < b̄ ≤ i (an) + i
(
10−n

)
. (3.6)

Since an+1 = an + αn+110−(n+1) for some αn+1 ∈ {0, 1, 2, . . . , 9} , we see that
an+1 = .α1 . . . αnαn+1, i.e. the first n digits in the decimal expansion of an+1

are the same as in the decimal expansion of an. Hence this defines αn uniquely
for all n ≥ 1. By setting αn = 0 when n ≤ 0, we have constructed from b̄ an
element α ∈ D. Because of Eq. (3.6), D (1, α) = b̄.

Notation 3.13 From now on we will identify Q with i (Q) ⊂ R and elements
in R with their decimal expansions.

To summarize, we have constructed a complete ordered field R “containing”
Q as a dense subset. Moreover every element in R (modulo those of the form
m10−n for some m ∈ Z and n ∈ N) has a unique decimal expansion.

Corollary 3.14. The set (0, 1) := {a ∈ R : 0 < a < 1} is uncountable while
Q ∩ (0, 1) is countable.
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3.2 The Complex Numbers 13

Proof. By Theorem 3.12, the set {0, 1, 2 . . . , 8}N can be mapped injectively
into (0, 1) and therefore it follows from Lemma 2.6 that (0, 1) is uncountable. For
each m ∈ N, let Am :=

{
n
m : n ∈ N with n < m

}
. Since Q ∩ (0, 1) = ∪∞m=1Am

and # (Am) <∞ for all m, another application of Lemma 2.6 shows Q ∩ (0, 1)
is countable.

3.2 The Complex Numbers

Definition 3.15 (Complex Numbers). Let C = R2 equipped with multipli-
cation rule

(a, b)(c, d) := (ac− bd, bc+ ad) (3.7)

and the usual rule for vector addition. As is standard we will write 0 = (0, 0) ,
1 = (1, 0) and i = (0, 1) so that every element z of C may be written as z =
(x, y) = x1 + yi which in the future will be written simply as z = x + iy. If
z = x+ iy, let Re z = x and Im z = y.

Writing z = a + ib and w = c + id, the multiplication rule in Eq. (3.7)
becomes

(a+ ib)(c+ id) := (ac− bd) + i(bc+ ad) (3.8)

and in particular 12 = 1 and i2 = −1.

Proposition 3.16. The complex numbers C with the above multiplication rule
satisfies the usual definitions of a field. For example wz = zw and z (w1 + w2) =
zw1 + zw2, etc. Moreover if z 6= 0, z has a multiplicative inverse given by

z−1 =
a

a2 + b2
− i b

a2 + b2
. (3.9)

Proof. The proof is a straightforward verification. Only the last assertion
will be verified here. Suppose z = a + ib 6= 0, we wish to find w = c + id such
that zw = 1 and this happens by Eq. (3.8) iff

ac− bd = 1 and (3.10)

bc+ ad = 0. (3.11)

Solving these equations for c and d gives c = a
a2+b2 and d = − b

a2+b2 as claimed.

Notation 3.17 (Conjugation and Modulus) If z = a+ ib with a, b ∈ R let
z̄ = a− ib and

|z| :=
√
zz̄ =

√
a2 + b2 =

√
|Re z|2 + |Im z|2.

See Exercise 3.8 for the existence of the square root as a positive real number.

Notice that

Re z =
1

2
(z + z̄) and Im z =

1

2i
(z − z̄) . (3.12)

Proposition 3.18. Complex conjugation and the modulus operators satisfy the
following properties.

1. z̄ = z,
2. zw = z̄w̄ and z̄ + w̄ = z + w.
3. |z̄| = |z|
4. |zw| = |z| |w| and in particular |zn| = |z|n for all n ∈ N.
5. |Re z| ≤ |z| and |Im z| ≤ |z|
6. |z + w| ≤ |z|+ |w| .
7. z = 0 iff |z| = 0.
8. If z 6= 0 then z−1 := z̄

|z|2 (also written as 1
z ) is the inverse of z.

9.
∣∣z−1

∣∣ = |z|−1
and more generally |zn| = |z|n for all n ∈ Z.

Proof. All of these properties are direct computations except for possibly
the triangle inequality in item 6 which is verified by the following computation;

|z + w|2 = (z + w) (z + w) = |z|2 + |w|2 + wz̄ + w̄z

= |z|2 + |w|2 + wz̄ + wz̄

= |z|2 + |w|2 + 2 Re (wz̄) ≤ |z|2 + |w|2 + 2 |z| |w|

= (|z|+ |w|)2
.

Definition 3.19. A sequence {zn}∞n=1 ⊂ C is Cauchy if |zn − zm| → 0 as
m,n→∞ and is convergent to z ∈ C if |z − zn| → 0 as n→∞. As usual if
{zn}∞n=1 converges to z we will write zn → z as n→∞ or z = limn→∞ zn.

Theorem 3.20. The complex numbers are complete,i.e. all Cauchy sequences
are convergent.

Proof. This follows from the completeness of real numbers and the easily
proved observations that if zn = an + ibn ∈ C, then

1. {zn}∞n=1 ⊂ C is Cauchy iff {an}∞n=1 ⊂ R and {bn}∞n=1 ⊂ R are Cauchy and
2. zn → z = a+ ib as n→∞ iff an → a and bn → b as n→∞.
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3.3 Exercises

Exercise 3.8. Show to every a ∈ R with a ≥ 0 there exists a unique number
b ∈ R such that b ≥ 0 and b2 = a. Of course we will call b =

√
a. Also show

that a →
√
a is an increasing function on [0,∞). Hint: To construct b =

√
a

for a > 0, to each n ∈ N let mn ∈ N0 be chosen so that

m2
n

n2
< a ≤ (mn + 1)

2

n2
i.e. i

(
m2
n

n2

)
< a ≤ i

(
(mn + 1)

2

n2

)

and let qn := mn
n . Then show b = {qn}∞n=1 ∈ R satisfies b > 0 and b2 = a.



4

Limits and Sums

4.1 Limsups, Liminfs and Extended Limits

Notation 4.1 The extended real numbers is the set R̄ := R∪{±∞} , i.e. it
is R with two new points called ∞ and −∞. We use the following conventions,
±∞ · 0 = 0, ±∞ · a = ±∞ if a ∈ R with a > 0, ±∞ · a = ∓∞ if a ∈ R with
a < 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ =∞ and −∞−∞ = −∞ while
∞−∞ is not defined. A sequence an ∈ R̄ is said to converge to ∞ (−∞) if for
all M ∈ R there exists m ∈ N such that an ≥M (an ≤M) for all n ≥ m.

Lemma 4.2. Suppose {an}∞n=1 and {bn}∞n=1 are convergent sequences in R̄,
then:

1. If an ≤ bn for a.a. n then limn→∞ an ≤ limn→∞ bn.
2. If c ∈ R, limn→∞ (can) = c limn→∞ an.
3. If {an + bn}∞n=1 is convergent and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn (4.1)

provided the right side is not of the form ∞−∞.
4. {anbn}∞n=1 is convergent and

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn (4.2)

provided the right hand side is not of the for ±∞ · 0 of 0 · (±∞) .

Before going to the proof consider the simple example where an = n and
bn = −αn with α > 0. Then

lim (an + bn) =

 ∞ if α < 1
0 if α = 1
−∞ if α > 1

while
lim
n→∞

an + lim
n→∞

bn“ = ”∞−∞.

This shows that the requirement that the right side of Eq. (4.1) is not of form
∞−∞ is necessary in Lemma 4.2. Similarly by considering the examples an = n

and bn = n−α with α > 0 shows the necessity for assuming right hand side of
Eq. (4.2) is not of the form ∞ · 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (4.1). Let a := limn→∞ an and b = limn→∞ bn. Case 1.,

suppose b =∞ in which case we must assume a > −∞. In this case, for every
M > 0, there exists N such that bn ≥M and an ≥ a− 1 for all n ≥ N and this
implies

an + bn ≥M + a− 1 for all n ≥ N.
Since M is arbitrary it follows that an + bn → ∞ as n → ∞. The cases where
b = −∞ or a = ±∞ are handled similarly. Case 2. If a, b ∈ R, then for every
ε > 0 there exists N ∈ N such that

|a− an| ≤ ε and |b− bn| ≤ ε for all n ≥ N.

Therefore,

|a+ b− (an + bn)| = |a− an + b− bn| ≤ |a− an|+ |b− bn| ≤ 2ε

for all n ≥ N. Since n is arbitrary, it follows that limn→∞ (an + bn) = a+ b.
Proof of Eq. (4.2). It will be left to the reader to prove the case where lim an

and lim bn exist in R. I will only consider the case where a = limn→∞ an 6= 0
and limn→∞ bn = ∞ here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let α := min

(
a
2 , 1
)
. Given any M < ∞, there exists

N ∈ N such that an ≥ α and bn ≥ M for all n ≥ N and for this choice of N,
anbn ≥ Mα for all n ≥ N. Since α > 0 is fixed and M is arbitrary it follows
that limn→∞ (anbn) =∞ as desired.

For any subset Λ ⊂ R̄, let supΛ and inf Λ denote the least upper bound and
greatest lower bound of Λ respectively. The convention being that supΛ = ∞
if ∞ ∈ Λ or Λ is not bounded from above and inf Λ = −∞ if −∞ ∈ Λ or Λ is
not bounded from below. We will also use the conventions that sup ∅ = −∞
and inf ∅ = +∞.

Notation 4.3 Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then

lim inf
n→∞

xn = lim
n→∞

inf{xk : k ≥ n} and (4.3)

lim sup
n→∞

xn = lim
n→∞

sup{xk : k ≥ n}. (4.4)

We will also write lim for lim inf and lim for lim sup .
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Remark 4.4. Notice that if ak := inf{xk : k ≥ n} and bk := sup{xk : k ≥
n}, then {ak} is an increasing sequence while {bk} is a decreasing sequence.
Therefore the limits in Eq. (4.3) and Eq. (4.4) always exist in R̄ and

lim inf
n→∞

xn = sup
n

inf{xk : k ≥ n} and

lim sup
n→∞

xn = inf
n

sup{xk : k ≥ n}.

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 4.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Then

1. lim infn→∞ an ≤ lim supn→∞ an and limn→∞ an exists in R̄ iff

lim inf
n→∞

an = lim sup
n→∞

an ∈ R̄.

2. There is a subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =
lim supn→∞ an. Similarly, there is a subsequence {ank}∞k=1 of {an}∞n=1 such
that limk→∞ ank = lim infn→∞ an.

3.
lim sup

n→∞
(an + bn) ≤ lim sup

n→∞
an + lim sup

n→∞
bn (4.5)

whenever the right side of this equation is not of the form ∞−∞.
4. If an ≥ 0 and bn ≥ 0 for all n ∈ N, then

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (4.6)

provided the right hand side of (4.6) is not of the form 0 · ∞ or ∞ · 0.

Proof. Item 1. will be proved here leaving the remaining items as an exercise
to the reader. Since

inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n,

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Now suppose that lim infn→∞ an = lim supn→∞ an = a ∈ R. Then for all ε > 0,
there is an integer N such that

a− ε ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a+ ε,

i.e.
a− ε ≤ ak ≤ a+ ε for all k ≥ N.

Hence by the definition of the limit, limk→∞ ak = a. If lim infn→∞ an = ∞,
then we know for all M ∈ (0,∞) there is an integer N such that

M ≤ inf{ak : k ≥ N}

and hence limn→∞ an = ∞. The case where lim supn→∞ an = −∞ is handled
similarly.

Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then for
every ε > 0 there exists N(ε) ∈ N such that |A− an| ≤ ε for all n ≥ N(ε), i.e.

A− ε ≤ an ≤ A+ ε for all n ≥ N(ε).

From this we learn that

A− ε ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A+ ε.

Since ε > 0 is arbitrary, it follows that

A ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A,

i.e. that A = lim infn→∞ an = lim supn→∞ an. If A = ∞, then for all M > 0
there exists N = N(M) such that an ≥ M for all n ≥ N. This show that
lim infn→∞ an ≥M and since M is arbitrary it follows that

∞ ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an.

The proof for the case A = −∞ is analogous to the A =∞ case.

4.2 Sums of positive functions

In this and the next few sections, let X and Y be two sets. We will write α ⊂⊂ X
to denote that α is a finite subset of X and write 2Xf for those α ⊂⊂ X.

Definition 4.6. Suppose that a : X → [0,∞] is a function and F ⊂ X is a
subset, then

∑
F

a =
∑
x∈F

a(x) := sup

{∑
x∈α

a(x) : α ⊂⊂ F

}
.

Remark 4.7. Suppose that X = N = {1, 2, 3, . . . } and a : X → [0,∞], then

∑
N
a =

∞∑
n=1

a(n) := lim
N→∞

N∑
n=1

a(n).
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4.2 Sums of positive functions 17

Indeed for all N,
∑N
n=1 a(n) ≤

∑
N a, and thus passing to the limit we learn

that
∞∑
n=1

a(n) ≤
∑
N
a.

Conversely, if α ⊂⊂ N, then for all N large enough so that α ⊂ {1, 2, . . . , N},
we have

∑
α a ≤

∑N
n=1 a(n) which upon passing to the limit implies that

∑
α

a ≤
∞∑
n=1

a(n).

Taking the supremum over α in the previous equation shows

∑
N
a ≤

∞∑
n=1

a(n).

Remark 4.8. Suppose a : X → [0,∞] and
∑
X a <∞, then {x ∈ X : a(x) > 0}

is at most countable. To see this first notice that for any ε > 0, the set {x :
a(x) ≥ ε} must be finite for otherwise

∑
X a =∞. Thus

{x ∈ X : a(x) > 0} =
⋃
∞
k=1{x : a(x) ≥ 1/k}

which shows that {x ∈ X : a(x) > 0} is a countable union of finite sets and thus
countable by Lemma 2.6.

Lemma 4.9. Suppose that a, b : X → [0,∞] are two functions, then∑
X

(a+ b) =
∑
X

a+
∑
X

b and∑
X

λa = λ
∑
X

a

for all λ ≥ 0.

I will only prove the first assertion, the second being easy. Let α ⊂⊂ X be
a finite set, then ∑

α

(a+ b) =
∑
α

a+
∑
α

b ≤
∑
X

a+
∑
X

b

which after taking sups over α shows that∑
X

(a+ b) ≤
∑
X

a+
∑
X

b.

Similarly, if α, β ⊂⊂ X, then∑
α

a+
∑
β

b ≤
∑
α∪β

a+
∑
α∪β

b =
∑
α∪β

(a+ b) ≤
∑
X

(a+ b).

Taking sups over α and β then shows that∑
X

a+
∑
X

b ≤
∑
X

(a+ b).

Lemma 4.10. Let X and Y be sets, R ⊂ X × Y and suppose that a : R → R̄
is a function. Let xR := {y ∈ Y : (x, y) ∈ R} and Ry := {x ∈ X : (x, y) ∈ R} .
Then

sup
(x,y)∈R

a(x, y) = sup
x∈X

sup
y∈xR

a(x, y) = sup
y∈Y

sup
x∈Ry

a(x, y) and

inf
(x,y)∈R

a(x, y) = inf
x∈X

inf
y∈xR

a(x, y) = inf
y∈Y

inf
x∈Ry

a(x, y).

(Recall the conventions: sup ∅ = −∞ and inf ∅ = +∞.)

Proof. Let M = sup(x,y)∈R a(x, y), Nx := supy∈xR a(x, y). Then a(x, y) ≤
M for all (x, y) ∈ R implies Nx = supy∈xR a(x, y) ≤M and therefore that

sup
x∈X

sup
y∈xR

a(x, y) = sup
x∈X

Nx ≤M. (4.7)

Similarly for any (x, y) ∈ R,

a(x, y) ≤ Nx ≤ sup
x∈X

Nx = sup
x∈X

sup
y∈xR

a(x, y)

and therefore
M = sup

(x,y)∈R
a(x, y) ≤ sup

x∈X
sup
y∈xR

a(x, y) (4.8)

Equations (4.7) and (4.8) show that

sup
(x,y)∈R

a(x, y) = sup
x∈X

sup
y∈xR

a(x, y).

The assertions involving infimums are proved analogously or follow from what
we have just proved applied to the function −a.

Theorem 4.11 (Monotone Convergence Theorem for Sums). Suppose
that fn : X → [0,∞] is an increasing sequence of functions and

f(x) := lim
n→∞

fn(x) = sup
n
fn(x).

Then
lim
n→∞

∑
X

fn =
∑
X

f
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Fig. 4.1. The x and y – slices of a set R ⊂ X × Y.

Proof. We will give two proofs.
First proof. Let

2Xf := {A ⊂ X : A ⊂⊂ X}.

Then

lim
n→∞

∑
X

fn = sup
n

∑
X

fn = sup
n

sup
α∈2X

f

∑
α

fn = sup
α∈2X

f

sup
n

∑
α

fn

= sup
α∈2X

f

lim
n→∞

∑
α

fn = sup
α∈2X

f

∑
α

lim
n→∞

fn

= sup
α∈2X

f

∑
α

f =
∑
X

f.

Second Proof. Let Sn =
∑
X fn and S =

∑
X f. Since fn ≤ fm ≤ f for all

n ≤ m, it follows that
Sn ≤ Sm ≤ S

which shows that limn→∞ Sn exists and is less that S, i.e.

A := lim
n→∞

∑
X

fn ≤
∑
X

f. (4.9)

Noting that
∑
α fn ≤

∑
X fn = Sn ≤ A for all α ⊂⊂ X and in particular,∑
α

fn ≤ A for all n and α ⊂⊂ X.

Letting n tend to infinity in this equation shows that

∑
α

f ≤ A for all α ⊂⊂ X

and then taking the sup over all α ⊂⊂ X gives∑
X

f ≤ A = lim
n→∞

∑
X

fn (4.10)

which combined with Eq. (4.9) proves the theorem.

Lemma 4.12 (Fatou’s Lemma for Sums). Suppose that fn : X → [0,∞] is
a sequence of functions, then∑

X

lim inf
n→∞

fn ≤ lim inf
n→∞

∑
X

fn.

Proof. Define gk := inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all n ≥ k, ∑
X

gk ≤
∑
X

fn for all n ≥ k

and therefore ∑
X

gk ≤ lim inf
n→∞

∑
X

fn for all k.

We may now use the monotone convergence theorem to let k →∞ to find∑
X

lim inf
n→∞

fn =
∑
X

lim
k→∞

gk
MCT
= lim

k→∞

∑
X

gk ≤ lim inf
n→∞

∑
X

fn.

Remark 4.13. If A =
∑
X a <∞, then for all ε > 0 there exists αε ⊂⊂ X such

that
A ≥

∑
α

a ≥ A− ε

for all α ⊂⊂ X containing αε or equivalently,∣∣∣∣∣A−∑
α

a

∣∣∣∣∣ ≤ ε (4.11)

for all α ⊂⊂ X containing αε. Indeed, choose αε so that
∑
αε
a ≥ A− ε.

Page: 18 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



4.3 Sums of complex functions 19

4.3 Sums of complex functions

Definition 4.14. Suppose that a : X → C is a function, we say that∑
X

a =
∑
x∈X

a(x)

exists and is equal to A ∈ C, if for all ε > 0 there is a finite subset αε ⊂ X
such that for all α ⊂⊂ X containing αε we have∣∣∣∣∣A−∑

α

a

∣∣∣∣∣ ≤ ε.
The following lemma is left as an exercise to the reader.

Lemma 4.15. Suppose that a, b : X → C are two functions such that
∑
X a

and
∑
X b exist, then

∑
X(a+ λb) exists for all λ ∈ C and∑
X

(a+ λb) =
∑
X

a+ λ
∑
X

b.

Definition 4.16 (Summable). We call a function a : X → C summable if∑
X

|a| <∞.

Proposition 4.17. Let a : X → C be a function, then
∑
X a exists iff

∑
X |a| <

∞, i.e. iff a is summable. Moreover if a is summable, then∣∣∣∣∣∑
X

a

∣∣∣∣∣ ≤∑
X

|a| .

Proof. If
∑
X |a| < ∞, then

∑
X (Re a)

±
< ∞ and

∑
X (Im a)

±
< ∞

and hence by Remark 4.13 these sums exists in the sense of Definition 4.14.
Therefore by Lemma 4.15,

∑
X a exists and

∑
X

a =
∑
X

(Re a)
+ −

∑
X

(Re a)
−

+ i

(∑
X

(Im a)
+ −

∑
X

(Im a)
−

)
.

Conversely, if
∑
X |a| =∞ then, because |a| ≤ |Re a|+ |Im a| , we must have∑

X

|Re a| =∞ or
∑
X

|Im a| =∞.

Thus it suffices to consider the case where a : X → R is a real function. Write
a = a+ − a− where

a+(x) = max(a(x), 0) and a−(x) = max(−a(x), 0). (4.12)

Then |a| = a+ + a− and

∞ =
∑
X

|a| =
∑
X

a+ +
∑
X

a−

which shows that either
∑
X a

+ = ∞ or
∑
X a
− = ∞. Suppose, with out loss

of generality, that
∑
X a

+ = ∞. Let X ′ := {x ∈ X : a(x) ≥ 0}, then we know
that

∑
X′ a = ∞ which means there are finite subsets αn ⊂ X ′ ⊂ X such

that
∑
αn
a ≥ n for all n. Thus if α ⊂⊂ X is any finite set, it follows that

limn→∞
∑
αn∪α a = ∞, and therefore

∑
X a can not exist as a number in R.

Finally if a is summable, write
∑
X a = ρeiθ with ρ ≥ 0 and θ ∈ R, then∣∣∣∣∣∑

X

a

∣∣∣∣∣ = ρ = e−iθ
∑
X

a =
∑
X

e−iθa

=
∑
X

Re
[
e−iθa

]
≤
∑
X

(
Re
[
e−iθa

])+
≤
∑
X

∣∣Re
[
e−iθa

]∣∣ ≤∑
X

∣∣e−iθa∣∣ ≤∑
X

|a| .

Alternatively, this may be proved by approximating
∑
X a by a finite sum and

then using the triangle inequality of |·| .

Remark 4.18. Suppose that X = N and a : N→ C is a sequence, then it is not
necessarily true that

∞∑
n=1

a(n) =
∑
n∈N

a(n). (4.13)

This is because
∞∑
n=1

a(n) = lim
N→∞

N∑
n=1

a(n)

depends on the ordering of the sequence a where as
∑
n∈N a(n) does not. For

example, take a(n) = (−1)n/n then
∑
n∈N |a(n)| =∞ i.e.

∑
n∈N a(n) does not

exist while
∑∞
n=1 a(n) does exist. On the other hand, if

∑
n∈N
|a(n)| =

∞∑
n=1

|a(n)| <∞

then Eq. (4.13) is valid.

Page: 19 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12
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Theorem 4.19 (Dominated Convergence Theorem for Sums). Sup-
pose that fn : X → C is a sequence of functions on X such that f(x) =
limn→∞ fn(x) ∈ C exists for all x ∈ X. Further assume there is a dominating
function g : X → [0,∞) such that

|fn(x)| ≤ g(x) for all x ∈ X and n ∈ N (4.14)

and that g is summable. Then

lim
n→∞

∑
x∈X

fn(x) =
∑
x∈X

f(x). (4.15)

Proof. Notice that |f | = lim |fn| ≤ g so that f is summable. By considering
the real and imaginary parts of f separately, it suffices to prove the theorem in
the case where f is real. By Fatou’s Lemma,∑

X

(g ± f) =
∑
X

lim inf
n→∞

(g ± fn) ≤ lim inf
n→∞

∑
X

(g ± fn)

=
∑
X

g + lim inf
n→∞

(
±
∑
X

fn

)
.

Since lim infn→∞(−an) = − lim supn→∞ an, we have shown,∑
X

g ±
∑
X

f ≤
∑
X

g +

{
lim infn→∞

∑
X fn

− lim supn→∞
∑
X fn

and therefore
lim sup

n→∞

∑
X

fn ≤
∑
X

f ≤ lim inf
n→∞

∑
X

fn.

This shows that lim
n→∞

∑
X fnexists and is equal to

∑
X f.

Proof. (Second Proof.) Passing to the limit in Eq. (4.14) shows that |f | ≤ g
and in particular that f is summable. Given ε > 0, let α ⊂⊂ X such that∑

X\α

g ≤ ε.

Then for β ⊂⊂ X such that α ⊂ β,

∣∣∣∣∣∣
∑
β

f −
∑
β

fn

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
β

(f − fn)

∣∣∣∣∣∣
≤
∑
β

|f − fn| =
∑
α

|f − fn|+
∑
β\α

|f − fn|

≤
∑
α

|f − fn|+ 2
∑
β\α

g

≤
∑
α

|f − fn|+ 2ε.

and hence that ∣∣∣∣∣∣
∑
β

f −
∑
β

fn

∣∣∣∣∣∣ ≤
∑
α

|f − fn|+ 2ε.

Since this last equation is true for all such β ⊂⊂ X, we learn that∣∣∣∣∣∑
X

f −
∑
X

fn

∣∣∣∣∣ ≤∑
α

|f − fn|+ 2ε

which then implies that

lim sup
n→∞

∣∣∣∣∣∑
X

f −
∑
X

fn

∣∣∣∣∣ ≤ lim sup
n→∞

∑
α

|f − fn|+ 2ε

= 2ε.

Because ε > 0 is arbitrary we conclude that

lim sup
n→∞

∣∣∣∣∣∑
X

f −
∑
X

fn

∣∣∣∣∣ = 0.

which is the same as Eq. (4.15).

Remark 4.20. Theorem 4.19 may easily be generalized as follows. Suppose
fn, gn, g are summable functions on X such that fn → f and gn → g pointwise,
|fn| ≤ gn and

∑
X gn →

∑
X g as n→∞. Then f is summable and Eq. (4.15)

still holds. For the proof we use Fatou’s Lemma to again conclude∑
X

(g ± f) =
∑
X

lim inf
n→∞

(gn ± fn) ≤ lim inf
n→∞

∑
X

(gn ± fn)

=
∑
X

g + lim inf
n→∞

(
±
∑
X

fn

)
and then proceed exactly as in the first proof of Theorem 4.19.
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4.4 Iterated sums and the Fubini and Tonelli Theorems

Let X and Y be two sets. The proof of the following lemma is left to the reader.

Lemma 4.21. Suppose that a : X → C is function and F ⊂ X is a subset such
that a(x) = 0 for all x /∈ F. Then

∑
F a exists iff

∑
X a exists and when the

sums exists, ∑
X

a =
∑
F

a.

Theorem 4.22 (Tonelli’s Theorem for Sums). Suppose that a : X × Y →
[0,∞], then ∑

X×Y
a =

∑
X

∑
Y

a =
∑
Y

∑
X

a.

Proof. It suffices to show, by symmetry, that∑
X×Y

a =
∑
X

∑
Y

a

Let Λ ⊂⊂ X × Y. Then for any α ⊂⊂ X and β ⊂⊂ Y such that Λ ⊂ α× β, we
have ∑

Λ

a ≤
∑
α×β

a =
∑
α

∑
β

a ≤
∑
α

∑
Y

a ≤
∑
X

∑
Y

a,

i.e.
∑
Λ a ≤

∑
X

∑
Y a. Taking the sup over Λ in this last equation shows∑

X×Y
a ≤

∑
X

∑
Y

a.

For the reverse inequality, for each x ∈ X choose βxn ⊂⊂ Y such that βxn ↑ Y as
n ↑ ∞ and ∑

y∈Y
a(x, y) = lim

n→∞

∑
y∈βxn

a(x, y).

If α ⊂⊂ X is a given finite subset of X, then∑
y∈Y

a(x, y) = lim
n→∞

∑
y∈βn

a(x, y) for all x ∈ α

where βn := ∪x∈αβxn ⊂⊂ Y. Hence∑
x∈α

∑
y∈Y

a(x, y) =
∑
x∈α

lim
n→∞

∑
y∈βn

a(x, y) = lim
n→∞

∑
x∈α

∑
y∈βn

a(x, y)

= lim
n→∞

∑
(x,y)∈α×βn

a(x, y) ≤
∑
X×Y

a.

Since α is arbitrary, it follows that∑
x∈X

∑
y∈Y

a(x, y) = sup
α⊂⊂X

∑
x∈α

∑
y∈Y

a(x, y) ≤
∑
X×Y

a

which completes the proof.

Theorem 4.23 (Fubini’s Theorem for Sums). Now suppose that a : X ×
Y → C is a summable function, i.e. by Theorem 4.22 any one of the following
equivalent conditions hold:

1.
∑
X×Y |a| <∞,

2.
∑
X

∑
Y |a| <∞ or

3.
∑
Y

∑
X |a| <∞.

Then ∑
X×Y

a =
∑
X

∑
Y

a =
∑
Y

∑
X

a.

Proof. If a : X → R is real valued the theorem follows by applying Theorem
4.22 to a± – the positive and negative parts of a. The general result holds for
complex valued functions a by applying the real version just proved to the real
and imaginary parts of a.

4.5 `p – spaces, Minkowski and Holder Inequalities

In this chapter, let µ : X → (0,∞) be a given function. Let F denote either R
or C. For p ∈ (0,∞) and f : X → F, let

‖f‖p :=

(∑
x∈X
|f(x)|p µ(x)

)1/p

and for p =∞ let
‖f‖∞ = sup {|f(x)| : x ∈ X} .

Also, for p > 0, let

`p(µ) = {f : X → F : ‖f‖p <∞}.

In the case where µ(x) = 1 for all x ∈ X we will simply write `p(X) for `p(µ).

Definition 4.24. A norm on a vector space Z is a function ‖·‖ : Z → [0,∞)
such that

1. (Homogeneity) ‖λf‖ = |λ| ‖f‖ for all λ ∈ F and f ∈ Z.
2. (Triangle inequality) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ Z.
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22 4 Limits and Sums

3. (Positive definite) ‖f‖ = 0 implies f = 0.

A function p : Z → [0,∞) satisfying properties 1. and 2. but not necessarily
3. above will be called a semi-norm on Z.

A pair (Z, ‖·‖) where Z is a vector space and ‖·‖ is a norm on Z is called a
normed vector space.

The rest of this section is devoted to the proof of the following theorem.

Theorem 4.25. For p ∈ [1,∞], (`p(µ), ‖ · ‖p) is a normed vector space.

Proof. The only difficulty is the proof of the triangle inequality which is
the content of Minkowski’s Inequality proved in Theorem 4.31 below.

Proposition 4.26. Let f : [0,∞) → [0,∞) be a continuous strictly increasing
function such that f(0) = 0 (for simplicity) and lim

s→∞
f(s) = ∞. Let g = f−1

and for s, t ≥ 0 let

F (s) =

∫ s

0

f(s′)ds′ and G(t) =

∫ t

0

g(t′)dt′.

Then for all s, t ≥ 0,
st ≤ F (s) +G(t)

and equality holds iff t = f(s).

Proof. Let

As := {(σ, τ) : 0 ≤ τ ≤ f(σ) for 0 ≤ σ ≤ s} and

Bt := {(σ, τ) : 0 ≤ σ ≤ g(τ) for 0 ≤ τ ≤ t}

then as one sees from Figure 4.2, [0, s]× [0, t] ⊂ As ∪ Bt. (In the figure: s = 3,
t = 1, A3 is the region under t = f(s) for 0 ≤ s ≤ 3 and B1 is the region to the
left of the curve s = g(t) for 0 ≤ t ≤ 1.) Hence if m denotes the area of a region
in the plane, then

st = m ([0, s]× [0, t]) ≤ m(As) +m(Bt) = F (s) +G(t).

As it stands, this proof is a bit on the intuitive side. However, it will become
rigorous if one takes m to be “Lebesgue measure” on the plane which will be
introduced later.

We can also give a calculus proof of this theorem under the additional as-
sumption that f is C1. (This restricted version of the theorem is all we need in
this section.) To do this fix t ≥ 0 and let

h(s) = st− F (s) =

∫ s

0

(t− f(σ))dσ.

If σ > g(t) = f−1(t), then t− f(σ) < 0 and hence if s > g(t), we have

h(s) =

∫ s

0

(t− f(σ))dσ =

∫ g(t)

0

(t− f(σ))dσ +

∫ s

g(t)

(t− f(σ))dσ

≤
∫ g(t)

0

(t− f(σ))dσ = h(g(t)).

Combining this with h(0) = 0 we see that h(s) takes its maximum at some
point s ∈ (0, g(t)] and hence at a point where 0 = h′(s) = t − f(s). The only
solution to this equation is s = g(t) and we have thus shown

st− F (s) = h(s) ≤
∫ g(t)

0

(t− f(σ))dσ = h(g(t))

with equality when s = g(t). To finish the proof we must show
∫ g(t)

0
(t −

f(σ))dσ = G(t). This is verified by making the change of variables σ = g(τ)
and then integrating by parts as follows:∫ g(t)

0

(t− f(σ))dσ =

∫ t

0

(t− f(g(τ)))g′(τ)dτ =

∫ t

0

(t− τ)g′(τ)dτ

=

∫ t

0

g(τ)dτ = G(t).

Fig. 4.2. A picture proof of Proposition 4.26.

Definition 4.27. The conjugate exponent q ∈ [1,∞] to p ∈ [1,∞] is q := p
p−1

with the conventions that q = ∞ if p = 1 and q = 1 if p = ∞. Notice that q is
characterized by any of the following identities:
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1

p
+

1

q
= 1, 1 +

q

p
= q, p− p

q
= 1 and q(p− 1) = p. (4.16)

Lemma 4.28. Let p ∈ (1,∞) and q := p
p−1 ∈ (1,∞) be the conjugate exponent.

Then

st ≤ sp

p
+
tq

q
for all s, t ≥ 0 (4.17)

with equality if and only if tq = sp. (See Example 28.9 below for a generalization
of the inequality in Eq. (4.17).)

Proof. Let F (s) = sp

p for p > 1. Then f(s) = sp−1 = t and g(t) = t
1
p−1 =

tq−1, wherein we have used q − 1 = p/ (p− 1) − 1 = 1/ (p− 1) . Therefore
G(t) = tq/q and hence by Proposition 4.26,

st ≤ sp

p
+
tq

q

with equality iff t = sp−1, i.e. tq = sq(p−1) = sp.
** For those who do not want to use Proposition 4.26, here is a direct

calculus proof. Fix t > 0 and let

h (s) := st− sp

p
.

Then h (0) = 0, lims→∞ h (s) = −∞ and h′ (s) = t− sp−1 which equals zero iff

s = t
1
p−1 . Since

h
(
t

1
p−1

)
= t

1
p−1 t− t

p
p−1

p
= t

p
p−1 − t

p
p−1

p
= tq

(
1− 1

p

)
=
tq

q
,

it follows from the first derivative test that

maxh = max
{
h (0) , h

(
t

1
p−1

)}
= max

{
0,
tq

q

}
=
tq

q
.

So we have shown

st− sp

p
≤ tq

q
with equality iff t = sp−1.

Theorem 4.29 (Hölder’s inequality). Let p, q ∈ [1,∞] be conjugate expo-
nents. For all f, g : X → F,

‖fg‖1 ≤ ‖f‖p · ‖g‖q. (4.18)

If p ∈ (1,∞) and f and g are not identically zero, then equality holds in Eq.
(4.18) iff (

|f |
‖f‖p

)p
=

(
|g|
‖g‖q

)q
. (4.19)

Proof. The proof of Eq. (4.18) for p ∈ {1,∞} is easy and will be left to
the reader. The cases where ‖f‖p = 0 or ∞ or ‖g‖q = 0 or ∞ are easily dealt
with and are also left to the reader. So we will assume that p ∈ (1,∞) and
0 < ‖f‖p, ‖g‖q <∞. Letting s = |f (x)| /‖f‖p and t = |g|/‖g‖q in Lemma 4.28
implies

|f (x) g (x)|
‖f‖p‖g‖q

≤ 1

p

|f (x)|p

‖f‖pp
+

1

q

|g (x)|q

‖g‖qq
with equality iff

|f (x)|p

‖f‖pp
= sp = tq =

|g (x)|q

‖g‖qq
. (4.20)

Multiplying this equation by µ (x) and then summing on x gives

‖fg‖1
‖f‖p‖g‖q

≤ 1

p
+

1

q
= 1

with equality iff Eq. (4.20) holds for all x ∈ X, i.e. iff Eq. (4.19) holds.

Definition 4.30. For a complex number λ ∈ C, let

sgn(λ) =

{ λ
|λ| if λ 6= 0

0 if λ = 0.

For λ, µ ∈ C we will write sgn(λ) $ sgn(µ) if sgn(λ) = sgn(µ) or λµ = 0.

Theorem 4.31 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ `p(µ)
then

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (4.21)

Moreover, assuming f and g are not identically zero, equality holds in Eq. (4.21)
iff

sgn(f) $ sgn(g) when p = 1 and

f = cg for some c > 0 when p ∈ (1,∞).

Proof. For p = 1,

‖f + g‖1 =
∑
X

|f + g|µ ≤
∑
X

(|f |µ+ |g|µ) =
∑
X

|f |µ+
∑
X

|g|µ

with equality iff

|f |+ |g| = |f + g| ⇐⇒ sgn(f) $ sgn(g).

For p =∞,
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‖f + g‖∞ = sup
X
|f + g| ≤ sup

X
(|f |+ |g|)

≤ sup
X
|f |+ sup

X
|g| = ‖f‖∞ + ‖g‖∞.

Now assume that p ∈ (1,∞). Since

|f + g|p ≤ (2 max (|f | , |g|))p = 2p max (|f |p , |g|p) ≤ 2p (|f |p + |g|p)

it follows that
‖f + g‖pp ≤ 2p

(
‖f‖pp + ‖g‖pp

)
<∞.

Eq. (4.21) is easily verified if ‖f + g‖p = 0, so we may assume ‖f + g‖p > 0.
Multiplying the inequality,

|f + g|p = |f + g||f + g|p−1 ≤ |f | |f + g|p−1 + |g||f + g|p−1 (4.22)

by µ, then summing on x and applying Holder’s inequality on each term gives∑
X

|f + g|pµ ≤
∑
X

|f | |f + g|p−1µ+
∑
X

|g| |f + g|p−1µ

≤ (‖f‖p + ‖g‖p)
∥∥∥|f + g|p−1

∥∥∥
q
. (4.23)

Since q(p− 1) = p, as in Eq. (4.16),

‖|f + g|p−1‖qq =
∑
X

(|f + g|p−1)qµ =
∑
X

|f + g|pµ = ‖f + g‖pp. (4.24)

Combining Eqs. (4.23) and (4.24) shows

‖f + g‖pp ≤ (‖f‖p + ‖g‖p) ‖f + g‖p/qp (4.25)

and solving this equation for ‖f + g‖p (making use of Eq. (4.16)) implies Eq.
(4.21). Now suppose that f and g are not identically zero and p ∈ (1,∞) .
Equality holds in Eq. (4.21) iff equality holds in Eq. (4.25) iff equality holds in
Eq. (4.23) and Eq. (4.22). The latter happens iff

sgn(f) $ sgn(g) and(
|f |
‖f‖p

)p
=
|f + g|p

‖f + g‖pp
=

(
|g|
‖g‖p

)p
. (4.26)

wherein we have used (
|f + g|p−1

‖|f + g|p−1‖q

)q
=
|f + g|p

‖f + g‖pp
.

Finally Eq. (4.26) is equivalent to |f | = c |g| with c = (‖f‖p/‖g‖p) > 0 and this
equality along with sgn(f) $ sgn(g) implies f = cg.

4.6 Exercises

Exercise 4.1. Now suppose for each n ∈ N := {1, 2, . . .} that fn : X → R is a
function. Let

D := {x ∈ X : lim
n→∞

fn(x) = +∞}

show that
D = ∩∞M=1 ∪∞N=1 ∩n≥N{x ∈ X : fn(x) ≥M}. (4.27)

Exercise 4.2. Let fn : X → R be as in the last problem. Let

C := {x ∈ X : lim
n→∞

fn(x) exists in R}.

Find an expression for C similar to the expression for D in (4.27). (Hint: use
the Cauchy criteria for convergence.)

4.6.1 Limit Problems

Exercise 4.3. Show lim infn→∞(−an) = − lim supn→∞ an.

Exercise 4.4. Suppose that lim supn→∞ an = M ∈ R̄, show that there is a
subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank = M.

Exercise 4.5. Show that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn (4.28)

provided that the right side of Eq. (4.28) is well defined, i.e. no ∞ − ∞ or
−∞+∞ type expressions. (It is OK to have ∞+∞ =∞ or −∞−∞ = −∞,
etc.)

Exercise 4.6. Suppose that an ≥ 0 and bn ≥ 0 for all n ∈ N. Show

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (4.29)

provided the right hand side of (4.29) is not of the form 0 · ∞ or ∞ · 0.

Exercise 4.7. Prove Lemma 4.15.

Exercise 4.8. Prove Lemma 4.21.
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4.6.2 Monotone and Dominated Convergence Theorem Problems

Exercise 4.9. Let M < ∞, show there are polynomials pn(t) and qn (t) for
n ∈ N such that

lim
n→∞

sup
0≤t≤M

∣∣∣√t− qn(t)
∣∣∣ = 0 (4.30)

and
lim
n→∞

sup
|t|≤M

||t| − pn(t)| = 0 (4.31)

using the following outline.

1. Let f(x) =
√

1− x for |x| ≤ 1 and use Taylor’s theorem with integral
remainder (see Eq. ?? of Appendix ??), or analytic function theory if you
know it, to show there are constants1 cn > 0 for n ∈ N such that

√
1− x = 1−

∞∑
n=1

cnx
n for all |x| < 1. (4.32)

2. Let q̃m(x) := 1−
∑m
n=1 cnx

n. Use (4.32) to show
∑∞
n=1 cn = 1 and conclude

from this that
lim
m→∞

sup
|x|≤1

|
√

1− x− q̃m(x)| = 0. (4.33)

3. Conclude that qn (t) :=
√
Mq̃n (1− t/M) and pn (t) := qn

(
t2
)

for n ∈ N
are polynomials verifying Eqs. (4.30) and (4.31) respectively.

Notation 4.32 For u0 ∈ Rn and δ > 0, let Bu0
(δ) := {x ∈ Rn : |x− u0| < δ}

be the ball in Rn centered at u0 with radius δ.

Exercise 4.10. Suppose U ⊂ Rn is a set and u0 ∈ U is a point such that
U ∩ (Bu0

(δ) \ {u0}) 6= ∅ for all δ > 0. Let G : U \ {u0} → C be a function
on U \ {u0}. Show that limu→u0

G(u) exists and is equal to λ ∈ C,2 iff for all
sequences {un}∞n=1 ⊂ U \ {u0} which converge to u0 (i.e. limn→∞ un = u0) we
have limn→∞G(un) = λ.

Exercise 4.11. Suppose that Y is a set, U ⊂ Rn is a set, and f : U × Y → C
is a function satisfying:

1 In fact cn := (2n−3)!!
2nn!

, but this is not needed.
2 More explicitly, limu→u0 G(u) = λ means for every every ε > 0 there exists a δ > 0

such that
|G(u)− λ| < ε whenever u ∈ U ∩ (Bu0(δ) \ {u0}) .

1. For each y ∈ Y, the function u ∈ U → f(u, y) is continuous on U.3

2. There is a summable function g : Y → [0,∞) such that

|f(u, y)| ≤ g(y) for all y ∈ Y and u ∈ U.

Show that
F (u) :=

∑
y∈Y

f(u, y) (4.34)

is a continuous function for u ∈ U.

Exercise 4.12. Suppose that Y is a set, J = (a, b) ⊂ R is an interval, and
f : J × Y → C is a function satisfying:

1. For each y ∈ Y, the function u→ f(u, y) is differentiable on J,
2. There is a summable function g : Y → [0,∞) such that∣∣∣∣ ∂∂uf(u, y)

∣∣∣∣ ≤ g(y) for all y ∈ Y and u ∈ J.

3. There is a u0 ∈ J such that
∑
y∈Y |f(u0, y)| <∞.

Show:

a) for all u ∈ J that
∑
y∈Y |f(u, y)| <∞.

b) Let F (u) :=
∑
y∈Y f(u, y), show F is differentiable on J and that

Ḟ (u) =
∑
y∈Y

∂

∂u
f(u, y).

(Hint: Use the mean value theorem.)

Exercise 4.13 (Differentiation of Power Series). Suppose R > 0 and
{an}∞n=0 is a sequence of complex numbers such that

∑∞
n=0 |an| rn < ∞ for

all r ∈ (0, R). Show, using Exercise 4.12, f(x) :=
∑∞
n=0 anx

n is continuously
differentiable for x ∈ (−R,R) and

f ′(x) =

∞∑
n=0

nanx
n−1 =

∞∑
n=1

nanx
n−1.

3 To say g := f(·, y) is continuous on U means that g : U → C is continuous relative
to the metric on Rn restricted to U.
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26 4 Limits and Sums

Exercise 4.14. Show the functions

ex :=

∞∑
n=0

xn

n!
, (4.35)

sinx :=

∞∑
n=0

(−1)
n x2n+1

(2n+ 1)!
and (4.36)

cosx =

∞∑
n=0

(−1)
n x2n

(2n)!
(4.37)

are infinitely differentiable and they satisfy

d

dx
ex = ex with e0 = 1

d

dx
sinx = cosx with sin (0) = 0

d

dx
cosx = − sinx with cos (0) = 1.

Exercise 4.15. Continue the notation of Exercise 4.14.

1. Use the product and the chain rule to show,

d

dx

[
e−xe(x+y)

]
= 0

and conclude from this, that e−xe(x+y) = ey for all x, y ∈ R. In particular
taking y = 0 this implies that e−x = 1/ex and hence that e(x+y) = exey.
Use this result to show ex ↑ ∞ as x ↑ ∞ and ex ↓ 0 as x ↓ −∞.
Remark: since ex ≥

∑N
n=0

xn

n! when x ≥ 0, it follows that limx→∞
xn

ex = 0
for any n ∈ N, i.e. ex grows at a rate faster than any polynomial in x as
x→∞.

2. Use the product rule to show

d

dx

(
cos2 x+ sin2 x

)
= 0

and use this to conclude that cos2 x+ sin2 x = 1 for all x ∈ R.

Exercise 4.16. Let {an}∞n=−∞ be a summable sequence of complex numbers,
i.e.

∑∞
n=−∞ |an| <∞. For t ≥ 0 and x ∈ R, define

F (t, x) =

∞∑
n=−∞

ane
−tn2

einx,

where as usual eix = cos(x) + i sin(x), this is motivated by replacing x in Eq.
(4.35) by ix and comparing the result to Eqs. (4.36) and (4.37).

1. F (t, x) is continuous for (t, x) ∈ [0,∞)×R. Hint: Let Y = Z and u = (t, x)
and use Exercise 4.11.

2. ∂F (t, x)/∂t, ∂F (t, x)/∂x and ∂2F (t, x)/∂x2 exist for t > 0 and x ∈ R.
Hint: Let Y = Z and u = t for computing ∂F (t, x)/∂t and u = x for
computing ∂F (t, x)/∂x and ∂2F (t, x)/∂x2 via Exercise 4.12. In computing
the t derivative, you should let ε > 0 and apply Exercise 4.12 with t = u > ε
and then afterwards let ε ↓ 0.

3. F satisfies the heat equation, namely

∂F (t, x)/∂t = ∂2F (t, x)/∂x2 for t > 0 and x ∈ R.

4.6.3 `p Exercises

Exercise 4.17. Generalize Proposition 4.26 as follows. Let a ∈ [−∞, 0] and
f : R ∩ [a,∞) → [0,∞) be a continuous strictly increasing function such that
lim
s→∞

f(s) = ∞, f(a) = 0 if a > −∞ or lims→−∞ f(s) = 0 if a = −∞. Also let

g = f−1, b = f(0) ≥ 0,

F (s) =

∫ s

0

f(s′)ds′ and G(t) =

∫ t

0

g(t′)dt′.

Then for all s, t ≥ 0,

st ≤ F (s) +G(t ∨ b) ≤ F (s) +G(t)

and equality holds iff t = f(s). In particular, taking f(s) = es, prove Young’s
inequality stating

st ≤ es + (t ∨ 1) ln (t ∨ 1)− (t ∨ 1) ≤ es + t ln t− t,

where s ∨ t := min (s, t) . Hint: Refer to Figures 4.3 and 4.4..

Exercise 4.18. Using differential calculus, prove the following inequalities

1. For y > 0, let g (x) := xy − ex for x ∈ R. Use calculus to compute the
maximum of g (x) and use this prove Young’s inequality;

xy ≤ ex + y ln y − y for x ∈ R and y > 0.

2. For p > 1 and y ≥ 0, let g (x) := xy−xp/p for x ≥ 0. Again use calculus to
compute the maximum of g (x) and show that your result gives the following
inequality;

xy ≤ xp

p
+
yq

q
for all x, y ≥ 0.

where q = p
p−1 , i.e. 1

q = 1− 1
p .
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Fig. 4.3. Comparing areas when t ≥ b goes the same way as in the text.

Fig. 4.4. When t ≤ b, notice that g(t) ≤ 0 but G(t) ≥ 0. Also notice that G(t) is no
longer needed to estimate st.

3. Suppose now that u : [0,∞)→ [0,∞) is a C1 - function such that: u (0) = 0,

limx→∞
u(x)
x =∞, and u′ (x) > 0 for all x > 0. Show

xy ≤ u (x) + v (y) for all x, y ≥ 0,

where v (y) = y (u′)
−1

(y) − u
(

(u′)
−1

(y)
)
. Hint: consider the function,

g (x) := xy − u (x) .





Part II

Measure Theory I.





5

What are measures and why “measurable” sets

Throughout this chapter, we will let X and Ω be sets. Our goal is to study
“measures” and their related integrals on these sets. Before giving a (prelimi-
nary) definition of a measure let me give some “physical” examples;

1. Suppose that Ω is a region in space filled with some material. To each subset
A ⊂ Ω we might let µ (A) denote the weight (or volume, or monetary value,
heat energy contained in A) of the material in Ω.

2. Suppose that Ω is a region in space filled with charged particles, to each
subset A ⊂ Ω we might let µ (A) denote the total charge of the particles
contained in A. (This is an example of a signed measure, i.e. it might take
both positive and negative values.)

3. Perhaps Ω represents the face of a dart board at which drunk patrons are
attempting to hit in the center. For A ⊂ Ω, we might let P (A) denote the
total number of darts which landed in A.

With these examples in mind let us formalize (preliminarliy) the notion of
a measure on a set X. (Given the physical examples just mentioned, I hope the
axioms in the next Definition 5.1 look reasonable to the reader.)

Definition 5.1 (Preliminary). A positive1 measure µ “on” a set X is a
function µ : 2X → [0,∞] such that

1. µ(∅) = 0
2. Additivity. If A and B are disjoint subsets of X, i.e. A ∩ B = AB = ∅,

then µ (A ∪B) = µ (A) + µ (B) .
3. Continuity. Suppose that {An}∞n=1 ⊂ 2X with An ↑ (i.e. An ⊂ An+1 for

all n), then
µ (∪∞n=1An) = lim

n→∞
µ (An) .

Notation 5.2 Given {An}∞n=1 ⊂ 2X , we write
∑∞
n=1An to denote ∪∞n=1An

under the additional assumption that An ∩Am = ∅ for all m 6= n.

Lemma 5.3 (Reformulations of Continuity). If µ : 2X → [0,∞] satisfies
items 1. and 2. of Definition 5.1 then µ satisfies item 3 Definition 5.1 iff

1 We will deal with signed measures later.

µ (A) =

∞∑
n=1

µ (An) whenever A =

∞∑
n=1

An. (5.1)

Moroever if µ (X) <∞ then µ satisfies item 3. iff limn→∞ µ (An) = µ (∩∞n=1An)
whenever {An}∞n=1 ⊂ 2X with An ↓, i.e. An ⊃ An+1 for all n.

Proof. First observe that if A ⊂ B then B = (B \A)∪A with (B \A)∩A =
∅ and hence µ (B) = µ (B \A) + µ (A) , i.e.

µ (B \A) = µ (B)− µ (A) for all A ⊂ B ⊂ X.

Now suppose that µ satisfies item 3. Definition 5.1 (continuity). If A :=∑∞
n=1An and Bk :=

∑k
n=1An, then Bk ↑ A as k ↑ ∞ and therefore

µ (A) = lim
k→∞

µ (Bk) = lim
k→∞

µ

(
k∑

n=1

An

)

= lim
k→∞

k∑
n=1

µ (An) (by finite additivity and induction)

=

∞∑
n=1

µ (An) .

Conversiely, suppose that Eq. (5.1) holds whenever An∩Am = ∅ for all m 6=
n. Given Bn ↑ B, let A1 = B1 and define An inductively by An = Bn \ An−1.
Then B =

∑∞
n=1An and therfore

µ (B) =

∞∑
n=1

µ (An) = lim
k→∞

k∑
n=1

µ (An) = lim
k→∞

µ

(
k∑

n=1

An

)
= lim
k→∞

µ (Bk) ,

i.e. µ satisfies item 3. Definition 5.1. The second assertion is left as an exercise
to the reader.

Example 5.4 (Counting Type Measures). Let µ (A) = # (A) – the number of
points in A. Then µ is a measure on X. More generally, if Λ ⊂ X is any fixed
subset of X, then µΛ (A) := # (Λ ∩A) defines a measure on X. Even more
generally, if λ : X → [0,∞] is any function, then
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µλ (A) :=
∑
x∈A

λ (x) := sup
Λ⊂fA

∑
x∈Λ

λ (x)

defined a measure on X.

The measures we often most want to understand are those measure lengths,
areas, or more generally n – dimensional volumes. For example, suppose we
take X = R2 and let µ (A) denote the “area” of a subset A ⊂ X. I think we
would all agreee that

µ ((a, b]× (c, d]) = (b− a) (d− c) for −∞ < a < b <∞ and −∞ < c < d <∞.

With this basic building block we might want to compute the area the unit disk.
One way to try to do this is (see Figure 5.1) to approximate the disk by finite
unions of disjoint rectangles. By the additivity axiom of µ we can compute the
area of the approximations and then by using the continuity axiom we could
take a limit of these approximations to find the area of the unit disk.

Fig. 5.1. Here is an indication of how one might approximate a disk by finite disjoint
union of rectangles.

Definition 5.1 is all well fine except for the unfortunate fact that measures
(like areas and volumes) with vary natural and desirable properties often do
not exist. We give a couple of example illustrating this point now.

Theorem 5.5 (No-Go Theorem 1). Let S = {z ∈ C : |z| = 1} be the unit
circle. Then there is no measure µ : 2S → [0, 1] such that 0 < µ (S) < ∞ that
is invariant under rotations.

Proof. We are going to use the fact proved below in Proposition 8.3 (of
Lemma 5.3 above), that the continuity condition on µ is equivalent to the σ –
additivity of µ. For z ∈ S and N ⊂ S let

zN := {zn ∈ S : n ∈ N}, (5.2)

that is to say eiθN is the set N rotated counter clockwise by angle θ. By
assumption, we are supposing that

µ(zN) = µ(N) (5.3)

for all z ∈ S and N ⊂ S.
Let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q}

– a countable subgroup of S. As above R acts on S by rotations and divides S
up into equivalence classes, where z, w ∈ S are equivalent if z = rw for some
r ∈ R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N ⊂ S be the set of these representative
points. Then every point z ∈ S may be uniquely written as z = nr with n ∈ N
and r ∈ R. That is to say

S =
∑
r∈R

(rN) (5.4)

where
∑
αAα is used to denote the union of pair-wise disjoint sets {Aα} . By

Eqs. (5.3) and (5.4),

1 = µ(S) =
∑
r∈R

µ(rN) =
∑
r∈R

µ(N). (5.5)

We have thus arrived at a contradiction, since the right side of Eq. (5.5) is either
equal to 0 or to ∞ depending on whether µ (N) = 0 or µ (N) > 0.

Theorem 5.6. There is no measure µ : 2R→[0,∞] such that

1. µ([a, b)) = (b− a) for all a < b and
2. is translation invariant, i.e. µ(A + x) = µ(A) for all x ∈ R and A ∈ 2R,

where
A+ x := {y + x : y ∈ A} ⊂ R.

In fact the theorem is still true even if (1) is replaced by the weaker condition
that 0 < µ((0, 1]) <∞.

The counting measure µ (A) = # (A) is translation invariant. However
µ((0, 1]) =∞ in this case and so µ does not satisfy condition 1.

Proof. First proof. Let us identify [0, 1) with the unit circle S1 := {z ∈
C : |z| = 1} by the map
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φ(t) = ei2πt = (cos 2πt+ i sin 2πt) ∈ S1

for t ∈ [0, 1). Using this identification we may use µ to define a function ν on

2S
1

by ν(φ(A)) = µ(A) for all A ⊂ [0, 1). This new function is a measure on S1

with the property that 0 < ν((0, 1]) <∞. For z ∈ S1 and N ⊂ S1 let

zN := {zn ∈ S1 : n ∈ N}, (5.6)

that is to say eiθN is N rotated counter clockwise by angle θ. We now claim
that ν is invariant under these rotations, i.e.

ν(zN) = ν(N) (5.7)

for all z ∈ S1 and N ⊂ S1. To verify this, write N = φ(A) and z = φ(t) for
some t ∈ [0, 1) and A ⊂ [0, 1). Then

φ(t)φ(A) = φ(t+Amod 1)

where for A ⊂ [0, 1) and t ∈ [0, 1),

t+Amod 1 := {a+ tmod 1 ∈ [0, 1) : a ∈ A}
= ((t+A) ∩ {a < 1− t}) ∪ ([(t− 1) +A] ∩ {a ≥ 1− t}) .

Thus

ν(φ(t)φ(A)) = µ(t+Amod 1)

= µ ((a+A ∩ {a < 1− t}) ∪ ((t− 1) +A ∩ {a ≥ 1− t}))
= µ ((a+A ∩ {a < 1− t})) + µ (((t− 1) +A ∩ {a ≥ 1− t}))
= µ (A ∩ {a < 1− t}) + µ (A ∩ {a ≥ 1− t})
= µ ((A ∩ {a < 1− t}) ∪ (A ∩ {a ≥ 1− t}))
= µ(A) = ν(φ(A)).

Therefore it suffices to prove that no finite non-trivial measure ν on S1 such that
Eq. (5.7) holds. To do this we will “construct” a non-measurable set N = φ(A)
for some A ⊂ [0, 1). Let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q}

– a countable subgroup of S1. As above R acts on S1 by rotations and divides
S1 up into equivalence classes, where z, w ∈ S1 are equivalent if z = rw for some
r ∈ R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N ⊂ S1 be the set of these representative
points. Then every point z ∈ S1 may be uniquely written as z = nr with n ∈ N
and r ∈ R. That is to say

S1 =
∐
r∈R

(rN) (5.8)

where
∐
αAα is used to denote the union of pair-wise disjoint sets {Aα} . By

Eqs. (5.7) and (5.8),

ν(S1) =
∑
r∈R

ν(rN) =
∑
r∈R

ν(N).

The right member from this equation is either 0 or ∞, 0 if ν(N) = 0 and ∞ if
ν(N) > 0. In either case it is not equal ν(S1) ∈ (0, 1). Thus we have reached
the desired contradiction.

Proof. Second proof of Theorem 5.6. For N ⊂ [0, 1) and α ∈ [0, 1), let

Nα = N + αmod 1

= {a+ αmod 1 ∈ [0, 1) : a ∈ N}
= (α+N ∩ {a < 1− α}) ∪ ((α− 1) +N ∩ {a ≥ 1− α}) .

Then

µ (Nα) = µ (α+N ∩ {a < 1− α}) + µ ((α− 1) +N ∩ {a ≥ 1− α})
= µ (N ∩ {a < 1− α}) + µ (N ∩ {a ≥ 1− α})
= µ (N ∩ {a < 1− α} ∪ (N ∩ {a ≥ 1− α}))
= µ(N). (5.9)

We will now construct a bad set N which coupled with Eq. (5.9) will lead to a
contradiction. Set

Qx := {x+ r ∈ R : r∈ Q} =x+Q.

Notice that Qx ∩ Qy 6= ∅ implies that Qx = Qy. Let O = {Qx : x ∈ R} – the
orbit space of the Q action. For all A ∈ O choose f(A) ∈ [0, 1/3) ∩ A2 and
define N = f(O). Then observe:

1. f(A) = f(B) implies that A∩B 6= ∅ which implies that A = B so that f is
injective.

2. O = {Qn : n ∈ N}.

Let R be the countable set,

R := Q ∩ [0, 1).

We now claim that

2 We have used the Axiom of choice here, i.e.
∏
A∈F (A ∩ [0, 1/3]) 6= ∅
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Nr ∩Ns = ∅ if r 6= s and (5.10)

[0, 1) = ∪r∈RNr. (5.11)

Indeed, if x ∈ Nr ∩ Ns 6= ∅ then x = r + nmod 1 and x = s + n′mod 1, then
n− n′ ∈ Q, i.e. Qn = Qn′ . That is to say, n = f(Qn) = f(Qn′) = n′ and hence
that s = rmod 1, but s, r ∈ [0, 1) implies that s = r. Furthermore, if x ∈ [0, 1)
and n := f(Qx), then x − n = r ∈ Q and x ∈ Nrmod 1. Now that we have
constructed N, we are ready for the contradiction. By Equations (5.9–5.11) we
find

1 = µ([0, 1)) =
∑
r∈R

µ(Nr) =
∑
r∈R

µ(N)

=

{
∞ if µ(N) > 0
0 if µ(N) = 0

.

which is certainly inconsistent. Incidentally we have just produced an example
of so called “non – measurable” set.

Because of Theorems 5.5 and 5.6, we have to in general relinquish the idea
that measure µ can be defined on all of 2X . In other words we are going to
have to restrict our attention to only measuring some sub-collection, B ⊂ 2X ,
of all subsets of X. We will refer to B as the collection of measurable sets. We
will developed this below., it is necessary to modify Definition 5.1. Our revised
notion of a measure will appear in Definition ?? of Chapter ?? below.



6

Set Operations

Let N denote the positive integers, N0 := N∪{0} be the non-negative inte-
gers and Z = N0 ∪ (−N) – the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 6.1 Given two sets X and Y, let Y X denote the collection of all
functions f : X → Y. If X = N, we will say that f ∈ Y N is a sequence
with values in Y and often write fn for f (n) and express f as {fn}∞n=1 . If
X = {1, 2, . . . , N}, we will write Y N in place of Y {1,2,...,N} and denote f ∈ Y N
by f = (f1, f2, . . . , fN ) where fn = f(n).

Notation 6.2 More generally if {Xα : α ∈ A} is a collection of non-empty sets,
let XA =

∏
α∈A

Xα and πα : XA → Xα be the canonical projection map defined

by πα(x) = xα. If If Xα = X for some fixed space X, then we will write
∏
α∈A

Xα

as XA rather than XA.

Recall that an element x ∈ XA is a “choice function,” i.e. an assignment
xα := x(α) ∈ Xα for each α ∈ A. The axiom of choice states that XA 6= ∅
provided that Xα 6= ∅ for each α ∈ A.

Notation 6.3 Given a set X, let 2X denote the power set of X – the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2X is that if we think of 2
meaning {0, 1} , then an element of a ∈ 2X = {0, 1}X is completely determined
by the set

A := {x ∈ X : a(x) = 1} ⊂ X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.

For A ∈ 2X let
Ac := X \A = {x ∈ X : x /∈ A}

and more generally if A,B ⊂ X let

B \A := {x ∈ B : x /∈ A} = B ∩Ac.

We also define the symmetric difference of A and B by

A4B := (B \A) ∪ (A \B) .

As usual if {Aα}α∈I is an indexed collection of subsets of X we define the union
and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and

∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 6.4 We will also write
∑
α∈I Aα for ∪α∈IAα in the case that

{Aα}α∈I are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For example
let {An}∞n=1 be a sequence of subsets from X and define

inf
k≥n

An := ∩k≥nAk, sup
k≥n

An := ∪k≥nAk,

lim sup
n→∞

An := inf
n

sup
k≥n

Ak = {x ∈ X : # {n : x ∈ An} =∞} =: {An i.o.}

and

lim inf
n→∞

An := sup
n

inf
k≥n

Ak = {x ∈ X : x ∈ An for all n sufficiently large} =: {An a.a.} .

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost
always.) Then x ∈ {An i.o.} iff

∀N ∈ N ∃ n ≥ N 3 x ∈ An

and this may be expressed as

{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff

∃ N ∈ N 3 ∀ n ≥ N, x ∈ An

which may be written as

{An a.a.} = ∪∞N=1 ∩n≥N An.
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Definition 6.5. Given a set A ⊂ X, let

1A (x) =

{
1 if x ∈ A
0 if x /∈ A

be the indicator function of A.

Lemma 6.6 (Properties of inf and sup). We have:

1. (∪nAn)
c

= ∩nAcn,
2. {An i.o.}c = {Acn a.a.} ,
3. lim sup

n→∞
An = {x ∈ X :

∑∞
n=1 1An (x) =∞} ,

4. lim infn→∞An =
{
x ∈ X :

∑∞
n=1 1Acn (x) <∞

}
,

5. supk≥n 1Ak (x) = 1∪k≥nAk = 1supk≥n Ak ,
6. infk≥n 1Ak (x) = 1∩k≥nAk = 1infk≥n Ak ,
7. 1lim sup

n→∞
An = lim sup

n→∞
1An , and

8. 1lim infn→∞ An = lim infn→∞ 1An .

Proof. These results follow fairly directly from the definitions and so the
proof is left to the reader. (The reader should definitely provide a proof for
herself.)

Definition 6.7. A set X is said to be countable if is empty or there is an
injective function f : X → N, otherwise X is said to be uncountable.

Lemma 6.8 (Basic Properties of Countable Sets).

1. If A ⊂ X is a subset of a countable set X then A is countable.
2. Any infinite subset Λ ⊂ N is in one to one correspondence with N.
3. A non-empty set X is countable iff there exists a surjective map, g : N→ X.
4. If X and Y are countable then X × Y is countable.
5. Suppose for each m ∈ N that Am is a countable subset of a set X, then
A = ∪∞m=1Am is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2X is uncountable for any infinite set X.

Proof. 1. If f : X → N is an injective map then so is the restriction, f |A,
of f to the subset A. 2. Let f (1) = minΛ and define f inductively by

f(n+ 1) = min (Λ \ {f(1), . . . , f(n)}) .

Since Λ is infinite the process continues indefinitely. The function f : N → Λ
defined this way is a bijection.

3. If g : N→ X is a surjective map, let

f(x) = min g−1 ({x}) = min {n ∈ N : f(n) = x} .

Then f : X → N is injective which combined with item
2. (taking Λ = f(X)) shows X is countable. Conversely if f : X → N is

injective let x0 ∈ X be a fixed point and define g : N → X by g(n) = f−1(n)
for n ∈ f (X) and g(n) = x0 otherwise.

4. Let us first construct a bijection, h, from N to N×N. To do this put the
elements of N× N into an array of the form

(1, 1) (1, 2) (1, 3) . . .
(2, 1) (2, 2) (2, 3) . . .
(3, 1) (3, 2) (3, 3) . . .

...
...

...
. . .


and then “count” these elements by counting the sets {(i, j) : i+ j = k} one
at a time. For example let h (1) = (1, 1) , h(2) = (2, 1), h (3) = (1, 2), h(4) =
(3, 1), h(5) = (2, 2), h(6) = (1, 3) and so on. If f : N→X and g : N→Y are
surjective functions, then the function (f × g) ◦ h : N→X × Y is surjective
where (f × g) (m,n) := (f (m), g(n)) for all (m,n) ∈ N× N.

5. If A = ∅ then A is countable by definition so we may assume A 6= ∅.
With out loss of generality we may assume A1 6= ∅ and by replacing Am by
A1 if necessary we may also assume Am 6= ∅ for all m. For each m ∈ N let
am : N→Am be a surjective function and then define f : N×N→ ∪∞m=1Am by
f(m,n) := am(n). The function f is surjective and hence so is the composition,
f ◦ h : N→ ∪∞m=1Am, where h : N→ N× N is the bijection defined above.

6. Let us begin by showing 2N = {0, 1}N is uncountable. For sake of

contradiction suppose f : N → {0, 1}N is a surjection and write f (n) as

(f1 (n) , f2 (n) , f3 (n) , . . . ) . Now define a ∈ {0, 1}N by an := 1 − fn(n). By
construction fn (n) 6= an for all n and so a /∈ f (N) . This contradicts the as-
sumption that f is surjective and shows 2N is uncountable. For the general
case, since Y X0 ⊂ Y X for any subset Y0 ⊂ Y, if Y X0 is uncountable then so
is Y X . In this way we may assume Y0 is a two point set which may as well
be Y0 = {0, 1} . Moreover, since X is an infinite set we may find an injective
map x : N → X and use this to set up an injection, i : 2N → 2X by setting
i (A) := {xn : n ∈ N} ⊂ X for all A ⊂ N. If 2X were countable we could find
a surjective map f : 2X → N in which case f ◦ i : 2N → N would be surjec-
tive as well. However this is impossible since we have already seed that 2N is
uncountable.

6.1 Exercises

Let f : X → Y be a function and {Ai}i∈I be an indexed family of subsets of Y,
verify the following assertions.

Page: 36 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



6.2 Algebraic sub-structures of sets 37

Exercise 6.1. (∩i∈IAi)c = ∪i∈IAci .

Exercise 6.2. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 6.3. f−1(∪i∈IAi) = ∪i∈If−1(Ai).

Exercise 6.4. f−1(∩i∈IAi) = ∩i∈If−1(Ai).

Exercise 6.5. Find a counterexample which shows that f(C ∩ D) = f(C) ∩
f(D) need not hold.

Example 6.9. Let X = {a, b, c} and Y = {1, 2} and define f (a) = f (b) = 1
and f (c) = 2. Then ∅ = f ({a} ∩ {b}) 6= f ({a}) ∩ f ({b}) = {1} and {1, 2} =
f ({a}c) 6= f ({a})c = {2} .

6.2 Algebraic sub-structures of sets

Definition 6.10. A collection of subsets A of a set X is a π – system or
multiplicative system if A is closed under taking finite intersections.

Definition 6.11. A collection of subsets A of a set X is an algebra (Field)
if

1. ∅, X ∈ A
2. A ∈ A implies that Ac ∈ A
3. A is closed under finite unions, i.e. if A1, . . . , An ∈ A then A1∪· · ·∪An ∈ A.

In view of conditions 1. and 2., 3. is equivalent to
3′. A is closed under finite intersections.

Definition 6.12. A collection of subsets B of X is a σ – algebra (or some-
times called a σ – field) if B is an algebra which also closed under countable
unions, i.e. if {Ai}∞i=1 ⊂ B, then ∪∞i=1Ai ∈ B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections.)

Example 6.13. Here are some examples of algebras.

1. B = 2X , then B is a σ – algebra.
2. B = {∅, X} is a σ – algebra called the trivial σ – field.
3. Let X = {1, 2, 3}, then A = {∅, X, {1} , {2, 3}} is an algebra while, S :=
{∅, X, {2, 3}} is a not an algebra but is a π – system.

Proposition 6.14. Let E be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and σ – algebra σ(E) which contains E .

Proof. Simply take

A(E) :=
⋂
{A : A is an algebra such that E ⊂ A}

and
σ(E) :=

⋂
{M :M is a σ – algebra such that E ⊂M}.

Example 6.15. Suppose X = {1, 2, 3} and E = {∅, X, {1, 2}, {1, 3}}, see Figure
6.1. Then

Fig. 6.1. A collection of subsets.

A(E) = σ(E) = 2X .

On the other hand if E = {{1, 2}} , then A (E) = {∅, X, {1, 2}, {3}}.

Exercise 6.6. Suppose that Ei ⊂ 2X for i = 1, 2. Show that A (E1) = A (E2)
iff E1 ⊂ A (E2) and E2 ⊂ A (E1) . Similarly show, σ (E1) = σ (E2) iff E1 ⊂ σ (E2)
and E2 ⊂ σ (E1) . Give a simple example where A (E1) = A (E2) while E1 6= E2.

In this course we will often be interested in the Borel σ – algebra on a
topological space.

Definition 6.16 (Borel σ – field). The Borel σ – algebra, B = BR =
B (R) , on R is the smallest σ -field containing all of the open subsets of R.
More generally if (X, τ) is a topological space, the Borel σ – algebra on X is
BX := σ (τ) – i.e. the smallest σ – algebra containing all open (closed) subsets
of X.
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Exercise 6.7. Verify the Borel σ – algebra, BR, is generated by any of the
following collection of sets:

1. {(a,∞) : a ∈ R} , 2. {(a,∞) : a ∈ Q} or 3. {[a,∞) : a ∈ Q} .

Hint: make use of Exercise 6.6.

We will postpone a more in depth study of σ – algebras until later. For now,
let us concentrate on understanding the the simpler notion of an algebra.

Definition 6.17. Let X be a set. We say that a family of sets F ⊂ 2X is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F .

Example 6.18. Let X be a set and E = {A1, . . . , An} where A1, . . . , An is a
partition of X. In this case

A(E) = σ(E) = {∪i∈ΛAi : Λ ⊂ {1, 2, . . . , n}}

where ∪i∈ΛAi := ∅ when Λ = ∅. Notice that

# (A(E)) = #(2{1,2,...,n}) = 2n.

Example 6.19. Suppose that X is a set and that A ⊂ 2X is a finite algebra, i.e.
# (A) <∞. For each x ∈ X let

Ax = ∩{A ∈ A : x ∈ A} ∈ A,

wherein we have used A is finite to insure Ax ∈ A. Hence Ax is the smallest set
in A which contains x.

Now suppose that y ∈ X. If x ∈ Ay then Ax ⊂ Ay so that Ax ∩ Ay = Ax.
On the other hand, if x /∈ Ay then x ∈ Ax \Ay and therefore Ax ⊂ Ax \Ay, i.e.
Ax ∩ Ay = ∅. Therefore we have shown, either Ax ∩ Ay = ∅ or Ax ∩ Ay = Ax.
By reversing the roles of x and y it also follows that either Ay ∩ Ax = ∅ or
Ay ∩Ax = Ay. Therefore we may conclude, either Ax = Ay or Ax ∩Ay = ∅ for
all x, y ∈ X.

Let us now define {Bi}ki=1 to be an enumeration of {Ax}x∈X . It is a straight-
forward to conclude that

A = {∪i∈ΛBi : Λ ⊂ {1, 2, . . . , k}} .

For example observe that for any A ∈ A, we have A = ∪x∈AAx = ∪i∈ΛBi where
Λ := {i : Bi ⊂ A} .

Proposition 6.20. Suppose that B ⊂ 2X is a σ – algebra and B is at most
a countable set. Then there exists a unique finite partition F of X such that
F ⊂ B and every element B ∈ B is of the form

B = ∪{A ∈ F : A ⊂ B} . (6.1)

In particular B is actually a finite set and # (B) = 2n for some n ∈ N.

Proof. We proceed as in Example 6.19. For each x ∈ X let

Ax = ∩{A ∈ B : x ∈ A} ∈ B,

wherein we have used B is a countable σ – algebra to insure Ax ∈ B. Just as
above either Ax ∩Ay = ∅ or Ax = Ay and therefore F = {Ax : x ∈ X} ⊂ B is a
(necessarily countable) partition of X for which Eq. (6.1) holds for all B ∈ B.

Enumerate the elements of F as F = {Pn}Nn=1 where N ∈ N or N = ∞. If
N =∞, then the correspondence

a ∈ {0, 1}N → Aa = ∪{Pn : an = 1} ∈ B

is bijective and therefore, by Lemma 6.8, B is uncountable. Thus any countable
σ – algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader.

Example 6.21 (Countable/Co-countable σ – Field). Let X = R and E :=
{{x} : x ∈ R} . Then σ (E) consists of those subsets, A ⊂ R, such that A is
countable or Ac is countable. Similarly, A (E) consists of those subsets, A ⊂ R,
such that A is finite or Ac is finite. More generally we have the following exercise.

Exercise 6.8. Let X be a set, I be an infinite index set, and E = {Ai}i∈I be a
partition of X. Prove the algebra, A (E) , and that σ – algebra, σ (E) , generated
by E are given by

A(E) = {∪i∈ΛAi : Λ ⊂ I with # (Λ) <∞ or # (Λc) <∞}

and
σ(E) = {∪i∈ΛAi : Λ ⊂ I with Λ countable or Λc countable}

respectively. Here we are using the convention that ∪i∈ΛAi := ∅ when Λ = ∅.
In particular if I is countable, then

σ(E) = {∪i∈ΛAi : Λ ⊂ I} .

Proposition 6.22. Let X be a set and E ⊂ 2X . Let Ec := {Ac : A ∈ E} and
Ec := E ∪ {X, ∅} ∪ Ec Then

A(E) := {finite unions of finite intersections of elements from Ec}. (6.2)
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Proof. Let A denote the right member of Eq. (6.2). From the definition of
an algebra, it is clear that E ⊂ A ⊂ A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z ∈ A be expressed as

Z =

N⋃
i=1

K⋂
j=1

Aij

where Aij ∈ Ec. Therefore, writing Bij = Acij ∈ Ec, we find that

Zc =

N⋂
i=1

K⋃
j=1

Bij =

K⋃
j1,...,jN=1

(B1j1 ∩B2j2 ∩ · · · ∩BNjN ) ∈ A

wherein we have used the fact that B1j1∩B2j2∩· · ·∩BNjN is a finite intersection
of sets from Ec.

Remark 6.23. One might think that in general σ(E) may be described as the
countable unions of countable intersections of sets in Ec. However this is in
general false, since if

Z =

∞⋃
i=1

∞⋂
j=1

Aij

with Aij ∈ Ec, then

Zc =

∞⋃
j1=1,j2=1,...jN=1,...

( ∞⋂
`=1

Ac`,j`

)

which is now an uncountable union. Thus the above description is not correct.
In general it is complicated to explicitly describe σ(E), see Proposition 1.23 on
page 39 of Folland for details. Also see Proposition 6.20.

Exercise 6.9. Let τ be a topology on a set X and A = A(τ) be the algebra
generated by τ. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F ∩ V where F is closed and V is open.

Definition 6.24. A set S ⊂ 2X is said to be an semialgebra or elementary
class provided that

• ∅ ∈ S
• S is closed under finite intersections
• if E ∈ S, then Ec is a finite disjoint union of sets from S. (In particular

X = ∅c is a finite disjoint union of elements from S.)

Proposition 6.25. Suppose S ⊂ 2X is a elementary class, then A = A(S)
consists of sets which may be written as finite disjoint unions of sets from S.

Proof. (Although it is possible to give a proof using Proposition 6.22, it is
just as simple to give a direct proof.) Let A denote the collection of sets which
may be written as finite disjoint unions of sets from S. Clearly S ⊂ A ⊂ A(S) so
it suffices to show A is an algebra since A(S) is the smallest algebra containing
S. By the properties of S, we know that ∅, X ∈ A. The following two steps now
finish the proof.

1. (A is closed under finite intersections.) Suppose that Ai =
∑
F∈Λi F ∈ A

where, for i = 1, 2, . . . , n, Λi is a finite collection of disjoint sets from S. Then

n⋂
i=1

Ai =

n⋂
i=1

(∑
F∈Λi

F

)
=

⋃
(F1,,...,Fn)∈Λ1×···×Λn

(F1 ∩ F2 ∩ · · · ∩ Fn)

and this is a disjoint (you check) union of elements from S. Therefore A is
closed under finite intersections.

2. (A is closed under complementation.) IfA =
∑
F∈Λ F with Λ being a finite

collection of disjoint sets from S, then Ac =
⋂
F∈Λ F

c. Since, by assumption,
F c ∈ A for all F ∈ Λ ⊂ S and A is closed under finite intersections by step 1.,
it follows that Ac ∈ A.

Example 6.26. Let X = R, then

S :=
{

(a, b] ∩ R : a, b ∈ R̄
}

= {(a, b] : a ∈ [−∞,∞) and a < b <∞} ∪ {∅,R}

is a elementary class. The algebra, A(S), generated by S consists of finite dis-
joint unions of sets from S. For example,

A = (0, π] ∪ (2π, 7] ∪ (11,∞) ∈ A (S) .

Exercise 6.10. Let A ⊂ 2X and B ⊂ 2Y be elementary classs. Show the col-
lection

S := {A×B : A ∈ A and B ∈ B}

is also a elementary class.
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Finitely Additive Measures / Integration

Definition 7.1. Suppose that E ⊂ 2X is a collection of subsets of X and µ :
E → [0,∞] is a function. Then

1. µ is additive or finitely additive on E if

µ(E) =

n∑
i=1

µ(Ei) (7.1)

whenever E =
∑n
i=1Ei ∈ E with Ei ∈ E for i = 1, 2, . . . , n <∞.

2. µ is σ – additive (or countable additive) on E if Eq. (7.1) holds even
when n =∞.

3. µ is sub-additive (finitely sub-additive) on E if

µ(E) ≤
n∑
i=1

µ(Ei)

whenever E =
⋃n
i=1Ei ∈ E with n ∈ N∪{∞} (n ∈ N).

4. µ is a finitely additive measure if E = A is an algebra, µ (∅) = 0, and µ
is finitely additive on A.

5. µ is a premeasure if µ is a finitely additive measure which is σ – additive
on A.

6. µ is a measure if µ is a premeasure on a σ – algebra. Furthermore if
µ (X) = 1, we say µ is a probability measure on X.

Proposition 7.2 (Basic properties of finitely additive measures). Sup-
pose µ is a finitely additive measure on an algebra, A ⊂ 2X , A,B ∈ A with
A ⊂ Band {Aj}nj=1 ⊂ A, then :

1. (µ is monotone) µ (A) ≤ µ(B) if A ⊂ B.
2. For A,B ∈ A, the following strong additivity formula holds;

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (7.2)

3. (µ is finitely subbadditive) µ(∪nj=1Aj) ≤
∑n
j=1 µ(Aj).

4. µ is sub-additive on A iff

µ(A) ≤
∞∑
i=1

µ(Ai) for A =

∞∑
i=1

Ai (7.3)

where A ∈ A and {Ai}∞i=1 ⊂ A are pairwise disjoint sets.

5. (µ is countably superadditive) If A =
∑∞
i=1Ai with Ai, A ∈ A, then

µ

( ∞∑
i=1

Ai

)
≥
∞∑
i=1

µ (Ai) . (7.4)

(See Remark 7.9 for example where this inequality is strict.)
6. A finitely additive measure, µ, is a premeasure iff µ is subadditive.

Proof.

1. Since B is the disjoint union of A and (B \ A) and B \ A = B ∩ Ac ∈ A it
follows that

µ(B) = µ(A) + µ(B \A) ≥ µ(A).

2. Since
A ∪B = [A \ (A ∩B)]

∐
[B \ (A ∩B)]

∐
A ∩B,

µ (A ∪B) = µ (A ∪B \ (A ∩B)) + µ (A ∩B)

= µ (A \ (A ∩B)) + µ (B \ (A ∩B)) + µ (A ∩B) .

Adding µ (A ∩B) to both sides of this equation proves Eq. (7.2).

3. Let Ẽj = Ej \ (E1 ∪ · · · ∪Ej−1) so that the Ẽj ’s are pair-wise disjoint and

E = ∪nj=1Ẽj . Since Ẽj ⊂ Ej it follows from the monotonicity of µ that

µ(E) =

n∑
j=1

µ(Ẽj) ≤
n∑
j=1

µ(Ej).

4. If A =
⋃∞
i=1Bi with A ∈ A and Bi ∈ A, then A =

∑∞
i=1Ai where Ai :=

Bi \ (B1 ∪ . . . Bi−1) ∈ A and B0 = ∅. Therefore using the monotonicity of
µ and Eq. (7.3)

µ(A) ≤
∞∑
i=1

µ(Ai) ≤
∞∑
i=1

µ(Bi).

5. Suppose that A =
∑∞
i=1Ai with Ai, A ∈ A, then

∑n
i=1Ai ⊂ A for all n

and so by the monotonicity and finite additivity of µ,
∑n
i=1 µ (Ai) ≤ µ (A) .

Letting n→∞ in this equation shows µ is superadditive.
6. This is a combination of items 5. and 6.
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7.1 Examples of Measures

Most σ – algebras and σ -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe ex-
plicitly what is going on.

Example 7.3. Suppose that Ω is a finite set, B := 2Ω , and p : Ω → [0, 1] is a
function such that ∑

ω∈Ω
p (ω) = 1.

Then
P (A) :=

∑
ω∈A

p (ω) for all A ⊂ Ω

defines a measure on 2Ω .

Example 7.4. Suppose that X is any set and x ∈ X is a point. For A ⊂ X, let

δx(A) =

{
1 if x ∈ A
0 if x /∈ A.

Then µ = δx is a measure on X called the Dirac delta measure at x.

Example 7.5. Suppose B ⊂ 2X is a σ algebra, µ is a measure on B, and λ > 0,
then λ · µ is also a measure on B. Moreover, if J is an index set and {µj}j∈J
are all measures on B, then µ =

∑∞
j=1 µj , i.e.

µ(A) :=

∞∑
j=1

µj(A) for all A ∈ B,

defines another measure on B. To prove this we must show that µ is countably
additive. Suppose that A =

∑∞
i=1Ai with Ai ∈ B, then (using Tonelli for sums,

Theorem 4.22),

µ(A) =

∞∑
j=1

µj(A) =

∞∑
j=1

∞∑
i=1

µj(Ai)

=

∞∑
i=1

∞∑
j=1

µj(Ai) =

∞∑
i=1

µ(Ai).

Example 7.6. Suppose that X is a countable set and λ : X → [0,∞] is a func-
tion. Let X = {xn}∞n=1 be an enumeration of X and then we may define a
measure µ on 2X by,

µ = µλ :=

∞∑
n=1

λ(xn)δxn .

We will now show this measure is independent of our choice of enumeration of
X by showing,

µ(A) =
∑
x∈A

λ(x) := sup
Λ⊂⊂A

∑
x∈Λ

λ (x) ∀ A ⊂ X. (7.5)

Here we are using the notation, Λ ⊂⊂ A to indicate that Λ is a finite subset of
A.

To verify Eq. (7.5), let M := supΛ⊂⊂A
∑
x∈Λ λ (x) and for each N ∈ N let

ΛN := {xn : xn ∈ A and 1 ≤ n ≤ N} .

Then by definition of µ,

µ (A) =

∞∑
n=1

λ(xn)δxn (A) = lim
N→∞

N∑
n=1

λ(xn)1xn∈A

= lim
N→∞

∑
x∈ΛN

λ (x) ≤M.

On the other hand if Λ ⊂⊂ A, then∑
x∈Λ

λ(x) =
∑

n: xn∈Λ
λ(xn) = µ (Λ) ≤ µ (A)

from which it follows that M ≤ µ (A) . This shows that µ is independent of how
we enumerate X.

The above example has a natural extension to the case where X is uncount-
able and λ : X → [0,∞] is any function. In this setting we simply may define
µ : 2X → [0,∞] using Eq. (7.5). We leave it to the reader to verify that this is
indeed a measure on 2X .

We will construct many more measure in Chapter 8 below. The starting
point of these constructions will be the construction of finitely additive measures
using the next proposition.

Proposition 7.7 (Construction of Finitely Additive Measures). Sup-
pose S ⊂ 2X is a semi-algebra (see Definition 6.24) and A = A(S) is the
algebra generated by S. Then every additive function µ : S → [0,∞] such that
µ (∅) = 0 extends uniquely to an additive measure (which we still denote by µ)
on A.

Proof. Since (by Proposition 6.25) every element A ∈ A is of the form
A =

∑
iEi for a finite collection of Ei ∈ S, it is clear that if µ extends to a

measure then the extension is unique and must be given by
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µ(A) =
∑
i

µ(Ei). (7.6)

To prove existence, the main point is to show that µ(A) in Eq. (7.6) is well
defined; i.e. if we also have A =

∑
j Fj with Fj ∈ S, then we must show∑

i

µ(Ei) =
∑
j

µ(Fj). (7.7)

But Ei =
∑
j (Ei ∩ Fj) and the additivity of µ on S implies µ(Ei) =

∑
j µ(Ei∩

Fj) and hence ∑
i

µ(Ei) =
∑
i

∑
j

µ(Ei ∩ Fj) =
∑
i,j

µ(Ei ∩ Fj).

Similarly, ∑
j

µ(Fj) =
∑
i,j

µ(Ei ∩ Fj)

which combined with the previous equation shows that Eq. (7.7) holds. It is
now easy to verify that µ extended to A as in Eq. (7.6) is an additive measure
on A.

Proposition 7.8. Let X = R, S be the semi-algebra,

S = {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}, (7.8)

and A = A(S) be the algebra formed by taking finite disjoint unions of elements
from S, see Proposition 6.25. To each finitely additive probability measures µ :
A → [0,∞], there is a unique increasing function F : R̄→ [0, 1] such that
F (−∞) = 0, F (∞) = 1 and

µ((a, b] ∩ R) = F (b)− F (a) ∀ a ≤ b in R̄. (7.9)

Conversely, given an increasing function F : R̄→ [0, 1] such that F (−∞) = 0,
F (∞) = 1 there is a unique finitely additive measure µ = µF on A such that
the relation in Eq. (7.9) holds. (Eventually we will only be interested in the case
where F (−∞) = lima↓−∞ F (a) and F (∞) = limb↑∞ F (b) .)

Proof. Given a finitely additive probability measure µ, let

F (x) := µ ((−∞, x] ∩ R) for all x ∈ R̄.

Then F (∞) = 1, F (−∞) = 0 and for b > a,

F (b)− F (a) = µ ((−∞, b] ∩ R)− µ ((−∞, a]) = µ ((a, b] ∩ R) .

Conversely, suppose F : R̄→ [0, 1] as in the statement of the theorem is
given. Define µ on S using the formula in Eq. (7.9). The argument will be
completed by showing µ is additive on S and hence, by Proposition 7.7, has a
unique extension to a finitely additive measure on A. Suppose that

(a, b] =

n∑
i=1

(ai, bi].

By reordering (ai, bi] if necessary, we may assume that

a = a1 < b1 = a2 < b2 = a3 < · · · < bn−1 = an < bn = b.

Therefore, by the telescoping series argument,

µ((a, b] ∩ R) = F (b)− F (a) =

n∑
i=1

[F (bi)− F (ai)] =

n∑
i=1

µ((ai, bi] ∩ R).

Remark 7.9. Suppose that F : R̄→ R̄ is any non-decreasing function such that
F (R) ⊂ R. Then the same methods used in the proof of Proposition 7.8 shows
that there exists a unique finitely additive measure, µ = µF , on A = A (S) such
that Eq. (7.9) holds. If F (∞) > limb↑∞ F (b) and Ai = (i, i+ 1] for i ∈ N, then

∞∑
i=1

µF (Ai) =

∞∑
i=1

(F (i+ 1)− F (i)) = lim
N→∞

N∑
i=1

(F (i+ 1)− F (i))

= lim
N→∞

(F (N + 1)− F (1)) < F (∞)− F (1) = µF (∪∞i=1Ai) .

This shows that strict inequality can hold in Eq. (7.4) and that µF is not
a premeasure. Similarly one shows µF is not a premeasure if F (−∞) <
lima↓−∞ F (a) or if F is not right continuous at some point a ∈ R. Indeed,
in the latter case consider

(a, a+ 1] =

∞∑
n=1

(a+
1

n+ 1
, a+

1

n
].

Working as above we find,

∞∑
n=1

µF

(
(a+

1

n+ 1
, a+

1

n
]

)
= F (a+ 1)− F (a+)

while µF ((a, a+ 1]) = F (a+ 1)−F (a) . We will eventually show in Chapter 8
below that µF extends uniquely to a σ – additive measure on BR whenever F
is increasing, right continuous, and F (±∞) = limx→±∞ F (x) .
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Before constructing σ – additive measures (see Chapter 8 below), we are
going to pause to discuss a preliminary notion of integration and develop some
of its properties. Hopefully this will help the reader to develop the necessary
intuition before heading to the general theory. First we need to describe the
functions we are (currently) able to integrate.

7.2 Simple Random Variables

Definition 7.10 (Simple random variables). A function, f : Ω → Y is said
to be simple if f (Ω) ⊂ Y is a finite set. If A ⊂ 2Ω is an algebra, we say that a
simple function f : Ω → Y is measurable if {f = y} := f−1 ({y}) ∈ A for all
y ∈ Y. A measurable simple function, f : Ω → C, is called a simple random
variable relative to A.

Notation 7.11 Given an algebra, A ⊂ 2Ω , let S(A) denote the collection of
simple random variables from Ω to C. For example if A ∈ A, then 1A ∈ S (A)
is a measurable simple function.

Lemma 7.12. Let A ⊂ 2Ω be an algebra, then;

1. S (A) is a sub-algebra of all functions from Ω to C.
2. f : Ω → C, is a A – simple random variable iff there exists αi ∈ C and
Ai ∈ A for 1 ≤ i ≤ n for some n ∈ N such that

f =

n∑
i=1

αi1Ai . (7.10)

3. For any function, F : C→ C, F ◦f ∈ S (A) for all f ∈ S (A) . In particular,
|f | ∈ S (A) if f ∈ S (A) .

Proof. 1. Let us observe that 1Ω = 1 and 1∅ = 0 are in S (A) . If f, g ∈ S (A)
and c ∈ C\ {0} , then

{f + cg = λ} =
⋃

a,b∈C:a+cb=λ

({f = a} ∩ {g = b}) ∈ A (7.11)

and
{f · g = λ} =

⋃
a,b∈C:a·b=λ

({f = a} ∩ {g = b}) ∈ A (7.12)

from which it follows that f + cg and f · g are back in S (A) .
2. Since S (A) is an algebra, every f of the form in Eq. (7.10) is in S (A) .

Conversely if f ∈ S (A) it follows by definition that f =
∑
α∈f(Ω) α1{f=α}

which is of the form in Eq. (7.10).

3. If F : C→ C, then

F ◦ f =
∑

α∈f(Ω)

F (α) · 1{f=α} ∈ S (A) .

Exercise 7.1 (A – measurable simple functions). As in Example 6.19, let
A ⊂ 2X be a finite algebra and {B1, . . . , Bk} be the partition of X associated to
A. Show that a function, f : X → C, is an A – simple function iff f is constant
on Bi for each i. Thus any A – simple function is of the form,

f =

k∑
i=1

αi1Bi (7.13)

for some αi ∈ C.

Corollary 7.13. Suppose that Λ is a finite set and Z : X → Λ is a function.
Let

A := A (Z) := Z−1
(
2Λ
)

:=
{
Z−1 (E) : E ⊂ Λ

}
.

Then A is an algebra and f : X → C is an A – simple function iff f = F ◦ Z
for some function F : Λ→ C.

Proof. For λ ∈ Λ, let

Aλ := {Z = λ} = {x ∈ X : Z (x) = λ} .

The {Aλ}λ∈Λ is the partition of X determined by A. Therefore f is an A –
simple function iff f |Aλ is constant for each λ ∈ Λ. Let us denote this constant
value by F (λ) . As Z = λ on Aλ, F : Λ→ C is a function such that f = F ◦Z.

Conversely if F : Λ→ C is a function and f = F ◦Z, then f = F (λ) on Aλ,
i.e. f is an A – simple function.

7.2.1 The algebraic structure of simple functions*

Definition 7.14. A simple function algebra, S, is a subalgebra1 of the
bounded complex functions on X such that 1 ∈ S and each function in S is
a simple function. If S is a simple function algebra, let

A (S) := {A ⊂ X : 1A ∈ S} .

(It is easily checked that A (S) is a sub-algebra of 2X .)

1 To be more explicit we are assuming that S is a linear subspace of bounded functions
which is closed under pointwise multiplication.
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Lemma 7.15. Suppose that S is a simple function algebra, f ∈ S and α ∈ f (X)
– the range of f. Then {f = α} ∈ A (S) .

Proof. Let {λi}ni=0 be an enumeration of f (X) with λ0 = α. Then

g :=

[
n∏
i=1

(α− λi)

]−1 n∏
i=1

(f − λi1) ∈ S.

Moreover, we see that g = 0 on ∪ni=1 {f = λi} while g = 1 on {f = α} . So we
have shown g = 1{f=α} ∈ S and therefore that {f = α} ∈ A (S) .

Exercise 7.2. Continuing the notation introduced above:

1. Show A (S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A ∈
{

Algebras ⊂ 2X
}
→ S (A) ∈ {simple function algebras on X}

is bijective and the map, S→ A (S) , is the inverse map.

7.3 Simple Integration

Definition 7.16 (Simple Integral). Suppose now that P is a finitely additive
probability measure on an algebra A ⊂ 2X . For f ∈ S (A) the integral or
expectation, E(f) = EP (f), is defined by

EP (f) =

∫
X

fdP =
∑
y∈C

yP (f = y). (7.14)

Example 7.17. Suppose that A ∈ A, then

E1A = 0 · P (Ac) + 1 · P (A) = P (A) . (7.15)

Remark 7.18. Let us recall that our intuitive notion of P (A) was given as in
Eq. (??) by

P (A) = lim
N→∞

1

N

∑
1A (ω (k))

where ω (k) ∈ Ω was the result of the kth “independent” experiment. If we use
this interpretation back in Eq. (7.14) we arrive at,

E(f) =
∑
y∈C

yP (f = y) =
∑
y∈C

y · lim
N→∞

1

N

N∑
k=1

1f(ω(k))=y

= lim
N→∞

1

N

∑
y∈C

y

N∑
k=1

1f(ω(k))=y

= lim
N→∞

1

N

N∑
k=1

∑
y∈C

f (ω (k)) · 1f(ω(k))=y

= lim
N→∞

1

N

N∑
k=1

f (ω (k)) .

Thus informally, Ef should represent the limiting average of the values of f
over many “independent” experiments. We will come back to this later when
we study the strong law of large numbers.

Proposition 7.19. The expectation operator, E = EP : S (A)→ C, satisfies:

1. If f ∈ S(A) and λ ∈ C, then

E(λf) = λE(f). (7.16)

2. If f, g ∈ S (A) , then
E(f + g) = E(g) + E(f). (7.17)

Items 1. and 2. say that E (·) is a linear functional on S (A) .

3. If f =
∑N
j=1 λj1Aj for some λj ∈ C and some Aj ∈ C, then

E (f) =

N∑
j=1

λjP (Aj) . (7.18)

4. E is positive, i.e. E(f) ≥ 0 for all 0 ≤ f ∈ S (A) . More generally, if
f, g ∈ S (A) and f ≤ g, then E (f) ≤ E (g) .

5. For all f ∈ S (A) ,
|Ef | ≤ E |f | . (7.19)

Proof.

1. If λ 6= 0, then

E(λf) =
∑
y∈C

y P (λf = y) =
∑
y∈C

y P (f = y/λ)

=
∑
z∈C

λz P (f = z) = λE(f).

The case λ = 0 is trivial.
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2. Writing {f = a, g = b} for f−1({a}) ∩ g−1({b}), then

E(f + g) =
∑
z∈C

z P (f + g = z)

=
∑
z∈C

z P

( ∑
a+b=z

{f = a, g = b}

)
=
∑
z∈C

z
∑
a+b=z

P ({f = a, g = b})

=
∑
z∈C

∑
a+b=z

(a+ b)P ({f = a, g = b})

=
∑
a,b

(a+ b)P ({f = a, g = b}) .

But ∑
a,b

aP ({f = a, g = b}) =
∑
a

a
∑
b

P ({f = a, g = b})

=
∑
a

aP (∪b {f = a, g = b})

=
∑
a

aP ({f = a}) = Ef

and similarly, ∑
a,b

bP ({f = a, g = b}) = Eg.

Equation (7.17) is now a consequence of the last three displayed equations.

3. If f =
∑N
j=1 λj1Aj , then

Ef = E

 N∑
j=1

λj1Aj

 =

N∑
j=1

λjE1Aj =

N∑
j=1

λjP (Aj) .

4. If f ≥ 0 then

E(f) =
∑
a≥0

aP (f = a) ≥ 0

and if f ≤ g, then g − f ≥ 0 so that

E (g)− E (f) = E (g − f) ≥ 0.

5. By the triangle inequality,

|Ef | =

∣∣∣∣∣∑
λ∈C

λP (f = λ)

∣∣∣∣∣ ≤∑
λ∈C
|λ|P (f = λ) = E |f | ,

wherein the last equality we have used Eq. (7.18) and the fact that |f | =∑
λ∈C |λ| 1f=λ.

Remark 7.20. If Ω is a finite set and A = 2Ω , then

f (·) =
∑
ω∈Ω

f (ω) 1{ω}

and hence
EP f =

∑
ω∈Ω

f (ω)P ({ω}) .

Remark 7.21. All of the results in Proposition 7.19 and Remark 7.20 remain
valid when P is replaced by a finite measure, µ : A → [0,∞), i.e. it is enough
to assume µ (X) <∞.

Exercise 7.3. Let P is a finitely additive probability measure on an algebra
A ⊂ 2X and for A,B ∈ A let ρ (A,B) := P (A∆B) where A∆B = (A \B) ∪
(B \A) . Show;

1. ρ (A,B) = E |1A − 1B | and then use this (or not) to show
2. ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈ A.

Remark: it is now easy to see that ρ : A×A → [0, 1] satisfies the axioms of
a metric except for the condition that ρ (A,B) = 0 does not imply that A = B
but only that A = B modulo a set of probability zero.

Remark 7.22 (Chebyshev’s Inequality). Suppose that f ∈ S(A), ε > 0, and
p > 0, then

1|f |≥ε ≤
|f |p

εp
1|f |≥ε ≤ ε−p |f |

p

and therefore, see item 4. of Proposition 7.19,

P ({|f | ≥ ε}) = E
[
1|f |≥ε

]
≤ E

[
|f |p

εp
1|f |≥ε

]
≤ ε−pE |f |p . (7.20)

Observe that
|f |p =

∑
λ∈C
|λ|p 1{f=λ}

is a simple random variable and {|f | ≥ ε} =
∑
|λ|≥ε {f = λ} ∈ A as well.

Therefore, |f |
p

εp 1|f |≥ε is still a simple random variable.

Page: 46 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



7.3 Simple Integration 47

Lemma 7.23 (Inclusion Exclusion Formula). If An ∈ A for n =
1, 2, . . . ,M such that µ

(
∪Mn=1An

)
<∞, then

µ
(
∪Mn=1An

)
=

M∑
k=1

(−1)
k+1

∑
1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank) . (7.21)

Proof. This may be proved inductively from Eq. (7.2). We will give a dif-
ferent and perhaps more illuminating proof here. Let A := ∪Mn=1An.

Since Ac =
(
∪Mn=1An

)c
= ∩Mn=1A

c
n, we have

1− 1A = 1Ac =

M∏
n=1

1Acn =

M∏
n=1

(1− 1An)

= 1 +

M∑
k=1

(−1)
k

∑
1≤n1<n2<···<nk≤M

1An1
· · · 1Ank

= 1 +

M∑
k=1

(−1)
k

∑
1≤n1<n2<···<nk≤M

1An1
∩···∩Ank

from which it follows that

1∪Mn=1An
= 1A =

M∑
k=1

(−1)
k+1

∑
1≤n1<n2<···<nk≤M

1An1
∩···∩Ank . (7.22)

Integrating this identity with respect to µ gives Eq. (7.21).

Remark 7.24. The following identity holds even when µ
(
∪Mn=1An

)
=∞,

µ
(
∪Mn=1An

)
+

M∑
k=2 & k even

∑
1≤n1<n2<···<nk≤M

µ (An1
∩ · · · ∩Ank)

=

M∑
k=1 & k odd

∑
1≤n1<n2<···<nk≤M

µ (An1
∩ · · · ∩Ank) . (7.23)

This can be proved by moving every term with a negative sign on the right
side of Eq. (7.22) to the left side and then integrate the resulting identity.
Alternatively, Eq. (7.23) follows directly from Eq. (7.21) if µ

(
∪Mn=1An

)
< ∞

and when µ
(
∪Mn=1An

)
=∞ one easily verifies that both sides of Eq. (7.23) are

infinite.

To better understand Eq. (7.22), consider the case M = 3 where,

1− 1A = (1− 1A1) (1− 1A2) (1− 1A3)

= 1− (1A1 + 1A2 + 1A3)

+ 1A11A2 + 1A11A3 + 1A21A3 − 1A11A21A3

so that

1A1∪A2∪A3 = 1A1 + 1A2 + 1A3 − (1A1∩A2 + 1A1∩A3 + 1A2∩A3) + 1A1∩A2∩A3

Here is an alternate proof of Eq. (7.22). Let ω ∈ Ω and by relabeling the
sets {An} if necessary, we may assume that ω ∈ A1 ∩ · · · ∩Am and ω /∈ Am+1 ∪
· · · ∪AM for some 0 ≤ m ≤M. (When m = 0, both sides of Eq. (7.22) are zero
and so we will only consider the case where 1 ≤ m ≤ M.) With this notation
we have

M∑
k=1

(−1)
k+1

∑
1≤n1<n2<···<nk≤M

1An1
∩···∩Ank (ω)

=

m∑
k=1

(−1)
k+1

∑
1≤n1<n2<···<nk≤m

1An1
∩···∩Ank (ω)

=

m∑
k=1

(−1)
k+1

(
m

k

)

= 1−
m∑
k=0

(−1)
k

(1)
n−k

(
m

k

)
= 1− (1− 1)

m
= 1.

This verifies Eq. (7.22) since 1∪Mn=1An
(ω) = 1.

Example 7.25 (Coincidences). Let Ω be the set of permutations (think of card

shuffling), ω : {1, 2, . . . , n} → {1, 2, . . . , n} , and define P (A) := #(A)
n! to be the

uniform distribution (Haar measure) on Ω. We wish to compute the probability
of the event, B, that a random permutation fixes some index i. To do this, let
Ai := {ω ∈ Ω : ω (i) = i} and observe that B = ∪ni=1Ai. So by the Inclusion
Exclusion Formula, we have

P (B) =

n∑
k=1

(−1)
k+1

∑
1≤i1<i2<i3<···<ik≤n

P (Ai1 ∩ · · · ∩Aik) .

Since

P (Ai1 ∩ · · · ∩Aik) = P ({ω ∈ Ω : ω (i1) = i1, . . . , ω (ik) = ik})

=
(n− k)!

n!
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and

# {1 ≤ i1 < i2 < i3 < · · · < ik ≤ n} =

(
n

k

)
,

we find

P (B) =

n∑
k=1

(−1)
k+1

(
n

k

)
(n− k)!

n!
=

n∑
k=1

(−1)
k+1 1

k!
. (7.24)

For large n this gives,

P (B) = −
n∑
k=1

1

k!
(−1)

k ∼= 1−
∞∑
k=0

1

k!
(−1)

k
= 1− e−1 ∼= 0.632.

Example 7.26 (Expected number of coincidences). Continue the notation in Ex-
ample 7.25. We now wish to compute the expected number of fixed points of
a random permutation, ω, i.e. how many cards in the shuffled stack have not
moved on average. To this end, let

Xi = 1Ai

and observe that

N (ω) =

n∑
i=1

Xi (ω) =

n∑
i=1

1ω(i)=i = # {i : ω (i) = i} .

denote the number of fixed points of ω. Hence we have

EN =
n∑
i=1

EXi =

n∑
i=1

P (Ai) =

n∑
i=1

(n− 1)!

n!
= 1.

Let us check the above formulas when n = 3. In this case we have

ω N (ω)
1 2 3 3
1 3 2 1
2 1 3 1
2 3 1 0
3 1 2 0
3 2 1 1

and so

P (∃ a fixed point) =
4

6
=

2

3
∼= 0.67 ∼= 0.632

while
3∑
k=1

(−1)
k+1 1

k!
= 1− 1

2
+

1

6
=

2

3

and

EN =
1

6
(3 + 1 + 1 + 0 + 0 + 1) = 1.

The next three problems generalize the results above. The following notation
will be used throughout these exercises.

1. (Ω,A, P ) is a finitely additive probability space, so P (Ω) = 1,
2. Ai ∈ A for i = 1, 2, . . . , n,
3. N (ω) :=

∑n
i=1 1Ai (ω) = # {i : ω ∈ Ai} , and

4. {Sk}nk=1 are given by

Sk :=
∑

1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩Aik)

=
∑

Λ⊂{1,2,...,n}3|Λ|=k

P (∩i∈ΛAi) .

Exercise 7.4. For 1 ≤ k ≤ n, show;

1. (as functions on Ω) that(
N

k

)
=

∑
Λ⊂{1,2,...,n}3|Λ|=k

1∩i∈ΛAi , (7.25)

where by definition (
m

k

)
=


0 if k > m
m!

k!·(m−k)! if 1 ≤ k ≤ m
1 if k = 0

. (7.26)

2. Conclude from Eq. (7.25) that for all z ∈ C,

(1 + z)
N

= 1 +

n∑
k=1

zk
∑

1≤i1<i2<···<ik≤n

1Ai1∩···∩Aik (7.27)

provided (1 + z)
0

= 1 even when z = −1.
3. Conclude from Eq. (7.25) that Sk = EP

(
N
k

)
.

Exercise 7.5. Taking expectations of Eq. (7.27) implies,

E
[
(1 + z)

N
]

= 1 +

n∑
k=1

Skz
k. (7.28)

Show that setting z = −1 in Eq. (7.28) gives another proof of the inclusion
exclusion formula. Hint: use the definition of the expectation to write out

E
[
(1 + z)

N
]

explicitly.
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Exercise 7.6. Let 1 ≤ m ≤ n. In this problem you are asked to compute the
probability that there are exactly m – coincidences. Namely you should show,

P (N = m) =
n∑

k=m

(−1)
k−m

(
k

m

)
Sk

=

n∑
k=m

(−1)
k−m

(
k

m

) ∑
1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩Aik)

Hint: differentiate Eq. (7.28) m times with respect to z and then evaluate the
result at z = −1. In order to do this you will find it useful to derive formulas
for;

dm

dzm
|z=−1 (1 + z)

n
and

dm

dzm
|z=−1z

k.

Example 7.27. Let us again go back to Example 7.26 where we computed,

Sk =

(
n

k

)
(n− k)!

n!
=

1

k!
.

Therefore it follows from Exercise 7.6 that

P (∃ exactly m fixed points) = P (N = m)

=

n∑
k=m

(−1)
k−m

(
k

m

)
1

k!

=
1

m!

n∑
k=m

(−1)
k−m 1

(k −m)!
.

So if n is much bigger than m we may conclude that

P (∃ exactly m fixed points) ∼=
1

m!
e−1.

Let us check our results are consistent with Eq. (7.24);

P (∃ a fixed point) =

n∑
m=1

P (N = m)

=

n∑
m=1

n∑
k=m

(−1)
k−m

(
k

m

)
1

k!

=
∑

1≤m≤k≤n

(−1)
k−m

(
k

m

)
1

k!

=

n∑
k=1

k∑
m=1

(−1)
k−m

(
k

m

)
1

k!

=

n∑
k=1

[
k∑

m=0

(−1)
k−m

(
k

m

)
− (−1)

k

]
1

k!

= −
n∑
k=1

(−1)
k 1

k!

wherein we have used,

k∑
m=0

(−1)
k−m

(
k

m

)
= (1− 1)

k
= 0.

7.3.1 Appendix: Bonferroni Inequalities

In this appendix (see Feller Volume 1., p. 106-111 for more) we want to dis-
cuss what happens if we truncate the sums in the inclusion exclusion formula
of Lemma 7.23. In order to do this we will need the following lemma whose
combinatorial meaning was explained to me by Jeff Remmel.

Lemma 7.28. Let n ∈ N0 and 0 ≤ k ≤ n, then

k∑
l=0

(−1)
l

(
n

l

)
= (−1)

k

(
n− 1

k

)
1n>0 + 1n=0. (7.29)

Proof. The case n = 0 is trivial. We give two proofs for when n ∈ N.
First proof. Just use induction on k. When k = 0, Eq. (7.29) holds since

1 = 1. The induction step is as follows,
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k+1∑
l=0

(−1)
l

(
n

l

)
= (−1)

k

(
n− 1

k

)
+

(
n

k + 1

)

=
(−1)

k+1

(k + 1)!
[n (n− 1) . . . (n− k)− (k + 1) (n− 1) . . . (n− k)]

=
(−1)

k+1

(k + 1)!
[(n− 1) . . . (n− k) (n− (k + 1))] = (−1)

k+1

(
n− 1

k + 1

)
.

Second proof. Let X = {1, 2, . . . , n} and observe that

mk :=

k∑
l=0

(−1)
l

(
n

l

)
=

k∑
l=0

(−1)
l ·#

(
Λ ∈ 2X : # (Λ) = l

)
=

∑
Λ∈2X : #(Λ)≤k

(−1)
#(Λ)

(7.30)

Define T : 2X → 2X by

T (S) =

{
S ∪ {1} if 1 /∈ S
S \ {1} if 1 ∈ S .

Observe that T is a bijection of 2X such that T takes even cardinality sets to
odd cardinality sets and visa versa. Moreover, if we let

Γk :=
{
Λ ∈ 2X : # (Λ) ≤ k and 1 ∈ Λ if # (Λ) = k

}
,

then T (Γk) = Γk for all 1 ≤ k ≤ n. Since∑
Λ∈Γk

(−1)
#(Λ)

=
∑
Λ∈Γk

(−1)
#(T (Λ))

=
∑
Λ∈Γk

− (−1)
#(Λ)

we see that
∑
Λ∈Γk (−1)

#(Λ)
= 0. Using this observation with Eq. (7.30) implies

mk =
∑
Λ∈Γk

(−1)
#(Λ)

+
∑

#(Λ)=k & 1/∈Λ

(−1)
#(Λ)

= 0 + (−1)
k

(
n− 1

k

)
.

Corollary 7.29 (Bonferroni Inequalitites). Let µ : A → [0, µ (X)] be a
finitely additive finite measure on A ⊂ 2X , An ∈ A for n = 1, 2, . . . ,M, N :=∑M
n=1 1An , and

Sk :=
∑

1≤i1<···<ik≤M

µ (Ai1 ∩ · · · ∩Aik) = Eµ
[(
N

k

)]
.

Then for 1 ≤ k ≤M,

µ
(
∪Mn=1An

)
=

k∑
l=1

(−1)
l+1

Sl + (−1)
k Eµ

[(
N − 1

k

)]
. (7.31)

This leads to the Bonferroni inequalities;

µ
(
∪Mn=1An

)
≤

k∑
l=1

(−1)
l+1

Sl if k is odd

and

µ
(
∪Mn=1An

)
≥

k∑
l=1

(−1)
l+1

Sl if k is even.

Proof. By Lemma 7.28,

k∑
l=0

(−1)
l

(
N

l

)
= (−1)

k

(
N − 1

k

)
1N>0 + 1N=0.

Therefore integrating this equation with respect to µ gives,

µ (X) +

k∑
l=1

(−1)
l
Sl = µ (N = 0) + (−1)

k Eµ
(
N − 1

k

)
and therefore,

µ
(
∪Mn=1An

)
= µ (N > 0) = µ (X)− µ (N = 0)

= −
k∑
l=1

(−1)
l
Sl + (−1)

k Eµ
(
N − 1

k

)
.

The Bonferroni inequalities are a simple consequence of Eq. (7.31) and the fact
that (

N − 1

k

)
≥ 0 =⇒ Eµ

(
N − 1

k

)
≥ 0.

7.3.2 Appendix: Riemann Stieljtes integral

In this subsection, let X be a set, A ⊂ 2X be an algebra of sets, and P := µ :
A → [0,∞) be a finitely additive measure with µ (X) <∞. As above let

Eµf :=

∫
X

fdµ :=
∑
λ∈C

λµ(f = λ) ∀ f ∈ S (A) . (7.32)
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Notation 7.30 For any function, f : X → C let ‖f‖u := supx∈X |f (x)| .
Further, let S̄ := S (A) denote those functions, f : X → C such that there exists
fn ∈ S (A) such that limn→∞ ‖f − fn‖u = 0.

Exercise 7.7. Prove the following statements.

1. For all f ∈ S (A) ,
|Eµf | ≤ µ (X) ‖f‖u . (7.33)

2. If f ∈ S̄ and fn ∈ S := S (A) such that limn→∞ ‖f − fn‖u = 0, show
limn→∞ Eµfn exists. Also show that defining Eµf := limn→∞ Eµfn is well
defined, i.e. you must show that limn→∞ Eµfn = limn→∞ Eµgn if gn ∈ S
such that limn→∞ ‖f − gn‖u = 0.

3. Show Eµ : S̄→ C is still linear and still satisfies Eq. (7.33).
4. Show |f | ∈ S̄ if f ∈ S̄ and that Eq. (7.19) is still valid, i.e. |Eµf | ≤ Eµ |f |

for all f ∈ S̄.

Let us now specialize the above results to the case where X = [0, T ] for
some T <∞. Let S := {(a, b] : 0 ≤ a ≤ b ≤ T} ∪ {0} which is easily seen to be
a semi-algebra. The following proposition is fairly straightforward and will be
left to the reader.

Proposition 7.31 (Riemann Stieljtes integral). Let F : [0, T ] → R be an
increasing function, then;

1. there exists a unique finitely additive measure, µF , on A := A (S) such that
µF ((a, b]) = F (b)− F (a) for all 0 ≤ a ≤ b ≤ T and µF ({0}) = 0. (In fact
one could allow for µF ({0}) = λ for any λ ≥ 0, but we would then have to
write µF,λ rather than µF .)

2. Show C ([0, 1] ,C) ⊂ S (A). More precisely, suppose π :=
{0 = t0 < t1 < · · · < tn = T} is a partition of [0, T ] and c = (c1, . . . , cn) ∈
[0, T ]

n
with ti−1 ≤ ci ≤ ti for each i. Then for f ∈ C ([0, 1] ,C) , let

fπ,c := f (0) 1{0} +

n∑
i=1

f (ci) 1(ti−1,ti]. (7.34)

Show that ‖f − fπ,c‖u is small provided, |π| := max {|ti − ti−1| : i = 1, 2, . . . , n}
is small.

3. Using the above results, show∫
[0,T ]

fdµF = lim
|π|→0

n∑
i=1

f (ci) (F (ti)− F (ti−1))

where the ci may be chosen arbitrarily subject to the constraint that ti−1 ≤
ci ≤ ti.

It is customary to write
∫ T

0
fdF for

∫
[0,T ]

fdµF . This integral satisfies the
estimates,∣∣∣∣∣

∫
[0,T ]

fdµF

∣∣∣∣∣ ≤
∫

[0,T ]

|f | dµF ≤ ‖f‖u (F (T )− F (0)) ∀ f ∈ S (A).

When F (t) = t, ∫ T

0

fdF =

∫ T

0

f (t) dt,

is the usual Riemann integral.

Exercise 7.8. Let a ∈ (0, T ) , λ > 0, and

G (x) = λ · 1x≥a =

{
λ if x ≥ a
0 if x < a

.

1. Explicitly compute
∫

[0,T ]
fdµG for all f ∈ C ([0, 1] ,C) .

2. If F (x) = x + λ · 1x≥a describe
∫

[0,T ]
fdµF for all f ∈ C ([0, 1] ,C) . Hint:

if F (x) = G (x) + H (x) where G and H are two increasing functions on
[0, T ] , show ∫

[0,T ]

fdµF =

∫
[0,T ]

fdµG +

∫
[0,T ]

fdµH .

Exercise 7.9. Suppose that F,G : [0, T ]→ R are two increasing functions such
that F (0) = G (0) , F (T ) = G (T ) , and F (x) 6= G (x) for at most countably
many points, x ∈ (0, T ) . Show∫

[0,T ]

fdµF =

∫
[0,T ]

fdµG for all f ∈ C ([0, 1] ,C) . (7.35)

Note: given F (0) = G (0) , µF = µG on A iff F = G.

One of the points of the previous exercise is to show that Eq. (7.35) holds
when G (x) := F (x+) – the right continuous version of F. The exercise applies
since an increasing function can have at most countably many jumps, see Re-
mark ??. So if we only want to integrate continuous functions, we may always
assume that F : [0, T ]→ R is right continuous.

7.4 Simple Independence and the Weak Law of Large
Numbers

To motivate the exercises in this section, let us imagine that we are following
the outcomes of two “independent” experiments with values {αk}∞k=1 ⊂ Λ1 and
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{βk}∞k=1 ⊂ Λ2 where Λ1 and Λ2 are two finite set of outcomes. Here we are
using term independent in an intuitive form to mean that knowing the outcome
of one of the experiments gives us no information about outcome of the other.

As an example of independent experiments, suppose that one experiment
is the outcome of spinning a roulette wheel and the second is the outcome of
rolling a dice. We expect these two experiments will be independent.

As an example of dependent experiments, suppose that dice roller now has
two dice – one red and one black. The person rolling dice throws his black or
red dice after the roulette ball has stopped and landed on either black or red
respectively. If the black and the red dice are weighted differently, we expect
that these two experiments are no longer independent.

Lemma 7.32 (Heuristic). Suppose that {αk}∞k=1 ⊂ Λ1 and {βk}∞k=1 ⊂ Λ2 are
the outcomes of repeatedly running two experiments independent of each other
and for x ∈ Λ1 and y ∈ Λ2,

p (x, y) := lim
N→∞

1

N
# {1 ≤ k ≤ N : αk = x and βk = y} ,

p1 (x) := lim
N→∞

1

N
# {1 ≤ k ≤ N : αk = x} , and

p2 (y) := lim
N→∞

1

N
# {1 ≤ k ≤ N : βk = y} . (7.36)

Then p (x, y) = p1 (x) p2 (y) . In particular this then implies for any h : Λ1 ×
Λ2 → R we have,

Eh = lim
N→∞

1

N

N∑
k=1

h (αk, βk) =
∑

(x,y)∈Λ1×Λ2

h (x, y) p1 (x) p2 (y) .

Proof. (Heuristic.) Let us imagine running the first experiment repeatedly
with the results being recorded as,

{
α`k
}∞
k=1

, where ` ∈ N indicates the `th –
run of the experiment. Then we have postulated that, independent of `,

p (x, y) := lim
N→∞

1

N

N∑
k=1

1{α`k=x and βk=y} = lim
N→∞

1

N

N∑
k=1

1{α`k=x} · 1{βk=y}

So for any L ∈ N we must also have,

p (x, y) =
1

L

L∑
`=1

p (x, y) =
1

L

L∑
`=1

lim
N→∞

1

N

N∑
k=1

1{α`k=x} · 1{βk=y}

= lim
N→∞

1

N

N∑
k=1

1

L

L∑
`=1

1{α`k=x} · 1{βk=y}.

Taking the limit of this equation as L→∞ and interchanging the order of the
limits (this is faith based) implies,

p (x, y) = lim
N→∞

1

N

N∑
k=1

1{βk=y} · lim
L→∞

1

L

L∑
`=1

1{α`k=x}. (7.37)

Since for fixed k,
{
α`k
}∞
`=1

is just another run of the first experiment, by our
postulate, we conclude that

lim
L→∞

1

L

L∑
`=1

1{α`k=x} = p1 (x) (7.38)

independent of the choice of k. Therefore combining Eqs. (7.36), (7.37), and
(7.38) implies,

p (x, y) = lim
N→∞

1

N

N∑
k=1

1{βk=y} · p1 (x) = p2 (y) p1 (x) .

To understand this “Lemma” in another but equivalent way, let X1 : Λ1 ×
Λ2 → Λ1 and X2 : Λ1 × Λ2 → Λ2 be the projection maps, X1 (x, y) = x and
X2 (x, y) = y respectively. Further suppose that f : Λ1 → R and g : Λ2 → R
are functions, then using the heuristics Lemma 7.32 implies,

E [f (X1) g (X2)] =
∑

(x,y)∈Λ1×Λ2

f (x) g (y) p1 (x) p2 (y)

=
∑
x∈Λ1

f (x) p1 (x) ·
∑
y∈Λ2

g (y) p2 (y) = Ef (X1) · Eg (X2) .

Hopefully these heuristic computations will convince you that the mathe-
matical notion of independence developed below is relevant. In what follows,
we will use the obvious generalization of our “results” above to the setting of n
– independent experiments. For notational simplicity we will now assume that
Λ1 = Λ2 = · · · = Λn = Λ.

Let Λ be a finite set, n ∈ N, Ω = Λn, and Xi : Ω → Λ be defined by
Xi (ω) = ωi for ω ∈ Ω and i = 1, 2, . . . , n. We further suppose p : Ω → [0, 1] is
a function such that ∑

ω∈Ω
p (ω) = 1

and P : 2Ω → [0, 1] is the probability measure defined by

P (A) :=
∑
ω∈A

p (ω) for all A ∈ 2Ω . (7.39)

Page: 52 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



7.4 Simple Independence and the Weak Law of Large Numbers 53

Exercise 7.10 (Simple Independence 1.). Suppose qi : Λ → [0, 1] are
functions such that

∑
λ∈Λ qi (λ) = 1 for i = 1, 2, . . . , n and now define

p (ω) =
∏n
i=1 qi (ωi) . Show for any functions, fi : Λ→ R that

EP

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)] =

n∏
i=1

EQifi

where Qi is the measure on Λ defined by, Qi (γ) =
∑
λ∈γ qi (λ) for all γ ⊂ Λ.

Exercise 7.11 (Simple Independence 2.). Prove the converse of the previ-
ous exercise. Namely, if

EP

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)] (7.40)

for any functions, fi : Λ → R, then there exists functions qi : Λ → [0, 1] with∑
λ∈Λ qi (λ) = 1, such that p (ω) =

∏n
i=1 qi (ωi) .

Definition 7.33 (Independence). We say simple random variables,
X1, . . . , Xn with values in Λ on some probability space, (Ω,A, P ) are indepen-
dent (more precisely P – independent) if Eq. (7.40) holds for all functions,
fi : Λ→ R.

Exercise 7.12 (Simple Independence 3.). Let X1, . . . , Xn : Ω → Λ and
P : 2Ω → [0, 1] be as described before Exercise 7.10. Show X1, . . . , Xn are
independent iff

P (X1 ∈ A1, . . . , Xn ∈ An) = P (X1 ∈ A1) . . . P (Xn ∈ An) (7.41)

for all choices of Ai ⊂ Λ. Also explain why it is enough to restrict the Ai to
single point subsets of Λ.

Exercise 7.13 (A Weak Law of Large Numbers). Suppose that Λ ⊂ R
is a finite set, n ∈ N, Ω = Λn, p (ω) =

∏n
i=1 q (ωi) where q : Λ → [0, 1]

such that
∑
λ∈Λ q (λ) = 1, and let P : 2Ω → [0, 1] be the probability measure

defined as in Eq. (7.39). Further let Xi (ω) = ωi for i = 1, 2, . . . , n, ξ := EXi,

σ2 := E (Xi − ξ)2
, and

Sn =
1

n
(X1 + · · ·+Xn) .

1. Show, ξ =
∑
λ∈Λ λ q (λ) and

σ2 =
∑
λ∈Λ

(λ− ξ)2
q (λ) =

∑
λ∈Λ

λ2q (λ)− ξ2. (7.42)

2. Show, ESn = ξ.
3. Let δij = 1 if i = j and δij = 0 if i 6= j. Show

E [(Xi − ξ) (Xj − ξ)] = δijσ
2.

4. Using Sn − ξ may be expressed as, 1
n

∑n
i=1 (Xi − ξ) , show

E (Sn − ξ)2
=

1

n
σ2. (7.43)

5. Conclude using Eq. (7.43) and Remark 7.22 that

P (|Sn − ξ| ≥ ε) ≤
1

nε2
σ2. (7.44)

So for large n, Sn is concentrated near ξ = EXi with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.

Definition 7.34 (Covariance). Let (Ω,B, P ) is a finitely additive probability.
The covariance, Cov (X,Y ) , of X,Y ∈ S (B) is defined by

Cov (X,Y ) = E [(X − ξX) (Y − ξY )] = E [XY ]− EX · EY

where ξX := EX and ξY := EY. The variance of X,

Var (X) := Cov (X,X) = E
[
X2
]
− (EX)

2

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] = EX ·
EY. More generally we say {Xk}nk=1 ⊂ S (B) are uncorrelated iff Cov (Xi, Xj) =
0 for all i 6= j.

Remark 7.35. 1. Observe that X and Y are independent iff f (X) and g (Y ) are
uncorrelated for all functions, f and g on the range of X and Y respectively. In
particular if X and Y are independent then Cov (X,Y ) = 0.

2. If you look at your proof of the weak law of large numbers in Exercise
7.13 you will see that it suffices to assume that {Xi}ni=1 are uncorrelated rather
than the stronger condition of being independent.

Exercise 7.14 (Bernoulli Random Variables). Let Λ = {0, 1} , X : Λ→ R
be defined by X (0) = 0 and X (1) = 1, x ∈ [0, 1] , and define Q = xδ1 +
(1− x) δ0, i.e. Q ({0}) = 1− x and Q ({1}) = x. Verify,

ξ (x) := EQX = x and

σ2 (x) := EQ (X − x)
2

= (1− x)x ≤ 1/4.
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Theorem 7.36 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f ∈ C([0, 1] ,C) and

pn (x) :=

n∑
k=0

(
n

k

)
f

(
k

n

)
xk (1− x)

n−k
.

Then
lim
n→∞

sup
x∈[0,1]

|f (x)− pn (x)| = 0.

Proof. Let x ∈ [0, 1] , Λ = {0, 1} , q (0) = 1− x, q (1) = x, Ω = Λn, and

Px ({ω}) = q (ω1) . . . q (ωn) = x
∑n

i=1
ωi · (1− x)

1−
∑n

i=1
ωi .

As above, let Sn = 1
n (X1 + · · ·+Xn) , where Xi (ω) = ωi and observe that

Px

(
Sn =

k

n

)
=

(
n

k

)
xk (1− x)

n−k
.

Therefore, writing Ex for EPx , we have

Ex [f (Sn)] =

n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)

n−k
= pn (x) .

Hence we find

|pn (x)− f (x)| = |Exf (Sn)− f (x)| = |Ex [f (Sn)− f (x)]|
≤ Ex |f (Sn)− f (x)|
= Ex [|f (Sn)− f (x)| : |Sn − x| ≥ ε]

+ Ex [|f (Sn)− f (x)| : |Sn − x| < ε]

≤ 2M · Px (|Sn − x| ≥ ε) + δ (ε)

where

M := max
y∈[0,1]

|f (y)| and

δ (ε) := sup {|f(y)− f(x)| : x, y ∈ [0, 1] and |y − x| ≤ ε}

is the modulus of continuity of f. Now by the above exercises,

Px (|Sn − x| ≥ ε) ≤
1

4nε2
(see Figure 7.1) (7.45)

and hence we may conclude that

max
x∈[0,1]

|pn (x)− f (x)| ≤ M

2nε2
+ δ (ε)

and therefore, that

lim sup
n→∞

max
x∈[0,1]

|pn (x)− f (x)| ≤ δ (ε) .

This completes the proof, since by uniform continuity of f, δ (ε) ↓ 0 as ε ↓ 0.

Fig. 7.1. Plots of Px (Sn = k/n) versus k/n for n = 100 with x = 1/4 (black), x = 1/2
(red), and x = 5/6 (green).

7.4.1 Complex Weierstrass Approximation Theorem

The main goal of this subsection is to prove Theorem 7.42 which states that
any continuous 2π – periodic function on R may be well approximated by
trigonometric polynomials. The main ingredient is the following two dimen-
sional generalization of Theorem 7.36. All of the results in this section have
natural generalization to higher dimensions as well , see Theorem 7.46.

Theorem 7.37 (Weierstrass Approximation Theorem). Suppose that

K = [0, 1]
2
, f ∈ C(K,C), and

pn (x, y) :=

n∑
k,l=0

f

(
k

n
,
l

n

)(
n

k

)(
n

l

)
xk (1− x)

n−k
yl (1− y)

n−l
. (7.46)

Then pn → f uniformly on K.
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Proof. We are going to follow the argument given in the proof of Theorem
7.36. By considering the real and imaginary parts of f separately, it suffices
to assume f ∈ C([0, 1]

2
,R). For (x, y) ∈ K and n ∈ N we may choose a

collection of independent Bernoulli simple random variables {Xi, Yi}ni=1 such
that P (Xi = 1) = x and P (Yi = 1) = y for all 1 ≤ i ≤ n. Then letting
Sn := 1

n

∑n
i=1Xi and Tn := 1

n

∑n
i=1 Yi, we have

E [f (Sn, Tn)] =

n∑
k,l=0

f

(
k

n
,
l

n

)
P (n · Sn = k, n · Tn = l) = pn (x, y)

where pn (x, y) is the polynomial given in Eq. (7.46) wherein the assumed in-
dependence is needed to show,

P (n · Sn = k, n · Tn = l) =

(
n

k

)(
n

l

)
xk (1− x)

n−k
yl (1− y)

n−l
.

Thus if M = sup {|f(x, y)| : (x, y) ∈ K} , ε > 0,

δε = sup {|f(x′, y′)− f(x, y)| : (x, y) , (x′, y′) ∈ K and ‖(x′, y′)− (x, y)‖ ≤ ε} ,

and
A := {‖(Sn, Tn)− (x, y)‖ > ε} ,

we have,

|f(x, y)− pn(x, y)| = |E (f(x, y)− f ((Sn, Tn)))|
≤ E |f(x, y)− f ((Sn, Tn))|

=E [|f(x, y)− f (Sn, Tn)| : A]

+ E [|f(x, y)− f (Sn, Tn)| : Ac]
≤2M · P (A) + δε · P (Ac)

≤ 2M · P (A) + δε. (7.47)

To estimate P (A) , observe that if

‖(Sn, Tn)− (x, y)‖2 = (Sn − x)
2

+ (Tn − y)
2
> ε2,

then either,
(Sn − x)

2
> ε2/2 or (Tn − y)

2
> ε2/2

and therefore by sub-additivity and Eq. (7.45) we know

P (A) ≤ P
(
|Sn − x| > ε/

√
2
)

+ P
(
|Tn − y| > ε/

√
2
)

≤ 1

2nε2
+

1

2nε2
=

1

nε2
. (7.48)

Using this estimate in Eq. (7.47) gives,

|f(x, y)− pn(x, y)| ≤ 2M · 1

nε2
+ δε

and as right is independent of (x, y) ∈ K we may conclude,

lim sup
n→∞

sup
(x,y)∈K

|f (x, y)− pn (x, y)| ≤ δε

which completes the proof since δε ↓ 0 as ε ↓ 0 because f is uniformly continuous
on K.

Remark 7.38. We can easily improve our estimate on P (A) in Eq. (7.48) by a
factor of two as follows. As in the proof of Theorem 7.36,

E
[
‖(Sn, Tn)− (x, y)‖2

]
= E

[
(Sn − x)

2
+ (Tn − y)

2
]

= Var (Sn) + Var (Tn)

=
1

n
x (1− x) + y (1− y) ≤ 1

2n
.

Therefore by Chebyshev’s inequality,

P (A) = P (‖(Sn, Tn)− (x, y)‖ > ε) ≤ 1

ε2
E ‖(Sn, Tn)− (x, y)‖2 ≤ 1

2nε2
.

Corollary 7.39. Suppose that K = [a, b]× [c, d] is any compact rectangle in R2.
Then every function, f ∈ C(K,C), may be uniformly approximated by polyno-
mial functions in (x, y) ∈ R2.

Proof. Let F (x, y) := f (a+ x (b− a) , c+ y (d− c)) – a continuous func-

tion of (x, y) ∈ [0, 1]
2
. Given ε > 0, we may use Theorem Theorem 7.37 to find

a polynomial, p (x, y) , such that sup(x,y)∈[0,1]2 |F (x, y)− p (x, y)| ≤ ε. Letting
ξ = a+ x (b− a) and η := c+ y (d− c) , it now follows that

sup
(ξ.η)∈K

∣∣∣∣f (ξ, η)− p
(
ξ − a
b− a

,
η − c
d− c

)∣∣∣∣ ≤ ε
which completes the proof since p

(
ξ−a
b−a ,

η−c
d−c

)
is a polynomial in (ξ, η) .

Here is a version of the complex Weierstrass approximation theorem.

Theorem 7.40 (Complex Weierstrass Approximation Theorem).
Suppose that K ⊂ C is a compact rectangle. Then there exists poly-
nomials in (z = x+ iy, z̄ = x− iy) , pn(z, z̄) for z ∈ C, such that
supz∈K |qn(z, z̄)− f(z)| → 0 as n→∞ for every f ∈ C (K,C) .
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Proof. The mapping (x, y) ∈ R × R → z = x + iy ∈ C is an isomorphism
of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2 and y = z−z̄
2i .

Therefore under this identification any polynomial p(x, y) on R × R may be
written as a polynomial q in (z, z̄), namely

q(z, z̄) = p

(
z + z̄

2
,
z − z̄

2i

)
.

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x + iy, x − iy). Hence the result now follows from
Theorem 7.37.

Example 7.41. Let K = S1 = {z ∈ C : |z| = 1} and A be the set of polynomials
in (z, z̄) restricted to S1. Then A is dense in C(S1). To prove this first observe

if f ∈ C
(
S1
)

then F (z) = |z| f
(
z
|z|

)
for z 6= 0 and F (0) = 0 defines F ∈ C(C)

such that F |S1 = f. By applying Theorem 7.40 to F restricted to a compact
rectangle containing S1 we may find qn (z, z̄) converging uniformly to F on K
and hence on S1. Since z̄ = z−1 on S1, we have shown polynomials in z and
z−1 are dense in C(S1).

Theorem 7.42 (Density of Trigonometric Polynomials). Any 2π – pe-
riodic continuous function, f : R → C, may be uniformly approximated by a
trigonometric polynomial of the form

p (x) =
∑
λ∈Λ

aλe
iλ·x

where Λ is a finite subset of Z and aλ ∈ C for all λ ∈ Λ.

Proof. For z ∈ S1, define F (z) := f(θ) where θ ∈ R is chosen so that
z = eiθ. Since f is 2π – periodic, F is well defined since if θ solves eiθ = z then
all other solutions are of the form {θ + 2πn : n ∈ Z} . Since the map θ → eiθ

is a local homeomorphism, i.e. for any J = (a, b) with b − a < 2π, the map

θ ∈ J φ→ J̃ :=
{
eiθ : θ ∈ J

}
⊂ S1 is a homeomorphism, it follows that F (z) =

f ◦ φ−1(z) for z ∈ J̃ . This shows F is continuous when restricted to J̃ . Since
such sets cover S1, it follows that F is continuous.

By Example 7.41, the polynomials in z and z̄ = z−1 are dense in C(S1).
Hence for any ε > 0 there exists

p(z, z̄) =
∑

0≤m,n≤N

am,nz
mz̄n

such that |F (z)− p(z, z̄)| ≤ ε for all z ∈ S1. Taking z = eiθ then implies

sup
θ

∣∣f(θ)− p
(
eiθ, e−iθ

)∣∣ ≤ ε

where
p
(
eiθ, e−iθ

)
=

∑
0≤m,n≤N

am,ne
i(m−n)θ

is the desired trigonometry polynomial.

7.4.2 Product Measures and Fubini’s Theorem

In the last part of this section we will extend some of the above ideas to
more general “finitely additive measure spaces.” A finitely additive mea-
sure space is a triple, (X,A, µ), where X is a set, A ⊂ 2X is an algebra, and
µ : A → [0,∞] is a finitely additive measure. Let (Y,B, ν) be another finitely
additive measure space.

Definition 7.43. Let A�B be the smallest sub-algebra of 2X×Y containing all
sets of the form S := {A×B : A ∈ A and B ∈ B} . As we have seen in Exercise
6.10, S is a semi-algebra and therefore A� B consists of subsets, C ⊂ X × Y,
which may be written as;

C =

n∑
i=1

Ai ×Bi with Ai ×Bi ∈ S. (7.49)

Theorem 7.44 (Product Measure and Fubini’s Theorem). Assume that
µ (X) < ∞ and ν (Y ) < ∞ for simplicity. Then there is a unique finitely
additive measure, µ� ν, on A�B such that µ� ν (A×B) = µ (A) ν (B) for all
A ∈ A and B ∈ B. Moreover if f ∈ S (A� B) then;

1. y → f (x, y) is in S (B) for all x ∈ X and x → f (x, y) is in S (A) for all
y ∈ Y.

2. x→
∫
Y
f (x, y) dν (y) is in S (A) and y →

∫
X
f (x, y) dµ (x) is in S (B) .

3. we have,∫
X

[∫
Y

f (x, y) dν (y)

]
dµ (x)

=

∫
X×Y

f (x, y) d (µ� ν) (x, y)

=

∫
Y

[∫
X

f (x, y) dµ (x)

]
dν (y) .

We will refer to µ� ν as the product measure of µ and ν.

Proof. According to Eq. (7.49),

1C (x, y) =

n∑
i=1

1Ai×Bi (x, y) =

n∑
i=1

1Ai (x) 1Bi (y)
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from which it follows that 1C (x, ·) ∈ S (B) for each x ∈ X and∫
Y

1C (x, y) dν (y) =

n∑
i=1

1Ai (x) ν (Bi) .

It now follows from this equation that x→
∫
Y

1C (x, y) dν (y) ∈ S (A) and that∫
X

[∫
Y

1C (x, y) dν (y)

]
dµ (x) =

n∑
i=1

µ (Ai) ν (Bi) .

Similarly one shows that∫
Y

[∫
X

1C (x, y) dµ (x)

]
dν (y) =

n∑
i=1

µ (Ai) ν (Bi) .

In particular this shows that we may define

(µ� ν) (C) =

n∑
i=1

µ (Ai) ν (Bi)

and with this definition we have,∫
X

[∫
Y

1C (x, y) dν (y)

]
dµ (x)

= (µ� ν) (C)

=

∫
Y

[∫
X

1C (x, y) dµ (x)

]
dν (y) .

From either of these representations it is easily seen that µ � ν is a finitely
additive measure on A � B with the desired properties. Moreover, we have
already verified the Theorem in the special case where f = 1C with C ∈ A �
B. Since the general element, f ∈ S (A� B) , is a linear combination of such
functions, it is easy to verify using the linearity of the integral and the fact that
S (A) and S (B) are vector spaces that the theorem is true in general.

Example 7.45. Suppose that f ∈ S (A) and g ∈ S (B) . Let f ⊗ g (x, y) :=
f (x) g (y) . Since we have,

f ⊗ g (x, y) =

(∑
a

a1f=a (x)

)(∑
b

b1g=b (y)

)
=
∑
a,b

ab1{f=a}×{g=b} (x, y)

it follows that f ⊗ g ∈ S (A� B) . Moreover, using Fubini’s Theorem 7.44 it
follows that ∫

X×Y
f ⊗ g d (µ� ν) =

[∫
X

f dµ

] [∫
Y

g dν

]
.

7.5 Appendix: A Multi-dimensional Weirstrass
Approximation Theorem

The following theorem is the multi-dimensional generalization of Theorem 7.36.

Theorem 7.46 (Weierstrass Approximation Theorem). Suppose that
K = [a1, b1] × . . . [ad, bd] with −∞ < ai < bi < ∞ is a compact rectangle
in Rd. Then for every f ∈ C(K,C), there exists polynomials pn on Rd such that
pn → f uniformly on K.

Proof. By a simple scaling and translation of the arguments of f we may
assume without loss of generality that K = [0, 1]

d
. By considering the real and

imaginary parts of f separately, it suffices to assume f ∈ C([0,1],R).
Given x ∈ K, let

{
Xn =

(
X1
n, . . . , X

d
n

)}∞
n=1

be i.i.d. random vectors with

values in Rd such that

P (Xn = η) =

d∏
i=1

(1− xi)1−ηi xηii

for all η = (η1, . . . , ηd) ∈ {0, 1}d . Since each Xj
n is a Bernoulli random variable

with P
(
Xj
n = 1

)
= xj , we know that

EXn = x and Var
(
Xj
n

)
= xj − x2

j = xj(1− xj).

As usual let Sn = Sn := X1 + · · ·+Xn ∈ Rd, then

E
[
Sn
n

]
= x and

E

[∥∥∥∥Snn − x
∥∥∥∥2
]

=

d∑
j=1

E
(
Sjn
n
− xj

)2

=

d∑
j=1

Var

(
Sjn
n
− xj

)

=

d∑
j=1

Var

(
Sjn
n

)
=

1

n2
·
d∑
j=1

n∑
k=1

Var
(
Xj
k

)

=
1

n

d∑
j=1

xj(1− xj) ≤
d

4n
.

Page: 57 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



58 7 Finitely Additive Measures / Integration

This shows Sn/n→ x in L2 (P ) and hence by Chebyshev’s inequality, Sn/n
P→ x

in and by a continuity theorem, f
(
Sn
n

) P→ f (x) as n→∞. This along with the
dominated convergence theorem shows

pn(x) := E
[
f

(
Sn
n

)]
→ f (x) as n→∞, (7.50)

where

pn(x) =
∑

η:{1,2,...,n}→{0,1}d
f

(
η (1) + · · ·+ η (n)

n

)
P (X1 = η (1) , . . . , Xn = η (n))

=
∑

η:{1,2,...,n}→{0,1}d
f

(
η (1) + · · ·+ η (n)

n

) n∏
k=1

d∏
i=1

(1− xi)1−ηi(k)
x
ηi(k)
i

is a polynomial of degree nd. In fact more is true.
Suppose ε > 0 is given, M = sup {|f(x)| : x ∈ K} , and

δε = sup {|f(y)− f(x)| : x, y ∈ K and ‖y − x‖ ≤ ε} .

By uniform continuity of f on K, limε↓0 δε = 0. Therefore,

|f(x)− pn(x)| =
∣∣∣∣E(f(x)− f

(
Sn
n

))∣∣∣∣ ≤ E ∣∣∣∣f(x)− f
(
Sn
n

)∣∣∣∣
≤E

[∣∣∣∣f(x)− f
(
Sn
n

)∣∣∣∣ : ‖Sn − x‖ > ε

]
+ E

[∣∣∣∣f(x)− f
(
Sn
n

)∣∣∣∣ : ‖Sn − x‖ ≤ ε
]

≤2MP (‖Sn − x‖ > ε) + δε. (7.51)

By Chebyshev’s inequality,

P (‖Sn − x‖ > ε) ≤ 1

ε2
E ‖Sn − x‖2 =

d

4nε2
,

and therefore, Eq. (7.51) yields the estimate

sup
x∈K
|f (x)− pn (x)| ≤ 2dM

nε2
+ δε

and hence
lim sup
n→∞

sup
x∈K
|f (x)− pn (x)| ≤ δε → 0 as ε ↓ 0.

Here is a version of the complex Weirstrass approximation theorem.

Theorem 7.47 (Complex Weierstrass Approximation Theorem). Sup-
pose that K ⊂ Cd ∼= Rd × Rd is a compact rectangle. Then there ex-
ists polynomials in (z = x+ iy, z̄ = x− iy) , pn(z, z̄) for z ∈ Cd, such that
supz∈K |qn(z, z̄)− f(z)| → 0 as n→∞ for every f ∈ C (K,C) .

Proof. The mapping (x, y) ∈ Rd×Rd → z = x+ iy ∈ Cd is an isomorphism
of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2 and y = z−z̄
2i .

Therefore under this identification any polynomial p(x, y) on Rd × Rd may be
written as a polynomial q in (z, z̄), namely

q(z, z̄) = p(
z + z̄

2
,
z − z̄

2i
).

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x + iy, x − iy). Hence the result now follows from
Theorem 7.46.

Example 7.48. Let

K = Td =
(
S1
)d

= {z ∈ Cd : |zi| = 1for1 ≤ i ≤ d}

and A be the set of polynomials in (z, z̄) restricted to Td. Then A is dense in
C(Td). To prove this first observe if f ∈ C

(
Td
)

then

F (z) = |z1| . . . |zd| f
(
z1

|z1|
, . . . ,

zd
|zd|

)
for z 6= 0 and F (0) = 0 defines F ∈ C(Cd) such that F |Td = f. By applying
Theorem 7.47 to F restricted to a compact rectangle containing Td we may find
qn (z, z̄) converging uniformly to F on K and hence on Td. Since z̄ = z−1 :=(
z−1

1 , . . . , z−1
d

)
on Td, we have shown polynomials in z and z−1 are dense in

C(Td).
Exercise 7.15. Use Example 7.48 to show that any 2π – periodic continuous
function, g : Rd → C, may be uniformly approximated by a trigonometric
polynomial of the form

p (θ) =
∑
λ∈Λ

bλe
iλ·θ

where Λ is a finite subset of Zd and bλ ∈ C for all λ ∈ Λ. Hint: start by

showing there exists a unique continuous function, f :
(
S1
)d → C such that

f
(
eiθ1 , . . . , eiθd

)
= F (θ) for all θ = (θ1, . . . , θd) ∈ Rd.

Exercise 7.16. Suppose f ∈ C (R,C) is a 2π – periodic function (i.e.
f (x+ 2π) = f (x) for all x ∈ R) and∫ 2π

0

f (x) einxdx = 0 for all n ∈ Z,

show again that f ≡ 0. Hint: Use Exercise 7.15.
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Countably Additive Measures

Let A ⊂ 2Ω be an algebra and µ : A → [0,∞] be a finitely additive measure.
Recall that µ is a premeasure on A if µ is σ – additive on A. If µ is a
premeasure on A and A is a σ – algebra (Definition 6.12), we say that µ is a
measure on (Ω,A) and that (Ω,A) is a measurable space.

Definition 8.1. Let (Ω,B) be a measurable space. We say that P : B → [0, 1] is
a probability measure on (Ω,B) if P is a measure on B such that P (Ω) = 1.
In this case we say that (Ω,B, P ) a probability space.

8.1 Overview

The goal of this chapter is develop methods for proving the existence of proba-
bility measures with desirable properties. The main results of this chapter may
are summarized in the following theorem.

Theorem 8.2. A finitely additive probability measure P on an algebra, A ⊂ 2Ω ,
extends to σ – additive measure on σ (A) iff P is a premeasure on A. If the
extension exists it is unique.

Proof. The uniqueness assertion is proved Proposition 8.15 below. The ex-
istence assertion of the theorem in the content of Theorem 8.27.

In order to use this theorem it is necessary to determine when a finitely ad-
ditive probability measure in is in fact a premeasure. The following Proposition
is sometimes useful in this regard.

Proposition 8.3 (Equivalent premeasure conditions). Suppose that P is
a finitely additive probability measure on an algebra, A ⊂ 2Ω . Then the following
are equivalent:

1. P is a premeasure on A, i.e. P is σ – additive on A.
2. For all An ∈ A such that An ↑ A ∈ A, P (An) ↑ P (A) .
3. For all An ∈ A such that An ↓ A ∈ A, P (An) ↓ P (A) .
4. For all An ∈ A such that An ↑ Ω, P (An) ↑ 1.
5. For all An ∈ A such that An ↓ ∅, P (An) ↓ 0.

Proof. We will start by showing 1 ⇐⇒ 2 ⇐⇒ 3.
1. =⇒ 2. Suppose An ∈ A such that An ↑ A ∈ A. Let A′n := An \ An−1

with A0 := ∅. Then {A′n}
∞
n=1 are disjoint, An = ∪nk=1A

′
k and A = ∪∞k=1A

′
k.

Therefore,

P (A) =

∞∑
k=1

P (A′k) = lim
n→∞

n∑
k=1

P (A′k) = lim
n→∞

P (∪nk=1A
′
k) = lim

n→∞
P (An) .

2. =⇒ 1. If {An}∞n=1 ⊂ A are disjoint and A := ∪∞n=1An ∈ A, then
∪Nn=1An ↑ A. Therefore,

P (A) = lim
N→∞

P
(
∪Nn=1An

)
= lim
N→∞

N∑
n=1

P (An) =

∞∑
n=1

P (An) .

2. =⇒ 3. If An ∈ A such that An ↓ A ∈ A, then Acn ↑ Ac and therefore,

lim
n→∞

(1− P (An)) = lim
n→∞

P (Acn) = P (Ac) = 1− P (A) .

3. =⇒ 2. If An ∈ A such that An ↑ A ∈ A, then Acn ↓ Ac and therefore we
again have,

lim
n→∞

(1− P (An)) = lim
n→∞

P (Acn) = P (Ac) = 1− P (A) .

The same proof used for 2. ⇐⇒ 3. shows 4. ⇐⇒ 5 and it is clear that
3. =⇒ 5. To finish the proof we will show 5. =⇒ 2.

5. =⇒ 2. If An ∈ A such that An ↑ A ∈ A, then A \An ↓ ∅ and therefore

lim
n→∞

[P (A)− P (An)] = lim
n→∞

P (A \An) = 0.

Remark 8.4. Observe that the equivalence of items 1. and 2. in the above propo-
sition hold without the restriction that P (Ω) = 1 and in fact P (Ω) =∞ may
be allowed for this equivalence.

Lemma 8.5. If µ : A → [0,∞] is a premeasure, then µ is countably sub-additive
on A.
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Proof. Suppose that An ∈ A with ∪∞n=1An ∈ A. Let A
′

1 := A1 and for
n ≥ 2, let A′n := An \ (A1 ∪ . . . An−1) ∈ A. Then ∪∞n=1An =

∑∞
n=1A

′
n and

therefore by the countable additivity and monotonicity of µ we have,

µ (∪∞n=1An) = µ

( ∞∑
n=1

A′n

)
=

∞∑
n=1

µ (A′n) ≤
∞∑
n=1

µ (An) .

Let us now specialize to the case where Ω = R and A =
A ({(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}) . In this case we will describe proba-
bility measures, P, on BR by their “cumulative distribution functions.”

Definition 8.6. Given a probability measure, P on BR, the cumulative dis-
tribution function (CDF) of P is defined as the function, F = FP : R→ [0, 1]
given as

F (x) := P ((−∞, x]) . (8.1)

Example 8.7. Suppose that

P = pδ−1 + qδ1 + rδπ

with p, q, r > 0 and p+ q + r = 1. In this case,

F (x) =


0 for x < −1
p for −1 ≤ x < 1

p+ q for 1 ≤ x < π
1 for π ≤ x <∞

.

A plot of F (x) with p = .2, q = .3, and r = .5.

Lemma 8.8. If F = FP : R→ [0, 1] is a distribution function for a probability
measure, P, on BR, then:

1. F is non-decreasing,
2. F is right continuous,
3. F (−∞) := limx→−∞ F (x) = 0, and F (∞) := limx→∞ F (x) = 1.

Proof. The monotonicity of P shows that F (x) in Eq. (8.1) is non-
decreasing. For b ∈ R let An = (−∞, bn] with bn ↓ b as n→∞. The continuity
of P implies

F (bn) = P ((−∞, bn]) ↓ µ((−∞, b]) = F (b).

Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
F (b+) := limy↓b F (y) = F (b). This show that F is right continuous. Similar
arguments show that F (∞) = 1 and F (−∞) = 0.

It turns out that Lemma 8.8 has the following important converse.

Theorem 8.9. To each function F : R→ [0, 1] satisfying properties 1. – 3.. in
Lemma 8.8, there exists a unique probability measure, PF , on BR such that

PF ((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞.

Proof. The uniqueness assertion is proved in Corollary 8.17 below or see
Exercises 8.2 and 8.11 below. The existence portion of the theorem is a special
case of Theorem 8.33 below.

Example 8.10 (Uniform Distribution). The function,

F (x) :=

 0 for x ≤ 0
x for 0 ≤ x < 1
1 for 1 ≤ x <∞

,

is the distribution function for a measure, m on BR which is concentrated on
(0, 1]. The measure, m is called the uniform distribution or Lebesgue mea-
sure on (0, 1].

With this summary in hand, let us now start the formal development. We
begin with uniqueness statement in Theorem 8.2.

8.2 π – λ Theorem

Recall that a collection, P ⊂ 2Ω , is a π – class or π – system if it is closed
under finite intersections. We also need the notion of a λ –system.

Definition 8.11 (λ – system). A collection of sets, L ⊂ 2Ω , is λ – class or
λ – system if

a. Ω ∈ L
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Fig. 8.1. The cumulative distribution function for the uniform distribution.

b. If A,B ∈ L and A ⊂ B, then B \A ∈ L. (Closed under proper differences.)
c. If An ∈ L and An ↑ A, then A ∈ L. (Closed under countable increasing

unions.)

Remark 8.12. If L is a collection of subsets of Ω which is both a λ – class and
a π – system then L is a σ – algebra. Indeed, since Ac = Ω \ A, we see that
any λ - system is closed under complementation. If L is also a π – system, it is
closed under intersections and therefore L is an algebra. Since L is also closed
under increasing unions, L is a σ – algebra.

Lemma 8.13 (Alternate Axioms for a λ – System*). Suppose that L ⊂ 2Ω

is a collection of subsets Ω. Then L is a λ – class iff λ satisfies the following
postulates:

1. Ω ∈ L
2. A ∈ L implies Ac ∈ L. (Closed under complementation.)
3. If {An}∞n=1 ⊂ L are disjoint, then

∑∞
n=1An ∈ L. (Closed under disjoint

unions.)

Proof. Suppose that L satisfies a. – c. above. Clearly then postulates 1. and
2. hold. Suppose that A,B ∈ L such that A ∩B = ∅, then A ⊂ Bc and

Ac ∩Bc = Bc \A ∈ L.

Taking complements of this result shows A ∪ B ∈ L as well. So by induction,
Bm :=

∑m
n=1An ∈ L. Since Bm ↑

∑∞
n=1An it follows from postulate c. that∑∞

n=1An ∈ L.

Now suppose that L satisfies postulates 1. – 3. above. Notice that ∅ ∈ L
and by postulate 3., L is closed under finite disjoint unions. Therefore if A,B ∈
L with A ⊂ B, then Bc ∈ L and A ∩ Bc = ∅ allows us to conclude that
A ∪ Bc ∈ L. Taking complements of this result shows B \ A = Ac ∩ B ∈ L as
well, i.e. postulate b. holds. If An ∈ L with An ↑ A, then Bn := An \An−1 ∈ L
for all n, where by convention A0 = ∅. Hence it follows by postulate 3 that
∪∞n=1An =

∑∞
n=1Bn ∈ L.

Theorem 8.14 (Dynkin’s π – λ Theorem). If L is a λ class which contains
a π – class, P, then σ(P) ⊂ L.

Proof. We start by proving the following assertion; for any element C ∈ L,
the collection of sets,

LC := {D ∈ L : C ∩D ∈ L} ,

is a λ – system. To prove this claim, observe that: a. Ω ∈ LC , b. if A ⊂ B with
A,B ∈ LC , then A ∩ C, B ∩ C ∈ L with A ∩ C ⊂ B ∩ C and therefore,

(B \A) ∩ C = [B ∩ C] \A = [B ∩ C] \ [A ∩ C] ∈ L.

This shows that LC is closed under proper differences. c. If An ∈ LC with
An ↑ A, then An ∩C ∈ L and An ∩C ↑ A∩C ∈ L, i.e. A ∈ LC . Hence we have
verified LC is still a λ – system.

For the rest of the proof, we may assume without loss of generality that L
is the smallest λ – class containing P – if not just replace L by the intersection
of all λ – classes containing P. Then for C ∈ P we know that LC ⊂ L is a λ
- class containing P and hence LC = L. Since C ∈ P was arbitrary, we have
shown, C ∩ D ∈ L for all C ∈ P and D ∈ L. We may now conclude that if
C ∈ L, then P ⊂ LC ⊂ L and hence again LC = L. Since C ∈ L is arbitrary,
we have shown C∩D ∈ L for all C,D ∈ L, i.e. L is a π – system. So by Remark
8.12, L is a σ algebra. Since σ (P) is the smallest σ – algebra containing P it
follows that σ (P) ⊂ L.

As an immediate corollary, we have the following uniqueness result.

Proposition 8.15. Suppose that P ⊂ 2Ω is a π – system. If P and Q are two
probability1 measures on σ (P) such that P = Q on P, then P = Q on σ (P) .

Proof. Let L := {A ∈ σ (P) : P (A) = Q (A)} . One easily shows L is a λ –
class which contains P by assumption. Indeed, Ω ∈ P ⊂ L, if A,B ∈ L with
A ⊂ B, then

P (B \A) = P (B)− P (A) = Q (B)−Q (A) = Q (B \A)

1 More generally, P and Q could be two measures such that P (Ω) = Q (Ω) <∞.
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so that B \A ∈ L, and if An ∈ L with An ↑ A, then P (A) = limn→∞ P (An) =
limn→∞Q (An) = Q (A) which shows A ∈ L. Therefore σ (P) ⊂ L = σ (P) and
the proof is complete.

Example 8.16. Let Ω := {a, b, c, d} and let µ and ν be the probability measure
on 2Ω determined by, µ ({x}) = 1

4 for all x ∈ Ω and ν ({a}) = ν ({d}) = 1
8 and

ν ({b}) = ν ({c}) = 3/8. In this example,

L :=
{
A ∈ 2Ω : P (A) = Q (A)

}
is λ – system which is not an algebra. Indeed, A = {a, b} and B = {a, c} are in
L but A ∩B /∈ L.

Exercise 8.1. Suppose that µ and ν are two measures (not assumed to be
finite) on a measure space, (Ω,B) such that µ = ν on a π – system, P. Further
assume B = σ (P) and there exists Ωn ∈ P such that; i) µ (Ωn) = ν (Ωn) <∞
for all n and ii) Ωn ↑ Ω as n ↑ ∞. Show µ = ν on B.

Hint: Consider the measures, µn (A) := µ (A ∩Ωn) and νn (A) =
ν (A ∩Ωn) .

Corollary 8.17. A probability measure, P, on (R,BR) is uniquely determined
by its cumulative distribution function,

F (x) := P ((−∞, x]) .

Proof. This follows from Proposition 8.15 wherein we use the fact that
P := {(−∞, x] : x ∈ R} is a π – system such that BR = σ (P) .

Remark 8.18. Corollary 8.17 generalizes to Rn. Namely a probability measure,
P, on (Rn,BRn) is uniquely determined by its CDF,

F (x) := P ((−∞, x]) for all x ∈ Rn

where now

(−∞, x] := (−∞, x1]× (−∞, x2]× · · · × (−∞, xn].

8.2.1 A Density Result*

Exercise 8.2 (Density of A in σ (A)). Suppose that A ⊂ 2Ω is an algebra,
B := σ (A) , and P is a probability measure on B. Let ρ (A,B) := P (A∆B) .
The goal of this exercise is to use the π – λ theorem to show that A is dense in
B relative to the “metric,” ρ. More precisely you are to show using the following
outline that for every B ∈ B there exists A ∈ A such that that P (A4B) < ε.

1. Recall from Exercise 7.3 that ρ (a,B) = P (A4B) = E |1A − 1B | .

2. Observe; if B = ∪Bi and A = ∪iAi, then

B \A = ∪i [Bi \A] ⊂ ∪i (Bi \Ai) ⊂ ∪iAi 4Bi and

A \B = ∪i [Ai \B] ⊂ ∪i (Ai \Bi) ⊂ ∪iAi 4Bi

so that
A4B ⊂ ∪i (Ai 4Bi) .

3. We also have

(B2 \B1) \ (A2 \A1) = B2 ∩Bc1 ∩ (A2 \A1)
c

= B2 ∩Bc1 ∩ (A2 ∩Ac1)
c

= B2 ∩Bc1 ∩ (Ac2 ∪A1)

= [B2 ∩Bc1 ∩Ac2] ∪ [B2 ∩Bc1 ∩A1]

⊂ (B2 \A2) ∪ (A1 \B1)

and similarly,

(A2 \A1) \ (B2 \B1) ⊂ (A2 \B2) ∪ (B1 \A1)

so that

(A2 \A1)4 (B2 \B1) ⊂ (B2 \A2) ∪ (A1 \B1) ∪ (A2 \B2) ∪ (B1 \A1)

= (A1 4B1) ∪ (A2 4B2) .

4. Observe that An ∈ B and An ↑ A, then

P (B 4An) = P (B \An) + P (An \B)

→ P (B \A) + P (A \B) = P (A4B) .

5. Let L be the collection of sets B ∈ B for which the assertion of the theorem
holds. Show L is a λ – system which contains A.

8.3 Construction of Measures

Definition 8.19. Given a collection of subsets, E , of Ω, let Eσ denote the col-
lection of subsets of Ω which are finite or countable unions of sets from E .
Similarly let Eδ denote the collection of subsets of Ω which are finite or count-
able intersections of sets from E . We also write Eσδ = (Eσ)δ and Eδσ = (Eδ)σ ,
etc.

Lemma 8.20. Suppose that A ⊂ 2Ω is an algebra. Then:
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1. Aσ is closed under taking countable unions and finite intersections.
2. Aδ is closed under taking countable intersections and finite unions.
3. {Ac : A ∈ Aσ} = Aδ and {Ac : A ∈ Aδ} = Aσ.

Proof. By construction Aσ is closed under countable unions. Moreover if
A = ∪∞i=1Ai and B = ∪∞j=1Bj with Ai, Bj ∈ A, then

A ∩B = ∪∞i,j=1Ai ∩Bj ∈ Aσ,

which shows that Aσ is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3.

Remark 8.21. Let us recall from Proposition 8.3 and Remark 8.4 that a finitely
additive measure µ : A → [0,∞] is a premeasure on A iff µ (An) ↑ µ(A) for all
{An}∞n=1 ⊂ A such that An ↑ A ∈ A. Furthermore if µ (Ω) < ∞, then µ is a
premeasure on A iff µ(An) ↓ 0 for all {An}∞n=1 ⊂ A such that An ↓ ∅.

Proposition 8.22. Given a premeasure, µ : A → [0,∞] , we extend µ to Aσ
by defining

µ (B) := sup {µ (A) : A 3 A ⊂ B} . (8.2)

This function µ : Aσ → [0,∞] then satisfies;

1. (Monotonicity) If A,B ∈ Aσ with A ⊂ B then µ (A) ≤ µ (B) .
2. (Continuity) If An ∈ A and An ↑ A ∈ Aσ, then µ (An) ↑ µ (A) as n→∞.
3. (Strong Additivity) If A,B ∈ Aσ, then

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (8.3)

4. (Sub-Additivity on Aσ) The function µ is sub-additive on Aσ, i.e. if
{An}∞n=1 ⊂ Aσ, then

µ (∪∞n=1An) ≤
∞∑
n=1

µ (An) . (8.4)

5. (σ - Additivity on Aσ) The function µ is countably additive on Aσ.

Proof. 1. and 2. Monotonicity follows directly from Eq. (8.2) which then
implies µ (An) ≤ µ (B) for all n. Therefore M := limn→∞ µ (An) ≤ µ (B) . To
prove the reverse inequality, let A 3 A ⊂ B. Then by the continuity of µ on
A and the fact that An ∩ A ↑ A we have µ (An ∩A) ↑ µ (A) . As µ (An) ≥
µ (An ∩A) for all n it then follows that M := limn→∞ µ (An) ≥ µ (A) . As
A ∈ A with A ⊂ B was arbitrary we may conclude,

µ (B) = sup {µ (A) : A 3 A ⊂ B} ≤M.

3. Suppose that A,B ∈ Aσ and {An}∞n=1 and {Bn}∞n=1 are sequences in A
such that An ↑ A and Bn ↑ B as n→∞. Then passing to the limit as n→∞
in the identity,

µ (An ∪Bn) + µ (An ∩Bn) = µ (An) + µ (Bn)

proves Eq. (8.3). In particular, it follows that µ is finitely additive on Aσ.
4 and 5. Let {An}∞n=1 be any sequence in Aσ and choose {An,i}∞i=1 ⊂ A

such that An,i ↑ An as i→∞. Then we have,

µ
(
∪Nn=1An,N

)
≤

N∑
n=1

µ (An,N ) ≤
N∑
n=1

µ (An) ≤
∞∑
n=1

µ (An) . (8.5)

Since A 3 ∪Nn=1An,N ↑ ∪∞n=1An ∈ Aσ, we may let N → ∞ in Eq. (8.5) to
conclude Eq. (8.4) holds. If we further assume that {An}∞n=1 ⊂ Aσ are pairwise
disjoint, by the finite additivity and monotonicity of µ on Aσ, we have

∞∑
n=1

µ (An) = lim
N→∞

N∑
n=1

µ (An) = lim
N→∞

µ
(
∪Nn=1An

)
≤ µ (∪∞n=1An) .

This inequality along with Eq. (8.4) shows that µ is σ – additive on Aσ.
Suppose µ is a finite premeasure on an algebra, A ⊂ 2Ω , and A ∈ Aδ ∩Aσ.

Since A,Ac ∈ Aσ and Ω = A∪Ac, it follows that µ (Ω) = µ (A)+µ (Ac) . From
this observation we may extend µ to a function on Aδ ∪ Aσ by defining

µ (A) := µ (Ω)− µ (Ac) for all A ∈ Aδ. (8.6)

Lemma 8.23. Suppose µ is a finite premeasure on an algebra, A ⊂ 2Ω , and µ
has been extended to Aδ ∪ Aσ as described in Proposition 8.22 and Eq. (8.6)
above.

1. If A ∈ Aδ then µ (A) = inf {µ (B) : A ⊂ B ∈ A} .
2. If A ∈ Aδ and An ∈ A such that An ↓ A, then µ (A) =↓ limn→∞ µ (An) .
3. µ is strongly additive when restricted to Aδ.
4. If A ∈ Aδ and C ∈ Aσ such that A ⊂ C, then µ (C \A) = µ (C)− µ (A) .

Proof.

1. Since µ (B) = µ (Ω)− µ (Bc) and A ⊂ B iff Bc ⊂ Ac, it follows that

inf {µ (B) : A ⊂ B ∈ A} = inf {µ (Ω)− µ (Bc) : A 3 Bc ⊂ Ac}
= µ (Ω)− sup {µ (B) : A 3 B ⊂ Ac}
= µ (Ω)− µ (Ac) = µ (A) .
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2. Similarly, since Acn ↑ Ac ∈ Aσ, by the definition of µ (A) and Proposition
8.22 it follows that

µ (A) = µ (Ω)− µ (Ac) = µ (Ω)− ↑ lim
n→∞

µ (Acn)

=↓ lim
n→∞

[µ (Ω)− µ (Acn)] =↓ lim
n→∞

µ (An) .

3. Suppose A,B ∈ Aδ and An, Bn ∈ A such that An ↓ A and Bn ↓ B, then
An ∪Bn ↓ A ∪B and An ∩Bn ↓ A ∩B and therefore,

µ (A ∪B) + µ (A ∩B) = lim
n→∞

[µ (An ∪Bn) + µ (An ∩Bn)]

= lim
n→∞

[µ (An) + µ (Bn)] = µ (A) + µ (B) .

All we really need is the finite additivity of µ which can be proved as follows.
Suppose that A,B ∈ Aδ are disjoint, then A∩B = ∅ implies Ac ∪Bc = Ω.
So by the strong additivity of µ on Aσ it follows that

µ (Ω) + µ (Ac ∩Bc) = µ (Ac) + µ (Bc)

from which it follows that

µ (A ∪B) = µ (Ω)− µ (Ac ∩Bc)
= µ (Ω)− [µ (Ac) + µ (Bc)− µ (Ω)]

= µ (A) + µ (B) .

4. Since Ac, C ∈ Aσ we may use the strong additivity of µ on Aσ to conclude,

µ (Ac ∪ C) + µ (Ac ∩ C) = µ (Ac) + µ (C) .

Because Ω = Ac ∪C, and µ (Ac) = µ (Ω)− µ (A) , the above equation may
be written as

µ (Ω) + µ (C \A) = µ (Ω)− µ (A) + µ (C)

which finishes the proof.

Notation 8.24 (Inner and outer measures) Let µ : A → [0,∞) be a finite
premeasure extended to Aσ ∪ Aδ as above. The for any B ⊂ Ω let

µ∗ (B) := sup {µ (A) : Aδ 3 A ⊂ B} and

µ∗ (B) := inf {µ (C) : B ⊂ C ∈ Aσ} .

We refer to µ∗ (B) and µ∗ (B) as the inner and outer content of B respec-
tively.

If B ⊂ Ω has the same inner and outer content it is reasonable to define the
measure of B as this common value. As we will see in Theorem 8.27 below, this
extension becomes a σ – additive measure on a σ – algebra of subsets of Ω.

Definition 8.25 (Measurable Sets). Suppose µ is a finite premeasure on an
algebra A ⊂ 2Ω . We say that B ⊂ Ω is measurable if µ∗ (B) = µ∗ (B) . We
will denote the collection of measurable subsets of Ω by B = B (µ) and define
µ̄ : B → [0, µ (Ω)] by

µ̄ (B) := µ∗ (B) = µ∗ (B) for all B ∈ B. (8.7)

Remark 8.26. Observe that µ∗ (B) = µ∗ (B) iff for all ε > 0 there exists A ∈ Aδ
and C ∈ Aσ such that A ⊂ B ⊂ C and

µ (C \A) = µ (C)− µ (A) < ε, (8.8)

wherein we have used Lemma 8.23 for the first equality. Moreover we will use
below that if B ∈ B and Aδ 3 A ⊂ B ⊂ C ∈ Aσ, then

µ (A) ≤ µ∗ (B) = µ̄ (B) = µ∗ (B) ≤ µ (C) . (8.9)

Theorem 8.27 (Finite Premeasure Extension Theorem). Suppose µ is a
finite premeasure on an algebra A ⊂ 2Ω and µ̄ : B := B (µ) → [0, µ (Ω)] be as
in Definition 8.25. Then B is a σ – algebra on Ω which contains A and µ̄ is a
σ – additive measure on B. Moreover, µ̄ is the unique measure on B such that
µ̄|A = µ.

Proof. 1. B is an algebra. It is clear that A ⊂ B and that B is closed
under complementation – see Eq. (8.8) and use the fact that Ac \ Cc = C \ A.
Now suppose that Bi ∈ B for i = 1, 2 and ε > 0 is given. We may then
choose Ai ⊂ Bi ⊂ Ci such that Ai ∈ Aδ, Ci ∈ Aσ, and µ (Ci \Ai) < ε for
i = 1, 2. Then with A = A1 ∪ A2, B = B1 ∪ B2 and C = C1 ∪ C2, we have
Aδ 3 A ⊂ B ⊂ C ∈ Aσ. Since

C \A = (C1 \A) ∪ (C2 \A) ⊂ (C1 \A1) ∪ (C2 \A2) ,

it follows from the sub-additivity of µ that with

µ (C \A) ≤ µ (C1 \A1) + µ (C2 \A2) < 2ε.

Since ε > 0 was arbitrary, we have shown that B ∈ B which completes the proof
that B is an algebra.

2. B is a σ−algebra. As we know B is an algebra, to show B is a σ – algebra
it suffices to show that B =

∑∞
n=1Bn ∈ B whenever {Bn}∞n=1 is a disjoint

sequence in B. To this end, let ε > 0 be given and choose Ai ⊂ Bi ⊂ Ci such
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that Ai ∈ Aδ, Ci ∈ Aσ, and µ (Ci \Ai) < ε2−i for all i. Let C := ∪∞i=1Ci ∈ Aσ
and for n ∈ N let An :=

∑n
i=1Ai ∈ Aδ. Since the {Ai}∞i=1 are pairwise disjoint

we may use Lemma 8.23 to show,

n∑
i=1

µ (Ci) =

n∑
i=1

(µ (Ai) + µ (Ci \Ai))

= µ (An) +

n∑
i=1

µ (Ci \Ai) ≤ µ (Ω) +

n∑
i=1

ε2−i

which on letting n→∞ implies

∞∑
i=1

µ (Ci) ≤ µ (Ω) + ε <∞. (8.10)

Using

C \An = ∪∞i=1 (Ci \An) ⊂ [∪ni=1 (Ci \Ai)] ∪
[
∪∞i=n+1Ci

]
∈ Aσ,

and the sub-additivity of µ on Aσ it follows that

µ (C \An) ≤
n∑
i=1

µ (Ci \Ai) +

∞∑
i=n+1

µ (Ci) ≤ ε
n∑
i=1

2−i +

∞∑
i=n+1

µ (Ci)

≤ ε+

∞∑
i=n+1

µ (Ci)→ ε as n→∞,

wherein we have used Eq. (8.10) in computing the limit. In summary, B =
∪∞i=1Bi, Aδ 3 An ⊂ B ⊂ C ∈ Aσ, C \ An ∈ Aσ with µ (C\An) ≤ 2ε for all n
sufficiently large. Since ε > 0 is arbitrary, it follows that B ∈ B.

3. µ̄ is a measure. Continuing the notation in step 2, we have

∞∑
i=1

µ (Ai)
n→∞←−

n∑
i=1

µ (Ai) = µ (An) ≤ µ̄ (B) ≤ µ (C) ≤
∞∑
i=1

µ (Ci) . (8.11)

On the other hand, since Ai ⊂ Bi ⊂ Ci, it follows (see Eq. (8.9)) that µ (Ai) ≤
µ̄ (Bi) ≤ µ (Ci) and therefore that

∞∑
i=1

µ (Ai) ≤
∞∑
i=1

µ̄ (Bi) ≤
∞∑
i=1

µ (Ci) . (8.12)

Equations (8.11) and (8.12) show that µ̄ (B) and
∑∞
i=1 µ̄ (Bi) are both between∑∞

i=1 µ (Ai) and
∑∞
i=1 µ (Ci) and so

∣∣∣∣∣µ̄ (B)−
∞∑
i=1

µ̄ (Bi)

∣∣∣∣∣ ≤
∞∑
i=1

µ (Ci)−
∞∑
i=1

µ (Ai) =

∞∑
i=1

µ (Ci \Ai) ≤
∞∑
i=1

ε2−i = ε.

Since ε > 0 is arbitrary, we have shown µ̄ (B) =
∑∞
i=1 µ̄ (Bi) , i.e. µ̄ is a measure

on B.
Since we really had no choice as to how to extend µ, it is to be expected

that the extension is unique. You are asked to supply the details in Exercise 8.3
below.

Exercise 8.3. Let µ, µ̄, A, and B := B (µ) be as in Theorem 8.27. Further
suppose that B0 ⊂ 2Ω is a σ – algebra such that A ⊂ B0 ⊂ B and ν : B0 →
[0, µ (Ω)] is a σ – additive measure on B0 such that ν = µ on A. Show that
ν = µ̄ on B0 as well. (When B0 = σ (A) this exercise is of course a consequence
of Proposition 8.15. It is not necessary to use this information to complete the
exercise.)

Corollary 8.28. Suppose that A ⊂ 2Ω is an algebra and µ : B0 := σ (A) →
[0, µ (Ω)] is a σ – additive finite measure. Then for every B ∈ σ (A) and ε > 0;

1. there exists Aδ 3 A ⊂ B ⊂ C ∈ Aσand ε > 0 such that µ (C \A) < ε and
2. there exists A ∈ A such that µ (A∆B) < ε.

Exercise 8.4. Prove corollary 8.28 by considering ν̄ where ν := µ|A. Hint:
you may find Exercise 7.3 useful here.

Theorem 8.29 (σ - Finite Premeasure Extension Theorem). Suppose
that µ is a σ – finite premeasure on an algebra A. Then

µ̄ (B) := inf {µ (C) : B ⊂ C ∈ Aσ} ∀ B ∈ σ (A) (8.13)

defines a measure on σ (A) and this measure is the unique extension of µ on A
to a measure on σ (A) . Recall that

µ (C) = sup {µ (A) : A 3 A ⊂ C} for all C ∈ Aσ.

Proof. Let {Ωn}∞n=1 ⊂ A be chosen so that µ (Ωn) <∞ for all n and Ωn ↑
Ω as n→∞ and let

µn (A) := µn (A ∩Ωn) for all A ∈ A.

Each µn is a premeasure (as is easily verified) on A and hence by Theorem 8.27
each µn has an extension, µ̄n, to a measure on σ (A) . Since the measure µ̄n are
increasing, µ̄ := limn→∞ µ̄n is a measure which extends µ.

The proof will be completed by verifying that Eq. (8.13) holds. Let B ∈
σ (A) , Bm = Ωm ∩ B and ε > 0 be given. By Theorem 8.27, there exists
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Cm ∈ Aσ such that Bm ⊂ Cm ⊂ Ωm and µ̄(Cm \Bm) = µ̄m(Cm \Bm) < ε2−n.
Then C := ∪∞m=1Cm ∈ Aσ and

µ̄(C \B) ≤ µ̄

( ∞⋃
m=1

(Cm \B)

)
≤
∞∑
m=1

µ̄(Cm \B) ≤
∞∑
m=1

µ̄(Cm \Bm) < ε.

Thus
µ̄ (B) ≤ µ̄ (C) = µ̄ (B) + µ̄(C \B) ≤ µ̄ (B) + ε

which, since ε > 0 is arbitrary, shows µ̄ satisfies Eq. (8.13). The uniqueness of
the extension µ̄ is the subject of Exercise 8.11.

The following slight reformulation of Theorem 8.29 can be useful.

Corollary 8.30. Let A be an algebra of sets, {Ωm}∞m=1 ⊂ A is a given sequence
of sets such that Ωm ↑ Ω as m→∞. Let

Af := {A ∈ A : A ⊂ Ωm for some m ∈ N} .

Notice that Af is a ring, i.e. closed under differences, intersections and unions
and contains the empty set. Further suppose that µ : Af → [0,∞) is an additive
set function such that µ (An) ↓ 0 for any sequence, {An} ⊂ Af such that An ↓ ∅
as n→∞. Then µ extends uniquely to a σ – finite measure on A.

Proof. Existence. By assumption, µm := µ|AΩm : AΩm → [0,∞) is a
premeasure on (Ωm,AΩm) and hence by Theorem 8.29 extends to a measure
µ′m on (Ωm, σ (AΩm) = BΩm) . Let µ̄m (B) := µ′m (B ∩Ωm) for all B ∈ B.
Then {µ̄m}∞m=1 is an increasing sequence of measure on (Ω,B) and hence µ̄ :=
limm→∞ µ̄m defines a measure on (Ω,B) such that µ̄|Af = µ.

Uniqueness. If µ1 and µ2 are two such extensions, then µ1 (Ωm ∩B) =
µ2 (Ωm ∩B) for all B ∈ A and therefore by Proposition 8.15 or Exercise 8.11
we know that µ1 (Ωm ∩B) = µ2 (Ωm ∩B) for all B ∈ B. We may now let
m→∞ to see that in fact µ1 (B) = µ2 (B) for all B ∈ B, i.e. µ1 = µ2.

8.4 Radon Measures on R

We say that a measure, µ, on (R,BR) is a Radon measure if µ ([a, b]) < ∞
for all −∞ < a < b < ∞. In this section we will give a characterization of all
Radon measures on R. We first need the following general result characterizing
premeasures on an algebra generated by a semi-algebra.

Proposition 8.31. Suppose that S ⊂ 2Ω is a semi-algebra, A = A(S) and
µ : A → [0,∞] is a finitely additive measure. Then µ is a premeasure on A iff
µ is countably sub-additive on S.

Proof. Clearly if µ is a premeasure on A then µ is σ - additive and hence
sub-additive on S. Because of Proposition 7.2, to prove the converse it suffices
to show that the sub-additivity of µ on S implies the sub-additivity of µ on A.

So suppose A =
∑∞
n=1An ∈ A with each An ∈ A . By Proposition 6.25 we

may write A =
∑k
j=1Ej and An =

∑Nn
i=1En,i with Ej , En,i ∈ S. Intersecting

the identity, A =
∑∞
n=1An, with Ej implies

Ej = A ∩ Ej =

∞∑
n=1

An ∩ Ej =

∞∑
n=1

Nn∑
i=1

En,i ∩ Ej .

By the assumed sub-additivity of µ on S,

µ(Ej) ≤
∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej) .

Summing this equation on j and using the finite additivity of µ shows

µ(A) =

k∑
j=1

µ(Ej) ≤
k∑
j=1

∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej)

=

∞∑
n=1

Nn∑
i=1

k∑
j=1

µ (En,i ∩ Ej) =

∞∑
n=1

Nn∑
i=1

µ (En,i) =

∞∑
n=1

µ (An) .

Suppose now that µ is a Radon measure on (R,BR) and F : R→ R is chosen
so that

µ ((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞. (8.14)

For example if µ (R) <∞ we can take F (x) = µ ((−∞, x]) while if µ (R) =∞
we might take

F (x) =

{
µ ((0, x]) if x ≥ 0
−µ ((x, 0]) if x ≤ 0

.

The function F is uniquely determined modulo translation by a constant.

Lemma 8.32. If µ is a Radon measure on (R,BR) and F : R→ R is chosen
so that µ ((a, b]) = F (b)− F (a) , then F is increasing and right continuous.

Proof. The function F is increasing by the monotonicity of µ. To see that
F is right continuous, let b ∈ R and choose a ∈ (−∞, b) and any sequence
{bn}∞n=1 ⊂ (b,∞) such that bn ↓ b as n → ∞. Since µ ((a, b1]) < ∞ and
(a, bn] ↓ (a, b] as n→∞, it follows that

F (bn)− F (a) = µ((a, bn]) ↓ µ((a, b]) = F (b)− F (a).
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Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
limy↓b F (y) = F (b).

The key result of this section is the converse to this lemma.

Theorem 8.33. Suppose F : R→ R is a right continuous increasing function.
Then there exists a unique Radon measure, µ = µF , on (R,BR) such that Eq.
(8.14) holds.

Proof. Let S := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} , and A = A (S) consists
of those sets, A ⊂ R which may be written as finite disjoint unions of sets
from S as in Example 6.26. Recall that BR = σ (A) = σ (S) . Further define
F (±∞) := limx→±∞ F (x) and let µ = µF be the finitely additive measure
on (R,A) described in Proposition 7.8 and Remark 7.9. To finish the proof it
suffices by Theorem 8.29 to show that µ is a premeasure on A = A (S) where
S := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} . So in light of Proposition 8.31, to finish
the proof it suffices to show µ is sub-additive on S, i.e. we must show

µ(J) ≤
∞∑
n=1

µ(Jn). (8.15)

where J =
∑∞
n=1 Jn with J = (a, b] ∩ R and Jn = (an, bn] ∩ R. Recall from

Proposition 7.2 that the finite additivity of µ implies

∞∑
n=1

µ(Jn) ≤ µ (J) . (8.16)

We begin with the special case where −∞ < a < b <∞. Our proof will be
by “continuous induction.” The strategy is to show a ∈ Λ where

Λ :=

{
α ∈ [a, b] : µ(J ∩ (α, b]) ≤

∞∑
n=1

µ(Jn ∩ (α, b])

}
. (8.17)

As b ∈ J, there exists an k such that b ∈ Jk and hence (ak, bk] = (ak, b] for this
k. It now easily follows that Jk ⊂ Λ so that Λ is not empty. To finish the proof
we are going to show ā := inf Λ ∈ Λ and that ā = a.

• Let αm ∈ Λ such that αm ↓ ā, i.e.

µ(J ∩ (αm, b]) ≤
∞∑
n=1

µ(Jn ∩ (αm, b]). (8.18)

The right continuity of F implies α→ µ (Jn ∩ (α, b]) is right continuous. So
by the dominated convergence theorem2 for sums,

2 DCT applies as µ(Jn ∩ (αm, b]) ≤ µ(Jn) and
∑∞
n=1 µ (Jn) ≤ µ (J) < ∞ by Eq.

(8.18).

µ(J ∩ (ā, b]) = lim
m→∞

µ(J ∩ (αm, b])

≤ lim
m→∞

∞∑
n=1

µ(Jn ∩ (αm, b])

=

∞∑
n=1

lim
m→∞

µ(Jn ∩ (αm, b]) =

∞∑
n=1

µ(Jn ∩ (ā, b]),

i.e. ā ∈ Λ.
• If ā > a, then ā ∈ Jl = (al, bl] for some l. Letting α = al < ā, we have,

µ(J ∩ (α, b]) = µ(J ∩ (α, ā]) + µ(J ∩ (ā, b])

≤ µ(Jl ∩ (α, ā]) +

∞∑
n=1

µ(Jn ∩ (ā, b])

= µ(Jl ∩ (α, ā]) + µ (Jl ∩ (ā, b]) +
∑
n 6=l

µ(Jn ∩ (ā, b])

= µ(Jl ∩ (α, b]) +
∑
n 6=l

µ(Jn ∩ (ā, b])

≤
∞∑
n=1

µ(Jn ∩ (α, b]).

This shows α ∈ Λ and α < ā which violates the definition of ā. Thus we
must conclude that ā = a.

The hard work is now done but we still have to check the cases where
a = −∞ or b =∞. For example, suppose that b =∞ so that

J = (a,∞) =

∞∑
n=1

Jn

with Jn = (an, bn] ∩ R. Then

IM := (a,M ] = J ∩ IM =

∞∑
n=1

Jn ∩ IM

and so by what we have already proved,

F (M)− F (a) = µ(IM ) ≤
∞∑
n=1

µ(Jn ∩ IM ) ≤
∞∑
n=1

µ(Jn).

Now let M →∞ in this last inequality to find that
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µ((a,∞)) = F (∞)− F (a) ≤
∞∑
n=1

µ(Jn).

The other cases where a = −∞ and b ∈ R and a = −∞ and b =∞ are handled
similarly.

8.4.1 Lebesgue Measure

If F (x) = x for all x ∈ R, we denote µF by m and call m Lebesgue measure on
(R,BR) .

Theorem 8.34. Lebesgue measure m is invariant under translations, i.e. for
B ∈ BR and x ∈ R,

m(x+B) = m(B). (8.19)

Lebesgue measure, m, is the unique measure on BR such that m((0, 1]) = 1 and
Eq. (8.19) holds for B ∈ BR and x ∈ R. Moreover, m has the scaling property

m(λB) = |λ|m(B) (8.20)

where λ ∈ R, B ∈ BR and λB := {λx : x ∈ B}.

Proof. Let mx(B) := m(x+B), then one easily shows that mx is a measure
on BR such that mx((a, b]) = b − a for all a < b. Therefore, mx = m by
the uniqueness assertion in Exercise 8.11. For the converse, suppose that m is
translation invariant and m((0, 1]) = 1. Given n ∈ N, we have

(0, 1] = ∪nk=1(
k − 1

n
,
k

n
] = ∪nk=1

(
k − 1

n
+ (0,

1

n
]

)
.

Therefore,

1 = m((0, 1]) =

n∑
k=1

m

(
k − 1

n
+ (0,

1

n
]

)

=

n∑
k=1

m((0,
1

n
]) = n ·m((0,

1

n
]).

That is to say

m((0,
1

n
]) = 1/n.

Similarly, m((0, ln ]) = l/n for all l, n ∈ N and therefore by the translation
invariance of m,

m((a, b]) = b− a for all a, b ∈ Q with a < b.

Finally for a, b ∈ R such that a < b, choose an, bn ∈ Q such that bn ↓ b and
an ↑ a, then (an, bn] ↓ (a, b] and thus

m((a, b]) = lim
n→∞

m((an, bn]) = lim
n→∞

(bn − an) = b− a,

i.e. m is Lebesgue measure. To prove Eq. (8.20) we may assume that λ 6= 0

since this case is trivial to prove. Now let mλ(B) := |λ|−1
m(λB). It is easily

checked that mλ is again a measure on BR which satisfies

mλ((a, b]) = λ−1m ((λa, λb]) = λ−1(λb− λa) = b− a

if λ > 0 and

mλ((a, b]) = |λ|−1
m ([λb, λa)) = − |λ|−1

(λb− λa) = b− a

if λ < 0. Hence mλ = m.

8.5 A Discrete Kolmogorov’s Extension Theorem

For this section, let S be a finite or countable set (we refer to S as state space),
Ω := S∞ := SN (think of N as time and Ω as path space)

An := {B ×Ω : B ⊂ Sn} for all n ∈ N,

A := ∪∞n=1An, and B := σ (A) . We call the elements, A ⊂ Ω, the cylinder
subsets of Ω. Notice that A ⊂ Ω is a cylinder set iff there exists n ∈ N and
B ⊂ Sn such that

A = B ×Ω := {ω ∈ Ω : (ω1, . . . , ωn) ∈ B} .

Also observe that we may write A as A = B′ ×Ω where B′ = B × Sk ⊂ Sn+k

for any k ≥ 0.

Exercise 8.5. Show;

1. An is a σ – algebra for each n ∈ N,
2. An ⊂ An+1 for all n, and
3. A ⊂ 2Ω is an algebra of subsets of Ω. (In fact, you might show that
A = ∪∞n=1An is an algebra whenever {An}∞n=1 is an increasing sequence
of algebras.)

Lemma 8.35 (Baby Tychonov Theorem). Suppose {Cn}∞n=1 ⊂ A is a de-
creasing sequence of non-empty cylinder sets. Further assume there exists
Nn ∈ N and Bn ⊂⊂ SNn such that Cn = Bn × Ω. (This last assumption is
vacuous when S is a finite set. Recall that we write Λ ⊂⊂ A to indicate that Λ
is a finite subset of A.) Then ∩∞n=1Cn 6= ∅.

Page: 68 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



8.5 A Discrete Kolmogorov’s Extension Theorem 69

Proof. Since Cn+1 ⊂ Cn, if Nn > Nn+1, we would have Bn+1×SNn+1−Nn ⊂
Bn. If S is an infinite set this would imply Bn is an infinite set and hence we
must have Nn+1 ≥ Nn for all n when # (S) = ∞. On the other hand, if S is
a finite set, we can always replace Bn+1 by Bn+1 × Sk for some appropriate
k and arrange it so that Nn+1 ≥ Nn for all n. So from now we assume that
Nn+1 ≥ Nn.

Case 1. limn→∞Nn <∞ in which case there exists some N ∈ N such that
Nn = N for all large n. Thus for large N, Cn = Bn × Ω with Bn ⊂⊂ SN and
Bn+1 ⊂ Bn and hence # (Bn) ↓ as n→∞. By assumption, limn→∞# (Bn) 6= 0
and therefore # (Bn) = k > 0 for all n large. It then follows that there exists
n0 ∈ N such that Bn = Bn0

for all n ≥ n0. Therefore ∩∞n=1Cn = Bn0
×Ω 6= ∅.

Case 2. limn→∞Nn = ∞. By assumption, there exists ω (n) =
(ω1 (n) , ω2 (n) , . . . ) ∈ Ω such that ω (n) ∈ Cn for all n. Moreover, since
ω (n) ∈ Cn ⊂ Ck for all k ≤ n, it follows that

(ω1 (n) , ω2 (n) , . . . , ωNk (n)) ∈ Bk for all n ≥ k (8.21)

and as Bk is a finite set {ωi (n)}∞n=1 must be a finite set for all 1 ≤ i ≤ Nk.
As Nk → ∞ as k → ∞ it follows that {ωi (n)}∞n=1 is a finite set for all i ∈ N.
Using this observation, we may find, s1 ∈ S and an infinite subset, Γ1 ⊂ N such
that ω1 (n) = s1 for all n ∈ Γ1. Similarly, there exists s2 ∈ S and an infinite
set, Γ2 ⊂ Γ1, such that ω2 (n) = s2 for all n ∈ Γ2. Continuing this procedure
inductively, there exists (for all j ∈ N) infinite subsets, Γj ⊂ N and points
sj ∈ S such that Γ1 ⊃ Γ2 ⊃ Γ3 ⊃ . . . and ωj (n) = sj for all n ∈ Γj .

We are now going to complete the proof by showing s := (s1, s2, . . . ) ∈
∩∞n=1Cn. By the construction above, for all N ∈ N we have

(ω1 (n) , . . . , ωN (n)) = (s1, . . . , sN ) for all n ∈ ΓN .

Taking N = Nk and n ∈ ΓNk with n ≥ k, we learn from Eq. (8.21) that

(s1, . . . , sNk) = (ω1 (n) , . . . , ωNk (n)) ∈ Bk.

But this is equivalent to showing s ∈ Ck. Since k ∈ N was arbitrary it follows
that s ∈ ∩∞n=1Cn.

Let S̄ := S is S is a finite set and S̄ = S ∪ {∞} if S is an infinite set. Here,
∞, is simply another point not in S which we call infinity Let {xn}∞n=1 ⊂ S̄
be a sequence, then we way limn→∞ xn = ∞ if for every A ⊂⊂ S, xn /∈ A for
almost all n and we say that limn→∞ xn = s ∈ S if xn = s for almost all n.
For example this is the usual notion of convergence for S =

{
1
n : n ∈ N

}
and

S̄ = S ∪ {0} ⊂ [0, 1] , where 0 is playing the role of infinity here. Observe that
either limn→∞ xn = ∞ or there exists a finite subset F ⊂ S such that xn ∈ F
infinitely often. Moreover, there must be some point, s ∈ F such that xn = s
infinitely often. Thus if we let {n1 < n2 < . . . } ⊂ N be chosen such that xnk = s

for all k, then limk→∞ xnk = s. Thus we have shown that every sequence in S̄
has a convergent subsequence.

Lemma 8.36 (Baby Tychonov Theorem I.). Let Ω̄ := S̄N and {ω (n)}∞n=1

be a sequence in Ω̄. Then there is a subsequence, {nk}∞k=1 of {n}∞n=1 such that
limk→∞ ω (nk) exists in Ω̄ by which we mean, limk→∞ ωi (nk) exists in S̄ for
all i ∈ N.

Proof. This follows by the usual cantor’s diagonalization argument. Indeed,
let
{
n1
k

}∞
k=1
⊂ {n}∞n=1 be chosen so that limk→∞ ω1

(
n1
k

)
= s1 ∈ S̄ exists. Then

choose
{
n2
k

}∞
k=1
⊂
{
n1
k

}∞
k=1

so that limk→∞ ω2

(
n2
k

)
= s2 ∈ S̄ exists. Continue

on this way to inductively choose{
n1
k

}∞
k=1
⊃
{
n2
k

}∞
k=1
⊃ · · · ⊃

{
nlk
}∞
k=1
⊃ . . .

such that limk→∞ ωl
(
nlk
)

= sl ∈ S̄. The subsequence, {nk}∞k=1 of {n}∞n=1 , may
now be defined by, nk = nkk.

Corollary 8.37 (Baby Tychonov Theorem II.). Suppose that {Fn}∞n=1 ⊂
Ω̄ is decreasing sequence of non-empty sets which are closed under taking se-
quential limits, then ∩∞n=1Fn 6= ∅.

Proof. Since Fn 6= ∅ there exists ω (n) ∈ Fn for all n. Using Lemma 8.36,
there exists {nk}∞k=1 ⊂ {n}

∞
n=1 such that ω := limk→∞ ω (nk) exits in Ω̄. Since

ω (nk) ∈ Fn for all k ≥ n, it follows that ω ∈ Fn for all n, i.e. ω ∈ ∩∞n=1Fn and
hence ∩∞n=1Fn 6= ∅.

Example 8.38. Suppose that 1 ≤ N1 < N2 < N3 < . . . , Fn = Kn × Ω with
Kn ⊂⊂ SNn such that {Fn}∞n=1 ⊂ Ω is a decreasing sequence of non-empty sets.
Then ∩∞n=1Fn 6= ∅. To prove this, let F̄n := Kn × Ω̄ in which case F̄n are non –
empty sets closed under taking limits. Therefore by Corollary 8.37, ∩nF̄n 6= ∅.
This completes the proof since it is easy to check that ∩∞n=1Fn = ∩nF̄n 6= ∅.

Corollary 8.39. If S is a finite set and {An}∞n=1 ⊂ A is a decreasing sequence
of non-empty cylinder sets, then ∩∞n=1An 6= ∅.

Proof. This follows directly from Example 8.38 since necessarily, An =
Kn ×Ω, for some Kn ⊂⊂ SNn .

Theorem 8.40 (Kolmogorov’s Extension Theorem I.). Let us continue
the notation above with the further assumption that S is a finite set. Then every
finitely additive probability measure, P : A → [0, 1] , has a unique extension to
a probability measure on B := σ (A) .
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Proof. From Theorem 8.27, it suffices to show limn→∞ P (An) = 0 whenever
{An}∞n=1 ⊂ A with An ↓ ∅. However, by Lemma 8.35 with Cn = An, An ∈ A
and An ↓ ∅, we must have that An = ∅ for a.a. n and in particular P (An) = 0
for a.a. n. This certainly implies limn→∞ P (An) = 0.

For the next three exercises, suppose that S is a finite set and continue the
notation from above. Further suppose that P : σ (A) → [0, 1] is a probability
measure and for n ∈ N and (s1, . . . , sn) ∈ Sn, let

pn (s1, . . . , sn) := P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) . (8.22)

Exercise 8.6 (Consistency Conditions). If pn is defined as above, show:

1.
∑
s∈S p1 (s) = 1 and

2. for all n ∈ N and (s1, . . . , sn) ∈ Sn,

pn (s1, . . . , sn) =
∑
s∈S

pn+1 (s1, . . . , sn, s) .

Exercise 8.7 (Converse to 8.6). Suppose for each n ∈ N we are given func-
tions, pn : Sn → [0, 1] such that the consistency conditions in Exercise 8.6 hold.
Then there exists a unique probability measure, P on σ (A) such that Eq. (8.22)
holds for all n ∈ N and (s1, . . . , sn) ∈ Sn.

Example 8.41 (Existence of iid simple R.V.s). Suppose now that q : S → [0, 1]
is a function such that

∑
s∈S q (s) = 1. Then there exists a unique probability

measure P on σ (A) such that, for all n ∈ N and (s1, . . . , sn) ∈ Sn, we have

P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) = q (s1) . . . q (sn) .

This is a special case of Exercise 8.7 with pn (s1, . . . , sn) := q (s1) . . . q (sn) .

Theorem 8.42 (Kolmogorov’s Extension Theorem II). Suppose now that
S is countably infinite set and P : A → [0, 1] is a finitely additive measure such
that P |An is a σ – additive measure for each n ∈ N. Then P extends uniquely
to a probability measure on B := σ (A) .

Proof. From Theorem 8.27 it suffice to show; if {Am}∞n=1 ⊂ A is a decreas-
ing sequence of subsets such that ε := infm P (Am) > 0, then ∩∞m=1Am 6= ∅.
You are asked to verify this property of P in the next couple of exercises.

For the next couple of exercises the hypothesis of Theorem 8.42 are to be
assumed.

Exercise 8.8. Show for each n ∈ N, A ∈ An, and ε > 0 are given. Show there
exists F ∈ An such that F ⊂ A, F = K×Ω with K ⊂⊂ Sn, and P (A \ F ) < ε.

Exercise 8.9. Let {Am}∞n=1 ⊂ A be a decreasing sequence of subsets such that
ε := infm P (Am) > 0. Using Exercise 8.8, choose Fm = Km × Ω ⊂ Am with
Km ⊂⊂ SNn and P (Am \ Fm) ≤ ε/2m+1. Further define Cm := F1 ∩ · · · ∩ Fm
for each m. Show;

1. Show Am \ Cm ⊂ (A1 \ F1) ∪ (A2 \ F2) ∪ · · · ∪ (Am \ Fm) and use this to
conclude that P (Am \ Cm) ≤ ε/2.

2. Conclude Cm is not empty for m.
3. Use Lemma 8.35 to conclude that ∅ 6= ∩∞m=1Cm ⊂ ∩∞m=1Am.

Exercise 8.10. Convince yourself that the results of Exercise 8.6 and 8.7 are
valid when S is a countable set. (See Example 7.6.)

In summary, the main result of this section states, to any sequence of
functions, pn : Sn → [0, 1] , such that

∑
λ∈Sn pn (λ) = 1 and

∑
s∈S pn+1 (λ, s) =

pn (λ) for all n and λ ∈ Sn, there exists a unique probability measure, P, on
B := σ (A) such that

P (B ×Ω) =
∑
λ∈B

pn (λ) ∀ B ⊂ Sn and n ∈ N.

Example 8.43 (Markov Chain Probabilities). Let S be a finite or at most count-
able state space and p : S × S → [0, 1] be a Markov kernel, i.e.∑

y∈S
p (x, y) = 1 for all x ∈ S. (8.23)

Also let π : S → [0, 1] be a probability function, i.e.
∑
x∈S π (x) = 1. We now

take
Ω := SN0 = {ω = (s0, s1, . . . ) : sj ∈ S}

and let Xn : Ω → S be given by

Xn (s0, s1, . . . ) = sn for all n ∈ N0.

Then there exists a unique probability measure, Pπ, on σ (A) such that

Pπ (X0 = x0, . . . , Xn = xn) = π (x0) p (x0, x1) . . . p (xn−1, xn)

for all n ∈ N0 and x0, x1, . . . , xn ∈ S. To see such a measure exists, we need
only verify that

pn (x0, . . . , xn) := π (x0) p (x0, x1) . . . p (xn−1, xn)

verifies the hypothesis of Exercise 8.6 taking into account a shift of the n –
index.
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8.6 Appendix: Regularity and Uniqueness Results*

The goal of this appendix it to approximating measurable sets from inside
and outside by classes of sets which are relatively easy to understand. Our
first few results are already contained in Carathoédory’s existence of measures
proof. Nevertheless, we state these results again and give another somewhat
independent proof.

Theorem 8.44 (Finite Regularity Result). Suppose A ⊂ 2Ω is an algebra,
B = σ (A) and µ : B → [0,∞) is a finite measure, i.e. µ (Ω) < ∞. Then for
every ε > 0 and B ∈ B there exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C
and µ (C \A) < ε.

Proof. Let B0 denote the collection of B ∈ B such that for every ε > 0
there here exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C and µ (C \A) < ε.
It is now clear that A ⊂ B0 and that B0 is closed under complementation. Now
suppose that Bi ∈ B0 for i = 1, 2, . . . and ε > 0 is given. By assumption there
exists Ai ∈ Aδ and Ci ∈ Aσ such that Ai ⊂ Bi ⊂ Ci and µ (Ci \Ai) < 2−iε.

Let A := ∪∞i=1Ai, A
N := ∪Ni=1Ai ∈ Aδ, B := ∪∞i=1Bi, and C := ∪∞i=1Ci ∈

Aσ. Then AN ⊂ A ⊂ B ⊂ C and

C \A = [∪∞i=1Ci] \A = ∪∞i=1 [Ci \A] ⊂ ∪∞i=1 [Ci \Ai] .

Therefore,

µ (C \A) = µ (∪∞i=1 [Ci \A]) ≤
∞∑
i=1

µ (Ci \A) ≤
∞∑
i=1

µ (Ci \Ai) < ε.

Since C \ AN ↓ C \ A, it also follows that µ
(
C \AN

)
< ε for sufficiently large

N and this shows B = ∪∞i=1Bi ∈ B0. Hence B0 is a sub-σ-algebra of B = σ (A)
which contains A which shows B0 = B.

Many theorems in the sequel will require some control on the size of a
measure µ. The relevant notion for our purposes (and most purposes) is that
of a σ – finite measure defined next.

Definition 8.45. Suppose Ω is a set, E ⊂ B ⊂ 2Ω and µ : B → [0,∞] is a
function. The function µ is σ – finite on E if there exists En ∈ E such that
µ(En) < ∞ and Ω = ∪∞n=1En. If B is a σ – algebra and µ is a measure on B
which is σ – finite on B we will say (Ω,B, µ) is a σ – finite measure space.

The reader should check that if µ is a finitely additive measure on an algebra,
B, then µ is σ – finite on B iff there exists Ωn ∈ B such that Ωn ↑ Ω and
µ(Ωn) <∞.

Corollary 8.46 (σ – Finite Regularity Result). Theorem 8.44 continues
to hold under the weaker assumption that µ : B → [0,∞] is a measure which is
σ – finite on A.

Proof. Let Ωn ∈ A such that ∪∞n=1Ωn = Ω and µ(Ωn) <∞ for all n.Since
A ∈ B →µn (A) := µ (Ωn ∩A) is a finite measure on A ∈ B for each n, by
Theorem 8.44, for every B ∈ B there exists Cn ∈ Aσ such that B ⊂ Cn and
µ (Ωn ∩ [Cn \B]) = µn (Cn \B) < 2−nε. Now let C := ∪∞n=1 [Ωn ∩ Cn] ∈ Aσ
and observe that B ⊂ C and

µ (C \B) = µ (∪∞n=1 ([Ωn ∩ Cn] \B))

≤
∞∑
n=1

µ ([Ωn ∩ Cn] \B) =

∞∑
n=1

µ (Ωn ∩ [Cn \B]) < ε.

Applying this result to Bc shows there exists D ∈ Aσ such that Bc ⊂ D and

µ (B \Dc) = µ (D \Bc) < ε.

So if we let A := Dc ∈ Aδ, then A ⊂ B ⊂ C and

µ (C \A) = µ ([B \A] ∪ [(C \B) \A]) ≤ µ (B \A) + µ (C \B) < 2ε

and the result is proved.

Exercise 8.11. Suppose A ⊂ 2Ω is an algebra and µ and ν are two measures
on B = σ (A) .

a. Suppose that µ and ν are finite measures such that µ = ν on A. Show
µ = ν.

b. Generalize the previous assertion to the case where you only assume that
µ and ν are σ – finite on A.

Corollary 8.47. Suppose A ⊂ 2Ω is an algebra and µ : B = σ (A) → [0,∞] is
a measure which is σ – finite on A. Then for all B ∈ B, there exists A ∈ Aδσ
and C ∈ Aσδ such that A ⊂ B ⊂ C and µ (C \A) = 0.

Proof. By Theorem 8.44, given B ∈ B, we may choose An ∈ Aδ and
Cn ∈ Aσ such that An ⊂ B ⊂ Cn and µ(Cn \B) ≤ 1/n and µ(B \ An) ≤ 1/n.
By replacing AN by ∪Nn=1An and CN by ∩Nn=1Cn, we may assume that An ↑
and Cn ↓ as n increases. Let A = ∪An ∈ Aδσ and C = ∩Cn ∈ Aσδ, then
A ⊂ B ⊂ C and

µ(C \A) = µ(C \B) + µ(B \A) ≤ µ(Cn \B) + µ(B \An)

≤ 2/n→ 0 as n→∞.
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Exercise 8.12. Let B = BRn = σ ({open subsets of Rn}) be the Borel σ –
algebra on Rn and µ be a probability measure on B. Further, let B0 denote
those sets B ∈ B such that for every ε > 0 there exists F ⊂ B ⊂ V such that
F is closed, V is open, and µ (V \ F ) < ε. Show:

1. B0 contains all closed subsets of B. Hint: given a closed subset, F ⊂ Rn and
k ∈ N, let Vk := ∪x∈FB (x, 1/k) , where B (x, δ) := {y ∈ Rn : |y − x| < δ} .
Show, Vk ↓ F as k →∞.

2. Show B0 is a σ – algebra and use this along with the first part of this
exercise to conclude B = B0. Hint: follow closely the method used in the
first step of the proof of Theorem 8.44.

3. Show for every ε > 0 and B ∈ B, there exist a compact subset,K ⊂ Rn, such
that K ⊂ B and µ (B \K) < ε. Hint: take K := F ∩ {x ∈ Rn : |x| ≤ n}
for some sufficiently large n.

8.7 Appendix: Completions of Measure Spaces*

Definition 8.48. A set E ⊂ Ω is a null set if E ∈ B and µ(E) = 0. If P is
some “property” which is either true or false for each x ∈ Ω, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E := {x ∈ Ω : P is false for x}

is a null set. For example if f and g are two measurable functions on (Ω,B, µ),
f = g a.e. means that µ(f 6= g) = 0.

Definition 8.49. A measure space (Ω,B, µ) is complete if every subset of a
null set is in B, i.e. for all F ⊂ Ω such that F ⊂ E ∈ B with µ(E) = 0 implies
that F ∈ B.

Proposition 8.50 (Completion of a Measure). Let (Ω,B, µ) be a measure
space. Set

N = N µ := {N ⊂ Ω : ∃ F ∈ B such that N ⊂ F and µ(F ) = 0} ,
B = B̄µ := {A ∪N : A ∈ B and N ∈ N} and

µ̄(A ∪N) := µ(A) for A ∈ B and N ∈ N ,

see Fig. 8.2. Then B̄ is a σ – algebra, µ̄ is a well defined measure on B̄, µ̄ is the
unique measure on B̄ which extends µ on B, and (Ω, B̄, µ̄) is complete measure
space. The σ-algebra, B̄, is called the completion of B relative to µ and µ̄, is
called the completion of µ.

Fig. 8.2. Completing a σ – algebra.

Proof. Clearly Ω, ∅ ∈ B̄. Let A ∈ B and N ∈ N and choose F ∈ B such
that N ⊂ F and µ(F ) = 0. Since N c = (F \N) ∪ F c,

(A ∪N)c = Ac ∩N c = Ac ∩ (F \N ∪ F c)
= [Ac ∩ (F \N)] ∪ [Ac ∩ F c]

where [Ac ∩ (F \ N)] ∈ N and [Ac ∩ F c] ∈ B. Thus B̄ is closed under
complements. If Ai ∈ B and Ni ⊂ Fi ∈ B such that µ(Fi) = 0 then
∪(Ai ∪ Ni) = (∪Ai) ∪ (∪Ni) ∈ B̄ since ∪Ai ∈ B and ∪Ni ⊂ ∪Fi and
µ(∪Fi) ≤

∑
µ(Fi) = 0. Therefore, B̄ is a σ – algebra. Suppose A∪N1 = B∪N2

with A,B ∈ B and N1, N2,∈ N . Then A ⊂ A ∪ N1 ⊂ A ∪ N1 ∪ F2 = B ∪ F2

which shows that
µ(A) ≤ µ(B) + µ(F2) = µ(B).

Similarly, we show that µ(B) ≤ µ(A) so that µ(A) = µ(B) and hence µ̄(A ∪
N) := µ(A) is well defined. It is left as an exercise to show µ̄ is a measure, i.e.
that it is countable additive.

8.8 Appendix Monotone Class Theorems*

This appendix may be safely skipped!

Definition 8.51 (Montone Class). C ⊂ 2Ω is a monotone class if it is
closed under countable increasing unions and countable decreasing intersections.

Lemma 8.52 (Monotone Class Theorem*). Suppose A ⊂ 2Ω is an algebra
and C is the smallest monotone class containing A. Then C = σ(A).

Proof. For C ∈ C let

C(C) = {B ∈ C : C ∩B,C ∩Bc, B ∩ Cc ∈ C},

Page: 72 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



then C(C) is a monotone class. Indeed, if Bn ∈ C(C) and Bn ↑ B, then Bcn ↓ Bc
and so

C 3 C ∩Bn ↑ C ∩B
C 3 C ∩Bcn ↓ C ∩Bc and

C 3 Bn ∩ Cc ↑ B ∩ Cc.

Since C is a monotone class, it follows that C ∩ B,C ∩ Bc, B ∩ Cc ∈ C, i.e.
B ∈ C(C). This shows that C(C) is closed under increasing limits and a similar
argument shows that C(C) is closed under decreasing limits. Thus we have
shown that C(C) is a monotone class for all C ∈ C. If A ∈ A ⊂ C, then
A ∩ B,A ∩ Bc, B ∩ Ac ∈ A ⊂ C for all B ∈ A and hence it follows that
A ⊂ C(A) ⊂ C. Since C is the smallest monotone class containing A and C(A) is
a monotone class containing A, we conclude that C(A) = C for any A ∈ A. Let
B ∈ C and notice that A ∈ C(B) happens iff B ∈ C(A). This observation and
the fact that C(A) = C for all A ∈ A implies A ⊂ C(B) ⊂ C for all B ∈ C. Again
since C is the smallest monotone class containing A and C(B) is a monotone
class we conclude that C(B) = C for all B ∈ C. That is to say, if A,B ∈ C then
A ∈ C = C(B) and hence A ∩ B, A ∩ Bc, Ac ∩ B ∈ C. So C is closed under
complements (since Ω ∈ A ⊂ C) and finite intersections and increasing unions
from which it easily follows that C is a σ – algebra.





9

Measurable Functions (Random Variables)

Notation 9.1 If f : X → Y is a function and E ⊂ 2Y let

f−1E := f−1 (E) := {f−1(E)|E ∈ E}.

If G ⊂ 2X , let
f∗G := {A ∈ 2Y |f−1(A) ∈ G}.

Definition 9.2. Let E ⊂ 2X be a collection of sets, A ⊂ X, iA : A→ X be the
inclusion map (iA(x) = x for all x ∈ A) and

EA = i−1
A (E) = {A ∩ E : E ∈ E} .

The following results will be used frequently (often without further refer-
ence) in the sequel.

Lemma 9.3 (A key measurability lemma). If f : X → Y is a function and
E ⊂ 2Y , then

σ
(
f−1(E)

)
= f−1(σ(E)). (9.1)

In particular, if A ⊂ Y then

(σ(E))A = σ(EA), (9.2)

(Similar assertion hold with σ (·) being replaced by A (·) .)

Proof. Since E ⊂ σ(E), it follows that f−1(E) ⊂ f−1(σ(E)). Moreover, by
Exercise 9.1 below, f−1(σ(E)) is a σ – algebra and therefore,

σ(f−1(E)) ⊂ f−1(σ(E)).

To finish the proof we must show f−1(σ(E)) ⊂ σ(f−1(E)), i.e. that f−1 (B) ∈
σ(f−1(E)) for all B ∈ σ (E) . To do this we follow the usual measure theoretic
mantra, namely let

M :=
{
B ⊂ Y : f−1 (B) ∈ σ(f−1(E))

}
= f∗σ(f−1(E)).

We will now finish the proof by showing σ (E) ⊂ M. This is easily achieved
by observing that M is a σ – algebra (see Exercise 9.1) which contains E and
therefore σ (E) ⊂M.

Equation (9.2) is a special case of Eq. (9.1). Indeed, f = iA : A → X we
have

(σ(E))A = i−1
A (σ(E)) = σ(i−1

A (E)) = σ(EA).

Exercise 9.1. If f : X → Y is a function and F ⊂ 2Y and B ⊂ 2X are σ –
algebras (algebras), then f−1F and f∗B are σ – algebras (algebras).

Example 9.4. Let E = {(a, b] : −∞ < a < b <∞} and B = σ (E) be the Borel σ
– field on R. Then

E(0,1] = {(a, b] : 0 ≤ a < b ≤ 1}

and we have
B(0,1] = σ

(
E(0,1]

)
.

In particular, if A ∈ B such that A ⊂ (0, 1], then A ∈ σ
(
E(0,1]

)
.

9.1 Measurable Functions

Definition 9.5. A measurable space is a pair (X,M), where X is a set and
M is a σ – algebra on X.

To motivate the notion of a measurable function, suppose (X,M, µ) is a
measure space and f : X → R+ is a function. Roughly speaking, we are going
to define

∫
X

fdµ as a certain limit of sums of the form,

∞∑
0<a1<a2<a3<...

aiµ(f−1(ai, ai+1]).

For this to make sense we will need to require f−1((a, b]) ∈ M for all a < b.
Because of Corollary 9.11 below, this last condition is equivalent to the condition
f−1(BR) ⊂M.

Definition 9.6. Let (X,M) and (Y,F) be measurable spaces. A function f :
X → Y is measurable of more precisely, M/F – measurable or (M,F) –
measurable, if f−1(F) ⊂M, i.e. if f−1 (A) ∈M for all A ∈ F .



76 9 Measurable Functions (Random Variables)

Remark 9.7. Let f : X → Y be a function. Given a σ – algebra F ⊂ 2Y , the σ
– algebraM := f−1(F) is the smallest σ – algebra on X such that f is (M,F)
- measurable . Similarly, if M is a σ - algebra on X then

F = f∗M ={A ∈ 2Y |f−1(A) ∈M}

is the largest σ – algebra on Y such that f is (M,F) - measurable.

Example 9.8 (Indicator Functions). Let (X,M) be a measurable space and A ⊂
X. Then 1A is (M,BR) – measurable iff A ∈ M. Indeed, 1−1

A (W ) is either ∅,
X, A or Ac for any W ⊂ R with 1−1

A ({1}) = A.

Example 9.9. Suppose f : X → Y with Y being a finite or countable set and
F = 2Y . Then f is measurable iff f−1 ({y}) ∈M for all y ∈ Y.

Proposition 9.10. Suppose that (X,M) and (Y,F) are measurable spaces and
further assume E ⊂ F generates F , i.e. F = σ (E) . Then a map, f : X → Y is
measurable iff f−1 (E) ⊂M.

Proof. If f is M/F measurable, then f−1 (E) ⊂ f−1 (F) ⊂M. Conversely
if f−1 (E) ⊂M then σ

(
f−1 (E)

)
⊂M and so making use of Lemma 9.3,

f−1 (F) = f−1 (σ (E)) = σ
(
f−1 (E)

)
⊂M.

Corollary 9.11. Suppose that (X,M) is a measurable space. Then the follow-
ing conditions on a function f : X → R are equivalent:

1. f is (M,BR) – measurable,
2. f−1((a,∞)) ∈M for all a ∈ R,
3. f−1((a,∞)) ∈M for all a ∈ Q,
4. f−1((−∞, a]) ∈M for all a ∈ R.

Exercise 9.2. Prove Corollary 9.11. Hint: See Exercise 6.7.

Exercise 9.3. If M is the σ – algebra generated by E ⊂ 2X , then M is the
union of the σ – algebras generated by countable subsets F ⊂ E .

Exercise 9.4. Let (X,M) be a measure space and fn : X → R be a sequence
of measurable functions on X. Show that {x : limn→∞ fn(x) exists in R} ∈ M.
Similarly show the same holds if R is replaced by C.

Exercise 9.5. Show that every monotone function f : R→ R is (BR,BR) –
measurable.

Definition 9.12. Given measurable spaces (X,M) and (Y,F) and a subset
A ⊂ X. We say a function f : A→ Y is measurable iff f is MA/F – measur-
able.

Proposition 9.13 (Localizing Measurability). Let (X,M) and (Y,F) be
measurable spaces and f : X → Y be a function.

1. If f is measurable and A ⊂ X then f |A : A→ Y is MA/F – measurable.
2. Suppose there exist An ∈ M such that X = ∪∞n=1An and f |An is MAn/F

– measurable for all n, then f is M – measurable.

Proof. 1. If f : X → Y is measurable, f−1(B) ∈ M for all B ∈ F and
therefore

f |−1
A (B) = A ∩ f−1(B) ∈MA for all B ∈ F .

2. If B ∈ F , then

f−1(B) = ∪∞n=1

(
f−1(B) ∩An

)
= ∪∞n=1f |−1

An
(B).

Since each An ∈ M,MAn ⊂M and so the previous displayed equation shows
f−1(B) ∈M.

Lemma 9.14 (Composing Measurable Functions). Suppose that
(X,M), (Y,F) and (Z,G) are measurable spaces. If f : (X,M) → (Y,F) and
g : (Y,F) → (Z,G) are measurable functions then g ◦ f : (X,M) → (Z,G) is
measurable as well.

Proof. By assumption g−1(G) ⊂ F and f−1 (F) ⊂M so that

(g ◦ f)
−1

(G) = f−1
(
g−1 (G)

)
⊂ f−1 (F) ⊂M.

Definition 9.15 (σ – Algebras Generated by Functions). Let X be a set
and suppose there is a collection of measurable spaces {(Yα,Fα) : α ∈ I} and
functions fα : X → Yα for all α ∈ I. Let σ(fα : α ∈ I) denote the smallest σ –
algebra on X such that each fα is measurable, i.e.

σ(fα : α ∈ I) = σ(∪αf−1
α (Fα)).

Example 9.16. Suppose that Y is a finite set, F = 2Y , and X = Y N for some
N ∈ N. Let πi : Y N → Y be the projection maps, πi (y1, . . . , yN ) = yi. Then,
as the reader should check,

σ (π1, . . . , πn) =
{
A× ΛN−n : A ⊂ Λn

}
.
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Proposition 9.17. Assuming the notation in Definition 9.15 (so fα : X →
Yα for all α ∈ I) and additionally let (Z,M) be a measurable space. Then

g : Z → X is (M, σ(fα : α ∈ I)) – measurable iff fα ◦ g
(
Z

g→ X
fα→ Yα

)
is

(M,Fα)–measurable for all α ∈ I.

Proof. (⇒) If g is (M, σ(fα : α ∈ I)) – measurable, then the composition
fα ◦ g is (M,Fα) – measurable by Lemma 9.14.

(⇐) Since σ(fα : α ∈ I) = σ (E) where E := ∪αf−1
α (Fα), according to

Proposition 9.10, it suffices to show g−1 (A) ∈M for A ∈ f−1
α (Fα). But this is

true since if A = f−1
α (B) for some B ∈ Fα, then g−1 (A) = g−1

(
f−1
α (B)

)
=

(fα ◦ g)
−1

(B) ∈M because fα ◦ g : Z → Yα is assumed to be measurable.

Definition 9.18. If {(Yα,Fα) : α ∈ I} is a collection of measurable spaces, then
the product measure space, (Y,F) , is Y :=

∏
α∈I Yα, F := σ (πα : α ∈ I) where

πα : Y → Yα is the α – component projection. We call F the product σ – algebra
and denote it by, F = ⊗α∈IFα.

Let us record an important special case of Proposition 9.17.

Corollary 9.19. If (Z,M) is a measure space, then g : Z → Y =
∏
α∈I Yα is

(M,F := ⊗α∈IFα) – measurable iff πα ◦ g : Z → Yα is (M,Fα) – measurable
for all α ∈ I.

As a special case of the above corollary, if A = {1, 2, . . . , n} , then Y =
Y1 × · · · × Yn and g = (g1, . . . , gn) : Z → Y is measurable iff each component,
gi : Z → Yi, is measurable. Here is another closely related result.

Proposition 9.20. Suppose X is a set, {(Yα,Fα) : α ∈ I} is a collection of
measurable spaces, and we are given maps, fα : X → Yα, for all α ∈ I. If
f : X → Y :=

∏
α∈I Yα is the unique map, such that πα ◦ f = fα, then

σ (fα : α ∈ I) = σ (f) = f−1 (F)

where F := ⊗α∈IFα.

Proof. Since πα ◦ f = fα is σ (fα : α ∈ I) /Fα – measurable for all α ∈ I it
follows from Corollary 9.19 that f : X → Y is σ (fα : α ∈ I) /F – measurable.
Since σ (f) is the smallest σ – algebra on X such that f is measurable we may
conclude that σ (f) ⊂ σ (fα : α ∈ I) .

Conversely, for each α ∈ I, fα = πα ◦ f is σ (f) /Fα – measurable for all
α ∈ I being the composition of two measurable functions. Since σ (fα : α ∈ I)
is the smallest σ – algebra on X such that each fα : X → Yα is measurable, we
learn that σ (fα : α ∈ I) ⊂ σ (f) .

Exercise 9.6. Suppose that (Y1,F1) and (Y2,F2) are measurable spaces and
Ei is a subset of Fi such that Yi ∈ Ei and Fi = σ (Ei) for i = 1 and 2. Show
F1 ⊗F2 = σ (E) where E := {A1 ×A2 : Ai ∈ Ei for i = 1, 2} . Hints:

1. First show that if Y is a set and S1 and S2 are two non-empty sub-
sets of 2Y , then σ (σ (S1) ∪ σ (S2)) = σ (S1 ∪ S2) . (In fact, one has that
σ (∪α∈Iσ (Sα)) = σ (∪α∈ISα) for any collection of non-empty subsets,
{Sα}α∈I ⊂ 2Y .)

2. After this you might start your proof as follows;

F1⊗F2 := σ
(
π−1

1 (F1) ∪ π−1
2 (F2)

)
= σ

(
π−1

1 (σ (E2)) ∪ π−1
2 (σ (E2))

)
= . . . .

Remark 9.21. The reader should convince herself that Exercise 9.6 admits the
following extension. If I is any finite or countable index set, {(Yi,Fi)}i∈I are
measurable spaces and Ei ⊂ Fi are such that Yi ∈ Ei and Fi = σ (Ei) for all
i ∈ I, then

⊗i∈IFi = σ

({∏
i∈I

Ai : Aj ∈ Ej for all j ∈ I

})
and in particular,

⊗i∈IFi = σ

({∏
i∈I

Ai : Aj ∈ Fj for all j ∈ I

})
.

The last fact is easily verified directly without the aid of Exercise 9.6.

Exercise 9.7. Suppose that (Y1,F1) and (Y2,F2) are measurable spaces and
∅ 6= Bi ⊂ Yi for i = 1, 2. Show

[F1 ⊗F2]B1×B2
= [F1]B1

⊗ [F2]B2
.

Hint: you may find it useful to use the result of Exercise 9.6 with

E := {A1 ×A2 : Ai ∈ Fi for i = 1, 2} .

Definition 9.22. A function f : X → Y between two topological spaces is
Borel measurable if f−1(BY ) ⊂ BX .

Proposition 9.23. Let X and Y be two topological spaces and f : X → Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma 9.3 and BY = σ(τY ),

f−1(BY ) = f−1(σ(τY )) = σ(f−1(τY )) ⊂ σ(τX) = BX .

Page: 77 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



78 9 Measurable Functions (Random Variables)

Example 9.24. For i = 1, 2, . . . , n, let πi : Rn → R be defined by πi (x) = xi.
Then each πi is continuous and therefore BRn/BR – measurable.

Lemma 9.25. Let E denote the collection of open rectangle in Rn, then BRn =
σ (E) . We also have that BRn = σ (π1, . . . , πn) = BR⊗· · ·⊗BR and in particular,
A1 × · · · × An ∈ BRn whenever Ai ∈ BR for i = 1, 2, . . . , n. Therefore BRn may
be described as the σ algebra generated by {A1 × · · · ×An : Ai ∈ BR} . (Also see
Remark 9.21.)

Proof. Assertion 1. Since E ⊂ BRn , it follows that σ (E) ⊂ BRn . Let

E0 := {(a, b) : a, b ∈ Qn 3 a < b} ,

where, for a, b ∈ Rn, we write a < b iff ai < bi for i = 1, 2, . . . , n and let

(a, b) = (a1, b1)× · · · × (an, bn) . (9.3)

Since every open set, V ⊂ Rn, may be written as a (necessarily) countable
union of elements from E0, we have

V ∈ σ (E0) ⊂ σ (E) ,

i.e. σ (E0) and hence σ (E) contains all open subsets of Rn. Hence we may
conclude that

BRn = σ (open sets) ⊂ σ (E0) ⊂ σ (E) ⊂ BRn .

Assertion 2. Since each πi : Rn → R is continuous, it is BRn/BR – measur-
able and therefore, σ (π1, . . . , πn) ⊂ BRn . Moreover, if (a, b) is as in Eq. (9.3),
then

(a, b) = ∩ni=1π
−1
i ((ai, bi)) ∈ σ (π1, . . . , πn) .

Therefore, E ⊂ σ (π1, . . . , πn) and BRn = σ (E) ⊂ σ (π1, . . . , πn) .
Assertion 3. If Ai ∈ BR for i = 1, 2, . . . , n, then

A1 × · · · ×An = ∩ni=1π
−1
i (Ai) ∈ σ (π1, . . . , πn) = BRn .

Corollary 9.26. If (X,M) is a measurable space, then

f = (f1, f2, . . . , fn) : X → Rn

is (M,BRn) – measurable iff fi : X → R is (M,BR) – measurable for each i.
In particular, a function f : X → C is (M,BC) – measurable iff Re f and Im f
are (M,BR) – measurable.

Proof. This is an application of Lemma 9.25 and Corollary 9.19 with Yi = R
for each i.

Corollary 9.27. Let (X,M) be a measurable space and f, g : X → C be
(M,BC) – measurable functions. Then f ± g and f · g are also (M,BC) –
measurable.

Proof. Define F : X → C × C, A± : C × C → C and M : C × C −→ C
by F (x) = (f(x), g(x)), A±(w, z) = w ± z and M(w, z) = wz. Then A± and
M are continuous and hence (BC2 ,BC) – measurable. Also F is (M,BC2) –
measurable since π1◦F = f and π2◦F = g are (M,BC) – measurable. Therefore
A±◦F = f±g and M ◦F = f ·g, being the composition of measurable functions,
are also measurable.

Lemma 9.28. Let α ∈ C, (X,M) be a measurable space and f : X → C be a
(M,BC) – measurable function. Then

F (x) :=

{ 1
f(x) if f(x) 6= 0

α if f(x) = 0

is measurable.

Proof. Define i : C→ C by

i(z) =

{
1
z if z 6= 0
0 if z = 0.

For any open set V ⊂ C we have

i−1(V ) = i−1(V \ {0}) ∪ i−1(V ∩ {0})

Because i is continuous except at z = 0, i−1(V \ {0}) is an open set and hence
in BC. Moreover, i−1(V ∩ {0}) ∈ BC since i−1(V ∩ {0}) is either the empty
set or the one point set {0} . Therefore i−1(τC) ⊂ BC and hence i−1(BC) =
i−1(σ(τC)) = σ(i−1(τC)) ⊂ BC which shows that i is Borel measurable. Since
F = i ◦ f is the composition of measurable functions, F is also measurable.

Remark 9.29. For the real case of Lemma 9.28, define i as above but now take
z to real. From the plot of i, Figure 9.29, the reader may easily verify that
i−1 ((−∞, a]) is an infinite half interval for all a and therefore i is measurable.
See Example 9.34 for another proof of this fact.
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We will often deal with functions f : X → R̄ = R∪{±∞} . When talking
about measurability in this context we will refer to the σ – algebra on R̄ defined
by

BR̄ := σ ({[a,∞] : a ∈ R}) . (9.4)

Proposition 9.30 (The Structure of BR̄). Let BR and BR̄ be as above, then

BR̄ = {A ⊂ R̄ : A ∩ R ∈BR}. (9.5)

In particular {∞} , {−∞} ∈ BR̄ and BR ⊂ BR̄.

Proof. Let us first observe that

{−∞} = ∩∞n=1[−∞,−n) = ∩∞n=1[−n,∞]c ∈ BR̄,
{∞} = ∩∞n=1[n,∞] ∈ BR̄ and R = R̄\ {±∞} ∈ BR̄.

Letting i : R→ R̄ be the inclusion map,

i−1 (BR̄) = σ
(
i−1

({
[a,∞] : a ∈ R̄

}))
= σ

({
i−1 ([a,∞]) : a ∈ R̄

})
= σ

({
[a,∞] ∩ R : a ∈ R̄

})
= σ ({[a,∞) : a ∈ R}) = BR.

Thus we have shown

BR = i−1 (BR̄) = {A ∩ R : A ∈ BR̄}.

This implies:

1. A ∈ BR̄ =⇒ A ∩ R ∈BR and
2. if A ⊂ R̄ is such that A∩R ∈BR there exists B ∈ BR̄ such that A∩R = B∩R.

Because A∆B ⊂ {±∞} and {∞} , {−∞} ∈ BR̄ we may conclude that
A ∈ BR̄ as well.

This proves Eq. (9.5).
The proofs of the next two corollaries are left to the reader, see Exercises

9.8 and 9.9.

Corollary 9.31. Let (X,M) be a measurable space and f : X → R̄ be a func-
tion. Then the following are equivalent

1. f is (M,BR̄) - measurable,
2. f−1((a,∞]) ∈M for all a ∈ R,
3. f−1((−∞, a]) ∈M for all a ∈ R,
4. f−1({−∞}) ∈M, f−1({∞}) ∈M and f0 : X → R defined by

f0 (x) :=

{
f (x) if f (x) ∈ R

0 if f (x) ∈ {±∞}

is measurable.

Corollary 9.32. Let (X,M) be a measurable space, f, g : X → R̄ be functions
and define f · g : X → R̄ and (f + g) : X → R̄ using the conventions, 0 ·∞ = 0
and (f + g) (x) = 0 if f (x) = ∞ and g (x) = −∞ or f (x) = −∞ and g (x) =
∞. Then f · g and f + g are measurable functions on X if both f and g are
measurable.

Exercise 9.8. Prove Corollary 9.31 noting that the equivalence of items 1. – 3.
is a direct analogue of Corollary 9.11. Use Proposition 9.30 to handle item 4.

Exercise 9.9. Prove Corollary 9.32.

Proposition 9.33 (Closure under sups, infs and limits). Suppose that
(X,M) is a measurable space and fj : (X,M)→ R for j ∈ N is a sequence of
M/BR – measurable functions. Then

supjfj , infjfj , lim sup
j→∞

fj and lim inf
j→∞

fj

are allM/BR – measurable functions. (Note that this result is in generally false
when (X,M) is a topological space and measurable is replaced by continuous in
the statement.)

Proof. Define g+(x) := sup j fj(x), then

{x : g+(x) ≤ a} = {x : fj(x) ≤ a ∀ j}
= ∩j{x : fj(x) ≤ a} ∈ M

so that g+ is measurable. Similarly if g−(x) = infj fj(x) then

{x : g−(x) ≥ a} = ∩j{x : fj(x) ≥ a} ∈ M.

Since

lim sup
j→∞

fj = inf
n

sup {fj : j ≥ n} and

lim inf
j→∞

fj = sup
n

inf {fj : j ≥ n}

we are done by what we have already proved.
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Example 9.34. As we saw in Remark 9.29, i : R→ R defined by

i(z) =

{
1
z if z 6= 0
0 if z = 0.

is measurable by a simple direct argument. For an alternative argument, let

in (z) :=
z

z2 + 1
n

for all n ∈ N.

Then in is continuous and limn→∞ in (z) = i (z) for all z ∈ R from which it
follows that i is Borel measurable.

Example 9.35. Let {rn}∞n=1 be an enumeration of the points in Q ∩ [0, 1] and
define

f(x) =

∞∑
n=1

2−n
1√
|x− rn|

with the convention that

1√
|x− rn|

= 5 if x = rn.

Then f : R→ R̄ is measurable. Indeed, if

gn (x) =

{
1√
|x−rn|

if x 6= rn

0 if x = rn

then gn (x) =
√
|i (x− rn)| is measurable as the composition of measurable is

measurable. Therefore gn + 5 · 1{rn} is measurable as well. Finally,

f (x) = lim
N→∞

N∑
n=1

2−n
1√
|x− rn|

is measurable since sums of measurable functions are measurable and limits
of measurable functions are measurable. Moral: if you can explicitly write a
function f : R̄→ R̄ down then it is going to be measurable.

Definition 9.36. Given a function f : X → R̄ let f+(x) := max {f(x), 0} and
f− (x) := max (−f(x), 0) = −min (f(x), 0) . Notice that f = f+ − f−.

Corollary 9.37. Suppose (X,M) is a measurable space and f : X → R̄ is a
function. Then f is measurable iff f± are measurable.

Proof. If f is measurable, then Proposition 9.33 implies f± are measurable.
Conversely if f± are measurable then so is f = f+ − f−.

Definition 9.38. Let (X,M) be a measurable space. A function ϕ : X → F
(F denotes either R, C or [0,∞] ⊂ R̄) is a simple function if ϕ is M – BF
measurable and ϕ(X) contains only finitely many elements.

Any such simple functions can be written as

ϕ =

n∑
i=1

λi1Ai with Ai ∈M and λi ∈ F. (9.6)

Indeed, take λ1, λ2, . . . , λn to be an enumeration of the range of ϕ and Ai =
ϕ−1({λi}). Note that this argument shows that any simple function may be
written intrinsically as

ϕ =
∑
y∈F

y1ϕ−1({y}). (9.7)

The next theorem shows that simple functions are “pointwise dense” in the
space of measurable functions.

Theorem 9.39 (Approximation Theorem). Let f : X → [0,∞] be measur-
able and define, see Figure 9.1,

ϕn(x) :=

22n−1∑
k=0

k

2n
1f−1(( k

2n ,
k+1
2n ])(x) + 2n1f−1((2n,∞])(x)

=

22n−1∑
k=0

k

2n
1{ k

2n<f≤
k+1
2n }(x) + 2n1{f>2n}(x)

then ϕn ≤ f for all n, ϕn(x) ↑ f(x) for all x ∈ X and ϕn ↑ f uniformly on the
sets XM := {x ∈ X : f(x) ≤M} with M <∞.

Moreover, if f : X → C is a measurable function, then there exists simple
functions ϕn such that limn→∞ ϕn(x) = f(x) for all x and |ϕn| ↑ |f | as n→∞.

Proof. Since f−1
(
( k

2n ,
k+1
2n ]
)

and f−1((2n,∞]) are inM as f is measurable,
ϕn is a measurable simple function for each n. Because

(
k

2n
,
k + 1

2n
] = (

2k

2n+1
,

2k + 1

2n+1
] ∪ (

2k + 1

2n+1
,

2k + 2

2n+1
],

if x ∈ f−1
(
( 2k

2n+1 ,
2k+1
2n+1 ]

)
then ϕn(x) = ϕn+1(x) = 2k

2n+1 and if x ∈
f−1

(
( 2k+1

2n+1 ,
2k+2
2n+1 ]

)
then ϕn(x) = 2k

2n+1 <
2k+1
2n+1 = ϕn+1(x). Similarly

(2n,∞] = (2n, 2n+1] ∪ (2n+1,∞],

and so for x ∈ f−1((2n+1,∞]), ϕn(x) = 2n < 2n+1 = ϕn+1(x) and for x ∈
f−1((2n, 2n+1]), ϕn+1(x) ≥ 2n = ϕn(x). Therefore ϕn ≤ ϕn+1 for all n. It is
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Fig. 9.1. Constructing the simple function, ϕ2, approximating a function, f : X →
[0,∞]. The graph of ϕ2 is in red.

clear by construction that 0 ≤ ϕn(x) ≤ f(x) for all x and that 0 ≤ f(x) −
ϕn(x) ≤ 2−n if x ∈ X2n = {f ≤ 2n} . Hence we have shown that ϕn(x) ↑ f(x)
for all x ∈ X and ϕn ↑ f uniformly on bounded sets.

For the second assertion, first assume that f : X → R is a measurable
function and choose ϕ±n to be non-negative simple functions such that ϕ±n ↑ f±
as n→∞ and define ϕn = ϕ+

n − ϕ−n . Then (using ϕ+
n · ϕ−n ≤ f+ · f− = 0)

|ϕn| = ϕ+
n + ϕ−n ≤ ϕ+

n+1 + ϕ−n+1 = |ϕn+1|

and clearly |ϕn| = ϕ+
n +ϕ−n ↑ f+ + f− = |f | and ϕn = ϕ+

n −ϕ−n → f+− f− = f
as n → ∞. Now suppose that f : X → C is measurable. We may now choose
simple function un and vn such that |un| ↑ |Re f | , |vn| ↑ |Im f | , un → Re f and
vn → Im f as n→∞. Let ϕn = un + ivn, then

|ϕn|2 = u2
n + v2

n ↑ |Re f |2 + |Im f |2 = |f |2

and ϕn = un + ivn → Re f + i Im f = f as n→∞.

9.2 Factoring Random Variables

Lemma 9.40. Suppose that (Y,F) is a measurable space and Y : Ω → Y is a
map. Then to every (σ(Y ),BR̄) – measurable function, h : Ω → R̄, there is a

(F ,BR̄) – measurable function H : Y→ R̄ such that h = H ◦Y. More generally,
R̄ may be replaced by any “standard Borel space,”1 i.e. a space, (S,BS) which
is measure theoretic isomorphic to a Borel subset of R.

(Ω, σ(Y ))
Y- (Y,F)

(S,BS)

h
? H�

Proof. First suppose that h = 1A where A ∈ σ(Y ) = Y −1(F). Let B ∈ F
such that A = Y −1(B) then 1A = 1Y −1(B) = 1B ◦ Y and hence the lemma
is valid in this case with H = 1B . More generally if h =

∑
ai1Ai is a simple

function, then there exists Bi ∈ F such that 1Ai = 1Bi ◦Y and hence h = H ◦Y
with H :=

∑
ai1Bi – a simple function on R̄.

For a general (F ,BR̄) – measurable function, h, from Ω → R̄, choose simple
functions hn converging to h. Let Hn : Y → R̄ be simple functions such that
hn = Hn ◦ Y. Then it follows that

h = lim
n→∞

hn = lim sup
n→∞

hn = lim sup
n→∞

Hn ◦ Y = H ◦ Y

where H := lim sup
n→∞

Hn – a measurable function from Y to R̄.

For the last assertion we may assume that S ∈ BR and BS = (BR)S =
{A ∩ S : A ∈ BR} . Since iS : S → R is measurable, what we have just proved
shows there exists, H : Y → R̄ which is (F ,BR̄) – measurable such that h =
iS ◦ h = H ◦ Y. The only problems with H is that H (Y) may not be contained
in S. To fix this, let

HS =

{
H|H−1(S) on H−1 (S)
∗ on Y \H−1 (S)

where ∗ is some fixed arbitrary point in S. It follows from Proposition 9.13 that
HS : Y→ S is (F ,BS) – measurable and we still have h = HS ◦ Y as the range
of Y must necessarily be in H−1 (S) .

Here is how this lemma will often be used in these notes.

Corollary 9.41. Suppose that (Ω,B) is a measurable space, Xn : Ω → R are
B/BR – measurable functions, and Bn := σ (X1, . . . , Xn) ⊂ B for each n ∈ N.
Then h : Ω → R is Bn – measurable iff there exists H : Rn → R which is
BRn/BR – measurable such that h = H (X1, . . . , Xn) .

1 Standard Borel spaces include almost any measurable space that we will consider in
these notes. For example they include all complete seperable metric spaces equipped
with the Borel σ – algebra, see Section ??.
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(Ω,Bn = σ (Y ))
Y :=(X1,...,Xn)- (Rn,BRn)

(R,BR)

h
? H�

Proof. By Lemma 9.25 and Corollary 9.19, the map, Y := (X1, . . . , Xn) :
Ω → Rn is (B,BRn = BR ⊗ · · · ⊗ BR) – measurable and by Proposition 9.20,
Bn = σ (X1, . . . , Xn) = σ (Y ) . Thus we may apply Lemma 9.40 to see that
there exists a BRn/BR – measurable map, H : Rn → R, such that h = H ◦ Y =
H (X1, . . . , Xn) .

9.3 Summary of Measurability Statements

It may be worthwhile to gather the statements of the main measurability re-
sults of Sections 9.1 and 9.2 in one place. To do this let (Ω,B) , (X,M), and
{(Yα,Fα)}α∈I be measurable spaces and fα : Ω → Yα be given maps for all
α ∈ I. Also let πα : Y → Yα be the α – projection map,

F := ⊗α∈IFα := σ (πα : α ∈ I)

be the product σ – algebra on Y, and f : Ω → Y be the unique map determined
by πα ◦ f = fα for all α ∈ I. Then the following measurability results hold;

1. For A ⊂ Ω, the indicator function, 1A, is (B,BR) – measurable iff A ∈ B.
(Example 9.8).

2. If E ⊂M generatesM (i.e.M = σ (E)), then a map, g : Ω → X is (B,M)
– measurable iff g−1 (E) ⊂ B (Lemma 9.3 and Proposition 9.10).

3. The notion of measurability may be localized (Proposition 9.13).
4. Composition of measurable functions are measurable (Lemma 9.14).
5. Continuous functions between two topological spaces are also Borel mea-

surable (Proposition 9.23).
6. σ (f) = σ (fα : α ∈ I) (Proposition 9.20).
7. A map, h : X → Ω is (M, σ (f) = σ (fα : α ∈ I)) – measurable iff fα ◦ h is

(M,Fα) – measurable for all α ∈ I (Proposition 9.17).
8. A map, h : X → Y is (M,F) – measurable iff πα◦h is (M,Fα) – measurable

for all α ∈ I (Corollary 9.19).
9. If I = {1, 2, . . . , n} , then

⊗α∈IFα = F1 ⊗ · · · ⊗ Fn = σ ({A1 ×A2 × · · · ×An : Ai ∈ Fi for i ∈ I}) ,

this is a special case of Remark 9.21.
10. BRn = BR ⊗ · · · ⊗ BR (n - times) for all n ∈ N, i.e. the Borel σ – algebra on

Rn is the same as the product σ – algebra. (Lemma 9.25).
11. The collection of measurable functions from (Ω,B) to

(
R̄,BR̄

)
is closed un-

der the usual pointwise algebraic operations (Corollary 9.32). They are also
closed under the countable supremums, infimums, and limits (Proposition
9.33).

12. The collection of measurable functions from (Ω,B) to (C,BC) is closed under
the usual pointwise algebraic operations and countable limits. (Corollary
9.27 and Proposition 9.33). The limiting assertion follows by considering
the real and imaginary parts of all functions involved.

13. The class of measurable functions from (Ω,B) to
(
R̄,BR̄

)
and from (Ω,B)

to (C,BC) may be well approximated by measurable simple functions (The-
orem 9.39).
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14. If Xi : Ω → R are B/BR – measurable maps and Bn := σ (X1, . . . , Xn) ,
then h : Ω → R is Bn – measurable iff h = H (X1, . . . , Xn) for some BRn/BR
– measurable map, H : Rn → R (Corollary 9.41).

15. We also have the more general factorization Lemma 9.40.

For the most part most of our future measurability issues can be resolved
by one or more of the items on this list.

9.4 Distributions / Laws of Random Vectors

The proof of the following proposition is routine and will be left to the reader.

Proposition 9.42. Let (X,M, µ) be a measure space, (Y,F) be a measurable
space and f : X → Y be a measurable map. Define a function ν : F → [0,∞] by
ν(A) := µ(f−1(A)) for all A ∈ F . Then ν is a measure on (Y,F) . (In the future
we will denote ν by f∗µ or µ◦f−1 or Lawµ (f) and call f∗µ the push-forward
of µ by f or the law of f under µ.

Definition 9.43. Suppose that {Xi}ni=1 is a sequence of random variables on a
probability space, (Ω,B, P ) . The probability measure,

µ = (X1, . . . , Xn)∗ P = P ◦ (X1, . . . , Xn)
−1

on BR

(see Proposition 9.42) is called the joint distribution (or law) of
(X1, . . . , Xn) . To be more explicit,

µ (B) := P ((X1, . . . , Xn) ∈ B) := P ({ω ∈ Ω : (X1 (ω) , . . . , Xn (ω)) ∈ B})

for all B ∈ BRn .

Corollary 9.44. The joint distribution, µ is uniquely determined from the
knowledge of

P ((X1, . . . , Xn) ∈ A1 × · · · ×An) for all Ai ∈ BR

or from the knowledge of

P (X1 ≤ x1, . . . , Xn ≤ xn) for all Ai ∈ BR

for all x = (x1, . . . , xn) ∈ Rn.

Proof. Apply Proposition 8.15 with P being the π – systems defined by

P := {A1 × · · · ×An ∈ BRn : Ai ∈ BR}

for the first case and

P := {(−∞, x1]× · · · × (−∞, xn] ∈ BRn : xi ∈ R}

for the second case.

Definition 9.45. Suppose that {Xi}ni=1 and {Yi}ni=1 are two finite sequences of
random variables on two probability spaces, (Ω,B, P ) and (Ω′,B′, P ′) respec-

tively. We write (X1, . . . , Xn)
d
= (Y1, . . . , Yn) if (X1, . . . , Xn) and (Y1, . . . , Yn)

have the same distribution / law, i.e. if
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P ((X1, . . . , Xn) ∈ B) = P ′ ((Y1, . . . , Yn) ∈ B) for all B ∈ BRn .

More generally, if {Xi}∞i=1 and {Yi}∞i=1 are two sequences of random variables

on two probability spaces, (Ω,B, P ) and (Ω′,B′, P ′) we write {Xi}∞i=1
d
= {Yi}∞i=1

iff (X1, . . . , Xn)
d
= (Y1, . . . , Yn) for all n ∈ N.

Proposition 9.46. Let us continue using the notation in Definition 9.45. Fur-
ther let

X = (X1, X2, . . . ) : Ω → RN and Y := (Y1, Y2, . . . ) : Ω′ → RN

and let F := ⊗n∈NBR – be the product σ – algebra on RN. Then {Xi}∞i=1
d
=

{Yi}∞i=1 iff X∗P = Y∗P
′ as measures on

(
RN,F

)
.

Proof. Let

P := ∪∞n=1

{
A1 ×A2 × · · · ×An × RN : Ai ∈ BR for 1 ≤ i ≤ n

}
.

Notice that P is a π – system and it is easy to show σ (P) = F (see Exercise
9.6). Therefore by Proposition 8.15, X∗P = Y∗P

′ iff X∗P = Y∗P
′ on P. Now

for A1 ×A2 × · · · ×An × RN ∈ P we have,

X∗P
(
A1 ×A2 × · · · ×An × RN) = P ((X1, . . . , Xn) ∈ A1 ×A2 × · · · ×An)

and hence the condition becomes,

P ((X1, . . . , Xn) ∈ A1 ×A2 × · · · ×An) = P ′ ((Y1, . . . , Yn) ∈ A1 ×A2 × · · · ×An)

for all n ∈ N and Ai ∈ BR. Another application of Proposition 8.15 or us-
ing Corollary 9.44 allows us to conclude that shows that X∗P = Y∗P

′ iff

(X1, . . . , Xn)
d
= (Y1, . . . , Yn) for all n ∈ N.

Corollary 9.47. Continue the notation above and assume that {Xi}∞i=1
d
=

{Yi}∞i=1 . Further let

X± =

{
lim supn→∞Xn if +
lim infn→∞Xn if −

and define Y± similarly. Then (X−, X+)
d
= (Y−, Y+) as random variables into(

R̄2,BR̄ ⊗ BR̄
)
. In particular,

P
(

lim
n→∞

Xn exists in R
)

= P ′
(

lim
n→∞

Y exists in R
)
. (9.8)

Proof. First suppose that (Ω′,B′, P ′) =
(
RN,F , P ′ := X∗P

)
where

Yi (a1, a2, . . . ) := ai = πi (a1, a2, . . . ) . Then for C ∈ BR̄ ⊗ BR̄ we have,

X−1 ({(Y−, Y+) ∈ C}) = {(Y− ◦X,Y+ ◦X) ∈ C} = {(X−, X+) ∈ C} ,

since, for example,

Y− ◦X = lim inf
n→∞

Yn ◦X = lim inf
n→∞

Xn = X−.

Therefore it follows that

P ((X−, X+) ∈ C) = P ◦X−1 ({(Y−, Y+) ∈ C}) = P ′ ({(Y−, Y+) ∈ C}) . (9.9)

The general result now follows by two applications of this special case.
For the last assertion, take

C = {(x, x) : x ∈ R} ∈ BR2 = BR ⊗ BR ⊂ BR̄ ⊗ BR̄.

Then (X−, X+) ∈ C iff X− = X+ ∈ R which happens iff limn→∞Xn exists in
R. Similarly, (Y−, Y+) ∈ C iff limn→∞ Yn exists in R and therefore Eq. (9.8)
holds as a consequence of Eq. (9.9).

Exercise 9.10. Let {Xi}∞i=1 and {Yi}∞i=1 be two sequences of random variables

such that {Xi}∞i=1
d
= {Yi}∞i=1 . Let {Sn}∞n=1 and {Tn}∞n=1 be defined by, Sn :=

X1 + · · ·+Xn and Tn := Y1 + · · ·+ Yn. Prove the following assertions.

1. Suppose that f : Rn → Rk is a BRn/BRk – measurable function, then

f (X1, . . . , Xn)
d
= f (Y1, . . . , Yn) .

2. Use your result in item 1. to show {Sn}∞n=1
d
= {Tn}∞n=1 .

Hint: Apply item 1. with k = n after making a judicious choice for f :
Rn → Rn.

9.5 Generating All Distributions from the Uniform
Distribution

Theorem 9.48. Given a distribution function, F : R→ [0, 1] let G : (0, 1)→ R
be defined (see Figure 9.2) by,

G (y) := inf {x : F (x) ≥ y} .

Then G : (0, 1)→ R is Borel measurable and G∗m = µF where µF is the unique
measure on (R,BR) such that µF ((a, b]) = F (b)− F (a) for all −∞ < a < b <
∞.

Page: 84 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12
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Fig. 9.2. A pictorial definition of G.

Fig. 9.3. As can be seen from this picture, G (y) ≤ x0 iff y ≤ F (x0) and similarly,
G (y) ≤ x1 iff y ≤ x1.

Proof. Since G : (0, 1)→ R is a non-decreasing function, G is measurable.
We also claim that, for all x0 ∈ R, that

G−1 ((0, x0]) = {y : G (y) ≤ x0} = (0, F (x0)] ∩ R, (9.10)

see Figure 9.3.
To give a formal proof of Eq. (9.10), G (y) = inf {x : F (x) ≥ y} ≤ x0, there

exists xn ≥ x0 with xn ↓ x0 such that F (xn) ≥ y. By the right continuity of F,
it follows that F (x0) ≥ y. Thus we have shown

{G ≤ x0} ⊂ (0, F (x0)] ∩ (0, 1) .

For the converse, if y ≤ F (x0) then G (y) = inf {x : F (x) ≥ y} ≤ x0, i.e.
y ∈ {G ≤ x0} . Indeed, y ∈ G−1 ((−∞, x0]) iff G (y) ≤ x0. Observe that

G (F (x0)) = inf {x : F (x) ≥ F (x0)} ≤ x0

and hence G (y) ≤ x0 whenever y ≤ F (x0) . This shows that

(0, F (x0)] ∩ (0, 1) ⊂ G−1 ((0, x0]) .

As a consequence we have G∗m = µF . Indeed,

(G∗m) ((−∞, x]) = m
(
G−1 ((−∞, x])

)
= m ({y ∈ (0, 1) : G (y) ≤ x})

= m ((0, F (x)] ∩ (0, 1)) = F (x) .

See section 2.5.2 on p. 61 of Resnick for more details.

Theorem 9.49 (Durret’s Version). Given a distribution function, F :
R→ [0, 1] let Y : (0, 1)→ R be defined (see Figure 9.4) by,

Y (x) := sup {y : F (y) < x} .

Then Y : (0, 1)→ R is Borel measurable and Y∗m = µF where µF is the unique
measure on (R,BR) such that µF ((a, b]) = F (b)− F (a) for all −∞ < a < b <
∞.

Fig. 9.4. A pictorial definition of Y (x) .

Proof. Since Y : (0, 1)→ R is a non-decreasing function, Y is measurable.
Also observe, if y < Y (x) , then F (y) < x and hence,

F (Y (x)−) = lim
y↑Y (x)

F (y) ≤ x.
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For y > Y (x) , we have F (y) ≥ x and therefore,

F (Y (x)) = F (Y (x) +) = lim
y↓Y (x)

F (y) ≥ x

and so we have shown

F (Y (x)−) ≤ x ≤ F (Y (x)) .

We will now show

{x ∈ (0, 1) : Y (x) ≤ y0} = (0, F (y0)] ∩ (0, 1) . (9.11)

For the inclusion “⊂,” if x ∈ (0, 1) and Y (x) ≤ y0, then x ≤ F (Y (x)) ≤ F (y0),
i.e. x ∈ (0, F (y0)] ∩ (0, 1) . Conversely if x ∈ (0, 1) and x ≤ F (y0) then (by
definition of Y (x)) y0 ≥ Y (x) .

From the identity in Eq. (9.11), it follows that Y is measurable and

(Y∗m) ((−∞, y0)) = m
(
Y −1(−∞, y0)

)
= m ((0, F (y0)] ∩ (0, 1)) = F (y0) .

Therefore, Law (Y ) = µF as desired.



10

Integration Theory

In this chapter, we will greatly extend the “simple” integral or expectation
which was developed in Section 7.3 above. Recall there that if (Ω,B, µ) was
measurable space and ϕ : Ω → [0,∞) was a measurable simple function, then
we let

Eµϕ :=
∑

λ∈[0,∞)

λµ (ϕ = λ) .

The conventions being use here is that 0 · µ (ϕ = 0) = 0 even when µ (ϕ = 0) =
∞. This convention is necessary in order to make the integral linear – at a
minimum we will want Eµ [0] = 0. Please be careful not blindly apply the
0 · ∞ = 0 convention in other circumstances.

10.1 Integrals of positive functions

Definition 10.1. Let L+ = L+ (B) = {f : Ω → [0,∞] : f is measurable}.
Define ∫

Ω

f (ω) dµ (ω) =

∫
Ω

fdµ := sup {Eµϕ : ϕ is simple and ϕ ≤ f} .

We say the f ∈ L+ is integrable if
∫
Ω
fdµ <∞. If A ∈ B, let∫

A

f (ω) dµ (ω) =

∫
A

fdµ :=

∫
Ω

1Af dµ.

We also use the notation,

Ef =

∫
Ω

fdµ and E [f : A] :=

∫
A

fdµ.

Remark 10.2. Because of item 3. of Proposition 7.19, if ϕ is a non-negative
simple function,

∫
Ω
ϕdµ = Eµϕ so that

∫
Ω

is an extension of Eµ.

Lemma 10.3. Let f, g ∈ L+ (B) . Then:

1. if λ ≥ 0, then ∫
Ω

λfdµ = λ

∫
Ω

fdµ

wherein λ
∫
Ω
fdµ ≡ 0 if λ = 0, even if

∫
Ω
fdµ =∞.

2. if 0 ≤ f ≤ g, then ∫
Ω

fdµ ≤
∫
Ω

gdµ. (10.1)

3. For all ε > 0 and p > 0,

µ(f ≥ ε) ≤ 1

εp

∫
Ω

fp1{f≥ε}dµ ≤
1

εp

∫
Ω

fpdµ. (10.2)

The inequality in Eq. (10.2) is called Chebyshev’s Inequality for p = 1 and
Markov’s inequality for p = 2.

4. If
∫
Ω
fdµ < ∞ then µ(f = ∞) = 0 (i.e. f < ∞ a.e.) and the set {f > 0}

is σ – finite.

Proof. 1. We may assume λ > 0 in which case,∫
Ω

λfdµ = sup {Eµϕ : ϕ is simple and ϕ ≤ λf}

= sup
{
Eµϕ : ϕ is simple and λ−1ϕ ≤ f

}
= sup {Eµ [λψ] : ψ is simple and ψ ≤ f}
= sup {λEµ [ψ] : ψ is simple and ψ ≤ f}

= λ

∫
Ω

fdµ.

2. Since

{ϕ is simple and ϕ ≤ f} ⊂ {ϕ is simple and ϕ ≤ g} ,

Eq. (10.1) follows from the definition of the integral.
3. Since 1{f≥ε} ≤ 1{f≥ε}

1
εf ≤

1
εf we have

1{f≥ε} ≤ 1{f≥ε}

(
1

ε
f

)p
≤
(

1

ε
f

)p
and by monotonicity and the multiplicative property of the integral,

µ(f ≥ ε) =

∫
Ω

1{f≥ε}dµ ≤
(

1

ε

)p ∫
Ω

1{f≥ε}f
pdµ ≤

(
1

ε

)p ∫
Ω

fpdµ.
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4. If µ (f =∞) > 0, then ϕn := n1{f=∞} is a simple function such that
ϕn ≤ f for all n and hence

nµ (f =∞) = Eµ (ϕn) ≤
∫
Ω

fdµ

for all n. Letting n → ∞ shows
∫
Ω
fdµ = ∞. Thus if

∫
Ω
fdµ < ∞ then

µ (f =∞) = 0.
Moreover,

{f > 0} = ∪∞n=1 {f > 1/n}
with µ (f > 1/n) ≤ n

∫
Ω
fdµ <∞ for each n.

Theorem 10.4 (Monotone Convergence Theorem). Suppose fn ∈ L+ is
a sequence of functions such that fn ↑ f (f is necessarily in L+) then∫

fn ↑
∫
f as n→∞.

Proof. Since fn ≤ fm ≤ f, for all n ≤ m <∞,∫
fn ≤

∫
fm ≤

∫
f

from which if follows
∫
fn is increasing in n and

lim
n→∞

∫
fn ≤

∫
f. (10.3)

For the opposite inequality, let ϕ : Ω → [0,∞) be a simple function such
that 0 ≤ ϕ ≤ f, α ∈ (0, 1) and Ωn := {fn ≥ αϕ} . Notice that Ωn ↑ Ω and
fn ≥ α1Ωnϕ and so by definition of

∫
fn,∫

fn ≥ Eµ [α1Ωnϕ] = αEµ [1Ωnϕ] . (10.4)

Then using the identity

1Ωnϕ = 1Ωn
∑
y>0

y1{ϕ=y} =
∑
y>0

y1{ϕ=y}∩Ωn ,

and the linearity of Eµ we have,

lim
n→∞

Eµ [1Ωnϕ] = lim
n→∞

∑
y>0

y · µ(Ωn ∩ {ϕ = y})

=
∑
y>0

y lim
n→∞

µ(Ωn ∩ {ϕ = y}) (finite sum)

=
∑
y>0

yµ({ϕ = y}) = Eµ [ϕ] ,

wherein we have used the continuity of µ under increasing unions for the third
equality. This identity allows us to let n → ∞ in Eq. (10.4) to conclude
limn→∞

∫
fn ≥ αEµ [ϕ] and since α ∈ (0, 1) was arbitrary we may further

conclude, Eµ [ϕ] ≤ limn→∞
∫
fn. The latter inequality being true for all simple

functions ϕ with ϕ ≤ f then implies that∫
f = sup

0≤ϕ≤f
Eµ [ϕ] ≤ lim

n→∞

∫
fn,

which combined with Eq. (10.3) proves the theorem.

Remark 10.5 (“Explicit” Integral Formula). Given f : Ω → [0,∞] measurable,
we know from the approximation Theorem 9.39 ϕn ↑ f where

ϕn :=

22n−1∑
k=0

k

2n
1{ k

2n<f≤
k+1
2n } + 2n1{f>2n}.

Therefore by the monotone convergence theorem,∫
Ω

fdµ = lim
n→∞

∫
Ω

ϕndµ

= lim
n→∞

22n−1∑
k=0

k

2n
µ

(
k

2n
< f ≤ k + 1

2n

)
+ 2nµ (f > 2n)

 .
Corollary 10.6. If fn ∈ L+ is a sequence of functions then∫ ∞∑

n=1

fn =

∞∑
n=1

∫
fn.

In particular, if
∑∞
n=1

∫
fn <∞ then

∑∞
n=1 fn <∞ a.e.

Proof. First off we show that∫
(f1 + f2) =

∫
f1 +

∫
f2

by choosing non-negative simple function ϕn and ψn such that ϕn ↑ f1 and
ψn ↑ f2. Then (ϕn + ψn) is simple as well and (ϕn + ψn) ↑ (f1 + f2) so by the
monotone convergence theorem,∫

(f1 + f2) = lim
n→∞

∫
(ϕn + ψn) = lim

n→∞

(∫
ϕn +

∫
ψn

)
= lim
n→∞

∫
ϕn + lim

n→∞

∫
ψn =

∫
f1 +

∫
f2.
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Now to the general case. Let gN :=
N∑
n=1

fn and g =
∞∑
1
fn, then gN ↑ g and so

again by monotone convergence theorem and the additivity just proved,

∞∑
n=1

∫
fn := lim

N→∞

N∑
n=1

∫
fn = lim

N→∞

∫ N∑
n=1

fn

= lim
N→∞

∫
gN =

∫
g =:

∫ ∞∑
n=1

fn.

Remark 10.7. It is in the proof of Corollary 10.6 (i.e. the linearity of the integral)
that we really make use of the assumption that all of our functions are measur-
able. In fact the definition

∫
fdµ makes sense for all functions f : Ω → [0,∞]

not just measurable functions. Moreover the monotone convergence theorem
holds in this generality with no change in the proof. However, in the proof of
Corollary 10.6, we use the approximation Theorem 9.39 which relies heavily on
the measurability of the functions to be approximated.

Example 10.8 (Sums as Integrals I). Suppose, Ω = N, B := 2N, µ (A) = # (A)
for A ⊂ Ω is the counting measure on B, and f : N→ [0,∞] is a function. Since

f =

∞∑
n=1

f (n) 1{n},

it follows from Corollary 10.6 that∫
N
fdµ =

∞∑
n=1

∫
N
f (n) 1{n}dµ =

∞∑
n=1

f (n)µ ({n}) =

∞∑
n=1

f (n) .

Thus the integral relative to counting measure is simply the infinite sum.

Lemma 10.9 (Sums as Integrals II*). Let Ω be a set and ρ : Ω → [0,∞] be
a function, let µ =

∑
ω∈Ω ρ(ω)δω on B = 2Ω , i.e.

µ(A) =
∑
ω∈A

ρ(ω).

If f : Ω → [0,∞] is a function (which is necessarily measurable), then∫
Ω

fdµ =
∑
Ω

fρ.

Proof. Suppose that ϕ : Ω → [0,∞) is a simple function, then ϕ =∑
z∈[0,∞) z1{ϕ=z} and∑

Ω

ϕρ =
∑
ω∈Ω

ρ(ω)
∑

z∈[0,∞)

z1{ϕ=z}(ω) =
∑

z∈[0,∞)

z
∑
ω∈Ω

ρ(ω)1{ϕ=z}(ω)

=
∑

z∈[0,∞)

zµ({ϕ = z}) =

∫
Ω

ϕdµ.

So if ϕ : Ω → [0,∞) is a simple function such that ϕ ≤ f, then∫
Ω

ϕdµ =
∑
Ω

ϕρ ≤
∑
Ω

fρ.

Taking the sup over ϕ in this last equation then shows that∫
Ω

fdµ ≤
∑
Ω

fρ.

For the reverse inequality, let Λ ⊂⊂ Ω be a finite set and N ∈ (0,∞).
Set fN (ω) = min {N, f(ω)} and let ϕN,Λ be the simple function given by
ϕN,Λ(ω) := 1Λ(ω)fN (ω). Because ϕN,Λ(ω) ≤ f(ω),∑

Λ

fNρ =
∑
Ω

ϕN,Λρ =

∫
Ω

ϕN,Λdµ ≤
∫
Ω

fdµ.

Since fN ↑ f as N →∞, we may let N →∞ in this last equation to concluded∑
Λ

fρ ≤
∫
Ω

fdµ.

Since Λ is arbitrary, this implies∑
Ω

fρ ≤
∫
Ω

fdµ.

Exercise 10.1. Suppose that µn : B → [0,∞] are measures on B for n ∈ N.
Also suppose that µn(A) is increasing in n for all A ∈ B. Prove that µ : B →
[0,∞] defined by µ(A) := limn→∞ µn(A) is also a measure.

Proposition 10.10. Suppose that f ≥ 0 is a measurable function. Then∫
Ω
fdµ = 0 iff f = 0 a.e. Also if f, g ≥ 0 are measurable functions such that

f ≤ g a.e. then
∫
fdµ ≤

∫
gdµ. In particular if f = g a.e. then

∫
fdµ =

∫
gdµ.
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Proof. If f = 0 a.e. and ϕ ≤ f is a simple function then ϕ = 0 a.e. This
implies that µ(ϕ−1({y})) = 0 for all y > 0 and hence

∫
Ω
ϕdµ = 0 and therefore∫

Ω
fdµ = 0. Conversely, if

∫
fdµ = 0, then by (Lemma 10.3),

µ(f ≥ 1/n) ≤ n
∫
fdµ = 0 for all n.

Therefore, µ(f > 0) ≤
∑∞
n=1 µ(f ≥ 1/n) = 0, i.e. f = 0 a.e.

For the second assertion let E be the exceptional set where f > g, i.e.

E := {ω ∈ Ω : f(ω) > g(ω)}.

By assumption E is a null set and 1Ecf ≤ 1Ecg everywhere. Because g =
1Ecg + 1Eg and 1Eg = 0 a.e.,∫

gdµ =

∫
1Ecgdµ+

∫
1Egdµ =

∫
1Ecgdµ

and similarly
∫
fdµ =

∫
1Ecfdµ. Since 1Ecf ≤ 1Ecg everywhere,∫

fdµ =

∫
1Ecfdµ ≤

∫
1Ecgdµ =

∫
gdµ.

Corollary 10.11. Suppose that {fn} is a sequence of non-negative measurable
functions and f is a measurable function such that fn ↑ f off a null set, then∫

fn ↑
∫
f as n→∞.

Proof. Let E ⊂ Ω be a null set such that fn1Ec ↑ f1Ec as n → ∞. Then
by the monotone convergence theorem and Proposition 10.10,∫

fn =

∫
fn1Ec ↑

∫
f1Ec =

∫
f as n→∞.

Lemma 10.12 (Fatou’s Lemma). If fn : Ω → [0,∞] is a sequence of mea-
surable functions then ∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn

Proof. Define gk := inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all k ≤ n, ∫
gk ≤

∫
fn for all n ≥ k

and therefore ∫
gk ≤ lim inf

n→∞

∫
fn for all k.

We may now use the monotone convergence theorem to let k →∞ to find∫
lim inf

n→∞
fn =

∫
lim
k→∞

gk
MCT
= lim

k→∞

∫
gk ≤ lim inf

n→∞

∫
fn.

The following Corollary and the next lemma are simple applications of Corol-
lary 10.6.

Corollary 10.13. Suppose that (Ω,B, µ) is a measure space and {An}∞n=1 ⊂ B
is a collection of sets such that µ(Ai ∩Aj) = 0 for all i 6= j, then

µ (∪∞n=1An) =

∞∑
n=1

µ(An).

Proof. Since

µ (∪∞n=1An) =

∫
Ω

1∪∞n=1An
dµ and

∞∑
n=1

µ(An) =

∫
Ω

∞∑
n=1

1Andµ

it suffices to show
∞∑
n=1

1An = 1∪∞n=1An
µ – a.e. (10.5)

Now
∑∞
n=1 1An ≥ 1∪∞n=1An

and
∑∞
n=1 1An(ω) 6= 1∪∞n=1An

(ω) iff ω ∈ Ai ∩Aj for
some i 6= j, that is{

ω :

∞∑
n=1

1An(ω) 6= 1∪∞n=1An
(ω)

}
= ∪i<jAi ∩Aj

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (10.5) and hence the corollary.
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10.2 Integrals of Complex Valued Functions 91

Lemma 10.14 (The First Borell – Cantelli Lemma). Let (Ω,B, µ) be a
measure space, An ∈ B, and set

{An i.o.} = {ω ∈ Ω : ω ∈ An for infinitely many n’s} =
∞⋂
N=1

⋃
n≥N

An.

If
∑∞
n=1 µ(An) <∞ then µ({An i.o.}) = 0.

Proof. (First Proof.) Let us first observe that

{An i.o.} =

{
ω ∈ Ω :

∞∑
n=1

1An(ω) =∞

}
.

Hence if
∑∞
n=1 µ(An) <∞ then

∞ >

∞∑
n=1

µ(An) =

∞∑
n=1

∫
Ω

1An dµ =

∫
Ω

∞∑
n=1

1An dµ

implies that
∞∑
n=1

1An(ω) <∞ for µ-a.e. ω. That is to say µ({An i.o.}) = 0.

(Second Proof.) Of course we may give a strictly measure theoretic proof of
this fact:

µ(An i.o.) = lim
N→∞

µ

 ⋃
n≥N

An


≤ lim
N→∞

∑
n≥N

µ(An)

and the last limit is zero since
∑∞
n=1 µ(An) <∞.

Example 10.15. Suppose that (Ω,B, P ) is a probability space (i.e. P (Ω) = 1)
and Xn : Ω → {0, 1} are Bernoulli random variables with P (Xn = 1) = pn and
P (Xn = 0) = 1 − pn. If

∑∞
n=1 pn < ∞, then P (Xn = 1 i.o.) = 0 and hence

P (Xn = 0 a.a.) = 1. In particular, P (limn→∞Xn = 0) = 1.

10.2 Integrals of Complex Valued Functions

Definition 10.16. A measurable function f : Ω → R̄ is integrable if f+ :=
f1{f≥0} and f− = −f 1{f≤0} are integrable. We write L1 (µ;R) for the space
of real valued integrable functions. For f ∈ L1 (µ;R) , let

∫
Ω

fdµ =

∫
Ω

f+dµ−
∫
Ω

f−dµ.

To shorten notation in this chapter we may simply write
∫
fdµ or even

∫
f for∫

Ω
fdµ.

Convention: If f, g : Ω → R̄ are two measurable functions, let f+g denote
the collection of measurable functions h : Ω → R̄ such that h(ω) = f(ω) + g(ω)
whenever f(ω) +g(ω) is well defined, i.e. is not of the form∞−∞ or −∞+∞.
We use a similar convention for f − g. Notice that if f, g ∈ L1 (µ;R) and
h1, h2 ∈ f + g, then h1 = h2 a.e. because |f | <∞ and |g| <∞ a.e.

Notation 10.17 (Abuse of notation) We will sometimes denote the inte-
gral

∫
Ω
fdµ by µ (f) . With this notation we have µ (A) = µ (1A) for all A ∈ B.

Remark 10.18. Since
f± ≤ |f | ≤ f+ + f−,

a measurable function f is integrable iff
∫
|f | dµ <∞. Hence

L1 (µ;R) :=

{
f : Ω → R̄ : f is measurable and

∫
Ω

|f | dµ <∞
}
.

If f, g ∈ L1 (µ;R) and f = g a.e. then f± = g± a.e. and so it follows from
Proposition 10.10 that

∫
fdµ =

∫
gdµ. In particular if f, g ∈ L1 (µ;R) we may

define ∫
Ω

(f + g) dµ =

∫
Ω

hdµ

where h is any element of f + g.

Proposition 10.19. The map

f ∈ L1 (µ;R)→
∫
Ω

fdµ ∈ R

is linear and has the monotonicity property:
∫
fdµ ≤

∫
gdµ for all f, g ∈

L1 (µ;R) such that f ≤ g a.e.

Proof. Let f, g ∈ L1 (µ;R) and a, b ∈ R. By modifying f and g on a null set,
we may assume that f, g are real valued functions. We have af + bg ∈ L1 (µ;R)
because

|af + bg| ≤ |a| |f |+ |b| |g| ∈ L1 (µ;R) .

If a < 0, then
(af)+ = −af− and (af)− = −af+

so that
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92 10 Integration Theory∫
af = −a

∫
f− + a

∫
f+ = a(

∫
f+ −

∫
f−) = a

∫
f.

A similar calculation works for a > 0 and the case a = 0 is trivial so we have
shown that ∫

af = a

∫
f.

Now set h = f + g. Since h = h+ − h−,

h+ − h− = f+ − f− + g+ − g−

or
h+ + f− + g− = h− + f+ + g+.

Therefore, ∫
h+ +

∫
f− +

∫
g− =

∫
h− +

∫
f+ +

∫
g+

and hence∫
h =

∫
h+ −

∫
h− =

∫
f+ +

∫
g+ −

∫
f− −

∫
g− =

∫
f +

∫
g.

Finally if f+ − f− = f ≤ g = g+ − g− then f+ + g− ≤ g+ + f− which implies
that ∫

f+ +

∫
g− ≤

∫
g+ +

∫
f−

or equivalently that∫
f =

∫
f+ −

∫
f− ≤

∫
g+ −

∫
g− =

∫
g.

The monotonicity property is also a consequence of the linearity of the integral,
the fact that f ≤ g a.e. implies 0 ≤ g − f a.e. and Proposition 10.10.

Definition 10.20. A measurable function f : Ω → C is integrable if∫
Ω
|f | dµ <∞. Analogously to the real case, let

L1 (µ;C) :=

{
f : Ω → C : f is measurable and

∫
Ω

|f | dµ <∞
}
.

denote the complex valued integrable functions. Because, max (|Re f | , |Im f |) ≤
|f | ≤

√
2 max (|Re f | , |Im f |) ,

∫
|f | dµ <∞ iff∫

|Re f | dµ+

∫
|Im f | dµ <∞.

For f ∈ L1 (µ;C) define∫
f dµ =

∫
Re f dµ+ i

∫
Im f dµ.

It is routine to show the integral is still linear on L1 (µ;C) (prove!). In the
remainder of this section, let L1 (µ) be either L1 (µ;C) or L1 (µ;R) . If A ∈ B
and f ∈ L1 (µ;C) or f : Ω → [0,∞] is a measurable function, let∫

A

fdµ :=

∫
Ω

1Afdµ.

Proposition 10.21. Suppose that f ∈ L1 (µ;C) , then∣∣∣∣∫
Ω

fdµ

∣∣∣∣ ≤ ∫
Ω

|f | dµ. (10.6)

Proof. Start by writing
∫
Ω
f dµ = Reiθ with R ≥ 0. We may assume that

R =
∣∣∫
Ω
fdµ

∣∣ > 0 since otherwise there is nothing to prove. Since

R = e−iθ
∫
Ω

f dµ =

∫
Ω

e−iθf dµ =

∫
Ω

Re
(
e−iθf

)
dµ+ i

∫
Ω

Im
(
e−iθf

)
dµ,

it must be that
∫
Ω

Im
[
e−iθf

]
dµ = 0. Using the monotonicity in Proposition

10.10, ∣∣∣∣∫
Ω

fdµ

∣∣∣∣ =

∫
Ω

Re
(
e−iθf

)
dµ ≤

∫
Ω

∣∣Re
(
e−iθf

)∣∣ dµ ≤ ∫
Ω

|f | dµ.

Proposition 10.22. Let f, g ∈ L1 (µ) , then

1. The set {f 6= 0} is σ – finite, in fact {|f | ≥ 1
n} ↑ {f 6= 0} and µ(|f | ≥ 1

n ) <
∞ for all n.

2. The following are equivalent

a)
∫
E
f =

∫
E
g for all E ∈ B

b)
∫
Ω

|f − g| = 0

c) f = g a.e.

Proof. 1. By Chebyshev’s inequality, Lemma 10.3,

µ(|f | ≥ 1

n
) ≤ n

∫
Ω

|f | dµ <∞

for all n.
2. (a) =⇒ (c) Notice that∫

E

f =

∫
E

g ⇔
∫
E

(f − g) = 0
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for all E ∈ B. Taking E = {Re(f − g) > 0} and using 1E Re(f − g) ≥ 0, we
learn that

0 = Re

∫
E

(f − g)dµ =

∫
1E Re(f − g) =⇒ 1E Re(f − g) = 0 a.e.

This implies that 1E = 0 a.e. which happens iff

µ ({Re(f − g) > 0}) = µ(E) = 0.

Similar µ(Re(f−g) < 0) = 0 so that Re(f−g) = 0 a.e. Similarly, Im(f−g) = 0
a.e and hence f − g = 0 a.e., i.e. f = g a.e.

(c) =⇒ (b) is clear and so is (b) =⇒ (a) since∣∣∣∣∫
E

f −
∫
E

g

∣∣∣∣ ≤ ∫ |f − g| = 0.

Lemma 10.23 (Integral Comparison I). Suppose that h ∈ L1 (µ) satisfies∫
A

hdµ ≥ 0 for all A ∈ B, (10.7)

then h ≥ 0 a.e.

Proof. Since by assumption,

0 = Im

∫
A

hdµ =

∫
A

Imhdµ for all A ∈ B,

we may apply Proposition 10.22 to conclude that Imh = 0 a.e. Thus we may
now assume that h is real valued. Taking A = {h < 0} in Eq. (10.7) implies∫

Ω

1A |h| dµ =

∫
Ω

−1Ahdµ = −
∫
A

hdµ ≤ 0.

However 1A |h| ≥ 0 and therefore it follows that
∫
Ω

1A |h| dµ = 0 and so Proposi-
tion 10.22 implies 1A |h| = 0 a.e. which then implies 0 = µ (A) = µ (h < 0) = 0.

Lemma 10.24 (Integral Comparison II). Suppose (Ω,B, µ) is a σ – finite
measure space (i.e. there exists Ωn ∈ B such that Ωn ↑ Ω and µ (Ωn) < ∞ for
all n) and f, g : Ω → [0,∞] are B – measurable functions. Then f ≥ g a.e. iff∫

A

fdµ ≥
∫
A

gdµ for all A ∈ B. (10.8)

In particular f = g a.e. iff equality holds in Eq. (10.8).

Proof. It was already shown in Proposition 10.10 that f ≥ g a.e. implies
Eq. (10.8). For the converse assertion, let Bn := {f ≤ n1Ωn} . Then from Eq.
(10.8),

∞ > nµ (Ωn) ≥
∫
f1Bndµ ≥

∫
g1Bndµ

from which it follows that both f1Bn and g1Bn are in L1 (µ) and hence h :=
f1Bn − g1Bn ∈ L1 (µ) . Using Eq. (10.8) again we know that∫

A

h =

∫
f1Bn∩A −

∫
g1Bn∩A ≥ 0 for all A ∈ B.

An application of Lemma 10.23 implies h ≥ 0 a.e., i.e. f1Bn ≥ g1Bn a.e. Since
Bn ↑ {f <∞} , we may conclude that

f1{f<∞} = lim
n→∞

f1Bn ≥ lim
n→∞

g1Bn = g1{f<∞} a.e.

Since f ≥ g whenever f =∞, we have shown f ≥ g a.e.
If equality holds in Eq. (10.8), then we know that g ≤ f and f ≤ g a.e., i.e.

f = g a.e.
Notice that we can not drop the σ – finiteness assumption in Lemma 10.24.

For example, let µ be the measure on B such that µ (A) = ∞ when A 6= ∅,
g = 3, and f = 2. Then equality holds (both sides are infinite unless A = ∅
when they are both zero) in Eq. (10.8) holds even though f < g everywhere.

Definition 10.25. Let (Ω,B, µ) be a measure space and L1(µ) = L1(Ω,B, µ)
denote the set of L1 (µ) functions modulo the equivalence relation; f ∼ g iff
f = g a.e. We make this into a normed space using the norm

‖f − g‖L1 =

∫
|f − g| dµ

and into a metric space using ρ1(f, g) = ‖f − g‖L1 .

Warning: in the future we will often not make much of a distinction between
L1(µ) and L1 (µ) . On occasion this can be dangerous and this danger will be
pointed out when necessary.

Remark 10.26. More generally we may define Lp(µ) = Lp(Ω,B, µ) for p ∈ [1,∞)
as the set of measurable functions f such that∫

Ω

|f |p dµ <∞

modulo the equivalence relation; f ∼ g iff f = g a.e.
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We will see in later that

‖f‖Lp =

(∫
|f |p dµ

)1/p

for f ∈ Lp(µ)

is a norm and (Lp(µ), ‖·‖Lp) is a Banach space in this norm and in particular,

‖f + g‖p ≤ ‖f‖p + ‖g‖p for all f, g ∈ Lp (µ) .

Theorem 10.27 (Dominated Convergence Theorem). Suppose fn, gn, g ∈
L1 (µ) , fn → f a.e., |fn| ≤ gn ∈ L1 (µ) , gn → g a.e. and

∫
Ω
gndµ →

∫
Ω
gdµ.

Then f ∈ L1 (µ) and ∫
Ω

fdµ = lim
h→∞

∫
Ω

fndµ.

(In most typical applications of this theorem gn = g ∈ L1 (µ) for all n.)

Proof. Notice that |f | = limn→∞ |fn| ≤ limn→∞ |gn| ≤ g a.e. so that
f ∈ L1 (µ) . By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,∫

Ω

(g ± f)dµ =

∫
Ω

lim inf
n→∞

(gn ± fn) dµ ≤ lim inf
n→∞

∫
Ω

(gn ± fn) dµ

= lim
n→∞

∫
Ω

gndµ+ lim inf
n→∞

(
±
∫
Ω

fndµ

)
=

∫
Ω

gdµ+ lim inf
n→∞

(
±
∫
Ω

fndµ

)
Since lim infn→∞(−an) = − lim sup

n→∞
an, we have shown,

∫
Ω

gdµ±
∫
Ω

fdµ ≤
∫
Ω

gdµ+

{
lim infn→∞

∫
Ω
fndµ

− lim sup
n→∞

∫
Ω
fndµ

and therefore

lim sup
n→∞

∫
Ω

fndµ ≤
∫
Ω

fdµ ≤ lim inf
n→∞

∫
Ω

fndµ.

This shows that lim
n→∞

∫
Ω
fndµ exists and is equal to

∫
Ω
fdµ.

Exercise 10.2. Give another proof of Proposition 10.21 by first proving Eq.
(10.6) with f being a simple function in which case the triangle inequality for
complex numbers will do the trick. Then use the approximation Theorem 9.39
along with the dominated convergence Theorem 10.27 to handle the general
case.

Corollary 10.28. Let {fn}∞n=1 ⊂ L1 (µ) be a sequence such that∑∞
n=1 ‖fn‖L1(µ) <∞, then

∑∞
n=1 fn is convergent a.e. and

∫
Ω

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

∫
Ω

fndµ.

Proof. The condition
∑∞
n=1 ‖fn‖L1(µ) < ∞ is equivalent to

∑∞
n=1 |fn| ∈

L1 (µ) . Hence
∑∞
n=1 fn is almost everywhere convergent and if SN :=

∑N
n=1 fn,

then

|SN | ≤
N∑
n=1

|fn| ≤
∞∑
n=1

|fn| ∈ L1 (µ) .

So by the dominated convergence theorem,∫
Ω

( ∞∑
n=1

fn

)
dµ =

∫
Ω

lim
N→∞

SNdµ = lim
N→∞

∫
Ω

SNdµ

= lim
N→∞

N∑
n=1

∫
Ω

fndµ =

∞∑
n=1

∫
Ω

fndµ.

Example 10.29 (Sums as integrals). Suppose, Ω = N, B := 2N, µ is counting
measure on B (see Example 10.8), and f : N→ C is a function. From Example
10.8 we have f ∈ L1 (µ) iff

∑∞
n=1 |f (n)| < ∞, i.e. iff the sum,

∑∞
n=1 f (n) is

absolutely convergent. Moreover, if f ∈ L1 (µ) , we may again write

f =

∞∑
n=1

f (n) 1{n}

and then use Corollary 10.28 to conclude that∫
N
fdµ =

∞∑
n=1

∫
N
f (n) 1{n}dµ =

∞∑
n=1

f (n)µ ({n}) =

∞∑
n=1

f (n) .

So again the integral relative to counting measure is simply the infinite sum
provided the sum is absolutely convergent.

However if f (n) = (−1)
n 1
n , then

∞∑
n=1

f (n) := lim
N→∞

N∑
n=1

f (n)

is perfectly well defined while
∫
N fdµ is not. In fact in this case we have,
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10.2 Integrals of Complex Valued Functions 95∫
N
f±dµ =∞.

The point is that when we write
∑∞
n=1 f (n) the ordering of the terms in the

sum may matter. On the other hand,
∫
N fdµ knows nothing about the integer

ordering.

The following corollary will be routinely be used in the sequel – often without
explicit mention.

Corollary 10.30 (Differentiation Under the Integral). Suppose that J ⊂
R is an open interval and f : J ×Ω → C is a function such that

1. ω → f(t, ω) is measurable for each t ∈ J.
2. f(t0, ·) ∈ L1(µ) for some t0 ∈ J.
3. ∂f

∂t (t, ω) exists for all (t, ω).

4. There is a function g ∈ L1 (µ) such that
∣∣∣∂f∂t (t, ·)

∣∣∣ ≤ g for each t ∈ J.

Then f(t, ·) ∈ L1 (µ) for all t ∈ J (i.e.
∫
Ω
|f(t, ω)| dµ(ω) < ∞), t →∫

Ω
f(t, ω)dµ(ω) is a differentiable function on J, and

d

dt

∫
Ω

f(t, ω)dµ(ω) =

∫
Ω

∂f

∂t
(t, ω)dµ(ω).

Proof. By considering the real and imaginary parts of f separately, we may
assume that f is real. Also notice that

∂f

∂t
(t, ω) = lim

n→∞
n(f(t+ n−1, ω)− f(t, ω))

and therefore, for ω → ∂f
∂t (t, ω) is a sequential limit of measurable functions

and hence is measurable for all t ∈ J. By the mean value theorem,

|f(t, ω)− f(t0, ω)| ≤ g(ω) |t− t0| for all t ∈ J (10.9)

and hence

|f(t, ω)| ≤ |f(t, ω)− f(t0, ω)|+ |f(t0, ω)| ≤ g(ω) |t− t0|+ |f(t0, ω)| .

This shows f(t, ·) ∈ L1 (µ) for all t ∈ J. Let G(t) :=
∫
Ω
f(t, ω)dµ(ω), then

G(t)−G(t0)

t− t0
=

∫
Ω

f(t, ω)− f(t0, ω)

t− t0
dµ(ω).

By assumption,

lim
t→t0

f(t, ω)− f(t0, ω)

t− t0
=
∂f

∂t
(t, ω) for all ω ∈ Ω

and by Eq. (10.9),∣∣∣∣f(t, ω)− f(t0, ω)

t− t0

∣∣∣∣ ≤ g(ω) for all t ∈ J and ω ∈ Ω.

Therefore, we may apply the dominated convergence theorem to conclude

lim
n→∞

G(tn)−G(t0)

tn − t0
= lim
n→∞

∫
Ω

f(tn, ω)− f(t0, ω)

tn − t0
dµ(ω)

=

∫
Ω

lim
n→∞

f(tn, ω)− f(t0, ω)

tn − t0
dµ(ω)

=

∫
Ω

∂f

∂t
(t0, ω)dµ(ω)

for all sequences tn ∈ J \ {t0} such that tn → t0. Therefore, Ġ(t0) =

limt→t0
G(t)−G(t0)

t−t0 exists and

Ġ(t0) =

∫
Ω

∂f

∂t
(t0, ω)dµ(ω).

Corollary 10.31. Suppose that {an}∞n=0 ⊂ C is a sequence of complex numbers
such that series

f(z) :=

∞∑
n=0

an(z − z0)n

is convergent for |z − z0| < R, where R is some positive number. Then f :
D(z0, R)→ C is complex differentiable on D(z0, R) and

f ′(z) =

∞∑
n=0

nan(z − z0)n−1 =

∞∑
n=1

nan(z − z0)n−1. (10.10)

By induction it follows that f (k) exists for all k and that

f (k)(z) =

∞∑
n=0

n(n− 1) . . . (n− k + 1)an(z − z0)n−k.

Proof. Let ρ < R be given and choose r ∈ (ρ,R). Since z = z0 + r ∈
D(z0, R), by assumption the series

∞∑
n=0

anr
n is convergent and in particular
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M := supn |anrn| < ∞. We now apply Corollary 10.30 with X = N∪{0} , µ
being counting measure, Ω = D(z0, ρ) and g(z, n) := an(z − z0)n. Since

|g′(z, n)| = |nan(z − z0)n−1| ≤ n |an| ρn−1

≤ 1

r
n
(ρ
r

)n−1

|an| rn ≤
1

r
n
(ρ
r

)n−1

M

and the function G(n) := M
r n
(
ρ
r

)n−1
is summable (by the Ratio test for exam-

ple), we may use G as our dominating function. It then follows from Corollary
10.30

f(z) =

∫
X

g(z, n)dµ(n) =

∞∑
n=0

an(z − z0)n

is complex differentiable with the differential given as in Eq. (10.10).

Definition 10.32 (Moment Generating Function). Let (Ω,B, P ) be a
probability space and X : Ω → R a random variable. The moment gener-
ating function of X is MX : R→ [0,∞] defined by

MX (t) := E
[
etX
]
.

Proposition 10.33. Suppose there exists ε > 0 such that E
[
eε|X|

]
< ∞, then

MX (t) is a smooth function of t ∈ (−ε, ε) and

MX (t) =

∞∑
n=0

tn

n!
EXn if |t| ≤ ε. (10.11)

In particular,

EXn =

(
d

dt

)n
|t=0MX (t) for all n ∈ N0. (10.12)

Proof. If |t| ≤ ε, then

E

[ ∞∑
n=0

|t|n

n!
|X|n

]
≤ E

[ ∞∑
n=0

εn

n!
|X|n

]
= E

[
eε|X|

]
<∞.

it etX ≤ eε|X| for all |t| ≤ ε. Hence it follows from Corollary 10.28 that, for
|t| ≤ ε,

MX (t) = E
[
etX
]

= E

[ ∞∑
n=0

tn

n!
Xn

]
=

∞∑
n=0

tn

n!
EXn.

Equation (10.12) now is a consequence of Corollary 10.31.

Exercise 10.3. Let d ∈ N, Ω = Nd0, B = 2Ω , µ : B → N0 ∪ {∞} be counting
measure on Ω, and for x ∈ Rd and ω ∈ Ω, let xω := xω1

1 . . . xωnn . Further suppose
that f : Ω → C is function and ri > 0 for 1 ≤ i ≤ d such that∑

ω∈Ω
|f (ω)| rω =

∫
Ω

|f (ω)| rωdµ (ω) <∞,

where r := (r1, . . . , rd) . Show;

1. There is a constant, C <∞ such that |f (ω)| ≤ C
rω for all ω ∈ Ω.

2. Let

U :=
{
x ∈ Rd : |xi| < ri ∀ i

}
and Ū =

{
x ∈ Rd : |xi| ≤ ri ∀ i

}
Show

∑
ω∈Ω |f (ω)xω| < ∞ for all x ∈ Ū and the function, F : U → R

defined by

F (x) =
∑
ω∈Ω

f (ω)xω is continuous on Ū .

3. Show, for all x ∈ U and 1 ≤ i ≤ d, that

∂

∂xi
F (x) =

∑
ω∈Ω

ωif (ω)xω−ei

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the ith – standard basis vector on Rd.
4. For any α ∈ Ω, let ∂α :=

(
∂
∂x1

)α1

. . .
(

∂
∂xd

)αd
and α! :=

∏d
i=1 αi! Explain

why we may now conclude that

∂αF (x) =
∑
ω∈Ω

α!f (ω)xω−α for all x ∈ U. (10.13)

5. Conclude that f (α) = (∂αF )(0)
α! for all α ∈ Ω.

6. If g : Ω → C is another function such that
∑
ω∈Ω g (ω)xω =

∑
ω∈Ω f (ω)xω

for x in a neighborhood of 0 ∈ Rd, then g (ω) = f (ω) for all ω ∈ Ω.

10.2.1 Square Integrable Random Variables and Correlations

Suppose that (Ω,B, P ) is a probability space. We say that X : Ω → R is
integrable if X ∈ L1 (P ) and square integrable if X ∈ L2 (P ) . When X is
integrable we let aX := EX be the mean of X.

Now suppose that X,Y : Ω → R are two square integrable random variables.
Since

0 ≤ |X − Y |2 = |X|2 + |Y |2 − 2 |X| |Y | ,

it follows that
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10.2 Integrals of Complex Valued Functions 97

|XY | ≤ 1

2
|X|2 +

1

2
|Y |2 ∈ L1 (P ) .

In particular by taking Y = 1, we learn that |X| ≤ 1
2

(
1 +

∣∣X2
∣∣) which shows

that every square integrable random variable is also integrable.

Definition 10.34. The covariance, Cov (X,Y ) , of two square integrable ran-
dom variables, X and Y, is defined by

Cov (X,Y ) = E [(X − aX) (Y − aY )] = E [XY ]− EX · EY

where aX := EX and aY := EY. The variance of X,

Var (X) := Cov (X,X) = E
[
X2
]
− (EX)

2
(10.14)

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] =
EX · EY. More generally we say {Xk}nk=1 ⊂ L2 (P ) are uncorrelated iff
Cov (Xi, Xj) = 0 for all i 6= j.

It follows from Eq. (10.14) that

Var (X) ≤ E
[
X2
]

for all X ∈ L2 (P ) . (10.15)

Lemma 10.35. The covariance function, Cov (X,Y ) is bilinear in X and
Y and Cov (X,Y ) = 0 if either X or Y is constant. For any constant k,
Var (X + k) = Var (X) and Var (kX) = k2 Var (X) . If {Xk}nk=1 are uncor-
related L2 (P ) – random variables, then

Var (Sn) =

n∑
k=1

Var (Xk) .

Proof. We leave most of this simple proof to the reader. As an example of
the type of argument involved, let us prove Var (X + k) = Var (X) ;

Var (X + k) = Cov (X + k,X + k) = Cov (X + k,X) + Cov (X + k, k)

= Cov (X + k,X) = Cov (X,X) + Cov (k,X)

= Cov (X,X) = Var (X) ,

wherein we have used the bilinearity of Cov (·, ·) and the property that
Cov (Y, k) = 0 whenever k is a constant.

Exercise 10.4 (A Weak Law of Large Numbers). Assume {Xn}∞n=1 is a
sequence if uncorrelated square integrable random variables which are identi-

cally distributed, i.e. Xn
d
= Xm for all m,n ∈ N. Let Sn :=

∑n
k=1Xk, µ := EXk

and σ2 := Var (Xk) (these are independent of k). Show;

E
[
Sn
n

]
= µ,

E
(
Sn
n
− µ

)2

= Var

(
Sn
n

)
=
σ2

n
, and

P

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
≤ σ2

nε2

for all ε > 0 and n ∈ N. (Compare this with Exercise 7.13.)

10.2.2 Some Discrete Distributions

Definition 10.36 (Generating Function). Suppose that N : Ω → N0 is an
integer valued random variable on a probability space, (Ω,B, P ) . The generating
function associated to N is defined by

GN (z) := E
[
zN
]

=

∞∑
n=0

P (N = n) zn for |z| ≤ 1. (10.16)

By Corollary 10.31, it follows that P (N = n) = 1
n!G

(n)
N (0) so that GN can

be used to completely recover the distribution of N.

Proposition 10.37 (Generating Functions). The generating function sat-
isfies,

G
(k)
N (z) = E

[
N (N − 1) . . . (N − k + 1) zN−k

]
for |z| < 1

and
G(k) (1) = lim

z↑1
G(k) (z) = E [N (N − 1) . . . (N − k + 1)] ,

where it is possible that one and hence both sides of this equation are infinite.
In particular, G′ (1) := limz↑1G

′ (z) = EN and if EN2 <∞,

Var (N) = G′′ (1) +G′ (1)− [G′ (1)]
2
. (10.17)

Proof. By Corollary 10.31 for |z| < 1,

G
(k)
N (z) =

∞∑
n=0

P (N = n) · n (n− 1) . . . (n− k + 1) zn−k

= E
[
N (N − 1) . . . (N − k + 1) zN−k

]
. (10.18)

Since, for z ∈ (0, 1) ,

0 ≤ N (N − 1) . . . (N − k + 1) zN−k ↑ N (N − 1) . . . (N − k + 1) as z ↑ 1,
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we may apply the MCT to pass to the limit as z ↑ 1 in Eq. (10.18) to find,

G(k) (1) = lim
z↑1

G(k) (z) = E [N (N − 1) . . . (N − k + 1)] .

Exercise 10.5 (Some Discrete Distributions). Let p ∈ (0, 1] and λ > 0. In
the four parts below, the distribution of N will be described. You should work
out the generating function, GN (z) , in each case and use it to verify the given
formulas for EN and Var (N) .

1. Bernoulli(p) : P (N = 1) = p and P (N = 0) = 1 − p. You should find
EN = p and Var (N) = p− p2.

2. Binomial(n, p) : P (N = k) =
(
n
k

)
pk (1− p)n−k for k = 0, 1, . . . , n.

(P (N = k) is the probability of k successes in a sequence of n indepen-
dent yes/no experiments with probability of success being p.) You should
find EN = np and Var (N) = n

(
p− p2

)
.

3. Geometric(p) : P (N = k) = p (1− p)k−1
for k ∈ N. (P (N = k) is the

probability that the kth – trial is the first time of success out a sequence
of independent trials with probability of success being p.) You should find
EN = 1/p and Var (N) = 1−p

p2 .

4. Poisson(λ) : P (N = k) = λk

k! e
−λ for all k ∈ N0. You should find EN = λ =

Var (N) .

Exercise 10.6. Let Sn,p
d
= Binomial(n, p) , k ∈ N, pn = λn/n where λn → λ >

0 as n→∞. Show that

lim
n→∞

P (Sn,pn = k) =
λk

k!
e−λ = P (Poisson (λ) = k) .

Thus we see that for p = O (1/n) and k not too large relative to n that for large
n,

P (Binomial (n, p) = k) ∼= P (Poisson (pn) = k) =
(pn)

k

k!
e−pn.

(We will come back to the Poisson distribution and the related Poisson process
later on.)

10.3 Integration on R

Notation 10.38 If m is Lebesgue measure on BR, f is a non-negative Borel

measurable function and a < b with a, b ∈ R̄, we will often write
∫ b
a
f (x) dx or∫ b

a
fdm for

∫
(a,b]∩R fdm.

Example 10.39. Suppose −∞ < a < b <∞, f ∈ C([a, b],R) and m be Lebesgue
measure on R. Given a partition,

π = {a = a0 < a1 < · · · < an = b},

let
mesh(π) := max{|aj − aj−1| : j = 1, . . . , n}

and

fπ (x) :=

n−1∑
l=0

f (al) 1(al,al+1](x).

Then ∫ b

a

fπ dm =

n−1∑
l=0

f (al)m ((al, al+1]) =

n−1∑
l=0

f (al) (al+1 − al)

is a Riemann sum. Therefore if {πk}∞k=1 is a sequence of partitions with
limk→∞mesh(πk) = 0, we know that

lim
k→∞

∫ b

a

fπk dm =

∫ b

a

f (x) dx (10.19)

where the latter integral is the Riemann integral. Using the (uniform) continuity
of f on [a, b] , it easily follows that limk→∞ fπk (x) = f (x) and that |fπk (x)| ≤
g (x) := M1(a,b] (x) for all x ∈ (a, b] where M := maxx∈[a,b] |f (x)| < ∞. Since∫
R gdm = M (b− a) <∞, we may apply D.C.T. to conclude,

lim
k→∞

∫ b

a

fπk dm =

∫ b

a

lim
k→∞

fπk dm =

∫ b

a

f dm.

This equation with Eq. (10.19) shows∫ b

a

f dm =

∫ b

a

f (x) dx

whenever f ∈ C([a, b],R), i.e. the Lebesgue and the Riemann integral agree on
continuous functions. See Theorem 10.67 below for a more general statement
along these lines.

Theorem 10.40 (The Fundamental Theorem of Calculus). Suppose
−∞ < a < b < ∞, f ∈ C((a, b),R)∩L1((a, b),m) and F (x) :=

∫ x
a
f(y)dm(y).

Then

1. F ∈ C([a, b],R) ∩ C1((a, b),R).
2. F ′(x) = f(x) for all x ∈ (a, b).
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3. If G ∈ C([a, b],R) ∩ C1((a, b),R) is an anti-derivative of f on (a, b) (i.e.
f = G′|(a,b)) then ∫ b

a

f(x)dm(x) = G(b)−G(a).

Proof. Since F (x) :=
∫
R 1(a,x)(y)f(y)dm(y), limx→z 1(a,x)(y) = 1(a,z)(y) for

m – a.e. y and
∣∣1(a,x)(y)f(y)

∣∣ ≤ 1(a,b)(y) |f(y)| is an L1 – function, it follows
from the dominated convergence Theorem 10.27 that F is continuous on [a, b].
Simple manipulations show,∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ =
1

|h|


∣∣∣∫ x+h

x
[f(y)− f(x)] dm(y)

∣∣∣ if h > 0∣∣∣∫ xx+h
[f(y)− f(x)] dm(y)

∣∣∣ if h < 0

≤ 1

|h|

{∫ x+h

x
|f(y)− f(x)| dm(y) if h > 0∫ x

x+h
|f(y)− f(x)| dm(y) if h < 0

≤ sup {|f(y)− f(x)| : y ∈ [x− |h| , x+ |h|]}

and the latter expression, by the continuity of f, goes to zero as h → 0 . This
shows F ′ = f on (a, b).

For the converse direction, we have by assumption that G′(x) = F ′(x) for
x ∈ (a, b). Therefore by the mean value theorem, F −G = C for some constant
C. Hence ∫ b

a

f(x)dm(x) = F (b) = F (b)− F (a)

= (G(b) + C)− (G(a) + C) = G(b)−G(a).

We can use the above results to integrate some non-Riemann integrable
functions:

Example 10.41. For all λ > 0,∫ ∞
0

e−λxdm(x) = λ−1 and

∫
R

1

1 + x2
dm(x) = π.

The proof of these identities are similar. By the monotone convergence theorem,
Example 10.39 and the fundamental theorem of calculus for Riemann integrals
(or Theorem 10.40 below),∫ ∞

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdx

= − lim
N→∞

1

λ
e−λx|N0 = λ−1

and ∫
R

1

1 + x2
dm(x) = lim

N→∞

∫ N

−N

1

1 + x2
dm(x) = lim

N→∞

∫ N

−N

1

1 + x2
dx

= lim
N→∞

[
tan−1(N)− tan−1(−N)

]
= π.

Let us also consider the functions x−p. Using the MCT and the fundamental
theorem of calculus,∫

(0,1]

1

xp
dm(x) = lim

n→∞

∫ 1

0

1( 1
n ,1](x)

1

xp
dm(x)

= lim
n→∞

∫ 1

1
n

1

xp
dx = lim

n→∞

x−p+1

1− p

∣∣∣∣1
1/n

=

{ 1
1−p if p < 1

∞ if p > 1

If p = 1 we find∫
(0,1]

1

xp
dm(x) = lim

n→∞

∫ 1

1
n

1

x
dx = lim

n→∞
ln(x)|11/n =∞.

Exercise 10.7. Show ∫ ∞
1

1

xp
dm (x) =

{
∞ if p ≤ 1
1
p−1 if p > 1

.

Example 10.42 (Integration of Power Series). Suppose R > 0 and {an}∞n=0 is a
sequence of complex numbers such that

∑∞
n=0 |an| rn < ∞ for all r ∈ (0, R).

Then∫ β

α

( ∞∑
n=0

anx
n

)
dm(x) =

∞∑
n=0

an

∫ β

α

xndm(x) =

∞∑
n=0

an
βn+1 − αn+1

n+ 1

for all −R < α < β < R. Indeed this follows from Corollary 10.28 since

∞∑
n=0

∫ β

α

|an| |x|n dm(x) ≤
∞∑
n=0

(∫ |β|
0

|an| |x|n dm(x) +

∫ |α|
0

|an| |x|n dm(x)

)

≤
∞∑
n=0

|an|
|β|n+1

+ |α|n+1

n+ 1
≤ 2r

∞∑
n=0

|an| rn <∞

where r = max(|β| , |α|).
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Example 10.43. Let {rn}∞n=1 be an enumeration of the points in Q ∩ [0, 1] and
define

f(x) =

∞∑
n=1

2−n
1√
|x− rn|

with the convention that

1√
|x− rn|

= 5 if x = rn.

Since, By Theorem 10.40,∫ 1

0

1√
|x− rn|

dx =

∫ 1

rn

1√
x− rn

dx+

∫ rn

0

1√
rn − x

dx

= 2
√
x− rn|1rn − 2

√
rn − x|rn0 = 2

(√
1− rn −

√
rn
)

≤ 4,

we find∫
[0,1]

f(x)dm(x) =

∞∑
n=1

2−n
∫

[0,1]

1√
|x− rn|

dx ≤
∞∑
n=1

2−n4 = 4 <∞.

In particular, m(f = ∞) = 0, i.e. that f < ∞ for almost every x ∈ [0, 1] and
this implies that

∞∑
n=1

2−n
1√
|x− rn|

<∞ for a.e. x ∈ [0, 1].

This result is somewhat surprising since the singularities of the summands form
a dense subset of [0, 1].

Example 10.44. The following limit holds,

lim
n→∞

∫ n

0

(
1− x

n

)n
dm(x) = 1. (10.20)

DCT Proof. To verify this, let fn(x) :=
(
1− x

n

)n
1[0,n](x). Then

limn→∞ fn(x) = e−x for all x ≥ 0. Moreover by simple calculus1

1− x ≤ e−x for all x ∈ R.

Therefore, for x < n, we have

1 Since y = 1 − x is the tangent line to y = e−x at x = 0 and e−x is convex up, it
follows that 1− x ≤ e−x for all x ∈ R.

0 ≤ 1− x

n
≤ e−x/n =⇒

(
1− x

n

)n
≤
[
e−x/n

]n
= e−x,

from which it follows that

0 ≤ fn(x) ≤ e−x for all x ≥ 0.

From Example 10.41, we know∫ ∞
0

e−xdm(x) = 1 <∞,

so that e−x is an integrable function on [0,∞). Hence by the dominated con-
vergence theorem,

lim
n→∞

∫ n

0

(
1− x

n

)n
dm(x) = lim

n→∞

∫ ∞
0

fn(x)dm(x)

=

∫ ∞
0

lim
n→∞

fn(x)dm(x) =

∫ ∞
0

e−xdm(x) = 1.

MCT Proof. The limit in Eq. (10.20) may also be computed using the
monotone convergence theorem. To do this we must show that n → fn (x) is
increasing in n for each x and for this it suffices to consider n > x. But for
n > x,

d

dn
ln fn (x) =

d

dn

[
n ln

(
1− x

n

)]
= ln

(
1− x

n

)
+

n

1− x
n

x

n2

= ln
(

1− x

n

)
+

x
n

1− x
n

= h (x/n)

where, for 0 ≤ y < 1,

h (y) := ln(1− y) +
y

1− y
.

Since h (0) = 0 and

h′ (y) = − 1

1− y
+

1

1− y
+

y

(1− y)
2 > 0

it follows that h ≥ 0. Thus we have shown, fn (x) ↑ e−x as n→∞ as claimed.

Example 10.45. Suppose that fn (x) := n1(0, 1n ] (x) for n ∈ N. Then

limn→∞ fn (x) = 0 for all x ∈ R while

lim
n→∞

∫
R
fn (x) dx = lim

n→∞
1 = 1 6= 0 =

∫
R

lim
n→∞

fn (x) dx.
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10.3 Integration on R 101

The problem is that the best dominating function we can take is

g (x) = sup
n
fn (x) =

∞∑
n=1

n · 1( 1
n+1 ,

1
n ] (x) .

Notice that ∫
R
g (x) dx =

∞∑
n=1

n ·
(

1

n
− 1

n+ 1

)
=

∞∑
n=1

1

n+ 1
=∞.

Example 10.46 (Jordan’s Lemma). In this example, let us consider the limit;

lim
n→∞

∫ π

0

cos

(
sin

θ

n

)
e−n sin(θ)dθ.

Let

fn (θ) := 1(0,π] (θ) cos

(
sin

θ

n

)
e−n sin(θ).

Then
|fn| ≤ 1(0,π] ∈ L1 (m)

and
lim
n→∞

fn (θ) = 1(0,π] (θ) 1{π} (θ) = 1{π} (θ) .

Therefore by the D.C.T.,

lim
n→∞

∫ π

0

cos

(
sin

θ

n

)
e−n sin(θ)dθ =

∫
R

1{π} (θ) dm (θ) = m ({π}) = 0.

Example 10.47. Recall from Example 10.41 that

λ−1 =

∫
[0,∞)

e−λxdm(x) for all λ > 0.

Let ε > 0. For λ ≥ 2ε > 0 and n ∈ N there exists Cn(ε) <∞ such that

0 ≤
(
− d

dλ

)n
e−λx = xne−λx ≤ Cn(ε)e−εx.

Using this fact, Corollary 10.30 and induction gives

n!λ−n−1 =

(
− d

dλ

)n
λ−1 =

∫
[0,∞)

(
− d

dλ

)n
e−λxdm(x)

=

∫
[0,∞)

xne−λxdm(x).

That is

n! = λn
∫

[0,∞)

xne−λxdm(x). (10.21)

Remark 10.48. Corollary 10.30 may be generalized by allowing the hypothesis to
hold for x ∈ X \E where E ∈ B is a fixed null set, i.e. E must be independent
of t. Consider what happens if we formally apply Corollary 10.30 to g(t) :=∫∞

0
1x≤tdm(x),

ġ(t) =
d

dt

∫ ∞
0

1x≤tdm(x)
?
=

∫ ∞
0

∂

∂t
1x≤tdm(x).

The last integral is zero since ∂
∂t1x≤t = 0 unless t = x in which case it is not

defined. On the other hand g(t) = t so that ġ(t) = 1. (The reader should decide
which hypothesis of Corollary 10.30 has been violated in this example.)

Exercise 10.8 (Folland 2.28 on p. 60.). Compute the following limits and
justify your calculations:

1. lim
n→∞

∫∞
0

sin( xn )

(1+ x
n )n dx.

2. lim
n→∞

∫ 1

0
1+nx2

(1+x2)n dx

3. lim
n→∞

∫∞
0

n sin(x/n)
x(1+x2) dx

4. For all a ∈ R compute,

f (a) := lim
n→∞

∫ ∞
a

n(1 + n2x2)−1dx.

[Hints: for parts 1. and 2. you might use the binomial expansion to estimate
the denominators.]

Exercise 10.9 (Integration by Parts). Suppose that f, g : R→ R are two
continuously differentiable functions such that f ′g, fg′, and fg are all Lebesgue
integrable functions on R. Prove the following integration by parts formula;∫

R
f ′ (x) · g (x) dx = −

∫
R
f (x) · g′ (x) dx. (10.22)

Similarly show that; if f, g : [0,∞)→ [0,∞) are continuously differentiable func-
tions such that f ′g, fg′, and fg are all Lebesgue integrable functions on [0,∞),
then ∫ ∞

0

f ′ (x) · g (x) dx = −f (0) g (0)−
∫ ∞

0

f (x) · g′ (x) dx. (10.23)

Outline: 1. First notice that Eq. (10.22) holds if f (x) = 0 for |x| ≥ N for
some N <∞ by undergraduate calculus.

2. Let ψ : R→ [0, 1] be a continuously differentiable function such that
ψ (x) = 1 if |x| ≤ 1 and ψ (x) = 0 if |x| ≥ 2. For any ε > 0 let ψε(x) = ψ(εx)
Write out the identity in Eq. (10.22) with f (x) being replaced by f (x)ψε (x) .
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3. Now use the dominated convergence theorem to pass to the limit as ε ↓ 0
in the identity you found in step 2.

4. A similar outline works to prove Eq. (10.23).

Definition 10.49 (Gamma Function). The Gamma function, Γ : R+ →
R+ is defined by

Γ (x) :=

∫ ∞
0

ux−1e−udu (10.24)

(The reader should check that Γ (x) <∞ for all x > 0.)

Here are some of the more basic properties of this function.

Example 10.50 (Γ – function properties). Let Γ be the gamma function, then;

1. Γ (1) = 1 as is easily verified.
2. Γ (x+ 1) = xΓ (x) for all x > 0 as follows by integration by parts;

Γ (x+ 1) =

∫ ∞
0

e−u ux+1 du

u
=

∫ ∞
0

ux
(
− d

du
e−u

)
du

= x

∫ ∞
0

ux−1 e−u du = x Γ (x).

In particular, it follows from items 1. and 2. and induction that

Γ (n+ 1) = n! for all n ∈ N. (10.25)

(Equation 10.25was also proved in Eq. (10.21).)
3. Γ (1/2) =

√
π. This last assertion is a bit trickier. One proof is to make use

of the fact (proved below in Lemma ??) that∫ ∞
−∞

e−ar
2

dr =

√
π

a
for all a > 0. (10.26)

Taking a = 1 and making the change of variables, u = r2 below implies,

√
π =

∫ ∞
−∞

e−r
2

dr = 2

∫ ∞
0

u−1/2e−udu = Γ (1/2) .

Γ (1/2) = 2

∫ ∞
0

e−r
2

dr =

∫ ∞
−∞

e−r
2

dr

= I1(1) =
√
π.

4. A simple induction argument using items 2. and 3. now shows that

Γ

(
n+

1

2

)
=

(2n− 1)!!

2n
√
π

where (−1)!! := 1 and (2n− 1)!! = (2n− 1) (2n− 3) . . . 3 · 1 for n ∈ N.

10.4 Densities and Change of Variables Theorems

Exercise 10.10 (Measures and Densities). Let (X,M, µ) be a measure
space and ρ : X → [0,∞] be a measurable function. For A ∈ M, set ν(A) :=∫
A
ρdµ.

1. Show ν :M→ [0,∞] is a measure.
2. Let f : X → [0,∞] be a measurable function, show∫

X

fdν =

∫
X

fρdµ. (10.27)

Hint: first prove the relationship for characteristic functions, then for sim-
ple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X → C is in L1(ν) iff |f | ρ ∈ L1(µ)
and if f ∈ L1(ν) then Eq. (10.27) still holds.

Notation 10.51 It is customary to informally describe ν defined in Exercise
10.10 by writing dν = ρdµ.

Exercise 10.11 (Abstract Change of Variables Formula). Let (X,M, µ)
be a measure space, (Y,F) be a measurable space and f : X → Y be a mea-
surable map. Recall that ν = f∗µ : F → [0,∞] defined by ν(A) := µ(f−1(A))
for all A ∈ F is a measure on F .

1. Show ∫
Y

gdν =

∫
X

(g ◦ f) dµ (10.28)

for all measurable functions g : Y → [0,∞].Hint: see the hint from Exercise
10.10.

2. Show a measurable function g : Y → C is in L1(ν) iff g ◦ f ∈ L1(µ) and
that Eq. (10.28) holds for all g ∈ L1(ν).

Example 10.52. Suppose (Ω,B, P ) is a probability space and {Xi}ni=1 are ran-
dom variables on Ω with ν := LawP (X1, . . . , Xn) , then

E [g (X1, . . . , Xn)] =

∫
Rn
g dν

for all g : Rn → R which are Borel measurable and either bounded or non-
negative. This follows directly from Exercise 10.11 with f := (X1, . . . , Xn) :
Ω → Rn and µ = P.
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10.5 Normal (Gaussian) Random Variables 103

Remark 10.53. As a special case of Example 10.52, suppose that X is a random
variable on a probability space, (Ω,B, P ) , and F (x) := P (X ≤ x) . Then

E [f (X)] =

∫
R
f (x) dF (x) (10.29)

where dF (x) is shorthand for dµF (x) and µF is the unique probability measure
on (R,BR) such that µF ((−∞, x]) = F (x) for all x ∈ R. Moreover if F : R →
[0, 1] happens to be C1-function, then

dµF (x) = F ′ (x) dm (x) (10.30)

and Eq. (10.29) may be written as

E [f (X)] =

∫
R
f (x)F ′ (x) dm (x) . (10.31)

To verify Eq. (10.30) it suffices to observe, by the fundamental theorem of
calculus, that

µF ((a, b]) = F (b)− F (a) =

∫ b

a

F ′ (x) dx =

∫
(a,b]

F ′dm.

From this equation we may deduce that µF (A) =
∫
A
F ′dm for all A ∈ BR.

Equation 10.31 now follows from Exercise 10.10.

Exercise 10.12. Let F : R → R be a C1-function such that F ′(x) > 0 for all
x ∈ R and limx→±∞ F (x) = ±∞. (Notice that F is strictly increasing so that
F−1 : R→ R exists and moreover, by the inverse function theorem that F−1 is
a C1 – function.) Let m be Lebesgue measure on BR and

ν(A) = m(F (A)) = m(
(
F−1

)−1
(A)) =

(
F−1
∗ m

)
(A)

for all A ∈ BR. Show dν = F ′dm. Use this result to prove the change of variable
formula, ∫

R
h ◦ F · F ′dm =

∫
R
hdm (10.32)

which is valid for all Borel measurable functions h : R→ [0,∞].
Hint: Start by showing dν = F ′dm on sets of the form A = (a, b] with

a, b ∈ R and a < b. Then use the uniqueness assertions in Exercise 8.11 to
conclude dν = F ′dm on all of BR. To prove Eq. (10.32) apply Exercise 10.11
with g = h ◦ F and f = F−1.

10.5 Normal (Gaussian) Random Variables

Definition 10.54 (Normal / Gaussian Random Variables). A random
variable, Y, is normal with mean µ standard deviation σ2 iff

P (Y ∈ B) =
1√

2πσ2

∫
B

e−
1

2σ2
(y−µ)2dy for all B ∈ BR. (10.33)

We will abbreviate this by writing Y
d
= N

(
µ, σ2

)
. When µ = 0 and σ2 = 1 we

will simply write N for N (0, 1) and if Y
d
= N, we will say Y is a standard

normal random variable.

Observe that Eq. (10.33) is equivalent to writing

E [f (Y )] =
1√

2πσ2

∫
R
f (y) e−

1
2σ2

(y−µ)2dy

for all bounded measurable functions, f : R→ R. Also observe that Y
d
=

N
(
µ, σ2

)
is equivalent to Y

d
= σN+µ. Indeed, by making the change of variable,

y = σx+ µ, we find

E [f (σN + µ)] =
1√
2π

∫
R
f (σx+ µ) e−

1
2x

2

dx

=
1√
2π

∫
R
f (y) e−

1
2σ2

(y−µ)2 dy

σ
=

1√
2πσ2

∫
R
f (y) e−

1
2σ2

(y−µ)2dy.

Lastly the constant,
(
2πσ2

)−1/2
is chosen so that

1√
2πσ2

∫
R
e−

1
2σ2

(y−µ)2dy =
1√
2π

∫
R
e−

1
2y

2

dy = 1,

see Example 10.50 and Lemma ??.

Exercise 10.13. Suppose that X
d
= N (0, 1) and f : R→ R is a C1 – function

such that Xf (X) , f ′ (X) and f (X) are all integrable random variables. Show

E [Xf (X)] = − 1√
2π

∫
R
f (x)

d

dx
e−

1
2x

2

dx

=
1√
2π

∫
R
f ′ (x) e−

1
2x

2

dx = E [f ′ (X)] .

Example 10.55. Suppose that X
d
= N (0, 1) and define αk := E

[
X2k

]
for all

k ∈ N0. By Exercise 10.13,
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αk+1 = E
[
X2k+1 ·X

]
= (2k + 1)αk with α0 = 1.

Hence it follows that

α1 = α0 = 1, α2 = 3α1 = 3, α3 = 5 · 3

and by a simple induction argument,

EX2k = αk = (2k − 1)!!, (10.34)

where (−1)!! := 0. Actually we can use the Γ – function to say more. Namely
for any β > −1,

E |X|β =
1√
2π

∫
R
|x|β e− 1

2x
2

dx =

√
2

π

∫ ∞
0

xβe−
1
2x

2

dx.

Now make the change of variables, y = x2/2 (i.e. x =
√

2y and dx = 1√
2
y−1/2dy)

to learn,

E |X|β =
1√
π

∫ ∞
0

(2y)
β/2

e−yy−1/2dy

=
1√
π

2β/2
∫ ∞

0

y(β+1)/2e−yy−1dy =
1√
π

2β/2Γ

(
β + 1

2

)
. (10.35)

Exercise 10.14. Suppose that X
d
= N (0, 1) and λ ∈ R. Show

f (λ) := E
[
eiλX

]
= exp

(
−λ2/2

)
. (10.36)

Hint: Use Corollary 10.30 to show, f ′ (λ) = iE
[
XeiλX

]
and then use Exercise

10.13 to see that f ′ (λ) satisfies a simple ordinary differential equation.

Exercise 10.15. Suppose that X
d
= N (0, 1) and t ∈ R. Show E

[
etX
]

=

exp
(
t2/2

)
. (You could follow the hint in Exercise 10.14 or you could use a

completion of the squares argument along with the translation invariance of
Lebesgue measure.)

Exercise 10.16. Use Exercise 10.15 and Proposition 10.33 to give another

proof that EX2k = (2k − 1)!! when X
d
= N (0, 1) .

Exercise 10.17. Let X
d
= N (0, 1) and α ∈ R, find ρ : R+ → R+ := (0,∞)

such that

E [f (|X|α)] =

∫
R+

f (x) ρ (x) dx

for all continuous functions, f : R+ → R with compact support in R+.

Lemma 10.56 (Gaussian tail estimates). Suppose that X is a standard
normal random variable, i.e.

P (X ∈ A) =
1√
2π

∫
A

e−x
2/2dx for all A ∈ BR,

then for all x ≥ 0,

P (X ≥ x) ≤ min

(
1

2
− x√

2π
e−x

2/2,
1√
2πx

e−x
2/2

)
≤ 1

2
e−x

2/2. (10.37)

Moreover (see [18, Lemma 2.5]),

P (X ≥ x) ≥ max

(
1− x√

2π
,

x

x2 + 1

1√
2π
e−x

2/2

)
(10.38)

which combined with Eq. (10.37) proves Mill’s ratio (see [7]);

lim
x→∞

P (X ≥ x)
1√
2πx

e−x2/2
= 1. (10.39)

Proof. See Figure 10.1 where; the green curve is the plot of P (X ≥ x) , the
black is the plot of

min

(
1

2
− 1√

2πx
e−x

2/2,
1√
2πx

e−x
2/2

)
,

the red is the plot of 1
2e
−x2/2, and the blue is the plot of

max

(
1

2
− x√

2π
,

x

x2 + 1

1√
2π
e−x

2/2

)
.

The formal proof of these estimates for the reader who is not convinced by
Figure 10.1 is given below.

We begin by observing that

P (X ≥ x) =
1√
2π

∫ ∞
x

e−y
2/2dy ≤ 1√

2π

∫ ∞
x

y

x
e−y

2/2dy

≤ − 1√
2π

1

x
e−y

2/2|−∞x =
1√
2π

1

x
e−x

2/2. (10.40)

If we only want to prove Mill’s ratio (10.39), we could proceed as follows. Let
α > 1, then for x > 0,
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Fig. 10.1. Plots of P (X ≥ x) and its estimates.

P (X ≥ x) =
1√
2π

∫ ∞
x

e−y
2/2dy

≥ 1√
2π

∫ αx

x

y

αx
e−y

2/2dy = − 1√
2π

1

αx
e−y

2/2|y=αx
y=x

=
1√
2π

1

αx
e−x

2/2
[
1− e−α

2x2/2
]

from which it follows,

lim inf
x→∞

[√
2πxex

2/2 · P (X ≥ x)
]
≥ 1/α ↑ 1 as α ↓ 1.

The estimate in Eq. (10.40) shows lim supx→∞

[√
2πxex

2/2 · P (X ≥ x)
]
≤ 1.

To get more precise estimates, we begin by observing,

P (X ≥ x) =
1

2
− 1√

2π

∫ x

0

e−y
2/2dy (10.41)

≤ 1

2
− 1√

2π

∫ x

0

e−x
2/2dy ≤ 1

2
− 1√

2π
e−x

2/2x.

This equation along with Eq. (10.40) gives the first equality in Eq. (10.37). To
prove the second equality observe that

√
2π > 2, so

1√
2π

1

x
e−x

2/2 ≤ 1

2
e−x

2/2 if x ≥ 1.

For x ≤ 1 we must show,

1

2
− x√

2π
e−x

2/2 ≤ 1

2
e−x

2/2

or equivalently that f (x) := ex
2/2 −

√
2
πx ≤ 1 for 0 ≤ x ≤ 1. Since f is convex(

f ′′ (x) =
(
x2 + 1

)
ex

2/2 > 0
)
, f (0) = 1 and f (1) ∼= 0.85 < 1, it follows that

f ≤ 1 on [0, 1] . This proves the second inequality in Eq. (10.37).
It follows from Eq. (10.41) that

P (X ≥ x) =
1

2
− 1√

2π

∫ x

0

e−y
2/2dy

≥ 1

2
− 1√

2π

∫ x

0

1dy =
1

2
− 1√

2π
x for all x ≥ 0.

So to finish the proof of Eq. (10.38) we must show,

f (x) :=
1√
2π
xe−x

2/2 −
(
1 + x2

)
P (X ≥ x)

=
1√
2π

[
xe−x

2/2 −
(
1 + x2

) ∫ ∞
x

e−y
2/2dy

]
≤ 0 for all 0 ≤ x <∞.

This follows by observing that f (0) = −1/2 < 0, limx↑∞ f (x) = 0 and

f ′ (x) =
1√
2π

[
e−x

2/2
(
1− x2

)
− 2xP (X ≥ x) +

(
1 + x2

)
e−x

2/2
]

= 2

(
1√
2π
e−x

2/2 − xP (X ≥ y)

)
≥ 0,

where the last inequality is a consequence Eq. (10.37).

10.6 Stirling’s Formula

On occasion one is faced with estimating an integral of the form,
∫
J
e−G(t)dt,

where J = (a, b) ⊂ R and G (t) is a C1 – function with a unique (for simplicity)
global minimum at some point t0 ∈ J. The idea is that the majority contribu-
tion of the integral will often come from some neighborhood, (t0 − α, t0 + α) ,
of t0. Moreover, it may happen that G (t) can be well approximated on this
neighborhood by its Taylor expansion to order 2;

G (t) ∼= G (t0) +
1

2
G̈ (t0) (t− t0)

2
.

Notice that the linear term is zero since t0 is a minimum and therefore Ġ (t0) =
0. We will further assume that G̈ (t0) 6= 0 and hence G̈ (t0) > 0. Under these
hypothesis we will have,
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J

e−G(t)dt ∼= e−G(t0)

∫
|t−t0|<α

exp

(
−1

2
G̈ (t0) (t− t0)

2

)
dt.

Making the change of variables, s =
√
G̈ (t0) (t− t0) , in the above integral then

gives,∫
J

e−G(t)dt ∼=
1√
G̈ (t0)

e−G(t0)

∫
|s|<
√
G̈(t0)·α

e−
1
2 s

2

ds

=
1√
G̈ (t0)

e−G(t0)

[
√

2π −
∫ ∞
√
G̈(t0)·α

e−
1
2 s

2

ds

]

=
1√
G̈ (t0)

e−G(t0)

√2π −O

 1√
G̈ (t0) · α

e−
1
2 G̈(t0)·α2

 .
If α is sufficiently large, for example if

√
G̈ (t0) · α = 3, then the error term is

about 0.0037 and we should be able to conclude that∫
J

e−G(t)dt ∼=

√
2π

G̈ (t0)
e−G(t0). (10.42)

The proof of the next theorem (Stirling’s formula for the Gamma function) will
illustrate these ideas and what one has to do to carry them out rigorously.

Theorem 10.57 (Stirling’s formula). The Gamma function (see Definition
10.49), satisfies Stirling’s formula,

lim
x→∞

Γ (x+ 1)√
2πe−xxx+1/2

= 1. (10.43)

In particular, if n ∈ N, we have

n! = Γ (n+ 1) ∼
√

2πe−nnn+1/2

where we write an ∼ bn to mean, limn→∞
an
bn

= 1. (See Example 10.62 below
for a slightly cruder but more elementary estimate of n!)

Proof. (The following proof is an elaboration of the proof found on page
236-237 in Krantz’s Real Analysis and Foundations.) We begin with the formula
for Γ (x+ 1) ;

Γ (x+ 1) =

∫ ∞
0

e−ttxdt =

∫ ∞
0

e−Gx(t)dt, (10.44)

where

Gx (t) := t− x ln t.

Then Ġx (t) = 1−x/t, G̈x (t) = x/t2, Gx has a global minimum (since G̈x > 0)
at t0 = x where

Gx (x) = x− x lnx and G̈x (x) = 1/x.

So if Eq. (10.42) is valid in this case we should expect,

Γ (x+ 1) ∼=
√

2πxe−(x−x ln x) =
√

2πe−xxx+1/2

which would give Stirling’s formula. The rest of the proof will be spent on
rigorously justifying the approximations involved.

Let us begin by making the change of variables s =
√
G̈ (t0) (t− t0) =

1√
x

(t− x) as suggested above. Then

Gx (t)−Gx (x) = (t− x)− x ln (t/x) =
√
xs− x ln

(
x+
√
xs

x

)
= x

[
s√
x
− ln

(
1 +

s√
x

)]
= s2q

(
s√
x

)
where

q (u) :=
1

u2
[u− ln (1 + u)] for u > −1 with q (0) :=

1

2
.

Setting q (0) = 1/2 makes q a continuous and in fact smooth function on
(−1,∞) , see Figure 10.2. Using the power series expansion for ln (1 + u) we
find,

q (u) =
1

2
+

∞∑
k=3

(−u)
k−2

k
for |u| < 1. (10.45)

Making the change of variables, t = x +
√
xs in the second integral in Eq.

(10.44) yields,

Γ (x+ 1) = e−(x−x ln x)
√
x

∫ ∞
−
√
x

e
−q
(
s√
x

)
s2
ds = xx+1/2e−x · I (x) ,

where

I (x) =

∫ ∞
−
√
x

e
−q
(
s√
x

)
s2
ds =

∫ ∞
−∞

1s≥−
√
x · e

−q
(
s√
x

)
s2
ds. (10.46)

From Eq. (10.45) it follows that limu→0 q (u) = 1/2 and therefore,∫ ∞
−∞

lim
x→∞

[
1s≥−

√
x · e

−q
(
s√
x

)
s2
]
ds =

∫ ∞
−∞

e−
1
2 s

2

ds =
√

2π. (10.47)

Page: 106 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



10.6 Stirling’s Formula 107

Fig. 10.2. Plot of q (u) .

So if there exists a dominating function, F ∈ L1 (R,m) , such that

1s≥−
√
x · e

−q
(
s√
x

)
s2 ≤ F (s) for all s ∈ R and x ≥ 1,

we can apply the DCT to learn that limx→∞ I (x) =
√

2π which will complete
the proof of Stirling’s formula.

We now construct the desired function F. From Eq. (10.45) it follows that
q (u) ≥ 1/2 for −1 < u ≤ 0. Since u− ln (1 + u) > 0 for u 6= 0 (u− ln (1 + u) is
convex and has a minimum of 0 at u = 0) we may conclude that q (u) > 0 for
all u > −1 therefore by compactness (on [0,M ]), min−1<u≤M q (u) = ε (M) > 0
for all M ∈ (0,∞) , see Remark 10.58 for more explicit estimates. Lastly, since
1
u ln (1 + u)→ 0 as u→∞, there exists M <∞ (M = 3 would due) such that
1
u ln (1 + u) ≤ 1

2 for u ≥M and hence,

q (u) =
1

u

[
1− 1

u
ln (1 + u)

]
≥ 1

2u
for u ≥M.

So there exists ε > 0 and M <∞ such that (for all x ≥ 1),

1s≥−
√
xe
−q
(
s√
x

)
s2 ≤ 1−

√
x<s≤Me

−εs2 + 1s≥Me
−
√
xs/2

≤ 1−
√
x<s≤Me

−εs2 + 1s≥Me
−s/2

≤ e−εs
2

+ e−|s|/2 =: F (s) ∈ L1 (R, ds) .

We will sometimes use the following variant of Eq. (10.43);

lim
x→∞

Γ (x)√
2π
x

(
x
e

)x = 1 (10.48)

To prove this let x go to x− 1 in Eq. (10.43) in order to find,

1 = lim
x→∞

Γ (x)
√

2πe−x · e · (x− 1)
x−1/2

= lim
x→∞

Γ (x)√
2π
x

(
x
e

)x ·√ x
x−1 · e ·

(
1− 1

x

)x
which gives Eq. (10.48) since

lim
x→∞

√
x

x− 1
· e ·

(
1− 1

x

)x
= 1.

Remark 10.58 (Estimating q (u) by Taylor’s Theorem). Another way to estimate
q (u) is to use Taylor’s theorem with integral remainder. In general if h is C2 –
function on [0, 1] , then by the fundamental theorem of calculus and integration
by parts,

h (1)− h (0) =

∫ 1

0

ḣ (t) dt = −
∫ 1

0

ḣ (t) d (1− t)

= −ḣ (t) (1− t) |10 +

∫ 1

0

ḧ (t) (1− t) dt

= ḣ (0) +
1

2

∫ 1

0

ḧ (t) dν (t) (10.49)

where dν (t) := 2 (1− t) dt which is a probability measure on [0, 1] . Applying
this to h (t) = F (a+ t (b− a)) for a C2 – function on an interval of points
between a and b in R then implies,

F (b)− F (a) = (b− a) Ḟ (a) +
1

2
(b− a)

2
∫ 1

0

F̈ (a+ t (b− a)) dν (t) . (10.50)

(Similar formulas hold to any order.) Applying this result with F (x) = x −
ln (1 + x) , a = 0, and b = u ∈ (−1,∞) gives,

u− ln (1 + u) =
1

2
u2

∫ 1

0

1

(1 + tu)
2 dν (t) ,

i.e.

q (u) =
1

2

∫ 1

0

1

(1 + tu)
2 dν (t) .
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From this expression for q (u) it now easily follows that

q (u) ≥ 1

2

∫ 1

0

1

(1 + 0)
2 dν (t) =

1

2
if − 1 < u ≤ 0

and

q (u) ≥ 1

2

∫ 1

0

1

(1 + u)
2 dν (t) =

1

2 (1 + u)
2 .

So an explicit formula for ε (M) is ε (M) = (1 +M)
−2
/2.

10.6.1 Two applications of Stirling’s formula

In this subsection suppose x ∈ (0, 1) and Sn
d
=Binomial(n, x) for all n ∈ N, i.e.

Px (Sn = k) =

(
n

k

)
xk (1− x)

n−k
for 0 ≤ k ≤ n. (10.51)

Recall that ESn = nx and Var (Sn) = nσ2 where σ2 := x (1− x) . The weak
law of large numbers states (Exercise 7.13) that

P

(∣∣∣∣Snn − x
∣∣∣∣ ≥ ε) ≤ 1

nε2
σ2

and therefore, Snn is concentrating near its mean value, x, for n large, i.e. Sn ∼=
nx for n large. The next central limit theorem describes the fluctuations of Sn
about nx.

Theorem 10.59 (De Moivre-Laplace Central Limit Theorem). For all
−∞ < a < b <∞,

lim
n→∞

P

(
a ≤ Sn − nx

σ
√
n
≤ b
)

=
1√
2π

∫ b

a

e−
1
2y

2

dy

= P (a ≤ N ≤ b)

where N
d
= N (0, 1) . Informally, Sn−nx

σ
√
n

d∼= N or equivalently, Sn
d∼= nx+σ

√
n·N

which if valid in a neighborhood of nx whose length is order
√
n.

Proof. (We are not going to cover all the technical details in this proof as
we will give much more general versions of this theorem later.) Starting with
the definition of the Binomial distribution we have,

pn := P

(
a ≤ Sn − nx

σ
√
n
≤ b
)

= P
(
Sn ∈ nx+ σ

√
n [a, b]

)
=

∑
k∈nx+σ

√
n[a,b]

P (Sn = k)

=
∑

k∈nx+σ
√
n[a,b]

(
n

k

)
xk (1− x)

n−k
.

Letting k = nx+σ
√
nyk, i.e. yk = (k − nx) /σ

√
n we see that ∆yk = yk+1−yk =

1/ (σ
√
n) . Therefore we may write pn as

pn =
∑

yk∈[a,b]

σ
√
n

(
n

k

)
xk (1− x)

n−k
∆yk. (10.52)

So to finish the proof we need to show, for k = O (
√
n) (yk = O (1)), that

σ
√
n

(
n

k

)
xk (1− x)

n−k ∼ 1√
2π
e−

1
2y

2
k as n→∞ (10.53)

in which case the sum in Eq. (10.52) may be well approximated by the “Riemann
sum;”

pn ∼
∑

yk∈[a,b]

1√
2π
e−

1
2y

2
k∆yk →

1√
2π

∫ b

a

e−
1
2y

2

dy as n→∞.

By Stirling’s formula,

σ
√
n

(
n

k

)
= σ
√
n

1

k!

n!

(n− k)!
∼ σ
√
n√

2π

nn+1/2

kk+1/2 (n− k)
n−k+1/2

=
σ√
2π

1(
k
n

)k+1/2 (
1− k

n

)n−k+1/2

=
σ√
2π

1(
x+ σ√

n
yk

)k+1/2 (
1− x− σ√

n
yk

)n−k+1/2

∼ σ√
2π

1√
x (1− x)

1(
x+ σ√

n
yk

)k (
1− x− σ√

n
yk

)n−k
=

1√
2π

1(
x+ σ√

n
yk

)k (
1− x− σ√

n
yk

)n−k .
In order to shorten the notation, let zk := σ√

n
yk = O

(
n−1/2

)
so that k =

nx+ nzk = n (x+ zk) . In this notation we have shown,
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10.6 Stirling’s Formula 109

√
2πσ
√
n

(
n

k

)
xk (1− x)

n−k ∼ xk (1− x)
n−k

(x+ zk)
k

(1− x− zk)
n−k

=
1(

1 + 1
xzk
)k (

1− 1
1−xzk

)n−k
=

1(
1 + 1

xzk
)n(x+zk)

(
1− 1

1−xzk

)n(1−x−zk)
=: q (n, k) .

(10.54)

Taking logarithms and using Taylor’s theorem we learn

n (x+ zk) ln

(
1 +

1

x
zk

)
= n (x+ zk)

(
1

x
zk −

1

2x2
z2
k +O

(
n−3/2

))
= nzk +

n

2x
z2
k +O

(
n−3/2

)
and

n (1− x− zk) ln

(
1− 1

1− x
zk

)
= n (1− x− zk)

(
− 1

1− x
zk −

1

2 (1− x)
2 z

2
k +O

(
n−3/2

))
= −nzk +

n

2 (1− x)
z2
k +O

(
n−3/2

)
.

and then adding these expressions shows,

− ln q (n, k) =
n

2
z2
k

(
1

x
+

1

1− x

)
+O

(
n−3/2

)
=

n

2σ2
z2
k +O

(
n−3/2

)
=

1

2
y2
k +O

(
n−3/2

)
.

Combining this with Eq. (10.54) shows,

σ
√
n

(
n

k

)
xk (1− x)

n−k ∼ 1√
2π

exp

(
−1

2
y2
k +O

(
n−3/2

))
which gives the desired estimate in Eq. (10.53).

The previous central limit theorem has shown that

Sn
n

d∼= x+
σ√
n
N

which implies the major fluctuations of Sn/n occur within intervals about x

of length O
(

1√
n

)
. The next result aims to understand the rare events where

Sn/n makes a “large” deviation from its mean value, x – in this case a large
deviation is something of size O (1) as n→∞.

Theorem 10.60 (Binomial Large Deviation Bounds). Let us continue to
use the notation in Theorem 10.59. Then for all y ∈ (0, x) ,

lim
n→∞

1

n
lnPx

(
Sn
n
≤ y
)

= y ln
x

y
+ (1− y) ln

1− x
1− y

.

Roughly speaking,

Px

(
Sn
n
≤ y
)
≈ e−nIx(y)

where Ix (y) is the “rate function,”

Ix (y) := y ln
y

x
+ (1− y) ln

1− y
1− x

,

see Figure 10.3 for the graph of I1/2.

Fig. 10.3. A plot of the rate function, I1/2.

Proof. By definition of the binomial distribution,
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Px

(
Sn
n
≤ y
)

= Px (Sn ≤ ny) =
∑
k≤ny

(
n

k

)
xk (1− x)

n−k
.

If ak ≥ 0, then we have the following crude estimates on
∑m−1
k=0 ak,

max
k<m

ak ≤
m−1∑
k=0

ak ≤ m ·max
k<m

ak. (10.55)

In order to apply this with ak =
(
n
k

)
xk (1− x)

n−k
and m = [ny] , we need to

find the maximum of the ak for 0 ≤ k ≤ ny. This is easy to do since ak is
increasing for 0 ≤ k ≤ ny as we now show. Consider,

ak+1

ak
=

(
n
k+1

)
xk+1 (1− x)

n−k−1(
n
k

)
xk (1− x)

n−k

=
k! (n− k)! · x

(k + 1)! · (n− k − 1)! · (1− x)

=
(n− k) · x

(k + 1) · (1− x)
.

Therefore, where the latter expression is greater than or equal to 1 iff

ak+1

ak
≥ 1 ⇐⇒ (n− k) · x ≥ (k + 1) · (1− x)

⇐⇒ nx ≥ k + 1− x ⇐⇒ k < (n− 1)x− 1.

Thus for k < (n− 1)x− 1 we may conclude that
(
n
k

)
xk (1− x)

n−k
is increasing

in k.
Thus the crude bound in Eq. (10.55) implies,(
n

[ny]

)
x[ny] (1− x)

n−[ny] ≤ Px
(
Sn
n
≤ y
)
≤ [ny]

(
n

[ny]

)
x[ny] (1− x)

n−[ny]

or equivalently,

1

n
ln

[(
n

[ny]

)
x[ny] (1− x)

n−[ny]

]
≤ 1

n
lnPx

(
Sn
n
≤ y
)

≤ 1

n
ln

[
(ny)

(
n

[ny]

)
x[ny] (1− x)

n−[ny]

]
.

By Stirling’s formula, for k such that k and n− k is large we have,

(
n

k

)
∼ 1√

2π

nn+1/2

kk+1/2 · (n− k)
n−k+1/2

=

√
n√
2π

1(
k
n

)k+1/2 ·
(
1− k

n

)n−k+1/2

and therefore,

1

n
ln

(
n

k

)
∼ −k

n
ln

(
k

n

)
−
(

1− k

n

)
ln

(
1− k

n

)
.

So taking k = [ny] , we learn that

lim
n→∞

1

n
ln

(
n

[ny]

)
= −y ln y − (1− y) ln (1− y)

and therefore,

lim
n→∞

1

n
lnPx

(
Sn
n
≤ y
)

= −y ln y − (1− y) ln (1− y) + y lnx+ (1− y) ln (1− x)

= y ln
x

y
+ (1− y) ln

(
1− x
1− y

)
.

As a consistency check it is worth noting, by Jensen’s inequality described
below, that

−Ix (y) = y ln
x

y
+ (1− y) ln

(
1− x
1− y

)
≤ ln

(
y
x

y
+ (1− y)

1− x
1− y

)
= ln (1) = 0.

This must be the case since

−Ix (y) = lim
n→∞

1

n
lnPx

(
Sn
n
≤ y
)
≤ lim
n→∞

1

n
ln 1 = 0.

10.6.2 A primitive Stirling type approximation

Theorem 10.61. Suppose that f : (0,∞) → R is an increasing concave down
function (like f (x) = lnx) and let sn :=

∑n
k=1 f (k) , then

sn −
1

2
(f (n) + f (1)) ≤

∫ n

1

f (x) dx

≤ sn −
1

2
[f (n+ 1) + 2f (1)] +

1

2
f (2)

≤ sn −
1

2
[f (n) + 2f (1)] +

1

2
f (2) .
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Proof. On the interval, [k − 1, k] , we have that f (x) is larger than the
straight line segment joining (k − 1, f (k − 1)) and (k, f (k)) and thus

1

2
(f (k) + f (k − 1)) ≤

∫ k

k−1

f (x) dx.

Summing this equation on k = 2, . . . , n shows,

sn −
1

2
(f (n) + f (1)) =

n∑
k=2

1

2
(f (k) + f (k − 1))

≤
n∑
k=2

∫ k

k−1

f (x) dx =

∫ n

1

f (x) dx.

For the upper bound on the integral we observe that f (x) ≤ f (k)−f ′ (k) (x− k)
for all x and therefore,∫ k

k−1

f (x) dx ≤
∫ k

k−1

[f (k)− f ′ (k) (x− k)] dx = f (k)− 1

2
f ′ (k) .

Summing this equation on k = 2, . . . , n then implies,∫ n

1

f (x) dx ≤
n∑
k=2

f (k)− 1

2

n∑
k=2

f ′ (k) .

Since f ′′ (x) ≤ 0, f ′ (x) is decreasing and therefore f ′ (x) ≤ f ′ (k − 1) for x ∈
[k − 1, k] and integrating this equation over [k − 1, k] gives

f (k)− f (k − 1) ≤ f ′ (k − 1) .

Summing the result on k = 3, . . . , n+ 1 then shows,

f (n+ 1)− f (2) ≤
n∑
k=2

f ′ (k)

and thus ti follows that∫ n

1

f (x) dx ≤
n∑
k=2

f (k)− 1

2
(f (n+ 1)− f (2))

= sn −
1

2
[f (n+ 1) + 2f (1)] +

1

2
f (2)

≤ sn −
1

2
[f (n) + 2f (1)] +

1

2
f (2)

Example 10.62 (Approximating n!). Let us take f (n) = lnn and recall that∫ n

1

lnxdx = n lnn− n+ 1.

Thus we may conlcud that

sn −
1

2
lnn ≤ n lnn− n+ 1 ≤ sn −

1

2
lnn+

1

2
ln 2.

Thus it follows that(
n+

1

2

)
lnn− n+ 1− ln

√
2 ≤ sn ≤

(
n+

1

2

)
lnn− n+ 1.

Exponentiating this identity then implies,

e√
2
· e−nnn+1/2 ≤ n! ≤ e · e−nnn+1/2

which compares well with Strirling’s formula (Theorem 10.57) which states,

n! ∼
√

2πe−nnn+1/2.

Observe that

e√
2
∼= 1. 922 1 ≤

√
2π ∼= 2. 506 ≤ e ∼= 2.718 3.

10.7 Comparison of the Lebesgue and the Riemann
Integral*

For the rest of this chapter, let −∞ < a < b < ∞ and f : [a, b] → R be a
bounded function. A partition of [a, b] is a finite subset π ⊂ [a, b] containing
{a, b}. To each partition
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π = {a = t0 < t1 < · · · < tn = b} (10.56)

of [a, b] let
mesh(π) := max{|tj − tj−1| : j = 1, . . . , n},

Mj = sup{f(x) : tj ≤ x ≤ tj−1}, mj = inf{f(x) : tj ≤ x ≤ tj−1}

Gπ = f(a)1{a} +

n∑
1

Mj1(tj−1,tj ], gπ = f(a)1{a} +

n∑
1

mj1(tj−1,tj ] and

Sπf =
∑

Mj(tj − tj−1) and sπf =
∑

mj(tj − tj−1).

Notice that

Sπf =

∫ b

a

Gπdm and sπf =

∫ b

a

gπdm.

The upper and lower Riemann integrals are defined respectively by∫ b

a

f(x)dx = inf
π
Sπf and

∫ a

b

f(x)dx = sup
π

sπf.

Definition 10.63. The function f is Riemann integrable iff
∫ b
a
f =

∫ b
a
f ∈ R

and which case the Riemann integral
∫ b
a
f is defined to be the common value:

∫ b

a

f(x)dx =

∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

The proof of the following Lemma is left to the reader as Exercise 10.28.

Lemma 10.64. If π′ and π are two partitions of [a, b] and π ⊂ π′ then

Gπ ≥ Gπ′ ≥ f ≥ gπ′ ≥ gπ and

Sπf ≥ Sπ′f ≥ sπ′f ≥ sπf.

There exists an increasing sequence of partitions {πk}∞k=1 such that mesh(πk) ↓
0 and

Sπkf ↓
∫ b

a

f and sπkf ↑
∫ b

a

f as k →∞.

If we let
G := lim

k→∞
Gπk and g := lim

k→∞
gπk (10.57)

then by the dominated convergence theorem,

∫
[a,b]

gdm = lim
k→∞

∫
[a,b]

gπk = lim
k→∞

sπkf =

∫ b

a

f(x)dx (10.58)

and∫
[a,b]

Gdm = lim
k→∞

∫
[a,b]

Gπk = lim
k→∞

Sπkf =

∫ b

a

f(x)dx. (10.59)

Notation 10.65 For x ∈ [a, b], let

H(x) = lim sup
y→x

f(y) := lim
ε↓0

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} and

h(x) = lim inf
y→x

f(y) := lim
ε↓0

inf {f(y) : |y − x| ≤ ε, y ∈ [a, b]}.

Lemma 10.66. The functions H,h : [a, b]→ R satisfy:

1. h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b] and h(x) = H(x) iff f is continuous
at x.

2. If {πk}∞k=1 is any increasing sequence of partitions such that mesh(πk) ↓ 0
and G and g are defined as in Eq. (10.57), then

G(x) = H(x) ≥ f(x) ≥ h(x) = g(x) ∀ x /∈ π := ∪∞k=1πk. (10.60)

(Note π is a countable set.)
3. H and h are Borel measurable.

Proof. Let Gk := Gπk ↓ G and gk := gπk ↑ g.

1. It is clear that h(x) ≤ f(x) ≤ H(x) for all x and H(x) = h(x) iff lim
y→x

f(y)

exists and is equal to f(x). That is H(x) = h(x) iff f is continuous at x.
2. For x /∈ π,

Gk(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ gk(x) ∀ k

and letting k →∞ in this equation implies

G(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ g(x) ∀ x /∈ π. (10.61)

Moreover, given ε > 0 and x /∈ π,

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} ≥ Gk(x)

for all k large enough, since eventually Gk(x) is the supremum of f(y) over
some interval contained in [x − ε, x + ε]. Again letting k → ∞ implies

sup
|y−x|≤ε

f(y) ≥ G(x) and therefore, that

H(x) = lim sup
y→x

f(y) ≥ G(x)
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for all x /∈ π. Combining this equation with Eq. (10.61) then implies H(x) =
G(x) if x /∈ π. A similar argument shows that h(x) = g(x) if x /∈ π and
hence Eq. (10.60) is proved.

3. The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set π,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 10.67. Let f : [a, b]→ R be a bounded function. Then∫ b

a

f =

∫
[a,b]

Hdm and

∫ b

a

f =

∫
[a,b]

hdm (10.62)

and the following statements are equivalent:

1. H(x) = h(x) for m -a.e. x,
2. the set

E := {x ∈ [a, b] : f is discontinuous at x}
is an m̄ – null set.

3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measurable2, i.e. f is L/B –
measurable where L is the Lebesgue σ – algebra and B is the Borel σ – algebra
on [a, b]. Moreover if we let m̄ denote the completion of m, then∫

[a,b]

Hdm =

∫ b

a

f(x)dx =

∫
[a,b]

fdm̄ =

∫
[a,b]

hdm. (10.63)

Proof. Let {πk}∞k=1 be an increasing sequence of partitions of [a, b] as de-
scribed in Lemma 10.64 and let G and g be defined as in Lemma 10.66. Since
m(π) = 0, H = G a.e., Eq. (10.62) is a consequence of Eqs. (10.58) and (10.59).
From Eq. (10.62), f is Riemann integrable iff∫

[a,b]

Hdm =

∫
[a,b]

hdm

and because h ≤ f ≤ H this happens iff h(x) = H(x) for m - a.e. x. Since
E = {x : H(x) 6= h(x)}, this last condition is equivalent to E being a m – null
set. In light of these results and Eq. (10.60), the remaining assertions including
Eq. (10.63) are now consequences of Lemma 10.70.

Notation 10.68 In view of this theorem we will often write
∫ b
a
f(x)dx for∫ b

a
fdm.

2 f need not be Borel measurable.

10.8 Measurability on Complete Measure Spaces*

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 10.69. Suppose that (X,B, µ) is a complete measure space3 and
f : X → R is measurable.

1. If g : X → R is a function such that f(x) = g(x) for µ – a.e. x, then g is
measurable.

2. If fn : X → R are measurable and f : X → R is a function such that
limn→∞ fn = f, µ-a.e., then f is measurable as well.

Proof. 1. Let E = {x : f(x) 6= g(x)} which is assumed to be in B and
µ(E) = 0. Then g = 1Ecf + 1Eg since f = g on Ec. Now 1Ecf is measurable
so g will be measurable if we show 1Eg is measurable. For this consider,

(1Eg)−1(A) =

{
Ec ∪ (1Eg)−1(A \ {0}) if 0 ∈ A
(1Eg)−1(A) if 0 /∈ A (10.64)

Since (1Eg)−1(B) ⊂ E if 0 /∈ B and µ(E) = 0, it follow by completeness of
B that (1Eg)−1(B) ∈ B if 0 /∈ B. Therefore Eq. (10.64) shows that 1Eg is
measurable. 2. Let E = {x : lim

n→∞
fn(x) 6= f(x)} by assumption E ∈ B and

µ(E) = 0. Since g := 1Ef = limn→∞ 1Ecfn, g is measurable. Because f = g
on Ec and µ(E) = 0, f = g a.e. so by part 1. f is also measurable.

The above results are in general false if (X,B, µ) is not complete. For exam-
ple, let X = {0, 1, 2}, B = {{0}, {1, 2}, X, ϕ} and µ = δ0. Take g(0) = 0, g(1) =
1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

Lemma 10.70. Suppose that (X,M, µ) is a measure space and M̄ is the com-
pletion of M relative to µ and µ̄ is the extension of µ to M̄. Then a function
f : X → R is (M̄,B = BR) – measurable iff there exists a function g : X → R
that is (M,B) – measurable such E = {x : f(x) 6= g(x)} ∈ M̄ and µ̄ (E) = 0,
i.e. f(x) = g(x) for µ̄ – a.e. x. Moreover for such a pair f and g, f ∈ L1(µ̄) iff
g ∈ L1(µ) and in which case ∫

X

fdµ̄ =

∫
X

gdµ.

Proof. Suppose first that such a function g exists so that µ̄(E) = 0. Since g
is also (M̄,B) – measurable, we see from Proposition 10.69 that f is (M̄,B) –
measurable. Conversely if f is (M̄,B) – measurable, by considering f± we may

3 Recall this means that if N ⊂ X is a set such that N ⊂ A ∈ M and µ(A) = 0,
then N ∈M as well.
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assume that f ≥ 0. Choose (M̄,B) – measurable simple function ϕn ≥ 0 such
that ϕn ↑ f as n→∞. Writing

ϕn =
∑

ak1Ak

with Ak ∈ M̄, we may choose Bk ∈M such that Bk ⊂ Ak and µ̄(Ak \Bk) = 0.
Letting

ϕ̃n :=
∑

ak1Bk

we have produced a (M,B) – measurable simple function ϕ̃n ≥ 0 such that
En := {ϕn 6= ϕ̃n} has zero µ̄ – measure. Since µ̄ (∪nEn) ≤

∑
n µ̄ (En) , there

exists F ∈M such that ∪nEn ⊂ F and µ(F ) = 0. It now follows that

1F · ϕ̃n = 1F · ϕn ↑ g := 1F f as n→∞.

This shows that g = 1F f is (M,B) – measurable and that {f 6= g} ⊂ F has µ̄
– measure zero. Since f = g, µ̄ – a.e.,

∫
X
fdµ̄ =

∫
X
gdµ̄ so to prove Eq. (10.65)

it suffices to prove ∫
X

gdµ̄ =

∫
X

gdµ. (10.65)

Because µ̄ = µ on M, Eq. (10.65) is easily verified for non-negative M –
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem 9.39 it holds for all M – measurable functions
g : X → [0,∞]. The rest of the assertions follow in the standard way by
considering (Re g)± and (Im g)± .

10.9 More Exercises

Exercise 10.18. Let µ be a measure on an algebraA ⊂ 2X , then µ(A)+µ(B) =
µ(A ∪B) + µ(A ∩B) for all A,B ∈ A.

Exercise 10.19 (From problem 12 on p. 27 of Folland.). Let (X,M, µ)
be a finite measure space and for A,B ∈ M let ρ(A,B) = µ(A∆B) where
A∆B = (A \B) ∪ (B \A) . It is clear that ρ (A,B) = ρ (B,A) . Show:

1. ρ satisfies the triangle inequality:

ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈M.

2. Define A ∼ B iff µ(A∆B) = 0 and notice that ρ (A,B) = 0 iff A ∼ B. Show
“∼ ” is an equivalence relation.

3. Let M/ ∼ denote M modulo the equivalence relation, ∼, and let [A] :=
{B ∈M : B ∼ A} . Show that ρ̄ ([A] , [B]) := ρ (A,B) is gives a well defined
metric on M/ ∼ .

4. Similarly show µ̃ ([A]) = µ (A) is a well defined function onM/ ∼ and show
µ̃ : (M/ ∼)→ R+ is ρ̄ – continuous.

Exercise 10.20. Suppose that µn :M→ [0,∞] are measures onM for n ∈ N.
Also suppose that µn(A) is increasing in n for all A ∈M. Prove that µ :M→
[0,∞] defined by µ(A) := limn→∞ µn(A) is also a measure.

Exercise 10.21. Now suppose that Λ is some index set and for each λ ∈ Λ,
µλ : M → [0,∞] is a measure on M. Define µ : M → [0,∞] by µ(A) =∑
λ∈Λ µλ(A) for each A ∈M. Show that µ is also a measure.

Exercise 10.22. Let (X,M, µ) be a measure space and {An}∞n=1 ⊂M, show

µ({An a.a.}) ≤ lim inf
n→∞

µ (An)

and if µ (∪m≥nAm) <∞ for some n, then

µ({An i.o.}) ≥ lim sup
n→∞

µ (An) .

Exercise 10.23 (Folland 2.13 on p. 52.). Suppose that {fn}∞n=1 is a se-
quence of non-negative measurable functions such that fn → f pointwise and

lim
n→∞

∫
fn =

∫
f <∞.

Then ∫
E

f = lim
n→∞

∫
E

fn

for all measurable sets E ∈M. The conclusion need not hold if limn→∞
∫
fn =∫

f. Hint: “Fatou times two.”

Exercise 10.24. Give examples of measurable functions {fn} on R such that
fn decreases to 0 uniformly yet

∫
fndm = ∞ for all n. Also give an example

of a sequence of measurable functions {gn} on [0, 1] such that gn → 0 while∫
gndm = 1 for all n.

Exercise 10.25. Suppose {an}∞n=−∞ ⊂ C is a summable sequence (i.e.∑∞
n=−∞ |an| < ∞), then f(θ) :=

∑∞
n=−∞ ane

inθ is a continuous function for
θ ∈ R and

an =
1

2π

∫ π

−π
f(θ)e−inθdθ.

Exercise 10.26. For any function f ∈ L1 (m) , show x ∈
R→

∫
(−∞,x]

f (t) dm (t) is continuous in x. Also find a finite measure, µ,

on BR such that x→
∫

(−∞,x]
f (t) dµ (t) is not continuous.
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Exercise 10.27. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is
wrong by a factor of −1 and the sum is on k = 1 to ∞. In part (e), s should be
taken to be a. You may also freely use the Taylor series expansion

(1− z)−1/2 =

∞∑
n=0

(2n− 1)!!

2nn!
zn =

∞∑
n=0

(2n)!

4n (n!)
2 z

n for |z| < 1.

Exercise 10.28. Prove Lemma 10.64.





11

Functional Forms of the π – λ Theorem

In this chapter we will develop a very useful function analogue of the π – λ
theorem. The results in this section will be used often in the sequel.

11.1 Multiplicative System Theorems

Notation 11.1 Let Ω be a set and H be a subset of the bounded real valued
functions on Ω. We say that H is closed under bounded convergence if; for
every sequence, {fn}∞n=1 ⊂ H, satisfying:

1. there exists M <∞ such that |fn (ω)| ≤M for all ω ∈ Ω and n ∈ N,
2. f (ω) := limn→∞ fn (ω) exists for all ω ∈ Ω, then f ∈ H.

A subset, M, of H is called a multiplicative system if M is closed under
finite products.

The following result may be found in Dellacherie [2, p. 14]. The style of
proof given here may be found in Janson [10, Appendix A., p. 309].

Theorem 11.2 (Dynkin’s Multiplicative System Theorem). Suppose
that H is a vector subspace of bounded functions from Ω to R which contains
the constant functions and is closed under bounded convergence. If M ⊂ H is
a multiplicative system, then H contains all bounded σ (M) – measurable func-
tions. In short, σ (M)b ⊂ H where we are using σ (M)b denote the bounded real
valued σ (M) – measurable functions on Ω.

Proof. In this proof, we may (and do) assume that H is the smallest sub-
space of bounded functions onΩ which contains the constant functions, contains
M, and is closed under bounded convergence. (As usual such a space exists by
taking the intersection of all such spaces.) The remainder of the proof will be
broken into four steps.

Step 1. (H is an algebra of functions.) For f ∈ H, let Hf :=
{g ∈ H : gf ∈ H} . The reader will now easily verify that Hf is a linear sub-
space of H, 1 ∈ Hf , and Hf is closed under bounded convergence. Moreover if
f ∈M, since M is a multiplicative system, M ⊂ Hf . Hence by the definition of
H, H = Hf , i.e. fg ∈ H for all f ∈ M and g ∈ H. Having proved this it now
follows for any f ∈ H that M ⊂ Hf and therefore as before, Hf = H. Thus we
may conclude that fg ∈ H whenever f, g ∈ H, i.e. H is an algebra of functions.

Step 2. (B := {A ⊂ Ω : 1A ∈ H} is a σ – algebra.) Using the fact that H
is an algebra containing constants, the reader will easily verify that B is closed
under complementation, finite intersections, and contains Ω, i.e. B is an algebra.
Using the fact that H is closed under bounded convergence, it follows that B is
closed under increasing unions and hence that B is σ – algebra.

Step 3. (Bb ⊂ H, i.e. H contains all bounded B – measurable functions.)
Since H is a vector space and H contains 1A for all A ∈ B, H contains all B
– measurable simple functions. Since every bounded B – measurable function
may be written as a bounded limit of such simple functions (see Theorem 9.39),
it follows that H contains all bounded B – measurable functions.

Step 4. (σ (M) ⊂ B.) Let ϕn (x) = 0 ∨ [(nx) ∧ 1] (see Figure 11.1 below)
so that ϕn (x) ↑ 1x>0. Given f ∈ M and a ∈ R, let Fn := ϕn (f − a) and
M := supω∈Ω |f (ω)− a| . By the Weierstrass approximation Theorem 7.36, we
may find polynomial functions, pl (x) such that pl → ϕn uniformly on [−M,M ] .
Since pl is a polynomial and H is an algebra, pl (f − a) ∈ H for all l. Moreover,
pl ◦ (f − a)→ Fn uniformly as l→∞, from with it follows that Fn ∈ H for all
n. Since, Fn ↑ 1{f>a} it follows that 1{f>a} ∈ H, i.e. {f > a} ∈ B. As the sets
{f > a} with a ∈ R and f ∈M generate σ (M) , it follows that σ (M) ⊂ B.

Fig. 11.1. Plots of ϕ1, ϕ2 and ϕ3.

Step 5. From steps 3. and 4. we have, σ (M)b ⊂ Bb ⊂ H which completes
the proof.
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Corollary 11.3. Suppose H is a subspace of bounded real valued functions such
that 1 ∈ H and H is closed under bounded convergence. If P ⊂ 2Ω is a mul-
tiplicative class such that 1A ∈ H for all A ∈ P, then H contains all bounded
σ(P) – measurable functions.

Proof. LetM = {1}∪{1A : A ∈ P} . ThenM ⊂ H is a multiplicative system
and the proof is completed with an application of Theorem 11.2.

Example 11.4. Suppose µ and ν are two probability measure on (Ω,B) such
that ∫

Ω

fdµ =

∫
Ω

fdν (11.1)

for all f in a multiplicative subset, M, of bounded measurable functions on Ω.
Then µ = ν on σ (M) . Indeed, apply Theorem 11.2 with H being the bounded
measurable functions on Ω such that Eq. (11.1) holds. In particular if M =
{1} ∪ {1A : A ∈ P} with P being a multiplicative class we learn that µ = ν on
σ (M) = σ (P) .

Example 11.5. Suppose µ is a measure and ρ ∈ L1 (µ) = L1 (Ω,B, µ) (ρ is a
complex integrable function). Suppose that

∫
Ω
fρdµ = 0 for all f in a multi-

plicative subset, M, of bounded real measurable functions on Ω and there exists
fn ∈ M such that fn → 1 boundedly. If B = σ (M) , then by Theorem 11.2,∫
Ω
fρdµ = 0 for all bounded real measurable functions on (Ω,B) . Using the

linearity of the integral it now follows that
∫
Ω
fρdµ = 0 for all bounded complex

measurable functions on (Ω,B) . Taking

f = sgn(ρ) =

{ ρ̄
ρ if ρ 6= 0

1 if ρ = 0

implies,

0 =

∫
Ω

|ρ| 1ρ 6=0dµ =

∫
Ω

|ρ| dµ,

i.e. ρ = 0 a.e.

Example 11.6. Let us continue the notation of Example 11.5 but special-
ize to the case that Ω = R and B = BR. In this case we might take
M =

{
1(a,b] : −∞ < a < b <∞

}
or M = Cc (R,R) . In the first case we then

conclude that
∫

(a,b]
ρdµ = 0 for all −∞ < a < b < ∞ implies ρ = 0 (µ – a.e.)

and in the second if
∫
R fρdµ = 0 for all f ∈ Cc (R,R) , then ρ = 0 (µ – a.e.).

See Corollary 11.9 below where it is shown that σ (Cc (R,R)) = BR.

Exercise 11.1. Let Ω := {1, 2, 3, 4} and M := {1A, 1B} where A := {1, 2} and
B := {2, 3} .

a) Show σ (M) = 2Ω .

b) Find two distinct probability measures, µ and ν on 2Ω such that µ (A) =
ν (A) and µ (B) = ν (B) , i.e.∫

Ω

fdµ =

∫
Ω

fdν (11.2)

holds for all f ∈M.

Moral: the assumption that M is multiplicative can not be dropped from
multiplicative system theorem.

Here is a complex version of Theorem 11.2.

Theorem 11.7 (Complex Multiplicative System Theorem). Suppose H
is a complex linear subspace of the bounded complex functions on Ω, 1 ∈ H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M ⊂ H is multiplicative system which is closed under conjugation, then H
contains all bounded complex valued σ(M)-measurable functions.

Proof. Let M0 = spanC(M∪ {1}) be the complex span of M. As the reader
should verify, M0 is an algebra, M0 ⊂ H, M0 is closed under complex conjuga-
tion and σ (M0) = σ (M) . Let

HR := {f ∈ H : f is real valued} and

MR
0 := {f ∈M0 : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and MR

0 ⊂ HR. Moreover, MR
0 is a multiplicative

system (as the reader should check) and therefore by Theorem 11.2, HR contains
all bounded σ

(
MR

0

)
– measurable real valued functions. Since H and M0 are

complex linear spaces closed under complex conjugation, for any f ∈ H or
f ∈ M0, the functions Re f = 1

2

(
f + f̄

)
and Im f = 1

2i

(
f − f̄

)
are in H or

M0 respectively. Therefore M0 = MR
0 + iMR

0 , σ
(
MR

0

)
= σ (M0) = σ (M) , and

H = HR + iHR. Hence if f : Ω → C is a bounded σ (M) – measurable function,
then f = Re f + i Im f ∈ H since Re f and Im f are in HR.

Lemma 11.8. Suppose that −∞ < a < b < ∞ and let Trig(R) ⊂
C (R,C) be the complex linear span of

{
x→ eiλx : λ ∈ R

}
. Then there exists

fn ∈ Cc (R, [0, 1]) and gn ∈Trig(R) such that limn→∞ fn (x) = 1(a,b] (x) =
limn→∞ gn (x) for all x ∈ R.

Proof. The assertion involving fn ∈ Cc (R, [0, 1]) was the content of one of
your homework assignments. For the assertion involving gn ∈Trig(R) , it will
suffice to show that any f ∈ Cc (R) may be written as f (x) = limn→∞ gn (x)
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for some {gn} ⊂Trig(R) where the limit is uniform for x in compact subsets of
R.

So suppose that f ∈ Cc (R) and L > 0 such that f (x) = 0 if |x| ≥ L/4.
Then

fL (x) :=

∞∑
n=−∞

f (x+ nL)

is a continuous L – periodic function on R, see Figure 11.2. If ε > 0 is given,

Fig. 11.2. This is plot of f8 (x) where f (x) =
(
1− x2

)
1|x|≤1. The center hump by

itself would be the plot of f (x) .

we may apply Theorem 7.42 to find Λ ⊂⊂ Z such that∣∣∣∣∣fL
(
L

2π
x

)
−
∑
α∈Λ

aλe
iαx

∣∣∣∣∣ ≤ ε for all x ∈ R,

wherein we have use the fact that x → fL
(
L
2πx
)

is a 2π – periodic function of
x. Equivalently we have,

max
x

∣∣∣∣∣fL (x)−
∑
α∈Λ

aλe
i 2παL x

∣∣∣∣∣ ≤ ε.
In particular it follows that fL (x) is a uniform limit of functions from Trig(R) .
Since limL→∞ fL (x) = f (x) uniformly on compact subsets of R, it is easy to

conclude there exists gn ∈Trig(R) such that limn→∞ gn (x) = f (x) uniformly
on compact subsets of R.

Corollary 11.9. Each of the following σ – algebras on Rd are equal to BRd ;

1.M1 := σ (∪ni=1 {x→ f (xi) : f ∈ Cc (R)}) ,
2.M2 := σ (x→ f1 (x1) . . . fd (xd) : fi ∈ Cc (R))
3.M3 = σ

(
Cc
(
Rd
))
, and

4.M4 := σ
({
x→ eiλ·x : λ ∈ Rd

})
.

Proof. As the functions defining each Mi are continuous and hence Borel
measurable, it follows thatMi ⊂ BRd for each i. So to finish the proof it suffices
to show BRd ⊂Mi for each i.
M1 case. Let a, b ∈ R with −∞ < a < b < ∞. By Lemma 11.8, there

exists fn ∈ Cc (R) such that limn→∞ fn = 1(a,b]. Therefore it follows that
x → 1(a,b] (xi) is M1 – measurable for each i. Moreover if −∞ < ai < bi < ∞
for each i, then we may conclude that

x→
d∏
i=1

1(ai,bi] (xi) = 1(a1,b1]×···×(ad,bd] (x)

is M1 – measurable as well and hence (a1, b1] × · · · × (ad, bd] ∈ M1. As such
sets generate BRd we may conclude that BRd ⊂M1.

and therefore M1 = BRd .
M2 case. As above, we may find fi,n → 1(ai,bi] as n→∞ for each 1 ≤ i ≤ d

and therefore,

1(a1,b1]×···×(ad,bd] (x) = lim
n→∞

f1,n (x1) . . . fd,n (xd) for all x ∈ Rd.

This shows that 1(a1,b1]×···×(ad,bd] is M2 – measurable and therefore (a1, b1] ×
· · · × (ad, bd] ∈M2.
M3 case. This is easy since BRd =M2 ⊂M3.
M4 case. By Lemma 11.8 here exists gn ∈Trig(R) such that limn→∞ gn =

1(a,b]. Since x→ gn (xi) is in the span
{
x→ eiλ·x : λ ∈ Rd

}
for each n, it follows

that x → 1(a,b] (xi) is M4 – measurable for all −∞ < a < b < ∞. Therefore,
just as in the proof of case 1., we may now conclude that BRd ⊂M4.

Corollary 11.10. Suppose that H is a subspace of complex valued functions on
Rd which is closed under complex conjugation and bounded convergence. If H
contains any one of the following collection of functions;

1. M := {x→ f1 (x1) . . . fd (xd) : fi ∈ Cc (R)}
2. M := Cc

(
Rd
)
, or

3. M :=
{
x→ eiλ·x : λ ∈ Rd

}
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then H contains all bounded complex Borel measurable functions on Rd.

Proof. Observe that if f ∈ Cc (R) such that f (x) = 1 in a neighborhood
of 0, then fn (x) := f (x/n) → 1 as n → ∞. Therefore in cases 1. and 2., H
contains the constant function, 1, since

1 = lim
n→∞

fn (x1) . . . fn (xd) .

In case 3, 1 ∈ M ⊂ H as well. The result now follows from Theorem 11.7 and
Corollary 11.9.

Proposition 11.11 (Change of Variables Formula). Suppose that −∞ <
a < b < ∞ and u : [a, b] → R is a continuously differentiable function. Let
[c, d] = u ([a, b]) where c = minu ([a, b]) and d = maxu ([a, b]). (By the interme-
diate value theorem u ([a, b]) is an interval.) Then for all bounded measurable
functions, f : [c, d]→ R we have∫ u(b)

u(a)

f (x) dx =

∫ b

a

f (u (t)) u̇ (t) dt. (11.3)

Moreover, Eq. (11.3) is also valid if f : [c, d]→ R is measurable and∫ b

a

|f (u (t))| |u̇ (t)| dt <∞. (11.4)

Proof. Let H denote the space of bounded measurable functions such that
Eq. (11.3) holds. It is easily checked that H is a linear space closed under
bounded convergence. Next we show that M = C ([c, d] ,R) ⊂ H which cou-
pled with Corollary 11.10 will show that H contains all bounded measurable
functions from [c, d] to R.

If f : [c, d] → R is a continuous function and let F be an anti-derivative of
f. Then by the fundamental theorem of calculus,∫ b

a

f (u (t)) u̇ (t) dt =

∫ b

a

F ′ (u (t)) u̇ (t) dt

=

∫ b

a

d

dt
F (u (t)) dt = F (u (t)) |ba

= F (u (b))− F (u (a)) =

∫ u(b)

u(a)

F ′ (x) dx =

∫ u(b)

u(a)

f (x) dx.

Thus M ⊂ H and the first assertion of the proposition is proved.
Now suppose that f : [c, d]→ R is measurable and Eq. (11.4) holds. For M <

∞, let fM (x) = f (x) · 1|f(x)|≤M – a bounded measurable function. Therefore
applying Eq. (11.3) with f replaced by |fM | shows,

∣∣∣∣∣
∫ u(b)

u(a)

|fM (x)| dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

|fM (u (t))| u̇ (t) dt

∣∣∣∣∣ ≤
∫ b

a

|fM (u (t))| |u̇ (t)| dt.

Using the MCT, we may let M ↑ ∞ in the previous inequality to learn∣∣∣∣∣
∫ u(b)

u(a)

|f (x)| dx

∣∣∣∣∣ ≤
∫ b

a

|f (u (t))| |u̇ (t)| dt <∞.

Now apply Eq. (11.3) with f replaced by fM to learn∫ u(b)

u(a)

fM (x) dx =

∫ b

a

fM (u (t)) u̇ (t) dt.

Using the DCT we may now let M → ∞ in this equation to show that Eq.
(11.3) remains valid.

Exercise 11.2. Suppose that u : R→ R is a continuously differentiable func-
tion such that u̇ (t) ≥ 0 for all t and limt→±∞ u (t) = ±∞. Show that∫

R
f (x) dx =

∫
R
f (u (t)) u̇ (t) dt (11.5)

for all measurable functions f : R→ [0,∞] . In particular applying this result
to u (t) = at+ b where a > 0 implies,∫

R
f (x) dx = a

∫
R
f (at+ b) dt.

Definition 11.12. The Fourier transform or characteristic function of
a finite measure, µ, on

(
Rd,BRd

)
, is the function, µ̂ : Rd → C defined by

µ̂ (λ) :=

∫
Rd
eiλ·xdµ (x) for all λ ∈ Rd

Corollary 11.13. Suppose that µ and ν are two probability measures on(
Rd,BRd

)
. Then any one of the next three conditions implies that µ = ν;

1.
∫
Rd f1 (x1) . . . fd (xd) dν (x) =

∫
Rd f1 (x1) . . . fd (xd) dµ (x) for all fi ∈

Cc (R) .
2.
∫
Rd f (x) dν (x) =

∫
Rd f (x) dµ (x) for all f ∈ Cc

(
Rd
)
.

3. ν̂ = µ̂.

Item 3. asserts that the Fourier transform is injective.
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Proof. Let H be the collection of bounded complex measurable functions
from Rd to C such that ∫

Rd
fdµ =

∫
Rd
fdν. (11.6)

It is easily seen that H is a linear space closed under complex conjugation and
bounded convergence (by the DCT). Since H contains one of the multiplicative
systems appearing in Corollary 11.10, it contains all bounded Borel measurable
functions form Rd → C. Thus we may take f = 1A with A ∈ BRd in Eq. (11.6)
to learn, µ (A) = ν (A) for all A ∈ BRd .

In many cases we can replace the condition in item 3. of Corollary 11.13 by;∫
Rd
eλ·xdµ (x) =

∫
Rd
eλ·xdν (x) for all λ ∈ U, (11.7)

where U is a neighborhood of 0 ∈ Rd. In order to do this, one must assume
at least assume that the integrals involved are finite for all λ ∈ U. The idea
is to show that Condition 11.7 implies ν̂ = µ̂. You are asked to carry out this
argument in Exercise 11.3 making use of the following lemma.

Lemma 11.14 (Analytic Continuation). Let ε > 0 and Sε :=
{x+ iy ∈ C : |x| < ε} be an ε strip in C about the imaginary axis. Sup-
pose that h : Sε → C is a function such that for each b ∈ R, there exists
{cn (b)}∞n=0 ⊂ C such that

h (z + ib) =

∞∑
n=0

cn (b) zn for all |z| < ε. (11.8)

If cn (0) = 0 for all n ∈ N0, then h ≡ 0.

Proof. It suffices to prove the following assertion; if for some b ∈ R we know
that cn (b) = 0 for all n, then cn (y) = 0 for all n and y ∈ (b− ε, b+ ε) . We
now prove this assertion.

Let us assume that b ∈ R and cn (b) = 0 for all n ∈ N0. It then follows
from Eq. (11.8) that h (z + ib) = 0 for all |z| < ε. Thus if |y − b| < ε, we
may conclude that h (x+ iy) = 0 for x in a (possibly very small) neighborhood
(−δ, δ) of 0. Since

∞∑
n=0

cn (y)xn = h (x+ iy) = 0 for all |x| < δ,

it follows that

0 =
1

n!

dn

dxn
h (x+ iy) |x=0 = cn (y)

and the proof is complete.

11.2 Exercises

Exercise 11.3. Suppose ε > 0 and X and Y are two random variables such
that E

[
etX
]

= E
[
etY
]
<∞ for all |t| ≤ ε. Show;

1. E
[
eε|X|

]
and E

[
eε|Y |

]
are finite.

2. E
[
eitX

]
= E

[
eitY

]
for all t ∈ R. Hint: Consider h (z) := E

[
ezX

]
−E

[
ezY
]

for z ∈ Sε. Now show for |z| ≤ ε and b ∈ R, that

h (z + ib) = E
[
eibXezX

]
− E

[
eibY ezY

]
=

∞∑
n=0

cn (b) zn (11.9)

where

cn (b) :=
1

n!

(
E
[
eibXXn

]
− E

[
eibY Y n

])
. (11.10)

3. Conclude from item 2. that X
d
= Y, i.e. that LawP (X) = LawP (Y ) .

Exercise 11.4. Let (Ω,B, P ) be a probability space and X,Y : Ω → R be a
pair of random variables such that

E [f (X) g (Y )] = E [f (X) g (X)]

for every pair of bounded measurable functions, f, g : R→ R. Show
P (X = Y ) = 1. Hint: Let H denote the bounded Borel measurable functions,
h : R2 → R such that

E [h (X,Y )] = E [h (X,X)] .

Use the multiplicative systems Theorem 11.2 to show H is the vector space of
all bounded Borel measurable functions. Then take h (x, y) = 1{x=y}.

Exercise 11.5 (Density of A – simple functions). Let (Ω,B, P ) be a prob-
ability space and assume that A is a sub-algebra of B such that B = σ (A) . Let
H denote the bounded measurable functions f : Ω → R such that for every ε > 0
there exists an an A – simple function1, ϕ : Ω → R such that E |f − ϕ| < ε.
Show H consists of all bounded measurable functions, f : Ω → R. Hint: let M
denote the collection of A – simple functions.

Corollary 11.15. Suppose that (Ω,B, P ) is a probability space, {Xn}∞n=1 is a
collection of random variables on Ω, and B∞ := σ (X1, X2, X3, . . . ) . Then for
all ε > 0 and all bounded B∞ – measurable functions, f : Ω → R, there exists
an n ∈ N and a bounded BRn – measurable function G : Rn → R such that
E |f −G (X1, . . . , Xn)| < ε. Moreover we may assume that supx∈Rn |G (x)| ≤
M := supω∈Ω |f (ω)| .
1 Recall from Definition 7.10 than f is an A – simple function if f is a simple function

such that f−1 ({y}) ∈ A for all y ∈ R.
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Proof. Apply Exercise 11.5 with A := ∪∞n=1σ (X1, . . . , Xn) in order to find
an A – measurable simple function, ϕ, such that E |f − ϕ| < ε. By the definition
of A we know that ϕ is σ (X1, . . . , Xn) – measurable for some n ∈ N. It now
follows by the factorization Lemma 9.40 that ϕ = G (X1, . . . , Xn) for some BRn
– measurable function G : Rn → R. If necessary, replace G by [G ∧M ]∨ (−M)
in order to insure supx∈Rn |G (x)| ≤M.

Proposition 11.16 (Density of A in B = σ (A)). Let (Ω,B, P ) be a proba-
bility space and assume that A is a sub-algebra of B such that B = σ (A) . Then
to each B ∈ B and ε > 0 there exists a D ∈ A such that

P (B∆D) = E |1B − 1D| < ε.

Proof. Let f = 1B and choose an A – simple function, ϕ : Ω → R such
that E |f − ϕ| < ε by Exercise 11.5. Let λ0 = 0 and {λi}ni=1 be an enumeration
of ϕ (Ω) \ {0} so that ϕ =

∑n
i=0 λi1Ai where Ai := {ϕ = λi} . Then

E |1B − ϕ| =
n∑
i=0

E [1Ai |1B − ϕ|] =

n∑
i=0

E [1Ai |1B − λi|]

=

n∑
i=0

E
[
1Ai∩B |1− λi|+ 1Ai\B |λi|

]
= P (A0 ∩B) +

n∑
i=1

[|1− λi|P (B ∩Ai) + |λi|P (Ai \B)] (11.11)

≥ P (A0 ∩B) +

n∑
i=1

[|1− λi|+ |λi|] min {P (B ∩Ai) , P (Ai \B)}

≥ P (A0 ∩B) +

n∑
i=1

min {P (B ∩Ai) , P (Ai \B)} (11.12)

where the last equality is a consequence of the fact that 1 ≤ |λi|+ |1− λi| .
Now let ψ =

∑n
i=0 αi1Ai where α0 = 0 and for 1 ≤ i ≤ n,

αi =

{
1 if P (Ai \B) ≤ P (B ∩Ai)
0 if P (Ai \B) > P (B ∩Ai)

.

From Eq. (11.11) with ϕ replaced by ψ and λi by αi for all i Then show that

E |1B − ψ| = P (A0 ∩B) +

n∑
i=1

min {P (B ∩Ai) , P (Ai \B)} ≤ E |1B − ϕ| .

where the last equality is a conseqnece of Eq. (11.12). Since ψ = 1D where
D = ∪i:αi=1

Ai ∈ A we have shown there exists a D ∈ A such that

P (B∆D) = E |1B − 1D| < ε.

Proposition 11.17. Suppose that {(Xi,Bi)}ni=1 are measurable spaces and for
each i, Mi is a multiplicative system of real bounded measurable functions on
Xi such that σ (Mi) = Bi and there exist χn ∈Mi such that χn → 1 boundedly
as n→∞. Given fi : Xi → R let f1 ⊗ · · · ⊗ fn : X1 × · · · ×Xn → R be defined
by

(f1 ⊗ · · · ⊗ fn) (x1, . . . , xn) = f1 (x1) . . . fn (xn) .

Show
M1 ⊗ · · · ⊗Mn := {f1 ⊗ · · · ⊗ fn : fi ∈Mi for 1 ≤ i ≤ n}

is a multiplicative system of bounded measurable functions on
(X := X1 × · · · ×Xn,B := B1 ⊗ · · · ⊗ Bn) such that σ (M1 ⊗ · · · ⊗Mn) = B.

Proof. I will give the proof in case that n = 2. The generalization to higher
n is straight forward. Let πi : X → Xi be the projection maps, π1 (x1, x2) = x1

and π2 (x1, x2) = x2. For fi ∈Mi, fi ◦πi : X → R is the composition of measur-
able functions and hence measurable. Therefore f1⊗ f2 = (f1 ◦ π1) · (f2 ◦ π2) is
a bounded B1⊗B2 – measurable function and therefore σ (M1 ⊗M2) ⊂ B1⊗B2.
Since it is clear that M1 ⊗M2 is a multiplicative system, to finish the proof we
must show B1 ⊗ B2 ⊂ σ (M1 ⊗M2) which we now do.

Let g ∈M2 and let

Hg := {f ∈ (B1)b : f ⊗ g is σ (M1 ⊗M2) – measurable} .

You may easily check that Hg is closed under bounded convergence, M1 ⊂ Hg,
and Hg contains the constant functions. Since σ (M1) = B1 it now follows by
Dynkin’s multiplicative systems Theorem 11.2, that Hg = (B1)b . Thus we have
shown that (B1)b⊗M2 consists of σ (M1 ⊗M2) – measurable functions. By the
same logic we may now conclude that (B1)b ⊗ (B2)b consists of σ (M1 ⊗M2)
– measurable functions as well. In particular this shows for any Ai ∈ Bi that
1A1×A2

= 1A1
⊗ 1A2

is σ (M1 ⊗M2) – measurable and therefore A1 × A2 ∈
σ (M1 ⊗M2) for all Ai ∈ Bi. As the set {A1 ×A2 : Ai ∈ Bi} generate B1 ⊗ B2

we may conclude that B1 ⊗ B2 ⊂ σ (M1 ⊗M2) .

11.3 A Strengthening of the Multiplicative System
Theorem*

Notation 11.18 We say that H ⊂ `∞ (Ω,R) is closed under monotone
convergence if; for every sequence, {fn}∞n=1 ⊂ H, satisfying:
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1. there exists M <∞ such that 0 ≤ fn (ω) ≤M for all ω ∈ Ω and n ∈ N,
2. fn (ω) is increasing in n for all ω ∈ Ω, then f := limn→∞ fn ∈ H.

Clearly if H is closed under bounded convergence then it is also closed under
monotone convergence. I learned the proof of the converse from Pat Fitzsim-
mons but this result appears in Sharpe [20, p. 365].

Proposition 11.19. *Let Ω be a set. Suppose that H is a vector subspace of
bounded real valued functions from Ω to R which is closed under monotone con-
vergence. Then H is closed under uniform convergence as well, i.e. {fn}∞n=1 ⊂ H
with supn∈N supω∈Ω |fn (ω)| <∞ and fn → f, then f ∈ H.

Proof. Let us first assume that {fn}∞n=1 ⊂ H such that fn converges uni-
formly to a bounded function, f : Ω → R. Let ‖f‖∞ := supω∈Ω |f (ω)| . Let
ε > 0 be given. By passing to a subsequence if necessary, we may assume
‖f − fn‖∞ ≤ ε2−(n+1). Let

gn := fn − δn +M

with δn and M constants to be determined shortly. We then have

gn+1 − gn = fn+1 − fn + δn − δn+1 ≥ −ε2−(n+1) + δn − δn+1.

Taking δn := ε2−n, then δn − δn+1 = ε2−n (1− 1/2) = ε2−(n+1) in which case
gn+1 − gn ≥ 0 for all n. By choosing M sufficiently large, we will also have
gn ≥ 0 for all n. Since H is a vector space containing the constant functions,
gn ∈ H and since gn ↑ f +M, it follows that f = f +M −M ∈ H. So we have
shown that H is closed under uniform convergence.

This proposition immediately leads to the following strengthening of Theo-
rem 11.2.

Theorem 11.20. *Suppose that H is a vector subspace of bounded real val-
ued functions on Ω which contains the constant functions and is closed under
monotone convergence. If M ⊂ H is multiplicative system, then H contains all
bounded σ (M) – measurable functions.

Proof. Proposition 11.19 reduces this theorem to Theorem 11.2.

11.4 The Bounded Approximation Theorem*

This section should be skipped until needed (if ever!).

Notation 11.21 Given a collection of bounded functions, M, from a set, Ω, to
R, let M↑ (M↓) denote the the bounded monotone increasing (decreasing) limits
of functions from M. More explicitly a bounded function, f : Ω → R is in M↑
respectively M↓ iff there exists fn ∈M such that fn ↑ f respectively fn ↓ f.

Theorem 11.22 (Bounded Approximation Theorem*). Let (Ω,B, µ) be
a finite measure space and M be an algebra of bounded R – valued measurable
functions such that:

1. σ (M) = B,
2. 1 ∈M, and
3. |f | ∈M for all f ∈M.

Then for every bounded σ (M) measurable function, g : Ω → R, and every
ε > 0, there exists f ∈M↓ and h ∈M↑ such that f ≤ g ≤ h and µ (h− f) < ε.2

Proof. Let us begin with a few simple observations.

1. M is a “lattice” – if f, g ∈M then

f ∨ g =
1

2
(f + g + |f − g|) ∈M

and

f ∧ g =
1

2
(f + g − |f − g|) ∈M.

2. If f, g ∈M↑ or f, g ∈M↓ then f + g ∈M↑ or f + g ∈M↓ respectively.
3. If λ ≥ 0 and f ∈M↑ (f ∈M↓), then λf ∈M↑ (λf ∈M↓) .
4. If f ∈M↑ then −f ∈M↓ and visa versa.
5. If fn ∈M↑ and fn ↑ f where f : Ω → R is a bounded function, then f ∈M↑.

Indeed, by assumption there exists fn,i ∈ M such that fn,i ↑ fn as i→∞.
By observation (1), gn := max {fij : i, j ≤ n} ∈M. Moreover it is clear that
gn ≤ max {fk : k ≤ n} = fn ≤ f and hence gn ↑ g := limn→∞ gn ≤ f. Since
fij ≤ g for all i, j, it follows that fn = limj→∞ fnj ≤ g and consequently
that f = limn→∞ fn ≤ g ≤ f. So we have shown that gn ↑ f ∈M↑.

Now let H denote the collection of bounded measurable functions which
satisfy the assertion of the theorem. Clearly, M ⊂ H and in fact it is also easy
to see that M↑ and M↓ are contained in H as well. For example, if f ∈ M↑, by
definition, there exists fn ∈ M ⊂ M↓ such that fn ↑ f. Since M↓ 3 fn ≤ f ≤
f ∈ M↑ and µ (f − fn) → 0 by the dominated convergence theorem, it follows
that f ∈ H. As similar argument shows M↓ ⊂ H. We will now show H is a
vector sub-space of the bounded B = σ (M) – measurable functions.
H is closed under addition. If gi ∈ H for i = 1, 2, and ε > 0 is given, we

may find fi ∈M↓ and hi ∈M↑ such that fi ≤ gi ≤ hi and µ (hi − fi) < ε/2 for
i = 1, 2. Since h = h1 + h2 ∈M↑, f := f1 + f2 ∈M↓, f ≤ g1 + g2 ≤ h, and

µ (h− f) = µ (h1 − f1) + µ (h2 − f2) < ε,

2 Bruce: rework the Daniel integral section in the Analysis notes to stick to latticies
of bounded functions.
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it follows that g1 + g2 ∈ H.
H is closed under scalar multiplication. If g ∈ H then λg ∈ H for all

λ ∈ R. Indeed suppose that ε > 0 is given and f ∈ M↓ and h ∈ M↑ such that
f ≤ g ≤ h and µ (h− f) < ε. Then for λ ≥ 0, M↓ 3 λf ≤ λg ≤ λh ∈M↑ and

µ (λh− λf) = λµ (h− f) < λε.

Since ε > 0 was arbitrary, if follows that λg ∈ H for λ ≥ 0. Similarly, M↓ 3
−h ≤ −g ≤ −f ∈M↑ and

µ (−f − (−h)) = µ (h− f) < ε.

which shows −g ∈ H as well.
Because of Theorem 11.20, to complete this proof, it suffices to show H is

closed under monotone convergence. So suppose that gn ∈ H and gn ↑ g, where
g : Ω → R is a bounded function. Since H is a vector space, it follows that
0 ≤ δn := gn+1 − gn ∈ H for all n ∈ N. So if ε > 0 is given, we can find,
M↓ 3 un ≤ δn ≤ vn ∈ M↑ such that µ (vn − un) ≤ 2−nε for all n. By replacing
un by un∨0 ∈M↓ (by observation 1.), we may further assume that un ≥ 0. Let

v :=

∞∑
n=1

vn =↑ lim
N→∞

N∑
n=1

vn ∈M↑ (using observations 2. and 5.)

and for N ∈ N, let

uN :=

N∑
n=1

un ∈M↓ (using observation 2).

Then
∞∑
n=1

δn = lim
N→∞

N∑
n=1

δn = lim
N→∞

(gN+1 − g1) = g − g1

and uN ≤ g − g1 ≤ v. Moreover,

µ
(
v − uN

)
=

N∑
n=1

µ (vn − un) +

∞∑
n=N+1

µ (vn) ≤
N∑
n=1

ε2−n +

∞∑
n=N+1

µ (vn)

≤ ε+

∞∑
n=N+1

µ (vn) .

However, since

∞∑
n=1

µ (vn) ≤
∞∑
n=1

µ
(
δn + ε2−n

)
=

∞∑
n=1

µ (δn) + εµ (Ω)

=

∞∑
n=1

µ (g − g1) + εµ (Ω) <∞,

it follows that for N ∈ N sufficiently large that
∑∞
n=N+1 µ (vn) < ε. Therefore,

for this N, we have µ
(
v − uN

)
< 2ε and since ε > 0 is arbitrary, if follows

that g − g1 ∈ H. Since g1 ∈ H and H is a vector space, we may conclude that
g = (g − g1) + g1 ∈ H.

11.5 Exercises

Exercise 11.6 (Density of A in B = σ (A) , same as Proposition 11.16).
Keeping3 the same notation as in Exercise 11.5 but now take f = 1B for some
B ∈ B and given ε > 0, write ϕ =

∑n
i=0 λi1Ai where λ0 = 0, {λi}ni=1 is an

enumeration of ϕ (Ω) \ {0} , and Ai := {ϕ = λi} . Show; 1.

E |1B − ϕ| = P (A0 ∩B) +

n∑
i=1

[|1− λi|P (B ∩Ai) + |λi|P (Ai \B)] (11.13)

≥ P (A0 ∩B) +

n∑
i=1

min {P (B ∩Ai) , P (Ai \B)} . (11.14)

2. Now let ψ =
∑n
i=0 αi1Ai with

αi =

{
1 if P (Ai \B) ≤ P (B ∩Ai)
0 if P (Ai \B) > P (B ∩Ai)

.

Then show that

E |1B − ψ| = P (A0 ∩B) +

n∑
i=1

min {P (B ∩Ai) , P (Ai \B)} ≤ E |1B − ϕ| .

Observe that ψ = 1D where D = ∪i:αi=1
Ai ∈ A and so you have shown; for

every ε > 0 there exists a D ∈ A such that

P (B∆D) = E |1B − 1D| < ε.

Exercise 11.7 (This is Proposition 11.17). Suppose that {(Xi,Bi)}ni=1 are
measurable spaces and for each i, Mi is a multiplicative system of real bounded
measurable functions on Xi such that σ (Mi) = Bi and there exist χn ∈ Mi

such that χn → 1 boundedly as n → ∞. Given fi : Xi → R let f1 ⊗ · · · ⊗ fn :
X1 × · · · ×Xn → R be defined by

(f1 ⊗ · · · ⊗ fn) (x1, . . . , xn) = f1 (x1) . . . fn (xn) .

Show

3 This is already done in Proposition 11.16.
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M1 ⊗ · · · ⊗Mn := {f1 ⊗ · · · ⊗ fn : fi ∈Mi for 1 ≤ i ≤ n}
is a multiplicative system of bounded measurable functions on

(X := X1 × · · · ×Xn,B := B1 ⊗ · · · ⊗ Bn)

such that σ (M1 ⊗ · · · ⊗Mn) = B. (It is enough to write your solution in the
special case where n = 2.)

11.6 σ – Function Algebras (Older Version of above notes
from 280 Notes!!)

In this subsection, we are going to relate σ – algebras of subsets of a set X to
certain algebras of functions on X.

Example 11.23. Suppose M is a σ – algebra on X, then

`∞ (M,R) := {f ∈ `∞ (X,R) : f is M/BR – measurable} (11.15)

is a σ – function algebra. The next theorem will show that these are the only ex-
ample of σ – function algebras. (See Exercise ?? above for examples of function
algebras on X.)

The next theorem is the σ – algebra analogue of Exercise ??.

Theorem 11.24. Let H be a σ – function algebra on a set X. Then

1.M (H) is a σ – algebra on X.
2. H = `∞ (M (H) ,R) .
3. The map

M∈ {σ – algebras on X} → `∞ (M,R) ∈ {σ – function algebras on X}
(11.16)

is bijective with inverse given by H →M (H) .

Proof. Let M :=M (H) .

1. Since 0, 1 ∈ H, ∅, X ∈ M. If A ∈ M then, since H is a linear subspace of
`∞ (X,R) , 1Ac = 1− 1A ∈ H which shows Ac ∈M. If {An}∞n=1 ⊂M, then
since H is an algebra,

1∩Nn=1An
=

N∏
n=1

1An =: fN ∈ H

for all N ∈ N. Because H is closed under bounded convergence it follows
that

1∩∞n=1An
= lim
N→∞

fN ∈ H

and this implies ∩∞n=1An ∈M. Hence we have shown M is a σ – algebra.

2. Since H is an algebra, p (f) ∈ H for any f ∈ H and any polynomial p on R.
The Weierstrass approximation Theorem 32.39, asserts that polynomials on
R are uniformly dense in the space of continuous functions on any compact
subinterval of R. Hence if f ∈ H and ϕ ∈ C (R) , there exists polynomials
pn on R such that pn ◦ f (x) converges to ϕ ◦ f (x) uniformly (and hence
boundedly) in x ∈ X as n→∞. Therefore ϕ ◦ f ∈ H for all f ∈ H and ϕ ∈
C (R) and in particular |f | ∈ H and f± := |f |±f

2 ∈ H if f ∈ H. Fix an α ∈ R
and for n ∈ N let ϕn (t) := (t− α)

1/n
+ , where (t− α)+ := max {t− α, 0} .

Then ϕn ∈ C (R) and ϕn (t) → 1t>α as n → ∞ and the convergence is
bounded when t is restricted to any compact subset of R. Hence if f ∈ H
it follows that 1f>α = limn→∞ ϕn (f) ∈ H for all α ∈ R, i.e. {f > α} ∈ M
for all α ∈ R. Therefore if f ∈ H then f ∈ `∞ (M,R) and we have shown
H ⊂ `∞ (M,R) .
Conversely if f ∈ `∞ (M,R) , then for any α < β, {α < f ≤ β} ∈ M =
M (H) and so by assumption 1{α<f≤β} ∈ H. Combining this remark with
the approximation Theorem ?? and the fact that H is closed under bounded
convergence shows that f ∈ H. Hence we have shown `∞ (M,R) ⊂ H which
combined with H ⊂ `∞ (M,R) already proved shows H = `∞ (M (H) ,R) .
2′ (BRUCE: it suffices to use the results of Exercise 4.9 here.) Exercise 4.9,
there exists polynomials pm (x) such that

√
x = limn→∞ pn (x) uniformly

in x ∈ [0,M ] for any M < ∞. Therefore for any α ∈ R and M chosen

sufficiently large we have pn

(
(f − α)

2
)
→ |f − α| boundedly as n → ∞

and hence |f − α| ∈ H. Since (f − α)+ = |f−α|+(f−α)
2 , it follows that

(f − α)+ ∈ H. Similarly, we have (f − α)
1/2
+ = limn→∞ pn

(
(f − α)+

)
∈ H

and inductively it follows that (f − α)
1/2n

+ ∈ H for all n. Since (f − α)
1/2n

+

converges boundedly to 1{f>α}, it follows that 1{f>α} ∈ H, i.e. that
{f > α} ∈ M. Hence if f ∈ H, {f > α} ∈ M for all α ∈ R. Therefore
if f ∈ H then f ∈ `∞ (M,R) and we have shown H ⊂ `∞ (M,R) .
Conversely if f ∈ `∞ (M,R) , then for any α < β, {α < f ≤ β} ∈ M =
M (H) and so by assumption 1{α<f≤β} ∈ H. Combining this remark with
the approximation Theorem ?? and the fact that H is closed under bounded
convergence shows that f ∈ H. Hence we have shown `∞ (M,R) ⊂ H which
combined with H ⊂ `∞ (M,R) already proved shows H = `∞ (M (H) ,R) .

3. Items 1. and 2. shows the map in Eq. (11.16) is surjective. To see the map
is injective suppose M and F are two σ – algebras on X. If `∞ (M,R) =
`∞ (F ,R) , then

M = {A ⊂ X : 1A ∈ `∞ (M,R)}
= {A ⊂ X : 1A ∈ `∞ (F ,R)} = F

and the proof is complete.
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Notation 11.25 Suppose M is a subset of `∞ (X,R) .

1. Let H (M) denote the smallest subspace of `∞ (X,R) which contains M, the
constant functions, and is closed under bounded convergence.

2. Let Hσ (M) denote the smallest σ – function algebra containing M.

Theorem 11.26. Suppose M is a subset of `∞ (X,R) , then Hσ (M) =
`∞ (σ (M) ,R) or in other words the following diagram commutes:

M
t

−→ σ (M)
t

M ∈ {Subsets of `∞ (X,R) } −→ {σ – algebras on X} 3 M
↓ ↓ ↓ ↓

Hσ (M) ∈
{
σ– function algebras

on X

}
=

{
σ– function algebras

on X

}
3 `∞ (M,R) .

Proof. Since `∞ (σ (M) ,R) is σ – function algebra which contains M it
follows that

Hσ (M) ⊂ `∞ (σ (M) ,R) .

For the opposite inclusion, let

M =M (Hσ (M)) := {A ⊂ X : 1A ∈ Hσ (M)} .

By Theorem 11.24, M ⊂ Hσ (M) = `∞ (M,R) which implies that every f ∈M
is M – measurable. This then implies σ (M) ⊂M and therefore

`∞ (σ (M) ,R) ⊂ `∞ (M,R) = Hσ (M) .

Definition 11.27 (Multiplicative System). A collection of bounded real or
complex valued functions, M, on a set X is called a multiplicative system if
f · g ∈M whenever f and g are in M.

Theorem 11.28 (Dynkin’s Multiplicative System Theorem). Suppose
M ⊂ `∞ (X,R) is a multiplicative system, then

H (M) = Hσ (M) = `∞ (σ (M) ,R) . (11.17)

This can also be stated as follows.
Suppose H is a linear subspace of `∞(X,R) such that: 1 ∈ H, H is closed

under bounded convergence, and M ⊂ H. Then H contains all bounded real
valued σ(M)-measurable functions, i.e. `∞ (σ (M) ,R) ⊂ H.

(In words, the smallest subspace of bounded real valued functions on X which
contains M that is closed under bounded convergence is the same as the space
of bounded real valued σ (M) – measurable functions on X.)

Proof. The assertion thatHσ (M) = `∞ (σ (M) ,R) has already been proved
(without the assumption that M is multiplicative) in Theorem 11.26. Since any
σ – function algebra containing M is also a subspace of `∞ (X,R) which con-
tains the constant functions and is closed under bounded convergence (compare
with Exercise 11.13), it follows that H (M) ⊂ Hσ (M) . To complete the proof
it suffices to show the inclusion, H (M) ⊂ Hσ (M) , is an equality. We will
accomplish this below by showing H (M) is also a σ – function algebra.

For any f ∈ H := H (M) let

Hf := {g ∈ H : fg ∈ H} ⊂ H

and notice that Hf is a linear subspace of `∞ (X,R) which is closed under
bounded convergence. Moreover if f ∈ M, M ⊂ Hf since M is multiplicative.
Therefore Hf = H and we have shown that fg ∈ H whenever f ∈ M and
g ∈ H. Given this it now follows that M ⊂ Hf for any f ∈ H and by the
same reasoning just used, Hf = H. Since f ∈ H is arbitrary, we have shown
fg ∈ H for all f, g ∈ H, i.e. H is an algebra, which by the definition of H (M)
in Notation 11.25 contains the constant functions, i.e. H (M) is a σ – function
algebra.

Theorem 11.29 (Complex Multiplicative System Theorem). Suppose H
is a complex linear subspace of `∞(X,C) such that: 1 ∈ H, H is closed under
complex conjugation, and H is closed under bounded convergence. If M ⊂ H
is multiplicative system which is closed under conjugation, then H contains all
bounded complex valued σ(M)-measurable functions, i.e. `∞ (σ (M) ,C) ⊂ H.

Proof. Let M0 = spanC(M ∪ {1}) be the complex span of M. As the
reader should verify, M0 is an algebra, M0 ⊂ H, M0 is closed under com-
plex conjugation and that σ (M0) = σ (M) . Let HR := H ∩ `∞(X,R) and
MR

0 = M ∩ `∞(X,R). Then (you verify) MR
0 is a multiplicative system,

MR
0 ⊂ HR and HR is a linear space containing 1 which is closed under bounded

convergence. Therefore by Theorem 11.28, `∞
(
σ
(
MR

0

)
,R
)
⊂ HR. Since H

and M0 are complex linear spaces closed under complex conjugation, for any
f ∈ H or f ∈ M0, the functions Re f = 1

2

(
f + f̄

)
and Im f = 1

2i

(
f − f̄

)
are

in H (M0) or M0 respectively. Therefore H = HR + iHR, M0 = MR
0 + iMR

0 ,
σ
(
MR

0

)
= σ (M0) = σ (M) and

`∞ (σ (M) ,C) = `∞
(
σ
(
MR

0

)
,R
)

+ i`∞
(
σ
(
MR

0

)
,R
)

⊂ HR + iHR = H.

Definition 11.30. A collection of subsets, C, of X is a multiplicative
class(or a π – class) if C is closed under finite intersections.
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Corollary 11.31. Suppose H is a subspace of `∞(X,R) which is closed under
bounded convergence and 1 ∈ H. If C ⊂ 2X is a multiplicative class such that
1A ∈ H for all A ∈ C, then H contains all bounded σ(C) – measurable functions.

Proof. Let M = {1}∪{1A : A ∈ C} . Then M ⊂ H is a multiplicative system
and the proof is completed with an application of Theorem 11.28.

Corollary 11.32. Suppose that (X, d) is a metric space and BX = σ(τd) is the
Borel σ – algebra on X and H is a subspace of `∞(X,R) such that BC(X,R) ⊂
H and H is closed under bounded convergence4. Then H contains all bounded
BX – measurable real valued functions on X. (This may be stated as follows:
the smallest vector space of bounded functions which is closed under bounded
convergence and contains BC(X,R) is the space of bounded BX – measurable
real valued functions on X.)

Proof. Let V ∈ τd be an open subset of X and for n ∈ N let

fn(x) := min(n · dV c(x), 1) for all x ∈ X.

Notice that fn = ϕn ◦ dV c where ϕn(t) = min(nt, 1) (see Figure 11.3) which
is continuous and hence fn ∈ BC(X,R) for all n. Furthermore, fn converges
boundedly to 1dV c>0 = 1V as n→∞ and therefore 1V ∈ H for all V ∈ τ. Since
τ is a π – class, the result now follows by an application of Corollary 11.31.

Fig. 11.3. Plots of φ1, φ2 and φ3.

Here are some more variants of Corollary 11.32.

Proposition 11.33. Let (X, d) be a metric space, BX = σ(τd) be the Borel σ
– algebra and assume there exists compact sets Kk ⊂ X such that Ko

k ↑ X.
4 Recall that BC(X,R) are the bounded continuous functions on X.

Suppose that H is a subspace of `∞(X,R) such that Cc(X,R) ⊂ H (Cc(X,R) is
the space of continuous functions with compact support) and H is closed under
bounded convergence. Then H contains all bounded BX – measurable real valued
functions on X.

Proof. Let k and n be positive integers and set ψn,k(x) = min(1, n ·
d(Ko

k)
c(x)). Then ψn,k ∈ Cc(X,R) and {ψn,k 6= 0} ⊂ Ko

k . Let Hn,k denote

those bounded BX – measurable functions, f : X → R, such that ψn,kf ∈ H.
It is easily seen that Hn,k is closed under bounded convergence and that Hn,k
contains BC(X,R) and therefore by Corollary 11.32, ψn,kf ∈ H for all bounded
measurable functions f : X → R. Since ψn,kf → 1Ko

k
f boundedly as n → ∞,

1Ko
k
f ∈ H for all k and similarly 1Ko

k
f → f boundedly as k →∞ and therefore

f ∈ H.

Lemma 11.34. Suppose that (X, τ) is a locally compact second countable Haus-
dorff space.5 Then:

1. every open subset U ⊂ X is σ – compact. In fact U is still a locally compact
second countable Hausdorff space.

2. If F ⊂ X is a closed set, there exist open sets Vn ⊂ X such that Vn ↓ F as
n→∞.

3. To each open set U ⊂ X there exists fn ≺ U (i.e. fn ∈ Cc (U, [0, 1])) such
that limn→∞ fn = 1U .

4. BX = σ(Cc(X,R)), i.e. the σ – algebra generated by Cc(X) is the Borel σ
– algebra on X.

Proof.

1. Let U be an open subset of X, V be a countable base for τ and

VU := {W ∈ V : W̄ ⊂ U and W̄ is compact}.

For each x ∈ U, by Proposition 37.7, there exists an open neighborhood V
of x such that V̄ ⊂ U and V̄ is compact. Since V is a base for the topology
τ, there exists W ∈ V such that x ∈ W ⊂ V. Because W̄ ⊂ V̄ , it follows
that W̄ is compact and hence W ∈ VU . As x ∈ U was arbitrary, U = ∪VU .
This shows VU is a countable basis for the topology on U and that U is still
locally compact.
Let {Wn}∞n=1 be an enumeration of VU and set Kn := ∪nk=1W̄k. Then
Kn ↑ U as n → ∞ and Kn is compact for each n. This shows U is σ –
compact. (See Exercise 35.21.)

5 For example any separable locally compact metric space and in particular any open
subset of Rn.
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2. Let {Kn}∞n=1 be compact subsets of F c such that Kn ↑ F c as n → ∞ and
set Vn := Kc

n = X \Kn. Then Vn ↓ F and by Proposition 37.5, Vn is open
for each n.

3. Let U ⊂ X be an open set and {Kn}∞n=1 be compact subsets of U such that
Kn ↑ U. By Urysohn’s Lemma 37.8, there exist fn ≺ U such that fn = 1
on Kn. These functions satisfy, 1U = limn→∞ fn.

4. By item 3., 1U is σ(Cc(X,R)) – measurable for all U ∈ τ and hence τ ⊂
σ(Cc(X,R)). Therefore BX = σ(τ) ⊂ σ(Cc(X,R)). The converse inclusion
holds because continuous functions are always Borel measurable.

Here is a variant of Corollary 11.32.

Corollary 11.35. Suppose that (X, τ) is a second countable locally compact
Hausdorff space and BX = σ(τ) is the Borel σ – algebra on X. If H is a
subspace of `∞(X,R) which is closed under bounded convergence and contains
Cc(X,R), then H contains all bounded BX – measurable real valued functions
on X.

Proof. By Item 3. of Lemma 11.34, for every U ∈ τ the characteristic
function, 1U , may be written as a bounded pointwise limit of functions from
Cc (X,R) . Therefore 1U ∈ H for all U ∈ τ. Since τ is a π – class, the proof is
finished with an application of Corollary 11.31

11.6.1 Another (Better) Multiplicative System Theorem

Notation 11.36 Let Ω be a set and H be a subset of the bounded real valued
functions on Ω. We say that H is closed under bounded convergence if; for
every sequence, {fn}∞n=1 ⊂ H, satisfying:

1. there exists M <∞ such that |fn (ω)| ≤M for all ω ∈ Ω and n ∈ N,
2. f (ω) := limn→∞ fn (ω) exists for all ω ∈ Ω, then f ∈ H.

Similarly we say that H is closed under monotone convergence if; for
every sequence, {fn}∞n=1 ⊂ H, satisfying:

3. there exists M <∞ such that 0 ≤ fn (ω) ≤M for all ω ∈ Ω and n ∈ N,
4. fn (ω) is increasing in n for all ω ∈ Ω,

then f := limn→∞ fn ∈ H.

Clearly if H is closed under bounded convergence then it is also closed un-
der monotone convergence. I learned the following converse result from Pat
Fitzsimmons.

Proposition 11.37. Let Ω be a set. Suppose that H is a vector subspace of
bounded real valued functions from Ω to R which is closed under monotone con-
vergence. Then H is closed under uniform convergence as well, i.e. {fn}∞n=1 ⊂ H
with supn∈N supω∈Ω |fn (ω)| <∞ and fn → f, then f ∈ H.

Proof. Let us first assume that {fn}∞n=1 ⊂ H such that fn converges uni-
formly to a bounded function, f : Ω → R. Let ‖f‖∞ := supω∈Ω |f (ω)| . Let
ε > 0 be given. By passing to a subsequence if necessary, we may assume
‖f − fn‖∞ ≤ ε2−(n+1). Let

gn := fn − δn +M

with δn and M constants to be determined shortly. We then have

gn+1 − gn = fn+1 − fn + δn − δn+1 ≥ −ε2−(n+1) + δn − δn+1.

Taking δn := ε2−n, then δn − δn+1 = ε2−n (1− 1/2) = ε2−(n+1) in which case
gn+1 − gn ≥ 0 for all n. By choosing M sufficiently large, we will also have
gn ≥ 0 for all n. Since H is a vector space containing the constant functions,
gn ∈ H and since gn ↑ f +M, it follows that f = f +M −M ∈ H. So we have
shown that H is closed under uniform convergence.

Theorem 11.38 (Dynkin’s Multiplicative System Theorem (Old
Proof)). Suppose that H is a vector subspace of bounded functions from Ω
to R which contains the constant functions and is closed under monotone
convergence. If M is multiplicative system (i.e. M is a subset of H which
is closed under pointwise multiplication), then H contains all bounded σ (M) –
measurable functions.

Proof. Let
L := {A ⊂ Ω : 1A ∈ H} .

We then have Ω ∈ L since 1Ω = 1 ∈ H, if A,B ∈ L with A ⊂ B then B \A ∈ L
since 1B\A = 1B − 1A ∈ H, and if An ∈ L with An ↑ A, then A ∈ L because
1An ∈ H and 1An ↑ 1A ∈ H. Therefore L is λ – system.

Let ϕn (x) = 0 ∨ [(nx) ∧ 1] (see Figure 11.4 below) so that ϕn (x) ↑ 1x>0.
Given f1, f2, . . . , fk ∈M and a1, . . . , ak ∈ R, let

Fn :=

k∏
i=1

ϕn (fi − ai)

and let
M := sup

i=1,...,k
sup
ω
|fi (ω)− ai| .

By the Weierstrass approximation Theorem ??, we may find polynomial func-
tions, pl (x) such that pl → ϕn uniformly on [−M,M ] .Since pl is a polynomial

it is easily seen that
∏k
i=1 pl ◦ (fi − ai) ∈ H. Moreover,

k∏
i=1

pl ◦ (fi − ai)→ Fn uniformly as l→∞,
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from with it follows that Fn ∈ H for all n. Since,

Fn ↑
k∏
i=1

1{fi>ai} = 1∩k
i=1
{fi>ai}

it follows that 1∩k
i=1
{fi>ai} ∈ H or equivalently that ∩ki=1 {fi > ai} ∈ L. There-

fore L contains the π – system, P, consisting of finite intersections of sets of
the form, {f > a} with f ∈M and a ∈ R.

Fig. 11.4. Plots of ϕ1, ϕ2 and ϕ3.

As a consequence of the above paragraphs and the π – λ Theorem 10.4, L
contains σ (P) = σ (M) . In particular it follows that 1A ∈ H for all A ∈ σ (M) .
Since any positive σ (M) – measurable function may be written as a increasing
limit of simple functions, it follows that H contains all non-negative bounded
σ (M) – measurable functions. Finally, since any bounded σ (M) – measurable
functions may be written as the difference of two such non-negative simple
functions, it follows that H contains all bounded σ (M) – measurable functions.

The proof of the following standard result is taken from Janson [10, Ap-
pendix A., p. 309.].

Theorem 11.39 (Multiplicative System Theorem (New Proof)). Sup-
pose H is a vector subspace of `∞ (X,R) such that: 1. 1 ∈ H, and 2. if
0 ≤ fn ∈ H such that fn ↑ f ∈ `∞ (X,R) , then f ∈ H. If M ⊂ H is a multi-
plicative system, then σ (M)b ⊂ H. (In words, the smallest subspace of bounded
real valued functions on X which contains M that is closed under monotone
bounded convergence is the same as the space of bounded real valued σ (M) –
measurable functions on X.)

Proof. Let M′ be the subsapce of H spanned by M∪{1} . As M′ is a vector
space closed under multiplication, it is an algebra. LetM′+ := {f ∈M′ : f ≥ 0} .

Let K be the smallest linear subspace of `∞ (X,R) which contains M′ and
is closed under bounded monotone convergence. (Such an K is found by inter-
secting all such subspace together noting that H is a such a subspace.) Our first
goal is to show that K is a algebra.

For any f ∈ K, let Kf := {g ∈ K : fg ∈ K} . Then Kf is a subspace of K
and if f ≥ 0, then Kf is closed under bounded monotone convergence.

If f ∈ M′+ ⊂ M′ ⊂ K, we have M′ ⊂ Kf and Kf is closed under bounded
monotone convergence and therefore, K ⊂ Kf , i.e. Kf = K. Thus we have shown
fg ∈ K if f ∈ M′+ and g ∈ K. Moreover if f ∈ M′ and m := max f (Ω) , then
f +m ∈M′+ and hence fg = (f +m) g−mg ∈ K. Therefore, fg ∈ K if f ∈M′
and g ∈ K.

Similarly, if f ∈ K+, then g ∈ Kf for all g ∈M′ and therefore Kf ⊂ K again.
Thus we have shown that gf ∈ K whenever f ∈ K+ and g ∈ K. So if f ∈ K
and m := max f (Ω) , then f + m ∈ M′+ and hence fg = (f +m) g −mg ∈ K
for all g ∈ K. This completes the proof that K is an algebra.

Next we are going to show

M := {A ⊂ Ω : 1A ∈ K} (11.18)

is a σ – algebra. As 0 and 1 are in K, ∅, Ω ∈M. If A ∈M, then Ac ∈M since
1Ac = 1−1A ∈ K. If we further suppose that B ∈M, then 1A∩B = 1A ·1B ∈ K
which shows that A ∩ B ∈ M. Thuse we have shown that M is an algebra.
Finally if An ∈ M and An ↑ A ⊂ Ω, then 1An ↑ 1A showing that 1A ∈ K, i.e.
A ∈M. This implies that M is a σ – algebra. STOP BRUCE – look up to see
how Janson finishes the proof here.

The Weierstrass approximation Theorem 32.39, asserts that polynomials on
R are uniformly dense in the space of continuous functions on any compact
subinterval of R. Hence if f ∈ K and ϕ ∈ C (R) , there exists polynomials pn on
R such that pn ◦f (x) converges to ϕ◦f (x) uniformly (and hence boundedly) in
x ∈ X as n→∞. Hence by Propostion 11.37, it follows that ϕ◦f ∈ K for all f ∈
K and ϕ ∈ C (R) and in particular |f | ∈ K and f± := |f |±f

2 ∈ K if f ∈ K. Fix an

α ∈ R and for n ∈ N let ϕn (t) := (t− α)
1/n
+ , where (t− α)+ := max {t− α, 0} .

Then ϕn ∈ C (R) and ϕn (t)→ 1t>α as n→∞ and the convergence is bounded
when t is restricted to any compact subset of R. Hence, again using Proposition
11.37, if f ∈ K it follows that 1f>α = limn→∞ ϕn (f) ∈ K for all α ∈ R, i.e.
{f > α} ∈ M for all α ∈ R. Therefore if f ∈ K then f ∈ `∞ (M,R) and we
have shown K ⊂ `∞ (M,R) .

Conversely if f ∈ `∞ (M,R) , then for any α < β, {α < f ≤ β} ∈ M =
M (K) and so by assumption 1{α<f≤β} ∈ K. Combining this remark with the
approximation Theorem ?? and the fact that K is closed under bounded conver-
gence shows that f ∈ K. Hence we have shown `∞ (M,R) ⊂ K which combined
with K ⊂ `∞ (M,R) already proved shows `∞ (M (K) ,R) = K ⊂ H.
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11.7 Exercises

Exercise 11.8. Prove Corollary ??. Hint: See Exercise ??.

Exercise 11.9. If M is the σ – algebra generated by E ⊂ 2X , then M is the
union of the σ – algebras generated by countable subsets F ⊂ E .

Exercise 11.10. Let (X,M) be a measure space and fn : X → F be a sequence
of measurable functions on X. Show that {x : limn→∞ fn(x) exists in F} ∈ M.

Exercise 11.11. Show that every monotone function f : R→ R is (BR,BR) –
measurable.

Exercise 11.12. Show by example that the supremum of an uncountable fam-
ily of measurable functions need not be measurable. (Folland problem 2.6 on p.
48.)

Exercise 11.13. Let X = {1, 2, 3, 4} , A = {1, 2} , B = {2, 3} and M :=
{1A, 1B} . Show Hσ (M) 6= H (M) in this case.



12

Multiple and Iterated Integrals

12.1 Iterated Integrals

Notation 12.1 (Iterated Integrals) If (X,M, µ) and (Y,N , ν) are two
measure spaces and f : X × Y → C is a M⊗N – measurable function, the
iterated integrals of f (when they make sense) are:∫

X

dµ(x)

∫
Y

dν(y)f(x, y) :=

∫
X

[∫
Y

f(x, y)dν(y)

]
dµ(x)

and ∫
Y

dν(y)

∫
X

dµ(x)f(x, y) :=

∫
Y

[∫
X

f(x, y)dµ(x)

]
dν(y).

Notation 12.2 Suppose that f : X → C and g : Y → C are functions, let f⊗g
denote the function on X × Y given by

f ⊗ g(x, y) = f(x)g(y).

Notice that if f, g are measurable, then f ⊗ g is (M⊗N ,BC) – measurable.
To prove this let F (x, y) = f(x) and G(x, y) = g(y) so that f ⊗ g = F ·G will
be measurable provided that F and G are measurable. Now F = f ◦ π1 where
π1 : X × Y → X is the projection map. This shows that F is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

12.2 Tonelli’s Theorem and Product Measure

Theorem 12.3. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces
and f is a nonnegative (M⊗N ,BR) – measurable function, then for each y ∈ Y,

x→ f(x, y) is M – B[0,∞] measurable, (12.1)

for each x ∈ X,
y → f(x, y) is N – B[0,∞] measurable, (12.2)

x→
∫
Y

f(x, y)dν(y) is M – B[0,∞] measurable, (12.3)

y →
∫
X

f(x, y)dµ(x) is N – B[0,∞] measurable, (12.4)

and ∫
X

dµ(x)

∫
Y

dν(y)f(x, y) =

∫
Y

dν(y)

∫
X

dµ(x)f(x, y). (12.5)

Proof. Suppose that E = A×B ∈ E :=M×N and f = 1E . Then

f(x, y) = 1A×B(x, y) = 1A(x)1B(y)

and one sees that Eqs. (12.1) and (12.2) hold. Moreover∫
Y

f(x, y)dν(y) =

∫
Y

1A(x)1B(y)dν(y) = 1A(x)ν(B),

so that Eq. (12.3) holds and we have∫
X

dµ(x)

∫
Y

dν(y)f(x, y) = ν(B)µ(A). (12.6)

Similarly, ∫
X

f(x, y)dµ(x) = µ(A)1B(y) and∫
Y

dν(y)

∫
X

dµ(x)f(x, y) = ν(B)µ(A)

from which it follows that Eqs. (12.4) and (12.5) hold in this case as well.
For the moment let us now further assume that µ(X) < ∞ and ν(Y ) < ∞

and let H be the collection of all bounded (M⊗N ,BR) – measurable functions
on X × Y such that Eqs. (12.1) – (12.5) hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence the-
orem (the dominating function always being a constant), one easily shows that
H closed under bounded convergence. Since we have just verified that 1E ∈ H
for all E in the π – class, E , it follows by Corollary 11.3 that H is the space
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of all bounded (M⊗N ,BR) – measurable functions on X × Y. Moreover, if
f : X × Y → [0,∞] is a (M⊗N ,BR̄) – measurable function, let fM = M ∧ f
so that fM ↑ f as M →∞. Then Eqs. (12.1) – (12.5) hold with f replaced by
fM for all M ∈ N. Repeated use of the monotone convergence theorem allows
us to pass to the limit M →∞ in these equations to deduce the theorem in the
case µ and ν are finite measures.

For the σ – finite case, choose Xn ∈M, Yn ∈ N such that Xn ↑ X, Yn ↑ Y,
µ(Xn) <∞ and ν(Yn) <∞ for all m,n ∈ N. Then define µm(A) = µ(Xm ∩A)
and νn(B) = ν(Yn∩B) for all A ∈M and B ∈ N or equivalently dµm = 1Xmdµ
and dνn = 1Yndν. By what we have just proved Eqs. (12.1) – (12.5) with
µ replaced by µm and ν by νn for all (M⊗N ,BR̄) – measurable functions,
f : X ×Y → [0,∞]. The validity of Eqs. (12.1) – (12.5) then follows by passing
to the limits m→∞ and then n→∞ making use of the monotone convergence
theorem in the following context. For all u ∈ L+(X,M),∫

X

udµm =

∫
X

u1Xmdµ ↑
∫
X

udµ as m→∞,

and for all and v ∈ L+(Y,N ),∫
Y

vdµn =

∫
Y

v1Yndµ ↑
∫
Y

vdµ as n→∞.

Corollary 12.4. Suppose (X,M, µ) and (Y,N , ν) are σ – finite measure
spaces. Then there exists a unique measure π on M⊗N such that π(A×B) =
µ(A)ν(B) for all A ∈M and B ∈ N . Moreover π is given by

π(E) =

∫
X

dµ(x)

∫
Y

dν(y)1E(x, y) =

∫
Y

dν(y)

∫
X

dµ(x)1E(x, y) (12.7)

for all E ∈M⊗N and π is σ – finite.

Proof. Notice that any measure π such that π(A × B) = µ(A)ν(B) for
all A ∈ M and B ∈ N is necessarily σ – finite. Indeed, let Xn ∈ M and
Yn ∈ N be chosen so that µ(Xn) < ∞, ν(Yn) < ∞, Xn ↑ X and Yn ↑ Y,
then Xn × Yn ∈ M ⊗ N , Xn × Yn ↑ X × Y and π(Xn × Yn) < ∞ for all n.
The uniqueness assertion is a consequence of the combination of Exercises 6.10
and 8.11 Proposition 6.25 with E = M×N . For the existence, it suffices to
observe, using the monotone convergence theorem, that π defined in Eq. (12.7)
is a measure onM⊗N . Moreover this measure satisfies π(A×B) = µ(A)ν(B)
for all A ∈M and B ∈ N from Eq. (12.6).

Notation 12.5 The measure π is called the product measure of µ and ν and
will be denoted by µ⊗ ν.

Theorem 12.6 (Tonelli’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ – finite measure spaces and π = µ ⊗ ν is the product measure on M⊗N .
If f ∈ L+(X × Y,M⊗N ), then f(·, y) ∈ L+(X,M) for all y ∈ Y, f(x, ·) ∈
L+(Y,N ) for all x ∈ X,∫

Y

f(·, y)dν(y) ∈ L+(X,M),

∫
X

f(x, ·)dµ(x) ∈ L+(Y,N )

and ∫
X×Y

f dπ =

∫
X

dµ(x)

∫
Y

dν(y)f(x, y) (12.8)

=

∫
Y

dν(y)

∫
X

dµ(x)f(x, y). (12.9)

Proof. By Theorem 12.3 and Corollary 12.4, the theorem holds when
f = 1E with E ∈ M ⊗ N . Using the linearity of all of the statements, the
theorem is also true for non-negative simple functions. Then using the mono-
tone convergence theorem repeatedly along with the approximation Theorem
9.39, one deduces the theorem for general f ∈ L+(X × Y,M⊗N ).

Example 12.7. In this example we are going to show, I :=
∫
R e
−x2/2dm (x) =√

2π. To this end we observe, using Tonelli’s theorem, that

I2 =

[∫
R
e−x

2/2dm (x)

]2

=

∫
R
e−y

2/2

[∫
R
e−x

2/2dm (x)

]
dm (y)

=

∫
R2

e−(x2+y2)/2dm2 (x, y)

where m2 = m⊗m is “Lebesgue measure” on
(
R2,BR2 = BR ⊗ BR

)
. From the

monotone convergence theorem,

I2 = lim
R→∞

∫
DR

e−(x2+y2)/2dm2 (x, y)

where DR =
{

(x, y) : x2 + y2 < R2
}
. Using the change of variables theorem

described in Section ?? below,1 we find∫
DR

e−(x2+y2)/2dπ (x, y) =

∫
(0,R)×(0,2π)

e−r
2/2rdrdθ

= 2π

∫ R

0

e−r
2/2rdr = 2π

(
1− e−R

2/2
)
.

1 Alternatively, you can easily show that the integral
∫
DR

fdm2 agrees with the
multiple integral in undergraduate analysis when f is continuous. Then use the
change of variables theorem from undergraduate analysis.
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From this we learn that

I2 = lim
R→∞

2π
(

1− e−R
2/2
)

= 2π

as desired.

12.3 Fubini’s Theorem

Notation 12.8 If (X,M, µ) is a measure space and f : X → C is any mea-
surable function, let∫

X

fdµ :=

{∫
X
fdµ if

∫
X
|f | dµ <∞

0 otherwise.

Theorem 12.9 (Fubini’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ – finite measure spaces, π = µ ⊗ ν is the product measure on M⊗N and
f : X × Y → C is a M⊗N – measurable function. Then the following three
conditions are equivalent:∫

X×Y
|f | dπ <∞, i.e. f ∈ L1(π), (12.10)∫

X

(∫
Y

|f(x, y)| dν(y)

)
dµ(x) <∞ and (12.11)∫

Y

(∫
X |f(x, y)| dµ(x)

)
dν(y) <∞. (12.12)

If any one (and hence all) of these condition hold, then f(x, ·) ∈ L1(ν) for µ-a.e.

x, f(·, y) ∈ L1(µ) for ν-a.e. y,
∫
Y
f(·, y)dv(y) ∈ L1(µ),

∫
X
f(x, ·)dµ(x) ∈ L1(ν)

and Eqs. (12.8) and (12.9) are still valid after putting a bar over the integral
symbols.

Proof. The equivalence of Eqs. (12.10) – (12.12) is a direct consequence of
Tonelli’s Theorem 12.6. Now suppose f ∈ L1(π) is a real valued function and
let

E :=

{
x ∈ X :

∫
Y

|f (x, y)| dν (y) =∞
}
. (12.13)

Then by Tonelli’s theorem, x →
∫
Y
|f (x, y)| dν (y) is measurable and hence

E ∈M. Moreover Tonelli’s theorem implies∫
X

[∫
Y

|f (x, y)| dν (y)

]
dµ (x) =

∫
X×Y

|f | dπ <∞

which implies that µ (E) = 0. Let f± be the positive and negative parts of f,
then∫

Y

f (x, y) dν (y) =

∫
Y

1Ec (x) f (x, y) dν (y)

=

∫
Y

1Ec (x) [f+ (x, y)− f− (x, y)] dν (y)

=

∫
Y

1Ec (x) f+ (x, y) dν (y)−
∫
Y

1Ec (x) f− (x, y) dν (y) .

(12.14)

Noting that 1Ec (x) f± (x, y) = (1Ec ⊗ 1Y · f±) (x, y) is a positive M ⊗ N –
measurable function, it follows from another application of Tonelli’s theorem

that x →
∫
Y
f (x, y) dν (y) is M – measurable, being the difference of two

measurable functions. Moreover∫
X

∣∣∣∣∣
∫
Y

f (x, y) dν (y)

∣∣∣∣∣ dµ (x) ≤
∫
X

[∫
Y

|f (x, y)| dν (y)

]
dµ (x) <∞,

which shows
∫
Y
f(·, y)dv(y) ∈ L1(µ). Integrating Eq. (12.14) on x and using

Tonelli’s theorem repeatedly implies,∫
X

[∫
Y

f (x, y) dν (y)

]
dµ (x)

=

∫
X

dµ (x)

∫
Y

dν (y) 1Ec (x) f+ (x, y)−
∫
X

dµ (x)

∫
Y

dν (y) 1Ec (x) f− (x, y)

=

∫
Y

dν (y)

∫
X

dµ (x) 1Ec (x) f+ (x, y)−
∫
Y

dν (y)

∫
X

dµ (x) 1Ec (x) f− (x, y)

=

∫
Y

dν (y)

∫
X

dµ (x) f+ (x, y)−
∫
Y

dν (y)

∫
X

dµ (x) f− (x, y)

=

∫
X×Y

f+dπ −
∫
X×Y

f−dπ =

∫
X×Y

(f+ − f−) dπ =

∫
X×Y

fdπ (12.15)

which proves Eq. (12.8) holds.
Now suppose that f = u + iv is complex valued and again let E be as in

Eq. (12.13). Just as above we still have E ∈M and µ (E) = 0 and∫
Y

f (x, y) dν (y) =

∫
Y

1Ec (x) f (x, y) dν (y) =

∫
Y

1Ec (x) [u (x, y) + iv (x, y)] dν (y)

=

∫
Y

1Ec (x)u (x, y) dν (y) + i

∫
Y

1Ec (x) v (x, y) dν (y) .
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The last line is a measurable in x as we have just proved. Similarly one shows∫
Y
f (·, y) dν (y) ∈ L1 (µ) and Eq. (12.8) still holds by a computation similar to

that done in Eq. (12.15). The assertions pertaining to Eq. (12.9) may be proved
in the same way.

The previous theorems generalize to products of any finite number of σ –
finite measure spaces.

Theorem 12.10. Suppose {(Xi,Mi, µi)}ni=1 are σ – finite measure spaces
and X := X1 × · · · × Xn. Then there exists a unique measure (π) on
(X,M1 ⊗ · · · ⊗Mn) such that

π(A1 × · · · ×An) = µ1(A1) . . . µn(An) for all Ai ∈Mi. (12.16)

(This measure and its completion will be denoted by µ1 ⊗ · · · ⊗ µn.) If f : X →
[0,∞] is a M1 ⊗ · · · ⊗Mn – measurable function then∫

X

fdπ =

∫
Xσ(1)

dµσ(1)(xσ(1)) . . .

∫
Xσ(n)

dµσ(n)(xσ(n)) f(x1, . . . , xn) (12.17)

where σ is any permutation of {1, 2, . . . , n}. In particular f ∈ L1(π), iff∫
Xσ(1)

dµσ(1)(xσ(1)) . . .

∫
Xσ(n)

dµσ(n)(xσ(n)) |f(x1, . . . , xn)| <∞

for some (and hence all) permutations, σ. Furthermore, if f ∈ L1 (π) , then∫
X

fdπ =

∫
Xσ(1)

dµσ(1)(xσ(1)) . . .

∫
Xσ(n)

dµσ(n)(xσ(n)) f(x1, . . . , xn) (12.18)

for all permutations σ.

Proof. (* I would consider skipping this tedious proof.) The proof will be by
induction on n with the case n = 2 being covered in Theorems 12.6 and 12.9. So
let n ≥ 3 and assume the theorem is valid for n− 1 factors or less. To simplify
notation, for 1 ≤ i ≤ n, let Xi =

∏
j 6=iXj ,Mi := ⊗j 6=iMi, and µi := ⊗j 6=iµj

be the product measure on
(
Xi,Mi

)
which is assumed to exist by the induction

hypothesis. Also letM :=M1⊗· · ·⊗Mn and for x = (x1, . . . , xi, . . . , xn) ∈ X
let

xi := (x1, . . . , x̂i, . . . , xn) := (x1, . . . , xi−1, xi+1, . . . , xn) .

Here is an outline of the argument with some details being left to the reader.

1. If f : X → [0,∞] is M -measurable, then

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

f (x1, . . . , xi, . . . , xn) dµi (xi)

is Mi -measurable. Thus by the induction hypothesis, the right side of Eq.
(12.17) is well defined.

2. If σ ∈ Sn (the permutations of {1, 2, . . . , n}) we may define a measure π on
(X,M) by;

π (A) :=

∫
Xσ1

dµσ1 (xσ1) . . .

∫
Xσn

dµσn (xσn) 1A (x1, . . . , xn) . (12.19)

It is easy to check that π is a measure which satisfies Eq. (12.16). Using the
σ – finiteness assumptions and the fact that

P := {A1 × · · · ×An : Ai ∈Mi for 1 ≤ i ≤ n}

is a π – system such that σ (P) =M, it follows from Exercise 8.1 that there
is only one such measure satisfying Eq. (12.16). Thus the formula for π in
Eq. (12.19) is independent of σ ∈ Sn.

3. From Eq. (12.19) and the usual simple function approximation arguments
we may conclude that Eq. (12.17) is valid.
Now suppose that f ∈ L1 (X,M, π) .

4. Using step 1 it is easy to check that

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

f (x1, . . . , xi, . . . , xn) dµi (xi)

is Mi – measurable. Indeed,

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

|f (x1, . . . , xi, . . . , xn)| dµi (xi)

is Mi – measurable and therefore

E :=

{
(x1, . . . , x̂i, . . . , xn) :

∫
Xi

|f (x1, . . . , xi, . . . , xn)| dµi (xi) <∞
}
∈Mi.

Now let u := Re f and v := Im f and u± and v± are the positive and
negative parts of u and v respectively, then∫

Xi

f (x) dµi (xi) =

∫
Xi

1E
(
xi
)
f (x) dµi (xi)

=

∫
Xi

1E
(
xi
)
u (x) dµi (xi) + i

∫
Xi

1E
(
xi
)
v (x) dµi (xi) .

Both of these later terms are Mi – measurable since, for example,∫
Xi

1E
(
xi
)
u (x) dµi (xi) =

∫
Xi

1E
(
xi
)
u+ (x) dµi (xi)−

∫
Xi

1E
(
xi
)
u− (x) dµi (xi)

which is Mi – measurable by step 1.
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5. It now follows by induction that the right side of Eq. (12.18) is well defined.
6. Let i := σn and T : X → Xi ×Xi be the obvious identification;

T (xi, (x1, . . . , x̂i, . . . , xn)) = (x1, . . . , xn) .

One easily verifies T is M/Mi ⊗ Mi – measurable (use Corollary 9.19
repeatedly) and that π ◦ T−1 = µi ⊗ µi (see Exercise 8.1).

7. Let f ∈ L1 (π) . Combining step 6. with the abstract change of variables
Theorem (Exercise 10.11) implies∫

X

fdπ =

∫
Xi×Xi

(f ◦ T ) d
(
µi ⊗ µi

)
. (12.20)

By Theorem 12.9, we also have∫
Xi×Xi

(f ◦ T ) d
(
µi ⊗ µi

)
=

∫
Xi
dµi

(
xi
) ∫

Xi

dµi(xi) f ◦ T (xi, x
i)

=

∫
Xi
dµi

(
xi
) ∫

Xi

dµi(xi) f(x1, . . . , xn).

(12.21)

Then by the induction hypothesis,∫
Xi
dµi (xi)

∫
Xi

dµi(xi) f(x1, . . . , xn) =
∏
j 6=i

∫
Xj

dµj (xj)

∫
Xi

dµi(xi) f(x1, . . . , xn)

(12.22)
where the ordering the integrals in the last product are inconsequential.
Combining Eqs. (12.20) – (12.22) completes the proof.

Convention: We are now going to drop the bar above the integral sign
with the understanding that

∫
X
fdµ = 0 whenever f : X → C is a measurable

function such that
∫
X
|f | dµ =∞. However if f is a non-negative function (i.e.

f : X → [0,∞]) non-integrable function we will interpret
∫
X
fdµ to be infinite.

Example 12.11. In this example we will show

lim
M→∞

∫ M

0

sinx

x
dx = π/2. (12.23)

To see this write 1
x =

∫∞
0
e−txdt and use Fubini-Tonelli to conclude that

∫ M

0

sinx

x
dx =

∫ M

0

[∫ ∞
0

e−tx sinx dt

]
dx

=

∫ ∞
0

[∫ M

0

e−tx sinx dx

]
dt

=

∫ ∞
0

1

1 + t2
(
1− te−Mt sinM − e−Mt cosM

)
dt

→
∫ ∞

0

1

1 + t2
dt =

π

2
as M →∞,

wherein we have used the dominated convergence theorem (for instance, take
g (t) := 1

1+t2 (1 + te−t + e−t)) to pass to the limit.

The next example is a refinement of this result.

Example 12.12. We have∫ ∞
0

sinx

x
e−Λxdx =

1

2
π − arctanΛ for all Λ > 0 (12.24)

and forΛ,M ∈ [0,∞),∣∣∣∣∣
∫ M

0

sinx

x
e−Λxdx− 1

2
π + arctanΛ

∣∣∣∣∣ ≤ C e−MΛ

M
(12.25)

where C = maxx≥0
1+x
1+x2 = 1

2
√

2−2
∼= 1.2. In particular Eq. (12.23) is valid.

To verify these assertions, first notice that by the fundamental theorem of
calculus,

|sinx| =
∣∣∣∣∫ x

0

cos ydy

∣∣∣∣ ≤ ∣∣∣∣∫ x

0

|cos y| dy
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

1dy

∣∣∣∣ = |x|

so
∣∣ sin x
x

∣∣ ≤ 1 for all x 6= 0. Making use of the identity∫ ∞
0

e−txdt = 1/x

and Fubini’s theorem,
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136 12 Multiple and Iterated Integrals∫ M

0

sinx

x
e−Λxdx =

∫ M

0

dx sinx e−Λx
∫ ∞

0

e−txdt

=

∫ ∞
0

dt

∫ M

0

dx sinx e−(Λ+t)x

=

∫ ∞
0

1− (cosM + (Λ+ t) sinM) e−M(Λ+t)

(Λ+ t)
2

+ 1
dt

=

∫ ∞
0

1

(Λ+ t)
2

+ 1
dt−

∫ ∞
0

cosM + (Λ+ t) sinM

(Λ+ t)
2

+ 1
e−M(Λ+t)dt

=
1

2
π − arctanΛ− ε(M,Λ) (12.26)

where

ε(M,Λ) =

∫ ∞
0

cosM + (Λ+ t) sinM

(Λ+ t)
2

+ 1
e−M(Λ+t)dt.

Since ∣∣∣∣∣cosM + (Λ+ t) sinM

(Λ+ t)
2

+ 1

∣∣∣∣∣ ≤ 1 + (Λ+ t)

(Λ+ t)
2

+ 1
≤ C,

|ε(M,Λ)| ≤
∫ ∞

0

e−M(Λ+t)dt = C
e−MΛ

M
.

This estimate along with Eq. (12.26) proves Eq. (12.25) from which Eq. (12.23)
follows by taking Λ→∞ and Eq. (12.24) follows (using the dominated conver-
gence theorem again) by letting M →∞.

Lemma 12.13. Suppose that X is a random variable and ϕ : R→ R is a C1

– functions such that limx→−∞ ϕ (x) = 0 and either ϕ′ (x) ≥ 0 for all x or∫
R |ϕ

′ (x)| dx <∞. Then

E [ϕ (X)] =

∫ ∞
−∞

ϕ′ (y)P (X > y) dy.

Similarly if X ≥ 0 and ϕ : [0,∞) → R is a C1 – function such that ϕ (0) = 0
and either ϕ′ ≥ 0 or

∫∞
0
|ϕ′ (x)| dx <∞, then

E [ϕ (X)] =

∫ ∞
0

ϕ′ (y)P (X > y) dy.

Proof. By the fundamental theorem of calculus for all M <∞ and x ∈ R,

ϕ (x) = ϕ (−M) +

∫ x

−M
ϕ′ (y) dy. (12.27)

Under the stated assumptions on ϕ, we may use either the monotone or the
dominated convergence theorem to let M →∞ in Eq. (12.27) to find,

ϕ (x) =

∫ x

−∞
ϕ′ (y) dy =

∫
R

1y<xϕ
′ (y) dy for all x ∈ R.

Therefore,

E [ϕ (X)] = E
[∫

R
1y<Xϕ

′ (y) dy

]
=

∫
R
E [1y<X ]ϕ′ (y) dy =

∫ ∞
−∞

ϕ′ (y)P (X > y) dy,

where we applied Fubini’s theorem for the second equality. The proof of the
second assertion is similar and will be left to the reader.

Example 12.14. Here are a couple of examples involving Lemma 12.13.

1. Suppose X is a random variable, then

E
[
eX
]

=

∫ ∞
−∞

P (X > y) eydy =

∫ ∞
0

P (X > lnu) du, (12.28)

where we made the change of variables, u = ey, to get the second equality.
2. If X ≥ 0 and p ≥ 1, then

EXp = p

∫ ∞
0

yp−1P (X > y) dy. (12.29)

12.4 Fubini’s Theorem and Completions*

Notation 12.15 Given E ⊂ X × Y and x ∈ X, let

xE := {y ∈ Y : (x, y) ∈ E}.

Similarly if y ∈ Y is given let

Ey := {x ∈ X : (x, y) ∈ E}.

If f : X × Y → C is a function let fx = f(x, ·) and fy := f(·, y) so that
fx : Y → C and fy : X → C.

Theorem 12.16. Suppose (X,M, µ) and (Y,N , ν) are complete σ – finite
measure spaces. Let (X×Y,L, λ) be the completion of (X×Y,M⊗N , µ⊗ν). If
f is L – measurable and (a) f ≥ 0 or (b) f ∈ L1(λ) then fx is N – measurable
for µ-a.e. x and fy is M – measurable for ν-a.e. y and in case (b) fx ∈ L1(ν)
and fy ∈ L1(µ) for µ-a.e. x and ν-a.e. y respectively. Moreover,
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x→

∫
Y

fxdν

)
∈ L1 (µ) and

(
y →

∫
X

fydµ

)
∈ L1 (ν)

and ∫
X×Y

fdλ =

∫
Y

dν

∫
X

dµ f =

∫
X

dµ

∫
Y

dν f.

Proof. If E ∈M⊗N is a µ⊗ ν null set (i.e. (µ⊗ ν)(E) = 0), then

0 = (µ⊗ ν)(E) =

∫
X

ν(xE)dµ(x) =

∫
X

µ(Ey)dν(y).

This shows that

µ({x : ν(xE) 6= 0}) = 0 and ν({y : µ(Ey) 6= 0}) = 0,

i.e. ν(xE) = 0 for µ-a.e. x and µ(Ey) = 0 for ν-a.e. y. If h is L measurable and
h = 0 for λ – a.e., then there exists E ∈ M⊗N such that {(x, y) : h(x, y) 6=
0} ⊂ E and (µ⊗ ν)(E) = 0. Therefore |h(x, y)| ≤ 1E(x, y) and (µ⊗ ν)(E) = 0.
Since

{hx 6= 0} = {y ∈ Y : h(x, y) 6= 0} ⊂ xE and

{hy 6= 0} = {x ∈ X : h(x, y) 6= 0} ⊂ Ey

we learn that for µ-a.e. x and ν-a.e. y that {hx 6= 0} ∈ M, {hy 6= 0} ∈ N ,
ν({hx 6= 0}) = 0 and a.e. and µ({hy 6= 0}) = 0. This implies

∫
Y
h(x, y)dν(y)

exists and equals 0 for µ-a.e. x and similarly that
∫
X
h(x, y)dµ(x) exists and

equals 0 for ν-a.e. y. Therefore

0 =

∫
X×Y

hdλ =

∫
Y

(∫
X

hdµ

)
dν =

∫
X

(∫
Y

hdν

)
dµ.

For general f ∈ L1(λ), we may choose g ∈ L1(M⊗N , µ⊗ν) such that f(x, y) =
g(x, y) for λ− a.e. (x, y). Define h := f−g. Then h = 0, λ− a.e. Hence by what
we have just proved and Theorem 12.6 f = g + h has the following properties:

1. For µ-a.e. x, y → f(x, y) = g(x, y) + h(x, y) is in L1(ν) and∫
Y

f(x, y)dν(y) =

∫
Y

g(x, y)dν(y).

2. For ν-a.e. y, x→ f(x, y) = g(x, y) + h(x, y) is in L1(µ) and∫
X

f(x, y)dµ(x) =

∫
X

g(x, y)dµ(x).

From these assertions and Theorem 12.6, it follows that∫
X

dµ(x)

∫
Y

dν(y)f(x, y) =

∫
X

dµ(x)

∫
Y

dν(y)g(x, y)

=

∫
Y

dν(y)

∫
Y

dν(x)g(x, y)

=

∫
X×Y

g(x, y)d(µ⊗ ν)(x, y)

=

∫
X×Y

f(x, y)dλ(x, y).

Similarly it is shown that∫
Y

dν(y)

∫
X

dµ(x)f(x, y) =

∫
X×Y

f(x, y)dλ(x, y).

12.5 Exercises

Exercise 12.1. Prove Theorem ??. Suggestion, to get started define

π (A) :=

∫
X1

dµ (x1) . . .

∫
Xn

dµ (xn) 1A (x1, . . . , xn)

and then show Eq. (??) holds. Use the case of two factors as the model of your
proof.

Exercise 12.2. Let (Xj ,Mj , µj) for j = 1, 2, 3 be σ – finite measure spaces.
Let F : (X1 ×X2)×X3 → X1 ×X2 ×X3 be defined by

F ((x1, x2), x3) = (x1, x2, x3).

1. Show F is ((M1 ⊗M2)⊗M3,M1 ⊗M2 ⊗M3) – measurable and F−1 is
(M1 ⊗M2 ⊗M3, (M1 ⊗M2)⊗M3) – measurable. That is

F : ((X1 ×X2)×X3, (M1 ⊗M2)⊗M3)→ (X1×X2×X3,M1⊗M2⊗M3)

is a “measure theoretic isomorphism.”
2. Let π := F∗ [(µ1 ⊗ µ2)⊗ µ3] , i.e. π(A) = [(µ1 ⊗ µ2)⊗ µ3] (F−1(A)) for all
A ∈ M1 ⊗M2 ⊗M3. Then π is the unique measure on M1 ⊗M2 ⊗M3

such that
π(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

for all Ai ∈Mi. We will write π := µ1 ⊗ µ2 ⊗ µ3.
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3. Let f : X1 ×X2 ×X3 → [0,∞] be a (M1 ⊗M2 ⊗M3,BR̄) – measurable
function. Verify the identity,∫

X1×X2×X3

fdπ =

∫
X3

dµ3(x3)

∫
X2

dµ2(x2)

∫
X1

dµ1(x1)f(x1, x2, x3),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six possible

orderings of the iterated integrals.

Exercise 12.3. Prove the second assertion of Theorem ??. That is show md

is the unique translation invariant measure on BRd such that md((0, 1]d) = 1.
Hint: Look at the proof of Theorem ??.

Exercise 12.4. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1],M =
B[0,1] be the Borel σ – field on X, m be Lebesgue measure on [0, 1] and ν be
counting measure, ν(A) = #(A). Finally let D = {(x, x) ∈ X2 : x ∈ X} be the
diagonal in X2. Show∫

X

[∫
X

1D(x, y)dν(y)

]
dm(x) 6=

∫
X

[∫
X

1D(x, y)dm(x)

]
dν(y)

by explicitly computing both sides of this equation.

Exercise 12.5. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 12.6. Folland Problem 2.50 on p. 69 pertaining to area under a curve.
(Note the M×BR should be M⊗BR̄ in this problem.)

Exercise 12.7. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 12.8. Folland Problem 2.56 on p. 77. Let f ∈ L1((0, a), dm), g(x) =∫ a
x
f(t)
t dt for x ∈ (0, a), show g ∈ L1((0, a), dm) and∫ a

0

g(x)dx =

∫ a

0

f(t)dt.

Exercise 12.9. Show
∫∞

0

∣∣ sin x
x

∣∣ dm(x) = ∞. So sin x
x /∈ L1([0,∞),m) and∫∞

0
sin x
x dm(x) is not defined as a Lebesgue integral.

Exercise 12.10. Folland Problem 2.57 on p. 77.

Exercise 12.11. Folland Problem 2.58 on p. 77.

Exercise 12.12. Folland Problem 2.60 on p. 77. Properties of the Γ – function.

Exercise 12.13. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 12.14. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on Sn−1.

Exercise 12.15. Folland Problem 2.64 on p. 80. On the integrability of
|x|a |log |x||b for x near 0 and x near ∞ in Rn.

Exercise 12.16. Show, using Problem 12.14 that∫
Sd−1

ωiωjdσ (ω) =
1

d
δijσ

(
Sd−1

)
.

Hint: show
∫
Sd−1 ω

2
i dσ (ω) is independent of i and therefore

∫
Sd−1

ω2
i dσ (ω) =

1

d

d∑
j=1

∫
Sd−1

ω2
jdσ (ω) .
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13

Metric Spaces

Definition 13.1. A function d : X ×X → [0,∞) is called a metric if

1. (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X,
2. (Non-degenerate) d(x, y) = 0 if and only if x = y ∈ X, and
3. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

As primary examples, any normed space (X, ‖·‖) (see Definition 4.24) is a
metric space with d(x, y) := ‖x− y‖ . Thus the space `p(µ) (as in Theorem
4.25) is a metric space for all p ∈ [1,∞]. Also any subset of a metric space is a
metric space. For example a surface Σ in R3 is a metric space with the distance
between two points on Σ being the usual distance in R3.

Definition 13.2. Let (X, d) be a metric space. The open ball B(x, δ) ⊂ X
centered at x ∈ X with radius δ > 0 is the set

B(x, δ) := {y ∈ X : d(x, y) < δ}.

We will often also write B(x, δ) as Bx(δ). We also define the closed ball cen-
tered at x ∈ X with radius δ > 0 as the set Cx(δ) := {y ∈ X : d(x, y) ≤ δ}.

Definition 13.3. A sequence {xn}∞n=1 in a metric space (X, d) is said to be
convergent if there exists a point x ∈ X such that limn→∞ d(x, xn) = 0. In
this case we write limn→∞ xn = x or xn → x as n→∞.

Exercise 13.1. Show that x in Definition 13.3 is necessarily unique.

Definition 13.4. A set E ⊂ X is bounded if E ⊂ B (x,R) for some x ∈ X
and R < ∞. A set F ⊂ X is closed iff every convergent sequence {xn}∞n=1

which is contained in F has its limit back in F. A set V ⊂ X is open iff V c is
closed. We will write F @ X to indicate F is a closed subset of X and V ⊂o X
to indicate the V is an open subset of X. We also let τd denote the collection
of open subsets of X relative to the metric d.

Exercise 13.2. Let F be a collection of closed subsets of X, show ∩F :=
∩F∈FF is closed. Also show that finite unions of closed sets are closed, i.e. if
{Fk}Kk=1 are closed sets then ∪Kk=1Fk is closed. (By taking complements, this
shows that the collection of open sets, τd, is closed under finite intersections
and arbitrary unions.) Show by example that a countable union of closed sets
need not be closed.

Exercise 13.3. Show that V ⊂ X is open iff for every x ∈ V there is a δ > 0
such that Bx(δ) ⊂ V. In particular show Bx(δ) is open for all x ∈ X and δ > 0.
Hint: by definition V is not open iff V c is not closed.

Definition 13.5. A subset A ⊂ X is a neighborhood of x if there exists an
open set V ⊂o X such that x ∈ V ⊂ A. We will say that A ⊂ X is an open
neighborhood of x if A is open and x ∈ A.

The following “continuity” facts of the metric d will be used frequently in
the remainder of this book.

Lemma 13.6. For any non empty subset A ⊂ X, let dA(x) := inf{d(x, a)|a ∈
A}, then

|dA(x)− dA(y)| ≤ d(x, y) ∀x, y ∈ X (13.1)

and in particular if xn → x in X then dA (xn) → dA (x) as n → ∞. Moreover
the set Fε := {x ∈ X|dA(x) ≥ ε} is closed in X.

Proof. Let a ∈ A and x, y ∈ X, then

dA(x) ≤ d(x, a) ≤ d(x, y) + d(y, a).

Take the infimum over a in the above equation shows that

dA(x) ≤ d(x, y) + dA(y) ∀x, y ∈ X.

Therefore, dA(x)− dA(y) ≤ d(x, y) and by interchanging x and y we also have
that dA(y)− dA(x) ≤ d(x, y) which implies Eq. (13.1). If xn → x ∈ X, then by
Eq. (13.1),

|dA(x)− dA(xn)| ≤ d(x, xn)→ 0 as n→∞

so that limn→∞ dA (xn) = dA (x) . Now suppose that {xn}∞n=1 ⊂ Fε and xn → x
in X, then

dA (x) = lim
n→∞

dA (xn) ≥ ε

since dA (xn) ≥ ε for all n. This shows that x ∈ Fε and hence Fε is closed.
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Corollary 13.7. The function d satisfies,

|d(x, y)− d(x′, y′)| ≤ d(y, y′) + d(x, x′).

In particular d : X × X → [0,∞) is “continuous” in the sense that d(x, y) is
close to d(x′, y′) if x is close to x′ and y is close to y′. (The notion of continuity
will be developed shortly.)

Proof. By Lemma 13.6 for single point sets and the triangle inequality for
the absolute value of real numbers,

|d(x, y)− d(x′, y′)| ≤ |d(x, y)− d(x, y′)|+ |d(x, y′)− d(x′, y′)|
≤ d(y, y′) + d(x, x′).

Example 13.8. Let x ∈ X and δ > 0, then Cx (δ) and Bx (δ)
c

are closed subsets
of X. For example if {yn}∞n=1 ⊂ Cx (δ) and yn → y ∈ X, then d (yn, x) ≤ δ for
all n and using Corollary 13.7 it follows d (y, x) ≤ δ, i.e. y ∈ Cx (δ) . A similar
proof shows Bx (δ)

c
is closed, see Exercise 13.3.

Lemma 13.9 (Approximating open sets from the inside by closed
sets). Let A be a closed subset of X and Fε := {x ∈ X|dA(x) ≥ ε} @ X
be as in Lemma 13.6. Then Fε ↑ Ac as ε ↓ 0.

Proof. It is clear that dA(x) = 0 for x ∈ A so that Fε ⊂ Ac for each ε > 0
and hence ∪ε>0Fε ⊂ Ac. Now suppose that x ∈ Ac ⊂o X. By Exercise 13.3
there exists an ε > 0 such that Bx(ε) ⊂ Ac, i.e. d(x, y) ≥ ε for all y ∈ A. Hence
x ∈ Fε and we have shown that Ac ⊂ ∪ε>0Fε. Finally it is clear that Fε ⊂ Fε′

whenever ε′ ≤ ε.

Definition 13.10. Given a set A contained in a metric space X, let Ā ⊂ X be
the closure of A defined by

Ā := {x ∈ X : ∃ {xn} ⊂ A 3 x = lim
n→∞

xn}.

That is to say Ā contains all limit points of A. We say A is dense in X if
Ā = X, i.e. every element x ∈ X is a limit of a sequence of elements from A.
A metric space is said to be separable if it contains a countable dense subset,
D.

Exercise 13.4. Given A ⊂ X, show Ā is a closed set and in fact

Ā = ∩{F : A ⊂ F ⊂ X with F closed}. (13.2)

That is to say Ā is the smallest closed set containing A.

Exercise 13.5. If D is a dense subset of a metric space (X, d) and E ⊂ X is
a subset such that to every point x ∈ D there exists {xn}∞n=1 ⊂ E with x =
limn→∞ xn, then E is also a dense subset of X. If points in E well approximate
every point in D and the points in D well approximate the points in X, then
the points in E also well approximate all points in X.

Exercise 13.6. Suppose (X, d) is a metric space which contains an uncountable
subset Λ ⊂ X with the property that there exists ε > 0 such that d (a, b) ≥ ε
for all a, b ∈ Λ with a 6= b. Show that (X, d) is not separable.

13.1 Metric spaces as topological spaces

Let (X, d) be a metric space and let τ = τd denote the collection of open
subsets of X. (Recall V ⊂ X is open iff V c is closed iff for all x ∈ V there
exists an ε = εx > 0 such that B (x, εx) ⊂ V iff V can be written as a (possibly
uncountable) union of open balls.) Although we will stick with metric spaces
in this chapter, it will be useful to introduce the definitions needed here in the
more general context of a general “topological space,” i.e. a space equipped
with a collection of “open sets.”

Definition 13.11 (Topological Space). Let X be a set. A topology on X is
a collection of subsets (τ) of X with the following properties;

1. τ contains both the empty set (∅) and X.
2. τ is closed under arbitrary unions.
3. τ is closed under finite intersections.

The elements V ∈ τ are called open subsets of X. A subset F ⊂ X is said
to be closed if F c is open. I will write V ⊂o X to indicate that V ⊂ X and
V ∈ τ and similarly F @ X will denote F ⊂ X and F is closed. Given x ∈ X
we say that V ⊂ X is an open neighborhood of x if V ∈ τ and x ∈ V. Let
τx = {V ∈ τ : x ∈ V } denote the collection of open neighborhoods of x.

Of course every metric space (X, d) is also a topological space where we take
τ = τd.

Definition 13.12. Let (X, τ) be a topological space and A be a subset of X.

1. The closure of A is the smallest closed set Ā containing A, i.e.

Ā := ∩{F : A ⊂ F @ X} .

(Because of Exercise 13.4 this is consistent with Definition 13.10 for the
closure of a set in a metric space.)
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2. The interior of A is the largest open set Ao contained in A, i.e.

Ao = ∪{V ∈ τ : V ⊂ A} .

3. A ⊂ X is a neighborhood of a point x ∈ X if x ∈ Ao.
4. The accumulation points of A is the set

acc(A) = {x ∈ X : V ∩ [A \ {x}] 6= ∅ for all V ∈ τx}.

5. The boundary of A is the set bd(A) := Ā \Ao.
6. A is dense in X if Ā = X and X is said to be separable if there exists a

countable dense subset of X.

Remark 13.13. The relationships between the interior and the closure of a set
are:

(Ao)c =
⋂
{V c : V ∈ τ and V ⊂ A} =

⋂
{C : C is closed C ⊃ Ac} = Ac

and similarly, (Ā)c = (Ac)o. Hence the boundary of A may be written as

bd(A) := Ā \Ao = Ā ∩ (Ao)c = Ā ∩Ac, (13.3)

which is to say bd(A) consists of the points in both the closures of A and Ac.

13.1.1 Continuity

Suppose now that (X, ρ) and (Y, d) are two metric spaces and f : X → Y is a
function.

Definition 13.14. A function f : X → Y is continuous at x ∈ X if for all
ε > 0 there is a δ > 0 such that

d(f(x), f(x′)) < ε provided that ρ(x, x′) < δ. (13.4)

The function f is said to be continuous if f is continuous at all points x ∈ X.

The following lemma gives two other characterizations of continuity of a
function at a point.

Lemma 13.15 (Local Continuity Lemma). Suppose that (X, ρ) and (Y, d)
are two metric spaces and f : X → Y is a function defined in a neighborhood
of a point x ∈ X. Then the following are equivalent:

1. f is continuous at x ∈ X.
2. For all neighborhoods A ⊂ Y of f(x), f−1(A) is a neighborhood of x ∈ X.

3. For all sequences {xn}∞n=1 ⊂ X such that x = limn→∞ xn, {f(xn)} is con-
vergent in Y and

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.

Proof. 1 =⇒ 2. If A ⊂ Y is a neighborhood of f (x) , there exists ε > 0
such that Bf(x) (ε) ⊂ A and because f is continuous there exists a δ > 0 such
that Eq. (13.4) holds. Therefore

Bx (δ) ⊂ f−1
(
Bf(x) (ε)

)
⊂ f−1 (A)

showing f−1 (A) is a neighborhood of x.
2 =⇒ 3. Suppose that {xn}∞n=1 ⊂ X and x = limn→∞ xn. Then for any ε >

0, Bf(x) (ε) is a neighborhood of f (x) and so f−1
(
Bf(x) (ε)

)
is a neighborhood

of x which must contain Bx (δ) for some δ > 0. Because xn → x, it follows that
xn ∈ Bx (δ) ⊂ f−1

(
Bf(x) (ε)

)
for a.a. n and this implies f (xn) ∈ Bf(x) (ε) for

a.a. n, i.e. d(f(x), f (xn)) < ε for a.a. n. Since ε > 0 is arbitrary it follows that
limn→∞ f (xn) = f (x) .

3. =⇒ 1. We will show not 1. =⇒ not 3. If f is not continuous at x,
there exists an ε > 0 such that for all n ∈ N there exists a point xn ∈ X with
ρ (xn, x) < 1

n yet d (f (xn) , f (x)) ≥ ε. Hence xn → x as n→∞ yet f (xn) does
not converge to f (x) .

Here is a global version of the previous lemma.

Lemma 13.16 (Global Continuity Lemma). Suppose that (X, ρ) and (Y, d)
are two metric spaces and f : X → Y is a function defined on all of X. Then
the following are equivalent:

1. f is continuous.
2. f−1(V ) ∈ τρ for all V ∈ τd, i.e. f−1(V ) is open in X if V is open in Y.
3. f−1(C) is closed in X if C is closed in Y.
4. For all convergent sequences {xn} ⊂ X, {f(xn)} is convergent in Y and

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.

Proof. Since f−1 (Ac) =
[
f−1 (A)

]c
, it is easily seen that 2. and 3. are

equivalent. So because of Lemma 13.15 it only remains to show 1. and 2. are
equivalent. If f is continuous and V ⊂ Y is open, then for every x ∈ f−1 (V ) , V
is a neighborhood of f (x) and so f−1 (V ) is a neighborhood of x. Hence f−1 (V )
is a neighborhood of all of its points and from this and Exercise 13.3 it follows
that f−1 (V ) is open. Conversely, if x ∈ X and A ⊂ Y is a neighborhood
of f (x) then there exists V ⊂o X such that f (x) ∈ V ⊂ A. Hence x ∈
f−1 (V ) ⊂ f−1 (A) and by assumption f−1 (V ) is open showing f−1 (A) is a
neighborhood of x. Therefore f is continuous at x and since x ∈ X was arbitrary,
f is continuous.
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144 13 Metric Spaces

Definition 13.17 (Continuity at a point in topological terms). Let
(X, τX) and (Y, τY ) be topological spaces. A function f : X → Y is contin-
uous at a point x ∈ X if for every open neighborhood V of f(x) there is an
open neighborhood U of x such that U ⊂ f−1(V ). See Figure 13.1.

Y
V

f(x)

f

X

U

x

f−1(V )

Fig. 13.1. Checking that a function is continuous at x ∈ X.

Definition 13.18 (Global continuity in topological terms). Let (X, τX)
and (Y, τY ) be topological spaces. A function f : X → Y is continuous if

f−1(τY ) :=
{
f−1 (V ) : V ∈ τY

}
⊂ τX .

We will also say that f is τX/τY –continuous or (τX , τY ) – continuous. Let
C(X,Y ) denote the set of continuous functions from X to Y.

Exercise 13.7. Show f : X → Y is continuous (Definition 35.16) iff f is con-
tinuous at all points x ∈ X.

Exercise 13.8. Show f : X → Y is continuous iff f−1(C) is closed in X for all
closed subsets C of Y.

Definition 13.19. A map f : X → Y between topological spaces is called a
homeomorphism provided that f is bijective, f is continuous and f−1 : Y →
X is continuous. If there exists f : X → Y which is a homeomorphism, we say
that X and Y are homeomorphic. (As topological spaces X and Y are essentially
the same.)

Example 13.20. The function dA defined in Lemma 13.6 is continuous for each
A ⊂ X. In particular, if A = {x} , it follows that y ∈ X → d(y, x) is continuous
for each x ∈ X.

Exercise 13.9. Use Example 13.20 and Lemma 13.16 to recover the results of
Example 13.8.

The next result shows that there are lots of continuous functions on a metric
space (X, d) .

Lemma 13.21 (Urysohn’s Lemma for Metric Spaces). Let (X, d) be a
metric space and suppose that A and B are two disjoint closed subsets of X.
Then

f(x) =
dB(x)

dA(x) + dB(x)
for x ∈ X (13.5)

defines a continuous function, f : X → [0, 1], such that f(x) = 1 for x ∈ A and
f(x) = 0 if x ∈ B.

Proof. By Lemma 13.6, dA and dB are continuous functions on X. Since
A and B are closed, dA(x) > 0 if x /∈ A and dB(x) > 0 if x /∈ B. Since

A ∩B = ∅, dA(x) + dB(x) > 0 for all x and (dA + dB)
−1

is continuous as well.
The remaining assertions about f are all easy to verify.

Sometimes Urysohn’s lemma will be use in the following form. Suppose
F ⊂ V ⊂ X with F being closed and V being open, then there exists f ∈
C (X, [0, 1])) such that f = 1 on F while f = 0 on V c. This of course follows
from Lemma 13.21 by taking A = F and B = V c.

13.2 Completeness in Metric Spaces

Definition 13.22 (Cauchy sequences). A sequence {xn}∞n=1 in a metric
space (X, d) is Cauchy provided that

lim
m,n→∞

d(xn, xm) = 0.

Exercise 13.10. Show that convergent sequences are always Cauchy sequences.
The converse is not always true. For example, let X = Q be the set of rational
numbers and d(x, y) = |x−y|. Choose a sequence {xn}∞n=1 ⊂ Q which converges

to
√

2 ∈ R, then {xn}∞n=1 is (Q, d) – Cauchy but not (Q, d) – convergent. The
sequence does converge in R however.

Definition 13.23. A metric space (X, d) is complete if all Cauchy sequences
are convergent sequences.

Exercise 13.11. Let (X, d) be a complete metric space. Let A ⊂ X be a subset
of X viewed as a metric space using d|A×A. Show that (A, d|A×A) is complete
iff A is a closed subset of X.
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Example 13.24. Examples 2. – 4. of complete metric spaces will be verified in
Chapter 14 below.

1. X = R and d(x, y) = |x− y|, see Theorem 3.8 above.

2. X = Rn and d(x, y) = ‖x− y‖2 =
(∑n

i=1(xi − yi)2
)1/2

.
3. X = `p(µ) for p ∈ [1,∞] and any weight function µ : X → (0,∞).
4. X = C([0, 1],R) – the space of continuous functions from [0, 1] to R and

d(f, g) := max
t∈[0,1]

|f(t)− g(t)|.

This is a special case of Lemma 14.4 below.
5. Let X = C([0, 1],R) and

d(f, g) :=

∫ 1

0

|f(t)− g(t)| dt.

You are asked in Exercise 14.13 to verify that (X, d) is a metric space which
is not complete.

Exercise 13.12 (Completions of Metric Spaces). Suppose that (X, d) is a
(not necessarily complete) metric space. Using the following outline show there
exists a complete metric space

(
X̄, d̄

)
and an isometric map i : X → X̄ such

that i (X) is dense in X̄, see Definition 13.10.

1. Let C denote the collection of Cauchy sequences a = {an}∞n=1 ⊂ X. Given
two element a, b ∈ C show dC (a, b) := limn→∞ d (an, bn) exists, dC (a, b) ≥ 0
for all a, b ∈ C and dC satisfies the triangle inequality,

dC (a, c) ≤ dC (a, b) + dC (b, c) for all a, b, c ∈ C.

Thus (C, dC) would be a metric space if it were true that dC(a, b) = 0 iff
a = b. This however is false, for example if an = bn for all n ≥ 100, then
dC(a, b) = 0 while a need not equal b.

2. Define two elements a, b ∈ C to be equivalent (write a ∼ b) when-
ever dC(a, b) = 0. Show “ ∼ ” is an equivalence relation on C and that
dC (a′, b′) = dC (a, b) if a ∼ a′ and b ∼ b′. (Hint: see Corollary 13.7.)

3. Given a ∈ C let ā := {b ∈ C : b ∼ a} denote the equivalence class containing
a and let X̄ := {ā : a ∈ C} denote the collection of such equivalence classes.
Show that d̄

(
ā, b̄
)

:= dC (a, b) is well defined on X̄ × X̄ and verify
(
X̄, d̄

)
is

a metric space.
4. For x ∈ X let i (x) = ā where a is the constant sequence, an = x for all n.

Verify that i : X → X̄ is an isometric map and that i (X) is dense in X̄.
5. Verify

(
X̄, d̄

)
is complete. Hint: if {ā(m)}∞m=1 is a Cauchy sequence in X̄

choose bm ∈ X such that d̄ (i (bm) , ā(m)) ≤ 1/m. Then show ā(m) → b̄
where b = {bm}∞m=1 .

13.3 Supplementary Remarks

13.3.1 Word of Caution

Example 13.25. Let (X, d) be a metric space. It is always true that Bx(ε) ⊂
Cx(ε) since Cx(ε) is a closed set containing Bx(ε). However, it is not always
true that Bx(ε) = Cx(ε). For example let X = {1, 2} and d(1, 2) = 1, then
B1(1) = {1} , B1(1) = {1} while C1(1) = X. For another counterexample, take

X =
{

(x, y) ∈ R2 : x = 0 or x = 1
}

with the usually Euclidean metric coming from the plane. Then

B(0,0)(1) =
{

(0, y) ∈ R2 : |y| < 1
}
,

B(0,0)(1) =
{

(0, y) ∈ R2 : |y| ≤ 1
}
, while

C(0,0)(1) = B(0,0)(1) ∪ {(1, 0)} .

In spite of the above examples, Lemmas 13.26 and 13.27 below shows that
for certain metric spaces of interest it is true that Bx(ε) = Cx(ε).

Lemma 13.26. Suppose that (X, |·|) is a normed vector space and d is the
metric on X defined by d(x, y) = |x− y| . Then

Bx(ε) = Cx(ε) and

bd(Bx(ε)) = {y ∈ X : d(x, y) = ε}.

where the boundary operation, bd(·) is defined in Definition 35.29 (BRUCE:
Forward Reference.) below.

Proof. We must show that C := Cx(ε) ⊂ Bx(ε) =: B̄. For y ∈ C, let
v = y − x, then

|v| = |y − x| = d(x, y) ≤ ε.

Let αn = 1− 1/n so that αn ↑ 1 as n→∞. Let yn = x+ αnv, then d(x, yn) =
αnd(x, y) < ε, so that yn ∈ Bx(ε) and d(y, yn) = (1− αn) |v| → 0 as n → ∞.
This shows that yn → y as n→∞ and hence that y ∈ B̄.

13.3.2 Riemannian Metrics

This subsection is not completely self contained and may safely be skipped.

Lemma 13.27. Suppose that X is a Riemannian (or sub-Riemannian) mani-
fold and d is the metric on X defined by

d(x, y) = inf {`(σ) : σ(0) = x and σ(1) = y}

Page: 145 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



146 13 Metric Spaces

Fig. 13.2. An almost length minimizing curve joining x to y.

where `(σ) is the length of the curve σ. We define `(σ) =∞ if σ is not piecewise
smooth.

Then

Bx(ε) = Cx(ε) and

bd(Bx(ε)) = {y ∈ X : d(x, y) = ε}

where the boundary operation, bd(·) is defined in Definition 35.29 below.

Proof. Let C := Cx(ε) ⊂ Bx(ε) =: B̄. We will show that C ⊂ B̄ by showing
B̄c ⊂ Cc. Suppose that y ∈ B̄c and choose δ > 0 such that By(δ) ∩ B̄ = ∅. In
particular this implies that

By(δ) ∩Bx(ε) = ∅.

We will finish the proof by showing that d(x, y) ≥ ε + δ > ε and hence that
y ∈ Cc. This will be accomplished by showing: if d(x, y) < ε + δ then By(δ) ∩
Bx(ε) 6= ∅. If d(x, y) < max(ε, δ) then either x ∈ By(δ) or y ∈ Bx(ε). In either
case By(δ)∩Bx(ε) 6= ∅. Hence we may assume that max(ε, δ) ≤ d(x, y) < ε+ δ.
Let α > 0 be a number such that

max(ε, δ) ≤ d(x, y) < α < ε+ δ

and choose a curve σ from x to y such that `(σ) < α. Also choose 0 < δ′ < δ such
that 0 < α− δ′ < ε which can be done since α− δ < ε. Let k(t) = d(y, σ(t)) a
continuous function on [0, 1] and therefore k([0, 1]) ⊂ R is a connected set which
contains 0 and d(x, y). Therefore there exists t0 ∈ [0, 1] such that d(y, σ(t0)) =
k(t0) = δ′. Let z = σ(t0) ∈ By(δ) then

d(x, z) ≤ `(σ|[0,t0]) = `(σ)− `(σ|[t0,1]) < α− d(z, y) = α− δ′ < ε

and therefore z ∈ Bx(ε) ∩Bx(δ) 6= ∅.

Remark 13.28. Suppose again that X is a Riemannian (or sub-Riemannian)
manifold and

d(x, y) = inf {`(σ) : σ(0) = x and σ(1) = y} .

Let σ be a curve from x to y and let ε = `(σ) − d(x, y). Then for all 0 ≤ u <
v ≤ 1,

d(x, y) + ε = `(σ) = `(σ|[0,u]) + `(σ|[u,v]) + `(σ|[v,1])

≥ d(x, σ(u)) + `(σ|[u,v]) + d(σ(v), y)

and therefore, using the triangle inequality,

`(σ|[u,v]) ≤ d(x, y) + ε− d(x, σ(u))− d(σ(v), y)

≤ d(σ(u), σ(v)) + ε.

This leads to the following conclusions. If σ is within ε of a length minimizing
curve from x to y then σ|[u,v] is within ε of a length minimizing curve from σ(u)
to σ(v). In particular if σ is a length minimizing curve from x to y then σ|[u,v]

is a length minimizing curve from σ(u) to σ(v).

13.4 Exercises

Exercise 13.13. Let (X, d) be a metric space. Suppose that {xn}∞n=1 ⊂ X is a
sequence and set εn := d(xn, xn+1). Show that for m > n that

d(xn, xm) ≤
m−1∑
k=n

εk ≤
∞∑
k=n

εk.

Conclude from this that if

∞∑
k=1

εk =

∞∑
n=1

d(xn, xn+1) <∞

then {xn}∞n=1 is Cauchy. Moreover, show that if {xn}∞n=1 is a convergent se-
quence and x = limn→∞ xn then

d(x, xn) ≤
∞∑
k=n

εk.

Exercise 13.14. Show that (X, d) is a complete metric space iff every sequence
{xn}∞n=1 ⊂ X such that

∑∞
n=1 d(xn, xn+1) <∞ is a convergent sequence in X.

You may find it useful to prove the following statements in the course of the
proof.
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1. If {xn} is Cauchy sequence, then there is a subsequence yj := xnj such that∑∞
j=1 d(yj+1, yj) <∞.

2. If {xn}∞n=1 is Cauchy and there exists a subsequence yj := xnj of {xn} such
that x = limj→∞ yj exists, then limn→∞ xn also exists and is equal to x.

Exercise 13.15. Suppose that f : [0,∞) → [0,∞) is a C2 – function such
that f(0) = 0, f ′ > 0 and f ′′ ≤ 0 and (X, ρ) is a metric space. Show that
d(x, y) = f(ρ(x, y)) is a metric on X. In particular show that

d(x, y) :=
ρ(x, y)

1 + ρ(x, y)

is a metric on X. (Hint: use calculus to verify that f(a + b) ≤ f(a) + f(b) for
all a, b ∈ [0,∞).)

Exercise 13.16. Let {(Xn, dn)}∞n=1 be a sequence of metric spaces, X :=∏∞
n=1Xn, and for x = (x(n))

∞
n=1 and y = (y(n))

∞
n=1 in X let

d(x, y) =

∞∑
n=1

2−n
dn(x(n), y(n))

1 + dn(x(n), y(n))
. (13.6)

Show:

1. (X, d) is a metric space,
2. a sequence {xk}∞k=1 ⊂ X converges to x ∈ X iff xk(n) → x(n) ∈ Xn as
k →∞ for each n ∈ N and

3. X is complete if Xn is complete for all n.

Exercise 13.17. Suppose (X, ρ) and (Y, d) are metric spaces and A is a dense
subset of X.

1. Show that if F : X → Y and G : X → Y are two continuous functions
such that F = G on A then F = G on X. Hint: consider the set C :=
{x ∈ X : F (x) = G (x)} .

2. Suppose f : A → Y is a function which is uniformly continuous, i.e. for
every ε > 0 there exists a δ > 0 such that

d (f (a) , f (b)) < ε for all a, b ∈ A with ρ (a, b) < δ.

Show there is a unique continuous function F : X → Y such that F = f on
A. Hint: each point x ∈ X is a limit of a sequence consisting of elements
from A.

3. Let X = R = Y and A = Q ⊂ X, find a function f : Q→ R which is
continuous on Q but does not extend to a continuous function on R.
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Banach Spaces

Definition 14.1. A norm on a vector space X is a function ‖·‖ : X → [0,∞)
such that

1. (Homogeneity) ‖λf‖ = |λ| ‖f‖ for all λ ∈ F and f ∈ X.
2. (Triangle inequality) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ X.
3. (Positive definite) ‖f‖ = 0 implies f = 0.

A function p : X → [0,∞) satisfying properties 1. and 2. but not necessarily
3. above will be called a semi-norm on X.

A pair (X, ‖·‖) where X is a vector space and ‖·‖ is a norm on X is called
a normed vector space.

Let (X, ‖·‖) be a normed vector space, then d (x, y) := ‖x− y‖ is easily seen
to be a metric on X. We say {xn}∞n=1 ⊂ X converges to x ∈ X (and write
limn→∞ xn = x or xn → x) if

0 = lim
n→∞

d (x, xn) = lim
n→∞

‖x− xn‖ .

Similarly {xn}∞n=1 ⊂ X is said to be a Cauchy sequence if

0 = lim
m,n→∞

d (xm, xn) = lim
m,n→∞

‖xm − xn‖ .

Definition 14.2 (Banach space). A normed vector space (X, ‖·‖) is a Ba-
nach space if the associated metric space (X, d) is complete, i.e. all Cauchy
sequences are convergent.

Remark 14.3. Since ‖x‖ = d (x, 0) , it follows from Lemma 13.6 that ‖·‖ is a
continuous function on X and that

|‖x‖ − ‖y‖| ≤ ‖x− y‖ for all x, y ∈ X.

It is also easily seen that the vector addition and scalar multiplication are
continuous on any normed space as the reader is asked to verify in Exercise
14.7. These facts will often be used in the sequel without further mention.

The next lemma contains a few simple examples of Banach spaces. We will
see many more examples throughout the book.

Lemma 14.4. Suppose that X is a set then the bounded functions, `∞(X), on
X is a Banach space with the norm

‖f‖ = ‖f‖∞ = sup
x∈X
|f(x)| .

Moreover if X is a metric space (more generally a topological space, see Chapter
35) the set BC (X) ⊂ `∞(X) = B(X) is closed subspace of `∞(X) and hence
is also a Banach space.

Proof. Let {fn}∞n=1 ⊂ `∞(X) be a Cauchy sequence. Since for any x ∈ X,
we have

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ (14.1)

which shows that {fn(x)}∞n=1 ⊂ F is a Cauchy sequence of numbers. Because F
(F = R or C) is complete, f(x) := limn→∞ fn(x) exists for all x ∈ X. Passing
to the limit n→∞ in Eq. (14.1) implies

|f(x)− fm(x)| ≤ lim inf
n→∞

‖fn − fm‖∞

and taking the supremum over x ∈ X of this inequality implies

‖f − fm‖∞ ≤ lim inf
n→∞

‖fn − fm‖∞ → 0 as m→∞

showing fm → f in `∞(X). For the second assertion, suppose that {fn}∞n=1 ⊂
BC (X) ⊂ `∞(X) and fn → f ∈ `∞(X). We must show that f ∈ BC (X) , i.e.
that f is continuous. To this end let x, y ∈ X, then

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ 2 ‖f − fn‖∞ + |fn(x)− fn(y)| . (14.2)

Thus if ε > 0, we may choose n large so that 2 ‖f − fn‖∞ < ε/2 and then for this
n there exists an open neighborhood Vx of x ∈ X such that |fn(x)− fn(y)| <
ε/2 for y ∈ Vx. Thus |f(x)− f(y)| < ε for y ∈ Vx showing the limiting function
f is continuous.

Alternative ending. From Eq. (14.2) we learn

lim sup
y→x

|f(x)− f(y)| ≤ 2 ‖f − fn‖∞ → 0 as n→∞,
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where
lim sup
y→x

|f(x)− f(y)| := lim
ε↓0

sup
d(y,x)<ε

|f (x)− f (y)|

and we have used the continuity of fn to assert lim supy→x |fn(x)− fn(y)| = 0.

Exercise 14.1. Let Y = BC (R,C) be the Banach space of continuous bounded
complex valued functions on R equipped with the uniform norm, ‖f‖u :=
supx∈R |f (x)| . Further let C0 (R,C) denote those f ∈ C (R,C) such that vanish
at infinity, i.e. limx→±∞ f (x) = 0. Also let Cc (R,C) denote those f ∈ C (R,C)
with compact support, i.e. there exists N < ∞ such that f (x) = 0 if |x| ≥ N.
Show C0 (R,C) is a closed subspace of Y and that

Cc (R,C) = C0 (R,C) .

Here is an application of Urysonhn’s Lemma 13.21 and Lemma 14.4

Theorem 14.5 (Metric Space Tietze Extension Theorem). Let (X, d)
be a metric space, D be a closed subset of X, −∞ < a < b < ∞ and
f ∈ C(D, [a, b]). (Here we are viewing D as a metric space with metric
dD := d|D×D.) Then there exists F ∈ C(X, [a, b]) such that F |D = f.

Proof.

1. By scaling and translation (i.e. by replacing f by (b− a)
−1

(f − a)), it suf-
fices to prove Theorem 14.5 with a = 0 and b = 1.

2. Suppose α ∈ (0, 1] and f : D → [0, α] is continuous function. Let A :=
f−1([0, 1

3α]) and B := f−1([ 2
3α, α]). By Lemma 13.21 there exists a function

g̃ ∈ C(X, [0, α3 ]) such that g̃ = 0 on A and g̃ = 1 on B. Letting g := α
3 g̃, we

have g ∈ C(X, [0, α3 ]) such that g = 0 on A and g = α
3 on B. Further notice

that

0 ≤ f(x)− g(x) ≤ 2

3
α for all x ∈ D.

3. Now suppose f : D → [0, 1] is a continuous function as in step 1. Let
g1 ∈ C(X, [0, 1/3]) be as in step 2 with α = 1 (see Figure 14.1) and let
f1 := f −g1|D ∈ C(D, [0, 2/3]). Now apply step 2. with f = f1 and α = 2/3

to find g2 ∈ C(X, [0, 1
3

2
3 ]) such that f2 := f − (g1 + g2) |D ∈ C(D, [0,

(
2
3

)2
]).

Continue this way inductively to find gn ∈ C(X, [0, 1
3

(
2
3

)n−1
]) such that

f −
N∑
n=1

gn|D =: fN ∈ C

(
D,

[
0,

(
2

3

)N])
. (14.3)

4. Define F :=
∑∞
n=1 gn. Since

∞∑
n=1

‖gn‖∞ ≤
∞∑
n=1

1

3

(
2

3

)n−1

=
1

3

1

1− 2
3

= 1,

the series defining F is uniformly convergent so F ∈ C(X, [0, 1]) via Lemma
14.4. Passing to the limit in Eq. (14.3) shows f = F |D.

X

1
3

2
3

1

0

f

B

g1

f − g1

A

D

Fig. 14.1. Reducing f by subtracting off a globally defined function g1 ∈ C
(
X, [0, 1

3
]
)
.

In this picture, D is depicted by the bold black line segment.

(The next theorem is a special case the scale of Banach spaces associated to
a general measure space.)

Theorem 14.6 (Completeness of `p(µ)). Let X be a set and µ : X → (0,∞)
be a given function. Then for any p ∈ [1,∞], (`p(µ), ‖·‖p) is a Banach space.

Proof. We have already proved this for p = ∞ in Lemma 14.4 so we now
assume that p ∈ [1,∞). Let {fn}∞n=1 ⊂ `p(µ) be a Cauchy sequence. Since for
any x ∈ X,

|fn(x)− fm(x)| ≤ 1

µ(x)
‖fn − fm‖p → 0 as m,n→∞
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it follows that {fn(x)}∞n=1 is a Cauchy sequence of numbers and f(x) :=
limn→∞ fn(x) exists for all x ∈ X. By Fatou’s Lemma,

‖fn − f‖pp =
∑
X

µ · lim
m→∞

inf |fn − fm|p ≤ lim
m→∞

inf
∑
X

µ · |fn − fm|p

= lim
m→∞

inf ‖fn − fm‖pp → 0 as n→∞.

This then shows that f = (f − fn) + fn ∈ `p(µ) (being the sum of two `p –

functions) and that fn
`p−→ f.

Remark 14.7. Let X be a set, Y be a Banach space and `∞(X,Y ) denote the
bounded functions f : X → Y equipped with the norm

‖f‖ = ‖f‖∞ = sup
x∈X
‖f(x)‖Y .

If X is a metric space (or a general topological space, see Chapter 35), let
BC(X,Y ) denote those f ∈ `∞(X,Y ) which are continuous. The same proof
used in Lemma 14.4 shows that `∞(X,Y ) is a Banach space and that BC(X,Y )
is a closed subspace of `∞(X,Y ). Similarly, if 1 ≤ p <∞ we may define

`p (X,Y ) =

f : X → Y : ‖f‖p =

(∑
x∈X
‖f (x)‖pY

)1/p

<∞

 .

The same proof as in Theorem 14.6 would then show that
(
`p (X,Y ) , ‖·‖p

)
is

a Banach space.

14.1 Bounded Linear Operators Basics

Definition 14.8. Let X and Y be normed spaces and T : X → Y be a linear
map. Then T is said to be bounded provided there exists C < ∞ such that
‖T (x)‖Y ≤ C‖x‖X for all x ∈ X. We denote the best constant by ‖T‖op =
‖T‖L(X,Y ), i.e.

‖T‖L(X,Y ) = sup
x 6=0

‖T (x)‖Y
‖x‖X

= sup
x 6=0
{‖T (x)‖Y : ‖x‖X = 1} .

The number ‖T‖L(X,Y ) is called the operator norm of T.

In the future, we will usually drop the garnishing on the norms and sim-
ply write ‖x‖X as ‖x‖, ‖T‖L(X,Y ) as ‖T‖ , etc. The reader should be able to
determine the norm that is to be used by context.

Proposition 14.9. Suppose that X and Y are normed spaces and T : X → Y
is a linear map. The the following are equivalent:

1. T is continuous.
2. T is continuous at 0.
3. T is bounded.

Proof. 1.⇒ 2. trivial. 2.⇒ 3. If T continuous at 0 then there exist δ > 0 such
that ‖T (x)‖ ≤ 1 if ‖x‖ ≤ δ. Therefore for any nonzero x ∈ X, ‖T (δx/‖x‖)‖ ≤ 1
which implies that ‖T (x)‖ ≤ 1

δ ‖x‖ and hence ‖T‖ ≤ 1
δ <∞. 3.⇒ 1. Let x ∈ X

and ε > 0 be given. Then

‖Ty − Tx‖ = ‖T (y − x)‖ ≤ ‖T‖ ‖y − x‖ < ε

provided ‖y − x‖ < ε/‖T‖ := δ.

Example 14.10 (An unbounded operator). Let X = Y = P – be the polynomial
functions on [0, 1] equipped with the uniform norm, ‖p‖u := supx∈[0,1] |p (x)|
and let D : X → X be differentiation operator, Dp = p′ for all p ∈ X. Then
‖D‖op =∞, i.e. D is unbounded. To see this is the case, let pn (x) = xn so that

(Dpn) (x) = nxn−1. Notice that

n = ‖Dpn‖u ≤ ‖Dop‖ · ‖pn‖u = ‖Dop‖ · 1 for all n ∈ N

from which if follows that ‖D‖op = ∞. [Compare this example with Example
14.12 below.]

Example 14.11 (Integral Operators). Suppose that k : [0, 1] × [0, 1] → C is a
continuous function. For f ∈ C([0, 1]), let

Kf(x) =

∫ 1

0

k(x, y)f(y)dy.

Using the dominated convergence theorem one easily shows that Kf ∈ C ([0, 1])
along with the linearity of the integral shows K : C([0, 1])→ C([0, 1]) is a linear
map.

1. Let us let ‖·‖∞ = ‖·‖u denote the uniform norm on both copies of C ([0, 1])
and compute ‖K‖op . Since

|Kf(x)| ≤
∫ 1

0

|k(x, y)| |f(y)| dy ≤
∫ 1

0

|k(x, y)| dy · ‖f‖∞ ≤ A ‖f‖∞

where

A := sup
x∈[0,1]

∫ 1

0

|k(x, y)| dy <∞, (14.4)
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we may conclude that ‖K‖op ≤ A < ∞. We may in fact show ‖K‖ = A.

Since, by DCT, x →
∫ 1

0
|k(x, y)| dy is continuous, there exists x0 ∈ [0, 1]

such that

A = sup
x∈[0,1]

∫ 1

0

|k(x, y)| dy =

∫ 1

0

|k(x0, y)| dy.

Given ε > 0, let

fε(y) :=
k(x0, y)

ε+ |k(x0, y)|
∈ C([0, 1])

so that

‖K‖op ‖fε‖∞ ≥ ‖Kfε‖∞ ≥ |Kfε(x0)| = Kfε(x0) =

∫ 1

0

|k(x0, y)|2

ε+ |k(x0, y)|
dy.

(14.5)
Since limε↓0 ‖fε‖∞ = 1 and (by DCT)

lim
ε↓0

∫ 1

0

|k(x0, y)|2

ε+ |k(x0, y)|
dy =

∫ 1

0

|k(x0, y)| dy = A,

we may let ε ↓ 0 in Eq. (14.5) in order to conclude ‖K‖op ≥ A.
2. We may also consider other norms on C([0, 1]). Let (for now) L1 ([0, 1])

denote C([0, 1]) with the norm

‖f‖1 =

∫ 1

0

|f(x)| dx

and now consider K : L1 ([0, 1], dm)→ C([0, 1]) is bounded as well. Indeed,
let M = sup {|k(x, y)| : x, y ∈ [0, 1]} , then

|(Kf)(x)| ≤
∫ 1

0

|k(x, y)f(y)| dy ≤M ‖f‖1

which shows ‖Kf‖∞ ≤M ‖f‖1 and hence,

‖K‖L1→C ≤ max {|k(x, y)| : x, y ∈ [0, 1]} <∞.

We can in fact show that ‖K‖ = M as follows. Let (x0, y0) ∈ [0, 1]2 sat-
isfying |k(x0, y0)| = M. Then given ε > 0, there exists a neighborhood
U = I × J of (x0, y0) such that |k(x, y)− k(x0, y0)| < ε for all (x, y) ∈ U.
Let f ∈ Cc(I, [0,∞)) such that

∫ 1

0
f(x)dx = 1. Choose α ∈ C such that

|α| = 1 and αk(x0, y0) = M, then

|(Kαf)(x0)| =
∣∣∣∣∫ 1

0

k(x0, y)αf(y)dy

∣∣∣∣ =

∣∣∣∣∫
I

k(x0, y)αf(y)dy

∣∣∣∣
≥ Re

∫
I

αk(x0, y)f(y)dy

≥
∫
I

(M − ε) f(y)dy = (M − ε) ‖αf‖L1

and hence
‖Kαf‖C ≥ (M − ε) ‖αf‖L1

showing that ‖K‖ ≥M−ε. Since ε > 0 is arbitrary, we learn that ‖K‖ ≥M
and hence ‖K‖ = M.

3. One may also view K as a map from K : C([0, 1]) → L1([0, 1]) in which
case

‖Kf‖1 =

∫ 1

0

dx

∣∣∣∣∫ 1

0

k(x, y)f(y)dy

∣∣∣∣ ≤ ∫ 1

0

dx

∫ 1

0

dy |k(x, y)f(y)|

≤
[∫ 1

0

dx

∫ 1

0

dy |k(x, y)|
]
· ‖f‖∞

so that

‖K‖C→L1 ≤
∫ 1

0

dx

∫ 1

0

dy |k(x, y)| .

Example 14.12 (Inverting differential operators). [This example used facts
about Lp – spaces not yet covered in the notes!] Let Y denote those f ∈
L2 ([0, 1] ,m) which have a C1 – representative such that f ′ is absolutely con-
tinuous, f ′′ ∈ L2 ([0, 1] ,m) , f (0) = 0 = f ′ (1) and for f ∈ Y let Lf = f ′′. Let
us try to invert L, i.e. given g ∈ L2 ([0, 1] ,m) we wish to find f ∈ Y such that
Lf = g. Integrating f ′′ = g shows,∫ 1

σ

g (y) dy =

∫ 1

σ

f ′′ (y) dy = f ′ (1)− f ′ (σ) = −f ′ (σ)

and then integrating this equation implies

f (x) = f (x)− f (0) =

∫ x

0

f ′ (σ) dσ

= −
∫ x

0

[∫ 1

σ

g (y) dy

]
dσ

= −
∫

[0,1]2
dydσ10≤σ≤x,y≤1g (y) = −

∫ 1

0

min (x, y) g (y) dy.

This shows that
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L−1g

)
(x) = −

∫ 1

0

min (x, y) g (y) dy.

The function min (x, y) is the Green’s function associated to L. If we let
K : L2 ([0, 1] ,m) → L2 ([0, 1] ,m) be L−1 thought of as an operator from on
L2 ([0, 1] ,m) , it is fairly easy to verify that K is bounded, see for example
Exercise 18.5 below.

The next elementary theorem (referred to as the bounded linear transfor-
mation theorem, or B.L.T. theorem for short) is often useful when constructing
bounded linear transformations.

Theorem 14.13 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach space, and S ⊂ Z is a dense linear subspace of Z. If T : S → X is a
bounded linear transformation (i.e. there exists C <∞ such that ‖Tz‖ ≤ C ‖z‖
for all z ∈ S), then T has a unique extension to an element T̄ ∈ L(Z,X) and
this extension still satisfies∥∥T̄ z∥∥ ≤ C ‖z‖ for all z ∈ S̄.

Exercise 14.2. Prove Theorem 14.13.

For the next three exercises, let X = Rn and Y = Rm and T : X → Y be a
linear transformation so that T is given by matrix multiplication by an m× n
matrix. Let us identify the linear transformation T with this matrix.

Exercise 14.3. Assume the norms on X and Y are the `1 – norms, i.e. for
x ∈ Rn, ‖x‖ =

∑n
j=1 |xj | . Then the operator norm of T is given by

‖T‖ = max
1≤j≤n

m∑
i=1

|Tij | .

Exercise 14.4. Assume the norms on X and Y are the `∞ – norms, i.e. for
x ∈ Rn, ‖x‖ = max1≤j≤n |xj | . Then the operator norm of T is given by

‖T‖ = max
1≤i≤m

n∑
j=1

|Tij | .

Exercise 14.5. Assume the norms on X and Y are the `2 – norms, i.e. for
x ∈ Rn, ‖x‖2 =

∑n
j=1 x

2
j . Show ‖T‖2 is the largest eigenvalue of the matrix

T trT : Rn → Rn. Hint: Use the spectral theorem for symmetric real matrices.

Notation 14.14 Let L(X,Y ) denote the bounded linear operators from X to
Y and L (X) = L (X,X) . If Y = F we write X∗ for L(X,F) and call X∗ the
(continuous) dual space to X.

Lemma 14.15. Let X,Y be normed spaces, then the operator norm ‖·‖ on
L(X,Y ) is a norm. Moreover if Z is another normed space and T : X → Y
and S : Y → Z are linear maps, then ‖ST‖ ≤ ‖S‖‖T‖, where ST := S ◦ T.

Proof. As usual, the main point in checking the operator norm is a norm
is to verify the triangle inequality, the other axioms being easy to check. If
A,B ∈ L(X,Y ) then the triangle inequality is verified as follows:

‖A+B‖ = sup
x 6=0

‖Ax+Bx‖
‖x‖

≤ sup
x 6=0

‖Ax‖+ ‖Bx‖
‖x‖

≤ sup
x 6=0

‖Ax‖
‖x‖

+ sup
x 6=0

‖Bx‖
‖x‖

= ‖A‖+ ‖B‖ .

For the second assertion, we have for x ∈ X, that

‖STx‖ ≤ ‖S‖‖Tx‖ ≤ ‖S‖‖T‖‖x‖.

From this inequality and the definition of ‖ST‖, it follows that ‖ST‖ ≤ ‖S‖‖T‖.

The reader is asked to prove the following continuity lemma in Exercise
14.11.

Lemma 14.16. Let X, Y and Z be normed spaces. Then the maps

(S, x) ∈ L(X,Y )×X −→ Sx ∈ Y

and
(S, T ) ∈ L(X,Y )× L(Y, Z) −→ TS ∈ L(X,Z)

are continuous relative to the norms

‖(S, x)‖L(X,Y )×X := ‖S‖L(X,Y ) + ‖x‖X and

‖(S, T )‖L(X,Y )×L(Y,Z) := ‖S‖L(X,Y ) + ‖T‖L(Y,Z)

on L(X,Y )×X and L(X,Y )× L(Y,Z) respectively.

Proposition 14.17. Suppose that X is a normed vector space and Y is a Ba-
nach space. Then (L(X,Y ), ‖ · ‖op) is a Banach space. In particular the dual
space X∗ is always a Banach space.

Proof. Let {Tn}∞n=1 be a Cauchy sequence in L(X,Y ). Then for each x ∈ X,

‖Tnx− Tmx‖ ≤ ‖Tn − Tm‖ ‖x‖ → 0 as m,n→∞

showing {Tnx}∞n=1 is Cauchy in Y. Using the completeness of Y, there exists an
element Tx ∈ Y such that
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lim
n→∞

‖Tnx− Tx‖ = 0.

The map T : X → Y is linear map, since for x, x′ ∈ X and λ ∈ F we have

T (x+ λx′) = lim
n→∞

Tn (x+ λx′) = lim
n→∞

[Tnx+ λTnx
′] = Tx+ λTx′,

wherein we have used the continuity of the vector space operations in the last
equality. Moreover,

‖Tx− Tnx‖ ≤ ‖Tx− Tmx‖+ ‖Tmx− Tnx‖ ≤ ‖Tx− Tmx‖+ ‖Tm − Tn‖ ‖x‖

and therefore

‖Tx− Tnx‖ ≤ lim inf
m→∞

(‖Tx− Tmx‖+ ‖Tm − Tn‖ ‖x‖)

= ‖x‖ · lim inf
m→∞

‖Tm − Tn‖ .

Hence
‖T − Tn‖ ≤ lim inf

m→∞
‖Tm − Tn‖ → 0 as n→∞.

Thus we have shown that Tn → T in L(X,Y ) as desired.
The following characterization of a Banach space will sometimes be useful

in the sequel.

Theorem 14.18. A normed space (X, ‖·‖) is a Banach space iff every sequence

{xn}∞n=1 ⊂ X such that
∞∑
n=1
‖xn‖ <∞ implies limN→∞

N∑
n=1

xn = s exists in X

(that is to say every absolutely convergent series is a convergent series in X.)

As usual we will denote s by
∞∑
n=1

xn.

Proof. (⇒) If X is complete and
∞∑
n=1
‖xn‖ <∞ then sequence sN :=

N∑
n=1

xn

for N ∈ N is Cauchy because (for N > M)

‖sN − sM‖ ≤
N∑

n=M+1

‖xn‖ → 0 as M,N →∞.

Therefore s =
∞∑
n=1

xn := limN→∞
N∑
n=1

xn exists in X.

(⇐=) Suppose that {sn}∞n=0 ⊂ X is a sequence such that

∞ >

∞∑
n=0

d (sn, sn−1) =

∞∑
n=0

‖sn − sn−1‖ .

Then by assumption this implies
∑∞
n=0 (sn − sn−1) exists in X, i.e.

∞∑
n=0

(sn − sn−1) = lim
N→∞

N∑
n=0

(sn − sn−1) = lim
N→∞

(sN − s0) .

This shows that {Sn}∞n=0 is convergent in X and therefore we may appeal to
Exercise 13.14 to see that (X, d) is complete, i.e. (X, ‖·‖) is a Banach space.

Example 14.19. Here is another proof of Proposition 14.17 which makes use of
Theorem 14.18. Suppose that Tn ∈ L(X,Y ) is a sequence of operators such that
∞∑
n=1
‖Tn‖ <∞. Then

∞∑
n=1

‖Tnx‖ ≤
∞∑
n=1

‖Tn‖ ‖x‖ <∞

and therefore by the completeness of Y, Sx :=
∞∑
n=1

Tnx = limN→∞ SNx exists

in Y, where SN :=
N∑
n=1

Tn. The reader should check that S : X → Y so defined

is linear. Since,

‖Sx‖ = lim
N→∞

‖SNx‖ ≤ lim
N→∞

N∑
n=1

‖Tnx‖ ≤
∞∑
n=1

‖Tn‖ ‖x‖ ,

S is bounded and

‖S‖ ≤
∞∑
n=1

‖Tn‖. (14.6)

Similarly,

‖Sx− SMx‖ = lim
N→∞

‖SNx− SMx‖

≤ lim
N→∞

N∑
n=M+1

‖Tn‖ ‖x‖ =

∞∑
n=M+1

‖Tn‖ ‖x‖

and therefore,

‖S − SM‖ ≤
∞∑

n=M

‖Tn‖ → 0 as M →∞.

For the remainder of this section let X be an infinite set, µ : X → (0,∞)
be a given function and p, q ∈ [1,∞] such that q = p/ (p− 1) . It will also be
convenient to define δx : X → R for x ∈ X by
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δx (y) =

{
1 if y = x
0 if y 6= x.

Notation 14.20 Let c0 (X) denote those functions f ∈ `∞ (X) which “vanish
at ∞,” i.e. for every ε > 0 there exists a finite subset Λε ⊂ X such that
|f (x)| < ε whenever x /∈ Λε. Also let cf (X) denote those functions f : X → F
with finite support, i.e.

cf (X) := {f ∈ `∞ (X) : # ({x ∈ X : f (x) 6= 0}) <∞} .

Exercise 14.6. Show cf (X) is a subspace of the Banach spaces
(
`p (µ) , ‖·‖p

)
for 1 ≤ p < ∞, while the closure of cf (X) inside the Banach space,
(`∞ (X) , ‖·‖∞) is c0 (X) . Note from this it follows that c0 (X) is a closed sub-
space of `∞ (X) . (See Proposition 37.23 below where this last assertion is proved
in a more general context.)

Theorem 14.21. Let X be any set, µ : X → (0,∞) be a function, p ∈ [1,∞],
q := p/ (p− 1) be the conjugate exponent and for f ∈ `q (µ) define φf : `p (µ)→
F by

φf (g) :=
∑
x∈X

f (x) g (x)µ (x) .

Then

1. φf (g) is well defined and φf ∈ `p (µ)
∗
.

2. The map

f ∈ `q (µ)
φ→ φf ∈ `p (µ)

∗
(14.7)

is an isometric linear map of Banach spaces.
3. If p ∈ [1,∞), then the map in Eq. (14.7) is also surjective and hence, `p (µ)

∗

is isometrically isomorphic to `q (µ) .
4. When p =∞, the map

f ∈ `1 (µ)→ φf ∈ c0 (X)
∗

is an isometric and surjective, i.e. `1 (µ) is isometrically isomorphic to
c0 (X)

∗
.

(See Theorem 21.20 below for a continuation of this theorem.)

Proof.

1. By Holder’s inequality,∑
x∈X
|f (x)| |g (x)|µ (x) ≤ ‖f‖q ‖g‖p

which shows that φf is well defined. The φf : `p (µ) → F is linear by the
linearity of sums and since

|φf (g)| =

∣∣∣∣∣∑
x∈X

f (x) g (x)µ (x)

∣∣∣∣∣ ≤∑
x∈X
|f (x)| |g (x)|µ (x) ≤ ‖f‖q ‖g‖p ,

we learn that
‖φf‖`p(µ)∗ ≤ ‖f‖q . (14.8)

Therefore φf ∈ `p (µ)
∗
.

2. The map φ in Eq. (14.7) is linear in f by the linearity properties of infinite

sums. For p ∈ (1,∞) , define g (x) = sgn(f (x)) |f (x)|q−1
where

sgn(z) :=

{ z
|z| if z 6= 0

0 if z = 0.

Then

‖g‖pp =
∑
x∈X
|f (x)|(q−1)p

µ (x) =
∑
x∈X
|f (x)|(

p
p−1−1)p µ (x)

=
∑
x∈X
|f (x)|q µ (x) = ‖f‖qq

and

φf (g) =
∑
x∈X

f (x) sgn(f (x)) |f (x)|q−1
µ (x) =

∑
x∈X
|f (x)| |f (x)|q−1

µ (x)

= ‖f‖q(
1
q+ 1

p )
q = ‖f‖q ‖f‖

q
p
q = ‖f‖q ‖g‖p .

Hence ‖φf‖`p(µ)∗ ≥ ‖f‖q which combined with Eq. (14.8) shows

‖φf‖`p(µ)∗ = ‖f‖q . For p =∞, let g (x) = sgn(f (x)), then ‖g‖∞ = 1 and

|φf (g)| =
∑
x∈X

f (x) sgn(f (x))µ (x)

=
∑
x∈X
|f (x)|µ (x) = ‖f‖1 ‖g‖∞

which shows ‖φf‖`∞(µ)∗ ≥ ‖f‖`1(µ) . Combining this with Eq. (14.8) shows

‖φf‖`∞(µ)∗ = ‖f‖`1(µ) . For p = 1,

|φf (δx)| = µ (x) |f (x)| = |f (x)| ‖δx‖1

and therefore ‖φf‖`1(µ)∗ ≥ |f (x)| for all x ∈ X. Hence ‖φf‖`1(µ)∗ ≥ ‖f‖∞
which combined with Eq. (14.8) shows ‖φf‖`1(µ)∗ = ‖f‖∞ .
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3. and 4. Suppose that p ∈ [1,∞) and λ ∈ `p (µ)
∗

or p = ∞ and λ ∈ c0 (X)
∗
.

We wish to find f ∈ `q (µ) such that λ = φf . If such an f exists, then
λ (δx) = f (x)µ (x) and so we must define f (x) := λ (δx) /µ (x) . As a
preliminary estimate,

|f (x)| = |λ (δx)|
µ (x)

≤
‖λ‖`p(µ)∗ ‖δx‖`p(µ)

µ (x)

=
‖λ‖`p(µ)∗ [µ (x)]

1
p

µ (x)
= ‖λ‖`p(µ)∗ [µ (x)]

− 1
q .

When p = 1 and q = ∞, this implies ‖f‖∞ ≤ ‖λ‖`1(µ)∗ < ∞. If p ∈ (1,∞]
and Λ ⊂⊂ X, then

‖f‖q`q(Λ,µ) :=
∑
x∈Λ
|f (x)|q µ (x) =

∑
x∈Λ

f (x) sgn(f (x)) |f (x)|q−1
µ (x)

=
∑
x∈Λ

λ (δx)

µ (x)
sgn(f (x)) |f (x)|q−1

µ (x)

=
∑
x∈Λ

λ (δx) sgn(f (x)) |f (x)|q−1

= λ

(∑
x∈Λ

sgn(f (x)) |f (x)|q−1
δx

)

≤ ‖λ‖`p(µ)∗

∥∥∥∥∥∑
x∈Λ

sgn(f (x)) |f (x)|q−1
δx

∥∥∥∥∥
p

.

Since∥∥∥∥∥∑
x∈Λ

sgn(f (x)) |f (x)|q−1
δx

∥∥∥∥∥
p

=

(∑
x∈Λ
|f (x)|(q−1)p

µ (x)

)1/p

=

(∑
x∈Λ
|f (x)|q µ (x)

)1/p

= ‖f‖q/p`q(Λ,µ)

which is also valid for p =∞ provided ‖f‖1/∞`1(Λ,µ) := 1. Combining the last

two displayed equations shows

‖f‖q`q(Λ,µ) ≤ ‖λ‖`p(µ)∗ ‖f‖
q/p
`q(Λ,µ)

and solving this inequality for ‖f‖q`q(Λ,µ) (using q − q/p = 1) implies

‖f‖`q(Λ,µ) ≤ ‖λ‖`p(µ)∗ Taking the supremum of this inequality on Λ ⊂⊂ X

shows ‖f‖`q(µ) ≤ ‖λ‖`p(µ)∗ , i.e. f ∈ `q (µ) . Since λ = φf agree on cf (X)

and cf (X) is a dense subspace of `p (µ) for p < ∞ and cf (X) is dense
subspace of c0 (X) when p =∞, it follows that λ = φf .

14.2 General Sums in Banach Spaces

Definition 14.22. Suppose X is a normed space.

1. Suppose that {xn}∞n=1 is a sequence in X, then we say
∑∞
n=1 xn converges

in X and
∑∞
n=1 xn = s if

lim
N→∞

N∑
n=1

xn = s in X.

2. Suppose that {xα : α ∈ A} is a given collection of vectors in X. We say the
sum

∑
α∈A xα converges in X and write s =

∑
α∈A xα ∈ X if for all

ε > 0 there exists a finite set Γε ⊂ A such that
∥∥s−∑α∈Λ xα

∥∥ < ε for any
Λ ⊂⊂ A such that Γε ⊂ Λ.

Warning: As usual if X is a Banach space and
∑
α∈A ‖xα‖ < ∞ then∑

α∈A xα exists in X, see Exercise 14.15. However, unlike the case of real val-
ued sums the existence of

∑
α∈A xα does not imply

∑
α∈Λ ‖xα‖ < ∞. See

Proposition 18.22 below, from which one may manufacture counter-examples
to this false premise.

Lemma 14.23. Suppose that {xα ∈ X : α ∈ A} is a given collection of vectors
in a normed space, X.

1. If s =
∑
α∈A xα ∈ X exists and T : X → Y is a bounded linear map between

normed spaces, then
∑
α∈A Txα exists in Y and

Ts = T
∑
α∈A

xα =
∑
α∈A

Txα.

2. If s =
∑
α∈A xα exists in X then for every ε > 0 there exists Γε ⊂⊂ A such

that
∥∥∑

α∈Λ xα
∥∥ < ε for all Λ ⊂⊂ A \ Γε.

3. If s =
∑
α∈A xα exists in X, the set Γ := {α ∈ A : xa 6= 0} is at most

countable. Moreover if Γ is infinite and {αn}∞n=1 is an enumeration of Γ,
then

s =

∞∑
n=1

xαn := lim
N→∞

N∑
n=1

xαn . (14.9)
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4. If we further assume that X is a Banach space and suppose for all ε > 0
there exists Γε ⊂⊂ A such that

∥∥∑
α∈Λ xα

∥∥ < ε whenever Λ ⊂⊂ A \ Γε,
then

∑
α∈A xα exists in X.

Proof.

1. Let Γε be as in Definition 14.22 and Λ ⊂⊂ A such that Γε ⊂ Λ. Then∥∥∥∥∥Ts−∑
α∈Λ

Txα

∥∥∥∥∥ ≤ ‖T‖
∥∥∥∥∥s−∑

α∈Λ
xα

∥∥∥∥∥ < ‖T‖ ε
which shows that

∑
α∈Λ Txα exists and is equal to Ts.

2. Suppose that s =
∑
α∈A xα exists and ε > 0. Let Γε ⊂⊂ A be as in

Definition 14.22. Then for Λ ⊂⊂ A \ Γε,∥∥∥∥∥∑
α∈Λ

xα

∥∥∥∥∥ =

∥∥∥∥∥ ∑
α∈Γε∪Λ

xα −
∑
α∈Γε

xα

∥∥∥∥∥
≤

∥∥∥∥∥ ∑
α∈Γε∪Λ

xα − s

∥∥∥∥∥+

∥∥∥∥∥∑
α∈Γε

xα − s

∥∥∥∥∥ < 2ε.

3. If s =
∑
α∈A xα exists in X, for each n ∈ N there exists a finite subset

Γn ⊂ A such that
∥∥∑

α∈Λ xα
∥∥ < 1

n for all Λ ⊂⊂ A \ Γn. Without loss of
generality we may assume xα 6= 0 for all α ∈ Γn. Let Γ∞ := ∪∞n=1Γn – a
countable subset of A. Then for any β /∈ Γ∞, we have {β} ∩ Γn = ∅ and
therefore

‖xβ‖ =

∥∥∥∥∥∥
∑
α∈{β}

xα

∥∥∥∥∥∥ ≤ 1

n
→ 0 as n→∞.

Let {αn}∞n=1 be an enumeration of Γ and define γN := {αn : 1 ≤ n ≤ N} .
Since for any M ∈ N, γN will eventually contain ΓM for N sufficiently large,
we have

lim sup
N→∞

∥∥∥∥∥s−
N∑
n=1

xαn

∥∥∥∥∥ ≤ 1

M
→ 0 as M →∞.

Therefore Eq. (14.9) holds.
4. For n ∈ N, let Γn ⊂⊂ A such that

∥∥∑
α∈Λ xα

∥∥ < 1
n for all Λ ⊂⊂ A \ Γn.

Define γn := ∪nk=1Γk ⊂ A and sn :=
∑
α∈γn xα. Then for m > n,

‖sm − sn‖ =

∥∥∥∥∥∥
∑

α∈γm\γn

xα

∥∥∥∥∥∥ ≤ 1/n→ 0 as m,n→∞.

Therefore {sn}∞n=1 is Cauchy and hence convergent in X, because X is a
Banach space. Let s := limn→∞ sn. Then for Λ ⊂⊂ A such that γn ⊂ Λ, we
have ∥∥∥∥∥s−∑

α∈Λ
xα

∥∥∥∥∥ ≤ ‖s− sn‖+

∥∥∥∥∥∥
∑

α∈Λ\γn

xα

∥∥∥∥∥∥ ≤ ‖s− sn‖+
1

n
.

Since the right side of this equation goes to zero as n→∞, it follows that∑
α∈A xα exists and is equal to s.

14.3 Inverting Elements in L(X)

Definition 14.24. A linear map T : X → Y is an isometry if ‖Tx‖Y = ‖x‖X
for all x ∈ X. T is said to be invertible if T is a bijection and T−1 is bounded.

Notation 14.25 We will write GL(X,Y ) for those T ∈ L(X,Y ) which are
invertible. If X = Y we simply write L(X) and GL(X) for L(X,X) and
GL(X,X) respectively.

Proposition 14.26. Suppose X is a Banach space and Λ ∈ L(X) := L(X,X)

satisfies
∞∑
n=0
‖Λn‖ <∞. Then I − Λ is invertible and

(I − Λ)−1 = “
1

I − Λ
” =

∞∑
n=0

Λn and
∥∥(I − Λ)−1

∥∥ ≤ ∞∑
n=0

‖Λn‖.

In particular if ‖Λ‖ < 1 then the above formula holds and∥∥(I − Λ)−1
∥∥ ≤ 1

1− ‖Λ‖
.

Proof. Since L(X) is a Banach space and
∞∑
n=0
‖Λn‖ < ∞, it follows from

Theorem 14.18 that

S := lim
N→∞

SN := lim
N→∞

N∑
n=0

Λn

exists in L(X). Moreover, by Lemma 14.16,
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(I − Λ)S = (I − Λ) lim
N→∞

SN = lim
N→∞

(I − Λ)SN

= lim
N→∞

(I − Λ)

N∑
n=0

Λn = lim
N→∞

(I − ΛN+1) = I

and similarly S (I − Λ) = I. This shows that (I − Λ)−1 exists and is equal to
S. Moreover, (I − Λ)−1 is bounded because

∥∥(I − Λ)−1
∥∥ = ‖S‖ ≤

∞∑
n=0

‖Λn‖.

If we further assume ‖Λ‖ < 1, then ‖Λn‖ ≤ ‖Λ‖n and

∞∑
n=0

‖Λn‖ ≤
∞∑
n=0

‖Λ‖n =
1

1− ‖Λ‖
<∞.

Corollary 14.27. Let X and Y be Banach spaces. Then GL(X,Y ) is an open
(possibly empty) subset of L(X,Y ). More specifically, if A ∈ GL(X,Y ) and
B ∈ L(X,Y ) satisfies

‖B −A‖ < ‖A−1‖−1 (14.10)

then B ∈ GL(X,Y )

B−1 =

∞∑
n=0

[
IX −A−1B

]n
A−1 ∈ L(Y,X), (14.11)

∥∥B−1
∥∥ ≤ ‖A−1‖ 1

1− ‖A−1‖ ‖A−B‖
(14.12)

and ∥∥B−1 −A−1
∥∥ ≤ ‖A−1‖2 ‖A−B‖

1− ‖A−1‖ ‖A−B‖
. (14.13)

In particular the map

A ∈ GL(X,Y )→ A−1 ∈ GL(Y,X) (14.14)

is continuous.

Proof. Let A and B be as above, then

B = A− (A−B) = A
[
IX −A−1(A−B))

]
= A(IX − Λ)

where Λ : X → X is given by

Λ := A−1(A−B) = IX −A−1B.

Now

‖Λ‖ =
∥∥A−1(A−B))

∥∥ ≤ ‖A−1‖ ‖A−B‖ < ‖A−1‖‖A−1‖−1 = 1.

Therefore I −Λ is invertible and hence so is B (being the product of invertible
elements) with

B−1 = (IX − Λ)−1A−1 =
[
IX −A−1(A−B))

]−1
A−1.

Taking norms of the previous equation gives∥∥B−1
∥∥ ≤ ∥∥(IX − Λ)−1

∥∥ ‖A−1‖ ≤ ‖A−1‖ 1

1− ‖Λ‖

≤ ‖A−1‖
1− ‖A−1‖ ‖A−B‖

which is the bound in Eq. (14.12). The bound in Eq. (14.13) holds because∥∥B−1 −A−1
∥∥ =

∥∥B−1 (A−B)A−1
∥∥ ≤ ∥∥B−1

∥∥ ∥∥A−1
∥∥ ‖A−B‖

≤ ‖A−1‖2 ‖A−B‖
1− ‖A−1‖ ‖A−B‖

.

For an application of these results to linear ordinary differential equations,
see Section 32.3.

14.4 Exercises

Exercise 14.7. Let (X, ‖·‖) be a normed space over F (R or C). Show the map

(λ, x, y) ∈ F×X ×X → x+ λy ∈ X

is continuous relative to the norm on F×X ×X defined by

‖(λ, x, y)‖F×X×X := |λ|+ ‖x‖+ ‖y‖ .

(See Exercise 35.33 for more on the metric associated to this norm.) Also show
that ‖·‖ : X → [0,∞) is continuous.

Exercise 14.8. Let X = N and for p, q ∈ [1,∞) let ‖·‖p denote the `p(N) –
norm. Show ‖·‖p and ‖·‖q are inequivalent norms for p 6= q by showing

sup
f 6=0

‖f‖p
‖f‖q

=∞ if p < q.
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Exercise 14.9. Suppose that (X, ‖·‖) is a normed space and S ⊂ X is a linear
subspace.

1. Show the closure S̄ of S is also a linear subspace.
2. Now suppose that X is a Banach space. Show that S with the inherited

norm from X is a Banach space iff S is closed.

Exercise 14.10 (See Chapter 15). Folland Problem 5.9. Showing Ck([0, 1])
is a Banach space.

Exercise 14.11. Suppose that X,Y and Z are Banach spaces and Q : X×Y →
Z is a bilinear form, i.e. we are assuming x ∈ X → Q (x, y) ∈ Z is linear for each
y ∈ Y and y ∈ Y → Q (x, y) ∈ Z is linear for each x ∈ X. Show Q is continuous
relative to the product norm, ‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y , on X × Y iff there
is a constant M <∞ such that

‖Q (x, y)‖Z ≤M ‖x‖X · ‖y‖Y for all (x, y) ∈ X × Y. (14.15)

Then apply this result to prove Lemma 14.16.

The following exercise is very similar to Exercise 13.16.

Exercise 14.12. Let d : C(R)× C(R)→ [0,∞) be defined by

d(f, g) =

∞∑
n=1

2−n
‖f − g‖n

1 + ‖f − g‖n
,

where ‖f‖n := sup{|f(x)| : |x| ≤ n} = max{|f(x)| : |x| ≤ n}.

1. Show that d is a metric on C(R).
2. Show that a sequence {fn}∞n=1 ⊂ C(R) converges to f ∈ C(R) as n → ∞

iff fn converges to f uniformly on bounded subsets of R.
3. Show that (C(R), d) is a complete metric space.

Exercise 14.13. Let X = C([0, 1],R) and for f ∈ X, let

‖f‖1 :=

∫ 1

0

|f(t)| dt.

Show that (X, ‖·‖1) is normed space and show by example that this space is not
complete. Hint: For the last assertion find a sequence of {fn}∞n=1 ⊂ X which is
“trying” to converge to the function f = 1[ 12 ,1] /∈ X.

Exercise 14.14. Let (X, ‖·‖1) be the normed space in Exercise 14.13. Compute
the closure of A when

1. A = {f ∈ X : f (1/2) = 0} .
2. A =

{
f ∈ X : supt∈[0,1] f (t) ≤ 5

}
. [Hint: you may use without proof that

if fn ∈ A converges to f ∈ X in ‖·‖1 then there is a subsequence which
converges for a.e. t.]

3. A =
{
f ∈ X :

∫ 1/2

0
f (t) dt = 0

}
.

Exercise 14.15. Suppose {xα ∈ X : α ∈ A} is a given collection of vectors in
a Banach space X. Show

∑
α∈A xα exists in X and∥∥∥∥∥∑
α∈A

xα

∥∥∥∥∥ ≤∑
α∈A
‖xα‖

if
∑
α∈A ‖xα‖ < ∞. That is to say “absolute convergence” implies conver-

gence in a Banach space.

Exercise 14.16. Suppose X is a Banach space and {fn : n ∈ N} is a sequence

in X such that limn→∞ fn = f ∈ X. Show sN := 1
N

∑N
n=1 fn for N ∈ N is still

a convergent sequence and

lim
N→∞

1

N

N∑
n=1

fn = lim
N→∞

sN = f.

Exercise 14.17 (Dominated Convergence Theorem Again). Let X be a
Banach space, A be a set and suppose fn : A → X is a sequence of functions
such that f (α) := limn→∞ fn (α) exists for all α ∈ A. Further assume there
exists a summable function g : A → [0,∞) such that ‖fn (α)‖ ≤ g (α) for all
α ∈ A. Show

∑
α∈A f (α) exists in X and

lim
n→∞

∑
α∈A

fn (α) =
∑
α∈A

f (α) .
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15

Hölder Spaces as Banach Spaces

In this section, we will assume that the reader has basic knowledge of the
Riemann integral and differentiability properties of functions. The results used
here may be found in Part VII below. (BRUCE: there are forward references in
this section.)

Notation 15.1 Let Ω be an open subset of Rd, BC(Ω) and BC(Ω̄) be the
bounded continuous functions on Ω and Ω̄ respectively. By identifying f ∈
BC(Ω̄) with f |Ω ∈ BC(Ω), we will consider BC(Ω̄) as a subset of BC(Ω).
For u ∈ BC(Ω) and 0 < β ≤ 1 let

‖u‖u := sup
x∈Ω
|u(x)| and [u]β := sup

x,y∈Ω
x6=y

{
|u(x)− u(y)|
|x− y|β

}
.

If [u]β < ∞, then u is Hölder continuous with Hölder exponent1 β. The
collection of β – Hölder continuous function on Ω will be denoted by

C0,β(Ω) := {u ∈ BC(Ω) : [u]β <∞}

and for u ∈ C0,β(Ω) let

‖u‖C0,β(Ω) := ‖u‖u + [u]β . (15.1)

Remark 15.2. If u : Ω → C and [u]β <∞ for some β > 1, then u is constant on
each connected component of Ω. Indeed, if x ∈ Ω and h ∈ Rd then∣∣∣∣u(x+ th)− u(x)

t

∣∣∣∣ ≤ [u]β |th|β /t→ 0 as t→ 0

which shows ∂hu(x) = 0 for all x ∈ Ω. If y ∈ Ω is in the same connected
component as x, then by Exercise 31.8 below there exists a smooth curve σ :
[0, 1]→ Ω such that σ(0) = x and σ(1) = y. So by the fundamental theorem of
calculus and the chain rule,

u(y)− u(x) =

∫ 1

0

d

dt
u(σ(t))dt =

∫ 1

0

0 dt = 0.

This is why we do not talk about Hölder spaces with Hölder exponents larger
than 1.
1 If β = 1, u is is said to be Lipschitz continuous.

Lemma 15.3. Suppose u ∈ C1(Ω) ∩ BC(Ω) and ∂iu ∈ BC(Ω) for i =
1, 2, . . . , d, then u ∈ C0,1(Ω), i.e. [u]1 <∞.

The proof of this lemma is left to the reader as Exercise 15.1.

Theorem 15.4. Let Ω be an open subset of Rd. Then

1. Under the identification of u ∈ BC
(
Ω̄
)

with u|Ω ∈ BC (Ω) , BC(Ω̄) is a
closed subspace of BC(Ω).

2. Every element u ∈ C0,β(Ω) has a unique extension to a continuous func-
tion (still denoted by u) on Ω̄. Therefore we may identify C0,β(Ω) with
C0,β(Ω̄) ⊂ BC(Ω̄). (In particular we may consider C0,β(Ω) and C0,β(Ω̄)
to be the same when β > 0.)

3. The function u ∈ C0,β(Ω) → ‖u‖C0,β(Ω) ∈ [0,∞) is a norm on C0,β(Ω)

which make C0,β(Ω) into a Banach space.

Proof. 1. The first item is trivial since for u ∈ BC(Ω̄), the sup-norm of u
on Ω̄ agrees with the sup-norm on Ω and BC(Ω̄) is complete in this norm.

2. Suppose that [u]β <∞ and x0 ∈ bd(Ω). Let {xn}∞n=1 ⊂ Ω be a sequence
such that x0 = limn→∞ xn. Then

|u(xn)− u(xm)| ≤ [u]β |xn − xm|β → 0 as m,n→∞

showing {u(xn)}∞n=1 is Cauchy so that ū(x0) := limn→∞ u(xn) exists. If
{yn}∞n=1 ⊂ Ω is another sequence converging to x0, then

|u(xn)− u(yn)| ≤ [u]β |xn − yn|β → 0 as n→∞,

showing ū(x0) is well defined. In this way we define ū(x) for all x ∈ bd(Ω) and
let ū(x) = u(x) for x ∈ Ω. Since a similar limiting argument shows

|ū(x)− ū(y)| ≤ [u]β |x− y|β for all x, y ∈ Ω̄

it follows that ū is still continuous and [ū]β = [u]β . In the sequel we will abuse
notation and simply denote ū by u.

3. For u, v ∈ C0,β(Ω),
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[v + u]β = sup
x,y∈Ω
x6=y

{
|v(y) + u(y)− v(x)− u(x)|

|x− y|β

}

≤ sup
x,y∈Ω
x6=y

{
|v(y)− v(x)|+ |u(y)− u(x)|

|x− y|β

}
≤ [v]β + [u]β

and for λ ∈ C it is easily seen that [λu]β = |λ| [u]β . This shows [·]β is a semi-
norm (see Definition 4.24) on C0,β(Ω) and therefore ‖ · ‖C0,β(Ω) defined in Eq.

(15.1) is a norm. To see that C0,β(Ω) is complete, let {un}∞n=1 be a C0,β(Ω)–
Cauchy sequence. Since BC(Ω̄) is complete, there exists u ∈ BC(Ω̄) such that
‖u− un‖∞ → 0 as n→∞. For x, y ∈ Ω with x 6= y,

|u(x)− u(y)|
|x− y|β

= lim
n→∞

|un(x)− un(y)|
|x− y|β

≤ lim sup
n→∞

[un]β ≤ lim
n→∞

‖un‖C0,β(Ω) <∞,

and so we see that u ∈ C0,β(Ω). Similarly,

|u(x)− un(x)− (u(y)− un(y))|
|x− y|β

= lim
m→∞

|(um − un)(x)− (um − un)(y)|
|x− y|β

≤ lim sup
m→∞

[um − un]β → 0 as n→∞,

showing [u− un]β → 0 as n→∞ and therefore limn→∞ ‖u− un‖C0,β(Ω) = 0.

Notation 15.5 (BRUCE: C0(Ω) is not defined until Chapter 37.) Since Ω and
Ω̄ are locally compact Hausdorff spaces, we may define C0(Ω) and C0(Ω̄) as in
Definition 37.22. We will also let

C0,β
0 (Ω) := C0,β(Ω) ∩ C0(Ω) and C0,β

0 (Ω̄) := C0,β(Ω) ∩ C0(Ω̄).

It has already been shown in Proposition 37.23 that C0(Ω) and C0(Ω̄) are
closed subspaces of BC(Ω) and BC(Ω̄) respectively. The next proposition de-
scribes the relation between C0(Ω) and C0(Ω̄).

Proposition 15.6. Each u ∈ C0(Ω) has a unique extension to a continuous
function on Ω̄ given by ū = u on Ω and ū = 0 on bd(Ω) and the extension ū
is in C0(Ω̄). Conversely if u ∈ C0(Ω̄) and u|bd(Ω) = 0, then u|Ω ∈ C0(Ω). In
this way we may identify C0(Ω) with those u ∈ C0(Ω̄) such that u|bd(Ω) = 0.

Proof. Any extension u ∈ C0(Ω) to an element ū ∈ C(Ω̄) is necessarily
unique, since Ω is dense inside Ω̄. So define ū = u on Ω and ū = 0 on bd(Ω).
We must show ū is continuous on Ω̄ and ū ∈ C0(Ω̄). For the continuity assertion

it is enough to show ū is continuous at all points in bd(Ω). For any ε > 0, by
assumption, the set Kε := {x ∈ Ω : |u(x)| ≥ ε} is a compact subset of Ω. Since
bd(Ω) = Ω̄ \Ω, bd(Ω)∩Kε = ∅ and therefore the distance, δ := d(Kε,bd(Ω)),
between Kε and bd(Ω) is positive. So if x ∈ bd(Ω) and y ∈ Ω̄ and |y − x| < δ,
then |ū(x)− ū(y)| = |u(y)| < ε which shows ū : Ω̄ → C is continuous. This also
shows {|ū| ≥ ε} = {|u| ≥ ε} = Kε is compact in Ω and hence also in Ω̄. Since
ε > 0 was arbitrary, this shows ū ∈ C0(Ω̄). Conversely if u ∈ C0(Ω̄) such that
u|bd(Ω) = 0 and ε > 0, then Kε :=

{
x ∈ Ω̄ : |u(x)| ≥ ε

}
is a compact subset of

Ω̄ which is contained in Ω since bd(Ω) ∩Kε = ∅. Therefore Kε is a compact
subset of Ω showing u|Ω ∈ C0(Ω̄).

Definition 15.7. Let Ω be an open subset of Rd, k ∈ N∪{0} and β ∈ (0, 1].
Let BCk(Ω) (BCk(Ω̄)) denote the set of k – times continuously differentiable
functions u on Ω such that ∂αu ∈ BC(Ω) (∂αu ∈ BC(Ω̄))2 for all |α| ≤ k.
Similarly, let BCk,β(Ω) denote those u ∈ BCk(Ω) such that [∂αu]β < ∞ for
all |α| = k. For u ∈ BCk(Ω) let

‖u‖Ck(Ω) =
∑
|α|≤k

‖∂αu‖u and

‖u‖Ck,β(Ω) =
∑
|α|≤k

‖∂αu‖u +
∑
|α|=k

[∂αu]β .

Theorem 15.8. The spaces BCk(Ω) and BCk,β(Ω) equipped with ‖ · ‖Ck(Ω)

and ‖·‖Ck,β(Ω) respectively are Banach spaces and BCk(Ω̄) is a closed subspace

of BCk(Ω) and BCk,β(Ω) ⊂ BCk(Ω̄). Also

Ck,β0 (Ω) = Ck,β0 (Ω̄) = {u ∈ BCk,β(Ω) : ∂αu ∈ C0(Ω) ∀ |α| ≤ k}

is a closed subspace of BCk,β(Ω).

Proof. Suppose that {un}∞n=1 ⊂ BCk(Ω) is a Cauchy sequence, then
{∂αun}∞n=1 is a Cauchy sequence in BC(Ω) for |α| ≤ k. Since BC(Ω) is com-
plete, there exists gα ∈ BC(Ω) such that limn→∞ ‖∂αun − gα‖∞ = 0 for all
|α| ≤ k. Letting u := g0, we must show u ∈ Ck(Ω) and ∂αu = gα for all
|α| ≤ k. This will be done by induction on |α| . If |α| = 0 there is nothing to
prove. Suppose that we have verified u ∈ Cl(Ω) and ∂αu = gα for all |α| ≤ l
for some l < k. Then for x ∈ Ω, i ∈ {1, 2, . . . , d} and t ∈ R sufficiently small,

∂aun(x+ tei) = ∂aun(x) +

∫ t

0

∂i∂
aun(x+ τei)dτ.

2 To say ∂αu ∈ BC(Ω̄) means that ∂αu ∈ BC(Ω) and ∂αu extends to a continuous
function on Ω̄.
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Letting n→∞ in this equation gives

∂au(x+ tei) = ∂au(x) +

∫ t

0

gα+ei(x+ τei)dτ

from which it follows that ∂i∂
αu(x) exists for all x ∈ Ω and ∂i∂

αu = gα+ei .
This completes the induction argument and also the proof that BCk(Ω) is
complete. It is easy to check that BCk(Ω̄) is a closed subspace of BCk(Ω)
and by using Exercise 15.1 and Theorem 15.4 that BCk,β(Ω) is a subspace of

BCk(Ω̄). The fact that Ck,β0 (Ω) is a closed subspace of BCk,β(Ω) is a conse-
quence of (BRUCE: forward reference.) Proposition 37.23. To prove BCk,β(Ω)
is complete, let {un}∞n=1 ⊂ BCk,β(Ω) be a ‖ · ‖Ck,β(Ω) – Cauchy sequence.

By the completeness of BCk(Ω) just proved, there exists u ∈ BCk(Ω) such
that limn→∞ ‖u − un‖Ck(Ω) = 0. An application of Theorem 15.4 then shows
limn→∞ ‖∂αun − ∂αu‖C0,β(Ω) = 0 for |α| = k and therefore limn→∞ ‖u −
un‖Ck,β(Ω) = 0.

The reader is asked to supply the proof of the following lemma.

Lemma 15.9. The following inclusions hold. For any β ∈ [0, 1]

BCk+1,0(Ω) ⊂ BCk,1(Ω) ⊂ BCk,β(Ω)

BCk+1,0(Ω̄) ⊂ BCk,1(Ω̄) ⊂ BCk,β(Ω).

15.1 Exercises

Exercise 15.1. Prove Lemma 15.3.





16

Lp-Space Basics

Let (X,M, µ) be a measure space and for 0 < p < ∞ and a measurable
function f : X → C let

‖f‖p :=

(∫
X

|f |p dµ
)1/p

. (16.1)

When p =∞, let

‖f‖∞ = inf {a ≥ 0 : µ(|f | > a) = 0} (16.2)

= inf {a ≥ 0 : |f(x)| ≤ a for µ – a.e. x} , (16.3)

wherein we have used

{a ≥ 0 : µ(|f | > a) = 0} = {a ≥ 0 : |f(x)| ≤ a for µ – a.e. x} .

For 0 < p ≤ ∞, let

Lp(X,M, µ) = {f : X → C : f is measurable and ‖f‖p <∞}/ ∼

where f ∼ g iff f = g a.e. Notice that ‖f − g‖p = 0 iff f ∼ g and if f ∼ g then
‖f‖p = ‖g‖p. In general we will (by abuse of notation) use f to denote both
the function f and the equivalence class containing f.

16.1 Lp (µ) is a Banach Space

The next theorem is a generalization Theorem 4.29 to general integrals and the
proof is essentially identical to the proof of Theorem 4.29.

Theorem 16.1 (Hölder’s inequality). Suppose that 1 ≤ p ≤ ∞ and q :=
p
p−1 , or equivalently p−1 + q−1 = 1. If f and g are measurable functions then

‖fg‖1 ≤ ‖f‖p · ‖g‖q. (16.4)

Assuming p ∈ (1,∞) and ‖f‖p · ‖g‖q <∞, equality holds in Eq. (16.4) iff |f |p
and |g|q are linearly dependent as elements of L1 which happens iff

|g|q‖f‖pp = ‖g‖qq |f |
p

a.e. (16.5)

Proof. The cases where ‖f‖q = 0 or ∞ or ‖g‖p = 0 or ∞ are easy to deal
with and are left to the reader. So we will now assume that 0 < ‖f‖q, ‖g‖p <∞.
Let s = |f | /‖f‖p and t = |g|/‖g‖q then Lemma 4.28 implies

|fg|
‖f‖p‖g‖q

≤ 1

p

|f |p

‖f‖p
+

1

q

|g|q

‖g‖q
(16.6)

with equality iff |g/‖g‖q| = |f |p−1
/‖f‖(p−1)

p = |f |p/q /‖f‖p/qp , i.e. |g|q‖f‖pp =
‖g‖qq |f |

p
. Integrating Eq. (16.6) implies

‖fg‖1
‖f‖p‖g‖q

≤ 1

p
+

1

q
= 1

with equality iff Eq. (16.5) holds. The proof is finished since it is easily checked
that equality holds in Eq. (16.4) when |f |p = c |g|q of |g|q = c |f |p for some
constant c.

Remark 16.2. If we put s = |f | and t = |g| in the above proof we would have
arrived at the inequality,

‖fg‖1 ≤
1

p
‖f‖pp +

1

q
‖g‖qq

which is not longer scale invariant. For example if λ > 0 and replace f by λf
in the above inequality we would learn,

‖fg‖1 ≤
λp−1

p
‖f‖pp + λ−1 1

q
‖g‖qq. (16.7)

The idea of the proof of Theorem 16.1 is to normalize f and g in by there norms
to manifestly arrive at a scale invariant inequality.

Alternatively, one may simply minimize the right side of Eq. (16.7) over
λ > 0 to arrive at the same result. Indeed, by the first derivative test we look
for λ such that

0 =
p− 1

p
λp−2‖f‖pp − λ−2 1

q
‖g‖qq ⇐⇒ λp‖f‖pp = ‖g‖qq ⇐⇒ λ =

‖g‖q/pq

‖f‖p
.

Plugging this λ back into Eq. (16.7) shows
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‖fg‖1 ≤

(
‖g‖q/pq

‖f‖p

)p−1

p
‖f‖pp +

‖f‖p
‖g‖q/pq

1

q
‖g‖qq

=
1

p
‖f‖p‖g‖q +

1

q
‖f‖p‖g‖q = ‖f‖p‖g‖q

by which we recover the estimate in Eq. (16.4).

The following corollary is an easy extension of Hölder’s inequality.

Corollary 16.3. Suppose that fi : X → C are measurable functions for i =
1, . . . , n and p1, . . . , pn and r are positive numbers such that

∑n
i=1 p

−1
i = r−1,

then ∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
r

≤
n∏
i=1

‖fi‖pi where

n∑
i=1

p−1
i = r−1.

Proof. To prove this inequality, start with n = 2, then for any p ∈ [1,∞],

‖fg‖rr =

∫
X

|f |r |g|r dµ ≤ ‖fr‖p ‖g
r‖p∗

where p∗ = p
p−1 is the conjugate exponent. Let p1 = pr and p2 = p∗r so that

p−1
1 + p−1

2 = r−1 as desired. Then the previous equation states that

‖fg‖r ≤ ‖f‖p1 ‖g‖p2
as desired. The general case is now proved by induction. Indeed,∥∥∥∥∥

n+1∏
i=1

fi

∥∥∥∥∥
r

=

∥∥∥∥∥
n∏
i=1

fi · fn+1

∥∥∥∥∥
r

≤

∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
q

‖fn+1‖pn+1

where q−1 + p−1
n+1 = r−1. Since

∑n
i=1 p

−1
i = q−1, we may now use the induction

hypothesis to conclude ∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
q

≤
n∏
i=1

‖fi‖pi ,

which combined with the previous displayed equation proves the generalized
form of Holder’s inequality.

Theorem 16.4 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ Lp then

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (16.8)

Moreover, assuming f and g are not identically zero, equality holds in Eq. (16.8)
iff sgn(f) $ sgn(g) a.e. (see the notation in Definition 4.30) when p = 1 and
f = cg a.e. for some c > 0 for p ∈ (1,∞).

Proof. When p =∞, |f | ≤ ‖f‖∞ a.e. and |g| ≤ ‖g‖∞ a.e. so that |f + g| ≤
|f |+ |g| ≤ ‖f‖∞ + ‖g‖∞ a.e. and therefore

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ .

When p <∞,

|f + g|p ≤ (2 max (|f | , |g|))p = 2p max (|f |p , |g|p) ≤ 2p (|f |p + |g|p) ,

‖f + g‖pp ≤ 2p
(
‖f‖pp + ‖g‖pp

)
<∞.

In case p = 1,

‖f + g‖1 =

∫
X

|f + g|dµ ≤
∫
X

|f | dµ+

∫
X

|g|dµ

with equality iff |f |+ |g| = |f +g| a.e. which happens iff sgn(f) $ sgn(g) a.e. In
case p ∈ (1,∞), we may assume ‖f + g‖p, ‖f‖p and ‖g‖p are all positive since
otherwise the theorem is easily verified. Now

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1

with equality iff sgn(f) $ sgn(g). Integrating this equation and applying
Holder’s inequality with q = p/(p− 1) gives∫

X

|f + g|pdµ ≤
∫
X

|f | |f + g|p−1dµ+

∫
X

|g| |f + g|p−1dµ

≤ (‖f‖p + ‖g‖p) ‖ |f + g|p−1 ‖q (16.9)

with equality iff

sgn(f) $ sgn(g) and(
|f |
‖f‖p

)p
=
|f + g|p

‖f + g‖pp
=

(
|g|
‖g‖p

)p
a.e. (16.10)

Therefore

‖|f + g|p−1‖qq =

∫
X

(|f + g|p−1)qdµ =

∫
X

|f + g|pdµ. (16.11)

Combining Eqs. (16.9) and (16.11) implies

‖f + g‖pp ≤ ‖f‖p‖f + g‖p/qp + ‖g‖p‖f + g‖p/qp (16.12)

with equality iff Eq. (16.10) holds which happens iff f = cg a.e. with c > 0.
Solving for ‖f + g‖p in Eq. (16.12) gives Eq. (16.8).
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Corollary 16.5. Suppose that {fn}∞n=1 is any sequence of non-negative mea-
surable functions on (X,M, µ) and 1 ≤ p ≤ ∞. Then∥∥∥∥∥

∞∑
n=1

fn

∥∥∥∥∥
p

≤
∞∑
n=1

‖fn‖p .

Proof. First notice that Eq. (16.8) remains valid if f and g are any non-
negative measurable functions independent of whether f, g ∈ Lp. Therefore it
follows (by induction) that∥∥∥∥∥

N∑
n=1

fn

∥∥∥∥∥
p

≤
N∑
n=1

‖fn‖p ≤
∞∑
n=1

‖fn‖p for all N ∈ N.

For p <∞, an application of the monotone convergence theorem now completes
the proof;∥∥∥∥∥
∞∑
n=1

fn

∥∥∥∥∥
p

=

∥∥∥∥∥ lim
N→∞

N∑
n=1

fn

∥∥∥∥∥
p

= lim
N→∞

∥∥∥∥∥
N∑
n=1

fn

∥∥∥∥∥
p

≤ lim
N→∞

N∑
n=1

‖fn‖p =

∞∑
n=1

‖fn‖p .

When p = ∞ we have fn ≤ ‖fn‖∞ a.e. implies
∑∞
n=1 fn ≤

∑∞
n=1 ‖fn‖∞ a.e.

and this implies ‖
∑∞
n=1 fn‖∞ ≤

∑∞
n=1 ‖fn‖∞ .

Corollary 16.6. Suppose that {fn}∞n=1 ⊂ Lp (µ) and fn → f in Lp (µ) . Then
there exists a subsequence {fnk} which is a.e. convergent and limk→∞ fnk (x) =
f (x) for µ – a.e. x.

Proof. By passing to a subsequence if necessary we may assume∑∞
n=2 ‖fn − fn−1‖p <∞. From Corollary 16.5 we know ‖

∑∞
n=2 |fn − fn−1|‖p <

∞ which implies
∞∑
n=2

|fn − fn−1| <∞ a.e.

By completeness of the complex numbers it then follows that F := limn→∞ fn
exists a.e. If p <∞ we have by Fatou’s lemma that

‖F − f‖p =
∥∥∥lim inf
n→∞

|fn − f |
∥∥∥
p
≤ lim inf

n→∞
‖|fn − f |‖p = 0

which shows that F = f a.e. When p = ∞ life is even easier since |fn − f | ≤
‖fn − f‖∞ a.e. which shows for µ – a.e. x that limn→∞ fn (x) = f (x) . There
is no need to pass to a subsequence in the p =∞ case.

The next theorem gives another example of using Hölder’s inequality

Theorem 16.7. Suppose that (X,M, µ) and (Y,N , ν) are σ – finite measure
spaces, p ∈ [1,∞], q = p/(p− 1) and k : X × Y → C be a M⊗N – measurable
function. Assume there exist finite constants C1 and C2 such that∫

X

|k(x, y)| dµ(x) ≤ C1 for ν-a.e. y and∫
Y

|k(x, y)| dν(y) ≤ C2 for µ-a.e. x.

If f ∈ Lp(ν), then ∫
Y

|k(x, y)f(y)| dν(y) <∞ for µ-a.e. x,

x→ Kf(x) :=
∫
Y
k(x, y)f(y)dν(y) ∈ Lp(µ) and

‖Kf‖Lp(µ) ≤ C
1/p
1 C

1/q
2 ‖f‖Lp(ν) (16.13)

Proof. Suppose p ∈ (1,∞) to begin with and let q = p/(p − 1), then by
Hölder’s inequality,∫

Y

|k(x, y)f(y)| dν(y) =

∫
Y

|k(x, y)|1/q |k(x, y)|1/p |f(y)| dν(y)

≤
[∫

Y

|k(x, y)| dν(y)

]1/q [∫
Y

|k(x, y)| |f(y)|p dν(y)

]1/p

≤ C1/q
2

[∫
Y

|k(x, y)| |f(y)|p dν(y)

]1/p

.

Therefore,∥∥∥∥∫
Y

|k(·, y)f(y)| dν(y)

∥∥∥∥p
Lp(µ)

=

∫
X

dµ(x)

[∫
Y

|k(x, y)f(y)| dν(y)

]p
≤ Cp/q2

∫
X

dµ(x)

∫
Y

dν(y) |k(x, y)| |f(y)|p

= C
p/q
2

∫
Y

dν(y) |f(y)|p
∫
X

dµ(x) |k(x, y)|

≤ Cp/q2 C1

∫
Y

dν(y) |f(y)|p = C
p/q
2 C1 ‖f‖pLp(ν) ,

wherein we used Tonelli’s theorem in third line. From this it follows that∫
Y
|k(x, y)f(y)| dν(y) <∞ for µ-a.e. x,

x→ Kf(x) :=

∫
Y

k(x, y)f(y)dν(y) ∈ Lp(µ)
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and that Eq. (16.13) holds.
Similarly if p =∞,∫

Y

|k(x, y)f(y)| dν(y) ≤ ‖f‖L∞(ν)·
∫
Y

|k(x, y)| dν(y) ≤ C2 ‖f‖L∞(ν) for µ – a.e. x.

so that ‖Kf‖L∞(µ) ≤ C2 ‖f‖L∞(ν) . If p = 1, then∫
X

dµ(x)

∫
Y

dν(y) |k(x, y)f(y)| =
∫
Y

dν(y) |f(y)|
∫
X

dµ(x) |k(x, y)|

≤ C1

∫
Y

dν(y) |f(y)|

which shows ‖Kf‖L1(µ) ≤ C1 ‖f‖L1(ν) .

Theorem 16.8 (Completeness of Lp(µ)). For 1 ≤ p ≤ ∞, Lp(µ) equipped
with the Lp – norm, ‖·‖p (see Eq. (16.1)), is a Banach space.

Proof. By Minkowski’s Theorem 16.4, ‖·‖p satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure ‖·‖p
is a norm. So we are left to prove the completeness of Lp(µ) for 1 ≤ p ≤ ∞.

Suppose that fn ∈ Lp (µ) such that
∑∞
n=1 ‖fn‖p < ∞. Then by Corollary

16.5 it follows that∥∥∥∥∥
∞∑
n=1

|fn|

∥∥∥∥∥
p

≤
∞∑
n=1

‖|fn|‖p =

∞∑
n=1

‖fn‖p <∞

from which it follows that
∑∞
n=1 |fn| <∞ a.e. So by completeness of the com-

plex numbers we know S :=
∑∞
n=1 fn1∑∞

n=1
|fn|<∞ exists. Moreover,∣∣∣∣∣S −

N∑
n=1

fn

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

fn

∣∣∣∣∣ ≤
∞∑

n=N+1

|fn| a.e.

and therefore by Corollary 16.5,∥∥∥∥∥S −
N∑
n=1

fn

∥∥∥∥∥
p

≤
∞∑

n=N+1

‖fn‖p → 0 as N →∞.

This show that S ∈ Lp (µ) and that
∑∞
n=1 fn is convergent in Lp (µ) to S. By

Theorem 14.18, this suffices to show Lp (µ) is complete.
Alternate proof using convergence results in Section 16.3 below.

We assume 1 ≤ p < ∞ as the case p = ∞ is discussed in more detail in Theo-
rem 16.9 below. Let {fn}∞n=1 ⊂ Lp(µ) be a Cauchy sequence. By Chebyshev’s

inequality (Lemma 16.18), {fn} is L0-Cauchy (i.e. Cauchy in measure) and by
Theorem 16.20 there exists a subsequence {gj} of {fn} such that gj → f a.e.
By Fatou’s Lemma,

‖gj − f‖pp =

∫
lim
k→∞

inf |gj − gk|pdµ ≤ lim
k→∞

inf

∫
|gj − gk|pdµ

= lim
k→∞

inf ‖gj − gk‖pp → 0 as j →∞.

In particular, ‖f‖p ≤ ‖gj − f‖p + ‖gj‖p <∞ so the f ∈ Lp and gj
Lp−→ f . The

proof is finished because,

‖fn − f‖p ≤ ‖fn − gj‖p + ‖gj − f‖p → 0 as j, n→∞.

Theorem 16.9. Let ‖·‖∞ be as defined in Eq. (16.2), then
(L∞(X,M, µ), ‖·‖∞) is a Banach space. A sequence {fn}∞n=1 ⊂ L∞ con-
verges to f ∈ L∞ iff there exists E ∈ M such that µ(E) = 0 and fn → f
uniformly on Ec. Moreover, bounded simple functions are dense in L∞.

Proof. By Minkowski’s Theorem 16.4, ‖·‖∞ satisfies the triangle inequality.
The reader may easily check the remaining conditions that ensure ‖·‖∞ is a
norm. Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such fn → f ∈ L∞, i.e.
‖f − fn‖∞ → 0 as n→∞. Then for all k ∈ N, there exists Nk <∞ such that

µ
(
|f − fn| > k−1

)
= 0 for all n ≥ Nk.

Let
E = ∪∞k=1 ∪n≥Nk

{
|f − fn| > k−1

}
.

Then µ(E) = 0 and for x ∈ Ec, |f(x)− fn(x)| ≤ k−1 for all n ≥ Nk. This
shows that fn → f uniformly on Ec. Conversely, if there exists E ∈ M such
that µ(E) = 0 and fn → f uniformly on Ec, then for any ε > 0,

µ (|f − fn| ≥ ε) = µ ({|f − fn| ≥ ε} ∩ Ec) = 0

for all n sufficiently large. That is to say lim supn→∞ ‖f − fn‖∞ ≤ ε for all
ε > 0. The density of simple functions follows from the approximation Theorem
??.

(Completeness of L∞.) Suppose that {fn}∞n=1 ⊂ L∞ is a Cauchy sequence
so that εm,n := ‖fm − fn‖∞ → 0 as m,n→∞. Let Em,n = {|fn − fm| > εm,n}
and E := ∪Em,n, then µ(E) = 0 and

sup
x∈Ec

|fm (x)− fn (x)| ≤ εm,n → 0 as m,n→∞.
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Therefore, f := limn→∞ fn exists on Ec and the limit is uniform on Ec. Letting
f = limn→∞ 1Ecfn, it then follows that limn→∞ ‖fn − f‖∞ = 0.

(Alternative proof of completeness.) Suppose that {fn}∞n=1 ⊂ L∞ is a
sequence such that

∑∞
n=1 ‖fn‖∞ <∞. Let Mn := ‖fn‖∞ , En := {|fn| > Mn} ,

and E := ∪∞n=1En so that µ(E) = 0. Then

∞∑
n=1

sup
x∈Ec

|fn(x)| ≤
∞∑
n=1

Mn <∞

which shows that SN (x) =
∑N
n=1 fn(x) converges uniformly to S(x) :=∑∞

n=1 fn(x) on Ec, i.e. limn→∞ ‖S − Sn‖∞ = 0. The completeness of L∞ (µ)
now follows from Theorem 14.18.

16.2 Density Results

Theorem 16.10 (Density Theorem). Let p ∈ [1,∞), (Ω,B, µ) be a measure
space and M be an algebra of bounded R – valued measurable functions such
that

1. M ⊂ Lp (µ,R) and σ (M) = B.
2. There exists ψk ∈M such that ψk → 1 boundedly.

Then to every function f ∈ Lp (µ,R) , there exist ϕn ∈ M such that
limn→∞ ‖f − ϕn‖Lp(µ) = 0, i.e. M is dense in Lp (µ,R) .

Proof. Fix k ∈ N for the moment and let H denote those bounded B –
measurable functions, f : Ω → R, for which there exists {ϕn}∞n=1 ⊂ M such
that limn→∞ ‖ψkf − ϕn‖Lp(µ) = 0. A routine check shows H is a subspace of
the bounded measurable R – valued functions on Ω, 1 ∈ H, M ⊂ H and H
is closed under bounded convergence. To verify the latter assertion, suppose
fn ∈ H and fn → f boundedly. Then, by the dominated convergence theorem,
limn→∞ ‖ψk (f − fn)‖Lp(µ) = 0.1 (Take the dominating function to be g =

[2C |ψk|]p where C is a constant bounding all of the {|fn|}∞n=1 .) We may now
choose ϕn ∈M such that ‖ϕn − ψkfn‖Lp(µ) ≤

1
n then

lim sup
n→∞

‖ψkf − ϕn‖Lp(µ) ≤ lim sup
n→∞

‖ψk (f − fn)‖Lp(µ)

+ lim sup
n→∞

‖ψkfn − ϕn‖Lp(µ) = 0 (16.14)

which implies f ∈ H.
1 It is at this point that the proof would break down if p =∞.

An application of Dynkin’s Multiplicative System Theorem 11.2 or The-
orem 11.7 now shows H contains all bounded measurable functions on Ω.
Let f ∈ Lp (µ) be given. The dominated convergence theorem implies
limk→∞

∥∥ψk1{|f |≤k}f − f
∥∥
Lp(µ)

= 0. (Take the dominating function to be

g = [2C |f |]p where C is a bound on all of the |ψk| .) Using this and what
we have just proved, there exists ϕk ∈M such that∥∥ψk1{|f |≤k}f − ϕk

∥∥
Lp(µ)

≤ 1

k
.

The same line of reasoning used in Eq. (16.14) now implies
limk→∞ ‖f − ϕk‖Lp(µ) = 0.

Example 16.11. Let µ be a measure on (R,BR) such that µ ([−M,M ]) < ∞
for all M < ∞. Then, Cc (R,R) (the space of continuous functions on R with
compact support) is dense in Lp (µ) for all 1 ≤ p < ∞. To see this, apply
Theorem 16.10 with M = Cc (R,R) and ψk := 1[−k,k].

Theorem 16.12. Suppose p ∈ [1,∞), A ⊂ B ⊂ 2Ω is an algebra such that
σ(A) = B and µ is σ – finite on A. Let S(A, µ) denote the measurable simple
functions, ϕ : Ω → R such {ϕ = y} ∈ A for all y ∈ R and µ ({ϕ 6= 0}) < ∞.
Then S(A, µ) is dense subspace of Lp(µ).

Proof. Let M := S(A, µ). By assumption there exists Ωk ∈ A such that
µ(Ωk) <∞ and Ωk ↑ Ω as k →∞. If A ∈ A, then Ωk∩A ∈ A and µ (Ωk ∩A) <
∞ so that 1Ωk∩A ∈ M. Therefore 1A = limk→∞ 1Ωk∩A is σ (M) – measurable
for every A ∈ A. So we have shown that A ⊂ σ (M) ⊂ B and therefore B =
σ (A) ⊂ σ (M) ⊂ B, i.e. σ (M) = B. The theorem now follows from Theorem
16.10 after observing ψk := 1Ωk ∈M and ψk → 1 boundedly.

Theorem 16.13 (Separability of Lp – Spaces). Suppose, p ∈ [1,∞), A ⊂ B
is a countable algebra such that σ(A) = B and µ is σ – finite on A. Then Lp(µ)
is separable and

D = {
∑

aj1Aj : aj ∈ Q+ iQ, Aj ∈ A with µ(Aj) <∞}

is a countable dense subset.

Proof. It is left to reader to check D is dense in S(A, µ) relative to the Lp(µ)
– norm. Once this is done, the proof is then complete since S(A, µ) is a dense
subspace of Lp (µ) by Theorem 16.12.

Example 16.14. Let µ be a measure on (R,BR) such that µ ([−M,M ]) <∞ for
all M < ∞. Then Lp (µ) is separable for all 1 ≤ p < ∞. This follows from an
application of Theorem 16.13 with A being the countable algebra generated by

{(a, b] : −∞ < a < b <∞ with a, b ∈ Q} .
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Exercise 16.1. Let µ be a finite measure on BRd , then D := span{eiλ·x : λ ∈
Rd} is a dense subspace of Lp(µ) for all 1 ≤ p < ∞. Hints: By the d -
dimensional generalization of Example 16.11 (see Theorem 31.8), Cc(Rd) is a
dense subspace of Lp(µ). For f ∈ Cc(Rd) and N ∈ N, let

fN (x) :=
∑
n∈Zd

f(x+ 2πNn).

Show fN ∈ BC(Rd) and x → fN (Nx) is 2π – periodic, so by Exercise 7.15
(see also Theorem 7.42 or Exercise 37.13), x → fN (Nx) can be approximated
uniformly by trigonometric polynomials. Use this fact to conclude that fN ∈
D̄Lp(µ). After this show fN → f in Lp(µ).

Exercise 16.2. Suppose that µ and ν are two finite measures on Rd such that∫
Rd
eiλ·xdµ(x) =

∫
Rd
eiλ·xdν(x) (16.15)

for all λ ∈ Rd. Show µ = ν.
Hint: Perhaps the easiest way to do this is to use Exercise 16.1 with the

measure µ being replaced by µ + ν. Alternatively, use the method of proof
of Exercise 16.1 to show Eq. (16.15) implies

∫
Rd fdµ(x) =

∫
Rd fdν(x) for all

f ∈ Cc(Rd) and then apply Corollary 11.35.

Exercise 16.3. Again let µ be a finite measure on BRd . Further assume that
CM :=

∫
Rd e

M |x|dµ(x) < ∞ for all M ∈ (0,∞). Let P(Rd) be the space of

polynomials, ρ(x) =
∑
|α|≤N ραx

α with ρα ∈ C, on Rd. (Notice that |ρ(x)|p ≤
CeM |x| for some constant C = C(ρ, p,M), so that P(Rd) ⊂ Lp(µ) for all 1 ≤
p < ∞.) Show P(Rd) is dense in Lp(µ) for all 1 ≤ p < ∞. Here is a possible
outline.

Outline: Fix a λ ∈ Rd and let fn(x) = (λ · x)
n
/n! for all n ∈ N.

1. Use calculus to verify supt≥0 t
αe−Mt =

(
α
Me

)α
for all α ≥ 0 where

(0/M)
0

:= 1. Use this estimate along with the identity

|λ · x|pn ≤ |λ|pn |x|pn =
(
|x|pn e−M |x|

)
|λ|pn eM |x|

to find an estimate on ‖fn‖p .
2. Use your estimate on ‖fn‖p to show

∑∞
n=0 ‖fn‖p <∞ and conclude

lim
N→∞

∥∥∥∥∥eiλ·(·) −
N∑
n=0

infn

∥∥∥∥∥
p

= 0.

3. Now finish by appealing to Exercise 16.1.

Exercise 16.4. Again let µ be a finite measure on BRd but now assume there
exists an ε > 0 such that C :=

∫
Rd e

ε|x|dµ(x) <∞. Also let q > 1 and h ∈ Lq(µ)

be a function such that
∫
Rd h(x)xαdµ(x) = 0 for all α ∈ Nd0. (As mentioned in

Exercise 16.4, P(Rd) ⊂ Lp(µ) for all 1 ≤ p < ∞, so x → h(x)xα is in L1(µ).)
Show h(x) = 0 for µ– a.e. x using the following outline.

Outline: Fix a λ ∈ Rd, let fn(x) = (λ · x)
n
/n! for all n ∈ N, and let

p = q/(q − 1) be the conjugate exponent to q.

1. Use calculus to verify supt≥0 t
αe−εt = (α/ε)

α
e−α for all α ≥ 0 where

(0/ε)
0

:= 1. Use this estimate along with the identity

|λ · x|pn ≤ |λ|pn |x|pn =
(
|x|pn e−ε|x|

)
|λ|pn eε|x|

to find an estimate on ‖fn‖p .
2. Use your estimate on ‖fn‖p to show there exists δ > 0 such that∑∞

n=0 ‖fn‖p <∞ when |λ| ≤ δ and conclude for |λ| ≤ δ that eiλ·x = Lp(µ)-∑∞
n=0 i

nfn(x). Conclude from this that∫
Rd
h(x)eiλ·xdµ(x) = 0 when |λ| ≤ δ.

3. Let λ ∈ Rd (|λ| not necessarily small) and set g(t) :=
∫
Rd e

itλ·xh(x)dµ(x)
for t ∈ R. Show g ∈ C∞(R) and

g(n)(t) =

∫
Rd

(iλ · x)neitλ·xh(x)dµ(x) for all n ∈ N.

4. Let T = sup{τ ≥ 0 : g|[0,τ ] ≡ 0}. By Step 2., T ≥ δ. If T <∞, then

0 = g(n)(T ) =

∫
Rd

(iλ · x)neiTλ·xh(x)dµ(x) for all n ∈ N.

Use Step 3. with h replaced by eiTλ·xh(x) to conclude

g(T + t) =

∫
Rd
ei(T+t)λ·xh(x)dµ(x) = 0 for all t ≤ δ/ |λ| .

This violates the definition of T and therefore T =∞ and in particular we
may take T = 1 to learn∫

Rd
h(x)eiλ·xdµ(x) = 0 for all λ ∈ Rd.

5. Use Exercise 16.1 to conclude that∫
Rd
h(x)g(x)dµ(x) = 0

for all g ∈ Lp(µ). Now choose g judiciously to finish the proof.
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16.3 Convergence in Measure

As usual let (X,M, µ) be a fixed measure space, assume 1 ≤ p ≤ ∞ and let
{fn}∞n=1 ∪ {f} be a collection of complex valued measurable functions on X.
We have the following notions of convergence and Cauchy sequences.

Definition 16.15. 1. fn → f a.e. if there is a set E ∈M such that µ(E) = 0
and limn→∞ 1Ecfn = 1Ecf.

2. fn → f in µ – measure if limn→∞ µ(|fn − f | > ε) = 0 for all ε > 0. We

will abbreviate this by saying fn → f in L0 or by fn
µ→ f.

3. fn → f in Lp iff f ∈ Lp and fn ∈ Lp for all n, and limn→∞ ‖fn − f‖p = 0.

Definition 16.16. 1. {fn} is a.e. Cauchy if there is a set E ∈ M such that
µ(E) = 0 and{1Ec fn} is a pointwise Cauchy sequences.

2. {fn} is Cauchy in µ – measure (or L0 – Cauchy) if limm,n→∞ µ(|fn−fm| >
ε) = 0 for all ε > 0.

3. {fn} is Cauchy in Lp if limm,n→∞ ‖fn − fm‖p = 0.

Lemma 16.17 (Limits in measure are unique). The following hold;

1. If fn
µ→ f and fn

µ→ g, then f = g a.e.

2. If fn
µ→ f and gn

µ→ g then fn + gn
µ→ f + g.

3. If fn
µ→ f then {fn}∞n=1 is Cauchy in measure.

Proof. 1. and 2. One of the basic tricks here is to observe that if ε > 0 and
a, b ≥ 0 such that a+ b ≥ ε, then either a ≥ ε/2 or b ≥ ε/2. For for example if
ε < |f ± g| ≤ |f |+ |g| , then |f | > ε/2 or |g| > ε/2 and it follows that

{|f ± g| > ε} ⊂ {|f | > ε/2} ∪ {|g| > ε/2} .

Therefore,

µ (|f − g| > ε) = µ (|f − fn + fn − g| > ε)

≤ µ
(
|f − fn| >

ε

2

)
+ µ

(
|fn − g| >

ε

2

)
→ 0 as n→∞

and we have shown µ (|f − g| > ε) = 0 for all ε > 0. Hence

µ(|f − g| > 0) = µ

(
∪∞n=1

{
|f − g| > 1

n

})
≤
∞∑
n=1

µ

(
|f − g| > 1

n

)
= 0,

i.e. f = g a.e. The second assertion is proved similarly.

3. Suppose fn
µ→ f, ε > 0 and m,n ∈ N, then |fn − fm| ≤ |f − fn| +

|fm − f | . So by the basic trick,

µ (|fn − fm| > ε) ≤ µ (|fn − f | > ε/2) + µ (|fm − f | > ε/2)→ 0 as m,n→∞.

Lemma 16.18 (Chebyshev’s inequality again). Let p ∈ [1,∞) and f ∈ Lp,
then for all ε > 0,

µ (|f | ≥ ε) ≤ 1

εp

∫
{|f |≥ε}

|f |p dµ ≤ 1

εp
‖f‖pp.

In particular if {fn} ⊂ Lp is Lp – convergent (Cauchy) then {fn} is also con-
vergent (Cauchy) in measure.

Proof. This is simply a repear of Chebyshev’s inequality (see Remark 7.22
or Eq. ??) using µ (|f | ≥ ε) = µ (|f |p ≥ εp) . Here is the argument again for
completeness;

µ (|f | ≥ ε) = µ (|f |p ≥ εp) =

∫
X

1 |f|p
εp
≥1
dµ

≤
∫
X

1 |f|p
εp
≥1
· |f |

p

εp
dµ =

1

εp

∫
{|f |≥ε}

|f |p dµ =
1

εp
‖f‖pp.

Given this ineqaulity if {fn} is Lp – Cauchy, then

µ (|fn − fm| ≥ ε) ≤
1

εp
‖fn − fm‖pp → 0 as m,n→∞

showing {fn} is L0 – Cauchy. A similar argument holds for the Lp – convergent
case.

Here is a sequence of functions where fn → 0 a.e., fn 9 0 in L1, fn
m→ 0.

Above is a sequence of functions where fn → 0 a.e., yet fn 9 0 in L1. or in
measure.

Here is a sequence of functions where fn → 0 a.e., fn
m→ 0 but fn 9 0 in L1.
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Above is a sequence of functions where fn → 0 in L1, fn 9 0 a.e., and
fn

m→ 0.

Lemma 16.19. Suppose an ∈ C and |an+1 − an| ≤ εn and
∞∑
n=1

εn < ∞. Then

lim
n→∞

an = a ∈ C exists and |a− an| ≤ δn :=
∞∑
k=n

εk.

Proof. (This is a special case of Exercise 13.13.) Let m > n then

|am − an| =
∣∣∣∣m−1∑
k=n

(ak+1 − ak)

∣∣∣∣ ≤ m−1∑
k=n

|ak+1 − ak| ≤
∞∑
k=n

εk := δn . (16.16)

So |am − an| ≤ δmin(m,n) → 0 as m,n → ∞, i.e. {an} is Cauchy. Let m → ∞
in (16.16) to find |a− an| ≤ δn.

Theorem 16.20 (L0 - Completeness). Suppose {fn} is L0-Cauchy. Then
there exists a subsequence gj = fnj of {fn} such that lim gj := f exists a.e. and

fn
µ→ f as n → ∞. Moreover if g is a measurable function such that fn

µ→ g
as n→∞, then f = g a.e.

Proof. Let εn > 0 such that
∞∑
n=1

εn < ∞ (εn = 2−n would do) and set

δn =
∞∑
k=n

εk. Choose gj = fnj such that {nj} is a subsequence of N and

µ({|gj+1 − gj | > εj}) ≤ εj .

Let Ej = {|gj+1 − gj | > εj} ,

FN =

∞⋃
j=N

Ej =

∞⋃
j=N

{|gj+1 − gj | > εj}

and

E :=

∞⋂
N=1

FN =

∞⋂
N=1

∞⋃
j=N

Ej = {|gj+1 − gj | > εj i.o.}.

Then µ(E) = 0 by Lemma ?? or the computation

µ(E) ≤
∞∑
j=N

µ(Ej) ≤
∞∑
j=N

εj = δN → 0 as N →∞.

If x /∈ FN , i.e. |gj+1(x)− gj(x)| ≤ εj for all j ≥ N, then by Lemma 16.19,
f(x) = lim

j→∞
gj(x) exists and |f(x) − gj(x)| ≤ δj for all j ≥ N. Therefore,

since Ec =
∞⋃
N=1

F cN , lim
j→∞

gj(x) = f(x) exists for all x /∈ E. Moreover, {x :

|f(x)− gj(x)| > δj} ⊂ Fj for all j ≥ N and hence

µ(|f − gj | > δj) ≤ µ(Fj) ≤ δj → 0 as j →∞.

Therefore gj
µ→ f as j →∞. Since

{|fn − f | > ε} = {|f − gj + gj − fn| > ε}
⊂ {|f − gj | > ε/2} ∪ {|gj − fn| > ε/2},

µ({|fn − f | > ε}) ≤ µ({|f − gj | > ε/2}) + µ(|gj − fn| > ε/2)

and

µ({|fn − f | > ε}) ≤ lim
j→∞

supµ(|gj − fn| > ε/2)→ 0 as n→∞.

If there is another function g such that fn
µ→ g as n → ∞, then arguing as

above

µ(|f − g| > ε) ≤ µ({|f − fn| > ε/2}) + µ(|g − fn| > ε/2)→ 0 as n→∞.

Hence

µ(|f − g| > 0) = µ(∪∞n=1{|f − g| >
1

n
}) ≤

∞∑
n=1

µ(|f − g| > 1

n
) = 0,

i.e. f = g a.e.

Corollary 16.21 (Dominated Convergence Theorem). Suppose {fn} ,
{gn} , and g are in L1 and f ∈ L0 are functions such that

|fn| ≤ gn a.e., fn
µ−→ f, gn

µ−→ g, and

∫
gn →

∫
g as n→∞.

Then f ∈ L1 and limn→∞ ‖f − fn‖1 = 0, i.e. fn → f in L1. In particular
limn→∞

∫
fn =

∫
f.
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Proof. First notice that |f | ≤ g a.e. and hence f ∈ L1 since g ∈ L1. To see
that |f | ≤ g, use Theorem 16.20 to find subsequences {fnk} and {gnk} of {fn}
and {gn} respectively which are almost everywhere convergent. Then

|f | = lim
k→∞

|fnk | ≤ lim
k→∞

gnk = g a.e.

If (for sake of contradiction) limn→∞ ‖f − fn‖1 6= 0 there exists ε > 0 and a
subsequence {fnk} of {fn} such that∫

|f − fnk | ≥ ε for all k. (16.17)

Using Theorem 16.20 again, we may assume (by passing to a further subse-
quences if necessary) that fnk → f and gnk → g almost everywhere. Not-
ing, |f − fnk | ≤ g + gnk → 2g and

∫
(g + gnk) →

∫
2g, an application of the

dominated convergence Theorem 10.27 implies limk→∞
∫
|f − fnk | = 0 which

contradicts Eq. (16.17).

Exercise 16.5 (Fatou’s Lemma). If fn ≥ 0 and fn → f in measure, then∫
f ≤ lim infn→∞

∫
fn.

Theorem 16.22 (Egoroff’s Theorem). Suppose µ(X) < ∞ and fn → f
a.e. Then for all ε > 0 there exists E ∈ M such that µ(E) < ε and fn → f

uniformly on Ec. In particular fn
µ−→ f as n→∞.

Proof. Let fn → f a.e. Then µ({|fn − f | > 1
k i.o. n}) = 0 for all k > 0, i.e.

lim
N→∞

µ

 ⋃
n≥N

{|fn − f | >
1

k
}

 = µ

 ∞⋂
N=1

⋃
n≥N

{|fn − f | >
1

k
}

 = 0.

Let Ek :=
⋃

n≥Nk
{|fn−f | > 1

k} and choose an increasing sequence {Nk}∞k=1 such

that µ(Ek) < ε2−k for all k. Setting E := ∪Ek, µ(E) <
∑
k ε2

−k = ε and if
x /∈ E, then |fn − f | ≤ 1

k for all n ≥ Nk and all k. That is fn → f uniformly
on Ec.

Exercise 16.6. Show that Egoroff’s Theorem remains valid when the assump-
tion µ(X) < ∞ is replaced by the assumption that |fn| ≤ g ∈ L1 for all n.
Hint: make use of Theorem 16.22 applied to fn|Xk where Xk :=

{
|g| ≥ k−1

}
.





17

Bochner Integral

Throughout this chapter we will assume that (Ω,F , µ) be a fixed measure
space, X is a separable real or complex Banach space, B = B(X) = BX is the
Borel σ–algebra, and X∗ is the continuous dual of X. In this chapter we will
define the Bochner integral,

∫
Ω
fdµ ∈ X, of a measurable function f : Ω → X.

(Shortly we will further assume that µ is a σ – finite on F .)

17.1 Banach Valued Lp – Spaces

Notice that, since ‖·‖X : X → [0,∞) is continuous, it is BX/B[0,∞) – measur-
able. Before getting down to business we need to address a couple more measure
theoretic properties of the Borel σ – algebra (BX) on X.

Proposition 17.1. Let X be a separable Banach space, and D ⊂ X be a count-
able dense set, and

V := {B (x, ε) : x ∈ D and ε ∈ Q∩ (0,∞)} .

Then BX = σ (V) .

Proof. As V consists of open sets it follows that σ (V) ⊂ σ (open sets) =:
BX . Conversely if V ⊂ X is any open set we have V = ∪W∈V:W⊂VW which
shows V is a countable union of elements from V. Therefore V ∈ σ (V) and
hence σ (V) contains all open sets and therefore contains BX .

Proposition 17.2. Suppose that X and Y are two separable Banach spaces and
equip X × Y with the norm1 ‖(x, y)‖X×Y := max (‖x‖X , ‖y‖Y ) and let BX×Y
be the corresponding Borel σ – algebra. Then BX×Y = BX ⊗ BY .

Proof. Let π : X × Y → X and α : X × Y → Y be the projection maps
onto the first and second factor respectively. Each of these maps are continuous
and hence Borel measurable and therefore π−1 (BX) ⊂ BX×Y and α−1 (BY ) ⊂
BX×Y . (Indeed if τX denotes the open subset of X we find,

{A× Y : A ∈ BX} =
{
π−1 (A) : A ∈ BX

}
= π−1 (BX) = π−1 (σ (τX)) = σ

(
π−1 (τX)

)
1 Any other equivalent norm would work just as well.

wherein we have used Lemma 9.3 for the last equality. Since π−1 (V ) = V × Y
is open in X × Y for all V ∈ τX it follows that π−1 (τX) ⊂ BX×Y .) Therefore

{A× Y : A ∈ BX} = σ
(
π−1 (τX)

)
⊂ BX×Y .

Similarly one shows {X ×B : B ∈ BY } ⊂ BX×Y and therefore

A×B = (A× Y ) ∩ (X ×B) ∈ BX×Y for all A ∈ BX and B ∈ BY .

This shows that BX ⊗ BY ⊂ BX×Y even if X and Y are not separable.
For the converse inclusion it suffices to show if W is an open subset of X×Y

then W ∈ BX ⊗BY . To see this is the case let DX and DY be countable dense
subsets of X and Y respectively. One easily shows that DX×DY is a countable
dense subset of X × Y and therefore for any open subset W ⊂ X × Y we have,

W = ∪{BX×Y ((x, y) , ε) ⊂W : (x, y) ∈ DX ×DY , ε ∈ Q∩ (0,∞)} .

As BX×Y ((x, y) , ε) = BX (x, ε) × BY (y, ε) ∈ BX ⊗ BY it follows that W ∈
BX ⊗ BY being it is the countable union of sets in BX ⊗ BY .

Corollary 17.3. Suppose that X is a separable Banach space, then the vector
addition map X ×X 3 (x, y) → x + y ∈ X is BX ⊗ BX/BX – measurable and
the scalar multiplication map, F × X 3 (λ, x) → λx ∈ X is BF ⊗ BX/BX –
measurable.

Proof. Since each map is continuous and hence Borel – measurable the
result is now a direct consequence of Proposition 17.2 which asserts the Borel
and the product σ – algebras are one in the same.

Corollary 17.4. Suppose that X is a separable Banach space. If f, g : Ω → X
and λ : Ω → F are measurable maps, then f + λg : Ω → X is also measurable.

Proof. Let H : Ω → X ×X be the map defined by H (ω) := (f (ω) , g (ω)) .
As π ◦H = f and α ◦H = g are both F/BX – measurable maps it follows (see
Corollary 9.19) that H is This map is F/BX ⊗BX – measurable. Since f + g is
the composition of H with with vector addition which is also a measurable map
by Corollary 17.3 we learn that f + g is F/BX – measurable. A very similar
argument shows that λg is F/BX – measurable as well.
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Proposition 17.5. Suppose that X is a separable Banach space and fn :
Ω → X is a sequence of F/BX – measurable functions such that f (ω) =
limn→∞ fn (ω) exists for all ω ∈ Ω. Then f : Ω → X is a F/BX – measurable
function.

Proof. According to Proposition 17.1 it suffices to show f−1 (B (x, ε)) ∈ F
for all x ∈ DX and ε ∈ (0,∞) ∩ Q. To see this is the case choose 0 < εk < ε
such that εk ↑ ε as k ↑ ∞ and observe that

f−1 (B (x, ε)) = ∪∞k=1 {fn ∈ B (x, εk) a.a}
:= ∪∞k=1 ∪∞N=1 ∩n≥N {fn ∈ B (x, εk)}
= ∪∞k=1 ∪∞N=1 ∩n≥Nf−1

n (B (x, εk)) ∈ F .

Remark 17.6. Proposition 17.5 holds even if X is not separable. To prove this
in full generality suppose that V ⊂ X is an arbitrary open set. For ε > 0 let
Vε := {x ∈ V : dV c (x) > ε} which is still open in X. We then have

f−1 (V ) = ∪∞k=1

{
fn ∈ V1/k a.a

}
:= ∪∞k=1 ∪∞N=1 ∩n≥N

{
fn ∈ V1/k

}
= ∪∞k=1 ∪∞N=1 ∩n≥Nf−1

n

(
V1/k

)
∈ F .

Remark 17.7. Later we will show that the Borel σ – field B on X is the same
as the σ – field (σ(X∗)) which is generated by X∗ – the continuous linear
functionals on X. (This is done in Proposition ??.) As a consequence F : Ω → X
is F/B measurable iff ϕ ◦ F : Ω → R is F/B(R) – measurable for all ϕ ∈
X∗. This result gives an each proof that the sum of measurable functions is
measurable and that scalar multiplication by a measurable functions preserves
measurability. We may also conclude that the set {F 6= G} = {F −G 6= 0} is
measurable if F and G are measurable funcitons. Also note that ‖·‖ : X →
[0,∞) is continuous and hence measurable and hence ω → ‖F (ω) ‖X is the
composition of two measurable functions and therefore measurable.

Definition 17.8. For 1 ≤ p < ∞ let Lp(µ;X) denote the space of measurable
functions F : Ω → X such that

∫
Ω

‖F‖pdµ <∞. For F ∈ Lp(µ;X), define

‖F‖Lp(µ;X) =

∫
Ω

‖F‖pXdµ

 1
p

= ‖‖F (·)‖X‖Lp(µ)
.

As usual in Lp – spaces we will identify two measurable functions, F,G : Ω →
X, if F = G a.e.

Theorem 17.9. For each p ∈ [0,∞), the space (Lp(µ;X), ‖ · ‖Lp) is a Banach
space.

Proof. It is straightforward to check that ‖·‖Lp is a norm. For example,

‖F +G‖Lp(µ;X) = ‖‖F (·) +G (·)‖X‖Lp(µ)
≤ ‖‖F (·)‖X + ‖G (·)‖X‖Lp(µ)

≤ ‖‖F (·)‖X‖Lp(µ)
+ ‖‖G (·)‖X‖Lp(µ)

(by Minikowski’s inequality)

= ‖F‖Lp + ‖G‖Lp .

So the main point is to prove completeness of the norm.
If {Fn}∞n=1 ⊂ Lp(µ;X) is a sequence such that

∑∞
n=1 ‖Fn‖Lp(µ;X) <∞, then

by Corollary 16.5∥∥∥∥∥
∞∑
n=1

‖Fn (·)‖X

∥∥∥∥∥
Lp(µ)

≤
∞∑
n=1

‖‖Fn (·)‖X‖Lp(µ)
=

∞∑
n=1

‖Fn‖Lp(µ;X) <∞.

This inequality implies
∑∞
n=1 ‖Fn (ω)‖X <∞ for µ – a.e. ω. If we let E be the

exceptional null set;

E :=

{
ω ∈ Ω :

∞∑
n=1

‖Fn (ω)‖X =∞

}
, .

then S (ω) :=
∑∞
n=1 1Ec (ω) · Fn (ω) is convergent in X for all ω ∈ Ω. By

Proposition 17.5 we know that S is measurable. Moreover, if we let SN :=∑N
n=1 Fn, then (using Corollary 16.5 again)

‖S − SN‖Lp(µ;X) = ‖‖S − SN‖X‖Lp(µ)
=

∥∥∥∥∥∥
∥∥∥∥∥
∞∑

n=N+1

1Ec · Fn

∥∥∥∥∥
X

∥∥∥∥∥∥
Lp(µ)

≤

∥∥∥∥∥
∞∑

n=N+1

‖1Ec · Fn‖X

∥∥∥∥∥
Lp(µ)

≤
∞∑

n=N+1

‖‖1Ec · Fn‖X‖Lp(µ)

=

∞∑
n=N+1

‖Fn‖Lp(µ;X) → 0 as N →∞.

This shows that SN → S in Lp(µ;X) and hence we have shown Lp(µ;X) is
complete because of Theorem 14.18.

Remark 17.10. The same proof as Corollary 16.6 shows that every Lp(µ;X) –
convergent sequence has a subsequence which is convergent almost everywhere.

We say a function F : Ω → X is a simple function if F is measurable and
has finite range. If F also satisfies, µ (F 6= 0) <∞ we say that F is a µ – simple
function and let S (µ;X) denote the vector space of µ – simple functions.
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Proposition 17.11. For each 1 ≤ p < ∞ the µ – simple functions, S (µ;X) ,
are dense inside of Lp (µ;X) .

Proof. Let D := {xn}∞n=1 be a countable dense subset of X \ {0} . For each
ε > 0 and n ∈ N let

Bεn :=

{
x ∈ X : ‖x− xn‖ ≤ min

(
ε,

1

2
‖xn‖

)}
and then define Aεn := Bεn \

(
∪n−1
k=1B

ε
k

)
. Thus {Aεn}

∞
n=1 is a partition of X \ {0}

with the added property that ‖y − xn‖ ≤ ε and 1
2 ‖xn‖ ≤ ‖y‖ ≤

3
2 ‖xn‖ for all

y ∈ Aεn.
Given F ∈ Lp (µ;X) let

Fε :=

∞∑
n=1

xn · 1F∈Aεn =

∞∑
n=1

xn · 1F−1(Aεn).

For ω ∈ F−1 (Aεn) , i.e. F (ω) ∈ Aεn, we have

‖Fε (ω)‖ = ‖xn‖ ≤ 2 ‖F (ω)‖ and

‖Fε (ω)− F (ω)‖ = ‖xn − F (ω)‖ ≤ ε.

Putting these two estimates together shows,

‖Fε − F‖ ≤ ε and ‖Fε − F‖ ≤ ‖Fε‖+ ‖F‖ ≤ 3 ‖F‖ .

Hence we may now apply the dominated convergence theorem in order to show

lim
ε↓0
‖F − Fε‖Lp(µ;X) = 0.

We are not quite done yet since Fε typically has countable rather than finite
range. To remedy this defect, to each N ∈ N let

FNε :=

N∑
n=1

xn · 1F−1(Aεn).

Then it is clear that limN→∞ FNε = Fε and that
∥∥FNε ∥∥ ≤ ‖Fε‖ ≤ 2 ‖F‖ for

all N. Therefore another application of the dominated convergence theorem
implies, limN→∞

∥∥FNε − Fε∥∥Lp(µ;X)
= 0. Thus any F ∈ Lp (µ;X) may be arbi-

trarily well approximated by one of the FNε ∈ S (µ;X) with ε sufficiently small
and N sufficiently large.

For later purposes it will be useful to record a result based on the partitions
{Aεn}

∞
n=1 of X \ {0} introduced in the above proof.

Lemma 17.12. Suppose that F : Ω → X is a measurable function such that
µ (F 6= 0) > 0. Then there exists B ∈ F and ϕ ∈ X∗ such that µ (B) > 0 and
infω∈B ϕ ◦ F (ω) > 0.

Proof. Let ε > 0 be chosen arbitrarily, for example you might take ε = 1 and
let {An := Aεn}

∞
n=1 be the partition of X \{0} introduced in the proof of Propo-

sition 17.11 above. Since {F 6= 0} =
∑∞
n=1 {F ∈ An} and µ (F 6= 0) > 0, it fol-

lows that that µ (F ∈ An) > 0 for some n ∈ N. We now let B := {F ∈ An} =
F−1 (An) and choose ϕ ∈ X∗ such that ϕ (xn) = ‖xn‖ and ‖ϕ‖X∗ = 1. For
ω ∈ B we have F (ω) ∈ An and therefore ‖F (ω)− xn‖ ≤ 1

2 ‖xn‖ and hence,

|ϕ (F (ω))− ‖xn‖| = |ϕ (F (ω))− ϕ (xn)| ≤ ‖ϕ‖X∗ ‖F (ω)− xn‖ ≤
1

2
‖xn‖ .

From this inequality we see that ϕ (F (ω)) ≥ 1
2 ‖xn‖ > 0 for all ω ∈ B.

17.2 Bochner Integral

Definition 17.13. To each F ∈ S (µ;X) , let

I (F ) =
∑
x∈X

xµ(F−1({x})) =
∑
x∈X

xµ({F = x})

=
∑

x∈F (Ω)

xµ(F = x) ∈ X.

The following proposition is straightforward to prove.

Proposition 17.14. The map I : S (µ;X) → X is linear and satisfies for all
F ∈ S (µ;X) ,

‖I(F )‖X ≤
∫
Ω

‖F‖dµ and (17.1)

ϕ(I(F )) =

∫
X

ϕ ◦ F dµ ∀ϕ ∈ X∗. (17.2)

Proof. If 0 6= c ∈ R and F ∈ S (µ;X) , then

I(cF ) =
∑
x∈X

xµ(cF = x) =
∑
x∈X

xµ
(
F =

x

c

)
=
∑
y∈X

cy µ(F = y) = cI(F )

and if c = 0, I(0F ) = 0 = 0I(F ). If F,G ∈ S (µ;X) ,
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I(F +G) =
∑
x

xµ(F +G = x)

=
∑
x

x
∑

y+z=x

µ(F = y,G = z)

=
∑
y,z

(y + z)µ(F = y,G = z)

=
∑
y

yµ(F = y) +
∑
z

zµ(G = z) = I(F ) + I(G).

Equation (17.1) is a consequence of the following computation:

‖I(F )‖X = ‖
∑
x∈X

xµ(F = x)‖ ≤
∑
x∈X
‖x‖µ(F = x) =

∫
Ω

‖F‖dµ

and Eq. (17.2) follows from:

ϕ(I(F )) = ϕ(
∑
x∈X

xµ({F = x}))

=
∑
x∈X

ϕ(x)µ({F = x}) =

∫
X

ϕ ◦ F dµ.

Theorem 17.15 (Bochner Integral). There is a unique continuous linear
map Ī : L1(Ω,F , µ;X) → X such that Ī|S(µ;X) = I where I is defined in
Definition 17.13. Moreover, for all F ∈ L1(Ω,F , µ;X),

‖Ī(F )‖X ≤
∫
Ω

‖F‖dµ (17.3)

and Ī(F ) is the unique element in X such that

ϕ(Ī(F )) =

∫
X

ϕ ◦ F dµ ∀ϕ ∈ X∗. (17.4)

The map Ī(F ) will be denoted suggestively by
∫
X
Fdµ or µ (F ) so that Eq. (17.4)

may be written as

ϕ

(∫
X

Fdµ

)
=

∫
X

ϕ ◦ F dµ ∀ϕ ∈ X∗ or

ϕ (µ (F )) = µ (ϕ ◦ F ) ∀ϕ ∈ X∗

Proof. The existence of a continuous linear map Ī : L1(Ω,F , µ;X) → X
such that Ī|S(µ;X) = I and Eq. (17.3) holds follows from Propositions 17.14
and 17.11 and the bounded linear transformation Theorem 32.4. If ϕ ∈ X∗ and
F ∈ L1(Ω,F , µ;X), choose Fn ∈ S (µ;X) such that Fn → F in L1(Ω,F , µ;X)
as n→∞. Then Ī(F ) = limn→∞ I(Fn) and hence by Eq. (17.2),

ϕ(Ī(F )) = ϕ( lim
n→∞

I(Fn)) = lim
n→∞

ϕ(I(Fn)) = lim
n→∞

∫
X

ϕ ◦ Fn dµ.

This proves Eq. (17.4) since∣∣∣∣∣∣
∫
Ω

(ϕ ◦ F − ϕ ◦ Fn)dµ

∣∣∣∣∣∣ ≤
∫
Ω

|ϕ ◦ F − ϕ ◦ Fn| dµ

≤
∫
Ω

‖ϕ‖X∗ ‖ϕ ◦ F − ϕ ◦ Fn‖X dµ

= ‖ϕ‖X∗‖F − Fn‖L1 → 0 as n→∞.

The fact that Ī(F ) is determined by Eq. (17.4) is a consequence of the Hahn-
Banach Theorem 21.7 below.

Example 17.16. Suppose that x ∈ X and f ∈ L1 (µ;R) , then F (ω) := f (ω)x
defines an element of L1 (µ;X) and∫

Ω

Fdµ =

(∫
Ω

fdµ

)
x. (17.5)

To prove this just observe that ‖F‖ = |f | ‖x‖ ∈ L1 (µ) and then choose fn ∈
S (µ;C) approximating f in L1 (µ) . Then fnx→ F is L1 (µ : X) and using the
easily proved fact that I (fnx) =

∫
Ω
fndµ · x it follows that therefore,∫

Ω

Fdµ = lim
n→∞

I (fnx) = lim
n→∞

∫
Ω

fndµ · x =

(∫
Ω

fdµ

)
x.

Alternatively, for ϕ ∈ X∗ we have

ϕ

((∫
Ω

fdµ

)
x

)
=

(∫
Ω

fdµ

)
· ϕ (x)

=

(∫
Ω

fϕ (x) dµ

)
=

∫
Ω

ϕ ◦ F dµ.

Since ϕ
(∫
Ω
Fdµ

)
=
∫
Ω
ϕ ◦ F d for all ϕ ∈ X∗ it follows that Eq. (17.5) is

correct.
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Remark 17.17. The separability assumption on X may be relaxed by assuming
that F : Ω → X has separable essential range. In this case we may still define∫
X
Fdµ by applying the above formalism with X replaced by the separable Ba-

nach space, X0 := span(essranµ(F )). For example if Ω is a compact topological
space and F : Ω → X is a continuous map, then

∫
Ω
Fdµ is always defined.





18

Hilbert Space Basics

Definition 18.1. Let H be a complex vector space. An inner product on H is
a function, 〈·|·〉 : H ×H → C, such that

1. 〈ax+ by|z〉 = a〈x|z〉+ b〈y|z〉 i.e. x→ 〈x|z〉 is linear.
2. 〈x|y〉 = 〈y|x〉.
3. ‖x‖2 := 〈x|x〉 ≥ 0 with equality ‖x‖2 = 0 iff x = 0.

Notice that combining properties (1) and (2) that x → 〈z|x〉 is conjugate
linear for fixed z ∈ H, i.e.

〈z|ax+ by〉 = ā〈z|x〉+ b̄〈z|y〉.

The following identity will be used frequently in the sequel without further
mention,

‖x+ y‖2 = 〈x+ y|x+ y〉 = ‖x‖2 + ‖y‖2 + 〈x|y〉+ 〈y|x〉
= ‖x‖2 + ‖y‖2 + 2Re〈x|y〉. (18.1)

Theorem 18.2 (Schwarz Inequality). Let (H, 〈·|·〉) be an inner product
space, then for all x, y ∈ H

|〈x|y〉| ≤ ‖x‖‖y‖

and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y 6= 0 and observe;
if x = αy for some α ∈ C, then 〈x|y〉 = α ‖y‖2 and hence

|〈x|y〉| = |α| ‖y‖2 = ‖x‖‖y‖.

Now suppose that x ∈ H is arbitrary, let z := x − ‖y‖−2〈x|y〉y. (So z is the
“orthogonal projection” of x onto y, see Figure 18.1.) Then

0 ≤ ‖z‖2 =

∥∥∥∥x− 〈x|y〉‖y‖2
y

∥∥∥∥2

= ‖x‖2 +
|〈x|y〉|2

‖y‖4
‖y‖2 − 2Re〈x| 〈x|y〉

‖y‖2
y〉

= ‖x‖2 − |〈x|y〉|
2

‖y‖2

from which it follows that 0 ≤ ‖y‖2‖x‖2 − |〈x|y〉|2 with equality iff z = 0 or
equivalently iff x = ‖y‖−2〈x|y〉y.

z = x− 〈x|y〉‖y‖2 y

〈x|y〉
‖y‖2 y

x

y0

Fig. 18.1. The picture behind the proof of the Schwarz inequality.

Corollary 18.3. Let (H, 〈·|·〉) be an inner product space and ‖x‖ :=
√
〈x|x〉.

Then the Hilbertian norm, ‖ ·‖, is a norm on H. Moreover 〈·|·〉 is continuous
on H ×H, where H is viewed as the normed space (H, ‖·‖).

Proof. If x, y ∈ H, then, using Schwarz’s inequality,

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x|y〉
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

Taking the square root of this inequality shows ‖·‖ satisfies the triangle inequal-
ity.

Checking that ‖·‖ satisfies the remaining axioms of a norm is now routine
and will be left to the reader. The continuity of the inner product follows from
Theorem 18.2 as in Exercise 14.11. For completeness, if x, y,∆x,∆y ∈ H, then

|〈x+∆x|y +∆y〉 − 〈x|y〉| = |〈x|∆y〉+ 〈∆x|y〉+ 〈∆x|∆y〉|
≤ ‖x‖ ‖∆y‖+ ‖y‖ ‖∆x‖+ ‖∆y‖ ‖∆x‖

with the latter expression clearly going to zero as ∆x and ∆y go to zero proving
the inner product is continuous.

Remark 18.4 (Polarization identity). It is sometimes useful to know that the
inner product 〈·|·〉 may be reconstructed from knowledge of its associated norm
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‖·‖ . For example in the real case we have from Eq. (18.1) that

〈x|y〉 =
1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
. (18.2)

Similarly if we are working over C, then from Eq. (18.1) or direct computation,

2 Re〈x|y〉 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2

and
−2Re〈x|y〉 = ‖x− y‖2 − ‖x‖2 − ‖y‖2.

Subtracting these two equations gives the “polarization identity,”

4Re〈x|y〉 = ‖x+ y‖2 − ‖x− y‖2.

Replacing y by iy in this equation then implies that

4Im〈x|y〉 = ‖x+ iy‖2 − ‖x− iy‖2

from which we find

〈x|y〉 =
1

4

∑
ε∈G

ε‖x+ εy‖2 (18.3)

where G = {±1,±i} – a cyclic subgroup of S1 ⊂ C.

Definition 18.5. Let (H, 〈·|·〉) be an inner product space, we say x, y ∈ H are
orthogonal and write x ⊥ y iff 〈x|y〉 = 0. More generally if A ⊂ H is a set,
x ∈ H is orthogonal to A (write x ⊥ A) iff 〈x|y〉 = 0 for all y ∈ A. Let
A⊥ = {x ∈ H : x ⊥ A} be the set of vectors orthogonal to A. A subset S ⊂ H
is an orthogonal set if x ⊥ y for all distinct elements x, y ∈ S. If S further
satisfies, ‖x‖ = 1 for all x ∈ S, then S is said to be an orthonormal set.

Proposition 18.6. Let (H, 〈·|·〉) be an inner product space then

1. (Parallelogram Law)

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (18.4)

for all x, y ∈ H. [See Proposition 18.43 for a “converse” to the parallelogram
law.]

2. (Pythagorean Theorem) If S ⊂⊂ H is a finite orthogonal set, then∥∥∥∥∥∑
x∈S

x

∥∥∥∥∥
2

=
∑
x∈S
‖x‖2. (18.5)

3. If A ⊂ H is a set, then A⊥ is a closed linear subspace of H.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;

‖x+ y‖2 + ‖x− y‖2

= ‖x‖2 + ‖y‖2 + 2Re〈x|y〉+ ‖x‖2 + ‖y‖2 − 2Re〈x|y〉
= 2‖x‖2 + 2‖y‖2,

and ∥∥∥∥∥∑
x∈S

x

∥∥∥∥∥
2

= 〈
∑
x∈S

x|
∑
y∈S

y〉 =
∑
x,y∈S

〈x|y〉

=
∑
x∈S
〈x|x〉 =

∑
x∈S
‖x‖2.

Item 3. is a consequence of the continuity of 〈·|·〉 and the fact that

A⊥ = ∩x∈A Nul(〈·|x〉)

where Nul(〈·|x〉) = {y ∈ H : 〈y|x〉 = 0} – a closed subspace of H.

Definition 18.7. A Hilbert space is an inner product space (H, 〈·|·〉) such
that the induced Hilbertian norm is complete.

Example 18.8. Suppose X is a set and µ : X → (0,∞) , then H := `2 (µ) is a
Hilbert space when equipped with the inner product,

〈f |g〉 :=
∑
x∈X

f (x) ḡ (x)µ (x) .

In Exercise 18.9 you will show every Hilbert space H is “equivalent” to a Hilbert
space of this form with µ ≡ 1. More generally, if (X,M, µ) is a general measure
space then L2 (µ) is a Hilbert space when equipped with the inner product,

〈f |g〉 :=

∫
X

f (x) ḡ (x) dµ (x) .

Definition 18.9. A subset C of a vector space X is said to be convex if for all
x, y ∈ C the line segment [x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 18.10 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M ⊂ H is a closed convex subset of H. Then for any x ∈ H
there exists a unique y ∈M such that

‖x− y‖ = d(x,M) = inf
z∈M
‖x− z‖.

Moreover, if M is a vector subspace of H, then the point y may also be charac-
terized as the unique point in M such that (x− y) ⊥M.
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Proof. Let x ∈ H, δ := d(x,M), y, z ∈M, and, referring to Figure 18.2, let
w = z + (y − x) and c = (z + y) /2 ∈ M. It then follows by the parallelogram
law (Eq. (18.4) with a = (y − x) and b = (z − x)) and the fact that c ∈M that

2 ‖y − x‖2 + 2 ‖z − x‖2 = ‖w − x‖2 + ‖y − z‖2

= ‖z + y − 2x‖2 + ‖y − z‖2

= 4 ‖x− c‖2 + ‖y − z‖2

≥ 4δ2 + ‖y − z‖2 .

Thus we have shown for all y, z ∈M that,

x

y

z

w

c

M

Fig. 18.2. In this figure y, z ∈M and by convexity, c = (z + y) /2 ∈M.

‖y − z‖2 ≤ 2 ‖y − x‖2 + 2 ‖z − x‖2 − 4δ2. (18.6)

Uniqueness. If y, z ∈ M minimize the distance to x, then ‖y − x‖ = δ =
‖z − x‖ and it follows from Eq. (18.6) that y = z.

Existence. Let yn ∈M be chosen such that ‖yn−x‖ = δn → δ = d(x,M).
Taking y = ym and z = yn in Eq. (18.6) shows

‖yn − ym‖2 ≤ 2δ2
m + 2δ2

n − 4δ2 → 0 as m,n→∞.

Therefore, by completeness of H, {yn}∞n=1 is convergent. Because M is closed,
y := lim

n→∞
yn ∈M and because the norm is continuous,

‖y − x‖ = lim
n→∞

‖yn − x‖ = δ = d(x,M).

So y is the desired point in M which is closest to x.
Orthogonality property. Now suppose M is a closed subspace of H and

x ∈ H. Let y ∈M be the closest point in M to x. Then for w ∈M, the function

g(t) := ‖x− (y + tw)‖2 = ‖x− y‖2 − 2tRe〈x− y|w〉+ t2‖w‖2

x− (y + tw)

tw

x− y

x

y

0 M

Fig. 18.3. The orthogonality relationships of closest points.

has a minimum at t = 0 and therefore 0 = g′(0) = −2Re〈x − y|w〉. Since
w ∈ M is arbitrary, this implies that (x− y) ⊥ M, see Figure 18.3.Finally
suppose y ∈ M is any point such that (x− y) ⊥ M. Then for z ∈ M, by
Pythagorean’s theorem,

‖x− z‖2 = ‖x− y + y − z‖2 = ‖x− y‖2 + ‖y − z‖2 ≥ ‖x− y‖2

which shows d(x,M)2 ≥ ‖x− y‖2. That is to say y is the point in M closest to
x.

Alternate organization. Let δ = d(x,M) and {yn} ⊂M be a minimizing
sequence, i.e. ‖yn − x‖ = δn → δ = d(x,M). We start with the identity,

‖(x− y) + (x− z)‖2 + ‖(x− y)− (x− z)‖2 = 2 ·
[
‖x− y‖2 + ‖x− z‖2

]
which is equivalent to

4

∥∥∥∥x− y + z

2

∥∥∥∥2

+ ‖z − y‖2 = 2
[
‖x− y‖2 + ‖x− z‖2

]
.

As y+z
2 ∈M we may conclude with that

4δ2 + ‖z − y‖2 ≤ 2
[
‖x− y‖2 + ‖x− z‖2

]
. (18.7)

Taking y = ym and z = yn in Eq. (18.7) shows,

4δ2 + ‖yn − ym‖2 ≤ 2
[
δ2
m + δ2

n

]
→ 2

[
δ2 + δ2

]
= 4δ2 as m,n→∞

from which it follows that {yn}∞n=1 is a Cauchy sequence. Therefore a desired
minimizer is y := limn→∞ yn which is in M because M is closed. If z were
another minimizer, it would follows from Eq. (18.7) that

4δ2 + ‖z − y‖2 ≤ 2
[
δ2 + δ2

]
= 4δ2.
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This inequality forces ‖z − y‖2 = 0 or equivalently y = z.

Definition 18.11. Suppose that A : H → H is a bounded operator. The
adjoint of A, denoted A∗, is the unique operator A∗ : H → H such that
〈Ax|y〉 = 〈x|A∗y〉. (The proof that A∗ exists and is unique will be given in
Proposition 18.18 below.) A bounded operator A : H → H is self - adjoint or
Hermitian if A = A∗.

Example 18.12 (L2 – spaces need to be introduced first). Let (X,B, µ) be a σ –
finite measure space and suppose H = L2 (X,B, µ) and K : H → H is given by
the integral operator of the form,

Kf (x) =

∫
X

k (x, y) f (y) dµ (y) for all f ∈ H

where k ∈ L2 (µ⊗ µ) . In this case if f, g ∈ H then∫
X×X

|k (x, y) f (y) ḡ (x)| dµ (y) dµ (x)

≤
[∫

X×X
|k (x, y)|2 dµ (y) dµ (x) ·

∫
X×X

|f (y) ḡ (x)|2 dµ (y) dµ (x)

]1/2

<∞

and hence by Fubini’s theorem,

〈Kf |g〉 =

∫
X

dµ (x)

∫
X

dµ (y) k (x, y) f (y) ḡ (x)

=

∫
X

dµ (y) f (y)

∫
X

dµ (x) k̄ (x, y) g (x) = 〈f |K∗g〉

where

(K∗g) (y) :=

∫
X

dµ (x) k̄ (x, y) g (x) .

Thus the integral kernel for K∗ is gotten by interchanging the arguments of k
and taking the complex conjugate of the result.

Definition 18.13. Let H be a Hilbert space and M ⊂ H be a closed subspace.
The orthogonal projection of H onto M is the function PM : H → H such that
for x ∈ H, PM (x) is the unique element in M such that (x− PM (x)) ⊥M.

Theorem 18.14 (Projection Theorem). Let H be a Hilbert space and M ⊂
H be a closed subspace. The orthogonal projection PM satisfies:

1. PM is linear and hence we will write PMx rather than PM (x).
2. P 2

M = PM (PM is a projection).

3. P ∗M = PM (PM is self-adjoint).
4. Ran(PM ) = M and Nul(PM ) = M⊥.
5. If N ⊂M ⊂ H is another closed subspace, the PNPM = PMPN = PN .
6. Provided M 6= {0} , ‖PM‖op = 1.

Proof.

1. Let x1, x2 ∈ H and α ∈ F, then PMx1 + αPMx2 ∈M and

PMx1 + αPMx2 − (x1 + αx2) = [PMx1 − x1 + α(PMx2 − x2)] ∈M⊥

showing PMx1 + αPMx2 = PM (x1 + αx2), i.e. PM is linear.
2. Obviously Ran(PM ) = M and PMx = x for all x ∈M . Therefore P 2

M = PM .
3. Let x, y ∈ H, then since (x− PMx) and (y − PMy) are in M⊥,

〈PMx|y〉 = 〈PMx|PMy + y − PMy〉 = 〈PMx|PMy〉
= 〈PMx+ (x− PMx)|PMy〉 = 〈x|PMy〉.

4. We have already seen, Ran(PM ) = M and PMx = 0 iff x = x − 0 ∈ M⊥,
i.e. Nul(PM ) = M⊥.

5. If N ⊂ M ⊂ H it is clear that PMPN = PN since PM = Id on
N = Ran(PN ) ⊂ M. Taking adjoints gives the other identity, namely that
PNPM = PN .
Alternative proof 1 of PNPM = PN . If x ∈ H, then (x− PMx) ⊥ M
and therefore (x− PMx) ⊥ N. We also have (PMx− PNPMx) ⊥ N and
therefore,

x− PNPMx = (x− PMx) + (PMx− PNPMx) ∈ N⊥

which shows PNPMx = PNx.
Alternative proof 2 of PNPM = PN . If x ∈ H and n ∈ N, we have

〈PNPMx|n〉 = 〈PMx|PNn〉 = 〈PMx|n〉 = 〈x|PMn〉 = 〈x|n〉 .

Since this holds for all n we may conclude that PNPMx = PNx.
6. Given z ∈ H we have,

‖z‖2 = ‖PMz + (z − PMz)‖2 = ‖PMz‖2 + ‖z − PMz‖2 ≥ ‖PMz‖2

with equality for any z ∈M. This shows that ‖PM‖op = 1.

Lemma 18.15. Suppose that Γ ⊂f H \ {0} is a finite orthogonal collection of
elements of H. If M := span (Γ ) , then M is a closed subspace and

PMz =
∑
h∈Γ

〈z|h〉
‖h‖2

h for all z ∈ H.
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Proof. If z ∈M then z =
∑
ah (z)h for some ah (z) ∈ C. Taking the inner

product of this equation with k ∈ Γ (using the orthogonality assumptions)

shows 〈z|k〉 = ak (z) ‖k‖2 , i.e.

ak (z) =
〈z|k〉
‖k‖2

for all k ∈ Γ.

Let Pz :=
∑
h∈Γ

〈z|h〉
‖h‖2 h for all z ∈ H and observe that 〈Pz|k〉 = 〈z|k〉 for all

k ∈ Γ, i.e. 〈z − Pz|k〉 = 0 for all k ∈ Γ. From this it follows that (z − Pz) ⊥M.
So to finish the proof it only remains to show M is closed. [We will later see
that M is closed simply by the virtue that dimM <∞.]

Let us first observe that

‖z‖2 = ‖Pz + (z − Pz)‖2 = ‖Pz‖2 + ‖z − Pz‖2 ≥ ‖Pz‖2

for all z ∈ H and therefore P is bounded. Hence if {zn} ⊂M and zn → z ∈ H,
then

z = lim
n→∞

zn = lim
n→∞

Pzn = P lim
n→∞

zn = Pz ∈M.

Corollary 18.16. If M ⊂ H is a proper closed subspace of a Hilbert space H,
then H = M ⊕M⊥.

Proof. Given x ∈ H, let y = PMx so that x−y ∈M⊥. Then x = y+(x−y) ∈
M+M⊥. If x ∈M ∩M⊥, then x ⊥ x, i.e. ‖x‖2 = 〈x|x〉 = 0. So M ∩M⊥ = {0} .

Exercise 18.1. Suppose M is a subset of H, then M⊥⊥ = span(M) where (as
usual), span (M) denotes all finite linear combinations of elements from M.

Theorem 18.17 (Riesz Theorem). Let H∗ be the dual space of H (Notation
14.14), i.e. f ∈ H∗ iff f : H → F is linear and continuous. The map

z ∈ H j−→ 〈·|z〉 ∈ H∗ (18.8)

is a conjugate linear1 isometric isomorphism, where for f ∈ H∗ we let,

‖f‖H∗ := sup
x∈H\{0}

|f (x)|
‖x‖

= sup
‖x‖=1

|f (x)| .

1 Recall that j is conjugate linear if

j (z1 + αz2) = jz1 + ᾱjz2

for all z1, z2 ∈ H and α ∈ C.

Proof. Let f ∈ H∗ and M =Nul(f) – a closed proper subspace of H since f
is continuous. If f = 0, then clearly f (·) = 〈·|0〉 . If f 6= 0 there exists y ∈ H\M.
Then for any α ∈ C we have e := α (y − PMy) ∈M⊥. We now choose α so that
f (e) = 1. Hence if x ∈ H,

f (x− f (x) e) = f (x)− f (x) f (e) = f (x)− f (x) = 0,

which shows x− f (x) e ∈M. As e ∈M⊥ it follows that

0 = 〈x− f (x) e|e〉 = 〈x|e〉 − f (x) ‖e‖2

which shows f (·) = 〈·|z〉 = jz where z := e/ ‖e‖2 and thus j is surjective.
The map j is conjugate linear by the axioms of the inner products. Moreover,

for x, z ∈ H,
|〈x|z〉| ≤ ‖x‖ ‖z‖ for all x ∈ H

with equality when x = z. This implies that ‖jz‖H∗ = ‖〈·|z〉‖H∗ = ‖z‖ . There-
fore j is isometric and this implies j is injective.

Proposition 18.18 (Adjoints). Let H and K be Hilbert spaces and A : H →
K be a bounded operator. Then there exists a unique bounded operator A∗ :
K → H such that

〈Ax|y〉K = 〈x|A∗y〉H for all x ∈ H and y ∈ K. (18.9)

Moreover, for all A,B ∈ L(H,K) and λ ∈ C,

1. (A+ λB)
∗

= A∗ + λ̄B∗,
2. A∗∗ := (A∗)∗ = A,
3. ‖A∗‖ = ‖A‖ and

4. ‖A∗A‖ = ‖A‖2 .
5. If K = H, then (AB)

∗
= B∗A∗. In particular A ∈ L (H) has a bounded

inverse iff A∗ has a bounded inverse and (A∗)
−1

=
(
A−1

)∗
.

Proof. For each y ∈ K, the map x→ 〈Ax|y〉K is in H∗ and therefore there
exists, by Theorem 18.17, a unique vector z ∈ H (we will denote this z by
A∗ (y)) such that

〈Ax|y〉K = 〈x|z〉H for all x ∈ H.
This shows there is a unique map A∗ : K → H such that 〈Ax|y〉K = 〈x|A∗(y)〉H
for all x ∈ H and y ∈ K.

To see A∗ is linear, let y1, y2 ∈ K and λ ∈ C, then for any x ∈ H,

〈Ax|y1 + λy2〉K = 〈Ax|y1〉K + λ̄〈Ax|y2〉K
= 〈x|A∗(y1)〉K + λ̄〈x|A∗(y2)〉H
= 〈x|A∗(y1) + λA∗(y2)〉H
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and by the uniqueness of A∗(y1 + λy2) we find

A∗(y1 + λy2) = A∗(y1) + λA∗(y2).

This shows A∗ is linear and so we will now write A∗y instead of A∗(y).
Since

〈A∗y|x〉H = 〈x|A∗y〉H = 〈Ax|y〉K = 〈y|Ax〉K
it follows that A∗∗ = A. The assertion that (A+ λB)

∗
= A∗ + λ̄B∗ is Exercise

18.2.
Items 3. and 4. Making use of Schwarz’s inequality (Theorem 18.2), we

have

‖A∗‖ = sup
k∈K:‖k‖=1

‖A∗k‖

= sup
k∈K:‖k‖=1

sup
h∈H:‖h‖=1

|〈A∗k|h〉|

= sup
h∈H:‖h‖=1

sup
k∈K:‖k‖=1

|〈k|Ah〉| = sup
h∈H:‖h‖=1

‖Ah‖ = ‖A‖

so that ‖A∗‖ = ‖A‖ . Since

‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2

and

‖A‖2 = sup
h∈H:‖h‖=1

‖Ah‖2 = sup
h∈H:‖h‖=1

|〈Ah|Ah〉|

= sup
h∈H:‖h‖=1

|〈h|A∗Ah〉| ≤ sup
h∈H:‖h‖=1

‖A∗Ah‖ = ‖A∗A‖ (18.10)

we also have ‖A∗A‖ ≤ ‖A‖2 ≤ ‖A∗A‖ which shows ‖A‖2 = ‖A∗A‖ .
Alternatively, from Eq. (18.10),

‖A‖2 ≤ ‖A∗A‖ ≤ ‖A‖ ‖A∗‖ (18.11)

which then implies ‖A‖ ≤ ‖A∗‖ . Replacing A by A∗ in this last inequality
shows ‖A∗‖ ≤ ‖A‖ and hence that ‖A∗‖ = ‖A‖ . Using this identity back in

Eq. (18.11) proves ‖A‖2 = ‖A∗A‖ .
Now suppose that K = H. Then

〈ABh|k〉 = 〈Bh|A∗k〉 = 〈h|B∗A∗k〉

which shows (AB)
∗

= B∗A∗. If A−1 exists then(
A−1

)∗
A∗ =

(
AA−1

)∗
= I∗ = I and

A∗
(
A−1

)∗
=
(
A−1A

)∗
= I∗ = I.

This shows that A∗ is invertible and (A∗)
−1

=
(
A−1

)∗
. Similarly if A∗ is

invertible then so is A = A∗∗.

Exercise 18.2. Let H,K,M be Hilbert spaces, A,B ∈ L(H,K), C ∈ L(K,M)
and λ ∈ C. Show (A+ λB)

∗
= A∗ + λ̄B∗ and (CA)

∗
= A∗C∗ ∈ L(M,H).

Exercise 18.3. Let H = Cn and K = Cm equipped with the usual inner
products, i.e. 〈z|w〉H = z · w̄ for z, w ∈ H. Let A be an m×n matrix thought of
as a linear operator from H to K. Show the matrix associated to A∗ : K → H
is the conjugate transpose of A.

Lemma 18.19. Suppose A : H → K is a bounded operator, then:

1. Nul(A∗) = Ran(A)⊥.
2. Ran(A) = Nul(A∗)⊥.
3. if K = H and V ⊂ H is an A – invariant subspace (i.e. A(V ) ⊂ V ), then
V ⊥ is A∗ – invariant.

Proof. An element y ∈ K is in Nul(A∗) iff 0 = 〈A∗y|x〉 = 〈y|Ax〉 for all
x ∈ H which happens iff y ∈ Ran(A)⊥. Because, by Exercise 18.1, Ran(A) =
Ran(A)⊥⊥, and so by the first item, Ran(A) = Nul(A∗)⊥. Now suppose A(V ) ⊂
V and y ∈ V ⊥, then

〈A∗y|x〉 = 〈y|Ax〉 = 0 for all x ∈ V

which shows A∗y ∈ V ⊥.

Definition 18.20 (Strong Convergence). Let X be a Banach space. We say
a sequence of operators {An}∞n=1 ⊂ L (X) converges strongly to A ∈ L (X)

if limn→∞Anx = Ax for all x ∈ X. We abbreviate this by writing An
s→ A as

n→∞. [Note well that strong convergence is weaker than norm convergence,

i.e. if ‖A−An‖op → 0 then An
s→ A as n → ∞ but no necessarily the other

way around unless dimX <∞.]

Exercise 18.4. Let (H, 〈·|·〉) be a Hilbert space and suppose that {Pn}∞n=1 is a
sequence of orthogonal projection operators on H such that Pn(H) ⊂ Pn+1(H)
for all n. Let M := ∪∞n=1Pn(H) (a subspace of H) and let P denote orthonormal
projection onto M̄. Show limn→∞ Pnx = Px for all x ∈ H. Hint: first prove
the result for x ∈M⊥, then for x ∈M and then for x ∈ M̄.

Exercise 18.5. Let (X,M, µ) and (Y,N , ν) be σ – finite measure spaces, f ∈
L2(ν) and k ∈ L2(µ⊗ ν). Show∫

|k(x, y)f(y)| dν(y) <∞ for µ – a.e. x (18.12)

and define

Kf(x) :=

∫
Y

k(x, y)f(y)dν(y) (18.13)
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when the integral is defined and set Kf (x) = 0 otherwise. Show Kf ∈ L2(µ)
and K : L2(ν) → L2(µ) is a bounded operator with ‖K‖op ≤ ‖k‖L2(µ⊗ν) .

[Remember that L2 (ν) and L2 (µ) consists of equivalence classes of functions.]

Exercise 18.6. Let K : L2(ν) → L2(µ) be the operator defined in Exercise
18.5. Show K∗ : L2(µ)→ L2(ν) is the operator given by

K∗g(y) =

∫
X

k̄(x, y)g(x)dµ(x).

18.1 Hilbert Space Basis

Proposition 18.21 (Bessel’s Inequality). Let T be an orthonormal set, then
for any x ∈ H, ∑

v∈T
|〈x|v〉|2 ≤ ‖x‖2 for all x ∈ H. (18.14)

In particular the set Tx := {v ∈ T : 〈x|v〉 6= 0} is at most countable for all x ∈
H.

Proof. Let Γ ⊂⊂ T be any finite set and M = spanΓ. From Lemma 18.15
we know that PMx =

∑
v∈Γ
〈x|v〉v. As ‖PM‖op = 1 it now follows that

∑
v∈Γ
|〈x|v〉|2 = ‖PMx‖2 ≤ ‖x‖2 .

Taking the supremum of this inequality over Γ ⊂⊂ T then proves Eq. (18.14).

Proposition 18.22. Suppose T ⊂ H is an orthogonal set. Then s =
∑
v∈T v

exists in H (see Definition 14.22) iff
∑
v∈T ‖v‖2 < ∞. (In particular T must

be at most a countable set.) Moreover, if
∑
v∈T ‖v‖2 <∞, then

1. ‖s‖2 =
∑
v∈T ‖v‖

2
and

2. 〈s|x〉 =
∑
v∈T 〈v|x〉 for all x ∈ H.

Similarly if {vn}∞n=1 is an orthogonal set, then s =
∞∑
n=1

vn exists in H iff

∞∑
n=1
‖vn‖2 < ∞. In particular if

∞∑
n=1

vn exists, then it is independent of rear-

rangements of {vn}∞n=1.

Proof. Suppose s =
∑
v∈T v exists. Then there exists Γ ⊂⊂ T such that

∑
v∈Λ
‖v‖2 =

∥∥∥∥∥∑
v∈Λ

v

∥∥∥∥∥
2

≤ 1

for all Λ ⊂⊂ T \ Γ, wherein the first inequality we have used Pythagorean’s

theorem. Taking the supremum over such Λ shows that
∑
v∈T\Γ ‖v‖

2 ≤ 1 and
therefore ∑

v∈T
‖v‖2 ≤ 1 +

∑
v∈Γ
‖v‖2 <∞.

Conversely, suppose that
∑
v∈T ‖v‖2 < ∞. Then for all ε > 0 there exists

Γε ⊂⊂ T such that if Λ ⊂⊂ T \ Γε,∥∥∥∥∥∑
v∈Λ

v

∥∥∥∥∥
2

=
∑
v∈Λ
‖v‖2 < ε2. (18.15)

Hence by Lemma 14.23,
∑
v∈T v exists.

For item 1, let Γε be as above and set sε :=
∑
v∈Γε v. Then

|‖s‖ − ‖sε‖| ≤ ‖s− sε‖ < ε

and by Eq. (18.15),

0 ≤
∑
v∈T
‖v‖2 − ‖sε‖2 =

∑
v/∈Γε

‖v‖2 ≤ ε2.

Letting ε ↓ 0 we deduce from the previous two equations that ‖sε‖ → ‖s‖ and

‖sε‖2 →
∑
v∈T ‖v‖2 as ε ↓ 0 and therefore ‖s‖2 =

∑
v∈T ‖v‖2. Item 2. is a

special case of Lemma 14.23.
Alternative proof of item 1. We could use the last result to prove Item

1. Indeed, if
∑
v∈T ‖v‖2 < ∞, then T is countable and so we may write T =

{vn}∞n=1 . Then s = limN→∞ sN with sN as above. Since the norm, ‖·‖ , is
continuous on H,

‖s‖2 = lim
N→∞

‖sN‖2 = lim
N→∞

∥∥∥∥∥
N∑
n=1

vn

∥∥∥∥∥
2

= lim
N→∞

N∑
n=1

‖vn‖2

=

∞∑
n=1

‖vn‖2 =
∑
v∈T
‖v‖2.

Countable Case. Let sN :=
N∑
n=1

vn and suppose that limN→∞ sN = s

exists in H. Since {sN}∞N=1 is Cauchy, we have (say N > M) that
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N∑
n=M+1

‖vn‖2 = ‖sN − sM‖2 → 0 as M,N →∞

which shows that
∞∑
n=1
‖vn‖2 is convergent, i.e.

∞∑
n=1
‖vn‖2 < ∞. Conversely if

∞∑
n=1
‖vn‖2 <∞, then

‖sN − sM‖2 =

N∑
n=M+1

‖vn‖2 → 0 as M,N →∞

which shows {sN}∞N=1 is Cauchy and hence convergent. Finally, suppose that

ϕ : N→ N is a bijective map and let sϕN :=
N∑
n=1

vϕ(n). If we let

ΓN = {1, 2, . . . , N} M {ϕ (1) , ϕ (2) , . . . , ϕ (N)} ,

then minΓN →∞ as N →∞ as ϕ is a bijection. Therefore

‖sN − sϕN‖
2 =

∑
n∈ΓN

‖vn‖2 ≤
∞∑

n=minΓN

‖vn‖2 → 0 as N →∞.

which shows the limit is independent of rearrangements.

Corollary 18.23. Suppose H is a Hilbert space, β ⊂ H is an orthonormal set
and M = span β. Then

PMx =
∑
u∈β

〈x|u〉u, (18.16)

∑
u∈β

|〈x|u〉|2 = ‖PMx‖2 and (18.17)

∑
u∈β

〈x|u〉〈u|y〉 = 〈PMx|y〉 (18.18)

for all x, y ∈ H.

Proof. By Bessel’s inequality,
∑
u∈β |〈x|u〉|

2 ≤ ‖x‖2 for all x ∈ H and hence
by Proposition 18.21, Px :=

∑
u∈β〈x|u〉u exists in H and for all x, y ∈ H,

〈Px|y〉 =
∑
u∈β

〈〈x|u〉u|y〉 =
∑
u∈β

〈x|u〉〈u|y〉. (18.19)

Taking y ∈ β in Eq. (18.19) gives 〈Px|y〉 = 〈x|y〉, i.e. that 〈x − Px|y〉 = 0 for
all y ∈ β. So (x− Px) ⊥ span β and by continuity we also have (x− Px) ⊥

M = span β. Since Px is also in M, it follows from the definition of PM that
Px = PMx proving Eq. (18.16). Equations (18.17) and (18.18) now follow from
(18.19), Proposition 18.22 and the fact that 〈PMx|y〉 = 〈P 2

Mx|y〉 = 〈PMx|PMy〉
for all x, y ∈ H.

Definition 18.24 (Basis). Let H be a Hilbert space. A basis β of H is a
maximal orthonormal subset β ⊂ H.

Proposition 18.25. Every Hilbert space has an orthonormal basis.

Proof. Let F be the collection of all orthonormal subsets of H ordered
by inclusion. If Φ ⊂ F is linearly ordered then ∪Φ is an upper bound. By
Zorn’s Lemma (see Theorem 2.14 ) there exists a maximal element β ∈ F . [See
Proposition 18.30 below for a more down to earth proof in the case that H is
separable.]

An orthonormal set β ⊂ H is said to be complete if β⊥ = {0} . That is to
say if 〈x|u〉 = 0 for all u ∈ β then x = 0.

Lemma 18.26. Let β be an orthonormal subset of H then the following are
equivalent:

1. β is a basis,
2. β is complete and
3. span β = H.

Proof. (1. ⇐⇒ 2.) If β is not complete, then there exists a unit vector
x ∈ β⊥ \ {0} . The set β ∪ {x} is an orthonormal set properly containing β, so
β is not maximal. Conversely, if β is not maximal, there exists an orthonormal
set β1 ⊂ H such that β & β1. Then if x ∈ β1 \β, we have 〈x|u〉 = 0 for all u ∈ β
showing β is not complete.

(2.⇐⇒ 3.) If β is not complete and x ∈ β⊥ \ {0} , then span β ⊂ x⊥ which
is a proper subspace of H. Conversely if span β is a proper subspace of H, β⊥ =

span β
⊥

is a non-trivial subspace by Corollary 18.16 and β is not complete.

Theorem 18.27. Let β ⊂ H be an orthonormal set. Then the following are
equivalent:

1. β is complete, i.e. β is an orthonormal basis for H.
2. x =

∑
u∈β
〈x|u〉u for all x ∈ H.

3. 〈x|y〉 =
∑
u∈β
〈x|u〉 〈u|y〉 for all x, y ∈ H.

4. ‖x‖2 =
∑
u∈β
|〈x|u〉|2 for all x ∈ H.
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18.1 Hilbert Space Basis 189

Proof. Let M = span β and P = PM .
(1) ⇒ (2) By assumption M = H and by Corollary 18.23,∑

u∈β

〈x|u〉u = PMx = PHx = x.

(2)⇒ (3) is a consequence of Proposition 18.22, i.e. by the continuity of the
inner product.

(3) ⇒ (4) is obvious, just take y = x.
(4) ⇒ (1) If x ∈ β⊥, then by 4), ‖x‖ = 0, i.e. x = 0. This shows that β is

complete.
Suppose Γ := {un}∞n=1 is a collection of vectors in an inner product space

(H, 〈·|·〉) . The standard Gram-Schmidt process produces from Γ an orthonor-
mal subset, β = {vn}∞n=1, such that every element un ∈ Γ is a finite linear com-
bination of elements from β. Recall the procedure is to define vn inductively by
setting

ṽn+1 := vn+1 −
n∑
j=1

〈un+1|vj〉vj = vn+1 − Pnvn+1

where Pn is orthogonal projection onto Mn := span({vk}nk=1). If vn+1 := 0, let

ṽn+1 = 0, otherwise set vn+1 := ‖ṽn+1‖−1
ṽn+1. Finally re-index the resulting

sequence so as to throw out those vn with vn = 0. The result is an orthonormal
subset, β ⊂ H, with the desired properties.

Definition 18.28. A subset, Γ, of a normed space X is said to be total if
span(Γ ) is dense in X.

Remark 18.29. Suppose that {un}∞n=1 is a total subset of H. Let {vn}∞n=1 be
the vectors found by performing Gram-Schmidt on the set {un}∞n=1. Then β :=
{vn}∞n=1 is an orthonormal basis for H. Indeed, if h ∈ H is orthogonal to β then

h is orthogonal to {un}∞n=1 and hence also span {un}∞n=1 = H. In particular h
is orthogonal to itself and so h = 0. This generalizes the corresponding results
for finite dimensional inner product spaces.

Proposition 18.30. A Hilbert space H is separable (see Definition 13.10 or
Definition 35.42) iff H has a countable orthonormal basis β ⊂ H. Moreover, if
H is separable, all orthonormal bases of H are countable. (See Proposition 4.14
in Conway’s, “A Course in Functional Analysis,” for a more general version
of this proposition.)

Proof. Let D ⊂ H be a countable dense set D = {un}∞n=1. By Gram-Schmidt
process there exists β = {vn}∞n=1 an orthonormal set such that span{vn : n =
1, 2 . . . , N} ⊇ span{un : n = 1, 2 . . . , N}. So if 〈x|vn〉 = 0 for all n then 〈x|un〉 =
0 for all n. Since D ⊂ H is dense we may choose {wk} ⊂ D such that x =

limk→∞ wk and therefore 〈x|x〉 = limk→∞〈x|wk〉 = 0. That is to say x = 0 and
β is complete. Conversely if β ⊂ H is a countable orthonormal basis, then the
countable set

D =

∑
u∈β

auu : au ∈ Q+ iQ : #{u : au 6= 0} <∞


is dense in H. Finally let β = {un}∞n=1 be an orthonormal basis and β1 ⊂ H be
another orthonormal basis. Then the sets

Bn = {v ∈ β1 : 〈v|un〉 6= 0}

are countable for each n ∈ N and hence B :=
∞⋃
n=1

Bn is a countable subset of β1.

Suppose there exists v ∈ β1\B, then 〈v|un〉 = 0 for all n and since β = {un}∞n=1

is an orthonormal basis, this implies v = 0 which is impossible since ‖v‖ = 1.
Therefore β1 \B = ∅ and hence β1 = B is countable.

Notation 18.31 If f : X → C and g : Y → C are two functions, let f ⊗ g :
X × Y → C be defined by f ⊗ g (x, y) := f (x) g (y) .

Proposition 18.32. Suppose X and Y are sets and µ : X → (0,∞) and
ν : Y → (0,∞) are given weight functions. If β ⊂ `2 (µ) and γ ⊂ `2 (ν) are
orthonormal bases, then

β ⊗ γ := {f ⊗ g : f ∈ β and g ∈ γ}

is an orthonormal basis for `2 (µ⊗ ν) .

Proof. Let f, f ′ ∈ `2 (µ) and g, g′ ∈ `2 (ν) , then by the Tonelli’s Theorem
4.22 for sums and Hölder’s inequality,∑

X×Y

∣∣f ⊗ g · f ′ ⊗ g′∣∣µ⊗ ν =
∑
X

∣∣ff ′∣∣µ ·∑
Y

∣∣gg′∣∣ ν
≤ ‖f‖`2(µ) ‖f

′‖`2(µ) ‖g‖`2(ν) ‖g
′‖`2(ν) = 1 <∞.

So by Fubini’s Theorem 4.23 for sums,

〈f ⊗ g|f ′ ⊗ g′〉`2(µ⊗ν) =
∑
X

f f̄ ′µ ·
∑
Y

gḡ′ν

= 〈f |f ′〉`2(µ)〈g|g′〉`2(ν) = δf,f ′δg,g′ .

Therefore, β ⊗ γ is an orthonormal subset of `2(µ ⊗ ν). So it only remains to
show β ⊗ γ is complete. We will give two proofs of this fact. Let F ∈ `2(µ⊗ ν).
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190 18 Hilbert Space Basics

In the first proof we will verify item 4. of Theorem 18.27 while in the second
we will verify item 1 of Theorem 18.27.

First Proof. By Tonelli’s Theorem,∑
x∈X

µ (x)
∑
y∈Y

ν (y) |F (x, y)|2 = ‖F‖2`2(µ⊗ν) <∞

and since µ > 0, it follows that∑
y∈Y
|F (x, y)|2 ν (y) <∞ for all x ∈ X,

i.e. F (x, ·) ∈ `2(ν) for all x ∈ X. By the completeness of γ,∑
y∈Y
|F (x, y)|2 ν (y) = 〈F (x, ·) |F (x, ·)〉`2(ν) =

∑
g∈γ

∣∣〈F (x, ·) |g〉`2(ν)

∣∣2
and therefore,

‖F‖2`2(µ⊗ν) =
∑
x∈X

µ (x)
∑
y∈Y

ν (y) |F (x, y)|2

=
∑
x∈X

∑
g∈γ

∣∣〈F (x, ·) |g〉`2(ν)

∣∣2 µ (x) . (18.20)

and in particular, x → 〈F (x, ·) |g〉`2(ν) is in `2 (µ) . So by the completeness of
β and the Fubini and Tonelli theorems, we find

∑
X

∣∣〈F (x, ·) |g〉`2(ν)

∣∣2 µ (x) =
∑
f∈β

∣∣∣∣∣∑
x∈X
〈F (x, ·) |g〉`2(ν)f̄ (x)µ (x)

∣∣∣∣∣
2

=
∑
f∈β

∣∣∣∣∣∣
∑
x∈X

∑
y∈Y

F (x, y) ḡ (y) ν (y)

 f̄ (x)µ (x)

∣∣∣∣∣∣
2

=
∑
f∈β

∣∣∣∣∣∣
∑

(x,y)∈X×Y

F (x, y) f ⊗ g (x, y)µ⊗ ν (x, y)

∣∣∣∣∣∣
2

=
∑
f∈β

∣∣〈F |f ⊗ g〉`2(µ⊗ν)

∣∣2 .
Combining this result with Eq. (18.20) shows

‖F‖2`2(µ⊗ν) =
∑

f∈β, g∈γ

∣∣〈F |f ⊗ g〉`2(µ⊗ν)

∣∣2

as desired.
Second Proof. Suppose, for all f ∈ β and g ∈ γ that 〈F |f ⊗ g〉 = 0, i.e.

0 = 〈F |f ⊗ g〉`2(µ⊗ν) =
∑
x∈X

µ (x)
∑
y∈Y

ν (y)F (x, y)f̄(x)ḡ(y)

=
∑
x∈X

µ (x) 〈F (x, ·)|g〉`2(ν)f̄(x). (18.21)

Since∑
x∈X

∣∣〈F (x, ·)|g〉`2(ν)

∣∣2 µ (x) ≤
∑
x∈X

µ (x)
∑
y∈Y
|F (x, y)|2 ν (y) <∞, (18.22)

it follows from Eq. (18.21) and the completeness of β that 〈F (x, ·)|g〉`2(ν) = 0
for all x ∈ X. By the completeness of γ we conclude that F (x, y) = 0 for all
(x, y) ∈ X × Y.

Definition 18.33. A linear map U : H → K is an isometry if ‖Ux‖K = ‖x‖H
for all x ∈ H and U is unitary if U is also surjective.

Exercise 18.7. Let U : H → K be a linear map between complex Hilbert
spaces. Show the following are equivalent:

1. U : H → K is an isometry,
2. 〈Ux|Ux′〉K = 〈x|x′〉H for all x, x′ ∈ H,
3. U∗U = idH .

Hint: use the polarization identities in Remark 18.4.,

Exercise 18.8. Let U : H → K be a linear map, show the following are equiv-
alent:

1. U : H → K is unitary
2. U∗U = idH and UU∗ = idK .
3. U is invertible and U−1 = U∗.

Exercise 18.9. Let H be a Hilbert space. Use Theorem 18.27 to show there
exists a set X and a unitary map U : H → `2(X). Moreover, if H is separable
and dim(H) =∞, then X can be taken to be N so that H is unitarily equivalent
to `2 = `2(N).
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18.2 L2-Orthonormal Basis Examples

Example 18.34. 1. Let H = L2([−1, 1], dm), A := {1, x, x2, x3 . . . } and β ⊂ H
be the result of doing the Gram-Schmidt procedure on A. By the Stone-
Weierstrass theorem or by Exercise 16.3 directly, A is total in H. Hence
by Remark 18.29, β is an orthonormal basis for H. The basis, β, consists
of polynomials which up to normalization are the so called “Legendre
polynomials.”

2. Let H = L2(R, e− 1
2x

2

dx) and A := {1, x, x2, x3 . . . }. Again by Exercise
16.3, A is total in H and hence the Gram-Schmidt procedure applied to A
produces an orthonormal basis, β, of polynomial functions for H. This basis
consists, up to normalizations, of the so called “Hermite polynomials”
on R.

Remark 18.35 (An Interesting Phenomena). Let H = L2([−1, 1], dm) and B :=
{1, x3, x6, x9, . . . }. Then again B is total in H by the same argument as in
item 2. Example 18.34. This is true even though B is a proper subset of A.
Notice that A is an algebraic basis for the polynomials on [−1, 1] while B is
not! The following computations may help relieve some of the reader’s anxiety.
Let f ∈ L2([−1, 1], dm), then, making the change of variables x = y1/3, shows
that∫ 1

−1

|f(x)|2 dx =

∫ 1

−1

∣∣∣f(y1/3)
∣∣∣2 1

3
y−2/3dy =

∫ 1

−1

∣∣∣f(y1/3)
∣∣∣2 dµ(y) (18.23)

where dµ(y) = 1
3y
−2/3dy. Since µ([−1, 1]) = m([−1, 1]) = 2, µ is a finite mea-

sure on [−1, 1] and hence by Exercise 16.3 A := {1, x, x2, x3 . . . } is total (see
Definition 18.28) in L2([−1, 1], dµ). In particular for any ε > 0 there exists a
polynomial p(y) such that∫ 1

−1

∣∣∣f(y1/3)− p(y)
∣∣∣2 dµ(y) < ε2.

However, by Eq. (18.23) we have

ε2 >

∫ 1

−1

∣∣∣f(y1/3)− p(y)
∣∣∣2 dµ(y) =

∫ 1

−1

∣∣f(x)− p(x3)
∣∣2 dx.

Alternatively, if f ∈ C([−1, 1]), then g(y) = f(y1/3) is back in C([−1, 1]).
Therefore for any ε > 0, there exists a polynomial p(y) such that

ε > ‖g − p‖∞ = sup {|g(y)− p(y)| : y ∈ [−1, 1]}
= sup

{∣∣g(x3)− p(x3)
∣∣ : x ∈ [−1, 1]

}
= sup

{∣∣f(x)− p(x3)
∣∣ : x ∈ [−1, 1]

}
.

This gives another proof the polynomials in x3 are dense in C([−1, 1]) and hence
in L2([−1, 1]).

Exercise 18.10. Suppose (X,M, µ) and (Y,N , ν) are σ-finite mea-
sure spaces such that L2 (µ) and L2 (ν) are separable. If {fn}∞n=1 and
{gm}∞m=1 are orthonormal bases for L2 (µ) and L2 (ν) respectively, then
β := {fn ⊗ gm : m,n ∈ N} is an orthonormal basis for L2 (µ⊗ ν) . (Recall that
f ⊗ g (x, y) := f (x) g (y) , see Notation ??.) Hint: model your proof on the
proof of Proposition 18.32.

Definition 18.36 (External direct sum of Hilbert spaces). Suppose that
{Hn}∞n=1 is a sequence of Hilbert spaces. Let ⊕∞n=1Hn denote the space of se-
quences, f ∈

∏∞
n=1Hn such that

‖f‖ =

√√√√ ∞∑
n=1

‖f (n)‖2Hn <∞.

It is easily seen that (⊕∞n=1Hn, ‖·‖) is a Hilbert space with inner product defined,
for all f, g ∈ ⊕∞n=1Hn, by

〈f |g〉⊕∞n=1Hn
=

∞∑
n=1

〈f (n) |g (n)〉Hn .

Exercise 18.11. Suppose H is a Hilbert space and {Hn : n ∈ N} are closed
subspaces of H such that Hn ⊥ Hm for all m 6= n and if f ∈ H with f ⊥ Hn

for all n ∈ N, then f = 0. For f ∈ ⊕∞n=1Hn, show the sum
∑∞
n=1 f (n) is

convergent in H and the map U : ⊕∞n=1Hn → H defined by Uf :=
∑∞
n=1 f (n)

is unitary.

Exercise 18.12. Suppose (X,M, µ) is a measure space and X =
∐∞
n=1Xn

with Xn ∈ M and µ (Xn) > 0 for all n. Then U : L2 (X,µ)→ ⊕∞n=1L
2 (Xn, µ)

defined by (Uf) (n) := f1Xn is unitary.

Exercise 18.13 (Haar Basis). In this problem, let L2 denote L2([0, 1],m)
with the standard inner product,

ψ(x) = 1[0,1/2)(x)− 1[1/2,1)(x)

and for k, j ∈ N0 := N∪{0} with 0 ≤ j < 2k let

ψkj(x) = 2k/2ψ(2kx− j)
= 2k/2

(
12−k[j,j+1/2)(x)− 12−k[j+1/2,j+1)(x)

)
.

Page: 191 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



192 18 Hilbert Space Basics

The following pictures shows the graphs of ψ0,0, ψ1,0, ψ1,1, ψ2,1, ψ2,2 and ψ2,3

respectively.

Plot of ψ0, 0.

Plot of ψ10. Plot of ψ11.

Plot of ψ20. Plot of ψ21.

Plot of ψ22. Plot of ψ23.

1. Let M0 = span({1}) and for n ∈ N let

Mn := span
(
{1} ∪

{
ψkj : 0 ≤ k < n and 0 ≤ j < 2k

})
,

where 1 denotes the constant function 1. Show

Mn = span
(
{1[j2−n,(j+1)2−n) : and 0 ≤ j < 2n

)
.

2. Show β := {1}∪
{
ψkj : 0 ≤ k and 0 ≤ j < 2k

}
is an orthonormal set. Hint:

show ψk+1,j ∈ M⊥k for all 0 ≤ j < 2k+1 and show
{
ψkj : 0 ≤ j < 2k

}
is an

orthonormal set for fixed k.
3. Show ∪∞n=1Mn is a dense subspace of L2 and therefore β is an orthonormal

basis for L2. Hint: see Theorem 31.15.
4. For f ∈ L2, let

Hnf := 〈f |1〉1 +

n−1∑
k=0

2k−1∑
j=0

〈f |ψkj〉ψkj .

Show (compare with Exercise 40.8)

Hnf =

2n−1∑
j=0

(
2n
∫ (j+1)2−n

j2−n
f(x)dx

)
1[j2−n,(j+1)2−n)

and use this to show ‖f −Hnf‖∞ → 0 as n → ∞ for all f ∈ C([0, 1]).
Hint: Compute orthogonal projection onto Mn using a judiciously chosen
basis for Mn.

18.3 Fourier Series

In this subsection we will let dθ, dx, dα, etc. denote Lebesgue measure on
Rd normalized so that the cube, Q := (−π, π]d, has measure one, i.e. dθ =
(2π)−ddm(θ) where m is standard Lebesgue measure on Rd. Further let 〈·|·〉
denote the inner product on the Hilbert space, H := L2([−π, π]d), given by

〈f |g〉 :=

∫
Q

f(θ)ḡ(θ)dθ =

(
1

2π

)d ∫
Q

f(θ)ḡ(θ)dm (θ)

and define ϕk(θ) := eik·θ for all k ∈ Zd. For f ∈ L1(Q), we will write f̃(k) for
the Fourier coefficient,

f̃(k) := 〈f |ϕk〉 =

∫
Q

f(θ)e−ik·θdθ. (18.24)

Notation 18.37 Let Cper(Rd) denote the 2π – periodic functions in C(Rd),
that is f ∈ Cper(Rd) iff f ∈ C(Rd) and f(θ + 2πei) = f(θ) for all θ ∈ Rd and
i = 1, 2, . . . , d.
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Since any 2π – periodic functions on Rd may be identified with function on

the d - dimensional torus, Td ∼= Rd/ (2πZ)
d ∼=

(
S1
)d
, I may also write C(Td)

for Cper(Rd) and Lp
(
Td
)

for Lp (Q) where elements in f ∈ Lp (Q) are to be
thought of as there extensions to 2π – periodic functions on Rd.

Theorem 18.38 (Fourier Series). The functions β :=
{
ϕk : k ∈ Zd

}
form

an orthonormal basis for H, i.e. if f ∈ H then

f =
∑
k∈Zd
〈f |ϕk〉ϕk =

∑
k∈Zd

f̃(k)ϕk (18.25)

where the convergence takes place in L2([−π, π]d).

Proof. Simple computations show β :=
{
ϕk : k ∈ Zd

}
is an orthonormal

set. We now claim that β is an orthonormal basis. To see this recall that
Cc((−π, π)d) is dense in L2((−π, π)d, dm). Any f ∈ Cc((−π, π)d) may be ex-
tended to be a continuous 2π – periodic function on R and hence by Exercise
7.15 (see also Theorem 7.42, Exercise 37.13 and Remark 37.46), f may uniformly
(and hence in L2) be approximated by a trigonometric polynomial. Therefore
β is a total orthonormal set, i.e. β is an orthonormal basis.

This may also be proved by first proving the case d = 1 as above and then
using Exercise 18.10 inductively to get the result for any d.

We will discuss Fourier series and the related Fourier transform in more
detail later, see Section 40.1.

18.3.1 Fourier Series Exercises

Exercise 18.14. Show that if f ∈ L1
(

[−π, π]
d
)

and f̃ (k) = 0 for all k then

f = 0 a.e.

Exercise 18.15. Show
∑∞
k=1 k

−2 = π2/6, by taking f(x) = x on [−π, π] and

computing ‖f‖22 directly and then in terms of the Fourier Coefficients f̃ of f.

Exercise 18.16 (Riemann Lebesgue Lemma for Fourier Series). Show

for f ∈ L1
(

[−π, π]
d
)

that f̃ ∈ c0(Zd), i.e. f̃ : Zd → C and limk→∞ f̃(k) =

0. Hint: If f ∈ L2
(

[−π, π]
d
)
, this follows from Bessel’s inequality. Now use a

density argument.

Exercise 18.17. Suppose f ∈ L1([−π, π]d) is a function such that f̃ ∈ `1(Zd)
and set

g(x) :=
∑
k∈Zd

f̃(k)eik·x (pointwise).

1. Show g ∈ Cper(Rd).
2. Show g(x) = f(x) for m – a.e. x in [−π, π]d. Hint: Show g̃(k) = f̃(k) and

apply Exercise 18.14.
3. Conclude that f ∈ L1([−π, π]d) ∩ L∞([−π, π]d) and in particular f ∈
Lp([−π, π]d) for all p ∈ [1,∞].

Notation 18.39 Given a multi-index α ∈ Zd+, let |α| = α1 + · · ·+ αd,

xα :=

d∏
j=1

x
αj
j , and ∂αx =

(
∂

∂x

)α
:=

d∏
j=1

(
∂

∂xj

)αj
.

Further for k ∈ N0, let f ∈ Ckper(Rd) iff f ∈ Ck(Rd)∩Cper
(
Rd
)
, ∂αx f (x) exists

and is continuous for |α| ≤ k.

Exercise 18.18 (Smoothness implies decay). Suppose m ∈ N0, α is a
multi-index such that |α| ≤ 2m and f ∈ C2m

per(Rd)2.

1. Using integration by parts, show (using Notation 18.39) that

(ik)αf̃(k) = 〈∂αf |ϕk〉 for all k ∈ Zd.

Note: This equality implies∣∣∣f̃(k)
∣∣∣ ≤ 1

kα
‖∂αf‖H ≤

1

kα
‖∂αf‖∞ .

2. Now let ∆f =
∑d
i=1 ∂

2f/∂x2
i , Working as in part 1) show

〈(1−∆)mf |ϕk〉 = (1 + |k|2)mf̃(k). (18.26)

Remark 18.40. Suppose that m is an even integer, α is a multi-index and f ∈
C
m+|α|
per (Rd), then∑

k∈Zd
|kα|

∣∣∣f̃(k)
∣∣∣
2

=

∑
k∈Zd

|〈∂αf |ek〉| (1 + |k|2)m/2(1 + |k|2)−m/2

2

=

∑
k∈Zd

∣∣∣〈(1−∆)m/2∂αf |ek〉
∣∣∣ (1 + |k|2)−m/2

2

≤
∑
k∈Zd

∣∣∣〈(1−∆)m/2∂αf |ek〉
∣∣∣2 · ∑

k∈Zd
(1 + |k|2)−m

= Cm

∥∥∥(1−∆)m/2∂αf
∥∥∥2

H

2 We view Cper(Rd) as a subspace of H = L2
(

[−π, π]d
)

by identifying f ∈ Cper(Rd)
with f |[−π,π]d ∈ H.
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194 18 Hilbert Space Basics

where Cm :=
∑
k∈Zd(1 + |k|2)−m < ∞ iff m > d/2. So the smoother f is the

faster f̃ decays at infinity. The next problem is the converse of this assertion
and hence smoothness of f corresponds to decay of f̃ at infinity and visa-versa.

Exercise 18.19 (A Sobolev Imbedding Theorem). Suppose s ∈ R and{
ck ∈ C : k ∈ Zd

}
are coefficients such that∑

k∈Zd
|ck|2 (1 + |k|2)s <∞.

Show if s > d
2 +m, the function f defined by

f(x) =
∑
k∈Zd

cke
ik·x

is in Cmper(Rd). Hint: Work as in the above remark to show∑
k∈Zd

|ck| |kα| <∞ for all |α| ≤ m.

Exercise 18.20 (Poisson Summation Formula). Let F ∈ L1(Rd),

E :=

x ∈ Rd :
∑
k∈Zd

|F (x+ 2πk)| =∞


and set

F̂ (k) := (2π)
−d/2

∫
Rd
F (x)e−ik·xdx for k ∈ Zd.

Further assume F̂ ∈ `1(Zd). [This can be achieved by assuming F is sufficiently
differentiable with the derivatives being integrable like in Exercise 18.18.]

1. Show m(E) = 0 and E + 2πk = E for all k ∈ Zd. Hint: Compute∫
[−π,π]d

∑
k∈Zd |F (x+ 2πk)| dx.

2. Let

f(x) :=

{∑
k∈Zd F (x+ 2πk) for x /∈ E

0 if x ∈ E.

Show f ∈ L1([−π, π]d) and f̃(k) = (2π)
−d/2

F̂ (k).
3. Using item 2) and the assumptions on F, show

f(x) =
∑
k∈Zd

f̃(k)eik·x =
∑
k∈Zd

(2π)
−d/2

F̂ (k)eik·x for m – a.e. x,

i.e.

∑
k∈Zd

F (x+ 2πk) = (2π)
−d/2 ∑

k∈Zd
F̂ (k)eik·x for m – a.e. x (18.27)

and form this conclude that f ∈ L1([−π, π]d) ∩ L∞([−π, π]d).
Hint: see the hint for item 2. of Exercise 18.17.

4. Suppose we now assume that F ∈ C(Rd) and F satisfies |F (x)| ≤ C(1 +
|x|)−s for some s > d and C < ∞. Under these added assumptions on F,
show Eq. (18.27) holds for all x ∈ Rd and in particular∑

k∈Zd
F (2πk) = (2π)

−d/2 ∑
k∈Zd

F̂ (k).

For notational simplicity, in the remaining problems we will assume that
d = 1.

Exercise 18.21 (Heat Equation 1.). Let (t, x) ∈ [0,∞) × R → u(t, x) be a
continuous function such that u(t, ·) ∈ Cper(R) for all t ≥ 0, u̇ := ut, ux, and
uxx exists and are continuous when t > 0. Further assume that u satisfies the
heat equation u̇ = 1

2uxx. Let ũ(t, k) := 〈u(t, ·)|ϕk〉 for k ∈ Z. Show for t > 0

and k ∈ Z that ũ(t, k) is differentiable in t and d
dt ũ(t, k) = −k2ũ(t, k)/2. Use

this result to show
u(t, x) =

∑
k∈Z

e−
t
2k

2

f̃(k)eikx (18.28)

where f(x) := u(0, x) and as above

f̃(k) = 〈f |ϕk〉 =

∫ π

−π
f(y)e−ikydy =

1

2π

∫ π

−π
f(y)e−ikydm (y) .

Notice from Eq. (18.28) that (t, x)→ u(t, x) is C∞ for t > 0.

Exercise 18.22 (Heat Equation 2.). Let qt(x) := 1
2π

∑
k∈Z e

− t2k
2

eikx. Show
that Eq. (18.28) may be rewritten as

u(t, x) =

∫ π

−π
qt(x− y)f(y)dy

and
qt(x) =

∑
k∈Z

pt(x+ k2π)

where pt(x) := 1√
2πt

e−
1
2tx

2

. Also show u(t, x) may be written as

u(t, x) = pt ∗ f(x) :=

∫
Rd
pt(x− y)f(y)dy.
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Hint: To show qt(x) =
∑
k∈Z pt(x+ k2π), use the Poisson summation formula

(Exercise 18.20) and the Gaussian integration identity,

p̂t(ω) =
1√
2π

∫
R
pt(x)eiωxdx =

1√
2π
e−

t
2ω

2

. (18.29)

Equation (18.29) will be discussed in Example 43.4 below.

Exercise 18.23 (Wave Equation). Let u ∈ C2(R×R) be such that u(t, ·) ∈
Cper(R) for all t ∈ R. Further assume that u solves the wave equation, utt = uxx.
Let f(x) := u(0, x) and g(x) = u̇(0, x). Show ũ(t, k) := 〈u(t, ·), ϕk〉 for k ∈ Z
is twice continuously differentiable in t and d2

dt2 ũ(t, k) = −k2ũ(t, k). Use this
result to show

u(t, x) =
∑
k∈Z

(
f̃(k) cos(kt) + g̃(k)

sin kt

k

)
eikx (18.30)

with the sum converging absolutely. Also show that u(t, x) may be written as

u(t, x) =
1

2
[f(x+ t) + f(x− t)] +

1

2

∫ t

−t
g(x+ τ)dτ. (18.31)

Hint: To show Eq. (18.30) implies (18.31) use

cos kt =
eikt + e−ikt

2
,

sin kt =
eikt − e−ikt

2i
, and

eik(x+t) − eik(x−t)

ik
=

∫ t

−t
eik(x+τ)dτ.

18.4 Exercises

Exercise 18.24 (The Mean Ergodic Theorem). Let U : H → H be a
unitary operator on a Hilbert space H, M = Nul(U−I), P = PM be orthogonal

projection onto M, and Sn = 1
n

∑n−1
k=0 U

k. Show Sn → PM strongly by which
we mean limn→∞ Snx = PMx for all x ∈ H. [See Exercise 18.27 for some explicit
examples of U and the resulting PM .]

Hints: 1. Show H is the orthogonal direct sum of M and Ran(U − I) by
first showing Nul(U∗− I) = Nul(U − I) and then using Lemma 18.19. 2. Verify
the result for x ∈ Nul(U − I) and x ∈ Ran(U − I). 3. Use a limiting argument
to verify the result for x ∈ Ran(U − I).

Exercise 18.25 (A “Martingale” Convergence Theorem). Suppose that
{Mn}∞n=1 is an increasing sequence of closed subspaces of a Hilbert space, H,
Pn := PMn , and {xn}∞n=1 is a sequence of elements from H such that xn =
Pnxn+1 for all n ∈ N. Show;

1. Pmxn = xm for all 1 ≤ m ≤ n <∞,
2. (xn − xm) ⊥Mm for all n ≥ m,
3. ‖xn‖ is increasing as n increases,
4. if supn ‖xn‖ = limn→∞ ‖xn‖ < ∞, then x := limn→∞ xn exists in M and

that xn = Pnx for all n ∈ N. (Hint: show {xn}∞n=1 is a Cauchy sequence.)

Remark 18.41. Let H = `2 := L2 (N, counting measure),

Mn = {(a (1) , . . . , a (n) , 0, 0, . . . ) : a (i) ∈ C for 1 ≤ i ≤ n} ,

and xn (i) = 1i≤n, then xm = Pmxn for all n ≥ m while ‖xn‖2 = n ↑ ∞ as
n→∞. Thus, we can not drop the assumption that supn ‖xn‖ <∞ in Exercise
18.25.

Remark 18.42. See Definition 36.19 and the exercises in Section 23.4 for more
on the notion of weak and strong convergence. See section ?? for more Hilbert
space problems involving weak and strong convergence.

Exercise 18.26. Let f ∈ L1 ((−π, π]) which we extend to a 2π – periodic
function on R and continue to denote by f. If there exists q ∈ N such that

f
(
x+ 2π

q

)
= f (x) for m – a.e. x, then f̃ (k) = 0 unless q divides k.

Exercise 18.27. In this problem we assume the notation from subsection 18.3
with d = 1. For simplicity of notation we identify L2 ((−π, π], dθ) with 2π –
periodic functions on R via,

L2 ((−π, π], dθ) 3 f ←→
∑
n∈Z

f (x+ n2π) 1(−π,π] (x+ n2π) ∈ L2
per (R) .

Given α ∈ R let (Uαf) (θ) = f (θ + α2π) wherein we have used the above
identification. If α /∈ Q show

Mα = Nul (Uα − I) = C · 1.

If α ∈ Q write α = p
q where gcd (q, p) = 1, i.e. p and q are relatively prime.

In this case show Mα = Nul (Uα − I) consists of those f ∈ L2
per (R) such that

f
(
x+ 2π

q

)
= f (x) for m – a.e. x. [Consequently, combining this exercise with

Exercise 18.24 shows,

1

n

n−1∑
k=0

Ukα
s→ PM

where Mα depends on α as described above.]
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196 18 Hilbert Space Basics

18.5 Supplement 1: Converse of the Parallelogram Law

Proposition 18.43 (Parallelogram Law Converse). If (X, ‖·‖) is a normed
space such that Eq. (18.4) holds for all x, y ∈ X, then there exists a unique inner
product on 〈·|·〉 such that ‖x‖ :=

√
〈x|x〉 for all x ∈ X. In this case we say that

‖·‖ is a Hilbertian norm.

Proof. If ‖·‖ is going to come from an inner product 〈·|·〉, it follows from
Eq. (18.1) that

2Re〈x|y〉 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2

and
−2Re〈x|y〉 = ‖x− y‖2 − ‖x‖2 − ‖y‖2.

Subtracting these two equations gives the “polarization identity,”

4Re〈x|y〉 = ‖x+ y‖2 − ‖x− y‖2.

Replacing y by iy in this equation then implies that

4Im〈x|y〉 = ‖x+ iy‖2 − ‖x− iy‖2

from which we find

〈x|y〉 =
1

4

∑
ε∈G

ε‖x+ εy‖2 (18.32)

where G = {±1,±i} – a cyclic subgroup of S1 ⊂ C. Hence, if 〈·|·〉 is going to
exist we must define it by Eq. (18.32) and the uniqueness has been proved.

For existence, define 〈x|y〉 by Eq. (18.32) in which case,

〈x|x〉 =
1

4

∑
ε∈G

ε‖x+ εx‖2 =
1

4

[
‖2x‖2 + i‖x+ ix‖2 − i‖x− ix‖2

]
= ‖x‖2 +

i

4

∣∣1 + i|2
∣∣ ‖x‖2 − i

4

∣∣1− i|2∣∣ ‖x‖2 = ‖x‖2 .

So to finish the proof, it only remains to show that 〈x|y〉 defined by Eq. (18.32)
is an inner product.

Since

4〈y|x〉 =
∑
ε∈G

ε‖y + εx‖2 =
∑
ε∈G

ε‖ε (y + εx) ‖2

=
∑
ε∈G

ε‖εy + ε2x‖2

= ‖y + x‖2 − ‖ − y + x‖2 + i‖iy − x‖2 − i‖ − iy − x‖2

= ‖x+ y‖2 − ‖x− y‖2 + i‖x− iy‖2 − i‖x+ iy‖2

= 4〈x|y〉

it suffices to show x→ 〈x|y〉 is linear for all y ∈ H. (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity
from Eq. (18.4). To do this we make use of Eq. (18.4) three times to find

‖x+ y + z‖2 = −‖x+ y − z‖2 + 2‖x+ y‖2 + 2‖z‖2

= ‖x− y − z‖2 − 2‖x− z‖2 − 2‖y‖2 + 2‖x+ y‖2 + 2‖z‖2

= ‖y + z − x‖2 − 2‖x− z‖2 − 2‖y‖2 + 2‖x+ y‖2 + 2‖z‖2

= −‖y + z + x‖2 + 2‖y + z‖2 + 2‖x‖2

− 2‖x− z‖2 − 2‖y‖2 + 2‖x+ y‖2 + 2‖z‖2.

Solving this equation for ‖x+ y + z‖2 gives

‖x+ y + z‖2 = ‖y + z‖2 + ‖x+ y‖2 − ‖x− z‖2 + ‖x‖2 + ‖z‖2 − ‖y‖2. (18.33)

Using Eq. (18.33), for x, y, z ∈ H,

4 Re〈x+ z|y〉 = ‖x+ z + y‖2 − ‖x+ z − y‖2

= ‖y + z‖2 + ‖x+ y‖2 − ‖x− z‖2 + ‖x‖2 + ‖z‖2 − ‖y‖2

−
(
‖z − y‖2 + ‖x− y‖2 − ‖x− z‖2 + ‖x‖2 + ‖z‖2 − ‖y‖2

)
= ‖z + y‖2 − ‖z − y‖2 + ‖x+ y‖2 − ‖x− y‖2

= 4 Re〈x|y〉+ 4 Re〈z|y〉. (18.34)

Now suppose that δ ∈ G, then since |δ| = 1,

4〈δx|y〉 =
1

4

∑
ε∈G

ε‖δx+ εy‖2 =
1

4

∑
ε∈G

ε‖x+ δ−1εy‖2

=
1

4

∑
ε∈G

εδ‖x+ δεy‖2 = 4δ〈x|y〉 (18.35)

where in the third inequality, the substitution ε→ εδ was made in the sum. So
Eq. (18.35) says 〈±ix|y〉 = ±i〈x|y〉 and 〈−x|y〉 = −〈x|y〉. Therefore

Im〈x|y〉 = Re (−i〈x|y〉) = Re〈−ix|y〉

which combined with Eq. (18.34) shows

Im〈x+ z|y〉 = Re〈−ix− iz|y〉 = Re〈−ix|y〉+ Re〈−iz|y〉
= Im〈x|y〉+ Im〈z|y〉

and therefore (again in combination with Eq. (18.34)),

〈x+ z|y〉 = 〈x|y〉+ 〈z|y〉 for all x, y ∈ H.
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Because of this equation and Eq. (18.35) to finish the proof that x → 〈x|y〉 is
linear, it suffices to show 〈λx|y〉 = λ〈x|y〉 for all λ > 0. Now if λ = m ∈ N, then

〈mx|y〉 = 〈x+ (m− 1)x|y〉 = 〈x|y〉+ 〈(m− 1)x|y〉

so that by induction 〈mx|y〉 = m〈x|y〉. Replacing x by x/m then shows that
〈x|y〉 = m〈m−1x|y〉 so that 〈m−1x|y〉 = m−1〈x|y〉 and so if m,n ∈ N, we find

〈 n
m
x|y〉 = n〈 1

m
x|y〉 =

n

m
〈x|y〉

so that 〈λx|y〉 = λ〈x|y〉 for all λ > 0 and λ ∈ Q. By continuity, it now follows
that 〈λx|y〉 = λ〈x|y〉 for all λ > 0.

18.6 Supplement 2. Non-complete inner product spaces

Part of Theorem 18.27 goes through when H is a not necessarily complete inner
product space. We have the following proposition.

Proposition 18.44. Let (H, 〈·|·〉) be a not necessarily complete inner product
space and β ⊂ H be an orthonormal set. Then the following two conditions are
equivalent:

1. x =
∑
u∈β
〈x|u〉u for all x ∈ H.

2. ‖x‖2 =
∑
u∈β
|〈x|u〉|2 for all x ∈ H.

Moreover, either of these two conditions implies that β ⊂ H is a maxi-
mal orthonormal set. However β ⊂ H being a maximal orthonormal set is not
sufficient (without completeness of H) to show that items 1. and 2. hold!

Proof. As in the proof of Theorem 18.27, 1) implies 2). For 2) implies 1)
let Λ ⊂⊂ β and consider∥∥∥∥∥x−∑

u∈Λ
〈x|u〉u

∥∥∥∥∥
2

= ‖x‖2 − 2
∑
u∈Λ
|〈x|u〉|2 +

∑
u∈Λ
|〈x|u〉|2

= ‖x‖2 −
∑
u∈Λ
|〈x|u〉|2 .

Since ‖x‖2 =
∑
u∈β
|〈x|u〉|2, it follows that for every ε > 0 there exists Λε ⊂⊂ β

such that for all Λ ⊂⊂ β such that Λε ⊂ Λ,

∥∥∥∥∥x−∑
u∈Λ
〈x|u〉u

∥∥∥∥∥
2

= ‖x‖2 −
∑
u∈Λ
|〈x|u〉|2 < ε

showing that x =
∑
u∈β
〈x|u〉u. Suppose x = (x1, x2, . . . , xn, . . . ) ∈ β⊥. If 2) is

valid then ‖x‖2 = 0, i.e. x = 0. So β is maximal. Let us now construct a
counterexample to prove the last assertion. Take H = Span{ei}∞i=1 ⊂ `2 and
let ũn = e1 − (n+ 1)en+1 for n = 1, 2 . . . . Applying Gram-Schmidt to {ũn}∞n=1

we construct an orthonormal set β = {un}∞n=1 ⊂ H. I now claim that β ⊂ H is
maximal. Indeed if x = (x1, x2, . . . , xn, . . . ) ∈ β⊥ then x ⊥ un for all n, i.e.

0 = 〈x|ũn〉 = x1 − (n+ 1)xn+1.

Therefore xn+1 = (n+ 1)
−1
x1 for all n. Since x ∈ Span{ei}∞i=1, xN = 0 for

some N sufficiently large and therefore x1 = 0 which in turn implies that xn = 0
for all n. So x = 0 and hence β is maximal in H. On the other hand, β is not
maximal in `2. In fact the above argument shows that β⊥ in `2 is given by the
span of v = (1, 1

2 ,
1
3 ,

1
4 ,

1
5 , . . . ). Let P be the orthogonal projection of `2 onto

the Span(β) = v⊥. Then

∞∑
n=1

〈x|un〉un = Px = x− 〈x|v〉
‖v‖2

v,

so that
∞∑
n=1
〈x|un〉un = x iff x ∈ Span(β) = v⊥ ⊂ `2. For example if x =

(1, 0, 0, . . . ) ∈ H (or more generally for x = ei for any i), x /∈ v⊥ and hence
∞∑
i=1

〈x|un〉un 6= x.
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Compactness in Metric Space

Let (X, d) be a metric space and let τ = τd denote the collection of open
subsets of X. (Recall V ⊂ X is open iff V c is closed iff for all x ∈ V there
exists an ε = εx > 0 such that B (x, εx) ⊂ V iff V can be written as a (possibly
uncountable) union of open balls – see Section 13.1.) Although we will stick
with metric spaces in this chapter, it will be useful to introduce the definitions
needed here in the more general context of a general “topological space,” i.e. a
space equipped with a collection of “open sets.”

19.1 General Topological Notions

Definition 19.1. Let (X, τ) be a topological space and A ⊂ X. A collection of
subsets U ⊂ τ is an open cover of A if A ⊂

⋃
U :=

⋃
U∈U U.

Definition 19.2. The subset A of a topological space, (X, τ) , is said to be com-
pact if every open cover (Definition 19.1) of A has finite a sub-cover, i.e. if U
is an open cover of A there exists U0 ⊂⊂ U such that U0 is a cover of A. (We
will write A @@ X to denote that A ⊂ X and A is compact.) A subset A ⊂ X
is precompact if Ā is compact.

Exercise 19.1. Suppose f : X → Y is continuous and K ⊂ X is compact, then
f(K) is a compact subset of Y. Give an example of continuous map, f : X → Y,
and a compact subset K of Y such that f−1(K) is not compact.

Definition 19.3. Let (X, d) be a metric space. We say a subset A ⊂ X is
bounded iff for all (any) o ∈ X, supa∈A d (o, a) < ∞. In other words A should
be contained in a finite radius ball in X.

Exercise 19.2 (Dini’s Theorem). Let (X, τ) be a compact topological space
and fn : X → [0,∞) be a sequence of continuous functions such that fn(x) ↓ 0
as n → ∞ for each x ∈ X. Show that in fact fn ↓ 0 uniformly in x, i.e.
supx∈X fn(x) ↓ 0 as n → ∞. Hint: Given ε > 0, consider the open sets Vn :=
{x ∈ X : fn(x) < ε}.

Proposition 19.4. Suppose that K ⊂ X is a compact set and F ⊂ K is a
closed subset. Then F is compact. If {Ki}ni=1 is a finite collections of compact
subsets of X then K = ∪ni=1Ki is also a compact subset of X.

Proof. Let U ⊂ τ be an open cover of F, then U∪{F c} is an open cover of
K. The cover U∪{F c} of K has a finite subcover which we denote by U0∪{F c}
where U0 ⊂⊂ U . Since F ∩ F c = ∅, it follows that U0 is the desired subcover
of F. For the second assertion suppose U ⊂ τ is an open cover of K. Then U
covers each compact set Ki and therefore there exists a finite subset Ui ⊂⊂ U
for each i such that Ki ⊂ ∪Ui. Then U0 := ∪ni=1Ui is a finite cover of K.

Definition 19.5. A collection F of closed subsets of (X, τ) has the finite in-
tersection property if ∩F0 6= ∅ for all F0 ⊂⊂ F .

The notion of compactness may be expressed in terms of closed sets as
follows.

Proposition 19.6. A topological space (X, τ) is compact iff every family of
closed sets F ⊂ 2X having the finite intersection property satisfies

⋂
F 6= ∅.

Proof. (⇒) Suppose that X is compact and F ⊂ 2X is a collection of closed
sets such that

⋂
F = ∅. Let

U = Fc := {Cc : C ∈ F} ⊂ τ,

then U is a cover of X and hence has a finite subcover, U0. Let F0 = Uc0 ⊂⊂ F ,
then ∩F0 = ∅ so that F does not have the finite intersection property.

(⇐) If X is not compact, there exists an open cover U of X with no finite
subcover. Let

F = Uc := {U c : U ∈ U} ,
then F is a collection of closed sets with the finite intersection property while⋂
F = ∅.

Exercise 19.3 (BC (X) is closed). Let (X, τ) be a topological space and
`∞ (X) denote the Banach space of bounded complex functions on X equipped
with the norm,

‖f‖∞ = sup
x∈X
|f (x)| .

Suppose that f ∈ `∞ (X) and {fn} ⊂ `∞ (X) with limn→∞ ‖f − fn‖∞ = 0. If
each fn is continuous at some point x ∈ X, then f is continuous at x ∈ X. In
particular, this shows that BC (X) – bounded continuous functions on X is a
closed subspace of `∞ (X) .
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19.2 Compactness in Metric Spaces

For the rest of this chapter we will assume that (X, d) is a fixed metric space
and τ = τd. For x ∈ X and ε > 0 let

B′x(ε) := Bx(ε) \ {x}

be the ball centered at x of radius ε > 0 with x deleted. Recall from Definition ??
that a point x ∈ X is an accumulation point of a subset E ⊂ X if ∅ 6= E∩V \{x}
for all open neighborhoods, V, of x. The proof of the following elementary lemma
is left to the reader.

Lemma 19.7. Let E ⊂ X be a subset of a metric space (X, d) . Then the fol-
lowing are equivalent:

1. x ∈ X is an accumulation point of E.
2. B′x(ε) ∩ E 6= ∅ for all ε > 0.
3. Bx(ε) ∩ E is an infinite set for all ε > 0.
4. There exists {xn}∞n=1 ⊂ E \ {x} with limn→∞ xn = x.

Definition 19.8. A subset A of a metric space (X, d) is ε – bounded (ε > 0)
if there exists a finite cover of A by balls of radius ε and it is totally bounded
if it is ε – bounded for all ε > 0.

Exercise 19.4. Given n ∈ N let Rn be equipped with the usual Euclidean
distance. Show that every bounded subset of Rn is totally bounded where A ⊂
Rn is bounded iff A ⊂ B0 (R) for some R <∞.

Exercise 19.5. Let X = `2 with d (x, y) := ‖y − x‖`2 where

‖x‖2`2 =

∞∑
i=1

|xi|2 .

Further let en := (0, . . . , 0, 1, 0, 0, . . . ) where the 1 appears in the nth – slot be
the standard basis for `2. Show that A := {en}∞n=1 is not totally bounded.

Theorem 19.9. Let (X, d) be a metric space. The following are equivalent.

(a)X is compact.
(b) Every infinite subset of X has an accumulation point.
(c) Every sequence {xn}∞n=1 ⊂ X has a convergent subsequence.
(d)X is totally bounded and complete.

Proof. The proof will consist of showing that a⇒ b⇒ c⇒ d⇒ a.
(a⇒ b) We will show that not b⇒ not a. Suppose there exists an infinite

subset E ⊂ X which has no accumulation points. Then for all x ∈ X there
exists δx > 0 such that Vx := Bx(δx) satisfies (Vx \ {x}) ∩ E = ∅. Clearly
V = {Vx}x∈X is a cover of X, yet V has no finite sub cover. Indeed, for each
x ∈ X, Vx ∩ E ⊂ {x} and hence if Λ ⊂⊂ X, ∪x∈ΛVx can only contain a finite
number of points from E (namely Λ ∩E). Thus for any Λ ⊂⊂ X, E " ∪x∈ΛVx
and in particular X 6= ∪x∈ΛVx. (See Figure 19.1.)

e
δe

x
δx

Fig. 19.1. The black dots represents an infinite set, E, with no accumulation points.
For each x ∈ X \ E we choose δx > 0 so that Bx (δx) ∩ E = ∅ and for x ∈ E so that
Bx (δx) ∩ E = {x} .

(b ⇒ c) Let {xn}∞n=1 ⊂ X be a sequence and E := {xn : n ∈ N} . If
#(E) < ∞, then {xn}∞n=1 has a subsequence {xnk}

∞
k=1 which is constant and

hence convergent. On the other hand if #(E) = ∞ then by assumption E has
an accumulation point and hence by Lemma 19.7, {xn}∞n=1 has a convergent
subsequence.

(c⇒ d) Suppose {xn}∞n=1 ⊂ X is a Cauchy sequence. By assumption there
exists a subsequence {xnk}

∞
k=1 which is convergent to some point x ∈ X. Since

{xn}∞n=1 is Cauchy it follows that xn → x as n→∞ showing X is complete. We
now show that X is totally bounded. Let ε > 0 be given and choose an arbitrary
point x1 ∈ X. If possible choose x2 ∈ X such that d(x2, x1) ≥ ε, then if possible
choose x3 ∈ X such that d{x1,x2}(x3) ≥ ε and continue inductively choosing
points {xj}nj=1 ⊂ X such that d{x1,...,xn−1}(xn) ≥ ε. (See Figure 19.2.) This

process must terminate, for otherwise we would produce a sequence {xn}∞n=1 ⊂
X which can have no convergent subsequences. Indeed, the xn have been chosen
so that d (xn, xm) ≥ ε > 0 for every m 6= n and hence no subsequence of
{xn}∞n=1 can be Cauchy.

(d ⇒ a) For sake of contradiction, assume there exists an open cover V =
{Vα}α∈A of X with no finite subcover. Since X is totally bounded for each
n ∈ N there exists Λn ⊂⊂ X such that

X =
⋃
x∈Λn

Bx(1/n) ⊂
⋃
x∈Λn

Cx(1/n).
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x2

x1 x3

x4

x5 x6

x7

x8

Fig. 19.2. Constructing a set with out an accumulation point.

Choose x1 ∈ Λ1 such that no finite subset of V covers K1 := Cx1
(1). Since

K1 = ∪x∈Λ2
K1 ∩Cx(1/2), there exists x2 ∈ Λ2 such that K2 := K1 ∩Cx2

(1/2)
can not be covered by a finite subset of V, see Figure 19.3. Continuing this way
inductively, we construct sets Kn = Kn−1∩Cxn(1/n) with xn ∈ Λn such that no
Kn can be covered by a finite subset of V. Now choose yn ∈ Kn for each n. Since
{Kn}∞n=1 is a decreasing sequence of closed sets such that diam(Kn) ≤ 2/n, it
follows that {yn} is a Cauchy and hence convergent with

y = lim
n→∞

yn ∈ ∩∞m=1Km.

Since V is a cover of X, there exists V ∈ V such that y ∈ V. Since Kn ↓ {y}
and diam(Kn) → 0, it now follows that Kn ⊂ V for some n large. But this
violates the assertion that Kn can not be covered by a finite subset of V.

Fig. 19.3. Nested Sequence of cubes.

Proposition 19.10. Suppose (X, d) is a metric space and K ⊂ X is a compact
subset. Then K is both closed and bounded.

Proof. Let o ∈ X and f (x) := d (o, x) . Then f : X → R is a continu-
ous function and therefore f (K) is compact in R. As the compact subsets of
R are closed and bounded it follows that K is bounded as supk∈K d (o, k) =
supk∈K f (k) <∞. If K were not closed, we could find {xn}∞n=1 ⊂ K for which
x := limn→∞ xn /∈ K. This sequence has no convergent subsequence to a point
in K showing K is not compact.

Definition 19.11. A topological space, (X, τ), is second countable if there
exists a countable base V for τ, i.e. V ⊂ τ is a countable set such that for every
W ∈ τ,

W = ∪{V : V ∈ V such that V ⊂W}.

Corollary 19.12. Any compact metric space (X, d) is second countable and
hence also separable by Exercise 35.12. (See Example 37.25 below for an example
of a compact topological space which is not separable.)

Proof. To each integer n, there exists Λn ⊂⊂ X such that X =
∪x∈ΛnB(x, 1/n). The collection of open balls,

V := ∪n∈N ∪x∈Λn {B(x, 1/n)}

forms a countable basis for the metric topology on X. To check this, suppose
that x0 ∈ X and ε > 0 are given and choose n ∈ N such that 1/n < ε/2
and x ∈ Λn such that d (x0, x) < 1/n. Then B(x, 1/n) ⊂ B (x0, ε) because for
y ∈ B(x, 1/n),

d (y, x0) ≤ d (y, x) + d (x, x0) < 2/n < ε.

Corollary 19.13. The compact subsets of Rn are the closed and bounded sets.

Proof. This is a consequence of Theorem 32.2 and Theorem 19.9. Here is
another proof. If K is closed and bounded then K is complete (being the closed
subset of a complete space) and K is contained in [−M,M ]n for some positive
integer M. For δ > 0, let

Λδ = δZn ∩ [−M,M ]n := {δx : x ∈ Zn and δ|xi| ≤M for i = 1, 2, . . . , n}.

We will show, by choosing δ > 0 sufficiently small, that

K ⊂ [−M,M ]n ⊂ ∪x∈ΛδB(x, ε) (19.1)

which shows that K is totally bounded. Hence by Theorem 19.9, K is compact.
Suppose that y ∈ [−M,M ]n, then there exists x ∈ Λδ such that |yi − xi| ≤ δ
for i = 1, 2, . . . , n. Hence
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d2(x, y) =

n∑
i=1

(yi − xi)2 ≤ nδ2

which shows that d(x, y) ≤
√
nδ. Hence if choose δ < ε/

√
n we have shows that

d(x, y) < ε, i.e. Eq. (19.1) holds.

Example 19.14. Let X = `p(N) with p ∈ [1,∞) and µ ∈ `p(N) such that µ(k) ≥
0 for all k ∈ N. The set

K := {x ∈ X : |x(k)| ≤ µ(k) for all k ∈ N}

is compact. To prove this, let {xn}∞n=1 ⊂ K be a sequence. By compactness of
closed bounded sets in C, for each k ∈ N there is a subsequence of {xn(k)}∞n=1 ⊂
C which is convergent. By Cantor’s diagonalization trick, we may choose a
subsequence {yn}∞n=1 of {xn}∞n=1 such that y(k) := limn→∞ yn(k) exists for all
k ∈ N.1 Since |yn(k)| ≤ µ(k) for all n it follows that |y(k)| ≤ µ(k), i.e. y ∈ K.
Finally

lim
n→∞

‖y − yn‖pp = lim
n→∞

∞∑
k=1

|y(k)− yn(k)|p =

∞∑
k=1

lim
n→∞

|y(k)− yn(k)|p = 0

wherein we have used the Dominated convergence theorem. (Note

|y(k)− yn(k)|p ≤ 2pµp(k)

and µp is summable.) Therefore yn → y and we are done.
Alternatively, we can prove K is compact by showing that K is closed and

totally bounded. It is simple to show K is closed, for if {xn}∞n=1 ⊂ K is a
convergent sequence in X, x := limn→∞ xn, then

|x(k)| ≤ lim
n→∞

|xn(k)| ≤ µ(k) ∀ k ∈ N.

This shows that x ∈ K and hence K is closed. To see that K is totally

bounded, let ε > 0 and choose N such that
(∑∞

k=N+1 |µ(k)|p
)1/p

< ε. Since

1 The argument is as follows. Let {n1
j}∞j=1 be a subsequence of N = {n}∞n=1 such that

limj→∞ xn1
j
(1) exists. Now choose a subsequence {n2

j}∞j=1 of {n1
j}∞j=1 such that

limj→∞ xn2
j
(2) exists and similarly {n3

j}∞j=1 of {n2
j}∞j=1 such that limj→∞ xn3

j
(3)

exists. Continue on this way inductively to get

{n}∞n=1 ⊃ {n
1
j}∞j=1 ⊃ {n2

j}∞j=1 ⊃ {n3
j}∞j=1 ⊃ . . .

such that limj→∞ xnkj
(k) exists for all k ∈ N. Let mj := njj so that eventually

{mj}∞j=1 is a subsequence of {nkj }∞j=1 for all k. Therefore, we may take yj := xmj .

∏N
k=1 Cµ(k)(0) ⊂ CN is closed and bounded, it is compact. Therefore there

exists a finite subset Λ ⊂
∏N
k=1 Cµ(k)(0) such that

N∏
k=1

Cµ(k)(0) ⊂ ∪z∈ΛBNz (ε)

where BNz (ε) is the open ball centered at z ∈ CN relative to the
`p({1, 2, 3, . . . , N}) – norm. For each z ∈ Λ, let z̃ ∈ X be defined by
z̃(k) = z(k) if k ≤ N and z̃(k) = 0 for k ≥ N + 1. I now claim that

K ⊂ ∪z∈ΛBz̃(2ε) (19.2)

which, when verified, shows K is totally bounded. To verify Eq. (19.2), let
x ∈ K and write x = u + v where u(k) = x(k) for k ≤ N and u(k) = 0 for
k < N. Then by construction u ∈ Bz̃(ε) for some z̃ ∈ Λ and

‖v‖p ≤

( ∞∑
k=N+1

|µ(k)|p
)1/p

< ε.

So we have

‖x− z̃‖p = ‖u+ v − z̃‖p ≤ ‖u− z̃‖p + ‖v‖p < 2ε.

Exercise 19.6 (Extreme value theorem). Let (X, d) be a compact metric
space and f : X → R be a continuous function. Show −∞ < inf f ≤ sup f <∞
and there exists a, b ∈ X such that f(a) = inf f and f(b) = sup f.

Exercise 19.7 (Uniform Continuity). Let (X, d) be a compact metric space,
(Y, ρ) be a metric space and f : X → Y be a continuous function. Show that f is
uniformly continuous, i.e. if ε > 0 there exists δ > 0 such that ρ(f(y), f(x)) < ε
if x, y ∈ X with d(x, y) < δ.

19.3 Locally Compact Banach Spaces

Definition 19.15. Let Y be a vector space. We say that two norms, |·| and ‖·‖ ,
on Y are equivalent if there exists constants α, β ∈ (0,∞) such that

‖f‖ ≤ α |f | and |f | ≤ β ‖f‖ for all f ∈ Y.

Theorem 19.16. Let (Y, ‖·‖) be a finite dimensional normed vector space.
Then;
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19.3 Locally Compact Banach Spaces 203

1. any other norm |·| on Y is equivalent to ‖·‖ , i.e. all norms on Y are equiv-
alent. (This is typically not true for norms on infinite dimensional spaces,
see for example Exercise 14.8.)

2. (Y, ‖·‖) is complete.
3. A subset B ⊂ Y is compact iff B is closed and bounded relative to the given

norm, ‖·‖ .

Proof. 1. Let {fi}ni=1 be a real basis for Y and let T : Rn → Y be the linear
isomorphism of vector spaces defined by

Tz =

n∑
i=1

zifi for all z = (z1, . . . , zn) ∈ Rn.

Since,

‖Tz‖ =

∥∥∥∥∥
n∑
i=1

zifi

∥∥∥∥∥ ≤
n∑
i=1

‖zifi‖ ≤
n∑
i=1

|zi| ‖fi‖ ≤ C · ‖z‖2 (19.3)

where

C :=

√√√√ n∑
i=1

‖fi‖2 and ‖z‖2 :=

√√√√ n∑
i=1

|zi|2

it follows that T : (Rn, ‖·‖2)→ (Y, ‖·‖) bounded, i.e. continuous. Since the unit
sphere, S ⊂ Rn, is compact the continuous function z → ‖Tz‖ restricted to S
attains a minimum on S, i.e.

min
‖z‖2=1

‖Tz‖ = ‖Tz0‖ = ε > 0.

By homogeneity it now follows that ‖Tz‖ ≥ ε ‖z‖2 for all z ∈ Rn and therefore

ε ‖z‖2 ≤ ‖Tz‖ ≤ C · ‖z‖2 for all z ∈ Rn. (19.4)

Evaluating Eq. (19.4) at z = T−1y implies,∥∥T−1y
∥∥

2
ε ≤ ‖y‖ ≤ C ·

∥∥T−1y
∥∥

2
for all y ∈ Y. (19.5)

Hence we have shown that every norm on Y is equivalent to the norm y →∥∥T−1y
∥∥

2
and hence all norms on Y are equivalent.

2. The reader may now easily check that a sequence {yn}∞n=1 ⊂ Y is conver-

gent (Cauchy) iff
{
T−1yn

}∞
n=1
⊂ Rn is convergent (Cauchy). Thus if {yn}∞n=1

is Cauchy then
{
T−1yn

}∞
n=1
⊂ Rn is Cauchy and hence convergent in Rn as

Rn is complete. Therefore {yn}∞n=1 is convergent in Y.
3. Let B be a ‖·‖ – closed and bounded subset of Y and {yn}∞n=1 ⊂ B.

Then
{
zn := T−1yn

}∞
n=1

is a bounded sequence in Rn by Eq. (19.5). Since

bounded subsets of Rn are pre-compact, we know that {zn}∞n=1 has a convergent
subsequence in Rn and hence {yn}∞n=1 has a convergent subsequence in B. As
B is closed this subsequence is convergent in B showing B is compact.

Conversely, from Proposition 19.10 we know that compact subsets of metric
spaces are always closed and bounded For completeness I will give an argument
here as well. 1) If B is not bounded we could find a sequence {yn}∞n=1 ⊂ B
such that limn→∞ ‖yn‖ = ∞. As {‖yn‖}∞n=1 has no convergent subsequence it
follows that {yn}∞n=1 ⊂ B does not have a convergent subsequence either. 2)
If B is not closed we could find {yn}∞n=1 ⊂ B such that y = limn→∞ yn /∈ B.
Again there can be no convergent subsequence which converges to an element
in B. So in either case B is not compact.

Corollary 19.17. Any finite dimensional subspace, Y, of a normed vector space
(X, ‖·‖) is automatically closed.

Proof. Suppose {yn}∞n=1 ⊂ Y and yn → x ∈ X. Since {yn}∞n=1 is convergent
it is a Cauchy sequence in Y. Since dimY < ∞, we know Y is complete and
therefore limn→∞ yn = y exists in Y. Since limits in a normed space are unique,
it follows that x = y ∈ Y, i.e. Y is a closed subspace of X.

Lemma 19.18. Let (X, ‖·‖) be a Banach space, Y ⊂ X be a proper closed
subspace, and dY (x) := infy∈Y ‖x− y‖ be the distance from x to Y. Then
dY (x) > 0 for all x /∈ Y and

dY (ax+ y) = |a| dY (x) for all a ∈ C, x ∈ X, and y ∈ Y. (19.6)

Proof. Since Y is proper and closed X \ Y is a non-empty open subset
of X. Therefore if x ∈ X, there exists ε > 0 such that Bx (ε) ⊂ X \ Y, i.e.
Bx (ε) ∩ Y = ∅. So for any y ∈ Y we must have ‖x− y‖ ≥ ε and therefore that
dY (x) ≥ ε > 0. To prove Eq. (19.6) we may assume a 6= 0 otherwise both sides
are zero. When a 6= 0 we have

dY (ax+ y) = inf
z∈Y
‖ax+ y − z‖

= |a| inf
z∈Y

∥∥∥∥x− 1

a
(z − y)

∥∥∥∥ = |a| dY (x)

wherein we have used
{

1
a (z − y) : z ∈ Y

}
= Y.

Lemma 19.19. Let X be a normed linear space and Y be a closed proper sub-
space of X. For any α ∈ (0, 1) there exists x ∈ X such that ‖x‖ = 1 and
dist (x, Y ) := d Y (x) ≥ α.
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Proof. Let z ∈ X \ Y and ε := dY (z) > 0 by Lemma 19.18. Choose y ∈ Y
so that ε ≥ α ‖z − y‖ and set x := z−y

‖z−y‖ . Then, again using Lemma 19.18,

dY (x) = dY

(
z − y
‖z − y‖

)
=

1

‖z − y‖
dY (z − y)

=
1

‖z − y‖
dY (z) =

ε

‖z − y‖
≥ α.

Proposition 19.20. If the unit sphere in a Banach space, X, is compact then
dimX < ∞. [This implies again that a locally compact Banach space is finite
dimensional.]

Proof. Suppose that X is an infinite dimensional Banach space. We are
going to construct a sequence x1, x2, . . . , xn, . . . such that ‖xn‖ = 1, ‖xi−xj‖ ≥
1/2, i 6= j. Take x1 to be any unit vector. Suppose vectors x1, . . . , xn are
constructed. Let Xn be the linear span of x1, . . . , xn. By Corollary 19.17, Xn is
closed. By Lemma 19.19, there exists a unit vector xn+1 such that dXn (xn+1) ≥
1
2 and in particular ‖xi − xn+1‖ ≥ 1/2 for 1 ≤ i ≤ n. Now the sequence just
constructed has no Cauchy subsequence. Hence the closed unit sphere is not
compact. As spheres of different positive radii in X are homeomorphicly related
by dilation, they are not compact either. In particular this implies that closed
balls of positive radius are not compact as well.

Theorem 19.21. Suppose that (X, ‖·‖) is a normed vector in which the unit
ball, V := B0 (1) , is precompact. Then dimX <∞.

Proof. First proof. This is a simple consequence of Proposition 19.20.
Second proof. Since V̄ is compact, we may choose Λ ⊂⊂ X such that

V̄ ⊂ ∪x∈Λ
(
x+

1

2
V

)
(19.7)

where, for any δ > 0,

δV := {δx : x ∈ V } = B0 (δ) .

Let Y := span(Λ), then Eq. (19.7) implies,

V ⊂ V̄ ⊂ Y +
1

2
V.

Multiplying this equation by 1
2 then shows

1

2
V ⊂ 1

2
Y +

1

4
V = Y +

1

4
V

and hence

V ⊂ Y +
1

2
V ⊂ Y + Y +

1

4
V = Y +

1

4
V.

Continuing this way inductively then shows that

V ⊂ Y +
1

2n
V for all n ∈ N. (19.8)

Indeed, if Eq. (19.8) holds, then

V ⊂ Y +
1

2
V ⊂ Y +

1

2

(
Y +

1

2n
V

)
= Y +

1

2n+1
V.

Hence if x ∈ V, there exists yn ∈ Y and zn ∈ B0 (2−n) such that yn + zn → x.
Since limn→∞ zn = 0, it follows that x = limn→∞ yn ∈ Ȳ . Since dimY ≤
# (Λ) <∞, Corollary 19.17 implies Y = Ȳ and so we have shown that V ⊂ Y.
Since for any x ∈ X, 1

2‖x‖x ∈ V ⊂ Y, we have x ∈ Y for all x ∈ X, i.e. X = Y.

Exercise 19.8. Suppose (Y, ‖·‖Y ) is a normed space and (X, ‖·‖X) is a finite
dimensional normed space. Show every linear transformation T : X → Y is
necessarily bounded.

19.4 Compact Operators

Definition 19.22 (Compact Operator). Let A : X → Y be a bounded op-
erator between two Banach spaces. Then A is compact if A [BX(0, 1)] is pre-
compact in Y or equivalently for any {xn}∞n=1 ⊂ X such that ‖xn‖ ≤ 1 for all
n the sequence yn := Axn ∈ Y has a convergent subsequence.

Definition 19.23. A bounded operator A : X → Y is said to have finite rank
if Ran(A) ⊂ Y is finite dimensional.

The following result is a simple consequence of Theorem 19.16 and Corollary
19.17.

Corollary 19.24. If A : X → Y is a finite rank operator, then A is compact.
In particular if either dim(X) <∞ or dim(Y ) <∞ then any bounded operator
A : X → Y is finite rank and hence compact.

Theorem 19.25. Let X and Y be Banach spaces and K := K(X,Y ) denote
the compact operators from X to Y. Then K(X,Y ) is a norm-closed subspace
of L(X,Y ). In particular, operator norm limits of finite rank operators are
compact.
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Proof. Using the sequential definition of compactness it is easily seen that
K is a vector subspace of L(X,Y ). To finish the proof, we must show that K ∈
L(X,Y ) is compact if there exists Kn ∈ K(X,Y ) such that limn→∞ ‖Kn −
K‖op = 0.

First Proof. Let U := B0 (1) be the unit ball in X. Given ε > 0, choose
N = N(ε) such that ‖KN −K‖ ≤ ε. Using the fact that KNU is precompact,
choose a finite subset Λ ⊂ U such that KNU ⊂ ∪σ∈ΛBKNσ (ε) . Then given
y = Kx ∈ KU we have KNx ∈ BKNσ (ε) for some σ ∈ Λ and for this σ;

‖y −KNσ‖ = ‖Kx−KNσ‖
≤ ‖Kx−KNx‖+ ‖KNx−KNσ‖ < ε ‖x‖+ ε < 2ε.

This shows KU ⊂ ∪σ∈ΛBKNσ (2ε) and therefore is KU is 2ε – bounded for all
ε > 0, i.e. KU is totally bounded and hence precompact.

Second Proof. Suppose {xn}∞n=1 is a bounded sequence in X. By com-

pactness, there is a subsequence
{
x1
n

}∞
n=1

of {xn}∞n=1 such that
{
K1x

1
n

}∞
n=1

is
convergent in Y. Working inductively, we may construct subsequences

{xn}∞n=1 ⊃
{
x1
n

}∞
n=1
⊃
{
x2
n

}∞
n=1
· · · ⊃ {xmn }

∞
n=1 ⊃ . . .

such that {Kmx
m
n }
∞
n=1 is convergent in Y for each m. By the usual Cantor’s

diagonalization procedure, let σn := xnn, then {σn}∞n=1 is a subsequence of
{xn}∞n=1 such that {Kmσn}∞n=1 is convergent for all m. Since

‖Kσn −Kσl‖ ≤ ‖(K −Km)σn‖+ ‖Km(σn − σl)‖+ ‖(Km −K)σl)‖
≤ 2 ‖K −Km‖+ ‖Km(σn − σl)‖ ,

lim sup
n,l→∞

‖Kσn −Kσl‖ ≤ 2 ‖K −Km‖ → 0 as m→∞,

which shows {Kσn}∞n=1 is Cauchy and hence convergent.

Example 19.26. Let X = `2 = Y and λn ∈ C such that limn→∞ λn = 0, then
A : X → Y defined by (Ax)(n) = λnx(n) is compact. To verify this claim, for
each m ∈ N let (Amx)(n) = λnx(n)1n≤m. In matrix language,

A =


λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
. . .

. . .

 and Am =



λ1 0 · · ·
0 λ2 0 · · ·
...

. . .
. . .

. . .

0 λm 0 · · ·

· · · 0 0
. . .

. . .
. . .


.

Then Am is finite rank and ‖A−Am‖op = maxn>m |λn| → 0 as m → ∞. The
claim now follows from Theorem 19.25.

We will see more examples of compact operators below in Section 19.5 and
Exercise 19.19 below.

Lemma 19.27. If X
A−→ Y

B−→ Z are bounded operators between Banach
spaces such the either A or B is compact then the composition BA : X → Z
is also compact. In particular if dimX = ∞ and A ∈ L (X,Y ) is an invertible
operator such that2 A−1 ∈ L (Y,X) , then A is not compact.

Proof. Let BX(0, 1) be the open unit ball in X. If A is compact and B
is bounded, then BA(BX(0, 1)) ⊂ B(ABX(0, 1)) which is compact since the
image of compact sets under continuous maps are compact. Hence we con-
clude that BA(BX(0, 1)) is compact, being the closed subset of the compact
set B(ABX(0, 1)). If A is continuous and B is compact, then A(BX(0, 1)) is a
bounded set and so by the compactness of B, BA(BX(0, 1)) is a precompact
subset of Z, i.e. BA is compact.

Alternatively: Suppose that {xn}∞n=1 ⊂ X is a bounded sequence. If A is
compact, then yn := Axn has a convergent subsequence, {ynk}

∞
k=1 . Since B is

continuous it follows that znk := Bynk = BAxnk is a convergent subsequence of
{BAxn}∞n=1 . Similarly if A is bounded and B is compact then yn = Axn defines
a bounded sequence inside of Y. By compactness of B, there is a subsequence
{ynk}

∞
k=1 for which {BAxnk = Bynk}

∞
k=1 is convergent in Z.

For the second statement, if A were compact then IX := A−1A would be
compact as well. As IX takes the unit ball to the unit ball, the identity is
compact iff dimX <∞.

Corollary 19.28. Let X be a Banach space and K (X) := K (X,X) . Then
K (X) is a norm-closed ideal of L (X) which contains IX iff dimX <∞.

19.4.1 Compact Operators on a Hilbert Space

Lemma 19.29. Suppose that T, Tn ∈ L (X,Y ) for n ∈ N where X and Y are

normed spaces. If Tn
s→ T, M = supn ‖Tn‖ <∞,3 and xn → x in X as n→∞,

then Tnxn → Tx in Y as n→∞. Moreover if K ⊂ X is a compact set then

lim
n→∞

sup
x∈K
‖Tx− Tnx‖ = 0. (19.9)

Proof. 1. We have,

‖Tx− Tnxn‖ ≤ ‖Tx− Tnx‖+ ‖Tnx− Tnxn‖
≤ ‖Tx− Tnx‖+M ‖x− xn‖ → 0 as n→∞.

2 Later we will see that A being one to one and onto automatically implies that A−1

is bounded by the open mapping Theorem 23.1.
3 If X and Y are Banach spaces, the uniform boundedness principle covered below

will show that Tn
s→ T automatically implies supn ‖Tn‖ <∞.
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2. For sake of contradiction, suppose that

lim sup
n→∞

sup
x∈K
‖Tx− Tnx‖ = ε > 0.

In this case we can find {nk}∞k=1 ⊂ N and xnk ∈ K such that
‖Txnk − Tnkxnk‖ ≥ ε/2. Since K is compact, by passing to a subse-
quence if necessary, we may assume limk→∞ xnk = x exists in K. On the other
hand by part 1. we know that

lim
k→∞

‖Txnk − Tnkxnk‖ =

∥∥∥∥ lim
k→∞

Txnk − lim
k→∞

Tnkxnk

∥∥∥∥ = ‖Tx− Tx‖ = 0.

2 alternate proof. Given ε > 0, there exists {x1, . . . , xN} ⊂ K such that
K ⊂ ∪Nl=1Bxl (ε) . If x ∈ K, choose l such that x ∈ Bxl (ε) in which case,

‖Tx− Tnx‖ ≤ ‖Tx− Txl‖+ ‖Txl − Tnxl‖+ ‖Tnxl − Tnx‖

≤
(
‖T‖op +M

)
ε+ ‖Txl − Tnxl‖

and therefore it follows that

sup
x∈K
‖Tx− Tnx‖ ≤

(
‖T‖op +M

)
ε+ max

1≤l≤N
‖Txl − Tnxl‖

and therefore,

lim sup
n→∞

sup
x∈K
‖Tx− Tnx‖ ≤

(
‖T‖op +M

)
ε.

As ε > 0 was arbitrary we conclude that Eq. (19.9) holds.
For the rest of this section, let H and B be Hilbert spaces and U := {x ∈

H : ‖x‖ < 1} be the open unit ball in H.

Proposition 19.30. A bounded operator K : H → B is compact iff there exists
finite rank operators, Kn : H → B, such that ‖K −Kn‖ → 0 as n→∞.

Proof. Suppose that K : H → B. Since K(U) is compact it contains a
countable dense subset and from this it follows that K (H) is a separable sub-
space of B. Let {ϕ`} be an orthonormal basis for K (H) ⊂ B and

Pny =

n∑
`=1

〈y|ϕ`〉ϕ`

be the orthogonal projection of y onto span{ϕ`}n`=1. Then limn→∞ ‖Pny−y‖ = 0

for all y ∈ K (H). Define Kn := PnK – a finite rank operator on H. It then
follows that

lim sup
n→∞

‖K −Kn‖ = lim sup
n→∞

sup
x∈U
‖Kx−Knx‖

= lim sup
n→∞

sup
x∈U
‖ (I − Pn)Kx‖

≤ lim sup
n→∞

sup
y∈K(U)

‖ (I − Pn) y‖ = 0

by Lemma 19.29 along with the facts that K (U) is compact and Pn
s→ I. The

converse direction follows from Corollary 19.24 and Theorem 19.25.

Corollary 19.31. If K is compact then so is K∗.

Proof. First Proof. Let Kn = PnK be as in the proof of Proposition 19.30,
then K∗n = K∗Pn is still finite rank. Furthermore, using Proposition 18.18,

‖K∗ −K∗n‖ = ‖K −Kn‖ → 0 as n→∞

showing K∗ is a limit of finite rank operators and hence compact.
Second Proof. Let {xn}∞n=1 be a bounded sequence in B, then

‖K∗xn −K∗xm‖2 = 〈xn − xm|KK∗ (xn − xm)〉 ≤ 2C ‖KK∗ (xn − xm)‖
(19.10)

where C is a bound on the norms of the xn. Since {K∗xn}∞n=1 is also a bounded
sequence, by the compactness of K there is a subsequence {x′n} of the {xn} such
that KK∗x′n is convergent and hence by Eq. (19.10), so is the sequence {K∗x′n} .

19.5 Hilbert Schmidt Operators

In this section H and B will be Hilbert spaces.

Proposition 19.32. Let H and B be a separable Hilbert spaces, K : H → B
be a bounded linear operator, {en}∞n=1 and {um}∞m=1 be orthonormal basis for
H and B respectively. Then:

1.
∑∞
n=1 ‖Ken‖

2
=
∑∞
m=1 ‖K∗um‖

2
allowing for the possibility that the sums

are infinite. In particular the Hilbert Schmidt norm of K,

‖K‖2HS :=

∞∑
n=1

‖Ken‖2 ,

is well defined independent of the choice of orthonormal basis {en}∞n=1. We
say K : H → B is a Hilbert Schmidt operator if ‖K‖HS < ∞ and let
HS(H,B) denote the space of Hilbert Schmidt operators from H to B.
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2. For all K ∈ L(H,B), ‖K‖HS = ‖K∗‖HS and

‖K‖HS ≥ ‖K‖op := sup {‖Kh‖ : h ∈ H such that ‖h‖ = 1} .

3. The set HS(H,B) is a subspace of L (H,B) (the bounded operators from
H → B), ‖·‖HS is a norm on HS(H,B) for which (HS(H,B), ‖·‖HS) is a
Hilbert space, and the corresponding inner product is given by

〈K1|K2〉HS =

∞∑
n=1

〈K1en|K2en〉 . (19.11)

4. If K : H → B is a bounded finite rank operator, then K is Hilbert Schmidt.
5. Let PNx :=

∑N
n=1 〈x|en〉 en be orthogonal projection onto

span{en : n ≤ N} ⊂ H and for K ∈ HS(H,B), let KN := KPN .
Then

‖K −KN‖2op ≤ ‖K −KN‖2HS → 0 as N →∞,

which shows that finite rank operators are dense in (HS(H,B), ‖·‖HS) . In
particular of HS(H,B) ⊂ K(H,B) – the space of compact operators from
H → B.

6. If Y is another Hilbert space and A : Y → H and C : B → Y are bounded
operators, then

‖KA‖HS ≤ ‖K‖HS ‖A‖op and ‖CK‖HS ≤ ‖K‖HS ‖C‖op ,

in particular HS(H,H) is an ideal in L (H) .

Proof. Items 1. and 2. By Parseval’s equality and Fubini’s theorem for
sums,

∞∑
n=1

‖Ken‖2 =

∞∑
n=1

∞∑
m=1

|〈Ken|um〉|2

=

∞∑
m=1

∞∑
n=1

|〈en|K∗um〉|2 =

∞∑
m=1

‖K∗um‖2 .

This proves ‖K‖HS is well defined independent of basis and that ‖K‖HS =
‖K∗‖HS . For x ∈ H \ {0} , x/ ‖x‖ may be taken to be the first element in an
orthonormal basis for H and hence∥∥∥∥K x

‖x‖

∥∥∥∥ ≤ ‖K‖HS .
Multiplying this inequality by ‖x‖ shows ‖Kx‖ ≤ ‖K‖HS ‖x‖ and hence
‖K‖op ≤ ‖K‖HS .

Item 3. For K1,K2 ∈ L(H,B),

‖K1 +K2‖HS =

√√√√ ∞∑
n=1

‖K1en +K2en‖2

≤

√√√√ ∞∑
n=1

[‖K1en‖+ ‖K2en‖]2

= ‖{‖K1en‖+ ‖K2en‖}∞n=1‖`2
≤ ‖{‖K1en‖}∞n=1‖`2 + ‖{‖K2en‖}∞n=1‖`2
= ‖K1‖HS + ‖K2‖HS .

From this triangle inequality and the homogeneity properties of ‖·‖HS , we now
easily see that HS(H,B) is a subspace of L(H,B) and ‖·‖HS is a norm on
HS(H,B). Since

∞∑
n=1

|〈K1en|K2en〉| ≤
∞∑
n=1

‖K1en‖ ‖K2en‖

≤

√√√√ ∞∑
n=1

‖K1en‖2
√√√√ ∞∑
n=1

‖K2en‖2 = ‖K1‖HS ‖K2‖HS ,

the sum in Eq. (19.11) is well defined and is easily checked to define an inner

product on HS(H,B) such that ‖K‖2HS = 〈K|K〉HS .
The proof that

(
HS(H,B), ‖·‖2HS

)
is complete is very similar to the proof

of Theorem 14.6. Indeed, suppose {Km}∞m=1 is a ‖·‖HS – Cauchy sequence in
HS(H,B). Because L(H,B) is complete, there exists K ∈ L(H,B) such that
‖K −Km‖op → 0 as m→∞. Thus, making use of Fatou’s Lemma 4.12,

‖K −Km‖2HS =

∞∑
n=1

‖(K −Km) en‖2

=

∞∑
n=1

lim inf
l→∞

‖(Kl −Km) en‖2

≤ lim inf
l→∞

∞∑
n=1

‖(Kl −Km) en‖2

= lim inf
l→∞

‖Kl −Km‖2HS → 0 as m→∞.

Hence K ∈ HS(H,B) and limm→∞ ‖K −Km‖2HS = 0.

Page: 207 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



208 19 Compactness in Metric Space

Item 4. Since Nul(K∗)⊥ = Ran (K) = Ran (K) ,

‖K‖2HS = ‖K∗‖2HS =

N∑
n=1

‖K∗vn‖2H <∞

where N := dim Ran (K) and {vn}Nn=1 is an orthonormal basis for Ran (K) =
K (H) .

Item 5. Simply observe,

‖K −KN‖2op ≤ ‖K −KN‖2HS =
∑
n>N

‖Ken‖2 → 0 as N →∞.

Item 6. For C ∈ L(B, Y ) and K ∈ L(H,B) then

‖CK‖2HS =

∞∑
n=1

‖CKen‖2 ≤ ‖C‖2op
∞∑
n=1

‖Ken‖2 = ‖C‖2op ‖K‖
2
HS

and for A ∈ L (Y,H) ,

‖KA‖HS = ‖A∗K∗‖HS ≤ ‖A
∗‖op ‖K

∗‖HS = ‖A‖op ‖K‖HS .

Remark 19.33. The separability assumptions made in Proposition 19.32 are un-
necessary. In general, we define

‖K‖2HS =
∑
e∈β

‖Ke‖2

where β ⊂ H is an orthonormal basis. The same proof of Item 1. of Proposition
19.32 shows ‖K‖HS is well defined and ‖K‖HS = ‖K∗‖HS . If ‖K‖2HS < ∞,
then there exists a countable subset β0 ⊂ β such that Ke = 0 if e ∈ β \ β0. Let
H0 := span(β0) and B0 := K(H0). Then K (H) ⊂ B0, K|H⊥0 = 0 and hence

by applying the results of Proposition 19.32 to K|H0
: H0 → B0 one easily sees

that the separability of H and B are unnecessary in Proposition 19.32.

Example 19.34. Let (X,µ) be a measure space, H = L2(X,µ) and

k(x, y) :=

n∑
i=1

fi(x)gi(y)

where
fi, gi ∈ L2(X,µ) for i = 1, . . . , n.

Define

(Kf)(x) =

∫
X

k(x, y)f(y)dµ(y),

then K : L2(X,µ) → L2(X,µ) is a finite rank operator and hence Hilbert
Schmidt.

Exercise 19.9. Suppose that (X,µ) is a σ–finite measure space such that H =
L2(X,µ) is separable and k : X ×X → R is a measurable function, such that

‖k‖2L2(X×X,µ⊗µ) :=

∫
X×X

|k(x, y)|2dµ(x)dµ(y) <∞.

Define, for f ∈ H,
Kf(x) =

∫
X

k(x, y)f(y)dµ(y),

when the integral makes sense. Show:

1. Kf(x) is defined for µ–a.e. x in X.
2. The resulting function Kf is in H and K : H → H is linear.
3. ‖K‖HS = ‖k‖L2(X×X,µ⊗µ) <∞. (This implies K ∈ HS(H,H).)

Exercise 19.10 (Converse to Exercise 19.9). Suppose that (X,µ) is a σ–
finite measure space such that H = L2(X,µ) is separable and K : H → H is a
Hilbert Schmidt operator. Show there exists k ∈ L2 (X ×X,µ⊗ µ) such that
K is the integral operator associated to k, i.e.

Kf (x) =

∫
X

k(x, y)f(y)dµ(y). (19.12)

In fact you should show

k (x, y) :=

∞∑
n=1

((
K∗ϕn

)
(y)
)
ϕn (x) (L2 (µ⊗ µ) – convergent sum) (19.13)

where {ϕn}∞n=1 is any orthonormal basis for H.

19.6 Weak Convergence and Compactness in Hilbert
Spaces

We have seen above that in infinite dimensions it is no longer true that norm
bounded and closed sets are compact. In order to recover compactness we have
to weaken our notion of convergence. [The practical price for doing this is that
functions which are norm continuous need not be continuous relative to a weaker
notion of convergence.] In this section we will always assume that H is a Hilbert
space.

Definition 19.35 (Weak Convergence). We say a sequence {xn}∞n=1 of a
Hilbert space, H, converges weakly to x ∈ H (and denote this by writing

xn
w→ x ∈ H as n→∞) iff limn→∞ 〈xn|y〉 = 〈x|y〉 for all y ∈ H.

Page: 208 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



19.6 Weak Convergence and Compactness in Hilbert Spaces 209

Remark 19.36. Suppose that H is an infinite dimensional Hilbert space {xn}∞n=1

is an orthonormal subset of H. Then Bessel’s inequality (Proposition 18.21)

implies xn
w→ 0 ∈ H as n→∞. This points out the fact that if xn

w→ x ∈ H as
n→∞, it is no longer necessarily true that ‖x‖ = limn→∞ ‖xn‖ , i.e. the norm
is not weakly continuous. However we do always have ‖x‖ ≤ lim infn→∞ ‖xn‖
because,

‖x‖2 = lim
n→∞

〈xn|x〉 ≤ lim inf
n→∞

[‖xn‖ ‖x‖] = ‖x‖ lim inf
n→∞

‖xn‖ .

Exercise 19.11. Suppose that {xn}∞n=1 ⊂ H and xn
w→ x ∈ H as n → ∞.

Show xn → x as n→∞ (i.e. limn→∞ ‖x− xn‖ = 0) iff limn→∞ ‖xn‖ = ‖x‖ .

Exercise 19.12. Suppose that {xn}∞n=1 and {yn}∞n=1 are sequences in H such

that yn
s→ y ∈ H (i.e. limn→∞ ‖y − yn‖H = 0), xn

w→ x ∈ H, and4 M :=
supn ‖xn‖ <∞ as n→∞. Show limn→∞ 〈xn|yn〉 = 〈x|y〉 .

Exercise 19.13. Suppose thatK : H → H is a compact operator, xn
w→ x ∈ H,

and5 M := supn ‖xn‖ < ∞ as n → ∞. Show Kxn
s→ Kx as n → ∞. Combine

this with Exercise 19.12 in order to show f (x) := 〈Kx|x〉 is weakly sequentially

continuous on C := {x ∈ H : ‖x‖H ≤ 1} , i.e. if {xn} ⊂ C and xn
w→ x ∈ H

then limn→∞ f (xn) = f (x) .

Proposition 19.37. Let H be a Hilbert space, β ⊂ H be an orthonormal ba-
sis for H and {xn}∞n=1 ⊂ H be a bounded sequence, then the following are
equivalent:

1. xn
w→ x ∈ H as n→∞.

2. 〈x|y〉 = limn→∞〈xn|y〉 for all y ∈ H.
3. 〈x|y〉 = limn→∞〈xn|y〉 for all y ∈ β.

Moreover, if cy := limn→∞〈xn|y〉 exists for all y ∈ β, then
∑
y∈β |cy|

2
<∞

and xn
w→ x :=

∑
y∈β cyy ∈ H as n→∞.

Proof. 1. ⇐⇒ 2. is simply the definition of weak convergence. 2. =⇒ 3. is
trivial.

3. =⇒ 1. Let M := supn ‖xn‖ and H0 denote the algebraic span of β so
that limn→∞ 〈xn|z〉 = 〈x|z〉 for all x ∈ H0. For any y ∈ H and z ∈ H0

|〈x− xn|y〉| ≤ |〈x− xn|z〉|+ |〈x− xn|y − z〉| ≤ |〈x− xn|z〉|+ 2M ‖y − z‖ .
4 The uniform boundedness principle covered below will show that the next hypoth-

esis is redundant.
5 The uniform boundedness principle covered below will show that the next hypoth-

esis is redundant.

Passing to the limit in this equation implies lim supn→∞ |〈x− xn|y〉| ≤
2M ‖y − z‖ which shows lim supn→∞ |〈x− xn|y〉| = 0 since H0 is dense in H.

To prove the last assertion, let Γ ⊂⊂ β. Then by Bessel’s inequality (Propo-
sition 18.21),∑

y∈Γ
|cy|2 = lim

n→∞

∑
y∈Γ
|〈xn|y〉|2 ≤ lim inf

n→∞
‖xn‖2 ≤M2.

Since Γ ⊂⊂ β was arbitrary, we conclude that
∑
y∈β |cy|

2 ≤M <∞ and hence
we may define x :=

∑
y∈β cyy. By construction we have

〈x|y〉 = cy = lim
n→∞

〈xn|y〉 for all y ∈ β

and hence xn
w→ x ∈ H as n→∞ by what we have just proved.

Theorem 19.38 (Weak Sequential Compactness). Suppose {xn}∞n=1 is a
bounded sequence in a Hilbert space, H. Then there exists a subsequence yk :=
xnk of {xn}∞n=1 and x ∈ X such that yk

w→ x as k →∞.

Proof. Let H0 := span(xk : k ∈ N) and M := supn ‖xn‖H <∞. Then H0 is
a closed separable Hilbert subspace of H and {xk}∞k=1 ⊂ H0. Let β0 := {hn}∞n=1

be an orthonormal basis for H0. (I am assuming dimH0 = ∞ as this is the
more difficult case.) Since |〈xk|hn〉| ≤ ‖xk‖ ‖hn‖ ≤ M < ∞, the sequence,
{〈xk|hn〉}∞k=1 ⊂ C, is bounded and hence has a convergent sub-sequence for all
n ∈ N. By the Cantor’s diagonalization argument we can find a a sub-sequence,
yk := xnk , of {xn} such that limk→∞ 〈yk|hn〉 exists for all n ∈ N. Thus by

Proposition 19.37, there exists a x ∈ H0 such that yk
w→ x (weakly in H0) as

k → ∞. For an arbitrary z ∈ H, decompose z as z = z0 + z1 where z0 ∈ H0

and z1 ∈ H⊥0 . Then

lim
k→∞

〈yk|z〉 = lim
k→∞

〈yk|z0〉 = 〈x|z0〉 = 〈x|z〉

wherein we have use 〈yk|z1〉 = 0 for all k and 〈x|z1〉 = 0.

Exercise 19.14. Suppose that H is a Hilbert space and K : H → H is a
non-zero compact operator. Show there exists

x0 ∈ C := {x ∈ H : ‖x‖H ≤ 1}

such that
|〈Kx0|x0〉| = sup

x∈C
|〈Kx|x〉| =: M.

Hint: see Exercise 19.13. Also explain why we may assume that ‖x0‖ = 1.
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Exercise 19.15. Suppose that A : H → H is a bounded self-adjoint operator
on H. Show;

1. f (x) := 〈Ax|x〉 ∈ R for all x ∈ H.
2. If there exists x0 ∈ H with ‖x0‖ = 1 such that

λ0 := sup
‖x‖=1

〈Ax|x〉 = 〈Ax0|x0〉

then Ax0 = λ0x0. Hint: Given y ∈ H let c (t) := x0+ty
‖x0+ty‖H

for t near 0.

Then apply the first derivative test to the function g (t) = 〈Ac (t) |c (t)〉 .
3. If we further assume that A is compact, then A has at least one eigenvector.

Exercise 19.16 (Metrizing Weak Convergence). Suppose that H is a sep-
arable Hilbert space, C := {x ∈ H : ‖x‖ ≤ 1} is the closed unit ball in H, and
{e`}∞`=1 is an orthonormal basis for H. For x, y ∈ H let

ρ(x, y) :=

∞∑
`=1

1

2`
|〈x− y|e`〉| . (19.14)

Show;

1. (H, ρ) is a metric space.

2. Show if {xn}∞n=1 ⊂ C then xn
w→ x ∈ H iffρ (xn, x)→ 0.

Theorem 19.39 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that
H is a separable Hilbert space, C := {x ∈ H : ‖x‖ ≤ 1} is the closed unit ball
in H, and {en}∞n=1 is an orthonormal basis for H, and ρ is the metric defined
in Eq. (19.14). Then (C, ρ) is a compact metric space. (This theorem will be
extended to Banach spaces, see Theorems 36.20 and 36.25 below.)

Proof. This is a simple corollary of Theorem 19.38, Exercise 19.16, and
Theorem 19.9.

Exercise 19.17 (Banach-Saks). Suppose that {xn}∞n=1 ⊂ H, xn
w→ x ∈ H as

n→∞, and c := supn ‖xn‖ <∞.6 Show there exists a subsequence, yk = xnk
such that

lim
N→∞

∥∥∥∥∥x− 1

N

N∑
k=1

yk

∥∥∥∥∥ = 0,

i.e. 1
N

∑N
k=1 yk → x as N →∞. Hints: 1. show it suffices to assume x = 0 and

then choose {yk}∞k=1 so that |〈yk|yl〉| ≤ l−1 (or even smaller if you like) for all
k ≤ l.
6 The assumption that c < ∞ is superfluous because of the “uniform boundedness

principle,” see Theorem 23.9 below.

19.7 Arzela-Ascoli Theorem (Compactness in C (X))

In this section, let (X, τ) be a topological space.

Definition 19.40. Let F ⊂ C (X) .

1. F is equicontinuous at x ∈ X iff for all ε > 0 there exists U ∈ τx such
that |f(y)− f(x)| < ε for all y ∈ U and f ∈ F .

2. F is equicontinuous if F is equicontinuous at all points x ∈ X.
3. F is pointwise bounded if sup{|f(x)| : f ∈ F} <∞ for all x ∈ X.

Theorem 19.41 (Ascoli-Arzela Theorem). Let (X, τ) be a compact topo-
logical space and F ⊂ C (X) . Then F is precompact in C (X) iff F is equicon-
tinuous and point-wise bounded.

Proof. (⇐) Since C (X) ⊂ `∞(X) is a complete metric space, we must
show F is totally bounded. Let ε > 0 be given. By equicontinuity, for all x ∈ X,
there exists Vx ∈ τx such that |f(y) − f(x)| < ε if y ∈ Vx and f ∈ F . Since
X is compact we may choose Λ ⊂f X such that X = ∪x∈ΛVx. We have now
decomposed X into “blocks” {Vx}x∈Λ such that each f ∈ F is constant to
within ε on Vx. Since sup {|f(x)| : x ∈ Λ and f ∈ F} < ∞, it is now evident
that

M := sup {|f(x)| : x ∈ X and f ∈ F}
≤ sup {|f(x)| : x ∈ Λ and f ∈ F}+ ε <∞.

LetDM := {z ∈ C : |z| ≤M} be the closedM - disk in C centered at 0. Then
DΛ
M is a compact subset of `∞ (Λ) . Therefore for all ε > 0 there exists a finite

subset Γ ⊂f DΛ
M such that DΛ

M ⊂ ∪ϕ∈ΓB
`∞(Λ)
ϕ (ε) . By construction if f ∈ F ,

then f |Λ ∈ DΛ
M and therefore there exists ϕ ∈ Γ such that ‖f |Λ − ϕ‖`∞(Λ) < ε.

This shows that F =
⋃
ϕ∈Γ Fϕ where, for ϕ ∈ Γ,

Fϕ := {f ∈ F : ‖f |Λ − ϕ‖`∞(Λ) < ε}.

Let Γ̃ = {ϕ ∈ Γ : Fϕ 6= ∅} and for ϕ ∈ Γ̃ let fϕ ∈ Fϕ. If f ∈ Fϕ and y ∈ X,
choose x ∈ Λ such that y ∈ Vx. Then we find

|f (y)− fϕ (y)| ≤ |f (y)− f (x)|+ |f (x)− ϕ (x)|
+ |ϕ (x)− fϕ (x)|+ |fϕ (x)− fϕ (y)| < 4ε.

As y ∈ X is arbitrary we have shown ‖f − fϕ‖∞ ≤ 4ε for all f ∈ Fϕ, i.e.

F =
⋃
ϕ∈Γ̃

Fϕ ⊂
⋃
ϕ∈Γ̃

B
C(X)
fϕ

(5ε) .
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This shows that F is 5ε – bounded for all ε > 0.
(⇒) (*The rest of this proof may safely be skipped.) Let me first give the

argument under the added restriction that τ = τd for some metric, d, and X.
Since ‖·‖∞ : C (X) → [0,∞) is a continuous function on C (X) it is bounded
on any compact subset F ⊂ C (X) . This shows that sup {‖f‖∞ : f ∈ F} <
∞ which clearly implies that F is pointwise bounded.7 Suppose F were not
equicontinuous at some point x ∈ X, i.e. there exists ε > 0 such that for all
V ∈ τx, sup

y∈V
sup
f∈F
|f(y)−f(x)| > ε. Let {Vn = Bx (1/n)}∞n=1. By the assumption

that F is not equicontinuous at x, there exist fn ∈ F and xn ∈ Vn such that
|fn(x)− fn(xn)| ≥ ε for all n. Since F is a compact metric space by passing to
a subsequence if necessary we may assume that fn converges uniformly to some
f ∈ F . Because xn → x as n→∞ we learn that

ε ≤ |fn(x)− fn(xn)| ≤ |fn(x)− f(x)|+ |f(x)− f(xn)|+ |f(xn)− fn(xn)|
≤ 2 ‖fn − f‖∞ + |f(x)− f(xn)| → 0 as n→∞

which is a contradiction.
(⇒) (Here is the general argument for arbitrary topological spaces.) As in

the proof above, F is pointwise bounded. Suppose F were not equicontinuous at
some point x ∈ X, i.e. there exists ε > 0 such that for all V ∈ τx, sup

y∈V
sup
f∈F
|f(y)−

f(x)| > ε.8 Equivalently said, to each V ∈ τx we may choose

fV ∈ F and xV ∈ V 3 |fV (x)− fV (xV )| ≥ ε.

Set CV = {fW : W ∈ τx and W ⊂ V }
‖·‖∞ ⊂ F and notice for any V ⊂f τx that

∩V ∈VCV ⊇ C∩V 6= ∅,

so that {CV }V ∈ τx ⊂ F has the finite intersection property.9 Since F is
compact, it follows that there exists some

7 One could also prove that F is pointwise bounded by considering the continuous
evaluation maps ex : C(X)→ R given by ex(f) = f(x) for all x ∈ X.

8 If X is first countable we could finish the proof with the following argument. Let
{Vn}∞n=1 be a neighborhood base at x such that V1 ⊃ V2 ⊃ V3 ⊃ . . . . By the
assumption that F is not equicontinuous at x, there exist fn ∈ F and xn ∈ Vn such
that |fn(x) − fn(xn)| ≥ ε ∀ n. Since F is a compact metric space by passing to
a subsequence if necessary we may assume that fn converges uniformly to some
f ∈ F . Because xn → x as n→∞ we learn that

ε ≤ |fn(x)− fn(xn)| ≤ |fn(x)− f(x)|+ |f(x)− f(xn)|+ |f(xn)− fn(xn)|
≤ 2‖fn − f‖+ |f(x)− f(xn)| → 0 as n→∞

which is a contradiction.
9 If we are willing to use Net’s described in Appendix ?? below we could finish the

proof as follows. Since F is compact, the net {fV }V ∈τx ⊂ F has a cluster point

f ∈
⋂
V ∈τx

CV 6= ∅.

Since f is continuous, there exists V ∈ τx such that |f(x)− f(y)| < ε/3 for all
y ∈ V. Because f ∈ CV , there exists W ⊂ V such that ‖f − fW ‖ < ε/3. We
now arrive at a contradiction;

ε ≤ |fW (x)− fW (xW )|
≤ |fW (x)− f(x)|+ |f(x)− f(xW )|+ |f(xW )− fW (xW )|
< ε/3 + ε/3 + ε/3 = ε.

Exercise 19.18. Give an alternative proof of the implication, (⇐) , in Theorem
19.41 by showing every subsequence {fn : n ∈ N} ⊂ F has a convergence sub-
sequence.

Exercise 19.19. Suppose k ∈ C
(

[0, 1]
2
,R
)

and for f ∈ C ([0, 1] ,R) , let

Kf (x) :=

∫ 1

0

k (x, y) f (y) dy for all x ∈ [0, 1] . (19.15)

Show K is a compact operator on (C ([0, 1] ,R) , ‖·‖∞) which by definition

means that {Kf : ‖f‖∞ ≤ 1} is compact in C ([0, 1] ,R) .

Exercise 19.20 (Continuation of Exercise 19.19). Suppose

k ∈ C
(

[0, 1]
2
,R
)

but now show that one can use the formula for K in

Eq. (19.15) in order to define a linear operator from L2 ([0, 1] ,m;R) to
C ([0, 1] ,R) and that this operator is still compact, i.e. {Kf : ‖f‖L2 ≤ 1} is
compact in C ([0, 1] ,R) . Conclude that K is also a compact operator when
viewed as an operator from L2 ([0, 1] ,m;R) to L2 ([0, 1] ,m;R) .

The following result is a corollary of Theorem 19.41.

Corollary 19.42 (Locally Compact Ascoli-Arzela Theorem). Let (X, d)
be a metric space with the Heine Borel property, i.e. closed and bounded sets are
compact. If {fm} ⊂ C (X) is a pointwise bounded sequence of functions such
that {fm|K} is equicontinuous for any compact subset K ⊂ X, then there exists
a subsequence {mn} ⊂ {m} such that {gn := fmn}

∞
n=1 ⊂ C (X) is uniformly

convergent on all compact subsets of X.

f ∈ F ⊂ C(X). Choose a subnet {gα}α∈A of {fV }V ∈τX such that gα → f uniformly.
Then, since xV → x implies xVα → x, we may conclude from Eq. (36.1) that

ε ≤ |gα(x)− gα(xVα)| → |g(x)− g(x)| = 0

which is a contradiction.
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Proof. Let x ∈ X and {Kn = Cx (n)}∞n=1 , so that{Kn} is a nested sequence
of compact sets such that Kn ↑ X as n → ∞. We may now apply Theorem
19.41 repeatedly to find a nested family of subsequences

{fm} ⊃ {g1
m} ⊃ {g2

m} ⊃ {g3
m} ⊃ . . .

such that the sequence {gnm}
∞
m=1 ⊂ C (X) is uniformly convergent on Kn. Using

Cantor’s trick, define the subsequence {hn} of {fm} by hn := gnn . Then {hn}
is uniformly convergent on Kl for each l ∈ N. Now if K ⊂ X is an arbitrary
compact set, there exists l <∞ such that K ⊂ Ko

l ⊂ Kl and therefore {hn} is
uniformly convergent on K as well.

Proposition 19.43. Let Ω ⊂o Rd such that Ω̄ is compact and 0 ≤ α < β ≤ 1.
Then the inclusion map i : Cβ(Ω) ↪→ Cα(Ω) is a compact operator. See Chapter
15 and Lemma 15.9 for the notation being used here.

Let {un}∞n=1 ⊂ Cβ(Ω) such that ‖un‖Cβ ≤ 1, i.e. ‖un‖∞ ≤ 1 and

|un(x)− un(y)| ≤ |x− y|β for all x, y ∈ Ω.

By the Arzela-Ascoli Theorem 19.41, there exists a subsequence of {ũn}∞n=1 of
{un}∞n=1 and u ∈ Co(Ω̄) such that ũn → u in C0. Since

|u(x)− u(y)| = lim
n→∞

|ũn(x)− ũn(y)| ≤ |x− y|β ,

u ∈ Cβ as well. Define gn := u− ũn ∈ Cβ , then

[gn]β + ‖gn‖C0 = ‖gn‖Cβ ≤ 2

and gn → 0 in C0. To finish the proof we must show that gn → 0 in Cα. Given
δ > 0,

[gn]α = sup
x 6=y

|gn(x)− gn(y)|
|x− y|α

≤ An +Bn

where

An = sup

{
|gn(x)− gn(y)|
|x− y|α

: x 6= y and |x− y| ≤ δ
}

= sup

{
|gn(x)− gn(y)|
|x− y|β

· |x− y|β−α : x 6= y and |x− y| ≤ δ
}

≤ δβ−α · [gn]β ≤ 2δβ−α

and

Bn = sup

{
|gn(x)− gn(y)|
|x− y|α

: |x− y| > δ

}
≤ 2δ−α ‖gn‖C0 → 0 as n→∞.

Therefore,

lim sup
n→∞

[gn]α ≤ lim sup
n→∞

An + lim sup
n→∞

Bn ≤ 2δβ−α + 0→ 0 as δ ↓ 0.

This proposition generalizes to the following theorem which the reader is asked
to prove in Exercise 19.28 below.

Theorem 19.44. Let Ω be a precompact open subset of Rd, α, β ∈ [0, 1] and
k, j ∈ N0. If j + β > k + α, then Cj,β

(
Ω̄
)

is compactly contained in Ck,α
(
Ω̄
)
.

19.8 Exercises

19.8.1 Metric Spaces as Topological Spaces

Definition 19.45. Two metrics d and ρ on a set X are said to be equivalent
if there exists a constant c ∈ (0,∞) such that c−1ρ ≤ d ≤ cρ.

Exercise 19.21. Suppose that d and ρ are two metrics on X.

1. Show τd = τρ if d and ρ are equivalent.
2. Show by example that it is possible for τd = τρ even though d and ρ are

inequivalent.

Exercise 19.22. Let (Xi, di) for i = 1, . . . , n be a finite collection of metric
spaces and for 1 ≤ p ≤ ∞ and x = (x1, x2, . . . , xn) and y = (y1, . . . , yn) in
X :=

∏n
i=1Xi, let

ρp(x, y) =

{
(
∑n
i=1 [di(xi, yi)]

p
)
1/p

if p 6=∞
maxi di(xi, yi) if p =∞

.

1. Show (X, ρp) is a metric space for p ∈ [1,∞]. Hint: Minkowski’s inequality.
2. Show for any p, q ∈ [1,∞], the metrics ρp and ρq are equivalent. Hint: This

can be done with explicit estimates or you could use Theorem 19.16 below.

Exercise 19.23 (Tychonoff’s Theorem for Compact Metric Spaces).
Let {(Xn, dn)}∞n=1 be a sequence of compact metric spaces, X :=

∏∞
n=1Xn,

and for x = (x(n))
∞
n=1 and y = (y(n))

∞
n=1 in X let

d(x, y) =

∞∑
n=1

2−n
dn(x(n), y(n))

1 + dn(x(n), y(n))
,

as in Exercise 13.16. Further assume that the spaces Xn are compact for all n.
Show (without using the general form of Tychonoff’s Theorem 36.16 below) that
(X, d) is compact. Hint: Either use Cantor’s method to show every sequence
{xm}∞m=1 ⊂ X has a convergent subsequence or alternatively show (X, d) is
complete and totally bounded. (Compare with Example 19.14.)
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Exercise 19.24. Let X = R and set d (x, y) := |y − x| and ρ (x, y) :=∣∣tan−1 (y)− tan−1 (x)
∣∣ for all x, y ∈ R. Show;

1. τρ = τd, i.e. both metrics have the same open sets. The point here is to
show tan−1 : R→

(
−π2 ,

π
2

)
is a homeomorphism, i.e. is continuous with

continuous inverse.
2. Show the sequence {n}∞n=1 ⊂ R is a ρ – Cauchy sequence which is not d –

Cauchy.
3. (R, ρ) is not complete.

Moral: the notions of being Cauchy and complete are not purely topological
notions but depend on the choice of metric inducing a given topology.

19.8.2 Arzela-Ascoli Theorem Problems

Exercise 19.25. Let (X, τ) be a compact topological space and F :=
{fn}∞n=1 ⊂ C (X) is a sequence of functions which are equicontinuous and
pointwise convergent. Show f (x) := limn→∞ fn (x) is continuous and that
limn→∞ ‖f − fn‖∞ = 0, i.e. fn → f uniformly as n→∞.

Exercise 19.26. Let T ∈ (0,∞) and F ⊂ C([0, T ],R) be a family of functions
such that:

1. ḟ(t) exists for all t ∈ (0, T ) and f ∈ F ,
2. supf∈F |f(0)| <∞, and

3. M := supf∈F supt∈(0,T )

∣∣∣ḟ(t)
∣∣∣ <∞.

Show F is precompact in the Banach space C([0, T ]) equipped with the
norm ‖f‖∞ = supt∈[0,T ] |f(t)| .

Exercise 19.27 (Peano’s Existence Theorem). Suppose Z : R× Rd → Rd
is a bounded continuous function. Then for each T <∞10 there exists a solution
to the differential equation

ẋ(t) = Z(t, x(t)) for − T < t < T with x(0) = x0. (19.16)

Do this by filling in the following outline for the proof.

1. Given ε > 0, show there exists a unique function xε ∈ C([−ε,∞) → Rd)
such that xε(t) := x0 for −ε ≤ t ≤ 0 and

xε(t) = x0 +

∫ t

0

Z(τ, xε(τ − ε))dτ for all t ≥ 0. (19.17)

10 Using Corollary 19.42, we may in fact allow T =∞.

Here∫ t

0

Z(τ, xε(τ−ε))dτ =

(∫ t

0

Z1(τ, xε(τ − ε))dτ, . . . ,
∫ t

0

Zd(τ, xε(τ − ε))dτ
)

where Z = (Z1, . . . , Zd) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For
t ∈ [0, ε], it follows from Eq. (19.17) that

xε(t) = x0 +

∫ t

0

Z(τ, x0)dτ.

Now that xε(t) is known for t ∈ [−ε, ε] it can be found by integration for
t ∈ [−ε, 2ε]. The process can be repeated.

2. Then use Exercise 19.26 to show there exists {εk}∞k=1 ⊂ (0,∞) such that
limk→∞ εk = 0 and xεk converges to some x ∈ C([0, T ]) with respect to the
sup-norm: ‖x‖∞ = supt∈[0,T ] |x(t)|). Also show for this sequence that

lim
k→∞

sup
εk≤τ≤T

|xεk(τ − εk)− x (τ)| = 0.

3. Pass to the limit (with justification) in Eq. (19.17) with ε replaced by εk
to show x satisfies

x(t) = x0 +

∫ t

0

Z(τ, x(τ))dτ ∀ t ∈ [0, T ].

4. Conclude from this that ẋ(t) exists for t ∈ (0, T ) and that x solves Eq.
(19.16).

5. Apply what you have just proved to the ODE,

ẏ(t) = −Z(−t, y(t)) for 0 ≤ t < T with y(0) = x0.

Then extend x(t) above to (−T, T ) by setting x(t) = y(−t) if t ∈ (−T, 0].
Show x so defined solves Eq. (19.16) for t ∈ (−T, T ).

Exercise 19.28. Prove Theorem 19.44. Hint: First prove Cj,β
(
Ω̄
)

@@
Cj,α

(
Ω̄
)

is compact if 0 ≤ α < β ≤ 1. Then use Lemma 19.27 repeatedly
to handle all of the other cases.
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Some Spectral Theory

For this section let H and K be two Hilbert spaces over C.

Exercise 20.1. Suppose A : H → H is a bounded self-adjoint operator. Show:

1. If λ is an eigenvalue of A, i.e. Ax = λx for some x ∈ H \ {0} , then λ ∈ R.
2. If λ and µ are two distinct eigenvalues of A with eigenvectors x and y

respectively, then x ⊥ y.

Unlike in finite dimensions, it is possible that an operator on a complex
Hilbert space may have no eigenvalues, see Exercise 20.2, Example 20.6, and
Lemma 20.7 below for a couple of examples. For this reason it is useful to
generalize the notion of an eigenvalue as follows.

Definition 20.1. Suppose X is a Banach space over F (F = R or C) and A ∈
L (X) . We say λ ∈ F is in the spectrum of A if A − λI does not have a
bounded1 inverse. The spectrum will be denoted by σ (A) ⊂ F. The resolvent
set for A is ρ (A) := F\σ (A) .

Exercise 20.2 (Multiplication Operators). Let (X,M, µ) be a σ – finite
measure space, a ∈ L∞(µ) and let A be the bounded operator on H := L2(µ)
defined by Af (x) = a (x) f (x) for all f ∈ H. (We will denote A by Ma in the
future.) Show:

1. ‖A‖op = ‖a‖L∞(µ) .
2. A∗ = Mā.
3. σ (A) = essran(a) where σ (A) is the spectrum of A and essran(a) is the

essential range of a, see Definitions 20.1 and 30.13 respectively.
4. Show λ is an eigenvalue for A = Ma iff µ ({a = λ}) > 0, i.e. iff a has a

“flat spot of height λ.” Thus if µ ({a = λ}) = 0 for all λ ∈ C, A has no
eigenvalues.

Remark 20.2. If λ is an eigenvalue of A, then A− λI is not injective and hence
not invertible. Therefore any eigenvalue of A is in the spectrum of A. If H is a
Hilbert space and A ∈ L (H) , it follows from item 5. of Proposition 18.18 that
λ ∈ σ (A) iff λ̄ ∈ σ (A∗) , i.e.

σ (A∗) =
{
λ̄ : λ ∈ σ (A)

}
.

1 It will follow by the open mapping Theorem 23.1 or the closed graph Theorem 23.4
that the word bounded may be omitted from this definition.

Exercise 20.3. Suppose X is a complex Banach space and A ∈ GL (X) . Show

σ
(
A−1

)
= σ (A)

−1
:=
{
λ−1 : λ ∈ σ (A)

}
.

If we further assume A is both invertible and isometric, i.e. ‖Ax‖ = ‖x‖ for all
x ∈ X, then show

σ (A) ⊂ S1 := {z ∈ C : |z| = 1} .

Hint: working formally,(
A−1 − λ−1

)−1
=

1
1
A −

1
λ

=
1

λ−A
Aλ

=
Aλ

λ−A

from which you might expect that
(
A−1 − λ−1

)−1
= −λA (A− λ)

−1
if λ ∈

ρ (A) .

Exercise 20.4. Suppose X is a Banach space and A ∈ L (X) . Use Corollary

14.27 to show σ (A) is a closed subset of
{
λ ∈ F : |λ| ≤ ‖A‖ := ‖A‖L(X)

}
.

Lemma 20.3. Suppose that A ∈ L(H) is a normal operator, i.e. 0 = [A,A∗] :=
AA∗ −A∗A. Then λ ∈ σ(A) iff

inf
‖ψ‖=1

‖(A− λ1)ψ‖ = 0. (20.1)

In other words, λ ∈ σ (A) iff there is an “approximate sequence of eigenvectors”
for (A, λ) , i.e. there exists ψn ∈ H such that ‖ψn‖ = 1 and Aψn − λψn → 0 as
n→∞.

Proof. By replacing A by A− λI we may assume that λ = 0. If 0 /∈ σ(A),
then

inf
‖ψ‖=1

‖Aψ‖ = inf
‖Aψ‖
‖ψ‖

= inf
‖ψ‖
‖A−1ψ‖

= 1/
∥∥A−1

∥∥ > 0.

Now suppose that inf‖ψ‖=1 ‖Aψ‖ = ε > 0 or equivalently we have

‖Aψ‖ ≥ ε ‖ψ‖

for all ψ ∈ H. Because A is normal,
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‖Aψ‖2 = 〈Aψ|Aψ〉 = 〈A∗Aψ|ψ〉 = 〈AA∗ψ|ψ〉 = 〈A∗ψ|A∗ψ〉 = ‖A∗ψ‖2 .

Therefore we also have

‖A∗ψ‖ = ‖Aψ‖ ≥ ε ‖ψ‖ ∀ ψ ∈ H. (20.2)

This shows in particular that A and A∗ are injective, Ran(A) is closed and
hence by Lemma 18.19

Ran(A) = Ran(A) = Nul(A∗)⊥ = {0}⊥ = H.

Therefore A is algebraically invertible and the inverse is bounded by Eq. (20.2).

Lemma 20.4. Suppose that A ∈ L(H) is self-adjoint (i.e. A = A∗) then

σ(A) ⊂
[
−‖A‖op , ‖A‖op

]
⊂ R.

Proof. Writing λ = α+ iβ with α, β ∈ R, then

‖(A+ α+ iβ)ψ‖2 = ‖(A+ α)ψ‖2 + |β|2 ‖ψ‖2 + 2 Re((A+ α)ψ, iβψ)

= ‖(A+ α)ψ‖2 + |β|2 ‖ψ‖2 (20.3)

wherein we have used

Re [iβ((A+ α)ψ,ψ)] = β Im((A+ α)ψ,ψ) = 0

since
((A+ α)ψ,ψ) = (ψ, (A+ α)ψ) = ((A+ α)ψ,ψ).

Eq. (20.3) along with Lemma 20.3 shows that λ /∈ σ(A) if β 6= 0, i.e. σ(A) ⊂ R.
The fact that σ (A) is now contained in

[
−‖A‖op , ‖A‖op

]
is a consequence of

Exercise 20.3.

Remark 20.5. It is not true that σ(A) ⊂ R implies A = A∗. For example let

A =

(
0 1
0 0

)
on H = C2, then σ(A) = {0} yet A 6= A∗.

Example 20.6. Let S ∈ L(H) be a (not necessarily) normal operator. The proof
of Lemma 20.3 gives λ ∈ σ(S) if Eq. (20.1) holds. However the converse is not
always valid unless S is normal. For example, let S : `2 → `2 be the shift,
S(ω1, ω2, . . . ) = (0, ω1, ω2, . . . ). Then for any λ ∈ D := {z ∈ C : |z| < 1} ,

‖(S − λ)ψ‖ = ‖Sψ − λψ‖ ≥ |‖Sψ‖ − |λ| ‖ψ‖| = (1− |λ|) ‖ψ‖

and so there does not exists an approximate sequence of eigenvectors for (S, λ) .
However, as we will now show, σ (S) = D̄.

To prove this it suffices to show by Remark 20.2 and Exercise 20.3 that
D ⊂ σ (S∗) . For if this is the case then D̄ ⊂ σ (S∗) ⊂ D̄ and hence σ (S) = D̄
since D̄ is invariant under complex conjugation.

A simple computation shows,

S∗(ω1, ω2, . . . ) = (ω2, ω3, . . . )

and ω = (ω1, ω2, . . . ) is an eigenvector for S∗ with eigenvalue λ ∈ C iff

0 = (S∗ − λI) (ω1, ω2, . . . ) = (ω2 − λω1, ω3 − λω2, . . . ).

Solving these equation shows

ω2 = λω1, ω3 = λω2 = λ2ω1 , . . . , ωn = λn−1ω1, . . . .

Hence if λ ∈ D, we may let ω1 = 1 above to find

S∗(1, λ, λ2, . . . ) = λ(1, λ, λ2, . . . )

where (1, λ, λ2, . . . ) ∈ `2. Thus we have shown λ is an eigenvalue for S∗ for all
λ ∈ D and hence D ⊂ σ(S∗).

Lemma 20.7. Let H = `2 (Z) and let A : H → H be defined by

Af (k) = i (f (k + 1)− f (k − 1)) for all k ∈ Z.

Then:

1. A is a bounded self-adjoint operator.
2. A has no eigenvalues.
3. σ (A) = [−2, 2] .

Proof. For another (simpler) proof of this lemma, see Exercise 40.1 below.
1. Since

‖Af‖2 ≤ ‖f (·+ 1)‖2 + ‖f (· − 1)‖2 = 2 ‖f‖2 ,

‖A‖op ≤ 2 <∞. Moreover, for f, g ∈ `2 (Z) ,

〈Af |g〉 =
∑
k

i (f (k + 1)− f (k − 1)) ḡ (k)

=
∑
k

if (k) ḡ (k − 1)−
∑
k

if (k) ḡ (k + 1)

=
∑
k

f (k)Ag (k) = 〈f |Ag〉,
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which shows A = A∗.
2. From Lemma 20.4, we know that σ (A) ⊂ [−2, 2] . If λ ∈ [−2, 2] and f ∈ H

satisfies Af = λf, then

f (k + 1) = −iλf (k) + f (k − 1) for all k ∈ Z. (20.4)

This is a second order difference equations which can be solved analogously to
second order ordinary differential equations. The idea is to start by looking for a
solution of the form f (k) = αk. Then Eq. (20.4) becomes, αk+1 = −iλαk+αk−1

or equivalently that
α2 + iλα− 1 = 0.

So we will have a solution if α ∈ {α±} where

α± =
−iλ±

√
4− λ2

2
.

For |λ| 6= 2, there are two distinct roots and the general solution to Eq. (20.4)
is of the form

f (k) = c+α
k
+ + c−α

k
− (20.5)

for some constants c± ∈ C and |λ| = 2, the general solution has the form

f (k) = cαk+ + dkαk+ (20.6)

Since in all cases, |α±| = 1
4

(
λ2 + 4− λ2

)
= 1, it follows that neither of these

functions, f, will be in `2 (Z) unless they are identically zero. This shows that
A has no eigenvalues.

3. The above argument suggests a method for constructing approximate
eigenfunctions. Namely, let λ ∈ [−2, 2] and define fn (k) := 1|k|≤nα

k where
α = α+. Then a simple computation shows

lim
n→∞

‖(A− λI) fn‖2
‖fn‖2

= 0 (20.7)

and therefore λ ∈ σ (A) .

Exercise 20.5. Verify Eq. (20.7). Also show by explicit computations that

lim
n→∞

‖(A− λI) fn‖2
‖fn‖2

6= 0

if λ /∈ [−2, 2] .

The next couple of results will be needed for the next section.

Theorem 20.8 (Rayleigh quotient). Suppose T ∈ L(H) := L(H,H) is a
bounded self-adjoint operator, then

‖T‖ = sup
f 6=0

|〈f |Tf〉|
‖f‖2

.

Moreover if there exists a non-zero element f ∈ H such that

|〈Tf |f〉|
‖f‖2

= ‖T‖,

then f is an eigenvector of T with Tf = λf and λ ∈ {±‖T‖}.
Proof. Let

M := sup
f 6=0

|〈f |Tf〉|
‖f‖2

.

We wish to show M = ‖T‖. Since

|〈f |Tf〉| ≤ ‖f‖‖Tf‖ ≤ ‖T‖‖f‖2,

we see M ≤ ‖T‖. Conversely let f, g ∈ H and compute

〈f + g|T (f + g)〉 − 〈f − g|T (f − g)〉
= 〈f |Tg〉+ 〈g|Tf〉+ 〈f |Tg〉+ 〈g|Tf〉

= 2[〈f |Tg〉+ 〈Tg|f〉] = 2[〈f |Tg〉+ 〈f |Tg〉]
= 4Re〈f |Tg〉.

Therefore, if ‖f‖ = ‖g‖ = 1, it follows that

|Re〈f |Tg〉| ≤ M

4

{
‖f + g‖2 + ‖f − g‖2

}
=
M

4

{
2‖f‖2 + 2‖g‖2

}
= M.

By replacing f be eiθf where θ is chosen so that eiθ〈f |Tg〉 is real, we find

|〈f |Tg〉| ≤M for all ‖f‖ = ‖g‖ = 1.

Hence
‖T‖ = sup

‖f‖=‖g‖=1

|〈f |Tg〉| ≤M.

If f ∈ H \ {0} and ‖T‖ = |〈Tf |f〉|/‖f‖2 then, using Schwarz’s inequality,

‖T‖ =
|〈Tf |f〉|
‖f‖2

≤ ‖Tf‖
‖f‖

≤ ‖T‖. (20.8)

This implies |〈Tf |f〉| = ‖Tf‖‖f‖ and forces equality in Schwarz’s inequality.
So by Theorem 18.2, Tf and f are linearly dependent, i.e. Tf = λf for some
λ ∈ C. Substituting this into (20.8) shows that |λ| = ‖T‖. Since T is self-adjoint,

λ‖f‖2 = 〈λf |f〉 = 〈Tf |f〉 = 〈f |Tf〉 = 〈f |λf〉 = λ̄〈f |f〉 = λ̄ ‖f‖2 ,

which implies that λ ∈ R and therefore, λ ∈ {±‖T‖}.
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20.1 The Spectral Theorem for Self Adjoint Compact
Operators

For the rest of this section, K ∈ K(H) := K(H,H) will be a self-adjoint compact
operator or S.A.C.O. for short. Because of Proposition 19.30, we might expect
compact operators to behave very much like finite dimensional matrices. This
is typically the case as we will see below.

Example 20.9 (Model S.A.C.O.). Let H = `2 and K be the diagonal matrix

K =


λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
. . .

. . .

 ,

where limn→∞ |λn| = 0 and λn ∈ R. Then K is a self-adjoint compact operator.
This assertion was proved in Example 19.26.

The main theorem (Theorem 20.11) of this subsection states that up to
unitary equivalence, Example 20.9 is essentially the most general example of an
S.A.C.O.

Proposition 20.10. Let K be a S.A.C.O., then either λ = ‖K‖ or λ = −‖K‖
is an eigenvalue of K.

For those who have done Exercise 19.15, that exercise along with
Theorem 20.8 constitutes a proof.. Without loss of generality we may
assume that K is non-zero since otherwise the result is trivial. By Theorem
20.8, there exists un ∈ H such that ‖un‖ = 1 and

|〈un|Kun〉|
‖un‖2

= |〈un|Kun〉| −→ ‖K‖ as n→∞. (20.9)

By passing to a subsequence if necessary, we may assume that λ :=
limn→∞〈un|Kun〉 exists and λ ∈ {±‖K‖}. By passing to a further subsequence
if necessary, we may assume, using the compactness of K, that Kun is conver-
gent as well. We now compute:

0 ≤ ‖Kun − λun‖2 = ‖Kun‖2 − 2λ〈Kun|un〉+ λ2

≤ λ2 − 2λ〈Kun|un〉+ λ2

→ λ2 − 2λ2 + λ2 = 0 as n→∞.

Hence
Kun − λun → 0 as n→∞ (20.10)

and therefore

u := lim
n→∞

un =
1

λ
lim
n→∞

Kun

exists. By the continuity of the inner product, ‖u‖ = 1 6= 0. By passing to the
limit in Eq. (20.10) we find that Ku = λu.

Theorem 20.11 (Compact Operator Spectral Theorem). Suppose that
K : H → H is a non-zero S.A.C.O., then

1. there exists at least one eigenvalue λ ∈ {±‖K‖}.
2. There are at most countably many non-zero eigenvalues, {λn}Nn=1, where
N =∞ is allowed. (Unless K is finite rank (i.e. dim Ran (K) <∞), N will
be infinite.)

3. The λn’s (including multiplicities) may be arranged so that |λn| ≥ |λn+1|
for all n. If N = ∞ then limn→∞ |λn| = 0. (In particular any eigenspace
for K with non-zero eigenvalue is finite dimensional.)

4. The eigenvectors {ϕn}Nn=1 can be chosen to be an O.N. set such that H =
span{ϕn} ⊕Nul(K).

5. Using the {ϕn}Nn=1 above,

Kf =

N∑
n=1

λn〈f |ϕn〉ϕn for all f ∈ H. (20.11)

6. The spectrum of K is σ(K) = {0} ∪ {λn : n < N + 1} if dimH = ∞,
otherwise σ(K) = {λn : n ≤ N} with N ≤ dimH.

Proof. We will find λn’s and ϕn’s recursively. Let λ1 ∈ {±‖K‖} and ϕ1 ∈ H
such that Kϕ1 = λ1ϕ1 as in Proposition 20.10.

Take M1 = span(ϕ1) so K(M1) ⊂ M1. By Lemma 18.19, KM⊥1 ⊂ M⊥1 .
Define K1 : M⊥1 →M⊥1 via K1 = K|M⊥1 . Then K1 is again a compact operator.
If K1 = 0, we are done. If K1 6= 0, by Proposition 20.10 there exists λ2 ∈
{±‖K1‖} and ϕ2 ∈ M⊥1 such that ‖ϕ2‖ = 1 and K1ϕ2 = Kϕ2 = λ2ϕ2. Let
M2 := span(ϕ1, ϕ2).

Again K (M2) ⊂ M2 and hence K2 := K|M⊥2 : M⊥2 → M⊥2 is compact and
if K2 = 0 we are done. When K2 6= 0, we apply Proposition 20.10 again to find
λ3 ∈ {±‖K‖2} and ϕ3 ∈M⊥2 such that ‖ϕ3‖ = 1 and K2ϕ3 = Kϕ3 = λ3ϕ3.

Continuing this way indefinitely or until we reach a point where Kn = 0,
we construct a sequence {λn}Nn=1 of eigenvalues and orthonormal eigenvectors
{ϕn}Nn=1 such that |λn| ≥ |λn+1| with the further property that

|λn| = sup
ϕ⊥{ϕ1,ϕ2,...ϕn−1}

‖Kϕ‖
‖ϕ‖

. (20.12)

When N <∞, the remaining results in the theorem are easily verified. So from
now on let us assume that N =∞.
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If ε := limn→∞ |λn| > 0, then
{
λ−1
n ϕn

}∞
n=1

is a bounded sequence in H.
Hence, by the compactness of K, there exists a subsequence {nk : k ∈ N} of
N such that

{
ϕnk = λ−1

nk
Kϕnk

}∞
k=1

is a convergent. However, since {ϕnk}
∞
k=1

is an orthonormal set, this is impossible and hence we must conclude that
ε := limn→∞ |λn| = 0.

Let M := span{ϕn}∞n=1. Then K(M) ⊂ M and hence, by Lemma 18.19,
K(M⊥) ⊂M⊥. Using Eq. (20.12),

‖K|M⊥‖ ≤
∥∥K|M⊥n ∥∥ = |λn| −→ 0 as n→∞

showing K|M⊥ ≡ 0. Define P0 to be orthogonal projection onto M⊥. Then for
f ∈ H,

f = P0f + (1− P0)f = P0f +

∞∑
n=1

〈f |ϕn〉ϕn

and

Kf = KP0f +K

∞∑
n=1

〈f |ϕn〉ϕn =

∞∑
n=1

λn〈f |ϕn〉ϕn

which proves Eq. (20.11).
Since {λn}∞n=1 ⊂ σ(K) and σ(K) is closed, it follows that 0 ∈ σ(K) and

hence {λn}∞n=1 ∪ {0} ⊂ σ(K). Suppose that z /∈ {λn}∞n=1 ∪ {0} and let d
be the distance between z and {λn}∞n=1 ∪ {0}. Notice that d > 0 because
limn→∞ λn = 0.

A few simple computations show that:

(K − zI)f =
∞∑
n=1

〈f |ϕn〉(λn − z)ϕn − zP0f,

(K − z)−1 exists,

(K − zI)−1f =

∞∑
n=1

〈f |ϕn〉(λn − z)−1ϕn − z−1P0f,

and

‖(K − zI)−1f‖2 =
∞∑
n=1

|〈f |ϕn〉|2
1

|λn − z|2
+

1

|z|2
‖P0f‖2

≤
(

1

d

)2
( ∞∑
n=1

|〈f |ϕn〉|2 + ‖P0f‖2
)

=
1

d2
‖f‖2.

We have thus shown that (K − zI)−1 exists, ‖(K − zI)−1‖ ≤ d−1 < ∞ and
hence z /∈ σ(K).

Theorem 20.12 (Structure of Compact Operators). Let K : H → B
be a compact operator. Then there exists N ∈ N∪{∞} , orthonormal subsets

{ϕn}Nn=1 ⊂ H and {ψn}Nn=1 ⊂ B and a sequence {αn}Nn=1 ⊂ R+ such that
α1 ≥ α2 ≥ . . . (with limn→∞ αn = 0 if N =∞), ‖ψn‖ ≤ 1 for all n and

Kf =

N∑
n=1

αn〈f |ϕn〉ψn for all f ∈ H. (20.13)

Proof. SinceK∗K is a self-adjoint compact operator, Theorem 20.11 implies
there exists an orthonormal set {ϕn}Nn=1 ⊂ H and positive numbers {λn}Nn=1

such that

K∗Kψ =

N∑
n=1

λn〈ψ|ϕn〉ϕn for all ψ ∈ H.

Let A be the positive square root of K∗K defined by

Aψ :=

N∑
n=1

√
λn〈ψ|ϕn〉ϕn for all ψ ∈ H.

A simple computation shows, A2 = K∗K, and therefore,

‖Aψ‖2 = 〈Aψ|Aψ〉 =
〈
ψ|A2ψ

〉
= 〈ψ|K∗Kψ〉 = 〈Kψ|Kψ〉 = ‖Kψ‖2

for all ψ ∈ H. Hence we may define a unitary operator, u : Ran(A)→ Ran(K)
by the formula

uAψ = Kψ for all ψ ∈ H.

We then have

Kψ = uAψ =

N∑
n=1

√
λn〈ψ|ϕn〉uϕn (20.14)

which proves the result with ψn := uϕn and αn =
√
λn.

It is instructive to find ψn explicitly and to verify Eq. (20.14) by brute force.

Since ϕn = λ
−1/2
n Aϕn,

ψn = λ−1/2
n uAϕn = λ−1/2

n Kϕn

and
〈Kϕn|Kϕm〉 = 〈ϕn|K∗Kϕm〉 = λnδmn.

This verifies that {ψn}Nn=1 is an orthonormal set. Moreover,
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N∑
n=1

√
λn〈ψ|ϕn〉ψn =

N∑
n=1

√
λn〈ψ|ϕn〉λ−1/2

n Kϕn

= K

N∑
n=1

〈ψ|ϕn〉ϕn = Kψ

since
∑N
n=1〈ψ|ϕn〉ϕn = Pψ where P is orthogonal projection onto Nul(K)⊥.

Second Proof. Let K = u |K| be the polar decomposition of K. Then |K|
is self-adjoint and compact, by Corollary ?? below, and hence by Theorem 20.11
there exists an orthonormal basis {ϕn}Nn=1 for Nul(|K|)⊥ = Nul(K)⊥ such that
|K|ϕn = λnϕn, λ1 ≥ λ2 ≥ . . . and limn→∞ λn = 0 if N =∞. For f ∈ H,

Kf = u |K|
N∑
n=1

〈f |ϕn〉ϕn =

N∑
n=1

〈f |ϕn〉u |K|ϕn =

N∑
n=1

λn〈f |ϕn〉uϕn

which is Eq. (20.13) with ψn := uϕn.

Exercise 20.6 (Continuation of Example 14.12). Let H := L2 ([0, 1] ,m) ,
k (x, y) := min (x, y) for x, y ∈ [0, 1] and define K : H → H by

Kf (x) =

∫ 1

0

k (x, y) f (y) dy.

From Exercise 19.20 we know that K is a compact operator2 on H. Since k is
real and symmetric, it is easily seen that K is self-adjoint. Show:

1. If g ∈ C2 ([0, 1]) with g (0) = 0 = g′ (1) , then Kg′′ = −g. Use this to
conclude 〈Kf |g′′〉 = −〈f |g〉 for all g ∈ C∞c ((0, 1)) and consequently that
Nul(K) = {0} .

2. Now suppose that f ∈ H is an eigenvector of K with eigenvalue λ 6= 0.
Show that there is a version3 of f which is in C ([0, 1])∩C2 ((0, 1)) and this
version, still denoted by f, solves

λf ′′ = −f with f (0) = f ′ (1) = 0. (20.15)

where f ′ (1) := limx↑1 f
′ (x) .

3. Use Eq. (20.15) to find all the eigenvalues and eigenfunctions of K.
4. Use the results above along with the spectral Theorem 20.11, to show{√

2 sin

((
n+

1

2

)
πx

)
: n ∈ N0

}
is an orthonormal basis for L2 ([0, 1] ,m) .

2 See Exercise 19.9 from which it will follow that K is a Hilbert Schmidt operator
and hence compact.

3 A measurable function g is called a version of f iff g = f a.e..
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The Hahn-Banach Theorem

Our goal here is to show that continuous dual, X∗, of a Banach space, X, is
always sufficiently large. This will be the content of the Hahn-Banach Theorem
21.7 below.

Proposition 21.1. Let X be a complex vector space over C and let XR denote
X thought of as a real vector space. If f ∈ X∗ and u = Ref ∈ X∗R then

f(x) = u(x)− iu(ix). (21.1)

Conversely if u ∈ X∗R and f is defined by Eq. (21.1), then f ∈ X∗ and ‖u‖X∗R =
‖f‖X∗ . More generally if p is a semi-norm (see Definition 4.24) on X, then

|f | ≤ p iff u ≤ p.

Proof. Let v(x) = Im f(x), then

v(ix) = Im f(ix) = Im(if(x)) = Ref(x) = u(x).

Therefore

f(x) = u(x) + iv(x) = u(x) + iu(−ix) = u(x)− iu(ix).

Conversely for u ∈ X∗R let f(x) = u(x)− iu(ix). Then

f((a+ ib)x) = u(ax+ ibx)− iu(iax− bx)

= au(x) + bu(ix)− i(au(ix)− bu(x))

while
(a+ ib)f(x) = au(x) + bu(ix) + i(bu(x)− au(ix)).

So f is complex linear. Because |u(x)| = |Ref(x)| ≤ |f(x)|, it follows that
‖u‖ ≤ ‖f‖. For x ∈ X choose λ ∈ S1 ⊂ C such that |f(x)| = λf(x) so

|f(x)| = f(λx) = u(λx) ≤ ‖u‖ ‖λx‖ = ‖u‖‖x‖.

Since x ∈ X is arbitrary, this shows that ‖f‖ ≤ ‖u‖ so ‖f‖ = ‖u‖.1
For the last assertion, it is clear that |f | ≤ p implies that u ≤ |u| ≤ |f | ≤ p.

Conversely if u ≤ p and x ∈ X, choose λ ∈ S1 ⊂ C such that |f(x)| = λf(x).
Then

|f(x)| = λf(x) = f(λx) = u(λx) ≤ p(λx) = p(x)

holds for all x ∈ X.
1 To understand better why ‖f‖ = ‖u‖, notice that

Definition 21.2 (Minkowski functional). A function p : X → [0,∞) is a
Minkowski functional if

1. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X and
2. p(cx) = cp(x) for all c ≥ 0 and x ∈ X.

Example 21.3. Suppose that X = R and

p(x) = inf {λ ≥ 0 : x ∈ λ[−1, 2] = [−λ, 2λ]} .

Notice that if x ≥ 0, then p(x) = x/2 and if x ≤ 0 then p(x) = −x, i.e.

p(x) =

{
x/2 if x ≥ 0
|x| if x ≤ 0.

From this formula it is clear that p(cx) = cp(x) for all c ≥ 0 but not for c < 0.
Moreover, p satisfies the triangle inequality, indeed if p(x) = λ and p(y) = µ,
then x ∈ λ[−1, 2] and y ∈ µ[−1, 2] so that

x+ y ∈ λ[−1, 2] + µ[−1, 2] ⊂ (λ+ µ) [−1, 2]

which shows that p(x+y) ≤ λ+µ = p(x)+p(y). To check the last set inclusion
let a, b ∈ [−1, 2], then

λa+ µb = (λ+ µ)

(
λ

λ+ µ
a+

µ

λ+ µ
b

)
∈ (λ+ µ) [−1, 2]

‖f‖2 = sup
‖x‖=1

|f(x)|2 = sup
‖x‖=1

(|u(x)|2 + |u(ix)|2).

Suppose that M = sup
‖x‖=1

|u(x)| and this supremum is attained at x0 ∈ X with

‖x0‖ = 1. Replacing x0 by −x0 if necessary, we may assume that u(x0) = M.
Since u has a maximum at x0,

0 =
d

dt

∣∣∣∣
0

u

(
x0 + itx0
‖x0 + itx0‖

)
=

d

dt

∣∣∣∣
0

{
1

|1 + it| (u(x0) + tu(ix0))

}
= u(ix0)

since d
dt
|0|1 + it| = d

dt
|0
√

1 + t2 = 0.This explains why ‖f‖ = ‖u‖.
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since [−1, 2] is a convex set and λ
λ+µ + µ

λ+µ = 1.

In what follows X will always be a real or complex vector space at very
least.

Definition 21.4. Let S ⊂ X be a set. Then

1. S is called symmetric (or balanced or circled) if x ∈ S ⇒ αx ∈ S whenever
|α| = 1.

2. S is absorbing if for every x ∈ X, there exists α > 0 such that x ∈ αS.
3. S is linearly open if for every x0 6= 0, {α : αx0 ∈ S} is open.
4. S is star shaped if tx ∈ S for all 0 ≤ t ≤ 1 and x ∈ X.

Remark 21.5. Let S ⊂ X then

1. if S is absorbing or star shaped then 0 ∈ S.
2. If S is nonempty, convex and symmetric then 0 ∈ S.
3. The intersection of convex sets is convex.
4. If 0 ∈ S and S is convex then S is star shaped.

Lemma 21.6. Let X be a real or complex linear space and S ⊂ X be absorbing
and star shaped. Then

N(x) = NS(x) := inf {λ > 0 : x ∈ λS} = [sup {µ > 0 : µx ∈ S}]−1

satisfies

1. If t ≥ 0 then N(tx) = tN(x).
2. {N < 1} ⊂ S ⊂ {N ≤ 1} .
3. If S is convex then N(x+ y) ≤ N(x) +N(y) for all x, y ∈ X.
4. If S is balanced then N(λx) = |λ|N(x) for all λ ∈ F and x ∈ X where F is

either R or C depending on whether X is real or complex.

Proof.

1. Since 0 ∈ S, N(0) = 0 so it suffices to assume t > 0 where

N(tx) = inf {λ : tx ∈ λS} = inf

{
λ : x ∈ λ

t
S

}
= inf {tλ : x ∈ λS} = tN(x).

2. If N(x) < 1, then there exists λ < 1 such that x ∈ λS, i.e. λ−1x ∈ S. Since
S is star shaped, x = λ(λ−1x) ∈ S as well. If x ∈ S, then clearly N(x) ≤ 1,
so we have proved item 2.

3. Now suppose S is convex and λ > N(x) and µ > N(y) so that x ∈ λS and
y ∈ µS. Then there exists a, b ∈ S such that

x+ y = λa+ µb = (λ+ µ)

[
λ

λ+ µ
a+

µ

λ+ µ
b

]
.

Since S is convex, this implies (x+ y) ∈ (λ+ µ)S and therefore that N(x+
y) ≤ λ+ µ.Letting λ ↓ N(x) and µ ↓ N(y) gives the assertion in item 3.

4. Now suppose that S is balanced and λ ∈ F\ {0} (the case λ = 0 being
trivial) and µ > N(x). Then x ∈ µS so |λ|x ∈ |λ|µS and since S is balance,
λx ∈ |λ|µS. Therefore N(λx) ≤ |λ|µ and so letting µ ↓ N(x) we learn
N(λx) ≤ |λ|N(x). This inequality with x replaced by λ−1x implies N(x) ≤
|λ|N(λ−1x) and then replacing λ by λ−1 shows N(x) ≤ |λ|−1

N(λx). This
then implies N(λx) ≥ |λ|N(x) which combined with the opposite inequality
shows N(λx) = |λ|N(x).

BRUCE: Add in the relationship to convex sets and separation theorems,
see Reed and Simon Vol. 1. for example. (See D:\Bruce\Classfil\Analysis\funct-
anal\len.tex where this and more is already done!)

Theorem 21.7 (Hahn-Banach). Let X be a real vector space, p : X → [0,∞)
be a Minikowski functional, M ⊂ X be a subspace f : M → R be a linear
functional such that f ≤ p on M. Then there exists a linear functional F : X →
R such that F |M = f and F ≤ p on X.

Proof. Step 1. We show for all x ∈ X \M there exists and extension F
to M ⊕ Rx with the desired properties. If F exists and α = F (x), then for all
y ∈M and λ ∈ R we must have

f(y) + λα = F (y + λx) ≤ p(y + λx). (21.2)

Dividing this equation by |λ| allows us to conclude that Eq. (21.2) is valid for
all y ∈M and λ ∈ R iff

f(y) + εα ≤ p(y + εx) for all y ∈M and ε ∈ {±1} .

Equivalently put we must have, for all y, z ∈M, that

α ≤ p(y + x)− f (y) and

f(z)− p(z − x) ≤ α.

Hence it is possible to find an α ∈ R such that Eq. (21.2) holds iff

f(z)− p(z − x) ≤ p(y + x)− f (y) for all y, z ∈M. (21.3)
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(If Eq. (21.3) holds, then supz∈M [f(z)− p(z − x)] ≤ infy∈M [p(y + x)− f (y)]
and so we may choose α = supz∈M [f(z)− p(z − x)] for example.) Now Equa-
tion (21.3) is equivalent to having

f (z) + f (y) = f (z + y) ≤ p(y + x) + p(z − x) for all y, z ∈M

and this last equation is valid because

f (z + y) ≤ p (z + y) = p(y + x+ z − x) ≤ p(y + x) + p(z − x),

wherein we use f ≤ p on M and the triangle inequality for p. In conclusion, if
α := supz∈M [f(z)− p(z − x)] and F (y + λx) := f(y) + λα, then by following
the above logic backwards, we have F |M = f and F ≤ p on M ⊕ Rx showing
F is the desired extension.

Step 2. Let us now write F : X → R to mean F is defined on a linear
subspace D(F ) ⊂ X and F : D(F )→ R is linear. For F,G : X → R we will say
F ≺ G if D(F ) ⊂ D(G) and F = G|D(F ), that is G is an extension of F. Let

F = {F : X → R : f ≺ F and F ≤ p on D(F )}.

Then (F ,≺) is a partially ordered set. If Φ ⊂ F is a chain (i.e. a linearly ordered
subset of F) then Φ has an upper bound G ∈ F defined by D(G) =

⋃
F∈Φ

D(F )

and G(x) = F (x) for x ∈ D(F ). Then it is easily checked that D(G) is a
linear subspace, G ∈ F , and F ≺ G for all F ∈ Φ. We may now apply Zorn’s
Lemma2 (see Theorem 2.14 ) to conclude there exists a maximal element F ∈ F .
Necessarily, D(F ) = X for otherwise we could extend F by step (1), violating
the maximality of F. Thus F is the desired extension of f.

Corollary 21.8. Suppose that X is a complex vector space, p : X → [0,∞) is
a semi-norm, M ⊂ X is a linear subspace, and f : M → C is linear functional
such that |f(x)| ≤ p(x) for all x ∈ M. Then there exists F ∈ X ′ (X ′ is the
algebraic dual of X) such that F |M = f and |F | ≤ p.

Proof. Let u = Ref then u ≤ p on M and hence by Theorem 21.7, there
exists U ∈ X ′R such that U |M = u and U ≤ p on M . Define F (x) = U(x) −
iU(ix) then as in Proposition 21.1, F = f on M and |F | ≤ p.

Theorem 21.9. Let X be a normed space M ⊂ X be a closed subspace and
x ∈ X \M . Then there exists f ∈ X∗ such that ‖f‖ = 1, f(x) = δ = d(x,M)
and f = 0 on M .

2 The use of Zorn’s lemma in this step may be avoided in the case that p (x) is a
norm and X may be written as M ⊕ span(β) where β := {xn}∞n=1 is a countable
subset of X. In this case, by step (1) and induction, f : M → R may be extended to
a linear functional F : M ⊕ span(β)→ R with F (x) ≤ p (x) for x ∈ M ⊕ span(β).
This function F then extends by continuity to X and gives the desired extension
of f.

Proof. Defineh : M ⊕ Cx→ Cby h(m + λx) := λδ for all m ∈ M and
λ ∈ C. Then

‖h‖ := sup
m∈M and λ 6=0

|λ| δ
‖m+ λx‖

= sup
m∈M and λ6=0

δ

‖x+m/λ‖
=
δ

δ
= 1

and by the Hahn – Banach theorem there exists f ∈ X∗ such that f |M⊕Cx = h
and ‖f‖ ≤ 1. Since 1 = ‖h‖ ≤ ‖f‖ ≤ 1, it follows that ‖f‖ = 1.

Corollary 21.10 (A density test). Let M be a subspace of a normed space
(X, ‖·‖) . The statement that M is dense in X is equivalent to the statement
that the only f ∈ X∗ which vanishes on M is the zero linear functional.

Proof. If f ∈ X∗ such that f |M = 0, then by continuity f |M̄ = 0. Thus if
M is dense in X it follows that f ≡ 0. Conversely, if M is not dense, then M̄ is a
proper subspace of X and according to Theorem 21.9 there exists f ∈ X∗ \ {0}
such that f |M̄ = 0.

Corollary 21.11. To each x ∈ X, let x̂ ∈ X∗∗ be defined by x̂(f) = f(x) for
all f ∈ X∗. Then the map x ∈ X → x̂ ∈ X∗∗ is a linear (injective) isometry of
Banach spaces. In particular, for all x ∈ X we have,

‖x‖ = sup
f∈X∗\{0}

|f (x)|
‖f‖X∗

= sup
‖f‖X∗=1

|f (x)| .

Proof. Since

|x̂(f)| = |f(x)| ≤ ‖f‖X∗ ‖x‖X for all f ∈ X∗,

it follows that ‖x̂‖X∗∗ ≤ ‖x‖X . Now applying Theorem 21.9 with M = {0} ,
there exists f ∈ X∗ such that ‖f‖ = 1 and |x̂(f)| = f(x) = ‖x‖ , which shows
that ‖x̂‖X∗∗ ≥ ‖x‖X . This shows that x ∈ X → x̂ ∈ X∗∗ is an isometry. Since
isometries are necessarily injective, we are done.

Definition 21.12. A Banach space X is reflexive if the map x ∈ X → x̂ ∈
X∗∗ is surjective.

Example 21.13. Every Hilbert space H is reflexive. This is a consequence of the
Riesz Theorem 18.17.

Exercise 21.1. Show all finite dimensional Banach spaces, X, are reflexive.

Definition 21.14. Let X be a Banach space and (Ω,B, µ) be a measure space.
We say such a function u : Ω → X is weakly measurable if f ◦ u : Ω → C is
measurable for all f ∈ X∗. A weakly measurable function u : Ω → X is said to
be integrable if there exists U ∈ L1 (Ω,B, µ) such that ‖u (ω)‖ ≤ U (ω) for all
ω ∈ Ω.
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Exercise 21.2. Suppose that X is a separable Banach space. Show there exists
ϕn ∈ X∗ such that

‖x‖ = sup
n
|ϕn(x)| for all x ∈ X. (21.4)

Use this to conclude that Borel σ – algebra of X and the σ – algebra generated
by ϕ ∈ X∗ are the same, i.e. σ(X∗) = B. So if (Ω,B, µ) is a measure space and
X is separable, a function u : Ω → X is weakly integrable iff u : Ω → X is
B/BX – measurable and ∫

Ω

‖u (ω)‖ dµ (ω) <∞.

Theorem 21.15 (Reflexive Integration Theory). Suppose that X is a Ba-
nach space and (Ω,B, µ) is a measure space. The collection of weakly integrable
functions, u : Ω → X, is a vector space and for each weakly integrable u we
have ũ ∈ X∗∗ where

ũ (f) :=

∫
Ω

[f ◦ u] dµ for all f ∈ X∗. (21.5)

If we further assume X is reflexive, there exists a unique x0 ∈ X such that
ũ = x̂0 and we denote x0 by

∫
Ω
u dµ. This integral in linear and

∫
Ω
u dµ is the

unique element of X such that

f

(∫
Ω

u dµ

)
=

∫
Ω

[f ◦ u] dµ for all f ∈ X∗. (21.6)

Moreover if ‖u (·)‖ ≤ U ∈ L1 (Ω,B, µ) , then∥∥∥∥∫
Ω

u dµ

∥∥∥∥
X

≤ ‖U‖1 =

∫
Ω

U dµ.

Proof. The collection of weakly integrable functions is easily seen to be a
vector space. If u : Ω → X is weakly integrable, it is easy to check that ũ is
linear. Moreover, since

|f ◦ u| ≤ ‖f‖X∗ ‖u‖X ≤ ‖f‖X∗ · U

it follows that

|ũ (f)| ≤
∫
Ω

|f ◦ u| dµ ≤ C ‖f‖X∗ .

where C :=
∫
Ω
Udµ < ∞. This shows that ũ ∈ X∗∗. The rest of the proof is

now a simple consequence of this fact and the reflexivity assumption on X.

Exercise 21.3. Suppose that X and Y are Banach spaces, T ∈ L (X,U) ,
(Ω,B, µ) is a measure space, and u : Ω → X is an integrable function in
the sense that;

1. For all λ ∈ X∗, λ ◦ u ∈ L1 (µ) and
2. there exists a unique element x ∈ X (denoted by

∫
Ω
u (ω) dµ (ω)) such that

Eq. (21.6) holds.

Show T ◦ u : Ω → Y is an integrable function is the above sense and∫
Ω

T [u (ω)] dµ (ω) = T

∫
Ω

u (ω) dµ (ω) .

[For situations where the hypothesis of this exercise hold see Theorems 17.15
and 21.15.]

Definition 21.16. For subsets, M ⊂ X and N ⊂ X∗, let

M0 := {f ∈ X∗ : f |M = 0} and

N⊥ := {x ∈ X : f(x) = 0 for all f ∈ N}.

We call M0 the annihilator of M and N⊥ the backwards annihilator of N.

Lemma 21.17. Let M ⊂ X and N ⊂ X∗, then

1. M0 and N⊥ are always closed subspace of X∗ and X respectively.

2. If M is a subspace of X, then
(
M0
)⊥

= M̄.

3. If N is a subspace, then N̄ ⊂
(
N⊥

)0
with equality if X is reflexive. Also

see Exercise 21.4, Example 21.18, and Proposition 21.23 below.

Proof. Since

M0 = ∩x∈MNul(x̂) and N⊥ = ∩f∈MNul(f),

M0 and N⊥ are both formed as an intersection of closed subspaces and hence
are themselves closed subspaces.

If x ∈ M, then f(x) = 0 for all f ∈ M0 so that x ∈
(
M0
)⊥

and hence

M̄ ⊂
(
M0
)⊥
. If x /∈ M̄, then there exists (by Theorem 21.9) f ∈ X∗ such that

f |M = 0 while f(x) 6= 0, i.e. f ∈ M0 yet f(x) 6= 0. This shows x /∈
(
M0
)⊥

and we have shown
(
M0
)⊥ ⊂ M̄. The proof of Item 3. is left to the reader in

Exercise 21.4.

Exercise 21.4. Prove Item 3. of Lemma 21.17, i.e. if If N is a subspace of X∗,

then N̄ ⊂
(
N⊥

)0
with equality if X is reflexive.. Also show that it is possible

that N̄ 6=
(
N⊥

)0
. Hint: let X = Y ∗ where Y is a non-reflexive Banach space

(see Theorem 14.21 and Theorem 21.20 below) and take N = Ŷ ⊂ Y ∗∗ = X∗.
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Example 21.18 (Another exmaple where N̄ 6=
(
N⊥

)0
). As in Exercise 38.2, let

(X, τ) be a compact Hausdorff space which supports a positive measure ν on
B = σ (τ) such that ν (X) 6=

∑
x∈X ν ({x}) , i.e. ν is a not a counting type mea-

sure. Recall that C (X)
∗

is isomorphic to the space of complex Radon measures
on (X,B) and let λ ∈ C (X)

∗∗
be defined by

λ (µ) =
∑
x∈X

µ ({x}) .

Then take

N :=

{
µ ∈ C (X)

∗
: λ (µ) =

∑
x∈X

µ ({x}) = 0

}
which is a closed subspace C (X)

∗
. If o ∈ X is a fixed point we will have

µx := δx − δo ∈ N for all x ∈ X and therefore if f ∈ N⊥ we must have
0 = µx (f) = f (x)− f (o) for all x ∈ X which shows that f = c is constant. We
also know that µ = ν −

∑
x∈X ν ({x}) δx ∈ N and therefore

0 = µ (f) = µ (c) = c ·

[
ν (X)−

∑
x∈X

ν ({x})

]

from which it follows that c = 0. Therefore we have shown N⊥ = {0} and

therefore
(
N⊥

)0
= C (X)

∗
which properly contains N.

Proposition 21.19. Suppose X is a Banach space, then X∗∗∗ = (̂X∗)⊕
(
X̂
)0

where (
X̂
)0

= {λ ∈ X∗∗∗ : λ (x̂) = 0 for all x ∈ X} .

In particular X is reflexive iff X∗ is reflexive.

Proof. Let ψ ∈ X∗∗∗ and define fψ ∈ X∗ by fψ(x) := ψ(x̂) for all x ∈ X
and set ψ′ := ψ − f̂ψ. For x ∈ X (so x̂ ∈ X∗∗) we have

ψ′(x̂) = ψ(x̂)− f̂ψ(x̂) = fψ(x)− x̂(fψ) = fψ(x)− fψ(x) = 0.

This shows ψ′ ∈ X̂0 and we have shown X∗∗∗ = X̂∗+ X̂0. If ψ ∈ X̂∗∩ X̂0, then
ψ = f̂ for some f ∈ X∗ and 0 = f̂(x̂) = x̂(f) = f(x) for all x ∈ X, i.e. f = 0 so

ψ = 0. Therefore X∗∗∗ = X̂∗ ⊕ X̂0 as claimed.
If X is reflexive, then X̂ = X∗∗ and so X̂0 = {0} showing (X∗)

∗∗
= X∗∗∗ =

(̂X∗), i.e. X∗ is reflexive. Conversely if X∗ is reflexive we conclude that
(
X̂
)0

=

{0} and therefore

X∗∗ = {0}⊥ =
(
X̂0
)⊥

= X̂,

which shows X̂ is reflexive. Here we have used(
X̂0
)⊥

= X̂ = X̂

since X̂ is a closed subspace of X∗∗.

Theorem 21.20 (Continuation of Theorem 14.21). Let X be an infinite
set, µ : X → (0,∞) be a function, p ∈ [1,∞], q := p/ (p− 1) be the conjugate
exponent and for f ∈ `q (µ) define ϕf : `p (µ)→ F by

ϕf (g) :=
∑
x∈X

f (x) g (x)µ (x) . (21.7)

1. `p (µ) is reflexive for p ∈ (1,∞) .
2. The map ϕ : `1 (µ)→ `∞ (X)

∗
is not surjective.

3. `1 (µ) and `∞ (X) are not reflexive.

See Lemma 21.21 below and Exercise 38.2 above for more examples of non-
reflexive spaces.

Proof.

1. This basically follows from two applications of item 3 of Theorem 14.21.
More precisely if λ ∈ `p (µ)

∗∗
, let λ̃ ∈ `q (µ)

∗
be defined by λ̃ (g) = λ (ϕg)

for g ∈ `q (µ) . Then by item 3., there exists f ∈ `p (µ) such that, for all
g ∈ `q (µ) ,

λ (ϕg) = λ̃ (g) = ϕf (g) = ϕg (f) = f̂ (ϕg) .

Since `p (µ)
∗

= {ϕg : g ∈ `q (µ)} , this implies that λ = f̂ and so `p (µ) is
reflexive.

2. Recall c0 (X) as defined in Notation 14.20 and is a closed subspace of
`∞ (X) , see Exercise 14.6. Let 1 ∈ `∞ (X) denote the constant function
1 on X. Notice that ‖1− f‖∞ ≥ 1 for all f ∈ c0 (X) and therefore, by the
Hahn - Banach Theorem, there exists λ ∈ `∞ (X)

∗
such that λ (1) = 0 while

λ|c0(X) ≡ 0. Now if λ = ϕf for some f ∈ `1 (µ) , then µ (x) f (x) = λ (δx) = 0
for all x and f would have to be zero. This is absurd.

3. As we have seen `1 (µ)
∗ ∼= `∞ (X) while `∞ (X)

∗ ∼= c0 (X)
∗ 6= `1 (µ) . Let

λ ∈ `∞ (X)
∗

be the linear functional as described above. We view this as
an element of `1 (µ)

∗∗
by using

λ̃ (ϕg) := λ (g) for all g ∈ `∞ (X) .

Suppose that λ̃ = f̂ for some f ∈ `1 (µ) , then

λ (g) = λ̃ (ϕg) = f̂ (ϕg) = ϕg (f) = ϕf (g) .

But λ was constructed in such a way that λ 6= ϕf for any f ∈ `1 (µ) . It now
follows from Proposition 21.19 that `1 (µ)

∗ ∼= `∞ (X) is also not reflexive.
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Exercise 21.5. Suppose p ∈ (1,∞) and µ is a σ – finite measure on a measur-
able space (X,M), then Lp(X,M, µ) is reflexive. Hint: model your proof on
the proof of item 1. of Theorem 21.20 making use of Theorem 29.6.

Lemma 21.21. Suppose that (X, o) is a pointed Hausdorff topological space
(i.e. o ∈ X is a fixed point) and ν is a finite measure on BX such that

1. supp(ν) = X while ν ({o}) = 0 and
2. there exists fn ∈ C (X) such that fn → 1{o} boundedly as n→∞.

(For example suppose X = [0, 1], o = 0, and µ = m.)
Then the map

g ∈ L1 (ν)→ ϕg ∈ L∞ (ν)
∗

is not surjective and the Banach space L1 (ν) is not reflexive. (In other words,
Theorem 29.6 may fail when p =∞ and L1 - spaces need not be reflexive.)

Proof. Since supp(ν) = X, if f ∈ C (X) we have

‖f‖L∞(ν) = sup {|f (x)|x ∈ X}

and we may view C (X) as a closed subspace of L∞ (ν) . For f ∈ C (X) , let
λ (f) = f (o) . Then ‖λ‖C(X)∗ = 1, and therefore by Corollary 21.8 of the Hahn-

Banach Theorem, there exists an extension Λ ∈ (L∞ (ν))∗ such that λ = Λ|C(X)

and ‖Λ‖ = 1.
If Λ = ϕg for some g ∈ L1 (ν) then we would have

f (o) = λ (f) = Λ(f) = ϕg(f) =

∫
X

fgdν for all f ∈ C (X) .

Applying this equality to the {fn}∞n=1 in item 2. of the statement of the lemma
and then passing to the limit using the dominated convergence theorem, we
arrive at the following contradiction;

1 = lim
n→∞

fn (o) = lim
n→∞

∫
X

fngdν =

∫
X

1{o}gdν = 0.

Hence we must conclude that Λ 6= ϕg for any g ∈ L1 (ν) .
Since, by Theorem 29.6, the map f ∈ L∞ (ν)→ ϕf ∈ L1 (ν)

∗
is an isometric

isomorphism of Banach spaces we may define L ∈ L1 (ν)
∗∗

by

L (ϕf ) := Λ (f) for all f ∈ L∞ (ν) .

If L were to equal ĝ for some g ∈ L1 (ν) , then

Λ (f) = L (ϕf ) = ĝ (ϕf ) = ϕf (g) =

∫
X

fgdν

for all f ∈ C (X) ⊂ L∞ (ν) . But we have just seen this is impossible and
therefore L 6= ĝ for any g ∈ L1 (ν) and thus L1 (ν) is not reflexive.

21.0.1 Hahn – Banach Theorem Problems

Exercise 21.6. Suppose that f : [a, b]→ X is a continuous function such that
ḟ(t) exists for t ∈ (a, b) and ḟ extends to a continuous function on [a, b]. Then

‖f(b)− f(a)‖ ≤
∫ b

a

‖ḟ(t)‖dt ≤ (b− a) ·
∥∥∥ḟ∥∥∥

∞
, (21.8)

where
∥∥∥ḟ∥∥∥

∞
:= supa<t<b

∥∥∥ḟ (t)
∥∥∥
X
. Hint: the Hahn Banach Theorem 21.7 (or

Corollary 21.8) implies

‖f(b)− f(a)‖ = sup
λ∈X∗, λ 6=0

|λ(f(b))− λ(f(a))|
‖λ‖

.

Exercise 21.7. Prove Theorem 32.43 using the following strategy.

1. Use the results from the proof in the text of Theorem 32.43 that

s→
∫ d

c

f(s, t)dt and t→
∫ b

a

f(s, t)ds

are continuous maps.
2. For the moment take X = R and prove Eq. (32.31) holds by first proving it

holds when f (s, t) = smtn with m,n ∈ N0. Then use this result along with
Theorem 32.39 to show Eq. (32.31) holds for all f ∈ C ([a, b]× [c, d],R) .

3. For the general case, use the special case proved in item 2. along with Hahn
Banach Theorem 21.7 (or Corollary 21.8).

Exercise 21.8 (Banach Valued Liouville’s Theorem). (This exercise re-
quires knowledge of complex variables.) Let X be a Banach space and f :
C→X be a function which is complex differentiable at all points z ∈ C, i.e.
f ′ (z) := limh→0 (f (z + h)− f(z) /h exists for all z ∈ C. If we further suppose
that M := supz∈C ‖f (z)‖ <∞, then f is constant. Hint: use the Hahn Banach
Theorem 21.7 (or Corollary 21.8) and the fact the result holds if X = C.

Exercise 21.9. ]Let M be a finite dimensional subspace of a normed space,
X. Show there exists a closed subspace, N, such that X = M ⊕ N. Hint: let
β = {x1, . . . , xn} ⊂M be a basis for M and construct N making use of λi ∈ X∗
which you should construct to satisfy,

λi(xj) = δij =

{
1 if i = j
0 if i 6= j.

Exercise 21.10. Folland 5.21, p. 160.
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Exercise 21.11. Let X be a Banach space such that X∗ is separable. Show
X is separable as well. (The converse is not true as can be seen by taking
X = `1 (N) .) Hint: use the greedy algorithm, i.e. suppose D ⊂ X∗ \ {0} is a
countable dense subset of X∗, for ` ∈ D choose x` ∈ X such that ‖x`‖ = 1 and
|`(x`)| ≥ 1

2‖`‖.

Exercise 21.12. Show that any separable Banach space X for which X∗ is not
separable is not reflexive. In particular you may conclude that L1 ([0, 1] ,m) is
not reflexive where m is Lebesgue measure.

Exercise 21.13. Folland 5.26.

21.0.2 *Quotient spaces, adjoints, and more reflexivity

Definition 21.22. Let X and Y be Banach spaces and A : X → Y be a linear
operator. The transpose of A is the linear operator A† : Y ∗ → X∗ defined by(
A†f

)
(x) = f(Ax) for f ∈ Y ∗ and x ∈ X. The null space of A is the subspace

Nul(A) := {x ∈ X : Ax = 0} ⊂ X. For M ⊂ X and N ⊂ X∗ let

M0 := {f ∈ X∗ : f |M = 0} and

N⊥ := {x ∈ X : f(x) = 0 for all f ∈ N}.

Proposition 21.23 (Basic properties of transposes and annihilators).

1. ‖A‖ =
∥∥A†∥∥ and A††x̂ = Âx for all x ∈ X.

2. M0 and N⊥ are always closed subspaces of X∗ and X respectively.

3.
(
M0
)⊥

= M̄.

4. N̄ ⊂
(
N⊥

)0
with equality when X is reflexive. (See Exercise 21.4, Example

21.18 above which shows that N̄ 6=
(
N⊥

)0
in general.)

5. Nul(A) = Ran(A†)⊥ and Nul(A†) = Ran(A)0. Moreover, Ran(A) =

Nul(A†)⊥ and if X is reflexive, then Ran(A†) = Nul(A)0.

6. X is reflexive iff X∗ is reflexive. More generally X∗∗∗ = X̂∗ ⊕ X̂0 where

X̂0 = {λ ∈ X∗∗∗ : λ (x̂) = 0 for all x ∈ X} .

Proof.

1.

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

sup
‖f‖=1

|f(Ax)|

= sup
‖f‖=1

sup
‖x‖=1

∣∣A†f(x)
∣∣ = sup

‖f‖=1

∥∥A†f∥∥ =
∥∥A†∥∥ .

2. This is an easy consequence of the assumed continuity off all linear func-
tionals involved.

3. If x ∈ M, then f(x) = 0 for all f ∈ M0 so that x ∈
(
M0
)⊥
. Therefore

M̄ ⊂
(
M0
)⊥
. If x /∈ M̄, then there exists f ∈ X∗ such that f |M = 0 while

f(x) 6= 0, i.e. f ∈ M0 yet f(x) 6= 0. This shows x /∈
(
M0
)⊥

and we have

shown
(
M0
)⊥ ⊂ M̄.

4. It is again simple to show N ⊂
(
N⊥

)0
and therefore N̄ ⊂

(
N⊥

)0
. Moreover,

as above if f /∈ N̄ there exists ψ ∈ X∗∗ such that ψ|N̄ = 0 while ψ(f) 6= 0.
If X is reflexive, ψ = x̂ for some x ∈ X and since g(x) = ψ(g) = 0 for
all g ∈ N̄ , we have x ∈ N⊥. On the other hand, f(x) = ψ(f) 6= 0 so

f /∈
(
N⊥

)0
. Thus again

(
N⊥

)0 ⊂ N̄ .
5.

Nul(A) = {x ∈ X : Ax = 0} = {x ∈ X : f(Ax) = 0 ∀ f ∈ X∗}
=
{
x ∈ X : A†f(x) = 0 ∀ f ∈ X∗

}
=
{
x ∈ X : g(x) = 0 ∀ g ∈ Ran(A†)

}
= Ran(A†)⊥.

Similarly,

Nul(A†) =
{
f ∈ Y ∗ : A†f = 0

}
=
{
f ∈ Y ∗ : (A†f)(x) = 0 ∀ x ∈ X

}
= {f ∈ Y ∗ : f(Ax) = 0 ∀ x ∈ X}
=
{
f ∈ Y ∗ : f |Ran(A) = 0

}
= Ran(A)0.

6. Let ψ ∈ X∗∗∗ and define fψ ∈ X∗ by fψ(x) = ψ(x̂) for all x ∈ X and set

ψ′ := ψ − f̂ψ. For x ∈ X (so x̂ ∈ X∗∗) we have

ψ′(x̂) = ψ(x̂)− f̂ψ(x̂) = fψ(x)− x̂(fψ) = fψ(x)− fψ(x) = 0.

This shows ψ′ ∈ X̂0 and we have shown X∗∗∗ = X̂∗ + X̂0. If ψ ∈ X̂∗ ∩ X̂0,
then ψ = f̂ for some f ∈ X∗ and 0 = f̂(x̂) = x̂(f) = f(x) for all x ∈ X, i.e.

f = 0 so ψ = 0. Therefore X∗∗∗ = X̂∗ ⊕ X̂0 as claimed. If X is reflexive,
then X̂ = X∗∗ and so X̂0 = {0} showing X∗∗∗ = X̂∗, i.e. X∗ is reflexive.
Conversely if X∗ is reflexive we conclude that X̂0 = {0} and therefore

X∗∗ = {0}⊥ =
(
X̂0
)⊥

= X̂, so that X is reflexive.

Alternative proof. Notice that fψ = J†ψ, where J : X → X∗∗ is given
by Jx = x̂, and the composition

f ∈ X∗ ˆ→ f̂ ∈ X∗∗∗ J
†

→ J†f̂ ∈ X∗

is the identity map since
(
J†f̂

)
(x) = f̂(Jx) = f̂(x̂) = x̂(f) = f(x) for all

x ∈ X. Thus it follows thatX∗
ˆ→ X∗∗∗ is invertible iff J† is its inverse which
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can happen iff Nul(J†) = {0} . But as above Nul(J†) = Ran (J)
0

which will
be zero iff Ran(J) = X∗∗ and since J is an isometry this is equivalent to
saying Ran (J) = X∗∗. So we have again shown X∗ is reflexive iff X is
reflexive.

Theorem 21.24 (Banach Space Factor Theorem). Let X be a Banach
space, M ⊂ X be a proper closed subspace, X/M the quotient space, π : X →
X/M the projection map π(x) = x+M for x ∈ X and define the quotient norm
on X/M by

‖π(x)‖X/M = ‖x+M‖X/M = inf
m∈M

‖x+m‖X .

Then:

1. ‖·‖X/M is a norm on X/M.

2. The projection map π : X → X/M has norm 1, ‖π‖ = 1.
3. (X/M, ‖·‖X/M ) is a Banach space.
4. If Y is another normed space and T : X → Y is a bounded linear transfor-

mation such that M ⊂ Nul(T ), then there exists a unique linear transfor-
mation S : X/M → Y such that T = S ◦ π and moreover ‖T‖ = ‖S‖ .

Proof.

1. Clearly ‖x+M‖ ≥ 0 and if ‖x + M‖ = 0, then there exists mn ∈ M such
that ‖x+mn‖ → 0 as n→∞, i.e. x = − lim

n→∞
mn ∈ M̄ = M. Since x ∈M,

x+M = 0 ∈ X/M. If c ∈ C\ {0} , x ∈ X, then

‖cx+M‖ = inf
m∈M

‖cx+m‖ = |c| inf
m∈M

‖x+m/c‖ = |c| ‖x+M‖

because m/c runs through M as m runs through M. Let x1, x2 ∈ X and
m1,m2 ∈M then

‖x1 + x2 +M‖ ≤ ‖x1 + x2 +m1 +m2‖ ≤ ‖x1 +m1‖+ ‖x2 +m2‖.

Taking infimums over m1,m2 ∈M then implies

‖x1 + x2 +M‖ ≤ ‖x1 +M‖+ ‖x2 +M‖.

and we have completed the proof the (X/M, ‖ · ‖) is a normed space.
2. Since ‖π(x)‖ = infm∈M ‖x+m‖ ≤ ‖x‖ for all x ∈ X, ‖π‖ ≤ 1. To see
‖π‖ = 1, let x ∈ X \M so that π(x) 6= 0. Given α ∈ (0, 1), there exists
m ∈M such that

‖x+m‖ ≤ α−1 ‖π(x)‖ .

Therefore,
‖π(x+m)‖
‖x+m‖

=
‖π(x)‖
‖x+m‖

≥ α ‖x+m‖
‖x+m‖

= α

which shows ‖π‖ ≥ α. Since α ∈ (0, 1) is arbitrary we conclude that
‖π(x)‖ = 1.

3. Let π(xn) ∈ X/M be a sequence such that
∑
‖π(xn)‖ <∞. As above there

exists mn ∈M such that ‖π(xn)‖ ≥ 1
2‖xn+mn‖ and hence

∑
‖xn+mn‖ ≤

2
∑
‖π(xn)‖ <∞. Since X is complete, x :=

∞∑
n=1

(xn +mn) exists in X and

therefore by the continuity of π,

π(x) =

∞∑
n=1

π(xn +mn) =

∞∑
n=1

π(xn)

showing X/M is complete.
4. The existence of S is guaranteed by the “factor theorem” from linear alge-

bra. Moreover ‖S‖ = ‖T‖ because

‖T‖ = ‖S ◦ π‖ ≤ ‖S‖ ‖π‖ = ‖S‖

and

‖S‖ = sup
x/∈M

‖S(π(x))‖
‖π(x)‖

= sup
x/∈M

‖Tx‖
‖π(x)‖

≥ sup
x/∈M

‖Tx‖
‖x‖

= sup
x 6=0

‖Tx‖
‖x‖

= ‖T‖ .

Theorem 21.25. Let X be a Banach space. Then

1. Identifying X with X̂ ⊂ X∗∗, the weak – ∗ topology on X∗∗ induces the weak
topology on X. More explicitly, the map x ∈ X → x̂ ∈ X̂ is a homeomor-
phism when X is equipped with its weak topology and X̂ with the relative
topology coming from the weak-∗ topology on X∗∗.

2. X̂ ⊂ X∗∗ is dense in the weak-∗ topology on X∗∗.
3. Letting C and C∗∗ be the closed unit balls in X and X∗∗ respectively, then
Ĉ := {x̂ ∈ C∗∗ : x ∈ C} is dense in C∗∗ in the weak – ∗ topology on X∗∗..

4. X is reflexive iff C is weakly compact.

(See Definition 36.19 for the topologies being used here.)

Proof.
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1. The weak – ∗ topology on X∗∗ is generated by{
f̂ : f ∈ X∗

}
= {ψ ∈ X∗∗ → ψ(f) : f ∈ X∗} .

So the induced topology on X is generated by

{x ∈ X → x̂ ∈ X∗∗ → x̂(f) = f(x) : f ∈ X∗} = X∗

and so the induced topology on X is precisely the weak topology.
2. A basic weak - ∗ neighborhood of a point λ ∈ X∗∗ is of the form

N := ∩nk=1 {ψ ∈ X∗∗ : |ψ(fk)− λ(fk)| < ε} (21.9)

for some {fk}nk=1 ⊂ X∗ and ε > 0. be given. We must now find x ∈ X such
that x̂ ∈ N , or equivalently so that

|x̂(fk)− λ(fk)| = |fk(x)− λ(fk)| < ε for k = 1, 2, . . . , n. (21.10)

In fact we will show there exists x ∈ X such that λ(fk) = fk(x) for
k = 1, 2, . . . , n. To prove this stronger assertion we may, by discarding
some of the fk’s if necessary, assume that {fk}nk=1 is a linearly indepen-
dent set. Since the {fk}nk=1 are linearly independent, the map x ∈ X →
(f1(x), . . . , fn(x)) ∈ Cn is surjective (why) and hence there exists x ∈ X
such that

(f1(x), . . . , fn(x)) = Tx = (λ (f1) , . . . , λ(fn)) (21.11)

as desired.
3. Let λ ∈ C∗∗ ⊂ X∗∗ and N be the weak - ∗ open neighborhood of λ as in Eq.

(21.9). Working as before, given ε > 0, we need to find x ∈ C such that Eq.
(21.10). It will be left to the reader to verify that it suffices again to assume
{fk}nk=1 is a linearly independent set. (Hint: Suppose that {f1, . . . , fm} were
a maximal linearly dependent subset of {fk}nk=1 , then each fk with k > m
may be written as a linear combination {f1, . . . , fm} .) As in the proof of
item 2., there exists x ∈ X such that Eq. (21.11) holds. The problem is
that x may not be in C. To remedy this, let N := ∩nk=1 Nul(fk) = Nul(T ),
π : X → X/N ∼= Cn be the projection map and f̄k ∈ (X/N)

∗
be chosen so

that fk = f̄k ◦ π for k = 1, 2, . . . , n. Then we have produced x ∈ X such
that

(λ (f1) , . . . , λ(fn)) = (f1(x), . . . , fn(x)) = (f̄1(π(x)), . . . , f̄n(π(x))).

Since
{
f̄1, . . . , f̄n

}
is a basis for (X/N)

∗
we find

‖π(x)‖ = sup
α∈Cn\{0}

∣∣∑n
i=1 αif̄i(π(x))

∣∣∥∥∑n
i=1 αif̄i

∥∥ = sup
α∈Cn\{0}

|
∑n
i=1 αiλ(fi)|
‖
∑n
i=1 αifi‖

= sup
α∈Cn\{0}

|λ(
∑n
i=1 αifi)|

‖
∑n
i=1 αifi‖

≤ ‖λ‖ sup
α∈Cn\{0}

‖
∑n
i=1 αifi‖

‖
∑n
i=1 αifi‖

= 1.

Hence we have shown ‖π(x)‖ ≤ 1 and therefore for any α > 1 there
exists y = x + n ∈ X such that ‖y‖ < α and (λ (f1) , . . . , λ(fn)) =
(f1(y), . . . , fn(y)). Hence

|λ(fi)− fi(y/α)| ≤
∣∣fi(y)− α−1fi(y)

∣∣ ≤ (1− α−1) |fi(y)|

which can be arbitrarily small (i.e. less than ε) by choosing α sufficiently
close to 1.

4. Let Ĉ := {x̂ : x ∈ C} ⊂ C∗∗ ⊂ X∗∗. If X is reflexive, Ĉ = C∗∗ is weak - ∗
compact and hence by item 1., C is weakly compact in X. Conversely if C
is weakly compact, then Ĉ ⊂ C∗∗ is weak – ∗ compact being the continuous
image of a continuous map. Since the weak – ∗ topology on X∗∗ is Hausdorff,

it follows that Ĉ is weak – ∗ closed and so by item 3, C∗∗ = Ĉ
weak–∗

= Ĉ. So
if λ ∈ X∗∗, λ/ ‖λ‖ ∈ C∗∗ = Ĉ, i.e. there exists x ∈ C such that x̂ = λ/ ‖λ‖ .
This shows λ = (‖λ‖x)

ˆ
and therefore X̂ = X∗∗.

21.0.3 Hahn-Banach Theorem Problems

Exercise 21.14. Let X be a normed vector space. Show a linear functional,
f : X → C, is bounded iff M := f−1 ({0}) is closed.

Exercise 21.15. Let M be a closed subspace of a normed space, X, and x ∈
X \M. Show M ⊕Cx is closed. Hint: make use of a λ ∈ X∗ which you should
construct so that λ (M) = 0 while λ (x) 6= 0.

Exercise 21.16 (Uses quotient spaces). Let X be an infinite dimensional
normed vector space. Show:

1. There exists a sequence {xn}∞n=1 ⊂ X such that ‖xn‖ = 1 for all n and
‖xm − xn‖ ≥ 1

2 for all m 6= n.
2. Show X is not locally compact.
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22

Baire Category Theorem

Let (X, τ) be a topological space and A ⊂ X. Recall that the interior of
A is defined as

Ao := ∪{V : V is open and V ⊂ A} , (22.1)

i.e. Ao is the largest open subset of A. Similarly the closure of A is defined as

Ā = ∩{F : F closed and A ⊂ F} , (22.2)

i.e. Ā is the smallest closed set containing A.

Exercise 22.1. Suppose that (X, τX) and (Y, τY ) are two topological spaces
and ϕ : X → Y is a homeomorphism, i.e. ϕ is continuous, invertible, and ϕ−1

is continuous. Show ϕ (Ao) = [ϕ (A)]
o

and ϕ
(
Ā
)

= ϕ (A) for all A ⊂ X.

Proposition 22.1 (Interiors, Closures, and Complements). Let (X, τ) be
a topological space and A ⊂ X. Then

1. (Ao)
c

= Ac and
2.
(
Ā
)c

= (Ac)
o
.

Proof. Using Eqs. (22.1) and (22.2) we find,

(Ao)
c

= ∩{V c : V is open and V ⊂ A}
= ∩{V c : V c is closed and Ac ⊂ V c} = Ac

and (
Ā
)c

= [∩{F : F closed and A ⊂ F}]c

= ∪{F c : F closed and A ⊂ F}
= ∪{F c : F c open and F c ⊂ Ac} = (Ac)

o
.

Definition 22.2. Let (X, τ) be a topological space. A set E ⊂ X is said to be
nowhere dense if

(
Ē
)o

= ∅ i.e. Ē has empty interior.

In other words E is nowhere dense if Ē contains no non-empty open subsets
of X. In contrast recall that E is dense in X iff Ē = X which is equivalent to
saying that Ē contains all open subsets of X. Here is a couple of simple remarks
that we will use without comment in the future.

Exercise 22.2. Let (X, τ) be a topological space and E and G be subsets of
X. Prove;

1. E is nowhere dense iff Ec has dense interior.
2. G ⊂ X is dense iff G ∩W 6= ∅ for all ∅ 6= W ⊂o X.

22.1 Metric Space Baire Category Theorem

Theorem 22.3 (Baire Category Theorem). Let (X, ρ) be a complete metric
space.

1. The countable intersection of dense open subsets of X is still dense in X,

i.e. if {Vn}∞n=1 is a sequence of dense open sets, then G :=
∞⋂
n=1

Vn is dense

in X.
2. X is not the countable union of nowhere dense subsets of X, i.e. if {En}∞n=1

is a sequence of nowhere dense sets, then
⋃∞
n=1En ⊂

⋃∞
n=1 Ēn & X and in

particular X 6=
⋃∞
n=1En. In fact we have

⋃∞
n=1En has empty interior.1

Proof. 1. From Exercise 22.2 we must show W ∩G 6= ∅ for all non-empty
open sets W ⊂ X. Since V1 is dense, W ∩V1 6= ∅ and hence there exists x1 ∈ X
and ε1 > 0 such that

B(x1, ε1) ⊂W ∩ V1.

Since V2 is dense, B(x1, ε1) ∩ V2 6= ∅ and hence there exists x2 ∈ X and ε2 > 0
such that

B(x2, ε2) ⊂ B(x1, ε1) ∩ V2.

Continuing this way inductively, we may choose {xn ∈ X and εn > 0}∞n=1 such
that

B(xn, εn) ⊂ B(xn−1, εn−1) ∩ Vn ∀n.

Furthermore we can clearly do this construction in such a way that εn ↓ 0 as
n ↑ ∞. Hence {xn}∞n=1 is Cauchy sequence and x = lim

n→∞
xn exists in X since

1 Take X = R and En = {rn}∞n=1 so that ∪En = Q. Thus ∪En is dense in R so we
certainly can not assert that the countable union of nowhere dense sets is nowhere
dense.
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X is complete. Since B(xn, εn) is closed, x ∈ B(xn, εn) ⊂ Vn so that x ∈ Vn for
all n and hence x ∈ G. Moreover, x ∈ B(x1, ε1) ⊂ W ∩ V1 implies x ∈ W and
hence x ∈W ∩G showing W ∩G 6= ∅.

2. Now suppose that {En} are nowhere dense. Let Fn := Ēn so that F on = ∅,
i.e. X = (F on)

c
= F cn. Thus F cn is a dense open set and therefore G := ∩∞n=1F

c
n

is still dense in X, i.e. X = Ḡ = ∩∞n=1F
c
n. This equivalent to

∅ = Xc =
[
∩∞n=1F

c
n

]c
= [(∩∞n=1F

c
n)
c
]
o

= (∪∞n=1Fn)
o

=
(
∪∞n=1Ēn

)o
,

which is to say ∪∞n=1En ⊂ ∪∞n=1Ēn has empty interior and in particular
∪∞n=1En ⊂ ∪∞n=1Ēn 6= X.

Example 22.4. Suppose that X is a countable set and ρ is a metric on X for
which no single point set is open. [Then (X, ρ) is not complete. Indeed we may
assume X = N and let En := {n} ⊂ N for all n ∈ N. Then En is closed and by
assumption it has empty interior. Since X = ∪n∈NEn, it follows from the Baire
Category Theorem 22.3 that (X, ρ) can not be complete.

For example, take X = Q and ρ (x, y) := |y − x| . More generally, take any
metric on Q which generates the same topology as the metric ρ, then this metric
can not be complete.

22.2 Locally Compact Hausdorff Space Baire Category
Theorem

Here is another version of the Baire Category theorem when X is a locally
compact Hausdorff space.

Theorem 22.5. Let X be a locally compact Hausdorff space.

1. If {Vn}∞n=1 is a sequence of dense open sets, then G :=
∞⋂
n=1

Vn is dense in

X.
2. If {En}∞n=1 is a sequence of nowhere dense sets, then [

⋃∞
n=1En]

o
= ∅ and

in particular X 6=
⋃∞
n=1En.

Proof. As in the proof of Theorem 22.3, the second assertion is a conse-
quence of the first. To finish the proof, if suffices to show G∩W 6= ∅ for all open
sets W ⊂ X. Since V1 is dense, there exists x1 ∈ V1 ∩W and by Proposition
37.7 [below!] there exists U1 ⊂o X such that x1 ∈ U1 ⊂ Ū1 ⊂ V1 ∩W with
Ū1 being compact. Similarly, there exists a non-empty open set U2 such that
U2 ⊂ Ū2 ⊂ U1 ∩ V2. Working inductively, we may find non-empty open sets
{Uk}∞k=1 such that Uk ⊂ Ūk ⊂ Uk−1 ∩Vk. Since ∩nk=1Ūk = Ūn 6= ∅ for all n, the
finite intersection characterization of Ū1 being compact implies that

∅ 6= ∩∞k=1Ūk ⊂ G ∩W.

Definition 22.6. A subset E ⊂ X is meager or of the first category if

E =
∞⋃
n=1

En where each En is nowhere dense. And a set R ⊂ X is called

residual2 if Rc is meager. See Exercise 22.3 below for an equivalent definition
of residual.

Remarks 22.7 For those readers that already know some measure theory may
want to think of meager as being the topological analogue of sets of measure
0 and residual as being the topological analogue of sets of full measure. (This
analogy should not be taken too seriously, see Exercise ??.)

1. R is residual iff R contains a countable intersection of dense open sets.
Indeed if R is a residual set, then there exists nowhere dense sets {En}
such that

Rc = ∪∞n=1En ⊂ ∪∞n=1Ēn.

Taking complements of this equation shows that

∩∞n=1Ē
c
n ⊂ R,

i.e. R contains a set of the form ∩∞n=1Vn with each Vn (= Ēcn) being an
open dense subset of X.
Conversely, if ∩∞n=1Vn ⊂ R with each Vn being an open dense subset of X,
then Rc ⊂ ∪∞n=1V

c
n and hence Rc = ∪∞n=1En where each En = Rc ∩ V cn , is

a nowhere dense subset of X.
2. A countable union of meager sets is meager and any subset of a meager

set is meager. Indeed, if E =
∞⋃
n=1

En is a meager set and F ⊂ E, then

F =
∞⋃
n=1

F ∩ En is meager as well since
[
F ∩ En

]o ⊂ [En]o = ∅ for all n.

3. A countable intersection of residual sets is residual.

Exercise 22.3. Recall that R ⊂ X is a residual set if Rc is meager, i.e. Rc is
the countable union of nowhere dense sets. Show R is residual iff R = ∩∞n=1An
for some {An}∞n=1 such that each An has dense interior, i.e. Aon = X.

Remarks 22.8 The Baire Category Theorems may now be stated as follows.
If X is a complete metric space or X is a locally compact Hausdorff space, then

1. all residual sets are dense in X and

2 Dictionary definition: Relating to or indicating a remainder, “residual quantity.”
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2. Meager sents have empty interior and in particular X is not meager.

It should also be remarked that incomplete metric spaces may be meager.
For example, let X ⊂ C([0, 1]) be the subspace of polynomial functions on [0, 1]
equipped with the supremum norm. Then X = ∪∞n=1En where En ⊂ X denotes
the subspace of polynomials of degree less than or equal to n. You are asked
to show in Exercise 22.4 below that En is nowhere dense for all n. Hence X is
meager and the empty set is residual in X.

Here is an application of Theorem 22.3.

Theorem 22.9. Let N ⊂ C([0, 1],R) be the set of nowhere differentiable
functions. (Here a function f is said to be differentiable at 0 if f ′(0) :=

limt↓0
f(t)−f(0)

t exists and at 1 if f ′(1) := limt↑0
f(1)−f(t)

1−t exists.) Then N is
a residual set so the “generic” continuous functions is nowhere differentiable.

Proof. If f /∈ N , then f ′(x0) exists for some x0 ∈ [0, 1] and by the defini-
tion of the derivative and compactness of [0, 1], there exists n ∈ N such that
|f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]. Thus if we define

En := {f ∈ C([0, 1]) : ∃ x0 ∈ [0, 1] 3 |f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]} ,

then we have just shown N c ⊂ E := ∪∞n=1En. So to finish the proof it suffices
to show (for each n) En is a closed subset of C([0, 1],R) with empty interior.

1. To prove En is closed, let {fm}∞m=1 ⊂ En be a sequence of functions such
that there exists f ∈ C([0, 1],R) such that ‖f − fm‖∞ → 0 as m → ∞. Since
fm ∈ En, there exists xm ∈ [0, 1] such that

|fm(x)− fm(xm)| ≤ n|x− xm| ∀ x ∈ [0, 1]. (22.3)

Since [0, 1] is a compact metric space, by passing to a subsequence if neces-
sary, we may assume x0 = limm→∞ xm ∈ [0, 1] exists. Passing to the limit
in Eq. (22.3), making use of the uniform convergence of fn → f to show
limm→∞ fm(xm) = f(x0), implies

|f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]

and therefore that f ∈ En. This shows En is a closed subset of C([0, 1],R).
2. To finish the proof, we will show E0

n = ∅ by showing for each f ∈ En
and ε > 0 given, there exists g ∈ C([0, 1],R) \ En such that ‖f − g‖∞ < ε.
We now construct g. Since [0, 1] is compact and f is continuous there exists
N ∈ N such that |f(x)− f(y)| < ε/2 whenever |y − x| < 1/N. Let k denote the
piecewise linear function on [0, 1] such that k(mN ) = f(mN ) for m = 0, 1, . . . , N
and k′′(x) = 0 for x /∈ πN := {m/N : m = 0, 1, . . . , N} . Then it is easily seen
that ‖f − k‖u < ε/2 and for x ∈ (mN ,

m+1
N ) that

|k′(x)| =
|f(m+1

N )− f(mN )|
1
N

< Nε/2.

We now make k “rougher” by adding a small wiggly function h which we define
as follows. Let M ∈ N be chosen so that 4εM > 2n and define h uniquely
by h(mM ) = (−1)mε/2 for m = 0, 1, . . . ,M and h′′(x) = 0 for x /∈ πM . Then
‖h‖∞ < ε and |h′(x)| = 4εM > 2n for x /∈ πM . See Figure 22.1 below. Finally

Fig. 22.1. Constgructing a rough approximation, g, to a continuous function f.

define g := k + h. Then

‖f − g‖∞ ≤ ‖f − k‖∞ + ‖h‖∞ < ε/2 + ε/2 = ε

and
|g′(x)| ≥ |h′(x)| − |k′ (x)| > 2n− n = n ∀x /∈ πM ∪ πN .

It now follows from this last equation and the mean value theorem that for any
x0 ∈ [0, 1], ∣∣∣∣g(x)− g(x0)

x− x0

∣∣∣∣ > n

for all x ∈ [0, 1] sufficiently close to x0. This shows g /∈ En and so the proof is
complete.

Here is an application of the Baire Category Theorem 22.5. For more appli-
cations along these lines, see [24] and the references therein.

Proposition 22.10. Suppose that f : R→ R is a function such that f ′(x) ex-
ists for all x ∈ R. Let
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U :=
⋃
ε>0

{
x ∈ R : sup

|y|<ε
|f ′(x+ y)| <∞

}
.

Then U is a dense open set. (It is not true that U = R in general, see Example
25.27 below.)

Proof. It is easily seen from the definition of U that U is open. Let W ⊂o R
be an open subset of R. For k ∈ N, let

Ek :=

{
x ∈W : |f(y)− f(x)| ≤ k |y − x| when |y − x| ≤ 1

k

}
=

⋂
z:|z|≤k−1

{x ∈W : |f(x+ z)− f(x)| ≤ k |z|} ,

which is a closed subset of R since f is continuous. Moreover, if x ∈ W and
M = |f ′(x)| , then

|f(y)− f(x)| = |f ′(x) (y − x) + o (y − x)|
≤ (M + 1) |y − x|

for y close to x. (Here o(y − x) denotes a function such that limy→x o(y −
x)/(y − x) = 0.) In particular, this shows that x ∈ Ek for all k sufficiently
large. Therefore W= ∪∞k=1Ek and since W is not meager by the Baire category
Theorem 22.5, some Ek has non-empty interior. That is there exists x0 ∈ Ek ⊂
W and ε > 0 such that

J := (x0 − ε, x0 + ε) ⊂ Ek ⊂W.

For x ∈ J, we have |f(x+ z)− f(x)| ≤ k |z| provided that |z| ≤ k−1 and
therefore that |f ′(x)| ≤ k for x ∈ J. Therefore x0 ∈ U ∩W showing U is dense.

Remark 22.11. This proposition generalizes to functions f : Rn → Rm in an
obvious way.

For our next application of Theorem 22.3, let X := BC∞ ((−1, 1)) denote
the set of smooth functions f on (−1, 1) such that f and all of its derivatives
are bounded. In the metric

ρ(f, g) :=

∞∑
k=0

2−k
∥∥f (k) − g(k)

∥∥
∞

1 +
∥∥f (k) − g(k)

∥∥
∞

for f, g ∈ X,

X becomes a complete metric space.

Theorem 22.12. Given an increasing sequence of positive numbers {Mn}∞n=1 ,
the set

F :=

{
f ∈ X : lim sup

n→∞

∣∣∣∣f (n)(0)

Mn

∣∣∣∣ ≥ 1

}
is dense in X. In particular, there is a dense set of f ∈ X such that the power
series expansion of f at 0 has zero radius of convergence.

Proof. Step 1. Let n ∈ N. Choose g ∈ C∞c ((−1, 1)) such that ‖g‖∞ < 2−n

while g′(0) = 2Mn and define

fn(x) :=

∫ x

0

dtn−1

∫ tn−1

0

dtn−2 . . .

∫ t2

0

dt1g(t1).

Then for k < n,

f (k)
n (x) =

∫ x

0

dtn−k−1

∫ tn−k−1

0

dtn−k−2 . . .

∫ t2

0

dt1g(t1),

f (n)(x) = g′(x), f
(n)
n (0) = 2Mn and f

(k)
n satisfies∥∥∥f (k)

n

∥∥∥
∞
≤ 2−n

(n− 1− k)!
≤ 2−n for k < n.

Consequently,

ρ(fn, 0) =

∞∑
k=0

2−k

∥∥∥f (k)
n

∥∥∥
∞

1 +
∥∥∥f (k)
n

∥∥∥
∞

≤
n−1∑
k=0

2−k2−n +

∞∑
k=n

2−k · 1 ≤ 2
(
2−n + 2−n

)
= 4 · 2−n.

Thus we have constructed fn ∈ X such that limn→∞ ρ(fn, 0) = 0 while

f
(n)
n (0) = 2Mn for all n.

Step 2. The set

Gn := ∪m≥n
{
f ∈ X :

∣∣∣f (m)(0)
∣∣∣ > Mm

}
is a dense open subset of X. The fact that Gn is open is clear. To see that Gn is
dense, let g ∈ X be given and define gm := g+εmfm where εm := sgn(g(m)(0)).
Then ∣∣∣g(m)

m (0)
∣∣∣ =

∣∣∣g(m)(0)
∣∣∣+
∣∣∣f (m)
m (0)

∣∣∣ ≥ 2Mm > Mm for all m.

Therefore, gm ∈ Gn for all m ≥ n and since
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ρ(gm, g) = ρ(fm, 0)→ 0 as m→∞

it follows that g ∈ Ḡn.
Step 3. By the Baire Category theorem, ∩Gn is a dense subset of X. This

completes the proof of the first assertion since

F =

{
f ∈ X : lim sup

n→∞

∣∣∣∣f (n)(0)

Mn

∣∣∣∣ ≥ 1

}
= ∩∞n=1

{
f ∈ X :

∣∣∣∣f (n)(0)

Mn

∣∣∣∣ ≥ 1 for some n ≥ m
}
⊃ ∩∞n=1Gn.

Step 4. Take Mn = (n!)
2

and recall that the power series expansion for f

near 0 is given by
∑∞
n=0

fn(0)
n! xn. This series can not converge for any f ∈ F

and any x 6= 0 because

lim sup
n→∞

∣∣∣∣fn(0)

n!
xn
∣∣∣∣ = lim sup

n→∞

∣∣∣∣∣fn(0)

(n!)
2 n!xn

∣∣∣∣∣
= lim sup

n→∞

∣∣∣∣∣fn(0)

(n!)
2

∣∣∣∣∣ · lim
n→∞

n! |xn| =∞

where we have used limn→∞ n! |xn| =∞ and lim supn→∞

∣∣∣ fn(0)

(n!)2

∣∣∣ ≥ 1.

Remark 22.13. Given a sequence of real number {an}∞n=0 there always exists
f ∈ X such that f (n)(0) = an. To construct such a function f, let ϕ ∈ C∞c (−1, 1)
be a function such that ϕ = 1 in a neighborhood of 0 and εn ∈ (0, 1) be chosen
so that εn ↓ 0 as n → ∞ and

∑∞
n=0 |an| εnn < ∞. The desired function f can

then be defined by

f(x) =

∞∑
n=0

an
n!
xnϕ(x/εn) =:

∞∑
n=0

gn(x). (22.4)

The fact that f is well defined and continuous follows from the estimate:

|gn(x)| =
∣∣∣an
n!
xnϕ(x/εn)

∣∣∣ ≤ ‖ϕ‖∞
n!
|an| εnn

and the assumption that
∑∞
n=0 |an| εnn <∞. The estimate

|g′n(x)| =
∣∣∣∣ an
(n− 1)!

xn−1ϕ(x/εn) +
an
n!εn

xnϕ′(x/εn)

∣∣∣∣
≤
‖ϕ‖∞

(n− 1)!
|an| εn−1

n +
‖ϕ′‖∞
n!

|an| εnn

≤ (‖ϕ‖∞ + ‖ϕ′‖∞) |an| εnn

and the assumption that
∑∞
n=0 |an| εnn < ∞ shows f ∈ C1(−1, 1) and

f ′(x) =
∑∞
n=0 g

′
n(x). Similar arguments show f ∈ Ckc (−1, 1) and f (k)(x) =∑∞

n=0 g
(k)
n (x) for all x and k ∈ N. This completes the proof since, using

ϕ(x/εn) = 1 for x in a neighborhood of 0, g
(k)
n (0) = δk,nak and hence

f (k)(0) =

∞∑
n=0

g(k)
n (0) = ak.

22.3 Baire Category Theorem Exercises

Exercise 22.4. Let (X, ‖·‖) be a normed space and E ⊂ X be a subspace.

1. If E is closed and proper subspace of X then E is nowhere dense.
2. If E is a proper finite dimensional subspace of X then E is nowhere dense.

Exercise 22.5. Now suppose that (X, ‖·‖) is an infinite dimensional Banach
space. Show that X can not have a countable algebraic basis. More explicitly,
there is no countable subset S ⊂ X such that every element x ∈ X may be
written as a finite linear combination of elements from S. Hint: make use of
Exercise 22.4 and the Baire category theorem.
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The Baire Category Theorem applied to Banach Sapces

In this chapter we will give some striking applications of the Baire Category
theorem in the context of Banach spaces.

23.1 The Open Mapping Theorem

Theorem 23.1 (Open Mapping Theorem). Let X,Y be Banach spaces,
T ∈ L(X,Y ). If T is surjective then T is an open mapping, i.e. T (V ) is open
in Y for all open subsets V ⊂ X.

Proof. For all r > 0 let BXr = {x ∈ X : ‖x‖X < r} ⊂ X, BYr =
{y ∈ Y : ‖y‖Y < r} ⊂ Y and Er = T (BXr ) ⊂ Y. The proof will be carried
out by proving the following three assertions.

1. There exists α > 0 such that BYr ⊂ Eαr for all r > 0.
2. For the same α > 0, BYr ⊂ Eαr, i.e. we may remove the closure in assertion

1.
3. The last assertion implies T is an open mapping.

1. Since Y =
∞⋃
n−1

En, the Baire category Theorem 22.3 implies there exists

n such that E
0

n 6= ∅, i.e. there exists y ∈ En and ε > 0 such that BY (y, ε) ⊂ En.
Suppose ‖y′‖ < ε then y and y + y′ are in BY (y, ε) ⊂ En hence there exists
x̃, x ∈ BXn such that ‖T x̃ − (y + y′)‖ and ‖Tx − y‖ may be made as small as
we please, which we abbreviate as follows

‖T x̃− (y + y′)‖ ≈ 0 and ‖Tx− y‖ ≈ 0.

Hence by the triangle inequality,

‖T (x̃− x)− y′‖ = ‖T x̃− (y + y′)− (Tx− y)‖
≤ ‖T x̃− (y + y′)‖+ ‖Tx− y‖ ≈ 0

with x̃− x ∈ BX2n. This shows that y′ ∈ E2n which implies BYε ⊂ E2n. For any
r > 0 the map ϕr : Y → Y given by ϕr(y) = r

εy is a homeomorphism. Thus,
with α = 2n

ε , ϕr(E2n) = E 2n
ε r

= Eαr and ϕr(B
Y
ε ) = BYr and so it follows that

BYr = ϕr(B
Y
ε ) ⊂ ϕr

(
Ē2n

)
= ϕr (E2n) ⊂ Eαr.

2. Let α > 0 be as in assertion 1. and y ∈ BYr . Let {rn}∞n=0 be a strictly
increasing sequence of numbers such that r0 = 0, and ‖y‖ < rn < r for all
n > 0, and limn→∞ rn = r. Further let ∆n := rn − rn−1 for n ∈ N so that

r =
∑∞
n=1∆n. By assertion 1, y ∈ BYr1 ⊂ Eαr1 = T

(
BXαr1

)
so there exists

x1 ∈ BXαr1 such that ‖y − Tx1‖ < ∆2. (Notice that ‖y − Tx1‖ can be made

as small as we please.) Similarly, since y − Tx1 ∈ BY∆2
⊂ Ēα∆2

= T
(
BXα∆2

)
there exists x2 ∈ BXα∆2

such that ‖y − Tx1 − Tx2‖ < ∆3. Continuing this way

inductively, there exists xn ∈ BXα∆n such that

‖y −
n∑
k=1

Txk‖ < ∆n+1 for all n ∈ N. (23.1)

Since
∞∑
n=1
‖xn‖ <

∞∑
n=1

α∆n = αr, x :=
∞∑
n=1

xn exists and ‖x‖ < αr, i.e. x ∈ BXαr.

Passing to the limit in Eq. (23.1) shows, ‖y−Tx‖ = 0 and hence y ∈ T (BXαr) =
Eαr. Since y ∈ BYr was arbitrary we have shown BYr ⊂ T

(
BXαr

)
for all r > 0.

3. If x ∈ V ⊂o X and y = Tx ∈ TV we must show that TV contains a ball
BY (y, r) = Tx+ BYr for some r > 0. Since V − x is a neighborhood of 0 ∈ X,
there exists r > 0 such that BXαr ⊂ (V − x). Then by assertion 2.,

BYr ⊂ TBXαr ⊂ T (V − x) = T (V )− y

which is equivalent to BY (y, r) = Tx+BYr ⊂ TV.

Corollary 23.2. If X,Y are Banach spaces and T ∈ L(X,Y ) is invertible (i.e.
a bijective linear transformation) then the inverse map, T−1, is bounded, i.e.
T−1 ∈ L(Y,X). (Note that T−1 is automatically linear.)

23.2 Closed Graph Theorem

Definition 23.3. Let X and Y be normed spaces and T : X → Y be linear (not
necessarily continuous) map.
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1. Let Γ : X → X × Y be the linear map defined by Γ (x) := (x, T (x)) for all
x ∈ X and let

Γ (T ) = {(x, T (x)) : x ∈ X}
be the graph of T.

2. The operator T is said to be closed if Γ (T ) is closed subset of X × Y.

Exercise 23.1. Let T : X → Y be a linear map between normed vector spaces,
show T is closed iff for all convergent sequences {xn}∞n=1 ⊂ X such that
{Txn}∞n=1 ⊂ Y is also convergent, we have limn→∞ Txn = T (limn→∞ xn) .
(Compare this with the statement that T is continuous iff for every convergent
sequences {xn}∞n=1 ⊂ X we have {Txn}∞n=1 ⊂ Y is necessarily convergent and
limn→∞ Txn = T (limn→∞ xn) .)

Theorem 23.4 (Closed Graph Theorem). Let X and Y be Banach spaces
and T : X → Y be linear map. Then T is continuous iff T is closed.

Proof. If T is continuous and (xn, Txn)→ (x, y) ∈ X × Y as n→∞ then
Txn → Tx = y which implies (x, y) = (x, Tx) ∈ Γ (T ). Conversely suppose T
is closed, i.e. Γ (T ) is a closed subspace of X × Y and is therefore a Banach
space in its own right. The projection map π2 : X × Y → Y is continuous and
π1|Γ (T ) : Γ (T ) → X is continuous bijection which implies π1|−1

Γ (T ) is bounded

by the open mapping Theorem 23.1. Therefore T = π2 ◦ Γ = π2 ◦ π1|−1
Γ (T )

is bounded, being the composition of bounded operators since the following
diagram commutes

Γ (T )
Γ = π1|−1

Γ (T ) ↗ ↘ π2

X −→ Y
T

.

As an application we have the following proposition.

Proposition 23.5. Let H be a Hilbert space. Suppose that T : H → H is a
linear (not necessarily bounded) map such that there exists T ∗ : H → H such
that

〈Tx|Y 〉 = 〈x|T ∗Y 〉 ∀ x, y ∈ H.
Then T is bounded.

Proof. It suffices to show T is closed. To prove this suppose that xn ∈ H
such that (xn, Txn)→ (x, y) ∈ H ×H. Then for any z ∈ H,

〈Txn|z〉 = 〈xn|T ∗z〉 −→ 〈x|T ∗z〉 = 〈Tx|z〉 as n→∞.

On the other hand limn→∞〈Txn|z〉 = 〈y|z〉 as well and therefore 〈Tx|z〉 = 〈y|z〉
for all z ∈ H. This shows that Tx = y and proves that T is closed.

Here is another example.

Example 23.6. Suppose that M ⊂ L2([0, 1],m) is a closed subspace such that
each element ofM has a representative in C([0, 1]). We will abuse notation and
simply write M⊂ C([0, 1]). Then

1. There exists A ∈ (0,∞) such that ‖f‖∞ ≤ A‖f‖L2 for all f ∈M.
2. For all x ∈ [0, 1] there exists gx ∈M such that

f(x) = 〈f |gx〉 :=

∫ 1

0

f (y) gx (y) dy for all f ∈M.

Moreover we have ‖gx‖ ≤ A.
3. The subspace M is finite dimensional and dim(M) ≤ A2.

Proof. 1) I will give a two proofs of part 1. Each proof requires that we first
show that (M, ‖ · ‖∞) is a complete space. To prove this it suffices to show M
is a closed subspace of C([0, 1]). So let {fn} ⊂ M and f ∈ C([0, 1]) such that
‖fn − f‖∞ → 0 as n → ∞. Then ‖fn − fm‖L2 ≤ ‖fn − fm‖∞ → 0 as m,n →
∞, and since M is closed in L2([0, 1]), L2 − limn→∞ fn = g ∈ M. By passing
to a subsequence if necessary we know that g(x) = limn→∞ fn(x) = f(x) for m
- a.e. x. So f = g ∈M.

i) Let i : (M, ‖ · ‖∞)→ (M, ‖ · ‖2) be the identity map. Then i is bounded
and bijective. By the open mapping theorem, j = i−1 is bounded as well. Hence
there exists A <∞ such that ‖f‖∞ = ‖j(f)‖ ≤ A ‖f‖2 for all f ∈M.

ii) Let j : (M, ‖ · ‖2)→ (M, ‖ · ‖∞) be the identity map. We will shows that
j is a closed operator and hence bounded by the closed graph Theorem 23.4.
Suppose that fn ∈M such that fn → f in L2 and fn = j(fn)→ g in C([0, 1]).
Then as in the first paragraph, we conclude that g = f = j(f) a.e. showing j is
closed. Now finish as in last line of proof i).

2) For x ∈ [0, 1], let ex :M→ C be the evaluation map ex(f) = f(x). Then

|ex(f)| ≤ |f(x)| ≤ ‖f‖∞ ≤ A‖f‖L2

which shows that ex ∈ M∗. Hence there exists a unique element gx ∈ M such
that

f(x) = ex(f) = 〈f, gx〉 for all f ∈M.

Moreover ‖gx‖L2 = ‖ex‖M∗ ≤ A.
3) Let {fj}nj=1 be an L2 – orthonormal subset of M. Then

A2 ≥ ‖ex‖2M∗ = ‖gx‖2L2 ≥
n∑
j=1

|〈fj , gx〉|2 =

n∑
j=1

|fj(x)|2

and integrating this equation over x ∈ [0, 1] implies that
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A2 ≥
n∑
j=1

∫ 1

0

|fj(x)|2dx =

n∑
j=1

1 = n

which shows that n ≤ A2. Hence dim(M) ≤ A2.

Remark 23.7. Keeping the notation in Example 23.6, G(x, y) = gx(y) for all
x, y ∈ [0, 1]. Then

f(x) = ex(f) =

∫ 1

0

f(y)G(x, y)dy for all f ∈M.

The function G is called the reproducing kernel for M.

The above example generalizes as follows.

Proposition 23.8. Suppose that (X,M, µ) is a finite measure space, p ∈ [1,∞)
and W is a closed subspace of Lp(µ) such that W ⊂ Lp(µ) ∩ L∞(µ). Then
dim(W ) <∞.

Proof. With out loss of generality we may assume that µ(X) = 1. As in
Example 23.6, we can show that W is a closed subspace of L∞(µ) and then
(by the open mapping theorem) that there exists a constant A <∞ such that
‖f‖∞ ≤ A ‖f‖p for all f ∈W. Now if 1 ≤ p ≤ 2, then

‖f‖∞ ≤ A ‖f‖p ≤ A ‖f‖2

and if p ∈ (2,∞), then ‖f‖pp ≤ ‖f‖
2
2 ‖f‖

p−2
∞ or equivalently,

‖f‖p ≤ ‖f‖
2/p
2 ‖f‖1−2/p

∞ ≤ ‖f‖2/p2

(
A ‖f‖p

)1−2/p

from which we learn that ‖f‖p ≤ A1−2/p ‖f‖2 . Therefore ‖f‖∞ ≤
AA1−2/p ‖f‖2 and so for all p ∈ [1,∞) there exists a constant B < ∞
such that ‖f‖∞ ≤ B ‖f‖2 .

If {fn}Nn=1 be an orthonormal subset of W, c = (c1, . . . , cN ) ∈ CN , and

fc =
∑N
n=1 cnfn, then

‖fc‖2∞ ≤ B
2 ‖fc‖22 = B2

N∑
n=1

|cn|2 = B2 |c|2

where |c|2 :=
∑N
n=1 |cn|

2
. For each c ∈ CN , there is an exceptional set Ec such

that for x /∈ Ec,

|fc (x)|2 =

∣∣∣∣∣
N∑
n=1

cnfn(x)

∣∣∣∣∣
2

≤ B2 |c|2 .

Let D := (Q+ iQ)
N

and E = ∩c∈DEc. Then µ(E) = 0 and for x /∈ E,∣∣∣∑N
n=1 cnfn(x)

∣∣∣ ≤ B2 |c|2 for all c ∈ D. By continuity it then follows for x /∈ E
that ∣∣∣∣∣

N∑
n=1

cnfn(x)

∣∣∣∣∣
2

≤ B2 |c|2 for all c ∈ CN .

Taking cn = fn(x) in this inequality implies that∣∣∣∣∣
N∑
n=1

|fn(x)|2
∣∣∣∣∣
2

≤ B2
N∑
n=1

|fn(x)|2 for all x /∈ E

and therefore that
N∑
n=1

|fn(x)|2 ≤ B2 for all x /∈ E.

Integrating this equation over x then implies that N ≤ B2, i.e. dim(W ) ≤ B2.

23.3 Uniform Boundedness Principle

Theorem 23.9 (Uniform Boundedness Principle). Let X and Y be
normed vector spaces, A ⊂ L(X,Y ) be a collection of bounded linear opera-
tors from X to Y,

F = FA = {x ∈ X : sup
A∈A
‖Ax‖ <∞} and

R = RA = F c = {x ∈ X : sup
A∈A
‖Ax‖ =∞}. (23.2)

1. If sup
A∈A
‖A‖ <∞ then F = X.

2. If F is not meager, then sup
A∈A
‖A‖ <∞.

3. If X is a Banach space then the following are equivalent;

a) F is not meager,
b) sup

A∈A
‖A‖ <∞,

c) F = X, i.e. sup
A∈A
‖Ax‖ <∞ for all x ∈ X

In particular, when X is a Banach space,,

sup
A∈A
‖Ax‖ <∞ for all x ∈ X ⇐⇒ sup

A∈A
‖A‖ <∞.

In words the collection of operators A is pointwise bounded iff A is uniformly
bounded on the unit sphere in X.
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4. If X is a Banach space, then sup
A∈A
‖A‖ =∞ iff R is residual. In particular

if sup
A∈A
‖A‖ =∞ then sup

A∈A
‖Ax‖ =∞ for x in a dense subset of X.

Proof. 1. If M := sup
A∈A
‖A‖ < ∞, then sup

A∈A
‖Ax‖ ≤ M ‖x‖ < ∞ for all

x ∈ X showing F = X.
2. For each n ∈ N, let En ⊂ X be the closed sets given by

En = {x : sup
A∈A
‖Ax‖ ≤ n} =

⋂
A∈A
{x : ‖Ax‖ ≤ n}.

Then F = ∪∞n=1En which is assumed to be non-meager and hence there exists
an n ∈ N such that En has non-empty interior. Let Bx(δ) be a ball such that
Bx(δ) ⊂ En. Then for y ∈ X with ‖y‖ = δ we know x − y ∈ Bx(δ) ⊂ En, so
that Ay = Ax−A(x− y) and hence for any A ∈ A,

‖Ay‖ ≤ ‖Ax‖+ ‖A(x− y)‖ ≤ n+ n = 2n.

Hence it follows that ‖A‖ ≤ 2n/δ for all A ∈ A, i.e. sup
A∈A
‖A‖ ≤ 2n/δ <∞.

3. (a =⇒ b) follows from item 2, (b =⇒ c) follows from item 1, and
(c =⇒ a) follows from the Baire Category Theorem 22.3, X is not meager.

4. Item 3. implies F is meager iff sup
A∈A
‖A‖ =∞. Since R = F c, R is residual

iff F is meager, so R is residual iff sup
A∈A
‖A‖ = ∞. The last assertion follows

from the fact the residual sets in a Banach space are dense.

Remarks 23.10 Let S ⊂ X be the unit sphere in X, fA(x) = Ax for x ∈ S
and A ∈ A.

1. The assertion sup
A∈A
‖Ax‖ < ∞ for all x ∈ X implies sup

A∈A
‖A‖ < ∞ may

be interpreted as follows. If supA∈A ‖fA (x)‖ < ∞ for all x ∈ S, then
sup
A∈A
‖fA‖∞ <∞ where ‖fA‖∞ := supx∈S ‖fA (x)‖ = ‖A‖ .

2. If dim(X) < ∞ we may give a simple proof of this assertion. Indeed

if {en}Nn=1 ⊂ S is a basis for X there is a constant ε > 0 such that∥∥∥∑N
n=1 λnen

∥∥∥ ≥ ε∑N
n=1 |λn| and so the assumption supA∈A ‖fA (x)‖ <∞

implies

sup
A∈A
‖A‖ = sup

A∈A
sup
λ6=0

∥∥∥∑N
n=1 λnAen

∥∥∥∥∥∥∑N
n=1 λnen

∥∥∥ ≤ sup
A∈A

sup
λ 6=0

∑N
n=1 |λn| ‖Aen‖
ε
∑N
n=1 |λn|

≤ ε−1 sup
A∈A

sup
n
‖Aen‖ = ε−1 sup

n
sup
A∈A
‖Aen‖ <∞.

Notice that we have used the linearity of each A ∈ A in a crucial way.

3. If we drop the linearity assumption, so that fA ∈ C(S, Y ) for all A ∈ A
– some index set, then it is no longer true that supA∈A ‖fA (x)‖ < ∞
for all x ∈ S, then sup

A∈A
‖fA‖∞ < ∞. The reader is invited to construct a

counterexample when X = R2 and Y = R by finding a sequence {fn}∞n=1

of continuous functions on S1 such that limn→∞ fn(x) = 0 for all x ∈ S1

while limn→∞ ‖fn‖C(S1) =∞.
4. The assumption that X is a Banach space in item 3.of Theorem 23.9 can

not be dropped. For example, let X ⊂ C([0, 1]) be the polynomial functions
on [0, 1] equipped with the uniform norm ‖·‖∞ and for t ∈ (0, 1], let ft(x) :=
(x(t)− x(0)) /t for all x ∈ X. Then limt→0 ft(x) = d

dt |0x(t) and therefore
supt∈(0,1] |ft(x)| < ∞ for all x ∈ X. If the conclusion of Theorem 23.9
(item 3.) were true we would have M := supt∈(0,1] ‖ft‖ < ∞. This would
then imply ∣∣∣∣x(t)− x(0)

t

∣∣∣∣ ≤M ‖x‖∞ for all x ∈ X and t ∈ (0, 1].

Letting t ↓ 0 in this equation gives, |ẋ(0)| ≤ M ‖x‖∞ for all x ∈ X. But
taking x(t) = tn in this inequality shows M =∞.

Example 23.11. Suppose that {cn}∞n=1 ⊂ C is a sequence of numbers such that

lim
N→∞

N∑
n=1

ancn exists in C for all a ∈ `1.

Then c ∈ `∞.

Proof. Let fN ∈
(
`1
)∗

be given by fN (a) =
∑N
n=1 ancn and set MN :=

max {|cn| : n = 1, . . . , N} . Then

|fN (a)| ≤MN ‖a‖`1

and by taking a = ek with k such MN = |ck| , we learn that ‖fN‖ = MN . Now
by assumption, limN→∞ fN (a) exists for all a ∈ `1 and in particular,

sup
N
|fN (a)| <∞ for all a ∈ `1.

So by the uniform boundedness principle, Theorem 23.9,

∞ > sup
N
‖fN‖ = sup

N
MN = sup {|cn| : n = 1, 2, 3, . . . } .
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23.3 Uniform Boundedness Principle 243

23.3.1 Applications to Fourier Series

Let T = S1 be the unit circle in S1, ϕn(z) := zn for all n ∈ Z, and m denote
the normalized arc length measure on T, i.e. if f : T → [0,∞) is measurable,
then ∫

T

f(w)dw :=

∫
T

fdm :=
1

2π

∫ π

−π
f(eiθ)dθ.

From Section 40.1, we know {ϕn}n∈Z is an orthonormal basis for L2(T ). For
n ∈ N and z ∈ T, let

sn(f, z) :=

n∑
k=−n

〈f |ϕn〉ϕk(z) =

∫
T

f(w)dn(zw̄)dw

where

dn(eiθ) :=

n∑
k=−n

eikθ =
sin(n+ 1

2 )θ

sin 1
2θ

,

see Eqs. (40.4) and (40.5).1 By Theorem 40.3, for all f ∈ L2(T ) we know

f = L2(T )− lim
n→∞

sn(f, ·).

On the other hand the next proposition shows; if we fix z ∈ T, then
limn→∞ sn (f, z) does not even exist for the “typical” f ∈ C(T ) ⊂ L2(T ).

Proposition 23.12 (Lack of pointwise convergence). For each z ∈ T,
there exists a residual set Rz ⊂ C(T ) such that supn |sn(f, z)| = ∞ for all
f ∈ Rz. Recall that C(T ) is a complete metric space, hence Rz is a dense
subset of C(T ).

Proof. By symmetry considerations, it suffices to assume z = 1 ∈ T. Let
Λn : C(T )→ C be given by

1 Letting α = eiθ/2, we have

Dn(θ) =
n∑

k=−n

α2k =
α2(n+1) − α−2n

α2 − 1
=
α2n+1 − α−(2n+1)

α− α−1

=
2i sin(n+ 1

2
)θ

2i sin 1
2
θ

=
sin(n+ 1

2
)θ

sin 1
2
θ

.

and therefore

Dn(θ) :=

n∑
k=−n

eikθ =
sin(n+ 1

2
)θ

sin 1
2
θ

.

Λnf := sn(f, 1) =

∫
T

f(w)dn(w̄)dw.

An application of Corollary ?? below shows,

‖Λn‖ = ‖dn‖1 =

∫
T

|dn(w̄)| dw

=
1

2π

∫ π

−π

∣∣dn(e−iθ)
∣∣ dθ =

1

2π

∫ π

−π

∣∣∣∣ sin(n+ 1
2 )θ

sin 1
2θ

∣∣∣∣ dθ. (23.3)

Of course we may prove this directly as follows. Since

|Λnf | =
∣∣∣∣∫
T

f(w)dn(w̄)dw

∣∣∣∣ ≤ ∫
T

|f(w)dn(w̄)| dw ≤ ‖f‖∞
∫
T

|dn(w̄)| dw,

we learn ‖Λn‖ ≤
∫
T
|dn(w̄)| dw. For all ε > 0, let

fε (z) :=
dn (z̄)√
d2
n (z̄) + ε

.

Then ‖fε‖C(T ) ≤ 1 and hence

‖Λn‖ ≥ lim
ε↓0
|Λnfε| = lim

ε↓0

∫
T

d2
n (z̄)√

d2
n (z̄) + ε

dw =

∫
T

|dn (z̄)| dw

and the verification of Eq. (23.3) is complete.
Using

|sinx| =
∣∣∣∣∫ x

0

cos ydy

∣∣∣∣ ≤ ∣∣∣∣∫ x

0

|cos y| dy
∣∣∣∣ ≤ |x|

in Eq. (23.3) implies that

‖Λn‖ ≥
1

2π

∫ π

−π

∣∣∣∣ sin(n+ 1
2 )θ

1
2θ

∣∣∣∣ dθ =
2

π

∫ π

0

∣∣∣∣sin(n+
1

2
)θ

∣∣∣∣ dθθ
=

2

π

∫ π

0

∣∣∣∣sin(n+
1

2
)θ

∣∣∣∣ dθθ =

∫ (n+ 1
2 )π

0

|sin y| dy
y
→∞ as n→∞ (23.4)

and hence supn ‖Λn‖ =∞. So by Theorem 23.9,

R1 = {f ∈ C(T ) : sup
n
|Λnf | =∞}

is a residual set.
See Rudin Chapter 5 for more details.
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Lemma 23.13. For f ∈ L1(T ), let

f̃(n) := 〈f, ϕn〉 =

∫
T

f(w)w̄ndw.

Then f̃ ∈ c0 := C0(Z) (i.e. limn→∞ f̃(n) = 0) and the map f ∈ L1(T )→ f̃ ∈ c0
is a one to one bounded linear transformation into but not onto c0.

Proof. By Bessel’s inequality,
∑
n∈Z

∣∣∣f̃(n)
∣∣∣2 < ∞ for all f ∈ L2(T ) and in

particular lim|n|→∞

∣∣∣f̃(n)
∣∣∣ = 0. Given f ∈ L1(T ) and g ∈ L2(T ) we have∣∣∣f̃(n)− ĝ(n)
∣∣∣ =

∣∣∣∣∫
T

[f(w)− g(w)] w̄ndw

∣∣∣∣ ≤ ‖f − g‖1
and hence

lim sup
n→∞

∣∣∣f̃(n)
∣∣∣ = lim sup

n→∞

∣∣∣f̃(n)− ĝ(n)
∣∣∣ ≤ ‖f − g‖1

for all g ∈ L2(T ). Since L2(T ) is dense in L1(T ), it follows that

lim supn→∞

∣∣∣f̃(n)
∣∣∣ = 0 for all f ∈ L1, i.e. f̃ ∈ c0. Since

∣∣∣f̃(n)
∣∣∣ ≤ ‖f‖1 ,

we have
∥∥∥f̃∥∥∥

c0
≤ ‖f‖1 showing that Λf := f̃ is a bounded linear transfor-

mation from L1(T ) to c0. To see that Λ is injective, suppose f̃ = Λf ≡ 0,
then

∫
T
f(w)p(w, w̄)dw = 0 for all polynomials p in w and w̄. By the Stone -

Wierestrass and the dominated convergence theorem, this implies that∫
T

f(w)g(w)dw = 0

for all g ∈ C(T ). Lemma 31.11 now implies f = 0 a.e. If Λ were surjective,
the open mapping theorem would imply that Λ−1 : c0 → L1(T ) is bounded. In
particular this implies there exists C <∞ such that

‖f‖L1 ≤ C
∥∥∥f̃∥∥∥

c0
for all f ∈ L1(T ). (23.5)

Taking f = dn, we find (because d̃n (k) = 1|k|≤n) that
∥∥∥d̃n∥∥∥

c0
= 1 while (by Eq.

(23.4)) limn→∞ ‖dn‖L1 = ∞ contradicting Eq. (23.5). Therefore Ran(Λ) 6= c0.

23.4 Exercises

23.4.1 More Examples of Banach Spaces

Exercise 23.2. Folland 5.9, p. 155. (Drop this problem, or move to Chapter
15.)

Exercise 23.3. Folland 5.10, p. 155. (Drop this problem, or move later where
it can be done.)

Exercise 23.4. Folland 5.11, p. 155. (Drop this problem, or move to Chapter
15.)

23.4.2 Open Mapping and Closed Operator Problems

Exercise 23.5. Let X = `1 (N) ,

Y =

{
f ∈ X :

∞∑
n=1

n |f (n)| <∞

}

with Y being equipped with the `1 (N) - norm, and T : Y → X be defined by
(Tf) (n) = nf (n) . Show:

1. Y is a proper dense subspace of X and in particular Y is not complete
2. T : Y → X is a closed operator which is not bounded.
3. T : Y → X is algebraically invertible, S := T−1 : X → Y is bounded and

surjective but not open.

Exercise 23.6. Let X = C ([0, 1]) and Y = C1 ([0, 1]) ⊂ X with both X and
Y being equipped with the uniform norm. Let T : Y → X be the linear map,
Tf = f ′. Here C1 ([0, 1]) denotes those functions, f ∈ C1 ((0, 1)) ∩ C ([0, 1])
such that

f ′(1) := lim
x↑1

f ′ (x) and f ′ (0) := lim
x↓0

f ′ (x)

exist.

1. Y is a proper dense subspace of X and in particular Y is not complete.
2. T : Y → X is a closed operator which is not bounded.

Exercise 23.7. Folland 5.31, p. 164.

Exercise 23.8. Let X be a vector space equipped with two norms, ‖·‖1 and
‖·‖2 such that ‖·‖1 ≤ ‖·‖2 and X is complete relative to both norms. Show
there is a constant C <∞ such that ‖·‖2 ≤ C ‖·‖1 .

Exercise 23.9 (No slowest decay rate). Show that it is impossible to find
a sequence, {an}n∈N ⊂ (0,∞) , with the following property: if {λn}n∈N is a
sequence in C, then

∑∞
n=1 |λn| <∞ iff sup a−1

n |λn| <∞. (Poetically speaking,
there is no “slowest rate” of decay for the summands of absolutely convergent
series.)

Outline: For sake of contradiction suppose such a “magic” sequence
{an}n∈N ⊂ (0,∞) were to exists.
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1. For f ∈ `∞ (N) , let (Tf) (n) := anf (n) for n ∈ N. Verify that Tf ∈ `1 (N)
and T : `∞(N)→ `1 (N) is a bounded linear operator.

2. Show T : `∞(N) → `1 (N) must be an invertible operator and that
T−1 : `1 (N) → `∞(N) is necessarily bounded, i.e. T : `∞ (N) → `1 (N)
is a homeomorphism.

3. Arrive at a contradiction by showing either that T−1 is not bounded or by
using the fact that, D, the set of finitely supported sequences, is dense in
`1 (N) but not in `∞ (N) .

Exercise 23.10. Folland 5.34, p. 164. (Not a very good problem, delete.)

Exercise 23.11. Folland 5.35, p. 164. (A quotient space exercise.)

Exercise 23.12. Folland 5.36, p. 164. (A quotient space exercise.)

Exercise 23.13. Suppose T : X → Y is a linear map between two Banach
spaces such that f ◦ T ∈ X∗ for all f ∈ Y ∗. Show T is bounded.

Exercise 23.14. Suppose Tn : X → Y for n ∈ N is a sequence of bounded
linear operators between two Banach spaces such limn→∞ Tnx exists for all
x ∈ X. Show Tx := limn→∞ Tnx defines a bounded linear operator from X to
Y.

Exercise 23.15. Let X,Y and Z be Banach spaces and B : X × Y → Z be a
bilinear map such that B (x, ·) ∈ L (Y,Z) and B (·, y) ∈ L (X,Z) for all x ∈ X
and y ∈ Y. Show there is a constant M <∞ such that

‖B(x, y)‖ ≤M ‖x‖ ‖y‖ for all (x, y) ∈ X × Y

and conclude from this that B : X × Y → Z is continuous.

Exercise 23.16. Folland 5.40, p. 165. (Condensation of singularities).

Exercise 23.17. Folland 5.41, p. 165. (Drop this exercise, it is 22.5.)

23.4.3 Weak Topology and Convergence Problems

Definition 23.14. A sequence {xn}∞n=1 ⊂ X is weakly Cauchy if for all
V ∈ τw such that 0 ∈ V, xn−xm ∈ V for all m,n sufficiently large. Similarly a
sequence {fn}∞n=1 ⊂ X∗ is weak–∗ Cauchy if for all V ∈ τw∗ such that 0 ∈ V,
fn − fm ∈ V for all m,n sufficiently large.

Remark 23.15. These conditions are equivalent to {f(xn)}∞n=1 being Cauchy for
all f ∈ X∗ and {fn(x)}∞n=1 being Cauchy for all x ∈ X respectively.

Exercise 23.18. Let X and Y be Banach spaces. Show:

1. Every weakly Cauchy sequence in X is bounded.
2. Every weak-* Cauchy sequence in X∗ is bounded.
3. If {Tn}∞n=1 ⊂ L (X,Y ) converges weakly (or strongly) then

supn ‖Tn‖L(X,Y ) <∞.

Exercise 23.19. Let X be a Banach space, C := {x ∈ X : ‖x‖ ≤ 1} and C∗ :=
{λ ∈ X∗ : ‖λ‖X∗ ≤ 1} be the closed unit balls in X and X∗ respectively.

1. Show C is weakly closed and C∗ is weak-* closed in X and X∗ respectively.
2. If E ⊂ X is a norm-bounded set, then the weak closure, Ēw ⊂ X, is also

norm bounded.
3. If F ⊂ X∗ is a norm-bounded set, then the weak-* closure, Ēw−∗ ⊂ X∗, is

also norm bounded.
4. Every weak-* Cauchy sequence {fn} ⊂ X∗ is weak-* convergent to some
f ∈ X∗.

Exercise 23.20. Folland 5.49, p. 171.

Exercise 23.21. If X is a separable normed linear space, the weak-* topology
on the closed unit ball in X∗ is second countable and hence metrizable. (See
Theorem 36.25.)

Exercise 23.22. Let X be a Banach space. Show every weakly compact subset
of X is norm bounded and every weak–∗ compact subset of X∗ is norm bounded.

Exercise 23.23. A vector subspace of a normed space X is norm-closed iff it
is weakly closed. (If X is not reflexive, it is not necessarily true that a normed
closed subspace of X∗ need be weak* closed, see Exercise 23.25.) (Hint: this
problem only uses the Hahn-Banach Theorem.)

Exercise 23.24. Let X be a Banach space, {Tn}∞n=1 and {Sn}∞n=1 be two se-
quences of bounded operators on X such that Tn → T and Sn → S strongly,
and suppose {xn}∞n=1 ⊂ X such that limn→∞ ‖xn − x‖ = 0. Show:

1. limn→∞ ‖Tnxn − Tx‖ = 0 and that
2. TnSn → TS strongly as n→∞.

Exercise 23.25. Folland 5.52, p. 172.

Exercise 23.26. Let H = `2 and Sn (x1, x2, . . . ) = (xn+1, xn+2, . . . ) . Show;

1. Sn
s→ 0 for all x ∈ `2 while ‖S∗nx‖ = ‖x‖ for all x ∈ `2 and therefore S∗n is

not strongly convergent to 0. This shows the adjoint operation is strongly
discontinuous.
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2. Observe that Sn
w→ 0 weakly and S∗n

w→ 0 weakly, i.e. limn→∞ 〈Snx|y〉 =
0 = limn→∞ 〈S∗nx|y〉 . On the other hand verify that SnS

∗
n = I for all n from

which it follows that the map (A,B)→ AB is not jointly continuous in the
weak operator topology even though it is in the strong operator topology
provided A is restricted to a bounded sets.

Exercise 23.27 (Inverse operation is strongly discontinuous). Let H =
`2 (N) , Pn : H → H be orthogonal projection onto

Hn := {x ∈ H : xk = 0 for k > n} ,

and Qn = I −Pn be projection onto the remaining components. Let εn ∈ (0, 1)
be chosen so that εn ↓ 0 and define An = Pn + εnQn. Show

1. An
s→ I as n→∞ while

2. A−1
n exists but

{
A−1
n

}∞
n=1

is not strongly convergent.



Part V

The Structure of Measures





24

Complex Measures, Radon-Nikodym Theorem

Definition 24.1. A signed measure ν on a measurable space (X,M) is a
function ν :M→ R such that

1. Either
ν (M) := {ν (A) : A ∈M} ⊂ (−∞,∞]

or ν(M) ⊂ [−∞,∞).
2. ν is countably additive, this is to say if E =

∐∞
j=1Ej with Ej ∈M, then

ν(E) =

∞∑
j=1

ν(Ej).

If ν(E) ∈ R then the series
∞∑
j=1

ν(Ej) is absolutely convergent since it is

independent of rearrangements.
3. ν(∅) = 0.

If there exists Xn ∈ M such that |ν(Xn)| < ∞ and X = ∪∞n=1Xn, then ν
is said to be σ – finite and if ν(M) ⊂ R then ν is said to be a finite signed
measure. Similarly, a countably additive set function ν : M → C such that
ν(∅) = 0 is called a complex measure.

Example 24.2. Suppose that µ+ and µ− are two positive measures on M such
that either µ+(X) <∞ or µ−(X) <∞, then ν = µ+−µ− is a signed measure.
If both µ+(X) and µ−(X) are finite then ν is a finite signed measure and may
also be considered to be a complex measure.

Example 24.3. Suppose that g : X → R is measurable and either
∫
E
g+dµ or∫

E
g−dµ <∞, then

ν(A) =

∫
A

gdµ ∀ A ∈M (24.1)

defines a signed measure. This is actually a special case of the last example
with µ±(A) :=

∫
A
g±dµ. Notice that the measure µ± in this example have

the property that they are concentrated on disjoint sets, namely µ+ “lives” on
{g > 0} and µ− “lives” on the set {g < 0} .

Example 24.4. Suppose that µ is a positive measure on (X,M) and g ∈ L1(µ),
then ν given as in Eq. (24.1) is a complex measure on (X,M). Also if

{
µr±, µ

i
±
}

is any collection of four positive finite measures on (X,M), then

ν := µr+ − µr− + i
(
µi+ − µi−

)
(24.2)

is a complex measure.

If ν is given as in Eq. 24.1, then ν may be written as in Eq. (24.2) with
dµr± = (Re g)± dµ and dµi± = (Im g)± dµ.

24.1 The Radon-Nikodym Theorem

Definition 24.5. Let ν be a complex or signed measure on (X,M). A set E ∈
M is a null set or precisely a ν – null set if ν(A) = 0 for all A ∈M such that
A ⊂ E, i.e. ν|ME

= 0. Recall that ME := {A ∩ E : A ∈ M} = i−1
E (M) is the

“trace of M on E.

We will eventually show that every complex and σ – finite signed measure
ν may be described as in Eq. (24.1). The next theorem is the first result in this
direction.

Theorem 24.6 (A Baby Radon-Nikodym Theorem). Suppose (X,M) is
a measurable space, µ is a positive finite measure on M and ν is a complex
measure on M such that |ν(A)| ≤ µ(A) for all A ∈ M. Then dν = ρdµ where
|ρ| ≤ 1. Moreover if ν is a positive measure, then 0 ≤ ρ ≤ 1.

Proof. For a simple function, f ∈ S(X,M), let ν(f) :=
∑
a∈C aν(f = a).

Then

|ν(f)| ≤
∑
a∈C
|a| |ν(f = a)| ≤

∑
a∈C
|a|µ(f = a) =

∫
X

|f | dµ.

So, by the B.L.T. Theorem 32.4, ν extends to a continuous linear functional on
L1(µ) satisfying the bounds

|ν(f)| ≤
∫
X

|f | dµ ≤
√
µ(X) ‖f‖L2(µ) for all f ∈ L1(µ).
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The Riesz representation Theorem 18.17 then implies there exists a unique
ρ ∈ L2(µ) such that

ν(f) =

∫
X

fρdµ for all f ∈ L2(µ).

Taking A ∈M and f = sgn(ρ)1A in this equation shows∫
A

|ρ| dµ = ν(sgn(ρ)1A) ≤ µ(A) =

∫
A

1dµ

from which it follows that |ρ| ≤ 1, µ – a.e. If ν is a positive measure, then for real

f, 0 = Im [ν(f)] =
∫
X

Im ρfdµ and taking f = Im ρ shows 0 =
∫
X

[Im ρ]
2
dµ,

i.e. Im(ρ(x)) = 0 for µ – a.e. x and we have shown ρ is real a.e. Similarly,

0 ≤ ν(Re ρ < 0) =

∫
{Re ρ<0}

ρdµ ≤ 0,

shows ρ ≥ 0 a.e.

Definition 24.7. Let µ and ν be two signed or complex measures on (X,M).
Then:

1. µ and ν are mutually singular (written as µ ⊥ ν) if there exists A ∈ M
such that A is a ν – null set and Ac is a µ – null set.

2. The measure ν is absolutely continuous relative to µ (written as ν �
µ) provided ν(A) = 0 whenever A is a µ – null set, i.e. all µ – null sets are
ν – null sets as well.

As an example, suppose that µ is a positive measure and ρ ∈ L1 (µ) . Then
the measure, ν := ρµ is absolutely continuous relative to µ. Indeed, if µ (A) = 0
then

ρ (A) =

∫
A

ρdµ = 0

as well.

Lemma 24.8. If µ1, µ2 and ν are signed measures on (X,M) such that µ1 ⊥ ν
and µ2 ⊥ ν and µ1 + µ2 is well defined, then (µ1 + µ2) ⊥ ν. If {µi}∞i=1 is a
sequence of positive measures such that µi ⊥ ν for all i then µ =

∑∞
i=1 µi ⊥ ν

as well.

Proof. In both cases, choose Ai ∈ M such that Ai is ν – null and Aci is
µi-null for all i. Then by Lemma 24.15, A := ∪iAi is still a ν –null set. Since

Ac = ∩iAci ⊂ Acm for all m

we see that Ac is a µi - null set for all i and is therefore a null set for µ =
∑∞
i=1 µi.

This shows that µ ⊥ ν.
Throughout the remainder of this section µ will be always be a positive

measure on (X,M) .

Definition 24.9 (Lebesgue Decomposition). Suppose that ν is a signed
(complex) measure and µ is a positive measure on (X,M). Two signed (com-
plex) measures νa and νs form a Lebesgue decomposition of ν relative to µ
if

1. If ν (A) = ∞ (ν (A) = −∞) for some A ∈ M then νa (A) 6= −∞
(νa (A) 6= +∞) and νs (A) 6= −∞ (νs (A) 6= +∞) .

2. ν = νa + νs which is well defined by assumption 1.
3. νa � µ and νs ⊥ µ.

Lemma 24.10. Let ν is a signed (complex) measure and µ is a positive measure
on (X,M). If there exists a Lebesgue decomposition, ν = νs+νa, of the measure
ν relative to µ then it is unique. Moreover:

1. if ν is positive then νs and νa are positive.
2. If ν is a σ – finite measure then so are νs and νa.

Proof. Since νs ⊥ µ, there exists A ∈M such that µ(A) = 0 and Ac is νs –
null and because νa � µ, A is also a null set for νa. So for C ∈M, νa(C∩A) = 0
and νs (C ∩Ac) = 0 from which it follows that

ν(C) = ν(C ∩A) + ν(C ∩Ac) = νs(C ∩A) + νa(C ∩Ac)

and hence,

νs(C) = νs(C ∩A) = ν(C ∩A) and

νa(C) = νa(C ∩Ac) = ν(C ∩Ac). (24.3)

Item 1. is now obvious from Eq. (24.3).
For Item 2., if ν is a σ – finite measure then there exists Xn ∈M such that

X = ∪∞n=1Xn and |ν(Xn)| < ∞ for all n. Since ν(Xn) = νa(Xn) + νs(Xn), we
must have νa(Xn) ∈ R and νs(Xn) ∈ R showing νa and νs are σ – finite as well.

For the uniqueness assertion, if we have another decomposition ν = ν̃a + ν̃s
with ν̃s ⊥ µ and ν̃a � µ we may choose Ã ∈ M such that µ(Ã) = 0 and Ãc is
ν̃s – null. Then B = A ∪ Ã is still a µ - null set and Bc = Ac ∩ Ãc is a null set
for both νs and ν̃s. Therefore by the same arguments which proved Eq. (24.3),

νs(C) = ν(C ∩B) = ν̃s(C) and

νa(C) = ν(C ∩Bc) = ν̃a(C) for all C ∈M.
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Lemma 24.11. Suppose µ is a positive measure on (X,M) and f, g : X → R̄
are extended integrable functions such that∫

A

fdµ =

∫
A

gdµ for all A ∈M, (24.4)

∫
X
f− dµ < ∞,

∫
X
g− dµ < ∞, and the measures |f | dµ and |g| dµ are σ –

finite. Then f(x) = g(x) for µ – a.e. x.

Proof. By assumption there exists Xn ∈ M such that Xn ↑ X and∫
Xn
|f | dµ < ∞ and

∫
Xn
|g| dµ < ∞ for all n. Replacing A by A ∩ Xn in Eq.

(24.4) implies∫
A

1Xnfdµ =

∫
A∩Xn

fdµ =

∫
A∩Xn

gdµ =

∫
A

1Xngdµ

for all A ∈M. Since 1Xnf and 1Xng are in L1(µ) for all n, this equation implies
1Xnf = 1Xng, µ – a.e. Letting n→∞ then shows that f = g, µ – a.e.

Remark 24.12. Suppose that f and g are two positive measurable functions on
(X,M, µ) such that Eq. (24.4) holds. It is not in general true that f = g, µ –
a.e. A trivial counterexample is to take M = 2X , µ(A) =∞ for all non-empty
A ∈M, f = 1X and g = 2 · 1X . Then Eq. (24.4) holds yet f 6= g.

Theorem 24.13 (Radon Nikodym Theorem for Positive Measures).
Suppose that µ and ν are σ – finite positive measures on (X,M). Then ν has
a unique Lebesgue decomposition ν = νa + νs relative to µ and there exists
a unique (modulo sets of µ – measure 0) function ρ : X → [0,∞) such that
dνa = ρdµ. Moreover, νs = 0 iff ν � µ.

Proof. The uniqueness assertions follow directly from Lemmas 24.10 and
24.11.

Existence. (Von-Neumann’s Proof.) First suppose that µ and ν are finite
measures and let λ = µ + ν. By Theorem 24.6, dν = hdλ with 0 ≤ h ≤ 1 and
this implies, for all non-negative measurable functions f, that

ν(f) = λ(fh) = µ(fh) + ν(fh) (24.5)

or equivalently
ν(f(1− h)) = µ(fh). (24.6)

Taking f = 1{h=1} in Eq. (24.6) shows that

µ ({h = 1}) = ν(1{h=1}(1− h)) = 0,

i.e. 0 ≤ h (x) < 1 for µ-a.e. x. Let

ρ := 1{h<1}
h

1− h

and then take f = g1{h<1}(1− h)−1 with g ≥ 0 in Eq. (24.6) to learn

ν(g1{h<1}) = µ(g1{h<1}(1− h)−1h) = µ(ρg).

Hence if we define
νa := 1{h<1}ν and νs := 1{h=1}ν,

we then have νs ⊥ µ (since νs “lives” on {h = 1} while µ (h = 1) = 0) and
νa = ρµ and in particular νa � µ. Hence ν = νa + νs is the desired Lebesgue
decomposition of ν.1

If we further assume that ν � µ, then µ (h = 1) = 0 implies ν (h = 1) = 0
and hence that νs = 0 and we conclude that ν = νa = ρµ.

For the σ – finite case, write X =
∐∞
n=1Xn where Xn ∈M are chosen so

that µ(Xn) <∞ and ν(Xn) <∞ for all n. Let dµn = 1Xndµ and dνn = 1Xndν.
Then by what we have just proved there exists ρn ∈ L1(X,µn) ⊂ L1(X,µ) and
measure νsn such that dνn = ρndµn + dνsn with νsn ⊥ µn. Since µn and νsn “live”
on Xn (see Eq. (24.3) there exists An ∈ MXn such that µ (An) = µn (An) = 0
and

νsn (X \An) = νsn (Xn \An) = 0.

This shows that νsn ⊥ µ for all n and so by Lemma 24.8, νs :=
∑∞
n=1 ν

s
n is

singular relative to µ. Since

ν =

∞∑
n=1

νn =

∞∑
n=1

(ρnµn + νsn) =

∞∑
n=1

(ρn1Xnµ+ νsn) = ρµ+ νs,

where ρ :=
∑∞
n=1 1Xnρn, it follows that ν = νa + νs with νa = ρµ is the

Lebesgue decomposition of ν relative to µ.

1 Here is the motivation for this construction. Suppose that dν = dνs + ρdµ is the
Radon-Nikodym decompostion and X = A

∐
B such that νs(B) = 0 and µ(A) = 0.

Then we find

νs(f) + µ(ρf) = ν(f) = λ(fg) = ν(fg) + µ(fg).

Letting f → 1Af then implies that

νs(1Af) = ν(1Afg)

which show that g = 1 ν –a.e. on A. Also letting f → 1Bf implies that

µ(ρ1Bf(1− g)) = ν(1Bf(1− g)) = µ(1Bfg) = µ(fg)

which shows that
ρ(1− g) = ρ1B(1− g) = g µ− a.e..

This shows that ρ = g
1−g µ – a.e.
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24.2 The Structure of Signed Measures

Definition 24.14. Let ν be a signed measure on (X,M) and E ∈M, then

1. E is positive if for all A ∈M such that A ⊂ E, ν(A) ≥ 0, i.e. ν|ME
≥ 0.

2. E is negative if for all A ∈M such that A ⊂ E, ν(A) ≤ 0, i.e. ν|ME
≤ 0.

Lemma 24.15. Suppose that ν is a signed measure on (X,M). Then

1. Any subset of a positive set is positive.
2. The countable union of positive (negative or null) sets is still positive (neg-

ative or null).
3. Let us now further assume that ν(M) ⊂ [−∞,∞) and E ∈ M is a set

such that ν (E) ∈ (0,∞). Then there exists a positive set P ⊂ E such that
ν(P ) ≥ ν(E).

Proof. The first assertion is obvious. If Pj ∈ M are positive sets, let P =
∞⋃
n=1

Pn. By replacing Pn by the positive set Pn \

(
n−1⋃
j=1

Pj

)
we may assume

that the {Pn}∞n=1 are pairwise disjoint so that P =
∞∐
n=1

Pn. Now if E ⊂ P and

E ∈M, E =
∞∐
n=1

(E ∩ Pn) so ν(E) =
∑∞
n=1 ν(E ∩Pn) ≥ 0.which shows that P

is positive. The proof for the negative and the null case is analogous.
The idea for proving the third assertion is to keep removing “big” sets of

negative measure from E. The set remaining from this procedure will be P. We
now proceed to the formal proof. For all A ∈M let

n(A) = 1 ∧ sup{−ν(B) : B ⊂ A}.

Since ν(∅) = 0, n(A) ≥ 0 and n(A) = 0 iff A is positive. Choose A0 ⊂ E
such that −ν(A0) ≥ 1

2n(E) and set E1 = E \ A0, then choose A1 ⊂ E1 such
that −ν(A1) ≥ 1

2n(E1) and set E2 = E \ (A0 ∪A1) . Continue this procedure

inductively, namely if A0, . . . , Ak−1 have been chosen let Ek = E\
(
k−1∐
i=0

Ai

)
and

choose Ak ⊂ Ek such that −ν(Ak) ≥ 1
2n(Ek). Let P := E \

∞∐
k=0

Ak =
∞⋂
k=0

Ek,

then E = P ∪
∞∐
k=0

Ak and hence

(0,∞) 3 ν(E) = ν(P ) +

∞∑
k=0

ν(Ak) = ν(P )−
∞∑
k=0

−ν(Ak) ≤ ν(P ). (24.7)

From Eq. (24.7) we learn that
∑∞
k=0−ν(Ak) < ∞ and in particular that

limk→∞(−ν(Ak)) = 0. Since 0 ≤ 1
2n(Ek) ≤ −ν(Ak), this also implies

limk→∞ n(Ek) = 0. If A ∈ M with A ⊂ P, then A ⊂ Ek for all k and so,
for k large so that n(Ek) < 1, we find −ν(A) ≤ n(Ek). Letting k → ∞ in
this estimate shows −ν(A) ≤ 0 or equivalently ν(A) ≥ 0. Since A ⊂ P was
arbitrary, we conclude that P is a positive set such that ν(P ) ≥ ν(E).

24.2.1 Hahn Decomposition Theorem

Definition 24.16. Suppose that ν is a signed measure on (X,M). A Hahn
decomposition for ν is a partition {P,N = P c} of X such that P is positive
and N is negative.

Theorem 24.17 (Hahn Decomposition Theorem). Every signed measure
space (X,M, ν) has a Hahn decomposition, {P,N}. Moreover, if {P̃ , Ñ} is
another Hahn decomposition, then P∆P̃ = N∆Ñ is a null set, so the decom-
position is unique modulo null sets.

Proof. With out loss of generality we may assume that ν(M) ⊂ [−∞,∞).
If not just consider −ν instead.

Uniqueness. For any A ∈M, we have

ν(A) = ν(A ∩ P ) + ν(A ∩N) ≤ ν(A ∩ P ) ≤ ν(P ).

In particular, taking A = P ∪ P̃ , we learn

ν(P ) ≤ ν(P ∪ P̃ ) ≤ ν(P )

or equivalently that ν (P ) = ν
(
P ∪ P̃

)
. Of course by symmetry we also have

ν (P ) = ν
(
P ∪ P̃

)
= ν

(
P̃
)

=: s.

Since also,

s = ν(P ∪ P̃ ) = ν(P ) + ν(P̃ )− ν(P ∩ P̃ ) = 2s− ν(P ∩ P̃ ),

we also have ν(P ∩ P̃ ) = s. Finally using P ∪ P̃ =
[
P ∩ P̃

]∐(
P̃∆P

)
, we

conclude that

s = ν(P ∪ P̃ ) = ν(P ∩ P̃ ) + ν(P̃∆P ) = s+ ν(P̃∆P )

which shows ν(P̃∆P ) = 0. Thus N∆Ñ = P̃∆P is a positive set with zero mea-
sure, i.e. N∆Ñ = P̃∆P is a null set and this proves the uniqueness assertion.

Existence. Let
s := sup{ν(A) : A ∈M}
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which is non-negative since ν(∅) = 0. If s = 0, we are done since P = ∅ and
N = X is the desired decomposition. So assume s > 0 and choose An ∈ M
such that ν(An) > 0 and limn→∞ ν(An) = s. By Lemma 24.15 there exists
positive sets Pn ⊂ An such that ν(Pn) ≥ ν(An). Then s ≥ ν(Pn) ≥ ν(An)→ s
as n → ∞ implies that s = limn→∞ ν(Pn). The set P := ∪∞n=1Pn is a positive
set being the union of positive sets and since Pn ⊂ P for all n,

ν(P ) ≥ ν(Pn)→ s as n→∞.

This shows that ν(P ) ≥ s and hence by the definition of s, s = ν(P ) <∞.
I now claim thatN = P c is a negative set and therefore, {P,N} is the desired

Hahn decomposition. If N were not negative, we could find E ⊂ N = P c such
that ν(E) > 0. We then would have

ν(P ∪ E) = ν(P ) + ν(E) = s+ ν(E) > s

which contradicts the definition of s.

24.2.2 Jordan Decomposition

Theorem 24.18 (Jordan Decomposition). If ν is a signed measure on
(X,M) , there exist unique positive measure ν± on (X,M) such that ν+ ⊥ ν−
and ν = ν+ − ν−. This decomposition is called the Jordan decomposition of
ν.

Proof. Let {P,N} be a Hahn decomposition for ν and define

ν+(E) := ν(P ∩ E) and ν−(E) := −ν(N ∩ E) ∀ E ∈M.

Then it is easily verified that ν = ν+ − ν− is a Jordan decomposition of ν. The
reader is asked to prove the uniqueness of this decomposition in Exercise 24.12.

Definition 24.19. The measure, |ν| := ν+ + ν− is called the total variation
of ν. A signed measure is called σ – finite provided that ν± (or equivalently
|ν| := ν+ + ν−) are σ -finite measures.

Lemma 24.20. Let ν be a signed measure on (X,M) and A ∈ M. If ν(A) ∈
R then ν(B) ∈ R for all B ⊂ A. Moreover, ν(A) ∈ R iff |ν| (A) < ∞. In
particular, ν is σ finite iff |ν| is σ – finite. Furthermore if P,N ∈M is a Hahn
decomposition for ν and g = 1P − 1N , then dν = gd |ν| , i.e.

ν(A) =

∫
A

gd |ν| for all A ∈M.

Proof. Suppose that B ⊂ A and |ν(B)| = ∞ then since ν(A) = ν(B) +
ν(A \ B) we must have |ν(A)| = ∞. Let P,N ∈ M be a Hahn decomposition
for ν, then

ν(A) = ν(A ∩ P ) + ν(A ∩N) = |ν(A ∩ P )| − |ν(A ∩N)| and

|ν| (A) = ν(A ∩ P )− ν(A ∩N) = |ν(A ∩ P )|+ |ν(A ∩N)| . (24.8)

Therefore ν(A) ∈ R iff ν(A∩P ) ∈ R and ν(A∩N) ∈ R iff |ν| (A) <∞. Finally,

ν(A) = ν(A ∩ P ) + ν(A ∩N)

= |ν| (A ∩ P )− |ν| (A ∩N)

=

∫
A

(1P − 1N )d |ν|

which shows that dν = gd |ν| .

Lemma 24.21. Suppose that µ is a positive measure on (X,M) and g : X → R
is an extended µ-integrable function. If ν is the signed measure dν = gdµ, then
dν± = g±dµ and d |ν| = |g| dµ. We also have

|ν| (A) = sup{
∫
A

f dν : |f | ≤ 1} for all A ∈M. (24.9)

Proof. The pair, P = {g > 0} and N = {g ≤ 0} = P c is a Hahn decompo-
sition for ν. Therefore

ν+(A) = ν(A ∩ P ) =

∫
A∩P

gdµ =

∫
A

1{g>0}gdµ =

∫
A

g+dµ,

ν−(A) = −ν(A ∩N) = −
∫
A∩N

gdµ = −
∫
A

1{g≤0}gdµ = −
∫
A

g−dµ.

and

|ν| (A) = ν+(A) + ν−(A) =

∫
A

g+dµ−
∫
A

g−dµ

=

∫
A

(g+ − g−) dµ =

∫
A

|g| dµ.

If A ∈M and |f | ≤ 1, then∣∣∣∣∫
A

f dν

∣∣∣∣ =

∣∣∣∣∫
A

f dν+ −
∫
A

f dν−

∣∣∣∣ ≤ ∣∣∣∣∫
A

f dν+

∣∣∣∣+

∣∣∣∣∫
A

f dν−

∣∣∣∣
≤
∫
A

|f | dν+ +

∫
A

|f | dν− =

∫
A

|f | d |ν| ≤ |ν| (A).
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For the reverse inequality, let f := 1P − 1N then∫
A

f dν = ν(A ∩ P )− ν(A ∩N) = ν+(A) + ν−(A) = |ν| (A).

Definition 24.22. Let ν be a signed measure on (X,M), let

L1(ν) := L1(ν+) ∩ L1(ν−) = L1(|ν|)

and for f ∈ L1(ν) we define∫
X

fdν :=

∫
X

fdν+ −
∫
X

fdν−.

Lemma 24.23. Let µ be a positive measure on (X,M), g be an extended inte-
grable function on (X,M, µ) and dν = gdµ. Then L1(ν) = L1(|g| dµ) and for
f ∈ L1(ν), ∫

X

fdν =

∫
X

fgdµ.

Proof. By Lemma 24.21, dν+ = g+dµ, dν− = g−dµ, and d |ν| = |g| dµ so
that L1(ν) = L1(|ν|) = L1(|g| dµ) and for f ∈ L1(ν),∫

X

fdν =

∫
X

fdν+ −
∫
X

fdν− =

∫
X

fg+dµ−
∫
X

fg−dµ

=

∫
X

f (g+ − g−) dµ =

∫
X

fgdµ.

Exercise 24.1 (Obsolete now?). Let ν be a σ – finite signed measure, f ∈
L1(|ν|) and define ∫

X

fdν :=

∫
X

fdν+ −
∫
X

fdν−.

Suppose that µ is a σ – finite measure and ν � µ. Show∫
X

fdν =

∫
X

f
dν

dµ
dµ. (24.10)

BRUCE: this seems to already be done in Lemma 24.23.

Lemma 24.24. Suppose ν is a signed measure, µ is a positive measure and
ν = νa + νs is a Lebesgue decomposition (see Definition 24.9) of ν relative to
µ, then |ν| = |νa|+ |νs| .

Proof. Let A ∈M be chosen so that A is a null set for νa and Ac is a null set
for νs. Let A = P ′

∐
N ′ be a Hahn decomposition of νs|MA

and Ac = P̃
∐
Ñ

be a Hahn decomposition of νa|MAc
. Let P = P ′ ∪ P̃ and N = N ′ ∪ Ñ . Since

for C ∈M,

ν(C ∩ P ) = ν(C ∩ P ′) + ν(C ∩ P̃ )

= νs(C ∩ P ′) + νa(C ∩ P̃ ) ≥ 0

and

ν(C ∩N) = ν(C ∩N ′) + ν(C ∩ Ñ)

= νs(C ∩N ′) + νa(C ∩ Ñ) ≤ 0

we see that {P,N} is a Hahn decomposition for ν. It also easy to see that {P,N}
is a Hahn decomposition for both νs and νa as well. Therefore,

|ν| (C) = ν(C ∩ P )− ν(C ∩N)

= νs(C ∩ P )− νs(C ∩N) + νa(C ∩ P )− νa(C ∩N)

= |νs| (C) + |νa| (C).

Lemma 24.25.

1. Let ν be a signed measure and µ be a positive measure on (X,M) such that
ν � µ and ν ⊥ µ, then ν ≡ 0.

2. Suppose that ν =
∑∞
i=1 νi where νi are positive measures on (X,M) such

that νi � µ, then ν � µ.
3. Also if ν1 and ν2 are two signed measure such that νi � µ for i = 1, 2 and
ν = ν1 + ν2 is well defined, then ν � µ.

Proof. 1. Because ν ⊥ µ, there exists A ∈ M such that A is a ν – null set
and B = Ac is a µ - null set. Since B is µ – null and ν � µ, B is also ν – null.
This shows by Lemma 24.15 that X = A ∪ B is also ν – null, i.e. ν is the zero
measure. The proof of items 2. and 3. are easy and will be left to the reader.

Theorem 24.26 (Radon Nikodym Theorem for Signed Measures). Let
ν be a σ – finite signed measure and µ be a σ – finite positive measure on
(X,M). Then ν has a unique Lebesgue decomposition ν = νa + νs relative to
µ and there exists a unique (modulo sets of µ – measure 0) extended integrable
function ρ : X → R such that dνa = ρdµ. Moreover, νs = 0 iff ν � µ, i.e.
dν = ρdµ iff ν � µ.
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Proof. Uniqueness. Is a direct consequence of Lemmas 24.10 and 24.11.
Existence. Let ν = ν+−ν− be the Jordan decomposition of ν. Assume, without
loss of generality, that ν+(X) <∞, i.e. ν(A) <∞ for all A ∈M. By the Radon
Nikodym Theorem 24.13 for positive measures there exist functions f± : X →
[0,∞) and measures λ± such that ν± = µf± + λ± with λ± ⊥ µ. Since

∞ > ν+(X) = µf+(X) + λ+(X),

f+ ∈ L1(µ) and λ+(X) < ∞ so that f = f+ − f− is an extended integrable
function, dνa := fdµ and νs = λ+ − λ− are signed measures. This finishes the
existence proof since

ν = ν+ − ν− = µf+ + λ+ −
(
µf− + λ−

)
= νa + νs

and νs = (λ+ − λ−) ⊥ µ by Lemma 24.8. For the final statement, if νs = 0, then
dν = ρdµ and hence ν � µ. Conversely if ν � µ, then dνs = dν − ρdµ� µ, so
by Lemma 24.15, νs = 0. Alternatively just use the uniqueness of the Lebesgue
decomposition to conclude νa = ν and νs = 0. Or more directly, choose B ∈M
such that µ(Bc) = 0 and B is a νs – null set. Since ν � µ, Bc is also a ν – null
set so that, for A ∈M,

ν(A) = ν(A ∩B) = νa(A ∩B) + νs(A ∩B) = νa(A ∩B).

Notation 24.27 The function f is called the Radon-Nikodym derivative of ν
relative to µ and we will denote this function by dν

dµ .

24.3 Complex Measures

Suppose that ν is a complex measure on (X,M), let νr := Re ν, νi := Im ν and
µ := |νr| + |νi|. Then µ is a finite positive measure on M such that νr � µ
and νi � µ. By the Radon-Nikodym Theorem 24.26, there exists real functions
h, k ∈ L1(µ) such that dνr = h dµ and dνi = k dµ. So letting g := h+ik ∈ L1(µ),

dν = (h+ ik)dµ = gdµ

showing every complex measure may be written as in Eq. (24.1).

Lemma 24.28. Suppose that ν is a complex measure on (X,M), and for i =
1, 2 let µi be a finite positive measure on (X,M) such that dν = gidµi with
gi ∈ L1(µi). Then ∫

A

|g1| dµ1 =

∫
A

|g2| dµ2 for all A ∈M.

In particular, we may define a positive measure |ν| on (X,M) by

|ν| (A) =

∫
A

|g1| dµ1 for all A ∈M.

The finite positive measure |ν| is called the total variation measure of ν.

Proof. Let λ = µ1 +µ2 so that µi � λ. Let ρi = dµi/dλ ≥ 0 and hi = ρigi.
Since

ν(A) =

∫
A

gidµi =

∫
A

giρidλ =

∫
A

hidλ for all A ∈M,

h1 = h2, λ –a.e. Therefore∫
A

|g1| dµ1 =

∫
A

|g1| ρ1dλ =

∫
A

|h1| dλ

=

∫
A

|h2| dλ =

∫
A

|g2| ρ2dλ =

∫
A

|g2| dµ2.

Definition 24.29. Given a complex measure ν, let νr = Re ν and νi = Im ν so
that νr and νi are finite signed measures such that

ν(A) = νr(A) + iνi(A) for all A ∈M.

Let L1(ν) := L1(νr) ∩ L1(νi) and for f ∈ L1(ν) define∫
X

fdν :=

∫
X

fdνr + i

∫
X

fdνi.

Example 24.30. Suppose that µ is a positive measure on (X,M), g ∈ L1(µ) and
ν(A) =

∫
A
gdµ as in Example 24.4, then L1(ν) = L1(|g| dµ) and for f ∈ L1(ν)∫

X

fdν =

∫
X

fgdµ. (24.11)

To check Eq. (24.11), notice that dνr = Re g dµ and dνi = Im g dµ so that
(using Lemma 24.23)

L1(ν) = L1(Re gdµ) ∩ L1(Im gdµ) = L1(|Re g| dµ) ∩ L1(|Im g| dµ) = L1(|g| dµ).

If f ∈ L1(ν), then∫
X

fdν :=

∫
X

f Re gdµ+ i

∫
X

f Im gdµ =

∫
X

fgdµ.
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256 24 Complex Measures, Radon-Nikodym Theorem

Remark 24.31. Suppose that ν is a complex measure on (X,M) such that dν =
gdµ and as above d |ν| = |g| dµ. Letting

ρ = sgn(ρ) :=

{ g
|g| if |g| 6= 0

1 if |g| = 0

we see that
dν = gdµ = ρ |g| dµ = ρd |ν|

and |ρ| = 1 and ρ is uniquely defined modulo |ν| – null sets. We will denote ρ
by dν/d |ν| . With this notation, it follows from Example 24.30 that L1(ν) :=
L1 (|ν|) and for f ∈ L1(ν), ∫

X

fdν =

∫
X

f
dν

d |ν|
d |ν| .

We now give a number of methods for computing the total variation, |ν| , of a
complex or signed measure ν.

Proposition 24.32 (Total Variation). Suppose A ⊂ 2X is an algebra, M =
σ(A), ν is a complex (or a signed measure which is σ – finite on A) on (X,M)
and for E ∈M let

µ0(E) = sup

{
n∑
1

|ν(Ej)| : Ej ∈ AE 3 Ei ∩ Ej = δijEi, n = 1, 2, . . .

}

µ1(E) = sup

{
n∑
1

|ν(Ej)| : Ej ∈ME 3 Ei ∩ Ej = δijEi, n = 1, 2, . . .

}

µ2(E) = sup

{ ∞∑
1

|ν(Ej)| : Ej ∈ME 3 Ei ∩ Ej = δijEi

}

µ3(E) = sup

{∣∣∣∣∫
E

fdν

∣∣∣∣ : f is measurable with |f | ≤ 1

}
µ4(E) = sup

{∣∣∣∣∫
E

fdν

∣∣∣∣ : f ∈ Sf (A, |ν|) with |f | ≤ 1

}
.

then µ0 = µ1 = µ2 = µ3 = µ4 = |ν| .

Proof. Let ρ = dν/d |ν| and recall that |ρ| = 1, |ν| – a.e.
Step 1. µ4 ≤ |ν| = µ3. If f is measurable with |f | ≤ 1 then∣∣∣∣∫

E

f dν

∣∣∣∣ =

∣∣∣∣∫
E

f ρd |ν|
∣∣∣∣ ≤ ∫

E

|f | d |ν| ≤
∫
E

1d |ν| = |ν| (E)

from which we conclude that µ4 ≤ µ3 ≤ |ν| . Taking f = ρ̄ above shows

∣∣∣∣∫
E

f dν

∣∣∣∣ =

∫
E

ρ̄ ρ d |ν| =
∫
E

1 d |ν| = |ν| (E)

which shows that |ν| ≤ µ3 and hence |ν| = µ3.
Step 2. µ4 ≥ |ν| . Let Xm ∈ A be chosen so that |ν| (Xm) <∞ and Xm ↑ X

as m → ∞. By Theorem 31.15 (or Remark ?? or Corollary ?? below), there
exists ρn ∈ Sf (A, µ) such that ρn → ρ1Xm in L1(|ν|) and each ρn may be
written in the form

ρn =

N∑
k=1

zk1Ak (24.12)

where zk ∈ C and Ak ∈ A and Ak ∩ Aj = ∅ if k 6= j. I claim that we may
assume that |zk| ≤ 1 in Eq. (24.12) for if |zk| > 1 and x ∈ Ak,

|ρ(x)− zk| ≥
∣∣∣ρ(x)− |zk|−1

zk

∣∣∣ .
This is evident from Figure 24.1 and formally follows from the fact that

d

dt

∣∣∣ρ(x)− t |zk|−1
zk

∣∣∣2 = 2
[
t− Re(|zk|−1

zkρ(x))
]
≥ 0

when t ≥ 1.

0

1

zk

wk = zk
|zk|

ρ(x)

Fig. 24.1. Sliding points to the unit circle.

Therefore if we define

wk :=

{
|zk|−1

zk if |zk| > 1
zk if |zk| ≤ 1

and ρ̃n =
N∑
k=1

wk1Ak then

|ρ(x)− ρn(x)| ≥ |ρ(x)− ρ̃n(x)|
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and therefore ρ̃n → ρ1Xm in L1(|ν|). So we now assume that ρn is as in Eq.
(24.12) with |zk| ≤ 1. Now∣∣∣∣∫

E

ρ̄ndν −
∫
E

ρ̄1Xmdν

∣∣∣∣ ≤ ∣∣∣∣∫
E

(ρ̄ndν − ρ̄1Xm) ρd |ν|
∣∣∣∣

≤
∫
E

|ρ̄n − ρ̄1Xm | d |ν| → 0 as n→∞

and hence

µ4(E) ≥
∣∣∣∣∫
E

ρ̄1Xmdν

∣∣∣∣ = |ν| (E ∩Xm) for all m.

Letting m ↑ ∞ in this equation shows µ4 ≥ |ν| which combined with step 1.
shows µ3 = µ4 = |ν| .

Proof. Step 3. µ0 = µ1 = µ2 = |ν| . Clearly µ0 ≤ µ1 ≤ µ2. Suppose
{Ej}∞j=1 ⊂ME be a collection of pairwise disjoint sets, then

∞∑
j=1

|ν(Ej)| =
∞∑
j=1

∫
Ej

ρd |ν| ≤
∞∑
j=1

|ν| (Ej) = |ν| (∪Ej) ≤ |ν| (E)

which shows that µ2 ≤ |ν| = µ4. So it suffices to show µ4 ≤ µ0. But if f ∈
Sf (A, |ν|) with |f | ≤ 1, then f may be expressed as f =

∑N
k=1 zk1Ak with

|zk| ≤ 1 and Ak ∩Aj = δijAk. Therefore,∣∣∣∣∫
E

fdν

∣∣∣∣ =

∣∣∣∣∣
N∑
k=1

zkν(Ak ∩ E)

∣∣∣∣∣ ≤
N∑
k=1

|zk| |ν(Ak ∩ E)|

≤
N∑
k=1

|ν(Ak ∩ E)| ≤ µ0(A).

Since this equation holds for all f ∈ Sf (A, |ν|) with |f | ≤ 1, µ4 ≤ µ0 as claimed.

Theorem 24.33 (Radon Nikodym Theorem for Complex Measures).
Let ν be a complex measure and µ be a σ – finite positive measure on (X,M).
Then ν has a unique Lebesgue decomposition ν = νa+νs relative to µ and there
exists a unique element ρ ∈ L1(µ) such that such that dνa = ρdµ. Moreover,
νs = 0 iff ν � µ, i.e. dν = ρdµ iff ν � µ.

Proof. Uniqueness. Is a direct consequence of Lemmas 24.10 and 24.11.
Existence. Let g : X → S1 ⊂ C be a function such that dν = gd |ν| . By
Theorem 24.13, there exists h ∈ L1(µ) and a positive measure |ν|s such that
|ν|s ⊥ µ and d |ν| = hdµ + d |ν|s . Hence we have dν = ρdµ + dνs with ρ :=
gh ∈ L1(µ) and dνs := gd |ν|s . This finishes the proof since, as is easily verified,
νs ⊥ µ.

24.4 Absolute Continuity on an Algebra

The following results will be needed in Section 25.4 below.

Exercise 24.2. Let ν = νr + iνi is a complex measure on a measurable space,
(X,M) , then |νr| ≤ |ν| ,

∣∣νi∣∣ ≤ |ν| and |ν| ≤ |νr|+
∣∣νi∣∣ .

Exercise 24.3. Let ν be a signed measure on a measurable space, (X,M) . If
A ∈ M is set such that there exists M < ∞ such that |ν (B)| ≤ M for all
B ∈ MA = {C ∩A : C ∈M} , then |ν| (A) ≤ 2M. If ν is complex measure
with A ∈M and M <∞ as above, then |ν| (A) ≤ 4M.

Lemma 24.34. Let ν be a complex or a signed measure on (X,M). Then A ∈
M is a ν – null set iff |ν| (A) = 0. In particular if µ is a positive measure on
(X,M), ν � µ iff |ν| � µ.

Proof. In all cases we have |ν(A)| ≤ |ν| (A) for all A ∈ M which clearly
shows that |ν| (A) = 0 implies A is a ν – null set. Conversely if A is a ν – null
set, then, by definition, ν|MA

≡ 0 so by Proposition 24.32

|ν| (A) = sup

{ ∞∑
1

|ν(Ej)| : Ej ∈MA 3 Ei ∩ Ej = δijEi

}
= 0.

since Ej ⊂ A implies µ(Ej) = 0 and hence ν(Ej) = 0.
Alternate Proofs that A is ν – null implies |ν| (A) = 0.
1) Suppose ν is a signed measure and {P,N = P c} ⊂ M is a Hahn decom-

position for ν. Then

|ν| (A) = ν(A ∩ P )− ν(A ∩N) = 0.

Now suppose that ν is a complex measure. Then A is a null set for both νr :=
Re ν and νi := Im ν. Therefore |ν| (A) ≤ |νr| (A) + |νi| (A) = 0.

2) Here is another proof in the complex case. Let ρ = dν
d|ν| , then by assump-

tion of A being ν – null,

0 = ν(B) =

∫
B

ρd |ν| for all B ∈MA.

This shows that ρ1A = 0, |ν| – a.e. and hence

|ν| (A) =

∫
A

|ρ| d |ν| =
∫
X

1A |ρ| d |ν| = 0.
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Theorem 24.35 (ε – δ Definition of Absolute Continuity). Let ν be a
complex measure and µ be a positive measure on (X,M). Then ν � µ iff for
all ε > 0 there exists a δ > 0 such that |ν(A)| < ε whenever A ∈ M and
µ(A) < δ.

Proof. (⇐=) If µ(A) = 0 then |ν(A)| < ε for all ε > 0 which shows that
ν(A) = 0, i.e. ν � µ.

(=⇒) Since ν � µ iff |ν| � µ and |ν(A)| ≤ |ν| (A) for all A ∈M, it suffices
to assume ν ≥ 0 with ν(X) < ∞. Suppose for the sake of contradiction there
exists ε > 0 and An ∈M such that ν(An) ≥ ε > 0 while µ(An) ≤ 1

2n . Let

A = {An i.o.} =

∞⋂
N=1

⋃
n≥N

An

so that

µ(A) = lim
N→∞

µ (∪n≥NAn) ≤ lim
N→∞

∞∑
n=N

µ(An) ≤ lim
N→∞

2−(N−1) = 0.

On the other hand,

ν(A) = lim
N→∞

ν (∪n≥NAn) ≥ lim
n→∞

inf ν(An) ≥ ε > 0

showing that ν is not absolutely continuous relative to µ.

Corollary 24.36. Let µ be a positive measure on (X,M) and f ∈ L1(dµ).

Then for all ε > 0 there exists δ > 0 such that

∣∣∣∣∫
A

f dµ

∣∣∣∣ < ε for all A ∈M such

that µ(A) < δ.

Proof. Apply theorem 24.35 to the signed measure ν(A) =
∫
A

f dµ for all

A ∈M.
Alternative proof. If the statement in the corollary were false, there

would exists ε > 0 and An ∈ M such that µ (An) ↓ 0 while

∣∣∣∣∣ ∫An f dµ
∣∣∣∣∣ ≥ ε for

all n. On the other hand |1Anf | ≤ |f | ∈ L1 (µ) and 1Anf
µ→ 0 as n → ∞ and

so by the dominated convergence theorem in Corollary 16.21 we may conclude,

lim
n→∞

∫
An

f dµ = lim
n→∞

∫
X

1Anf dµ = 0

which leads to the desired contradiction.

Theorem 24.37 (Absolute Continuity on an Algebra). Let ν be a complex
measure and µ be a positive measure on (X,M). Suppose that A ⊂ M is an
algebra such that σ(A) =M and that µ is σ – finite on A. Then ν � µ iff for
all ε > 0 there exists a δ > 0 such that |ν(A)| < ε for all A ∈ A which satisfy
µ(A) < δ.

Proof. (=⇒) This implication is a consequence of Theorem 24.35.
(⇐=) If |ν(A)| < ε for all A ∈ A with µ(A) < δ, then by Exercise 24.3,

|ν| (A) ≤ 4ε for all A ∈ A with µ(A) < δ. Because of this argument, we may
now replace ν by |ν| and hence we may assume that ν is a positive finite measure.

Let ε > 0 and δ > 0 be such that ν(A) < ε for all A ∈ A with µ(A) < δ.
Suppose that B ∈ M with µ(B) < δ and α ∈ (0, δ − µ (B)) . By Corollary
31.18, there exists A ∈ A such that

µ (A∆B) + ν (A∆B) = (µ+ ν) (A∆B) < α.

In particular it follows that µ (A) ≤ µ (B) + µ (A∆B) < δ and hence by as-
sumption ν (A) < ε. Therefore,

ν (B) ≤ ν (A) + ν (A∆B) < ε+ α

and letting α ↓ 0 in this inequality shows ν (B) ≤ ε.
Alternative Proof. Let ε > 0 and δ > 0 be such that ν(A) < ε for all

A ∈ A with µ(A) < δ. Suppose that B ∈ M with µ(B) < δ. Use the regularity
Theorem ?? below (or see Theorem ?? or Corollary ??) to find A ∈ Aσ such
that B ⊂ A and µ(B) ≤ µ(A) < δ. Write A = ∪nAn with An ∈ A. By replacing
An by ∪nj=1Aj if necessary we may assume that An is increasing in n. Then
µ(An) ≤ µ(A) < δ for each n and hence by assumption ν(An) < ε. Since
B ⊂ A = ∪nAn it follows that ν(B) ≤ ν(A) = limn→∞ ν(An) ≤ ε. Thus we
have shown that ν(B) ≤ ε for all B ∈M such that µ(B) < δ.

24.5 Exercises

Exercise 24.4. Prove Theorem 29.6 for p ∈ [1, 2] by directly applying the Riesz
theorem to ϕ|L2(µ).

Exercise 24.5. Show |ν| be defined as in Eq. (29.9) is a positive measure. Here
is an outline.

1. Show
|ν| (A) + |ν| (B) ≤ |ν| (A ∪B). (24.13)

when A,B are disjoint sets in M.

Page: 258 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



24.5 Exercises 259

2. If A =
∐∞
n=1An with An ∈M then

|ν| (A) ≤
∞∑
n=1

|ν| (An). (24.14)

3. From Eqs. (24.13) and (24.14) it follows that |ν| is finitely additive, and
hence

|ν| (A) =

N∑
n=1

|ν| (An) + |ν| (∪n>NAn) ≥
N∑
n=1

|ν| (An).

Letting N → ∞ in this inequality shows |ν| (A) ≥
∑∞
n=1 |ν| (An) which

combined with Eq. (24.14) shows |ν| is countably additive.

Exercise 24.6. Suppose X is a set, A ⊂ 2X is an algebra, and ν : A → C is a
finitely additive measure. For any A ∈ A, let

|ν| (A) := sup

{
n∑
i=1

|ν (Ai)| : A =

n∐
i=1

Ai with Ai ∈ A and n ∈ N

}
.

1. Suppose P := {Ai}ni=1 ⊂ A is a partition of A ∈ A and {Bj}mj=1 ⊂ A is

partition of A which refines P (i.e. for each j there exists an i such that
Bj ⊂ Ai), then

n∑
i=1

|ν (Ai)| ≤
m∑
j=1

|ν (Bj)| . (24.15)

2. The total variation,|ν| : A → [0,∞] , of ν is a finitely additive measure
on A.

Exercise 24.7. Suppose that {νn}∞n=1 are complex measures on a measurable
space, (X,M) .

1. If
∑∞
n=1 |νn| (X) <∞, then ν :=

∑∞
n=1 νn is a complex measure.

2. If there is a finite positive measure, µ : M → [0,∞) such that |νn (A)| ≤
µ (A) for all A ∈M and ν (A) := limn→∞ νn (A) exists for all A ∈M, then
ν is also a complex measure.

Exercise 24.8. Let (X,M) be a measurable space and M(X) denote the space
of complex measures on (X,M) and for µ ∈ M(X) let ‖µ‖ := |µ| (X). Show
(M(X), ‖·‖) is a Banach space.

Exercise 24.9. Suppose µi, νi are σ – finite positive measures on measurable
spaces, (Xi,Mi), for i = 1, 2. If νi � µi for i = 1, 2 then ν1⊗ ν2 � µ1⊗µ2 and
in fact

d(ν1 ⊗ ν2)

d(µ1 ⊗ µ2)
(x1, x2) = ρ1 ⊗ ρ2(x1, x2) := ρ1(x1)ρ2(x2)

where ρi := dνi/dµi for i = 1, 2.

Exercise 24.10. Let X = [0, 1] , M := B[0,1], m be Lebesgue measure and µ
be counting measure on X. Show

1. m� µ yet there is not function ρ such that dm = ρdµ.
2. Counting measure µ has no Lebesgue decomposition relative to m.

Exercise 24.11. Suppose that ν is a signed or complex measure on (X,M)
and An ∈ M such that either An ↑ A or An ↓ A and ν(A1) ∈ R, then show
ν(A) = limn→∞ ν(An).

Exercise 24.12. Let (X,M) be a measurable space, ν : M → [−∞,∞) be a
signed measure, and ν = ν+− ν− be a Jordan decomposition of ν. If ν := α−β
with α and β being positive measures and α (X) < ∞, show ν+ ≤ α and
ν− ≤ β. Us this result to prove the uniqueness of Jordan decompositions stated
in Theorem 24.18.

Exercise 24.13. Let ν1 and ν2 be two signed measures on (X,M) which are
assumed to be valued in [−∞,∞). Show, |ν1 + ν2| ≤ |ν1| + |ν2| . Hint: use
Exercise 24.12 along with the observation that ν1 +ν2 = (ν+

1 +ν+
2 )−(ν−1 +ν−2 ),

where ν±i := (νi)± .

Exercise 24.14. Folland Exercise 3.7a on p. 88.

Exercise 24.15. Show Theorem 24.35 may fail if ν is not finite. (For a hint,
see problem 3.10 on p. 92 of Folland.)

Exercise 24.16. Folland 3.14 on p. 92.

Exercise 24.17. Folland 3.15 on p. 92.

Exercise 24.18. If ν is a complex measure on (X,M) such that |ν| (X) =
ν (X) , then ν = |ν| .

Exercise 24.19. Suppose ν is a complex or a signed measure on a measurable
space, (X,M) . Show A ∈M is a ν - null set iff |ν| (A) = 0. Use this to conclude
that if µ is a positive measure, then ν ⊥ µ iff |ν| ⊥ µ.
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25

Lebesgue Differentiation and the Fundamental Theorem of Calculus

BRUCE: replace Rn by Rd in this section?

Notation 25.1 In this chapter, let B = BRn denote the Borel σ – algebra
on Rn and m be Lebesgue measure on B. If V is an open subset of Rn, let
L1
loc(V ) := L1

loc(V,m) and simply write L1
loc for L1

loc(Rn). We will also write
|A| for m(A) when A ∈ B.

Definition 25.2. A collection of measurable sets {E}r>0 ⊂ B is said to shrink

nicely to x ∈ Rn if (i) Er ⊂ B(x, r) for all r > 0 and (ii) there exists α > 0
such that m(Er) ≥ αm(B(x, r)). We will abbreviate this by writing Er ↓ {x}
nicely. (Notice that it is not required that x ∈ Er for any r > 0.

The main result of this chapter is the following theorem.

Theorem 25.3. Suppose that ν is a complex measure on (Rn,B) , then there
exists g ∈ L1(Rn,m) and a complex measure νs such that νs ⊥ m, dν = gdm+
dνs, and for m - a.e. x,

g(x) = lim
r↓0

ν(Er)

m(Er)
and (25.1)

0 = lim
r↓0

νs(Er)

m(Er)
(25.2)

for any collection of {Er}r>0 ⊂ B which shrink nicely to {x} . (Eq. (25.1) holds
for all x ∈ L (g) – the Lebesgue set of g, see Definition 25.12 and Theorem
25.13 below.)

Proof. The existence of g and νs such that νs ⊥ m and dν = gdm+ dνs is
a consequence of the Radon-Nikodym Theorem 24.33. Since

ν(Er)

m(Er)
=

1

m(Er)

∫
Er

g(x)dm(x) +
νs(Er)

m(Er)

Eq. (25.1) is a consequence of Theorem 25.14 and Corollary 25.16 below.
The rest of this chapter will be devoted to filling in the details of the proof

of this theorem.

25.1 A Covering Lemma and Averaging Operators

Lemma 25.4 (Covering Lemma). Let E be a collection of open balls in Rn
and U = ∪B∈EB. If c < m(U), then there exists disjoint balls B1, . . . , Bk ∈ E

such that c < 3n
k∑
j=1

m(Bj).

Proof. Choose a compact set K ⊂ U such that m(K) > c and then let E1 ⊂
E be a finite subcover of K. Choose B1 ∈ E1 to be a ball with largest diameter
in E1. Let E2 = {A ∈ E1 : A∩B1 = ∅}. If E2 is not empty, choose B2 ∈ E2 to be
a ball with largest diameter in E2. Similarly let E3 = {A ∈ E2 : A∩B2 = ∅} and
if E3 is not empty, choose B3 ∈ E3 to be a ball with largest diameter in E3.
Continue choosing Bi ∈ E for i = 1, 2, . . . , k this way until Ek+1 is empty, see
Figure 25.1 below. If B = B(x0, r) ⊂ Rn, let B∗ = B(x0, 3r) ⊂ Rn, that is B∗

Fig. 25.1. Picking out the large disjoint balls via the “greedy algorithm.”

is the ball concentric with B which has three times the radius of B. We will now
show K ⊂ ∪ki=1B

∗
i . For each A ∈ E1 there exists a first i such that Bi ∩A 6= ∅.

In this case diam(A) ≤ diam(Bi) and A ⊂ B∗i . Therefore A ⊂ ∪ki=1B
∗
i and

hence K ⊂ ∪{A : A ∈ E1} ⊂ ∪ki=1B
∗
i . Hence by sub-additivity,
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c < m(K) ≤
k∑
i=1

m(B∗i ) ≤ 3n
k∑
i=1

m(Bi).

Definition 25.5. For f ∈ L1
loc, x ∈ Rn and r > 0 let

(Arf)(x) =
1

|B(x, r)|

∫
B(x,r)

fdm (25.3)

where B(x, r) = B(x, r) ⊂ Rn, and |A| := m(A).

Lemma 25.6. Let f ∈ L1
loc, then for each x ∈ Rn, (0,∞) 3 r → (Arf)(x) ∈ C

is continuous and for each r > 0, Rn 3 x→ (Arf) (x) ∈ C is measurable.

Proof. Recall that |B(x, r)| = m(E1)rn which is continuous in r. Also
limr→r0 1B(x,r)(y) = 1B(x,r0)(y) if |y| 6= r0 and since m ({y : |y| 6= r0}) = 0 (you
prove!), limr→r0 1B(x,r)(y) = 1B(x,r0)(y) for m -a.e. y. So by the dominated
convergence theorem,

lim
r→r0

∫
B(x,r)

fdm =

∫
B(x,r0)

fdm

and therefore

(Arf)(x) =
1

m(E1)rn

∫
B(x,r)

fdm

is continuous in r. Let gr(x, y) := 1B(x,r)(y) = 1|x−y|<r. Then gr is B ⊗ B –
measurable (for example write it as a limit of continuous functions or just notice
that F : Rn × Rn → R defined by F (x, y) := |x− y| is continuous) and so that
by Fubini’s theorem

x→
∫

B(x,r)

fdm =

∫
B(x,r)

gr(x, y)f(y)dm(y)

is B – measurable and hence so is x→ (Arf) (x).

25.2 Maximal Functions

Definition 25.7. For f ∈ L1(m), the Hardy - Littlewood maximal function Hf
is defined by

(Hf)(x) = sup
r>0

Ar |f | (x).

Lemma 25.6 allows us to write

(Hf)(x) = sup
r∈Q, r>0

Ar |f | (x)

from which it follows that Hf is measurable.

Theorem 25.8 (Maximal Inequality). If f ∈ L1(m) and α > 0, then

m (Hf > α) ≤ 3n

α
‖f‖L1 .

(Remark: this theorem extends to f ∈ L1 (m;X) where X is a separable
Banach space – just replace |·| in the definition and proofs by ‖·‖X .)

This should be compared with Chebyshev’s inequality which states that

m (|f | > α) ≤ ‖f‖L
1

α
.

Proof. Let Eα := {Hf > α}. For all x ∈ Eα there exists rx such that
Arx |f | (x) > α, i.e.

|Bx(rx)| < 1

α

∫
Bx(rx)

|f | dm.

Since Eα ⊂ ∪x∈EαBx(rx), if c < m(Eα) ≤ m(∪x∈EαBx(rx)) then, using Lemma
25.4, there exists x1, . . . , xk ∈ Eα and disjoint balls Bi = Bxi(rxi) for i =
1, 2, . . . , k such that

c <

k∑
i=1

3n |Bi| <
∑ 3n

α

∫
Bi

|f | dm ≤ 3n

α

∫
Rn
|f | dm =

3n

α
‖f‖L1 .

This shows that c < 3nα−1‖f‖L1 for all c < m(Eα) which proves m(Eα) ≤
3nα−1‖f‖.

Theorem 25.9. If f ∈ L1
loc then lim

r↓0
(Arf)(x) = f(x) for m – a.e. x ∈ Rn.

Proof. With out loss of generality we may assume f ∈ L1(m). We now
begin with the special case where f = g ∈ L1(m) is also continuous. In this
case we find:

|(Arg)(x)− g(x)| ≤ 1

|B(x, r)|

∫
B(x,r)

|g(y)− g(x)|dm(y)

≤ sup
y∈B(x,r)

|g(y)− g(x)| → 0 as r → 0.
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In fact we have shown that (Arg)(x) → g(x) as r → 0 uniformly for x in
compact subsets of Rn. For general f ∈ L1(m),

|Arf(x)− f(x)| ≤ |Arf(x)−Arg(x)|+ |Arg(x)− g(x)|+ |g(x)− f(x)|
= |Ar(f − g)(x)|+ |Arg(x)− g(x)|+ |g(x)− f(x)|
≤ H(f − g)(x) + |Arg(x)− g(x)|+ |g(x)− f(x)|

and therefore,

lim
r↓0
|Arf(x)− f(x)| ≤ H(f − g)(x) + |g(x)− f(x)|.

So if α > 0, then

Eα :=

{
lim
r↓0
|Arf(x)− f(x)| > α

}
⊂
{
H(f − g) >

α

2

}
∪
{
|g − f | > α

2

}
and thus

m(Eα) ≤ m
(
H(f − g) >

α

2

)
+m

(
|g − f | > α

2

)
≤ 3n

α/2
‖f − g‖L1 +

1

α/2
‖f − g‖L1

≤ 2(3n + 1)α−1‖f − g‖L1 ,

where in the second inequality we have used the Maximal inequality (The-
orem 25.8) and Chebyshev’s inequality. Since this is true for all continuous
g ∈ C(Rn) ∩ L1(m) and this set is dense in L1(m), we may make ‖f − g‖L1 as
small as we please. This shows that

m

({
x : lim

r↓0
|Arf(x)− f(x)| > 0

})
= m(∪∞n=1E1/n) ≤

∞∑
n=1

m(E1/n) = 0.

Remark 25.10. Theorem 25.9 also holds for f ∈ L1 (m;X) where X is a separa-
ble Banach space. The only point is to observe that Cc (Rn;X) are still dense in
L1 (m;X) . To prove we use the fact that X – valued L1 – simple functions are
dense in L1 (m;X) and so it suffices to show that 1A · x may be approximated
by g ∈ Cc (Rn;X) for all A ∈ BRd with m (A) <∞ and x ∈ X. But this is easy
to do by taking g = ϕ · x where ‖ϕ− 1A‖L1(m) is small and ϕ ∈ Cc (Rn,R) .

Corollary 25.11. If dµ = gdm with g ∈ L1
loc then

µ(B(x, r))

|B(x, r)|
= Arg(x)→ g(x) for m – a.e. x.

25.3 Lebesque Set

Definition 25.12. For f ∈ L1
loc(m), the Lebesgue set of f is

L (f) :=

x ∈ Rn : lim
r↓0

1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)|dy = 0


=

{
x ∈ Rn : lim

r↓0
(Ar |f(·)− f(x)|) (x) = 0

}
.

More generally, if p ∈ [1,∞) and f ∈ Lploc (m) , let

Lp (f) :=

x ∈ Rn : lim
r↓0

1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)|pdy = 0


Theorem 25.13. Suppose 1 ≤ p <∞ and f ∈ Lploc(m), then m

(
Rd \ Lp (f)

)
=

0. (This result also holds for f ∈ Lploc (m;X) where X is a separable Banach
space. One need only replace Q + iQ by a countable dense subset of X and |·|
by ‖·‖X in the proof below.)

Proof. For w ∈ C define gw(x) = |f(x)− w|p and

Ew :=

{
x : lim

r↓0
(Argw) (x) 6= gw(x)

}
and further let

E =
⋃

w∈Q+iQ
Ew.

Then by Theorem 25.9 m(Ew) = 0 for all w ∈ C and therefore m(E) = 0. By
definition of E, if x /∈ E then.

lim
r↓0

(Ar|f(·)− w|p)(x) = |f(x)− w|p

for all w ∈ Q+ iQ. Letting q := p
p−1 (so that p/q = p− 1) we have

|f(·)− f(x)|p ≤ (|f(·)− w|+ |w − f(x)|)p

≤ 2p/q (|f(·)− w|p + |w − f(x)|p) = 2p−1 (|f(·)− w|p + |w − f(x)|p) ,

(Ar|f(·)− f(x)|p)(x) ≤ 2p−1 (Ar |f(·)− w|p) (x) + 2p−1|w − f(x)|

and hence for x /∈ E,
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lim
r↓0

(Ar|f(·)− f(x)|p)(x) ≤ 2p−1|f(x)−w|p + 2p−1|w − f(x)|p = 2p|f(x)−w|p.

Since this is true for all w ∈ Q+ iQ, we see that

lim
r↓0

(Ar|f(·)− f(x)|p)(x) = 0 for all x /∈ E,

i.e. Ec ⊂ Lp (f) or equivalently (Lp (f))
c ⊂ E. So m (Rn \ Lp (f)) ≤ m(E) = 0.

Theorem 25.14 (Lebesque Differentiation Theorem). If f ∈ Lploc and
x ∈ Lp (f) (so in particular for m – a.e. x), then

lim
r↓0

1

m(Er)

∫
Er

|f(y)− f(x)|pdy = 0

and

lim
r↓0

1

m(Er)

∫
Er

f(y)dy = f(x)

when Er ↓ {x} nicely, see Definition 25.2.

Proof. For x ∈ Lp (f) , by Hölder’s inequality (Theorem 16.1) or Jensen’s
inequality (Theorem 28.8), we have∣∣∣∣ 1

m(Er)

∫
Er

f(y)dy − f(x)

∣∣∣∣p =

∣∣∣∣ 1

m(Er)

∫
Er

(f(y)− f(x)) dy

∣∣∣∣p
≤ 1

m(Er)

∫
Er

|f(y)− f(x)|pdy

≤ 1

αm(B(x, r))

∫
B(x,r)

|f(y)− f(x)|pdy

which tends to zero as r ↓ 0 by Theorem 25.13. In the second inequality we
have used the fact that m(B(x, r) \B(x, r)) = 0.

Lemma 25.15. Suppose λ is positive K – finite measure on B := BRn such
that λ ⊥ m. Then for m – a.e. x,

lim
r↓0

λ(B(x, r))

m(B(x, r))
= 0.

Proof. Let A ∈ B such that λ(A) = 0 and m(Ac) = 0. By the regularity
theorem (see Theorem 38.16, Corollary ?? or Exercise ??), for all ε > 0 there
exists an open set Vε ⊂ Rn such that A ⊂ Vε and λ(Vε) < ε. For the rest of this
argument, we will assume m has been extended to the Lebesgue measurable
sets, L := B̄m. Let

Fk :=

{
x ∈ A : lim

r↓0

λ(B(x, r))

m(B(x, r))
>

1

k

}
the for x ∈ Fk choose rx > 0 such that Bx(rx) ⊂ Vε (see Figure 25.2) and
λ(B(x,rx))
m(B(x,rx)) >

1
k , i.e.

m(B(x, rx)) < kλ(B(x, rx)).

Let E = {B(x, rx)}x∈Fk and U :=
⋃

x∈Fk
B(x, rx) ⊂ Vε. Heuristically if all the

Fig. 25.2. In this picture we imagine that λ =
∑∞
n=1 n

−2δ1/n and A = R2 \
{(−1/n, 0) : n ∈ N} . We may approximate A by the open sets, VN := R2 \
{(−1/n, 0) : 1 ≤ n ≤ N} , since λ (VN ) =

∑∞
n=N+1 n

−2 → 0 as N → ∞. (Of

course we could simplify matters in this setting by choosing A = V := R2 \
({(−1/n, 0) : 1 ≤ n ≤ N} ∪ {0}) , but this would not be very enlightening.)

balls in E were disjoint and E were countable, then

m(Fk) ≤
∑
x∈Fk

m(B(x, rx)) < k
∑
x∈Fk

λ(B(x, rx))

= kλ(U) ≤ k λ(Vε) ≤ kε.

Since ε > 0 is arbitrary this would imply that Fk ∈ L and m(Fk) = 0. To fix
the above argument, suppose that c < m(U) and use the covering lemma to
find disjoint balls B1, . . . , BN ∈ E such that

c < 3n
N∑
i=1

m(Bi) < k3n
N∑
i=1

λ(Bi)

≤ k3nλ(U) ≤ k3nλ(Vε) ≤ k3nε.

Since c < m(U) is arbitrary we learn that m(U) ≤ k3nε. This argument shows
open sets Uε such that Fk ⊂ Uε and m(Uε) ≤ k3nε for all ε > 0. Therefore
Fk ⊂ G := ∩∞l=1U1/l ∈ B with m (G) = 0 which shows Fk ∈ L and m(Fk) = 0.
Since
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F∞ :=

{
x ∈ A : lim

r↓0

λ(B(x, r))

m(B(x, r))
> 0

}
= ∪∞k=1Fk ∈ L,

it also follows that F∞ ∈ L and m (F∞) = 0. Since{
x ∈ Rn : lim

r↓0

λ(B(x, r))

m(B(x, r))
> 0

}
⊂ F∞ ∪Ac

and m(Ac) = 0, we have shown

m

({
x ∈ Rn : lim

r↓0

λ(B(x, r))

m(B(x, r))
> 0

})
= 0.

Corollary 25.16. Let λ be a complex or a K – finite signed measure (i.e.
ν(K) ∈ R for all K @@ Rn) such that λ ⊥ m. Then for m – a.e. x,

lim
r↓0

λ(Er)

m(Er)
= 0

whenever Er ↓ {x} nicely.

Proof. By Exercise 24.19, λ ⊥ m implies |λ| ⊥ m. Hence the result follows
from Lemma 25.15 and the inequalities,

|λ(Er)|
m(Er)

≤ |λ| (Er)
αm(B(x, r))

≤ |λ| (B(x, r))

αm(B(x, r))
≤ |λ| (B(x, 2r))

α2−nm(B(x, 2r))
.

25.4 The Fundamental Theorem of Calculus

In this section we will restrict the results above to the one dimensional setting.
The following notation will be in force for the rest of this chapter. (BRUCE:
make sure this notation agrees with the notation in Notation 25.21.)

Notation 25.17 Let

1. m be one dimensional Lebesgue measure on B := BR,
2. α, β be numbers in R̄ such that −∞ ≤ α < β ≤ ∞,
3. A = A[α,β] be the algebra generated by sets of the form (a, b] ∩ [α, β] with
−∞ ≤ a < b ≤ ∞,

4. Ab denote those sets in A which are bounded,
5. and B[α,β] be the Borel σ – algebra on [α, β] ∩ R.

Notation 25.18 Given a function F : R→ R̄ or F : R→ C, let F (x−) =
limy↑x F (y), F (x+) = limy↓x F (y) and F (±∞) = limx→±∞ F (x) whenever the
limits exist. Notice that if F is a monotone functions then F (±∞) and F (x±)
exist for all x.

25.4.1 Increasing Functions

Theorem 25.19 (Monotone functions). Let F : R → R be increasing and
define G(x) = F (x+). Then:

1. The function G is increasing and right continuous.
2. For x ∈ R, G(x) = limy↓x F (y−).
3. The set of discontinuities of F, {x ∈ R : F (x+) > F (x−)}, is countable.

Moreover for each N > 0,∑
x∈(−N,N ]

[F (x+)− F (x−)] ≤ F (N)− F (−N) <∞. (25.4)

4. There exists a unique measure, νG on B = BR such that

νG((a, b]) = G(b)−G(a) for all a < b.

5. For m – a.e. x, F ′(x) and G′(x) exists and F ′(x) = G′(x). (Notice that
F ′ (x) and G′ (x) are non-negative when they exist.)

6. The function F ′ (= G′ a.e.) is in L1
loc(m) and there exists a unique positive

measure νs on (R,BR) such that

F (b+)− F (a+) =

∫ b

a

F ′dm+ νs((a, b]) for all −∞ < a < b <∞.

Furthermore, the measure νs is singular relative to m and F ′ ∈ L1(R,m) if
F is bounded.

Proof.

1. The following observation shows G is increasing: if x < y then

F (x−) ≤ F (x) ≤ F (x+) = G(x) ≤ F (y−) ≤ F (y) ≤ F (y+) = G(y).
(25.5)

Since G is increasing, G(x) ≤ G(x+). If y > x then G(x+) ≤ F (y) and
hence G(x+) ≤ F (x+) = G(x), i.e. G(x+) = G(x) which is to say G
is right continuous. (For another proof, see Eq. (38.28) of Theorem 38.29
below.)

2. Since G(x) ≤ F (y−) ≤ F (y) for all y > x, it follows that

G(x) ≤ lim
y↓x

F (y−) ≤ lim
y↓x

F (y) = G(x)

showing G(x) = limy↓x F (y−).
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266 25 Lebesgue Differentiation and the Fundamental Theorem of Calculus

3. By Eq. (25.5), if x 6= y then

(F (x−), F (x+)] ∩ (F (y−), F (y+)] = ∅.

Therefore, {(F (x−), F (x+)]}x∈R are disjoint possible empty intervals in R.
Let N ∈ N and α ⊂f (−N,N) be a finite set, then∐

x∈α
(F (x−), F (x+)] ⊂ (F (−N), F (N)]

and therefore,∑
x∈α

[F (x+)− F (x−)] ≤ F (N)− F (−N) <∞.

Since this is true for all α ⊂f (−N,N ], Eq. (25.4) holds. Eq. (25.4) shows

ΓN := {x ∈ (−N,N)|F (x+)− F (x−) > 0}

is countable and hence so is

Γ := {x ∈ R|F (x+)− F (x−) > 0} = ∪∞N=1ΓN .

4. Item 4. is a direct consequence of Theorem 8.33 (or Theorem 38.26 below).
Notice that νG is a finite measure when F and hence G is bounded.

5. Theorem 25.3 now asserts that νG decomposes as;

dνG = gdm+ dνs,

where νs ⊥ m, g ∈ L1
loc (R,m) with g ∈ L1 (R,m) if F is bounded. Moreover

Theorem 25.3 implies, for m - a.e. x,

g (x) = lim
r↓0

(νG(Er)/m(Er)),

where {Er}r>0 is any collection of sets shrink nicely to {x} . Since (x, x+r] ↓
{x} and (x− r, x] ↓ {x} nicely,

g (x) = lim
r↓0

νG(x, x+ r])

m((x, x+ r])
= lim

r↓0

G(x+ r)−G(x)

r
=

d

dx+
G(x) (25.6)

and

g (x) = lim
r↓0

νG((x− r, x])

m((x− r, x])
= lim

r↓0

G(x)−G(x− r)
r

= lim
r↓0

G(x− r)−G(x)

−r
=

d

dx−
G(x) (25.7)

exist and are equal for m - a.e. x, i.e. G′(x) = g (x) exists for m -a.e. x.
For x ∈ R, let

H(x) := G(x)− F (x) = F (x+)− F (x) ≥ 0.

Since F (x) = G(x)−H(x), the proof of 5. will be complete once we show
H ′(x) = 0 for m – a.e. x. From Item 3.,

Λ := {x ∈ R : F (x+) > F (x)} ⊂ {x ∈ R : F (x+) > F (x−)}

is a countable set and∑
x∈(−N,N)

H(x) =
∑

x∈(−N,N)

(F (x+)−F (x)) ≤
∑

x∈(−N,N)

(F (x+)−F (x−)) <∞

for all N <∞. Therefore λ :=
∑
x∈R

H(x)δx (i.e. λ(A) :=
∑
x∈AH(x) for all

A ∈ BR) defines a Radon measure on BR. Since λ(Λc) = 0 and m(Λ) = 0,
the measure λ ⊥ m. By Corollary 25.16 for m - a.e. x,∣∣∣∣H(x+ r)−H(x)

r

∣∣∣∣ ≤ |H(x+ r)|+ |H(x)|
|r|

≤ H(x+ |r|) +H(x− |r|) +H(x)

|r|

≤ 2
λ([x− |r| , x+ |r|])

2 |r|

and the last term goes to zero as r → 0 because {[x− r, x+ r]}r>0 shrinks
nicely to {x} as r ↓ 0 and m([x − |r| , x + |r|]) = 2 |r| . Hence we conclude
for m – a.e. x that H ′(x) = 0.

6. From Theorem 25.3, item 5. and Eqs. (25.6) and (25.7), F ′ = G′ ∈ L1
loc(m)

and dνG = F ′dm + dνs where νs is a positive measure such that νs ⊥ m.
Applying this equation to an interval of the form (a, b] gives

F (b+)− F (a+) = νG((a, b]) =

∫ b

a

F ′dm+ νs((a, b]). (25.8)

The uniqueness of νs such that this equation holds is a consequence of
Theorem ??. As we have already mentioned, when F is bounded then F ′ ∈
L1 (R,m) . This can also be seen directly by letting a→ −∞ and b→ +∞
in Eq. (25.8).

Example 25.20. Let C ⊂ [0, 1] denote the Cantor set constructed as follows. Let
C1 = [0, 1]\ (1/3, 2/3), C2 := C1 \ [(1/9, 2/9) ∪ (7/9, 8/9)] , etc., so that we keep
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25.4 The Fundamental Theorem of Calculus 267

removing the middle thirds at each stage in the construction. Letting C0 :=
[0, 1] , we have m (Cn+1) = 2

3m (Cn) for n ≥ 0 and hence m (Cn) = (2/3)
n → 0

as n→∞. We now let

C := ∩∞n=1Cn =

x =

∞∑
j=0

aj3
−j : aj ∈ {0, 2}


and since Cn ↓ C it follows that m (C) = limn→∞m (Cn) = 0. Associated
to this set is the so called Cantor function F (x) := limn→∞ fn(x) where the
{fn}∞n=1 are continuous non-decreasing functions such that fn(0) = 0, fn(1) = 1
with the fn pictured in Figure 25.3 below.From the pictures one sees that

1
2

1

0 1
3

2
3 1

f1

1
2

1

0 1
3

2
3 1

3
4

1
4

f2

1
3

2
3 1

f3

1
2

1

0

3
4

1
4

Fig. 25.3. Constructing a Cantor function.

{fn} are uniformly Cauchy, hence there exists F ∈ C([0, 1]) such that F (x) :=
limn→∞ fn(x). The function F has the following properties,

1. F is continuous and non-decreasing.

2. F ′(x) = 0 for m – a.e. x ∈ [0, 1] because F is flat on all of the middle third
open intervals used to construct the Cantor set C and the total measure of
these intervals is 1 as proved above.

3. The measure on B[0,1] associated to F, namely ν([0, b]) = F (b) is singular
relative to Lebesgue measure and ν ({x}) = 0 for all x ∈ [0, 1]. Notice that
ν ([0, 1]) = 1. In particular, the function F certainly does not satisfy the
fundamental theorem of calculus despite the fact that F ′ (x) = 0 for a.e. x.

4. There are in fact many known examples of continuous increasing functions
whose derivative is zero almost everywhere, see [15,17,22] and the references
therein and also see Problem 3.5.40 on p. 109 of Folland for a simple exam-
ple. Regarding the fact that this behavior is “typical” among the continuous
increasing functions, see [24].

25.4.2 Functions of Bounded Variation

Our next goal is to prove an analogue of Theorem 25.19 for complex valued
F. Let α, β ∈ R with α < β be fixed. The following notation will be used
throughout this section.

Notation 25.21 Let (X,B) denote one of the following four measure spaces:
(R,BR) ,

(
(−∞, β],B(−∞,β)

)
,
(
(α,∞) ,B(α,∞)

)
or
(
(α, β],B(α,β]

)
and let X̄ de-

note the closure of X in R and X̄∞ denote the closure of X in R̄ := [−∞,∞] .1

We further let A denote the algebra of half open intervals in X, i.e. the alge-
bra generated by the sets, {(a, b] ∩X : −∞ ≤ a ≤ b ≤ ∞} . Also let Ab be those
A ∈ A which are bounded.

Definition 25.22. For −∞ ≤ a < b ≤ ∞, a partition P of [a, b]∩ X̄ is a finite
subset of [a, b] ∩ X̄ such that {a, b} ∩ X̄ ⊂ P. For x ∈ [minP,maxP], let

x+ = xP+ = min {y ∈ P : y > x} ∧maxP

where min ∅ :=∞.

For example, if X = (α,∞) , then a partition of X̄ = [α,∞) is a finite
subset, P, of [α,∞) such that α ∈ P and if α ≤ a < b <∞, then a partition of
[a, b] is a finite subset, P, of [a, b] such that a, b ∈ P, see Figure 25.4.

The following proposition will help motivate a number of concepts which
will need to introduce.

Proposition 25.23. Suppose ν is a complex measure on (X,B) and F : X̄ → C
is a function

ν((a, b]) = F (b)− F (a)

1 So X̄ is either R, (−∞, β], [α,∞), or [α, β] respectively and X̄∞ is either [−∞,∞] ,
[−∞, β], [α,∞], or [α, β] respectively.
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X̄ = [α,∞)
x

x+x−

a

α

b

Fig. 25.4. In this figure, X = (α,∞) and partitions of X and [a, b] with [a, b] ⊂ X̄
have been shown by the vertical lines. The meaing of x+ is also depicted.

for all a, b ∈ X̄ with a < b.(For example one may let F (x) := ν((−∞, x]∩X)).)
Then

1. F : X̄ → C is a right continuous function,
2. For all a, b ∈ X̄ with a < b,

|ν| (a, b] = sup
P

∑
x∈P
|ν(x, x+]| = sup

P

∑
x∈P
|F (x+)− F (x)| (25.9)

where supremum is over all partitions P of [a, b].
3. If inf X = −∞ then Eq. (25.9) remains valid for a = −∞ and moreover,

|ν| ((−∞, b]) = lim
a→−∞

|ν| (a, b]. (25.10)

Similar statements hold in case supX = +∞ in which case we may take
b =∞ above. In particular if X = R, then

|ν| (R) = sup

{∑
x∈P
|F (x+)− F (x)| : P is a partition of R

}

= lim
a→−∞
b→∞

sup

{∑
x∈P
|F (x+)− F (x)| : P is a partition of [a, b]

}
.

4. ν � m on X iff for all ε > 0 there exists δ > 0 such that

n∑
i=1

|ν ((ai, bi])| =
n∑
i=1

|F (bi)− F (ai)| < ε (25.11)

whenever {(ai, bi]}ni=1 are disjoint subintervals of X such that
n∑
i=1

(bi−ai) <

δ.

Proof. 1. The right continuity of F is a consequence of the continuity of ν
under decreasing limits of sets.

2 and 3. When a, b ∈ X̄, Eq. (25.9) follows from Proposition 24.32 and the
fact that B = σ(A). The verification of item 3. is left for Exercise 25.1.

4. Equation (25.11) is a consequence of Theorem 24.37 and the following
remarks:

a) {(ai, bi) ∩X}ni=1 are disjoint intervals iff {(ai, bi] ∩X}ni=1 are disjoint inter-
vals,

b) m (X ∩ (∪ni=1(ai, bi])) ≤
n∑
i=1

(bi − ai), and

c) the general element A ∈ Ab is of the form A = X ∩ (
∐n
i=1(ai, bi]) .

Exercise 25.1. Prove Item 3. of Proposition 25.23.

Definition 25.24 (Total variation of a function). The total variation of
a function F : X̄→ C on (a, b]∩X ⊂ X̄∞ (b =∞ is allowed here) is defined by

TF ((a, b] ∩X) = sup
P

∑
x∈P
|F (x+)− F (x)|

where supremum is over all partitions P of [a, b] ∩X. Also let

TF (b) := TF ((inf X, b]) for all b ∈ X.

The function F is said to have bounded variation on (a, b]∩X if TF ((a, b]∩
X) <∞ and F is said to be of bounded variation, and we write F ∈ BV (X) ,
if TF (X) <∞.

Definition 25.25 (Absolute continuity). A function F : X̄→ C is abso-
lutely continuous if for all ε > 0 there exists δ > 0 such that

n∑
i=1

|F (bi)− F (ai)| < ε (25.12)

whenever {(ai, bi]}ni=1 are disjoint subintervals of X such that
n∑
i=1

(bi − ai) < δ.

Exercise 25.2. Let F,G : X̄ → C be and λ ∈ C be given. Show

1. TF+G ≤ TF + TG and TλF = |λ|TF . Conclude from this that BV (X) is a
vector space.

2. TReF ≤ TF , TImF ≤ TF , and TF ≤ TReF +TImF . In particular F ∈ BV (X)
iff ReF and ImF are in BV (X) .

3. If F : X̄→ C is absolutely continuous then F : X̄→ C is continuous and in
fact is uniformly continuous.

Lemma 25.26 (Examples). Let F : X̄ → F be given, where F is either R of
C.
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25.4 The Fundamental Theorem of Calculus 269

1. If F : X̄ → R is a monotone function, then TF ((a, b]) = |F (b)− F (a)| for
all a, b ∈ X̄ with a < b. So F ∈ BV (X) iff F is bounded (which will be the
case if X = [α, β]).

2. If F : [α, β]→ C is absolutely continuous then F ∈ BV ((α, β]).
3. If F ∈ C ([α, β]→ R) , F ′ (x) is differentiable for all x ∈ (α, β) , and

supx∈(α,β) |F ′(x)| = M <∞, then F is absolutely continuous2 and

TF ((a, b]) ≤M(b− a) ∀ α ≤ a < b ≤ β.

4. Let f ∈ L1(X,m) and set

F (x) =

∫
(−∞,x]∩X̄

fdm for all x ∈ X̄. (25.13)

Then F : X̄→ C is absolutely continuous.

Proof.

1. If F is monotone increasing and P is a partition of (a, b] then∑
x∈P
|F (x+)− F (x)| =

∑
x∈P

(F (x+)− F (x)) = F (b)− F (a)

so that TF ((a, b]) = F (b)− F (a). Similarly, one shows

TF ((a, b]) = F (a)− F (b) = |F (b)− F (a)|

if F is monotone decreasing. Also note that F ∈ BV (R) iff
|F (∞)− F (−∞)| <∞, where F (±∞) = limx→±∞ F (x) .

2. Since F is absolutely continuous, there exists δ > 0 such that whenever
a, b ∈ X̄ with a < b and b− a < δ, then∑

x∈P
|F (x+)− F (x)| ≤ 1

for all partitions, P, of [a, b] . This shows that TF ((a, b]) ≤ 1 for all a < b
with b− a < δ. Thus using Eq. (25.15), it follows that TF ((a, b]) ≤ N <∞
provided N ∈ N is chosen so that b− a < Nδ.

3. Suppose that {(ai, bi]}ni=1 are disjoint subintervals of (a, b], then by the
mean value theorem,

n∑
i=1

|F (bi)− F (ai)| ≤
n∑
i=1

|F ′(ci)| (bi − ai) ≤M ·m (∪ni=1(ai, bi))

≤M
n∑
i=1

(bi − ai) ≤M(b− a)

2 It is proved in Natanson or in Rudin that this is also true if F ∈ C([α, β]) such
that F ′(x) exists for all x ∈ (α, β) and F ′ ∈ L1 ([α, β] ,m) .

form which it easily follows that F is absolutely continuous. Moreover we
may conclude that TF ((a, b]) ≤M(b− a).

4. Let ν be the positive measure dν = |f | dm on (a, b]. Again let {(ai, bi]}ni=1

be disjoint subintervals of (a, b], then

n∑
i=1

|F (bi)− F (ai)| =
n∑
i=1

∣∣∣∣∣
∫

(ai,bi]

fdm

∣∣∣∣∣
≤

n∑
i=1

∫
(ai,bi]

|f | dm

=

∫
∪n
i=1

(ai,bi]

|f | dm = ν(∪ni=1(ai, bi]). (25.14)

Since ν is absolutely continuous relative to m, by Theorem 24.35 (or Corol-
lary 24.36 or Theorem24.37), for all ε > 0 there exist δ > 0 such that
ν(A) < ε if m(A) < δ. Applying this result with A = ∪ni=1(ai, bi], it fol-
lows from Eq. (25.14) that F satisfies the definition of being absolutely
continuous. Furthermore, Eq. (25.14) also may be used to show

TF ((a, b]) ≤
∫

(a,b]

|f | dm.

Example 25.27 (See I. P. Natanson,“Theory of functions of a real variable,”
p.269.). In each of the two examples below, f ∈ C([−1, 1]).

1. Let f(x) = |x|3/2 sin 1
x with f(0) = 0, then f is everywhere differentiable

but f ′ is not bounded near zero. However, f ′ is in L1([−1, 1]).
2. Let f(x) = x2 cos π

x2 with f(0) = 0, then f is everywhere differentiable but
f ′ /∈ L1(−ε, ε) for any ε ∈ (0, 1) . Indeed, if 0 /∈ (α, β) then∫ β

α

f ′(x)dx = f(β)− f(α) = β2 cos
π

β2
− α2 cos

π

α2
.

Now take αn :=
√

2
4n+1 and βn = 1/

√
2n. Then

∫ βn

αn

f ′(x)dx =
2

4n+ 1
cos

π(4n+ 1)

2
− 1

2n
cos 2nπ =

1

2n

and noting that {(αn, βn)}∞n=1 are all disjoint, we find
∫ ε

0
|f ′(x)| dx =∞.

Theorem 25.28. Let F : R→ C be any function.
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1. For a < b < c,
TF ((a, c]) = TF ((a, b]) + TF ((b, c]). (25.15)

Letting a = α in this expression implies

TF (c) = TF (b) + TF ((b, c]) (25.16)

and in particular TF is monotone increasing.
2. Now suppose F : R→ R and F ∈ BV (R) . Then the functions F± :=

(TF ± F ) /2 are bounded and increasing functions.
3. A function F : R→ R is in BV iff F = F+ − F− where F± are

bounded increasing functions. In particular if F ∈ BV (R) , then F (a+) :=
limy↓a F (y) exists for all a ∈ R.

4. (Optional) If F ∈ BV (R) and a ∈ R, then

TF (a+)− TF (a) ≤ lim inf
y↓a

|F (y)− F (a)| . (25.17)

Proof.

1. (Item 1. is a special case of Exercise 24.6. Nevertheless we will give a proof
here.) By the triangle inequality, if P and P′ are partition of [a, c] such that
P ⊂ P′, then ∑

x∈P
|F (x+)− F (x)| ≤

∑
x∈P′
|F (x+)− F (x)| .

So if P is a partition of [a, c], then P ⊂ P′ := P∪{b} implies∑
x∈P
|F (x+)− F (x)| ≤

∑
x∈P′
|F (x+)− F (x)|

=
∑

x∈P′∩(a,b]

|F (x+)− F (x)|+
∑

x∈P′∩[b,c]

|F (x+)− F (x)|

≤ TF ((a, b]) + TF ((b, c]).

Thus we see that

TF ((a, c]) ≤ TF ((a, b]) + TF ((b, c]).

Similarly if P1 is a partition of [a, b] and P2 is a partition of [b, c], then
P = P1 ∪ P2 is a partition of [a, c] and∑
x∈P1

|F (x+)− F (x)|+
∑
x∈P2

|F (x+)− F (x)| =
∑
x∈P
|F (x+)− F (x)| ≤ TF ((a, c]).

From this we conclude

TF ((a, b]) + TF ((b, c]) ≤ TF ((a, c])

which finishes the proof of Eqs. (25.15) and (25.16).

2. By Item 1., for all a < b,

TF (b)− TF (a) = TF ((a, b]) ≥ |F (b)− F (a)| (25.18)

and therefore
TF (b)± F (b) ≥ TF (a)± F (a)

which shows that F± are increasing. Moreover from Eq. (25.18), for b ≥ 0
and a ≤ 0,

|F (b)| ≤ |F (b)− F (0)|+ |F (0)| ≤ TF (0, b] + |F (0)|
≤ TF (0,∞) + |F (0)|

and similarly
|F (a)| ≤ |F (0)|+ TF (−∞, 0)

which shows that F is bounded by |F (0)|+TF (R). Therefore the functions,
F+ and F− are bounded as well.

3. By Exercise 25.2 if F = F+ − F−, then

TF ((a, b]) ≤ TF+
((a, b]) + TF−((a, b])

= |F+(b)− F+(a)|+ |F−(b)− F−(a)|

which is bounded showing that F ∈ BV. Conversely if F is bounded varia-
tion, then F = F+ − F− where F± are defined as in Item 1.

4. Choose some b > a. Then for any ε > 0 we may choose a partition P of
[a, b] such that

TF (b)− TF (a) = TF ((a, b]) ≤
∑
x∈P
|F (x+)− F (x)|+ ε. (25.19)

Let y ∈ (a, a+) , then∑
x∈P
|F (x+)− F (x)|+ ε ≤

∑
x∈P∪{y}

|F (x+)− F (x)|+ ε

= |F (y)− F (a)|+
∑

x∈P\{y}

|F (x+)− F (x)|+ ε

≤ |F (y)− F (a)|+ TF ((y, b]) + ε. (25.20)

Combining Eqs. (25.19) and (25.20) shows

TF ((a, b]) = TF (b)− TF (a) ≤ |F (y)− F (a)|+ TF ((y, b]) + ε

or equivalently that
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TF (y)− TF (a) = TF ((a, y]) ≤ |F (y)− F (a)|+ ε.

Since y ∈ (a, a+) is arbitrary we conclude that

TF (a+)− TF (a) = lim inf
y↓a

TF (y)− TF (a) ≤ lim inf
y↓a

|F (y)− F (a)|+ ε.

Since ε > 0 is arbitrary this proves Eq. (25.17).

Theorem 25.29 (Bounded variation functions). Suppose F : X̄ → C is in
BV (X) , then

1. F (x+) := limy↓x F (y) and F (x−) := limy↑x F (y) exist for all x ∈ X̄.
By convention, if X ⊂ (α,∞] then F (α−) = F (α) and if X ⊂ (−∞, β]
then F (β+) := F (β) . Let G(x) := F (x+) and G (±∞) = F (±∞) where
appropriate.

2. If inf X = −∞, then F (−∞) := limx→−∞ F (x) exists and if supX = +∞
then F (∞) := limx→∞ F (x) exists.

3. The set of points of discontinuity, {x ∈ X : limy→x F (y) 6= F (x)}, of F is
at most countable and in particular G(x) = F (x+) for all but a countable
number x ∈ X.

4. For m – a.e. x, F ′(x) and G′(x) exist and F ′(x) = G′(x).
5. The function G is right continuous on X. Moreover, there exists a unique

complex measure, ν = νF , on (X,B) such that, for all a, b ∈ X̄ with a < b,

ν ((a, b]) = G (b)−G (a) = F (b+)− F (a+) . (25.21)

6. F ′ ∈ L1 (X,m) and the Lebesgue decomposition of ν may be written as

dνF = F ′dm+ dνs (25.22)

where νs is a measure singular to m. In particular,

G (b)−G (a) = F (b+)− F (a+) =

∫ b

a

F ′dm+ νs ((a, b]) (25.23)

whenever a, b ∈ X̄ with a < b.
7. νs = 0 iff G is absolutely continuous3 on X̄.

Proof. If X 6= R, extend F to all of R by requiring F be constant on each
of the connected components of R \Xo. For example if X = [α, β] , extend F
to R by setting F (x) := F (α) for x ≤ α and F (x) = F (β) for x ≥ β. With

3 We can not say that F is absolutely continuous here as can be seen by taking
F (x) = 1{0} (x) .

this extension it is easily seen that TF (R) = TF (X) and TF (x) is constant
on the connected components of R \ Xo. Thus we may now assume X = R
and TF (R) < ∞. Moreover, by considering the real and imaginary parts of F
separately we may assume F is real valued. So we now assume X = R and
F : R→ R is in BV := BV (R) .

1. – 4. By Theorem 25.28, the functions F± := (TF ± F ) /2 are bounded
and increasing functions. Since F = F+ − F−, items 1. – 4. are now easy
consequences of Theorem 25.19 applies to F+ and F−.

5. Let G± (x) := F± (x+) and G± (∞) = F± (∞) and G± (−∞) =
F± (−∞) , then

G (x) = F (x+) = G+ (x)−G− (x)

and as in Theorem 8.33 (or Theorems 25.19 38.26), there exists unique positive
finite measures, ν±, such that

ν± ((a, b]) = G± (b)−G± (a) for all a < b.

Then ν := ν+ − ν− is a finite signed measure with the property that

ν ((a, b]) = G (b)−G (a) = F (b+)− F (a+) for all a < b.

We will prove the uniqueness of the measure ν below.
6. Since ν± have Lebesgue decompositions given by

dν± = F ′±dm+ d (ν±)s

with F ′± ∈ L1 (m) and (ν±)s ⊥ m, it follows that

dν =
(
F ′+ − F ′−

)
dm+ dνs = F ′dm+ dνs

with F ′ = F ′+ − F ′− (m -a.e.), F ′ ∈ L1 (R,m) and νs ⊥ m, where

νs := (ν+)s − (ν−)s .

7. This is a consequence of Theorems 24.26 (or 24.33) and 24.37. Alterna-
tively, if νs = 0 then G is absolutely continuous from Eq. (25.23) and item 4.
of Lemma 25.26. For the converse direction assume that G is absolutely con-
tinuous and A ∈ BR such that m (A) = 0. By regularity of m and |ν| we can
find a decreasing sequence of open sets {Uj}∞j=1 such that m (Uj \A)→ 0 and

|ν| (Uj\A)→ 0 as j →∞ and therefore m (Uj)→ m (A) = 0 as j →∞ and

|ν (Uj)− ν (A)| = |ν (Uj \A)| ≤ |ν| (Uj\A)→ 0 as j →∞.

For given j, Uj = ∪Nn=1Jn where N ∈ N∪{∞} and {Jn = (an, bn)}Nn=1 are
disjoint open intervals.4 For K ≤ N with K < ∞ we have m

(
∪Kn=1Jn

)
≤

m (Uj) =: δj and so from the Definition 25.25 of absolute continuity of G

4 This is the content of Exercise 35.22. For completeness let me sketch the proof here.
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)∣∣ =

∣∣∣∣∣
K∑
n=1

[G (bn)−G (an)]

∣∣∣∣∣ ≤
K∑
n=1

|G (bn)−G (an)| < εj (25.24)

where εj is some sequence of positive numbers such that εj ↓ 0. Letting K →∞
in Eq. (25.24) shows |ν (Uj)| ≤ εj for each j and then letting j → ∞ shows
|ν (A)| = 0. Thus we have shown ν � m which implies νs = 0 as νs ⊥ m.

Uniqueness of ν. It now only remains to prove that ν satisfying Eq. (25.21)
is unique. Suppose that ν̃ is another such measure such that Eq. (25.21) holds
with ν replaced by ν̃. Then for (a, b] ⊂ R,

|ν| ((a, b]) = sup
P

∑
x∈P
|G(x+)−G(x)| = |ν̃| ((a, b])

where the supremum is over all partition of [a, b] . This shows that |ν| = |ν̃| on
A ⊂ B and so by the measure uniqueness Theorem ??, |ν| = |ν̃| on B. It now
follows that |ν| + ν and |ν̃| + ν̃ are finite positive measure on B such that, for
all a < b,

(|ν|+ ν) ((a, b]) = |ν| ((a, b]) + (G(b)−G(a))

= |ν̃| ((a, b]) + (G(b)−G(a))

= (|ν̃|+ ν̃) ((a, b]) .

Hence another application of Theorem ?? shows

|ν|+ ν = |ν̃|+ ν̃ = |ν|+ ν̃ on B,

and hence ν = ν̃ on B.
Alternative proofs of uniqueness of ν. The uniqueness may be proved

by any number of other means. For example one may apply the multiplicative
system Theorem 11.2 as follows. Let −∞ < α < β < ∞ be given and take H
to be the collection of bounded real measurable functions on (α, β] such that∫

(α,β]
fdν =

∫
(α,β]

fdν̃ and M being the multiplicative system,

M :=
{

1(a,b] : α ≤ a < b ≤ β
}
.

Then it follows from Theorem 11.2 that
∫

(α,β]
fdν =

∫
(α,β]

fdν̃ for all bounded

measurable functions on (α, β] so that ν = ν̃ on B(α,β]. As simple limiting
argument then shows that ν = ν̃ on BR.

For x ∈ V, let ax := inf {a : (a, x] ⊂ V } and bx := sup {b : [x, b) ⊂ V } . Since V
is open, ax < x < bx and it is easily seen that Jx := (ax, bx) ⊂ V. Moreover if y ∈ V
and Jx ∩ Jy 6= ∅, then Jx = Jy. The collection, {Jx : x ∈ V } , is at most countable
since we may label each J ∈ {Jx : x ∈ V } by choosing a rational number r ∈ J.
Letting {Jn : n < N}, with N = ∞ allowed, be an enumeration of {Jx : x ∈ V } ,
we have V =

∐
n<N Jn as desired.

Alternatively one could apply the monotone class Theorem (Lemma ??)
with C := {A ∈ B : ν (A) = ν̃ (A)} and A the algebra of half open intervals. Or
one could use the π – λ Theorem ??, with D = {A ∈ B : ν (A) = ν̃ (A)} and
C := {(a, b] : a, b ∈ R with a < b} .

Corollary 25.30. If F ∈ BV (X) then νF ⊥ m iff F ′ = 0 m-a.e.

Proof. This is a consequence of Eq. (25.22) and the uniqueness of the
Lebesgue decomposition. In more detail, if F ′(x) = 0 for m-a.e. x, then by Eq.
(25.22), νF = νs ⊥ m. If νF ⊥ m, then by Eq. (25.22), F ′dm = dνF −dνs ⊥ dm
and by Lemma 24.8 F ′dm = 0, i.e. F ′ = 0 m -a.e.

Corollary 25.31. Let F : X̄ → C be a right continuous function in BV (X) ,
νF be the associated complex measure and

dνF = F ′dm+ dνs (25.25)

be the its Lebesgue decomposition. Then the following are equivalent,

1. F is absolutely continuous,
2. νF � m,
3. νs = 0, and
4. for all a, b ∈ X with a < b,

F (b)− F (a) =

∫
(a,b]

F ′(x)dm(x). (25.26)

Proof. The equivalence of 1. and 2. was established in Proposition 25.23
and the equivalence of 2. and 3. is trivial. (If νF � m, then dνs = dνF −
F ′dm � dm which implies, by Lemma 24.25, that νs = 0.) If νF � m and
G (x) := F (x+) , then the identity,

F (b)− F (a) = F (b+)− F (a−) =

∫ b

a

F ′ (x) dm (x) ,

implies F is continuous.
(The equivalence of 4. and 1., 2., and 3.) If F is absolutely continuous,

then νs = 0 and Eq. (25.26) follows from Eq. (25.25). Conversely let

ρ(A) :=

∫
A

F ′(x)dm(x) for all A ∈ B.

Recall by the Radon - Nikodym theorem that
∫
R |F

′(x)| dm(x) < ∞ so that ρ
is a complex measure on B. So if Eq. (25.26) holds, then ρ = νF on the algebra
generated by half open intervals. Therefore ρ = νF as in the uniqueness part of
the proof of Theorem 25.29. Therefore dνF = F ′dm� dm.

Page: 272 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12
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Theorem 25.32 (The fundamental theorem of calculus). Suppose that
F : [α, β]→ C is a measurable function. Then the following are equivalent:

1. F is absolutely continuous on [α, β].
2. There exists f ∈ L1([α, β]), dm) such that

F (x)− F (α) =

∫ x

α

fdm ∀x ∈ [α, β] (25.27)

3. F ′ exists a.e., F ′ ∈ L1([α, β], dm) and

F (x)− F (α) =

∫ x

α

F ′dm∀x ∈ [α, β]. (25.28)

Moreover if F is given as in Eq. (25.27), then F ′ = f a.e.

Proof. 1. =⇒ 3. If F is absolutely continuous then F ∈ BV ((α, β]) and F is
continuous on [α, β]. Hence Eq. (25.28) holds by Corollary 25.31. The assertion
3. =⇒ 2. is trivial and we have already seen in Lemma 25.26 that 2. implies 1.
The last assertion follows from Theorem 25.3 or can be seen comparing Eqs.
(25.27) with (25.28) in which case,∫ x

α

fdm =

∫ x

α

F ′dm ∀x ∈ [α, β].

This only happens if f = F ′ a.e. by a simple multiplicative systems theorem
argument.

Corollary 25.33 (Integration by parts). Suppose −∞ < α < β < ∞ and
F,G : [α, β]→ C are two absolutely continuous functions. Then∫ β

α

F ′Gdm = −
∫ β

α

FG′dm+ FG|βα.

Proof. Suppose that {(ai, bi]}ni=1 is a sequence of disjoint intervals in [α, β],
then

n∑
i=1

|F (bi)G(bi)− F (ai)G(ai)|

≤
n∑
i=1

|F (bi)| |G(bi)−G(ai)|+
n∑
i=1

|F (bi)− F (ai)| |G(ai)|

≤ ‖F‖∞
n∑
i=1

|G(bi)−G(ai)|+ ‖G‖∞
n∑
i=1

|F (bi)− F (ai)| .

From this inequality, one easily deduces the absolutely continuity of the product
FG from the absolutely continuity of F and G. Therefore,

FG|βα =

∫ β

α

(FG)′dm =

∫ β

α

(F ′G+ FG′)dm.

25.4.3 Alternative method to Proving Theorem 25.29

For simplicity assume that α = −∞, β =∞, F ∈ BV,

Ab := {A ∈ A : A is bounded} ,

and Sc(A) denote simple functions of the form f =
∑n
i=1 λi1Ai with Ai ∈ Ab.

Let ν0 = ν0
F be the finitely additive set function on such that ν0((a, b]) =

F (b)− F (a) for all −∞ < a < b <∞. As in the case of an increasing function
F (see Lemma ?? and the text preceding it) we may define a linear functional,
IF : Sc(A)→ C, by

IF (f) =
∑
λ∈C

λν0(f = λ).

If we write f =
∑N
i=1 λi1(ai,bi] with {(ai, bi]}Ni=1 pairwise disjoint subsets of Ab

inside (a, b] we learn

|IF (f)| =

∣∣∣∣∣
N∑
i=1

λi(F (bi)− F (ai)

∣∣∣∣∣ ≤
N∑
i=1

|λi| |F (bi)− F (ai)| ≤ ‖f‖∞ TF ((a, b]).

(25.29)
In the usual way this estimate allows us to extend IF to the those compactly
supported functions, Sc(A), in the closure of Sc(A). As usual we will still denote
the extension of IF to Sc(A) by IF and recall that Sc(A) contains Cc(R,C).
The estimate in Eq. (25.29) still holds for this extension and in particular we
have

|I(f)| ≤ TF (∞) · ‖f‖∞ for all f ∈ Cc(R,C).

Therefore I extends uniquely by continuity to an element of C0(R,C)
∗
. So by

appealing to the complex Riesz Theorem (Corollary ??) there exists a unique
complex measure ν = νF such that

IF (f) =

∫
R
fdν for all f ∈ Cc(R). (25.30)

This leads to the following theorem.
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274 25 Lebesgue Differentiation and the Fundamental Theorem of Calculus

Theorem 25.34. To each function F ∈ BV there exists a unique measure
ν = νF on (R,BR) such that Eq. (25.30) holds. Moreover, F (x+) = limy↓x F (y)
exists for all x ∈ R and the measure ν satisfies

ν((a, b]) = F (b+)− F (a+) for all −∞ < a < b <∞. (25.31)

Remark 25.35. By applying Theorem 25.34 to the function x → F (−x) one
shows every F ∈ BV has left hand limits as well, i.e. F (x−) = limy↑x F (y)
exists for all x ∈ R.

Proof. We must still prove F (x+) exists for all x ∈ R and Eq. (25.31)
holds. To prove let ψb and ϕε be the functions shown in Figure 25.5 below. The
reader should check that ψb ∈ Sc(A). Notice that

Fig. 25.5. A couple of functions in Sc(A).

IF (ψb+ε) = IF (ψα + 1(α,b+ε]) = IF (ψα) + F (b+ ε)− F (α)

and since ‖ϕε − ψb+ε‖∞ = 1,

|I(ϕε)− IF (ψb+ε)| = |IF (ϕε − ψb+ε)|
≤ TF ([b+ ε, b+ 2ε]) = TF (b+ 2ε)− TF (b+ ε),

which implies O (ε) := I(ϕε)− IF (ψb+ε)→ 0 as ε ↓ 0 because TF is monotonic.
Therefore,

I(ϕε) = IF (ψb+ε) + I(ϕε)− IF (ψb+ε)

= IF (ψα) + F (b+ ε)− F (α) +O (ε) . (25.32)

Because ϕε converges boundedly to ψb as ε ↓ 0, the dominated convergence
theorem implies

lim
ε↓0

I(ϕε) = lim
ε↓0

∫
R
ϕεdν =

∫
R
ψbdν =

∫
R
ψαdν + ν((α, b]).

So we may let ε ↓ 0 in Eq. (25.32) to learn F (b+) exists and∫
R
ψαdν + ν((α, b]) = IF (ψα) + F (b+)− F (α).

Similarly this equation holds with b replaced by a, i.e.∫
R
ψαdν + ν((α, a]) = IF (ψα) + F (a+)− F (α).

Subtracting the last two equations proves Eq. (25.31).

Remark 25.36. Given Theorem 25.34 we may now prove Theorem 25.29 in the
same we proved Theorem 25.19.

25.5 The connection of Weak and pointwise derivatives

Theorem 25.37. Suppose Let Ω ⊂ R be an open interval and f ∈ L1
loc(Ω).

Then there exists a complex measure µ on BΩ such that

− 〈f, ϕ′〉 = µ(ϕ) :=

∫
Ω

ϕdµ for all ϕ ∈ C∞c (Ω) (25.33)

iff there exists a right continuous function F of bounded variation such that
F = f a.e. In this case µ = µF , i.e. µ((a, b]) = F (b)− F (a) for all −∞ < a <
b <∞.

Proof. Suppose f = F a.e. where F is as above and let µ = µF be the
associated measure on BΩ . Let G(t) = F (t)−F (−∞) = µ((−∞, t]), then using
Fubini’s theorem and the fundamental theorem of calculus,

−〈f, ϕ′〉 = −〈F,ϕ′〉 = −〈G,ϕ′〉 = −
∫
Ω

ϕ′(t)

[∫
Ω

1(−∞,t](s)dµ(s)

]
dt

= −
∫
Ω

∫
Ω

ϕ′(t)1(−∞,t](s)dtdµ(s) =

∫
Ω

ϕ(s)dµ(s) = µ(ϕ).
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Conversely if Eq. (25.33) holds for some measure µ, let F (t) := µ((−∞, t]) then
working backwards from above,

−〈f, ϕ′〉 = µ(ϕ) =

∫
Ω

ϕ(s)dµ(s) = −
∫
Ω

∫
Ω

ϕ′(t)1(−∞,t](s)dtdµ(s)

= −
∫
Ω

ϕ′(t)F (t)dt.

This shows ∂(w) (f − F ) = 0 and therefore by Proposition 41.25, f = F + c a.e.
for some constant c ∈ C. Since F+c is right continuous with bounded variation,
the proof is complete.

Proposition 25.38. Let Ω ⊂ R be an open interval and f ∈ L1
loc(Ω). Then

∂wf exists in L1
loc(Ω) iff f has a continuous version f̃ which is absolutely con-

tinuous on all compact subintervals of Ω. Moreover, ∂wf = f̃ ′ a.e., where f̃ ′(x)
is the usual pointwise derivative.

Proof. If f is locally absolutely continuous and ϕ ∈ C∞c (Ω) with supp(ϕ) ⊂
[a, b] ⊂ Ω, then by integration by parts, Corollary 25.33,∫

Ω

f ′ϕdm =

∫ b

a

f ′ϕdm = −
∫ b

a

fϕ′dm+ fϕ|ba = −
∫
Ω

fϕ′dm.

This shows ∂wf exists and ∂wf = f ′ ∈ L1
loc(Ω). Now suppose that ∂wf exists

in L1
loc(Ω) and a ∈ Ω. Define F ∈ C (Ω) by F (x) :=

∫ x
a
∂wf(y)dy. Then F is

absolutely continuous on compacts and therefore by fundamental theorem of
calculus for absolutely continuous functions (Theorem 25.32), F ′(x) exists and
is equal to ∂wf(x) for a.e. x ∈ Ω. Moreover, by the first part of the argument,
∂wF exists and ∂wF = ∂wf, and so by Proposition 41.25 there is a constant c
such that

f̃(x) := F (x) + c = f(x) for a.e. x ∈ Ω.

Definition 25.39. Let X and Y be metric spaces. A function u : X → Y is
said to be Lipschitz if there exists C <∞ such that

dY (u(x), u(x′)) ≤ CdX(x, x′) for all x, x′ ∈ X

and said to be locally Lipschitz if for all compact subsets K ⊂ X there exists
CK <∞ such that

dY (u(x), u(x′)) ≤ CKdX(x, x′) for all x, x′ ∈ K.

Proposition 25.40 (Rademacher’s theorem). Let u ∈ L1
loc(Ω). Then there

exists a locally Lipschitz function ũ : Ω → C such that ũ = u a.e. iff
(weak− ∂iu) ∈ L1

loc(Ω) exists and is locally (essentially) bounded for i =
1, 2, . . . , d.

Proof. Suppose u = ũ a.e. and ũ is Lipschitz and let p ∈ (1,∞) and V be a
precompact open set such that V̄ ⊂W and let Vε :=

{
x ∈ Ω : dist(x, V̄ ) ≤ ε

}
.

Then for ε < dist(V̄ , Ωc), Vε ⊂ Ω and therefore there is constant C(V, ε) <∞
such that |ũ(y)− ũ(x)| ≤ C(V, ε) |y − x| for all x, y ∈ Vε. So for 0 < |h| ≤ 1
and v ∈ Rd with |v| = 1,∫

V

∣∣∣∣u(x+ hv)− u(x)

h

∣∣∣∣p dx =

∫
V

∣∣∣∣ ũ(x+ hv)− ũ(x)

h

∣∣∣∣p dx ≤ C(V, ε) |v|p .

Therefore Theorem 41.18 may be applied to conclude ∂vu exists in Lp and
moreover,

lim
h→0

ũ(x+ hv)− ũ(x)

h
= ∂vu(x) for m – a.e. x ∈ V.

Since there exists {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0 and

|∂vu(x)| = lim
n→∞

∣∣∣∣ ũ(x+ hnv)− ũ(x)

hn

∣∣∣∣ ≤ C(V ) for a.e. x ∈ V,

it follows that ‖∂vu‖∞ ≤ C(V ) where C(V ) := limε↓0 C(V, ε).
Conversely, let Ωε := {x ∈ Ω : dist(x,Ωc) > ε} and η ∈ C∞c (B(0, 1), [0,∞))

such that
∫
Rn η(x)dx = 1, ηm(x) = mnη(mx) and um := u∗ηm as in the proof of

Theorem 41.18. Suppose V ⊂o Ω with V̄ ⊂ Ω and ε is sufficiently small. Then
um ∈ C∞(Ωε), ∂vum = ∂vu ∗ ηm, |∂vum(x)| ≤ ‖∂vu‖L∞(Vm−1 ) =: C(V,m) <∞
and therefore for x, y ∈ V̄ with |y − x| ≤ ε,

|um(y)− um(x)| =
∣∣∣∣∫ 1

0

d

dt
um(x+ t(y − x))dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

(y − x) · ∇um(x+ t(y − x))dt

∣∣∣∣
≤
∫ 1

0

|y − x| · |∇um(x+ t(y − x))| dt ≤ C(V,m) |y − x| .

(25.34)

By passing to a subsequence if necessary, we may assume that limm→∞ um(x) =
u(x) for m – a.e. x ∈ V̄ and then letting m→∞ in Eq. (25.34) implies

|u(y)− u(x)| ≤ C(V ) |y − x| for all x, y ∈ V̄ \ E and |y − x| ≤ ε (25.35)
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276 25 Lebesgue Differentiation and the Fundamental Theorem of Calculus

where E ⊂ V̄ is a m – null set. Define ũV : V̄ → C by ũV = u on V̄ \ E and
ũV (x) = limy→x

y/∈E

u(y) if x ∈ E. Then clearly ũV = u a.e. on V̄ and it is easy to

show ũV is well defined and ũV : V̄ → C is continuous and still satisfies

|ũV (y)− ũV (x)| ≤ CV |y − x| for x, y ∈ V̄ with |y − x| ≤ ε.

Since ũV is continuous on V̄ there exists MV <∞ such that |ũV | ≤MV on V̄ .
Hence if x, y ∈ V̄ with |x− y| ≥ ε, we find

|ũV (y)− ũV (x)|
|y − x|

≤ 2M

ε

and hence

|ũV (y)− ũV (x)| ≤ max

{
CV ,

2MV

ε

}
|y − x| for x, y ∈ V̄

showing ũV is Lipschitz on V̄ . To complete the proof, choose precompact open
sets Vn such that Vn ⊂ V̄n ⊂ Vn+1 ⊂ Ω for all n and for x ∈ Vn let ũ(x) :=
ũVn(x).

Alternative way to construct the function ũV . For x ∈ V \ E,

|um(x)− u(x)| =
∣∣∣∣∫
V

u(x− y)η(my)mndy − u(x)

∣∣∣∣ =

∣∣∣∣∫
V

[u(x− y/m)− u(x)] η(y)dy

∣∣∣∣
≤
∫
V

|u(x− y/m)− u(x)| η(y)dy ≤ C

m

∫
V

|y| η(y)dy

wherein the last equality we have used Eq. (25.35) with V replaced by Vε for
some small ε > 0. Letting K := C

∫
V
|y| η(y)dy <∞ we have shown

‖um − u‖∞ ≤ K/m→ 0 as m→∞

and consequently

‖um − un‖∞ = ‖um − un‖∞ ≤ 2K/m→ 0 as m→∞.

Therefore, un converges uniformly to a continuous function ũV .
The next theorem is from Chapter 1. of Maz’ja [16].

Theorem 25.41. Let p ≥ 1 and Ω be an open subset of Rd, x ∈ Rd be written
as x = (y, t) ∈ Rd−1 × R,

Y :=
{
y ∈ Rd−1 : ({y} × R) ∩Ω 6= ∅

}
and u ∈ Lp(Ω). Then ∂tu exists weakly in Lp(Ω) iff there is a version ũ of
u such that for a.e. y ∈ Y the function t → ũ(y, t) is absolutely continuous,

∂tu(y, t) = ∂ũ(y,t)
∂t a.e., and

∥∥∂ũ
∂t

∥∥
Lp(Ω)

<∞.

Proof. For the proof of Theorem 25.41, it suffices to consider the case where
Ω = (0, 1)d. Write x ∈ Ω as x = (y, t) ∈ Y × (0, 1) = (0, 1)d−1 × (0, 1) and ∂tu
for the weak derivative ∂edu. By assumption∫

Ω

|∂tu(y, t)| dydt = ‖∂tu‖1 ≤ ‖∂tu‖p <∞

and so by Fubini’s theorem there exists a set of full measure, Y0 ⊂ Y, such that∫ 1

0

|∂tu(y, t)| dt <∞ for y ∈ Y0.

So for y ∈ Y0, the function v(y, t) :=
∫ t

0
∂tu(y, τ)dτ is well defined and absolutely

continuous in t with ∂
∂tv(y, t) = ∂tu(y, t) for a.e. t ∈ (0, 1). Let ξ ∈ C∞c (Y ) and

η ∈ C∞c ((0, 1)) , then integration by parts for absolutely functions implies∫ 1

0

v(y, t)η̇(t)dt = −
∫ 1

0

∂

∂t
v(y, t)η(t)dt for all y ∈ Y0.

Multiplying both sides of this equation by ξ(y) and integrating in y shows∫
Ω

v(x)η̇(t)ξ(y)dydt = −
∫
Ω

∂

∂t
v(y, t)η(t)ξ(y)dydt

= −
∫
Ω

∂tu(y, t)η(t)ξ(y)dydt.

Using the definition of the weak derivative, this equation may be written as∫
Ω

u(x)η̇(t)ξ(y)dydt = −
∫
Ω

∂tu(x)η(t)ξ(y)dydt

and comparing the last two equations shows∫
Ω

[v(x)− u(x)] η̇(t)ξ(y)dydt = 0.

Since ξ ∈ C∞c (Y ) is arbitrary, this implies there exists a set Y1 ⊂ Y0 of full
measure such that∫

Ω

[v(y, t)− u(y, t)] η̇(t)dt = 0 for all y ∈ Y1

from which we conclude, using Proposition 41.25, that u(y, t) = v(y, t) + C(y)
for t ∈ Jy where md−1 (Jy) = 1, here mk denotes k – dimensional Lebesgue
measure. In conclusion we have shown that
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u(y, t) = ũ(y, t) :=

∫ t

0

∂tu(y, τ)dτ + C(y) for all y ∈ Y1 and t ∈ Jy. (25.36)

We can be more precise about the formula for ũ(y, t) by integrating both sides
of Eq. (25.36) on t we learn

C(y) =

∫ 1

0

dt

∫ t

0

∂τu(y, τ)dτ −
∫ 1

0

u(y, t)dt

=

∫ 1

0

(1− τ) ∂τu(y, τ)dτ −
∫ 1

0

u(y, t)dt

=

∫ 1

0

[(1− t) ∂tu(y, t)− u(y, t)] dt

and hence

ũ(y, t) :=

∫ t

0

∂τu(y, τ)dτ +

∫ 1

0

[(1− τ) ∂τu(y, τ)− u(y, τ)] dτ

which is well defined for y ∈ Y0. For the converse suppose that such a ũ exists,
then for ϕ ∈ C∞c (Ω) ,∫

Ω

u(y, t)∂tϕ(y, t)dydt =

∫
Ω

ũ(y, t)∂tϕ(y, t)dtdy

= −
∫
Ω

∂ũ(y, t)

∂t
ϕ(y, t)dtdy

wherein we have used integration by parts for absolutely continuous functions.
From this equation we learn the weak derivative ∂tu(y, t) exists and is given

by ∂ũ(y,t)
∂t a.e.

25.6 Exercises

Exercise 25.3. Folland 3.22 on p. 100.

Exercise 25.4. Folland 3.24 on p. 100.

Exercise 25.5. Folland 3.25 on p. 100.

Exercise 25.6. Folland 3.27 on p. 107.

Exercise 25.7 (Look at but do not hand in). Folland 3.28 on p. 107.

Exercise 25.8 (Look at but do not hand in). Folland 3.29 on p. 107.

Exercise 25.9. Folland 3.30 on p. 107.

Exercise 25.10. Folland 3.33 on p. 108.

Exercise 25.11. Folland 3.35 on p. 108.

Exercise 25.12. Folland 3.37 on p. 108.

Exercise 25.13. Folland 3.39 on p. 108.

Exercise 25.14 (Look at but do not hand in.). Folland 3.40 on p. 108.

Exercise 25.15 (Folland 8.4 on p. 239). If f ∈ L∞ (Rn,m) and
‖τyf − f‖∞ → 0 as |y| → ∞, then f agrees a.e. with a uniformly conti-
nous function. (See hints in the book.)

Exercise 25.16 (Global Integration by Parts Formula). Suppose that
f, g : R→ R are locally absolutely continuous functions5 such that f ′g, fg′, and
fg are all Lebesgue integrable functions on R. Prove the following integration
by parts formula; ∫

R
f ′ (x) · g (x) dx = −

∫
R
f (x) · g′ (x) dx. (25.37)

Similarly show that; if f, g : [0,∞)→ [0,∞) are locally absolutely continuous
functions such that f ′g, fg′, and fg are all Lebesgue integrable functions on
[0,∞), then∫ ∞

0

f ′ (x) · g (x) dx = −f (0) g (0)−
∫ ∞

0

f (x) · g′ (x) dx. (25.38)

Outline: 1. First use the theory developed to see that Eq. (25.37) holds if
f (x) = 0 for |x| ≥ N for some N <∞.

2. Let ψ : R→ [0, 1] be a continuously differentiable function such that
ψ (x) = 1 if |x| ≤ 1 and ψ (x) = 0 if |x| ≥ 2.6 For any ε > 0 let ψε(x) = ψ(εx)
Write out the identity in Eq. (25.37) with f (x) being replaced by f (x)ψε (x) .

3. Now use the dominated convergence theorem to pass to the limit as ε ↓ 0
in the identity you found in step 2.

4. A similar outline works to prove Eq. (25.38).

5 This means that f and g restricted to any bounded interval in R are absolutely
continuous on that interval.

6 You may assume the existence of such a ψ, we will deal with this later.
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. 25.7 Summary of B.V. and A.C. Functions

We take for granted Theorem 25.44 below in this summary.

Notation 25.42 In this chapter, let B = BRn denote the Borel σ – algebra
on Rn and m be Lebesgue measure on B. If V is an open subset of Rn, let
L1
loc(V ) := L1

loc(V,m) and simply write L1
loc for L1

loc(Rn). We will also write
|A| for m(A) when A ∈ B.

Definition 25.43. A collection of measurable sets {E}r>0 ⊂ B is said to shrink

nicely to x ∈ Rn if (i) Er ⊂ B(x, r) for all r > 0 and (ii) there exists α > 0
such that m(Er) ≥ αm(B(x, r)). We will abbreviate this by writing Er ↓ {x}
nicely. (Notice that it is not required that x ∈ Er for any r > 0.

Theorem 25.44. Suppose that ν is a complex measure on (Rn,B) , then there
exists g ∈ L1(Rn,m) and a complex measure νs such that νs ⊥ m, dν = gdm+
dνs, and for m - a.e. x,

g(x) = lim
r↓0

ν(Er)

m(Er)
and (25.39)

0 = lim
r↓0

νs(Er)

m(Er)
(25.40)

for any collection of {Er}r>0 ⊂ B which shrink nicely to {x} . (Eq. (25.39)
holds for all x ∈ L (g) – the Lebesgue set of g, see Definition 25.12 and Theorem
25.13.)

Exercise 25.17. Suppose that (X,M) is a measurable space and µ and ν are
complex measures onM which are singular to one another. Then |µ| ⊥ |ν| and
|µ+ ν| = |µ|+ |ν| .

Theorem 25.45 (Bounded variation functions). Suppose 7 F = U + iV :
R→ C is in BV (R) . Then U = U+ −U− and V = V+ − V− where U± and V±
are increasing functions.8 Consequently F (x+) and F (x−) exists for all x ∈ R.
Let G (x) = F (x+) be the right continuous version of F .

1. The set of points of discontinuity, {x ∈ X : limy→x F (y) 6= F (x)}, of F is
at most countable and in particular G(x) = F (x+) for all but a countable
number x ∈ X.

2. Let H (x) := G (x)−F (x) = F (x+)−F (x) , then
∑
x |H (x)| ≤ TF (∞) <

∞ and H ′ (x) = 0 for m – a.e. x.

7 For our purposes it suffices to assume there is some (large) M > 0 where F |(−∞,−M ]

and F |[M,∞) are constant functions.
8 In fact, U± = TU±U

2
and V± = TV ±V

2
.
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3. For m – a.e. x, F ′(x) and G′(x) exist and F ′(x) = G′(x).
4. There exists a unique complex measure, ν = νF , on (R,B) such that, for all
a, b ∈ R with a < b,

ν ((a, b]) = G (b)−G (a) = F (b+)− F (a+) . (25.41)

5. F ′ ∈ L1 (R,m) and the Lebesgue decomposition of ν may be written as

dνF = F ′dm+ dνs (25.42)

where νs is a measure singular to m. In particular,

G (b)−G (a) = F (b+)− F (a+) =

∫ b

a

F ′dm+ νs ((a, b]) (25.43)

whenever a, b ∈ R with a < b.
Remark: from Exercise 25.17 we know that

∞ > TG (∞) = |νG| (R) =

∫
R
|F ′| dm+ |νs| (R) .

Proof. 1. We may assume that F is real and increasing in which case one
easily sees for any finite subset, Λ ⊂ R, that∑

x∈Λ
|F (x+)− F (x−)| = lim

ε↓0

∑
x∈Λ
|F (x+ ε)− F (x− ε)| ≤ TF (∞) <∞

which implies, ∑
x∈R
|F (x+)− F (x−)| ≤ TF (∞) <∞.

2. Similarly one sees that∑
x∈Λ
|H (x)| = lim

ε↓0

∑
x∈Λ
|F (x+ ε)− F (x)| ≤ TF (∞) <∞

so that
∑
x |H (x)| ≤ TF (∞) <∞. Because of this fact, λ :=

∑
x∈R
|H (x)| δx, i.e.

λ(A) :=
∑
x∈A
|H (x)| for all A ∈ BR

defines a positive Radon measure on BR. Since λ(Λc) = 0 and m(Λ) = 0, the
measure λ ⊥ m. By Corollary 25.16 for m - a.e. x,∣∣∣∣H(x+ r)−H(x)

r

∣∣∣∣ ≤ |H(x+ r)|+ |H(x)|
|r|

≤ H(x+ |r|) +H(x− |r|) +H(x)

|r|

≤ 2
λ([x− |r| , x+ |r|])

2 |r|

and the last term goes to zero as r → 0 because {[x− r, x+ r]}r>0 shrinks
nicely to {x} as r ↓ 0 and m([x− |r| , x+ |r|]) = 2 |r| . Hence we conclude for m
– a.e. x that H ′(x) = 0.

3.-5. The existence of ν follows from the increasing function case and the
splitting of F already described. We then have by Theorem 25.44 that

dν = gdm+ dνs,

where νs ⊥ m, g ∈ L1
loc (R,m) with g ∈ L1 (R,m) if F is bounded. Moreover

Theorem 25.44, for m - a.e. x,

g (x) = lim
r↓0

(νG(Er)/m(Er)),

where {Er}r>0 is any collection of sets shrink nicely to {x} . Since (x, x+r] ↓ {x}
and (x− r, x] ↓ {x} nicely,

g (x) = lim
r↓0

νG(x, x+ r])

m((x, x+ r])
= lim

r↓0

G(x+ r)−G(x)

r
=

d

dx+
G(x) (25.44)

and

g (x) = lim
r↓0

νG((x− r, x])

m((x− r, x])
= lim

r↓0

G(x)−G(x− r)
r

= lim
r↓0

G(x− r)−G(x)

−r
=

d

dx−
G(x) (25.45)

exist and are equal for m - a.e. x, i.e. G′(x) = g (x) exists for m -a.e. x. Since
F = G−H with H ′ = 0 a.e. it follows that F ′ = G′ a.e. and Eqs. (25.42) and
(25.43) are proved.

25.7.1 Absolute Continuity

Proposition 25.46. Let µ be a positive measure on (X,M) and f ∈ L1(dµ)
and ν (A) :=

∫
A
fdµ. Then for all ε > 0 there exists δ > 0 such that |ν| (A) < ε

for all A ∈M such that µ(A) < δ. In particular if (X,M, µ) = (R,BR,m) and
G (x) :=

∫ x
−∞ fdm we have for all ε > 0 there exists δ > 0 such that

n∑
i=1

|G (bi)−G (ai)| < ε

where ever {(ai, bi)}ni=1 are disjoint open intervals such that

m (∪ni=1 (ai, bi)) =

n∑
i=1

(bi − ai) < δ.
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Proof. If the statement in the corollary were false, there would exists ε > 0

and An ∈ M such that µ (An) ↓ 0 while

∣∣∣∣∣ ∫An f dµ
∣∣∣∣∣ ≥ ε for all n. On the other

hand |1Anf | ≤ |f | ∈ L1 (µ) and 1Anf
µ→ 0 as n→∞ and so by the dominated

convergence theorem in Corollary 16.21 we may conclude,

lim
n→∞

∫
An

f dµ = lim
n→∞

∫
X

1Anf dµ = 0

which leads to the desired contradiction.
For the second assertion let µ = m and suppose that A is of the form,

A :=
∑n
i=1 (ai, bi) ,

9 where {(ai, bi)}ni=1 are disjoint open bounded intervals of
R. Then if ν = νG and dνG = fdm, then (with ε and δ as above)

n∑
i=1

|G (bi)−G (ai)| =
n∑
i=1

|νG (ai, bi)| ≤
n∑
i=1

|νG| (ai, bi) = |νG| (A) < ε

provided
n∑
i=1

(bi − ai) = m (A) < δ.

Definition 25.47 (Absolute continuity). A function F : X̄→ C is abso-
lutely continuous if for all ε > 0 there exists δ > 0 such that

n∑
i=1

|F (bi)− F (ai)| < ε (25.46)

whenever {(ai, bi]}ni=1 are disjoint subintervals of X such that
n∑
i=1

(bi − ai) < δ.

Proposition 25.48. If G is an absolutely continuous function (necessarily con-
tinuous with bounded variation), then νG � m where ν = νG is the complex
measure associated to G.

Proof. Assume that A ∈ BR such that m (A) = 0. By regularity of m and |ν|
we can find a decreasing sequence of open sets {Uj}∞j=1 such thatm (Uj \A)→ 0

and |ν| (Uj\A) → 0 as j → ∞ and therefore m (Uj) → m (A) = 0 as j → ∞
and

|ν (Uj)− ν (A)| = |ν (Uj \A)| ≤ |ν| (Uj\A)→ 0 as j →∞.
9 The notation,

∑n
i=1Ai, is short hand for ∪ni=1Ai with the additional assumption

that Ai ∩Aj = ∅ for all i 6= j.

For given j, Uj = ∪Nn=1Jn where N ∈ N∪{∞} and {Jn = (an, bn)}Nn=1 are
disjoint open intervals.10 For K ≤ N with K < ∞ we have m

(
∪Kn=1Jn

)
≤

m (Uj) =: δj and so from the Definition 25.47 of absolute continuity of G

∣∣ν (∪Kn=1Jn
)∣∣ =

∣∣∣∣∣
K∑
n=1

[G (bn)−G (an)]

∣∣∣∣∣ ≤
K∑
n=1

|G (bn)−G (an)| < εj (25.47)

where εj is some sequence of positive numbers such that εj ↓ 0. Letting K →∞
in Eq. (25.47) shows |ν (Uj)| ≤ εj for each j and then letting j → ∞ shows
|ν (A)| = 0.

Exercise 25.18. Let F,G : X̄ → C be and λ ∈ C be given. Show

1. TF+G ≤ TF + TG and TλF = |λ|TF . Conclude from this that BV (X) is a
vector space.

2. TReF ≤ TF , TImF ≤ TF , and TF ≤ TReF +TImF . In particular F ∈ BV (X)
iff ReF and ImF are in BV (X) .

3. If F : X̄→ C is absolutely continuous then F : X̄→ C is continuous and in
fact is uniformly continuous.

Lemma 25.49 (Examples). Let F : X̄ → F be given, where F is either R of
C.

1. If F : X̄ → R is a monotone function, then TF ((a, b]) = |F (b)− F (a)| for
all a, b ∈ X̄ with a < b. So F ∈ BV (X) iff F is bounded (which will be the
case if X = [α, β]).

2. If F : [α, β]→ C is absolutely continuous then F ∈ BV ((α, β]).
3. If F ∈ C ([α, β]→ R) , F ′ (x) is differentiable for all x ∈ (α, β) , and

supx∈(α,β) |F ′(x)| = M <∞, then F is absolutely continuous11 and

TF ((a, b]) ≤M(b− a) ∀ α ≤ a < b ≤ β.

4. Let f ∈ L1(X,m) and set

F (x) =

∫
(−∞,x]∩X̄

fdm for all x ∈ X̄. (25.48)

Then F : X̄→ C is absolutely continuous.

10 This is the content of Exercise 35.22. For completeness let me sketch the proof here.
For x ∈ V, let ax := inf {a : (a, x] ⊂ V } and bx := sup {b : [x, b) ⊂ V } . Since V

is open, ax < x < bx and it is easily seen that Jx := (ax, bx) ⊂ V. Moreover if y ∈ V
and Jx ∩ Jy 6= ∅, then Jx = Jy. The collection, {Jx : x ∈ V } , is at most countable
since we may label each J ∈ {Jx : x ∈ V } by choosing a rational number r ∈ J.
Letting {Jn : n < N}, with N = ∞ allowed, be an enumeration of {Jx : x ∈ V } ,
we have V =

∐
n<N Jn as desired.

11 It is proved in Natanson or in Rudin that this is also true if F ∈ C([α, β]) such
that F ′(x) exists for all x ∈ (α, β) and F ′ ∈ L1 ([α, β] ,m) .
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Proof.

1. If F is monotone increasing and P is a partition of (a, b] then∑
x∈P
|F (x+)− F (x)| =

∑
x∈P

(F (x+)− F (x)) = F (b)− F (a)

so that TF ((a, b]) = F (b)− F (a). Similarly, one shows

TF ((a, b]) = F (a)− F (b) = |F (b)− F (a)|

if F is monotone decreasing. Also note that F ∈ BV (R) iff
|F (∞)− F (−∞)| <∞, where F (±∞) = limx→±∞ F (x) .

2. Since F is absolutely continuous, there exists δ > 0 such that whenever
a, b ∈ X̄ with a < b and b− a < δ, then∑

x∈P
|F (x+)− F (x)| ≤ 1

for all partitions, P, of [a, b] . This shows that TF ((a, b]) ≤ 1 for all a < b
with b−a < δ. Thus using Eq. (25.15)12, it follows that TF ((a, b]) ≤ N <∞
provided N ∈ N is chosen so that b− a < Nδ.

3. Suppose that {(ai, bi]}ni=1 are disjoint subintervals of (a, b], then by the
mean value theorem,

n∑
i=1

|F (bi)− F (ai)| ≤
n∑
i=1

|F ′(ci)| (bi − ai) ≤M ·m (∪ni=1(ai, bi))

≤M
n∑
i=1

(bi − ai) ≤M(b− a)

form which it easily follows that F is absolutely continuous. Moreover we
may conclude that TF ((a, b]) ≤M(b− a).

4. Let ν be the positive measure dν = |f | dm on (a, b]. Again let {(ai, bi]}ni=1

be disjoint subintervals of (a, b], then

12 This equation states

TF ((a, c]) = TF ((a, b]) + TF ((b, c])

for −∞ < a < b < c <∞.

n∑
i=1

|F (bi)− F (ai)| =
n∑
i=1

∣∣∣∣∣
∫

(ai,bi]

fdm

∣∣∣∣∣
≤

n∑
i=1

∫
(ai,bi]

|f | dm

=

∫
∪n
i=1

(ai,bi]

|f | dm = ν(∪ni=1(ai, bi]). (25.49)

Since ν is absolutely continuous relative to m, by Theorem 24.35 (or Corol-
lary 24.36 or Theorem24.37), for all ε > 0 there exist δ > 0 such that
ν(A) < ε if m(A) < δ. Applying this result with A = ∪ni=1(ai, bi], it fol-
lows from Eq. (25.49) that F satisfies the definition of being absolutely
continuous. Furthermore, Eq. (25.49) also may be used to show

TF ((a, b]) ≤
∫

(a,b]

|f | dm.

Theorem 25.50 (Absolute Continuity). Suppose F ∈ BV (R) , G =
F (x+) , and νF be the associated complex measure and

dνF = F ′dm+ dνs (25.50)

be the its Lebesgue decomposition. Then the following are equivalent,

1. G is absolutely continuous13,
2. νF � m,
3. νs = 0, and
4. for all a, b ∈ X with a < b,

G (b)−G (a) =

∫
(a,b]

F ′(x)dm(x). (25.51)

(Moral: absolutely continuous functions are those functions which satisfy
the fundamental theorem of calculus.)

Proof. The equivalence of 1. and 2. was established in Proposition 25.23
or by Propositions 25.46 and 25.48. The equivalence of 2. and 3. is trivial. (If
νF � m, then dνs = dνF − F ′dm� dm which implies, by Lemma 24.25, that
νs = 0.)

13 We can not say that F is absolutely continuous here as can be seen by taking
F (x) = 1{0} (x) .
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(The equivalence of 4. and 1., 2., and 3.) If νF � m (i.e. νs = 0), then
the identity in Eq. (25.51) holds which also implies G is continuous. Conversely
if Eq. (25.51) holds, then νG (A) =

∫
A

F ′(x)dm(x) whenever A is a half open

interval and we have seen (see Example 11.6)

νG (A) =

∫
A

F ′(x)dm(x) for all A ∈ B

which certainly implies νG � m.

Theorem 25.51 (The fundamental theorem of calculus). Suppose that
F : [α, β]→ C is a measurable function. Then the following are equivalent:

1. F is absolutely continuous on [α, β].
2. There exists f ∈ L1([α, β]), dm) such that

F (x)− F (α) =

∫ x

α

fdm ∀x ∈ [α, β] (25.52)

3. F ′ exists a.e., F ′ ∈ L1([α, β], dm) and

F (x)− F (α) =

∫ x

α

F ′dm∀x ∈ [α, β]. (25.53)

Proof. 1. =⇒ 3. If F is absolutely continuous then F ∈ BV ((α, β]) and F is
continuous on [α, β]. Hence Eq. (25.53) holds by Corollary 25.31. The assertion
3. =⇒ 2. is trivial and we have already seen in Lemma 25.49 that 2. implies 1.

Corollary 25.52 (Integration by parts). Suppose −∞ < α < β < ∞ and
F,G : [α, β]→ C are two absolutely continuous functions. Then∫ β

α

F ′Gdm = −
∫ β

α

FG′dm+ FG|βα.

Proof. Suppose that {(ai, bi]}ni=1 is a sequence of disjoint intervals in [α, β],
then

n∑
i=1

|F (bi)G(bi)− F (ai)G(ai)|

≤
n∑
i=1

|F (bi)| |G(bi)−G(ai)|+
n∑
i=1

|F (bi)− F (ai)| |G(ai)|

≤ ‖F‖∞
n∑
i=1

|G(bi)−G(ai)|+ ‖G‖∞
n∑
i=1

|F (bi)− F (ai)| .

From this inequality, one easily deduces the absolutely continuity of the product
FG from the absolutely continuity of F and G. Therefore,

FG|βα =

∫ β

α

(FG)′dm =

∫ β

α

(F ′G+ FG′)dm.
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26

Geometric Integration

Definition 26.1. A subset M ⊂ Rn is a n− 1 dimensional Ck-Hypersurface
if for all x0 ∈ M there exists ε > 0 an open set 0 ∈ D ⊂ Rn and a Ck-
diffeomorphism ψ : D → B(x0, ε) such that ψ(D ∩ {xn = 0}) = B(x0, ε) ∩M.
See Figure 26.1 below.

Fig. 26.1. An embedded submanifold of R2.

Example 26.2. Suppose V ⊂0 Rn−1 and g : V
Ck−→ R. Then M := Γ (g) =

{(y, g(y)) : y ∈ V } is a Ck hypersurface. To verify this assertion, given x0 =
(y0, g(y0)) ∈ Γ (g) define

ψ(y, z) := (y + y0, g(y + y0)− z).

Then ψ : {V − y0)× R Ck−→ V × R diffeomorphism

ψ((V − y0)× {0}) = {(y + y0, g(y + y0)) : y ∈ V − y0} = Γ (g).

Proposition 26.3 (Parametrized Surfaces). Let k ≥ 1, D ⊂0 Rn−1 and
Σ ∈ Ck(D,Rn) satisfy

1. Σ : D →M := Σ(D) is a homeomorphism and
2. Σ′(y) : Rn−1 → Rn is injective for all y ∈ D. (We will call M a Ck –

parametrized surface and Σ : D →M a parametrization of M.)

Then M is a Ck-hypersurface in Rn. Moreover if f ∈ C(W ⊂0 Rd,Rn) is a
continuous function such that f(W ) ⊂ M, then f ∈ Ck(W,Rn) iff Σ−1 ◦ f ∈
Ck(U,D).

Proof. Let y0 ∈ D and x0 = Σ(y0) and n0 be a normal vector to M at x0,
i.e. n0 ⊥ Ran (Σ′(y0)) , and let

ψ(t, y) := Σ(y0 + y) + t n0 for t ∈ R and y ∈ D − y0,

see Figure 26.2 below. Since Dyψ(0, 0) = Σ′(y0) and ∂ψ
∂t (0, 0) = n0 /∈

Fig. 26.2. Showing a parametrized surface is an embedded hyper-surface.

Ran (Σ′(y0)) , ψ′(0, 0) is invertible. so by the inverse function theorem there
exists a neighborhood V of (0, 0) ∈ Rn such that ψ|V : V → Rn is a Ck – dif-
feomorphism. Choose an ε > 0 such that B(x0, ε) ∩M ⊂ Σ(V ∩ {t = 0}) and
B(x0, ε) ⊂ ψ(V ). Then set U := ψ−1(B(x0, ε)). One finds ψ|U : U → B(x0, ε)
has the desired properties. Now suppose f ∈ C(W ⊂0 Rd,Rn) such that
f(W ) ⊂ M, a ∈ W and x0 = f(a) ∈ M. By shrinking W if necessary we
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may assume f(W ) ⊂ B(x0, ε) where B(x0, ε) is the ball used previously. (This
is where we used the continuity of f.) Then

Σ−1 ◦ f = π ◦ ψ−1 ◦ f

where π is projection onto {t = 0}. Form this identity it clearly follows Σ−1◦f is
Ck if f is Ck. The converse is easier since if Σ−1◦f is Ck then f = Σ◦(Σ−1◦f)
is Ck as well.

26.1 Surface Integrals

Definition 26.4. Suppose Σ : D ⊂0 Rn−1 → M ⊂ Rn is a C1- parameterized
hypersurface of Rn and f ∈ Cc(M,R). Then the surface integral of f over M,∫
M

f dσ, is defined by

∫
M

f dσ =

∫
D

f ◦Σ(y)

∣∣∣∣det[
∂Σ(y)

∂y1
|, . . . , ∂Σ(y)

∂yn−1
|n(y)]

∣∣∣∣ dy
=

∫
D

f ◦Σ(y) |det[Σ′(y)e1| . . . |Σ′(y)en−1|n(y)]| dy

where n(y) ∈ Rn is a unit normal vector perpendicular of ran(Σ′(y)) for each
y ∈ D. We will abbreviate this formula by writing

dσ =

∣∣∣∣det[
∂Σ(y)

∂y1
|, . . . , ∂Σ(y)

∂yn−1
|n(y)]

∣∣∣∣ dy, (26.1)

see Figure 26.3 below for the motivation.

Remark 26.5. Let A = A(y) := [Σ′(y)e1, . . . , Σ
′(y)en−1, n(y)]. Then

AtrA =


∂1Σ

t

∂2Σ
t

...
∂n−1Σ

t

nt

 [∂1Σ| . . . |∂n−1Σ|n]

=


∂1Σ · ∂1Σ ∂1Σ · ∂2Σ . . . ∂1Σ · ∂n−1Σ 0
∂2Σ · ∂1Σ ∂2Σ · ∂2Σ . . . ∂2Σ · ∂n−1Σ 0

...
...

...
...

...
∂n−1Σ · ∂1Σ ∂n−1Σ · ∂2Σ . . . ∂n−1Σ · ∂n−1Σ 0

0 0 . . . 0 1



Fig. 26.3. The approximate area spanned by Σ([y, y+dy]) should be equal to the area

spaced by ∂Σ(y)
∂y1

dy1 and ∂Σ(y)
∂y2

dy2 which is equal to the volume of the parallelepiped

spanned by ∂Σ(y)
∂y1

dy1,
∂Σ(y)
∂y2

dy2 and n(Σ(y)) and hence the formula in Eq. (26.1).

and therefore∣∣∣∣det[
∂Σ(y)

∂y1
|, . . . , ∂Σ(y)

∂yn−1
|n(y)]

∣∣∣∣ = |det(A)| dy =
√

det (AtrA)dy

=

√
det
[
(∂iΣ · ∂jΣ)

n−1
i,j=1

]
=

√
det
[
(Σ′)

tr
Σ′
]
.

This implies dσ = ρΣ(y)dy or more precisely that∫
M

f dσ =

∫
D

f ◦Σ(y)ρΣ(y)dy

where

ρΣ(y) :=

√
det
[
(∂iΣ · ∂jΣ)

n−1
i,j=1

]
=

√
det
[
(Σ′)

tr
Σ′
]
.

The next lemma shows that
∫
M

f dσ is well defined, i.e. independent of how

M is parametrized.

Example 26.6. Suppose V ⊂0 Rn−1 and g : V
Ck−→ R and M := Γ (g) =

{(y, g(y)) : y ∈ V } as in Example 26.2. We now compute dσ in the parametriza-
tion Σ : V →M defined by Σ(y) = (y, g(y)). To simplify notation, let
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∇g(y) := (∂1g(y), . . . , ∂n−1g(y)) .

As is standard from multivariable calculus (and is easily verified),

n(y) :=
(∇g(y),−1)√
1 + |∇g(y)|2

is a normal vector to M at Σ(y), i.e. n(y) ·∂kΣ(y) = 0 for all k = 1, 2 . . . , n−1.
Therefore,

dσ = |det [∂1Σ| . . . |∂n−1Σ|n]| dy

=
1√

1 + |∇g(y)|2

∣∣∣∣det

[
In−1 (∇g)

tr

∇g −1

]∣∣∣∣ dy

=
1√

1 + |∇g(y)|2

∣∣∣∣det

[
In−1 0

∇g −1− |∇g|2
]∣∣∣∣ dy

=
1√

1 + |∇g(y)|2

(
1 + |∇g(y)|2

)
dy =

√
1 + |∇g(y)|2dy.

Hence if g : M → R, we have∫
M

gdσ =

∫
V

g(Σ(y))

√
1 + |∇g(y)|2dy.

Example 26.7. Keeping the same notation as in Example 26.6, but now taking

V := B(0, r) ⊂ Rn−1 and g(y) :=

√
r2 − |y|2. In this case M = Sn−1

+ , the

upper-hemisphere of Sn−1, ∇g(y) = −y/g(y),

dσ =

√
1 + |y|2 /g2(y)dy =

r

g(y)
dy

and so ∫
Sn−1
+

gdσ =

∫
|y|<r

g(y,

√
r2 − |y|2)

r√
r2 − |y|2

dy.

A similar computation shows, with Sn−1
− being the lower hemisphere, that∫

Sn−1
−

gdσ =

∫
|y|<r

g(y,−
√
r2 − |y|2)

r√
r2 − |y|2

dy.

Lemma 26.8. If Σ̃ : D̃ →M is another Ck – parametrization of M, then∫
D

f ◦Σ(y)ρΣ(y)dy =

∫
D̃

f ◦ Σ̃(y)ρΣ̃(y)dy.

Proof. By Proposition 26.3, ϕ := Σ−1 ◦ Σ̃ : D̃ → D is a Ck – diffeo-
morphism. By the change of variables theorem on Rn−1 with y = ϕ(ỹ) (using

Σ̃ = Σ ◦ ϕ, see Figure 26.4) we find∫
D̃

f ◦ Σ̃(ỹ)ρΣ̃(ỹ)dỹ =

∫
D̃

f ◦ Σ̃
√

det
(
Σ̃′
)tr

Σ̃′dỹ

=

∫
D̃

f ◦Σ ◦ ϕ
√

det (Σ ◦ ϕ)
′tr

(Σ ◦ ϕ)
′
dỹ

=

∫
D̃

f ◦Σ ◦ ϕ
√

det
[
(Σ′(ϕ)ϕ′)

tr
Σ′(ϕ)ϕ′

]
dỹ

=

∫
D̃

f ◦Σ ◦ ϕ
√

det[ϕ′tr [Σ′(ϕ)trΣ′(ϕ) ]ϕ′dỹ

=

∫
D̃

(f ◦Σ ◦ ϕ) ·
(√

detΣ′trΣ′
)
◦ ϕ · | detϕ′| dỹ

=

∫
D

f ◦Σ
√

detΣ′trΣ′dy.

Definition 26.9. Let M be a C1-embedded hypersurface and f ∈ Cc(M). Then
we define the surface integral of f over M as∫

M

f dσ =

n∑
i=1

∫
Mi

ϕif dσ

where ϕi ∈ C1
c (M, [0, 1]) are chosen so that

∑
iϕi ≤ 1 with equality on supp(f)

and the supp(ϕif) ⊂ Mi ⊂ M where Mi is a subregion of M which may be
viewed as a parametrized surface.

Remark 26.10. The integral
∫
M

f dσ is well defined for if ψj ∈ C1
c (M, [0, 1]) is

another sequence satisfying the properties of {ϕi} with supp(ψj) ⊂ M ′j ⊂ M
then (using Lemma 26.8 implicitly)
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Fig. 26.4. Verifying surface integrals are independent of parametrization.

∑
i

∫
Mi

ϕif dσ =
∑
i

∫
Mi

∑
j

ψjϕif dσ =
∑
ij

∫
Mi∩M ′j

ψjϕif dσ

with a similar computation showing∑
j

∫
M ′
j

ψif dσ =
∑
ji

∫
Mi∩M ′j

ψjϕif dσ =
∑
ij

∫
Mi∩M ′j

ψjϕif dσ.

Remark 26.11. By the Reisz theorem, there exists a unique Radon measure σ
on M such that ∫

M

f dσ =

∫
M

f dσ.

This σ is called surface measure on M. BRUCE: do we really need to appeal to
the Reisz – Markov theorem here?

Lemma 26.12 (Surface Measure). Let M be a C2 – embedded hypersurface
in Rn and B ⊂ M be a measurable set such that B̄ is compact and contained
inside Σ(D) where Σ : D →M ⊂ Rn is a parametrization. Then

σ(B) = lim
ε↓0

m(Bε) =
d

dε
|0+m(Bε)

where
Bε := {x+ t n(x) : x ∈ B, 0 ≤ t ≤ ε}

and n(x) is a unit normal to M at x ∈M, see Figure 26.5.

Proof. Let A := Σ−1(B) and ν(y) := n(Σ(y)) so that ν ∈ Ck−1(D,Rn) if
Σ ∈ Ck(D,Rn). Define

Fig. 26.5. Computing the surface area of B as the volume of an ε - fattened neigh-
borhood of B.

ψ(y, t) = Σ(y) + tn(Σ(y)) = Σ(y) + tν(y)

so that Bε = ψ(A× [0, ε]). Hence by the change of variables formula

m(Bε) =

∫
A×[0,ε]

|detψ′(y, t)|dy dt =

∫ ε

0

dt

∫
A

dy|detψ′(y, t)| (26.2)

so that by the fundamental theorem of calculus,

d

dε
|0+m(Bε) =

d

dε
|0+

∫ ε

0

dt

∫
A

dy|detψ′(y, t)| =
∫
A

|detψ′(y, 0)|dy.

But
|detψ′(y, 0)| = |det[Σ′(y)|n(Σ(y))]| = ρΣ(y)

which shows

d

dε
|0+m(Bε) =

∫
A

ρΣ(y)dy =

∫
D

1B(Σ(y))ρΣ(y)dy =: σ(B).

Example 26.13. Let Σ = rSn−1 be the sphere of radius r > 0 contained in Rn
and for B ⊂ Σ and α > 0 let

Bα := {tω : ω ∈ B and 0 ≤ t ≤ α} = αB1.

Assuming N(ω) = ω/r is the outward pointing normal to rSn−1, we have

Bε = B(1+ε/r) \B1 = [(1 + ε/r)B1] \B1
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and hence

m(Bε) = m ([(1 + ε/r)B1] \B1) = m ([(1 + ε/r)B1])−m(B1)

= [(1 + ε/r)n − 1]m(B1).

Therefore,

σ(B) =
d

dε
|0 [(1 + ε/r)n − 1]m(B1) =

n

r
m(B1)

= nrn−1m
(
r−1B1

)
= rn−1σ(r−1B),

i.e.
σ(B) =

n

r
m(B1) = nrn−1m

(
r−1B1

)
= rn−1σ(r−1B).

Fig. 26.6. Computing the area of region B on the surface of the sphere of radiur r.

Theorem 26.14. If f : Rn → [0,∞] is a (BRn ,B)–measurable function then∫
Rn
f(x)dm(x) =

∫
[0,∞)×Sn−1

f(r ω) rn−1drdσ(ω). (26.3)

In particular if f : R+ → R+ is measurable then∫
Rn

f(|x|)dx =

∫ ∞
0

f(r)dV (r) (26.4)

where V (r) = m (B(0, r)) = rnm (B(0, 1)) = n−1σ
(
Sn−1

)
rn.

Fig. 26.7. The region Bb \Ba.

Proof. Let B ⊂ Sn−1, 0 < a < b and let f(x) = 1Bb\Ba(x), see Figure 26.7.
Then ∫

[0,∞)×Sn−1

f(r ω) rn−1drdσ(ω) =

∫
[0,∞)×Sn−1

1B(ω)1[a,b](r) r
n−1drdσ(ω)

= σ(B)

∫ b

a

rn−1dr = n−1σ(B) (bn − an)

= m(B1) (bn − an) = m (Bb \Ba)

=

∫
Rn
f(x)dm(x).

Since sets of the form Bb \Ba generate BRn and are closed under intersections,
this suffices to prove the theorem. Alternatively one may show that any f ∈
Cc (Rn) may be uniformly approximated by linear combinations of characteristic

functions of the form 1Bb\Ba . Indeed, let Sn−1 =
K⋃
i=1

Bi be a partition of Sn−1

with Bi small and choose wi ∈ Bi. Let 0 < r1 < r2 < r3 < · · · < rn = R <∞.
Assume supp(f) ⊂ B(0, R). Then {(Bi)rj+1

\ (Bi)rj}i,j partitions Rn into small
regions. Therefore
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288 26 Geometric Integration∫
Rn
f(x)dx ∼=

∑
f(rjωi)m((Bi)rj+1

\ (Bi)rj )

=
∑

f
(
rjωi)(r

n
j+1 − rnj

)
m((Bi)1)

=
∑

f(rjωi)

∫ rj+1

rj

rn−1dr nm((Bi)1)

=
∑∫ rj+1

rj

f(rjωi)r
n−1dr σ(Bi)

∼=
∑
ij

∫ rj+1

rj

 ∫
Sn−1

f(rjω)dσ(ω)

 rn−1dr

∼=
∫ ∞

0

 ∫
Sn−1

f(rω)dσ(ω)

 rn−1dr.

Eq. (26.4) is a simple special case of Eq. (26.3). It can also be proved directly
as follows. Suppose first f ∈ C1

c ([0,∞)) then∫
Rn

f(|x|)dx = −
∫
Rn

dx

∫ ∞
|x|

drf ′(r) = −
∫
Rn

dx

∫
R

1|x|≤rf
′(r)dr

= −
∫ ∞

0

V (r)f ′(r)dr =

∫ ∞
0

V ′(r)f(r)dr.

The result now extends to general f by a density argument.
We are now going to work out some integrals using Eq. (26.3). The first we

leave as an exercise.

Exercise 26.1. Use the results of Example 26.7 and Theorem 26.14 to show,

σ(Sn−1) = 2σ(Sn−2)

∫ 1

0

1√
1− ρ2

ρn−2dρ.

The result in Exercise 26.1 may be used to compute the volume of spheres
in any dimension. This method will be left to the reader. We will do this in
another way. The first step will be to directly compute the following Gaussian
integrals. The result will also be needed for later purposes.

Lemma 26.15. Let a > 0 and

In(a) :=

∫
Rn

e−a|x|
2

dm(x). (26.5)

Then In(a) = (π/a)n/2.

Proof. By Tonelli’s theorem and induction,

In(a) =

∫
Rn−1×R

e−a|y|
2

e−at
2

mn−1(dy) dt

= In−1(a)I1(a) = In1 (a). (26.6)

So it suffices to compute:

I2(a) =

∫
R2

e−a|x|
2

dm(x) =

∫
R2\{0}

e−a(x2
1+x2

2)dx1dx2.

Writing this integral in polar coordinates (see Example ??) gives

I2(a) =

∫ ∞
0

dr r

∫ 2π

0

dθ e−ar
2

= 2π

∫ ∞
0

re−ar
2

dr

= 2π lim
M→∞

∫ M

0

re−ar
2

dr = 2π lim
M→∞

e−ar
2

−2a

∫ M

0

=
2π

2a
= π/a.

This shows that I2(a) = π/a and the result now follows from Eq. (26.6).

Corollary 26.16. Let Sn−1 ⊂ Rn be the unit sphere in Rn and

Γ (x) :=

∫ ∞
0

ux−1e−udu for x > 0

be the gamma function. Then

1. The surface area σ(Sn−1) of the unit sphere Sn−1 ⊂ Rn is

σ(Sn−1) =
2πn/2

Γ (n/2)
. (26.7)

2. The Γ – function satisfies

a) Γ (1/2) =
√
π, Γ (1) = 1 and Γ (x+ 1) = xΓ (x) for x > 0.

b) For n ∈ N,

Γ (n+ 1) = n! and Γ (n+ 1/2) =
(2n− 1)!!

2n
·
√
π. (26.8)

3. For n ∈ N,

σ(S2n+1) =
2πn+1

n!
and σ(S2n) =

2 (2π)
n

(2n− 1)!!
. (26.9)
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Proof. Let In be as in Lemma 26.15. Using Theorem 26.14 we may alter-
natively compute πn/2 = In(1) as

πn/2 = In(1) =

∫ ∞
0

dr rn−1e−r
2

∫
Sn−1

dσ = σ(Sn−1)

∫ ∞
0

rn−1e−r
2

dr.

We simplify this last integral by making the change of variables u = r2 so that
r = u1/2 and dr = 1

2u
−1/2du. The result is∫ ∞

0

rn−1e−r
2

dr =

∫ ∞
0

u
n−1
2 e−u

1

2
u−1/2du

=
1

2

∫ ∞
0

u
n
2−1e−udu =

1

2
Γ (n/2). (26.10)

Collecting these observations implies that

πn/2 = In(1) =
1

2
σ(Sn−1)Γ (n/2)

which proves Eq. (26.7). The computation of Γ (1) is easy and is left to the
reader. By Eq. (26.10),

Γ (1/2) = 2

∫ ∞
0

e−r
2

dr =

∫ ∞
−∞

e−r
2

dr

= I1(1) =
√
π.

The relation, Γ (x+ 1) = xΓ (x) is the consequence of integration by parts:

Γ (x+ 1) =

∫ ∞
0

e−u ux+1 du

u
=

∫ ∞
0

ux
(
− d

du
e−u

)
du

= x

∫ ∞
0

ux−1 e−u du = x Γ (x).

Eq. (26.8) follows by induction from the relations just proved. Eq. (26.9) is a
consequence of items 1. and 2. as follows:

σ(S2n+1) =
2π(2n+2)/2

Γ ((2n+ 2)/2)
=

2πn+1

Γ (n+ 1)
=

2πn+1

n!

and

σ(S2n) =
2π(2n+1)/2

Γ ((2n+ 1)/2)
=

2πn+1/2

Γ (n+ 1/2)
=

2πn+1/2

(2n−1)!!
2n ·

√
π

=
2 (2π)

n

(2n− 1)!!
.

26.2 More spherical coordinates

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r, θ) ∈ (0,∞) ×
[0, 2π) so that (

x1

x2

)
=

(
r cos θ
r sin θ

)
= ψ2(θ, r).

For n = 3 we let x3 = r cosϕ1 and then(
x1

x2

)
= ψ2(θ, r sinϕ1),

as can be seen from Figure 26.8, so that

Fig. 26.8. Setting up polar coordinates in two and three dimensions.

x1

x2

x3

 =

(
ψ2(θ, r sinϕ1)

r cosϕ1

)
=

 r sinϕ1 cos θ
r sinϕ1 sin θ
r cosϕ1

 =: ψ3(θ, ϕ1, r, ).

We continue to work inductively this way to define
x1

...
xn
xn+1

 =

(
ψn(θ, ϕ1, . . . , ϕn−2, r sinϕn−1, )

r cosϕn−1

)
= ψn+1(θ, ϕ1, . . . , ϕn−2, ϕn−1, r).

So for example,

x1 = r sinϕ2 sinϕ1 cos θ

x2 = r sinϕ2 sinϕ1 sin θ

x3 = r sinϕ2 cosϕ1

x4 = r cosϕ2
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and more generally,

x1 = r sinϕn−2 . . . sinϕ2 sinϕ1 cos θ

x2 = r sinϕn−2 . . . sinϕ2 sinϕ1 sin θ

x3 = r sinϕn−2 . . . sinϕ2 cosϕ1

...

xn−2 = r sinϕn−2 sinϕn−3 cosϕn−4

xn−1 = r sinϕn−2 cosϕn−3

xn = r cosϕn−2. (26.11)

By the change of variables formula,∫
Rn
f(x)dm(x)

=

∫ ∞
0

dr

∫
0≤ϕi≤π,0≤θ≤2π

dϕ1 . . . dϕn−2dθ∆n(θ, ϕ1, . . . , ϕn−2, r)f(ψn(θ, ϕ1, . . . , ϕn−2, r))

(26.12)

where
∆n(θ, ϕ1, . . . , ϕn−2, r) := |detψ′n(θ, ϕ1, . . . , ϕn−2, r)| .

Proposition 26.17. The Jacobian, ∆n is given by

∆n(θ, ϕ1, . . . , ϕn−2, r) = rn−1 sinn−2 ϕn−2 . . . sin
2 ϕ2 sinϕ1. (26.13)

If f is a function on rSn−1 – the sphere of radius r centered at 0 inside of Rn,
then∫
rSn−1

f(x)dσ(x) = rn−1

∫
Sn−1

f(rω)dσ(ω)

=

∫
0≤ϕi≤π,0≤θ≤2π

f(ψn(θ, ϕ1, . . . , ϕn−2, r))∆n(θ, ϕ1, . . . , ϕn−2, r)dϕ1 . . . dϕn−2dθ

(26.14)

Proof. We are going to compute ∆n inductively. Letting ρ := r sinϕn−1

and writing ∂ψn
∂ξ for ∂ψn

∂ξ (θ, ϕ1, . . . , ϕn−2, ρ) we have

∆n+1(θ,ϕ1, . . . , ϕn−2, ϕn−1, r)

=

∣∣∣∣[ ∂ψn∂θ ∂ψn
∂ϕ1

0 0

. . . ∂ψn
∂ϕn−2

. . . 0

∂ψn
∂ρ r cosϕn−1

−r sinϕn−1

∂ψn
∂ρ sinϕn−1

cosϕn−1

]∣∣∣∣
= r

(
cos2 ϕn−1 + sin2 ϕn−1

)
∆n(, θ, ϕ1, . . . , ϕn−2, ρ)

= r∆n(θ, ϕ1, . . . , ϕn−2, r sinϕn−1),

i.e.

∆n+1(θ, ϕ1, . . . , ϕn−2, ϕn−1, r) = r∆n(θ, ϕ1, . . . , ϕn−2, r sinϕn−1). (26.15)

To arrive at this result we have expanded the determinant along the bottom
row. Staring with the well known and easy to compute fact that ∆2(θ, r) = r,
Eq. (26.15) implies

∆3(θ, ϕ1, r) = r∆2(θ, r sinϕ1) = r2 sinϕ1

∆4(θ, ϕ1, ϕ2, r) = r∆3(θ, ϕ1, r sinϕ2) = r3 sin2 ϕ2 sinϕ1

...

∆n(θ, ϕ1, . . . , ϕn−2, r) = rn−1 sinn−2 ϕn−2 . . . sin
2 ϕ2 sinϕ1

which proves Eq. (26.13). Eq. (26.14) now follows from Eqs. (26.3), (26.12) and
(26.13).

As a simple application, Eq. (26.14) implies

σ(Sn−1) =

∫
0≤ϕi≤π,0≤θ≤2π

sinn−2 ϕn−2 . . . sin
2 ϕ2 sinϕ1dϕ1 . . . dϕn−2dθ

= 2π

n−2∏
k=1

γk = σ(Sn−2)γn−2 (26.16)

where γk :=
∫ π

0
sink ϕdϕ. If k ≥ 1, we have by integration by parts that,

γk =

∫ π

0

sink ϕdϕ = −
∫ π

0

sink−1 ϕ d cosϕ = 2δk,1 + (k − 1)

∫ π

0

sink−2 ϕ cos2 ϕdϕ

= 2δk,1 + (k − 1)

∫ π

0

sink−2 ϕ
(
1− sin2 ϕ

)
dϕ = 2δk,1 + (k − 1) [γk−2 − γk]

and hence γk satisfies γ0 = π, γ1 = 2 and the recursion relation

γk =
k − 1

k
γk−2 for k ≥ 2.

Hence we may conclude

γ0 = π, γ1 = 2, γ2 =
1

2
π, γ3 =

2

3
2, γ4 =

3

4

1

2
π, γ5 =

4

5

2

3
2, γ6 =

5

6

3

4

1

2
π

and more generally by induction that

γ2k = π
(2k − 1)!!

(2k)!!
and γ2k+1 = 2

(2k)!!

(2k + 1)!!
.
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Indeed,

γ2(k+1)+1 =
2k + 2

2k + 3
γ2k+1 =

2k + 2

2k + 3
2

(2k)!!

(2k + 1)!!
= 2

[2(k + 1)]!!

(2(k + 1) + 1)!!

and

γ2(k+1) =
2k + 1

2k + 1
γ2k =

2k + 1

2k + 2
π

(2k − 1)!!

(2k)!!
= π

(2k + 1)!!

(2k + 2)!!
.

The recursion relation in Eq. (26.16) may be written as

σ(Sn) = σ
(
Sn−1

)
γn−1 (26.17)

which combined with σ
(
S1
)

= 2π implies

σ
(
S1
)

= 2π,

σ(S2) = 2π · γ1 = 2π · 2,

σ(S3) = 2π · 2 · γ2 = 2π · 2 · 1

2
π =

22π2

2!!
,

σ(S4) =
22π2

2!!
· γ3 =

22π2

2!!
· 22

3
=

23π2

3!!

σ(S5) = 2π · 2 · 1

2
π · 2

3
2 · 3

4

1

2
π =

23π3

4!!
,

σ(S6) = 2π · 2 · 1

2
π · 2

3
2 · 3

4

1

2
π · 4

5

2

3
2 =

24π3

5!!

and more generally that

σ(S2n) =
2 (2π)

n

(2n− 1)!!
and σ(S2n+1) =

(2π)
n+1

(2n)!!
(26.18)

which is verified inductively using Eq. (26.17). Indeed,

σ(S2n+1) = σ(S2n)γ2n =
2 (2π)

n

(2n− 1)!!
π

(2n− 1)!!

(2n)!!
=

(2π)
n+1

(2n)!!

and

σ(S(n+1)) = σ(S2n+2) = σ(S2n+1)γ2n+1 =
(2π)

n+1

(2n)!!
2

(2n)!!

(2n+ 1)!!
=

2 (2π)
n+1

(2n+ 1)!!
.

Using
(2n)!! = 2n (2(n− 1)) . . . (2 · 1) = 2nn!

we may write σ(S2n+1) = 2πn+1

n! which shows that Eqs. (26.9) and (26.18 in
agreement. We may also write the formula in Eq. (26.18) as

σ(Sn) =


2(2π)n/2

(n−1)!! for n even

(2π)
n+1
2

(n−1)!! for n odd.

26.3 n – dimensional manifolds with boundaries

Definition 26.18. A set Ω ⊂ Rn is said to be a Ck – manifold with bound-
ary if for each x0 ∈ ∂Ω := Ω \ Ωo (here Ωo is the interior of Ω) there exists
ε > 0 an open set 0 ∈ D ⊂ Rn and a Ck-diffeomorphism ψ : D → B(x0, ε)
such that ψ(D ∩ {yn ≥ 0}) = B(x0, ε) ∩Ω. See Figure 26.9 below. We call ∂Ω
the manifold boundary of Ω.

Fig. 26.9. Flattening out a neighborhood of a boundary point.

Remarks 26.19 1. In Definition 26.18 we have defined ∂Ω = Ω \ Ωo which
is not the topological boundary of Ω, defined by bd(Ω) := Ω̄ \ Ω0. Clearly
we always have ∂Ω ⊂ bd(Ω) with equality iff Ω is closed.

2. It is easily checked that if Ω ⊂ Rn is a Ck – manifold with boundary, then
∂Ω is a Ck – hypersurface in Rn.

The reader is left to verify the following examples.

Example 26.20. Let Hn = {x ∈ Rn : xn > 0}.

1. H̄n is a C∞ – manifold with boundary and

∂H̄n = bd
(
H̄n
)

= Rn−1 × {0}.
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2. Ω = B(ξ, r) is a C∞ – manifold with boundary and ∂Ω = bd (B(ξ, r)), as
the reader should verify. See Exercise 26.2 for a general result containing
this statement.

3. Let U be the open unit ball in Rn−1, then Ω = Hn ∪ (U × {0}) is a C∞ –
manifold with boundary and ∂Ω = U × {0} while bd(Ω) = Rn−1 × {0}.

4. Now let Ω = Hn∪(Ū×{0}), then Ω is not a C1 – manifold with boundary.
The bad points are bd(U)× {0} .

5. Suppose V is an open subset of Rn−1 and g : V → R is a Ck – function and
set

Ω := {(y, z) ∈ V × R ⊂ Rn : z ≥ g(y)} ,

then Ω is a Ck – manifold with boundary and ∂Ω = Γ (g) – the graph of g.
Again the reader should check this statement.

6. Let
Ω = [(0, 1)× (0, 1)] ∪ [(−1, 0)× (−1, 0)] ∪ [(−1, 1)× {0}]

in which case

Ωo = [(0, 1)× (0, 1)] ∪ [(−1, 0)× (−1, 0)]

and hence ∂Ω = (−1, 1) × {0} is a Ck – hypersurface in R2. Nevertheless
Ω is not a Ck – manifold with boundary as can be seen by looking at the
point (0, 0) ∈ ∂Ω.

7. If Ω = Sn−1 ⊂ Rn, then ∂Ω = Ω is a C∞ - hypersurface. However, as
in the previous example Ω is not an n – dimensional Ck – manifold with
boundary despite the fact that Ω is now closed. (Warning: there is a clash
of notation here with that of the more general theory of manifolds where
∂Sn−1 = ∅ when viewing Sn−1 as a manifold in its own right.)

Lemma 26.21. Suppose Ω ⊂o Rn such that bd(Ω) is a Ck – hypersurface, then
Ω̄ is Ck – manifold with boundary. (It is not necessarily true that ∂Ω̄ = bd(Ω).
For example, let Ω := B(0, 1)∪{x ∈ Rn : 1 < |x| < 2} . In this case Ω̄ = B(0, 2)
so ∂Ω̄ = {x ∈ Rn : |x| = 2} while bd(Ω) = {x ∈ Rn : |x| = 2 or |x| = 1} .)

Proof. Claim: Suppose U = (−1, 1)
n ⊂o Rn and V ⊂o U such that bd(V )∩

U = ∂Hn ∩ U. Then V is either, U+ := U ∩ Hn = U ∩ {xn > 0} or U− :=
U ∩ {xn < 0} or U \ ∂Hn = U+ ∪ U−. To prove the claim, first observe that
V ⊂ U \ ∂Hn and V is not empty, so either V ∩ U+ or V ∩ U− is not empty.
Suppose for example there exists ξ ∈ V ∩ U+. Let σ : [0, 1) → U ∩ Hn be a
continuous path such that σ(0) = ξ and

T = sup {t < 1 : σ([0, t]) ⊂ V } .

If T 6= 1, then η := σ(T ) is a point in U+ which is also in bd(V ) = V̄ \ V. But
this contradicts bd(V ) ∩ U = ∂Hn ∩ U and hence T = 1. Because U+ is path

connected, we have shown U+ ⊂ V. Similarly if V ∩ U− 6= ∅, then U− ⊂ V as
well and this completes the proof of the claim. We are now ready to show Ω̄ is
a Ck – manifold with boundary. To this end, suppose

ξ ∈ ∂Ω̄ = bd(Ω̄) = Ω̄ \ Ω̄o ⊂ Ω̄ \Ω = bd(Ω).

Since bd(Ω) is a Ck – hypersurface, we may find an open neighborhood O
of ξ such that there exists a Ck – diffeomorphism ψ : U → O such that
ψ (O ∩ bd(Ω)) = U ∩Hn. Recall that

O ∩ bd(Ω) = O ∩ Ω̄ ∩Ωc = Ω ∩OO \ (O \Ω) = bdO (Ω ∩O)

where A
O

and bdO(A) denotes the closure and boundary of a set A ⊂ O in
the relative topology on A. Since ψ is a Ck – diffeomorphism, it follows that
V := ψ (O ∩Ω) is an open set such that

bd(V ) ∩ U = bdU (V ) = ψ (bdO (Ω ∩O)) = ψ (O ∩ bd(Ω)) = U ∩Hn.

Therefore by the claim, we learn either V = U+ of U− or U+∪U−. However the
latter case can not occur because in this case ξ would be in the interior of Ω̄ and
hence not in bd(Ω̄). This completes the proof, since by changing the sign on the
nth coordinate of ψ if necessary, we may arrange it so that ψ

(
Ω̄ ∩O

)
= U+.

Exercise 26.2. Suppose F : Rn → R is a Ck – function such that

{F < 0} := {x ∈ Rn : F (x) < 0} 6= ∅

and F ′(ξ) : Rn → R is surjective (or equivalently ∇F (ξ) 6= 0) for all

ξ ∈ {F = 0} := {x ∈ Rn : F (x) = 0} .

Then Ω := {F ≤ 0} is a Ck – manifold with boundary and ∂Ω = {F = 0} .
Hint: For ξ ∈ {F = 0} , let A : Rn → Rn−1 be a linear transformation such

that A|Nul(F ′(ξ)) : Nul(F ′(ξ)) → Rn−1 is invertible and A|Nul(F ′(ξ))⊥ ≡ 0 and
then define

ϕ(x) := (A (x− ξ) ,−F (x)) ∈ Rn−1 × R = Rn.
Now use the inverse function theorem to construct ψ.

Definition 26.22 (Outward pointing unit normal vector). Let Ω be a C1

– manifold with boundary, the outward pointing unit normal to ∂Ω is the
unique function n : ∂Ω → Rn satisfying the following requirements.

1. (Unit length.) |n(x)| = 1 for all x ∈ ∂Ω.
2. (Orthogonality to ∂Ω.) If x0 ∈ ∂Ω and ψ : D → B(x0, ε) is as in the

Definition 26.18, then n(xo) ⊥ ψ′(0) (∂Hn) , i.e. n(x0) is perpendicular of
∂Ω.

3. (Outward Pointing.) If ϕ := ψ−1, then ϕ′(0)n(xo) · en < 0 or equivalently
put ψ′(0)en · n(x0) < 0, see Figure 26.11 below.
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26.4 Divergence Theorem

Theorem 26.23 (Divergence Theorem). Let Ω ⊂ Rn be a manifold with
C2 – boundary and n : ∂Ω → Rn be the unit outward pointing normal to Ω. If
Z ∈ Cc(Ω,Rn) ∩ C1(Ωo,Rn) and∫

Ω

|∇ · Z|dm <∞ (26.19)

then ∫
∂Ω

Z(x) · n(x)dσ(x) =

∫
Ω

∇ · Z(x) dx. (26.20)

The proof of Theorem 26.23 will be given after stating a few corollaries and
then a number preliminary results.

Example 26.24. Let

f(x) =

{
x sin

(
1
x

)
on [0, 1],

0 if x = 0

then f ∈ C([0, 1])∩C∞((0, 1)) and f ′(x) = sin
(

1
x

)
− 1

x sin
(

1
x

)
for x > 0. Since

1∫
0

1

x

∣∣∣∣sin( 1

x

)∣∣∣∣ dx =

∞∫
1

u| sin(u)| 1

u2
du =

∞∫
1

| sin(u)|
u

du =∞,

1∫
0

|f ′(x)| dx =∞ and the integrability assumption,
∫
Ω

|∇·Z|dx <∞, in Theorem

26.23 is necessary.

Corollary 26.25. Let Ω ⊂ Rn be a closed manifold with C2 – boundary and
n : ∂Ω → Rn be the outward pointing unit normal to Ω. If Z ∈ C(Ω,Rn) ∩
C1(Ωo,Rn) and ∫

Ω

{|Z|+ |∇ · Z|} dm+

∫
∂Ω

|Z · n| dσ <∞ (26.21)

then Eq. (26.20) is valid, i.e.∫
∂Ω

Z(x) · n(x)dσ(x) =

∫
Ω

∇ · Z(x) dx.

Proof. Let ψ ∈ C∞c (Rn, [0, 1]) such that ψ = 1 in a neighborhood of 0 and
set ψk(x) := ψ(x/k) and Zk := ψkZ. We have supp(Zk) ⊂ supp(ψk)∩Ω – which
is a compact set since Ω is closed. Since ∇ψk(x) = 1

k (∇ψ) (x/k) is bounded,∫
Ω

|∇ · Zk| dm =

∫
Ω

|∇ψk · Z + ψk∇ · Z| dm

≤ C
∫
Ω

|Z| dm+

∫
Ω

|∇ · Z| dm <∞.

Hence Theorem 26.23 implies∫
Ω

∇ · Zkdm =

∫
∂Ω

Zk · ndσ. (26.22)

By the D.C.T.,∫
Ω

∇ · Zkdm =

∫
Ω

[
1

k
(∇ψ) (x/k) · Z(x) + ψ(x/k)∇ · Z(x)

]
dx

→
∫
Ω

∇ · Zdm

and ∫
∂Ω

Zk · n dσ =

∫
∂Ω

ψkZ · n dσ →
∫
∂Ω

Z · n dσ,

which completes the proof by passing the limit in Eq. (26.22).

Corollary 26.26 (Integration by parts I). Let Ω ⊂ Rn be a closed manifold
with C2 – boundary, n : ∂Ω → Rn be the outward pointing normal to Ω,
Z ∈ C(Ω,Rn) ∩ C1(Ωo,Rn) and f ∈ C(Ω,R) ∩ C1(Ωo,R) such that∫

Ω

{|f | [|Z|+ |∇ · Z|] + |∇f | |Z|} dm+

∫
∂Ω

|f | |Z · n| dσ <∞

then∫
Ω

f(x)∇ · Z(x) dx = −
∫
Ω

∇f(x) · Z(x) dx+

∫
∂Ω

f (x)Z(x) · n(x)dσ(x).

Proof. Apply Corollary 26.25 with Z replaced by fZ.

Corollary 26.27 (Integration by parts II). Let Ω ⊂ Rn be a closed mani-
fold with C2 – boundary , n : ∂Ω → Rn be the outward pointing normal to Ω
and f, g ∈ C(Ω,R) ∩ C1(Ωo,R) such that∫

Ω

{|f | |g|+ |∂if | |g|+ |f | |∂ig|} dm+

∫
∂Ω

|fgni| dσ <∞
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then ∫
Ω

f(x)∂ig(x) dm = −
∫
Ω

∂if(x) · g(x) dm+

∫
∂Ω

f(x)g(x)ni(x)dσ(x).

Proof. Apply Corollary 26.26 with Z chosen so that Zj = 0 if j 6= i and
Zi = g, (i.e. Z = (0, . . . , g, 0 . . . , 0)).

Proposition 26.28. Let Ω be as in Corollary 26.25 and suppose u, v ∈
C2(Ωo) ∩ C1(Ω) such that u, v,∇u,∇v,∆u,∆v ∈ L2(Ω) and u, v, ∂u∂n ,

∂v
∂n ∈

L2(∂Ω, dσ) then ∫
Ω

4u · vdm = −
∫
Ω

∇u · ∇vdm+

∫
∂Ω

v
∂u

∂n
dσ (26.23)

and ∫
Ω

(4uv −4v u)dm =

∫
∂Ω

(
v
∂u

∂n
− ∂v

∂n
u

)
dσ. (26.24)

Proof. Eq. (26.23) follows by applying Corollary 26.26 with f = v and
Z = ∇u. Similarly applying Corollary 26.26 with f = u and Z = ∇v implies∫

Ω

4v · udm = −
∫
Ω

∇u · ∇vdm+

∫
∂Ω

u
∂v

∂n
dσ

and subtracting this equation from Eq. (26.23) implies Eq. (26.24).

Lemma 26.29. Let Ωt = ϕt(Ω) be a smoothly varying domain and f : Rn → R.
Then

d

dt

∫
Ωt

f dx =

∫
∂Ωt

f (Yt · n) dσ

where Yt(x) = d
dε

∣∣∣
0
ϕt+ε(ϕ

−1
t (x)) as in Figure 26.10.

Proof. With out loss of generality we may compute the derivative at t = 0
and replace Ω by ϕ0(Ω) and ϕt by ϕt ◦ϕ−1

0 if necessary so that ϕ0(x) = x and

Y (x) = d
dt

∣∣∣
0
ϕt(x). By the change of variables theorem,∫

Ωt

f dx =

∫
f dx =

∫
Ω

f ◦ ϕt(x) det[ϕ′t(x)]dx

and hence

Fig. 26.10. The vector-field Yt(x) measures the velocity of the boundary point x at
time t.

d

dt

∣∣∣
0

∫
Ωt

f dx =

∫
Ω0

[Y f(x) +
d

dt

∣∣∣
0

det[ϕ′t(x)]f(x)]dx

=

∫
Ω0

[Y f(x) + (∇ · Y (x)) f(x)]dx

=

∫
Ω0

∇ · (fY )(x)dx =

∫
∂Ω0

f(x)Y (x) · n(x) dσ(x).

In the second equality we have used the fact that

d

dt

∣∣∣
0

det[ϕ′t(x)] = tr

[
d

dt

∣∣∣
0
ϕ′t(x)

]
= tr [Y ′(x)] = ∇ · Y (x).

26.5 The proof of the Divergence Theorem

Lemma 26.30. Suppose Ω ⊂o Rn and Z ∈ C1(Ω,Rn) and f ∈ C1
c (Ω,R), then∫

Ω

f∇ · Z dx = −
∫
Ω

∇f · Z dx.

Proof. Let W := fZ on Ω and W = 0 on Ωc, then W ∈ Cc(Rn,Rn). By
Fubini’s theorem and the fundamental theorem of calculus,
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26.5 The proof of the Divergence Theorem 295∫
Ω

∇ · (fZ) dx =

∫
Rn

(∇ ·W )dx =

n∑
i=1

∫
Rn

∂W i

∂xi
dx1 . . . dxn = 0.

This completes the proof because ∇ · (fZ) = ∇f · Z + f∇ · Z.

Corollary 26.31. If Ω ⊂ Rn, Z ∈ C1(Ω,Rn) and g ∈ C(Ω,R) then g = ∇ · Z
iff ∫

Ω

gf dx = −
∫
Ω

Z · ∇f dx for all f ∈ C1
c (Ω). (26.25)

Proof. By Lemma 26.30, Eq. (26.25) holds iff∫
Ω

gf dx =

∫
Ω

∇ · Z f dx for all f ∈ C1
c (Ω)

which happens iff g = ∇ · Z.

Proposition 26.32 (Behavior of ∇ under coordinate transformations).
Let ψ : W → Ω is a C2 – diffeomorphism where W and Ω and open subsets of
Rn. Given f ∈ C1(Ω,R) and Z ∈ C1(Ω,Rn) let fψ = f ◦ ψ ∈ C1(W,R) and
Zψ ∈ C1(W,Rn) be defined by Zψ(y) = ψ′(y)−1Z(ψ(y)). Then

1. ∇fψ = ∇(f ◦ ψ) = (ψ′)
tr

(∇f) ◦ ψ and
2. ∇ · [detψ′ Zψ] = (∇ · Z) ◦ ψ · detψ′. (Notice that we use ψ is C2 at this

point.)

Proof. 1. Let v ∈ Rn, then by definition of the gradient and using the chain
rule,

∇(f ◦ ψ) · v = ∂v(f ◦ ψ) = ∇f(ψ) · ψ′v = (ψ′)
tr∇f(ψ) · v.

2. Let f ∈ C1
c (Ω). By the change of variables formula,∫

Ω

f∇ · Zdm =

∫
W

f ◦ ψ (∇ · Z) ◦ ψ |detψ′| dm

=

∫
W

fψ (∇ · Z) ◦ ψ |detψ′| dm. (26.26)

On the other hand

∫
Ω

f∇ · Zdm = −
∫
Ω

∇f · Zdm = −
∫
W

∇f(ψ) · Z(ψ) |detψ′| dm

= −
∫
W

[
(ψ′)

tr
]−1

∇fψ · Z(ψ) |detψ′| dm

= −
∫
W

∇fψ · (ψ′)−1
Z(ψ) |detψ′| dm

= −
∫
W

(
∇fψ · Zψ

)
|detψ′| dm

=

∫
W

fψ∇ ·
(
|detψ′| Zψ

)
dm. (26.27)

Since Eqs. (26.26) and (26.27) hold for all f ∈ C1
c (Ω) we may conclude

∇ ·
(
|detψ′| Zψ

)
= (∇ · Z) ◦ ψ |detψ′|

and by linearity this proves item 2.

Lemma 26.33. Eq. (26.20 of the divergence Theorem 26.23 holds when Ω =
H̄n = {x ∈ Rn : xn ≥ 0} and Z ∈ Cc(H̄n,Rn) ∩ C1(Hn,Rn) satisfies∫

Hn

|∇ · Z| dx <∞

Proof. In this case ∂Ω = Rn−1 × {0} and n(x) = −en for x ∈ ∂Ω is
the outward pointing normal to Ω. By Fubini’s theorem and the fundamental
theorem of calculus,

n−1∑
i=1

∫
xn>δ

∂Zi

∂xi
dx = 0

and ∫
xn>δ

∂Zn
∂xn

dx = −
∫

Rn−1

Zn(y, δ)dy.

Therefore. using the dominated convergence theorem,∫
Hn

∇ · Z dx = lim
δ↓0

∫
xn>δ

∇ · Z dx = − lim
δ↓0

∫
Rn−1

Zn(y, δ)dy

= −
∫

Rn−1

Zn(y, 0)dy =

∫
∂Hn

Z(x) · n(x) dσ(x).
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296 26 Geometric Integration

Remark 26.34. The same argument used in the proof of Lemma 26.33 shows
Theorem 26.23 holds when

Ω = R̄n+ := {x ∈ Rn : xi ≥ 0 for all i} .

Notice that R̄n+ has a corners and edges, etc. and so ∂Ω is not smooth in this
case.

26.5.1 The Proof of the Divergence Theorem 26.23

Proof. First suppose that supp(Z) is a compact subset of B(x0, ε) ∩ Ω for
some x0 ∈ ∂Ω and ε > 0 is sufficiently small so that there exists V ⊂o Rn
and C2 – diffeomorphism ψ : V −→ B(x0, ε) (see Figure 26.11) such that
ψ(V ∩ {yn > 0}) = B(x0, ε) ∩Ωo and

ψ(V ∩ {yn = 0}) = B(x0, ε) ∩ ∂Ω.

Because n is the outward pointing normal, n(ψ(y)) · ψ′(y)en < 0 on yn = 0.

Fig. 26.11. Reducing the divergence theorem for general Ω to Ω = Hn.

Since V is connected and detψ′(y) is never zero on V, ς := sgn (detψ′(y)) ∈
{±1} is constant independent of y ∈ V. For y ∈ ∂H̄n,

(Z · n)(ψ(y)) |det[ψ′(y)e1| . . . |ψ′(y)en−1|n(ψ(y))]|
= −ς(Z · n)(ψ(y)) det[ψ′(y)e1| . . . |ψ′(y)en−1|n(ψ(y))]

= −ς det[ψ′(y)e1| . . . |ψ′(y)en−1|Z(ψ(y))]

= −ς det[ψ′(y)e1| . . . |ψ′(y)en−1|ψ′(y)Zψ(y)]

= −ς detψ′(y) · det[e1| . . . |en−1|Zψ(y)]

= − |detψ′(y)|Zψ(y) · en,

wherein the second equality we used the linearity properties of the determinant
and the identity

Z(ψ(y)) = Z · n(ψ(y)) +

n−1∑
i=1

αiψ
′(y)ei for some αi.

Starting with the definition of the surface integral we find∫
∂Ω

Z · ndσ =

∫
∂H̄n

(Z · n)(ψ(y)) |det[ψ′(y)e1| . . . |ψ′(y)en−1|n(ψ(y))]| dy

=

∫
∂H̄n

detψ′(y)Zψ(y) · (−en) dy

=

∫
Hn

∇ ·
[
detψ′Zψ

]
dm (by Lemma 26.33)

=

∫
Hn

[(∇ · Z) ◦ ψ] detψ′dm (by Proposition 26.32)

=

∫
Ω

(∇ · Z) dm (by the Change of variables theorem).

2) We now prove the general case where Z ∈ Cc(Ω,Rn) ∩ C1(Ωo,Rn) and∫
Ω
|∇ · Z|dm <∞. Using Theorem ??, we may choose ϕi ∈ C∞c (Rn) such that

1.
N∑
i=1

ϕi ≤ 1 with equality in a neighborhood of K = Supp (Z).

2. For all i either supp(ϕi) ⊂ Ω or supp(ϕi) ⊂ B(x0, ε) where x0 ∈ ∂Ω and
ε > 0 are as in the previous paragraph.

Then by special cases proved in the previous paragraph and in Lemma 26.30,∫
Ω

∇ · Z dx =

∫
Ω

∇ · (
∑
i

ϕi Z) dx =
∑
i

∫
Ω

∇ · (ϕiZ)dx

=
∑
i

∫
∂Ω

(ϕiZ) · n dσ

=

∫
∂Ω

∑
i

ϕiZ · n dσ =

∫
∂Ω

Z · n dσ.
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26.6 Application to Holomorphic functions 297

26.5.2 Extensions of the Divergence Theorem to Lipschitz domains

BRUCE: This should be done after the fact about Lip-functions being a.e.
differentiable are proved.

The divergence theorem holds more generally for manifolds Ω with Lipschitz
boundary. By this we mean, locally near a boundary point, Ω should be of the
form

Ω := {(y, z) ∈ D × R ⊂ Rn : z ≥ g(y)} = {z ≥ g}

where g : D → R is a Lipschitz function and D is the open unit ball in Rn−1.
To prove this remark, first suppose that Z ∈ C1

c (Rn,Rn) such that
supp(Z) ⊂ D × R. Let δm(x) = mnρ(mx) where ρ ∈ C∞c (B(0, 1), [0,∞)) such
that

∫
Rn ρdm = 1 and let gm := g ∗ δm defined on D1−1/m – the open ball of

radius 1 − 1/m in Rn−1 and let Ωm := {z ≥ gm} . For m large enough we will
have supp(Z) ⊂ D1−1/m×R and so by the divergence theorem we have already
proved,∫

Ωm

∇ · Zdm =

∫
∂Ωm

Z · ndσ =

∫
D

Z(y, gm(y)) · (∇gm(y),−1) dy.

Now ∣∣∣1z>g − lim
m→∞

1z>gm

∣∣∣ ≤ 1z=g(y)

and by Fubini’s theorem,∫
D×R

1z=g(y)dydz =

∫
D

dy

∫
R

1z=g(y)dz = 0.

Hence by the dominated convergence theorem,

lim
m→∞

∫
Ωm

∇ · Zdm = lim
m→∞

∫
1z>gm∇ · Zdm =

∫
lim
m→∞

1z>gm∇ · Zdm

=

∫
1z>g∇ · Zdm =

∫
Ω

∇ · Zdm.

Moreover we also have from results to be proved later in the course that ∇g(y)
exists for a.e. y and is bounded by the Lipschitz constant K for g and

∇gm = ∇g ∗ δm → ∇g in Lploc for any 1 ≤ p <∞.

Therefore,

lim
m→∞

∫
D

Z(y, gm(y)) · (∇gm(y),−1) dy =

∫
D

Z(y, g(y)) · (∇g(y),−1) dy

=

∫
∂Ω

Z · ndσ

where ndσ is the vector valued measure on ∂Ω determined in local coordinates
by (∇gm(y),−1) dy.

Finally if Z ∈ C1(Ωo) ∩ Cc(Ω) with
∫
Ω
|∇ · Z| dm < ∞ with Ω as above.

We can use the above result applied to the vector field Zε(y, z) := Z(y, z + ε)
which we may now view as an element of C1

c (Ω). We then have∫
Ω

∇ · Z(·, ·+ ε)dm =

∫
D

Z(y, g(y) + ε) · (∇g(y),−1) dy

→
∫
D

Z(y, g(y)) · (∇g(y),−1) dy =

∫
∂Ω

Z · ndσ. (26.28)

And again by the dominated convergence theorem,

lim
ε↓0

∫
Ω

∇ · Z(·, ·+ ε)dm = lim
ε↓0

∫
Rn

1Ω(y, z)∇ · Z(y, z + ε)dydz

= lim
ε↓0

∫
Rn

1Ω(y, z − ε)∇ · Z(y, z)dydz

=

∫
Rn

lim
ε↓0

1Ω(y, z − ε)∇ · Z(y, z)dydz

=

∫
Rn

1Ω(y, z)∇ · Z(y, z)dydz =

∫
Ω

∇ · Zdm (26.29)

wherein we have used

lim
ε↓0

1Ω(y, z − ε) = lim
ε↓0

1
z>g(y)+ε = 1z>g(y).

Comparing Eqs. (26.28) and (26.29) finishes the proof of the extension.

26.6 Application to Holomorphic functions

Let Ω ⊂ C ∼= R2 be a compact manifold with C2 – boundary.

Definition 26.35. Let Ω ⊂ C ∼= R2 be a compact manifold with C2 – boundary
and f ∈ C(∂Ω,C). The contour integral,

∫
∂Ω

f(z)dz, of f along ∂Ω is defined
by ∫

∂Ω

f(z)dz := i

∫
∂Ω

f n dσ

where n : ∂Ω → S1 ⊂ C is chosen so that n := (Re n, Im n) is the outward
pointing normal, see Figure 26.12.

In order to carry out the integral in Definition 26.35 more effectively, suppose
that z = γ(t) with a ≤ t ≤ b is a parametrization of a part of the boundary
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298 26 Geometric Integration

Fig. 26.12. The induced direction for countour integrals along boundaries of regions.

of Ω and γ is chosen so that T := γ̇(t)/ |γ̇(t)| = in(γ(t)). That is to say T is
gotten from n by a 90o rotation in the counterclockwise direction. Combining
this with dσ = |γ̇(t)| dt we see that

i n dσ = T |γ̇(t)| dt = γ̇(t)dt =: dz

so that ∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ̇(t)dt.

Proposition 26.36. Let f ∈ C1(Ω̄,C) and ∂̄ := 1
2 (∂x + i∂y) , then∫

∂Ω

f(z)dz = 2i

∫
Ω

∂̄fdm. (26.30)

Now suppose w ∈ Ω, then

f(w) =
1

2πi

∫
∂Ω

f(z)

z − w
dz − 1

π

∫
Ω

∂̄f(z)

z − w
dm(z). (26.31)

Proof. By the divergence theorem,∫
Ω

∂̄fdm =
1

2

∫
Ω

(∂x + i∂y) fdm =
1

2

∫
∂Ω

f (n1 + in2) dσ

=
1

2

∫
∂Ω

fndσ = − i
2

∫
∂Ω

f(z)dz.

Given ε > 0 small, let Ωε := Ω \B(w, ε). Eq. (26.30) with Ω = Ωε and f being

replaced by f(z)
z−w implies

∫
∂Ωε

f(z)

z − w
dz = 2i

∫
Ωε

∂̄f

z − w
dm (26.32)

wherein we have used the product rule and the fact that ∂̄(z − w)−1 = 0 to
conclude

∂̄

[
f(z)

z − w

]
=
∂̄f(z)

z − w
.

Noting that ∂Ωε = ∂Ω ∪ ∂B(w, ε) and ∂B(w, ε) may be parametrized by z =
w + εe−iθ with 0 ≤ θ ≤ 2π, we have∫

∂Ωε

f(z)

z − w
dz =

∫
∂Ω

f(z)

z − w
dz +

∫ 2π

0

f(w + εe−iθ)

εe−iθ
(−iε) e−iθdθ

=

∫
∂Ω

f(z)

z − w
dz − i

∫ 2π

0

f(w + εe−iθ)dθ

and hence∫
∂Ω

f(z)

z − w
dz − i

∫ 2π

0

f(w + εe−iθ)dθ = 2i

∫
Ωε

∂̄f(z)

z − w
dm(z) (26.33)

Since

lim
ε↓0

∫ 2π

0

f(w + εe−iθ)dθ = 2πf(w)

and

lim
ε↓0

∫
Ωε

∂̄f

z − w
dm =

∫
Ω

∂̄f(z)

z − w
dm(z).

we may pass to the limit in Eq. (26.33) to find∫
∂Ω

f(z)

z − w
dz − 2πif(w) = 2i

∫
Ω

∂̄f(z)

z − w
dm(z)

which is equivalent to Eq. (26.31).

Remark 26.37. Eq. (26.31) implies ∂̄ 1
z = πδ(z). Indeed if f ∈ C∞c

(
C ∼= R2

)
,

then by Eq. (26.31)

〈∂̄ 1

πz
, f〉 := 〈 1

πz
,−∂̄f〉 = − 1

π

∫
C

1

z
∂̄f(z)dm(z) = f(0)

which is equivalent to ∂̄ 1
z = πδ(z).

Exercise 26.3. Let Ω be as above and assume f ∈ C1(Ω̄,C) satisfies g :=
∂̄f ∈ C∞(Ω,C). Show f ∈ C∞(Ω,C). Hint, let w0 ∈ Ω and ε > 0 be small
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and choose ϕ ∈ C∞c (B(z0, ε)) such that ϕ = 1 in a neighborhood of w0 and let
ψ = 1− ϕ. Then by Eq. (26.31),

f(w) =
1

2πi

∫
∂Ω

f(z)

z − w
dz − 1

π

∫
Ω

g(z)

z − w
ϕ(z)dm(z)

− 1

π

∫
Ω

g(z)

z − w
ψ(z)dm(z).

Now show each of the three terms above are smooth in w for w near w0. To
handle the middle term notice that∫

Ω

g(z)

z − w
ϕ(z)dm(z) =

∫
C

g(z + w)

z
ϕ(z + w)dm(z)

for w near w0.

Definition 26.38. A function f ∈ C1(Ω,C) is said to be holomorphic if ∂̄f =
0.

By Proposition 26.36, if f ∈ C1(Ω̄,C) and ∂̄f = 0 on Ω, then Cauchy’s
integral formula holds for w ∈ Ω, namely

f(w) =
1

2πi

∫
∂Ω

f(z)

z − w
dz

and f ∈ C∞(Ω,C). For more details on Holomorphic functions, see the complex
variable appendix.

26.7 Dirichlet Problems on D

BRUCE: This should be moved to the sections on Fourier Series.
Let D := {z ∈ C : |z| < 1} be the open unit disk in C ∼= R2, where we write

z = x + iy = reiθ in the usual way. Also let ∆ = ∂2

∂x2 + ∂2

∂y2 and recall that ∆
may be computed in polar coordinates by the formula,

∆u = r−1∂r
(
r−1∂ru

)
+

1

r2
∂2
θu. (26.34)

Indeed if v ∈ C1
c (D), then∫

D

∆uvdm = −
∫
D

∇u · ∇vdm = −
∫

10≤θ≤2π10≤r<1

(
urvr +

1

r2
uθvθ

)
rdrdθ

=

∫
10≤θ≤2π10≤r<1

(
(rur)r v +

1

r
uθθv

)
drdθ

=

∫
10≤θ≤2π10≤r<1

(
1

r
(rur)r +

1

r2
uθθ

)
vr2drdθ

=

∫
D

(
1

r
(rur)r +

1

r2
uθθ

)
vdm

which shows Eq. (26.34) is valid. See Exercises 26.5 and 26.6 for more details.
Suppose that u ∈ C(D̄) ∩ C2(D) and ∆u(z) = 0 for z ∈ D. Let g = u|∂D

and

Ak := ĝ(k) :=
1

2π

∫ π

−π
g(eikθ)e−ikθdθ.

(We are identifying S1 = ∂D :=
{
z ∈ D̄ : |z| = 1

}
with [−π, π]/ (π ∼ −π) by

the map θ ∈ [−π, π]→ eiθ ∈ S1.) Let

û(r, k) :=
1

2π

∫ π

−π
u(reiθ)e−ikθdθ (26.35)

then:

1. ũ(r, k) satisfies the ordinary differential equation

r−1∂r (r∂rû(r, k)) =
1

r2
k2û(r, k) for r ∈ (0, 1).

2. Recall the general solution to

r∂r (r∂ry(r)) = k2y(r) (26.36)

may be found by trying solutions of the form y(r) = rα which then implies
α2 = k2 or α = ±k. From this one sees that ũ(r, k) may be written as
û(r, k) = Akr

|k| + Bkr
−|k| for some constants Ak and Bk when k 6= 0. If

k = 0, the solution to Eq. (26.36) is gotten by simple integration and the
result is û(r, 0) = A0 + B0 ln r. Since û(r, k) is bounded near the origin for
each k, it follows that Bk = 0 for all k ∈ Z.

3. So we have shown

Akr
|k| = û(r, k) =

1

2π

∫ π

−π
u(reiθ)e−ikθdθ

and letting r ↑ 1 in this equation implies

Ak =
1

2π

∫ π

−π
u(eiθ)e−ikθdθ =

1

2π

∫ π

−π
f(eiθ)e−ikθdθ.

Therefore,

u(reiθ) =
∑
k∈Z

Akr
|k|eikθ (26.37)

for r < 1 or equivalently,

u(z) =
∑
k∈N0

Akz
k +

∑
k∈N

A−kz̄
k = A0 +

∑
k≥1

Akz
k +

∑
k≥1

Akz̄
k

= Re

A0 + 2
∑
k≥1

Akz
k
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In particular ∆u = 0 implies u(z) is the sum of a holomorphic and an anti-
holomorphic functions and also that u is the real part of a holomorphic
function F (z) := A0 + 1

2

∑
k≥1Akz

k. The imaginary part v(z) := ImF (z)
is harmonic as well and is given by

v(z) = 2 Im
∑
k≥1

Akz
k =

1

i

∑
k≥1

Akz
k −

∑
k≥1

Akz̄
k


=

1

i

∑
k≥1

Akz
k −

∑
k≥1

A−kz̄
k


=

1

i

∑
k≥1

Akr
keikθ −

∑
k≥1

A−kr
ke−ikθ


=
∑
k 6=0

1

i
sgn(k)Akr

keikθ = −isgn(
1

i

d

dθ
)u(z)

wherein we are writing z as reiθ. Here sgn( 1
i
d
dθ ) is the bounded self-adjoint

operator on L2(S1) which satisfies

sgn(
1

i

d

dθ
)einθ = sgn(n)einθ

and

sgn(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

.

4. Inserting the formula for Ak into Eq. (26.37) gives

u(reiθ) =
1

2π

∫ π

−π

(∑
k∈Z

r|k|eik(θ−α)

)
u(eiα)dα for all r < 1.

Now by simple geometric series considerations we find, setting δ = θ − α,
that

∑
k∈Z

r|k|eikδ =

∞∑
k=0

rkeikδ +

∞∑
k=0

rke−ikδ − 1 = 2 Re

∞∑
k=0

rkeikδ − 1

= Re

[
2

1

1− reiδ
− 1

]
= Re

[
1 + reiδ

1− reiδ

]
= Re

[(
1 + reiδ

) (
1− re−iδ

)
|1− reiδ|2

]
= Re

[
1− r2 + 2ir sin δ

1− 2r cos δ + r2

]
(26.38)

=
1− r2

|1− reiδ|2
=

1− r2

1− 2r cos δ + r2
.

Putting this altogether we have shown

u(reiθ) =
1

2π

∫ π

−π
Pr(θ − α)u(eiα)dα =: Pr ∗ u(eiθ)

=
1

2π
Re

∫ π

−π

1 + rei(θ−α)

1− rei(θ−α)
u(eiα)dα (26.39)

where

Pr(δ) :=
1− r2

1− 2r cos δ + r2
(26.40)

is the so called Poisson kernel. The fact that 1
2π Re

∫ π
−π Pr(θ)dθ = 1 follows

from the fact that

1

2π

∫ π

−π
Pr(θ)dθ = Re

1

2π

∫ π

−π

∑
k∈Z

r|k|eikθdθ

= Re
1

2π

∑
k∈Z

∫ π

−π
r|k|eikθdθ = 1.

Writing z = reiθ, Eq. (26.39) may be rewritten as

u(z) =
1

2π
Re

∫ π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα

which shows u = ReF where

F (z) :=
1

2π

∫ π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα.

Moreover it follows from Eq. (26.38) that

ImF (reiθ) =
1

π
Im

∫ π

−π

r sin(θ − α)

1− 2r cos(θ − α) + r2
u(eiα)dα

=: Qr ∗ u(eiθ)
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Fig. 26.13. Here is a plot of pr(x) for r = .5 and r = .8.

where

Qr(δ) :=
r sin(δ)

1− 2r cos(δ) + r2
.

From these remarks it follows that v is the harmonic conjugate of u and
P̃r = Qr. Summarizing these results gives

f̃(eiθ) = −isgn(
1

i

d

dθ
)f(eiθ) = lim

r↑1
(Qr ∗ f) (eiθ)

26.7.1 Appendix: More Proofs of Proposition 26.32

Exercise 26.4. det′(A)B = det(A) tr(A−1B).

Proof. 2nd Proof of Proposition 26.32 by direct computation. Letting
A = ψ′,

1

det A
∇ · (detAZψ) =

1

det A
{Zψ · ∇ detA+ detA ∇ · Zψ}

= tr[A−1∂ZψA] +∇ · Zψ (26.41)

and

∇ · Zψ = ∇ · (A−1Z ◦ ψ) = ∂i(A
−1Z ◦ ψ) · ei

= ei · (−A−1∂iAA
−1Z ◦ ψ) + ei ·A−1(Z ′ ◦ ψ)Aei

= −ei · (A−1ψ′′〈ei, A−1Z ◦ ψ〉) + tr(A−1(Z ′ ◦ ψ)A)

= −ei · (A−1ψ′′〈ei, A−1Z ◦ ψ〉) + tr(Z ′ ◦ ψ)

= −tr(A−1ψ′′〈Zψ,−〉) + (∇ · Z) ◦ ψ
= −tr

[
A−1∂ZψA

]
+ (∇ · Z) ◦ ψ. (26.42)

Combining Eqs. (26.41) and (26.42) gives the desired result:

∇ · (detψ′ Zψ) = detψ′(∇ · Z) ◦ ψ.

Lemma 26.39 (Flow interpretation of the divergence). Let
Z ∈ C1(Ω,Rn). Then

∇ · Z =
d

dt

∣∣∣
0

det(etZ)′

and ∫
Ω

∇ · (f Z)dm =
d

dt

∣∣
0

∫
etZ(Ω)

f dm.

Proof. By Exercise 26.4 and the change of variables formula,

d

dt

∣∣∣
0

det(etZ)′ = tr

(
d

dt

∣∣∣
0
(etZ)′

)
= tr(Z ′) = ∇ · Z

and

d

dt

∣∣∣
0

∫
etZ(Ω)

f(x)dx =
d

dt

∣∣∣
0

∫
Ω

f(etZ(y)) det(etZ)′(y)dy

=

∫
Ω

{∇f(y) · Z(y) + f(y)∇ · Z(y)} dy

=

∫
Ω

∇ · (f Z) dm.

Proof. 3rd Proof of Proposition 26.32. Using Lemma 26.39 with f =
detψ′ and Z = Zψ and the change of variables formula,
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Ω

∇ · (detψ′ Zψ)dm =
d

dt

∣∣∣
0

∫
etZ(Ω)

detψ′ dm

=
d

dt

∣∣∣
0
m(ψ ◦ etZ

ψ

(Ω))

=
d

dt

∣∣∣
0
m(ψ ◦ ψ−1 ◦ etZ ◦ ψ(Ω))

=
d

dt

∣∣∣
0
m(etZ (ψ(Ω)))

=
d

dt

∣∣∣
0

∫
etZ(ψ(Ω))

1 dm =

∫
ψ(Ω)

∇ · Zdm

=

∫
Ω

(∇ · Z) ◦ ψ det ψ′ dm.

Since this is true for all regions Ω, it follows that∇·(detψ′ Zψ) = detψ′(∇·Zψ).

26.8 Exercises

See Exercises 12.5 as well

Exercise 26.5. Let x = (x1, . . . , xn) = ψ(y1, . . . , yn) = ψ(y) be a C2 – diffeo-
morphism, ψ : V → W where V and W are open subsets of Rn. For y ∈ V
define

gij(y) =
∂ψ

∂yi
(y) · ∂ψ

∂yj
(y)

gij(y) = (gij(y))
−1
ij and

√
g(y) = det (gij(y)) .

Show

1. gij = (ψ′trψ′)ij and
√
g = |detψ′| . (So in the making the change of variables

x = ψ(y) we have dx =
√
gdy.)

2. Given functions f, h ∈ C1(W ), let fψ = f ◦ ψ and hψ = h ◦ ψ. Show

∇f(ψ) · ∇h(ψ) = gij
∂fψ

∂yi

∂hψ

∂yj
.

3. For f ∈ C2(W ), show

(∆f) ◦ ψ =
1
√
g

∂

∂yj

(
√
ggij

∂fψ

∂yi

)
. (26.43)

Hint: for h ∈ C2
c (W ) compute we have∫
W

∆f(x)h(x)dx = −
∫
W

∇f(x) · ∇h(x)dx.

Now make the change of variables x = ψ(y) in both of the above integrals
and then do some more integration by parts to prove Eq. (26.43).

Notation 26.40 We will usually abuse notation in the future and write Eq.
(26.43) as

∆f =
1
√
g

∂

∂yj

(
√
ggij

∂f

∂yi

)
.

Exercise 26.6. Let ψ(θ, ϕ1, . . . , ϕn−2, r) = (x1, . . . , xn) where (x1, . . . , xn) are
as in Eq. (26.11). Show:

1. The vectors
{
∂ψ
∂θ ,

∂ψ
∂ϕ1

, . . . , ∂ψ
∂ϕn−2

, ∂ψ∂r

}
form an orthogonal set and that∣∣∣∣∂ψ∂r

∣∣∣∣ = 1,

∣∣∣∣ ∂ψ

∂ϕn−2

∣∣∣∣ = r,

∣∣∣∣∂ψ∂θ
∣∣∣∣ = r sinϕn−2 . . . sinϕ1 and∣∣∣∣ ∂ψ∂ϕj

∣∣∣∣ = r sinϕn−2 . . . sinϕj+1 for j = 1, . . . , n− 3.

2. Use item 1. to give another derivation of Eq. (26.13), i.e.

√
g = |detψ′| = rn−1 sinn−2 ϕn−2 . . . sin

2 ϕ2 sinϕ1

3. Use Eq. (26.43) to conclude

∆f =
1

rn−1

∂

∂r

(
rn−1 ∂f

∂r

)
+

1

r2
∆Sn−1f.

where

∆Sn−1f :=

n−2∑
j=1

1

sin2 ϕn−2 . . . sin
2 ϕj+1

1

sinj ϕj

∂

∂ϕj

(
sinj ϕj

∂f

∂ϕj

)

+
1

sin2 ϕn−2 . . . sin
2 ϕ1

∂2f

∂θ2

and
1

sin2 ϕn−2 . . . sin
2 ϕj+1

:= 1 if j = n− 2.

In particular if f = F (r, ϕn−2) we have
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∆f =
1

rn−1

∂

∂r

(
rn−1 ∂f

∂r

)
+

1

r2

1

sinn−2 ϕn−2

∂

∂ϕn−2

(
sinn−2 ϕn−2

∂f

∂ϕn−2

)
.

(26.44)
It is also worth noting that

∆Sn−1f :=
1

sinn−2 ϕn−2

∂

∂ϕn−2

(
sinn−2 ϕn−2

∂f

∂ϕn−2

)
+

1

sinn−2 ϕn−2

∆Sn−2f.

Let us write ψ := ϕn−2 and suppose f = rλw(ψ). According to Eq. (26.44),

∆f =
1

rn−1

∂

∂r

(
rn−1 ∂

(
rλw(ψ)

)
∂r

)
+

1

r2

1

sinn−2 ψ

∂

∂ψ

(
sinn−2 ψ

∂
(
rλw(ψ)

)
∂ψ

)

= w(ψ)
1

rn−1

∂

∂r

(
λrn−1+λ−1

)
+ rλ−2 1

sinn−2 ψ

∂

∂ψ

(
sinn−2 ψ

∂w

∂ψ

)
= w(ψ)λ (n+ λ− 2) rλ−2 + rλ−2 1

sinn−2 ψ

∂

∂ψ

(
sinn−2 ψ

∂w

∂ψ

)
= rλ−2

[
λ (n+ λ− 2)w(ψ) +

1

sinn−2 ψ

∂

∂ψ

(
sinn−2 ψ

∂w

∂ψ

)]
.

Write w(ψ) = W (x) where x = cosψ, then ∂w
∂ψ = −W ′(x) sinψ and hence

1

sinn−2 ψ

∂

∂ψ

(
sinn−2 ψ

∂w

∂ψ

)
= − 1

sinn−2 ψ

∂

∂ψ

(
sinn−1 ψW ′(x)

)
=
−(n− 1) sinn−2 ψ cosψW ′(x)

sinn−2 ψ
− sinn−1 ψ

sinn−2 ψ
{−W ′′(x) sinψ}

= −(n− 1)xW ′(x) + (1− x2)W ′′(x).

Hence we have shown, with x = cosψ that

∆
[
rλW (x)

]
= rλ−2

[
λ (n+ λ− 2)W (x)− (n− 1)xW ′(x) + (1− x2)W ′′(x)

]
.





27

Sard’s Theorem

See p. 538 of Taylor and references. Also see Milnor’s topology book. Add
in the Brower’s Fixed point theorem here as well. Also Spivak’s calculus on
manifolds.

Theorem 27.1. Let U ⊂o Rm, f ∈ C∞(U,Rd) and C :=
{x ∈ U : rank(f ′(x)) < d} be the set of critical points of f. Then the crit-
ical values, f(C), is a Borel measurable subset of Rd of Lebesgue measure
0.

Remark 27.2. This result clearly extends to manifolds.

For simplicity in the proof given below it will be convenient to use the norm,
|x| := maxi |xi| . Recall that if f ∈ C1(U,Rd) and p ∈ U, then

f(p+x) = f(p)+

∫ 1

0

f ′(p+ tx)xdt = f(p)+f ′(p)x+

∫ 1

0

[f ′(p+ tx)− f ′(p)]xdt

so that if

R(p, x) := f(p+ x)− f(p)− f ′(p)x =

∫ 1

0

[f ′(p+ tx)− f ′(p)]xdt

we have

|R(p, x)| ≤ |x|
∫ 1

0

|f ′(p+ tx)− f ′(p)| dt = |x| ε(p, x).

By uniform continuity, it follows for any compact subset K ⊂ U that

sup {|ε(p, x)| : p ∈ K and |x| ≤ δ} → 0 as δ ↓ 0.

Proof. (BRUCE: This proof needs to be gone through carefully. There are
many misprints in the proof.) Notice that if x ∈ U \C, then f ′(x) : Rm → Rd is
surjective, which is an open condition, so that U \C is an open subset of U. This
shows C is relatively closed in U, i.e. there exists C̃ @ Rm such that C = C̃ ∩U.
Let Kn ⊂ U be compact subsets of U such that Kn ↑ U, then Kn ∩ C ↑ C
and Kn ∩C = Kn ∩ C̃ is compact for each n. Therefore, f(Kn ∩C) ↑ f(C) i.e.
f(C) = ∪nf(Kn∩C) is a countable union of compact sets and therefore is Borel
measurable. Moreover, since m(f(C)) = limn→∞m(f(Kn ∩ C)), it suffices to
show m(f(K)) = 0 for all compact subsets K ⊂ C.

Case 1. (m ≤ d) Let K = [a, a + γ] be a cube contained in U and by
scaling the domain we may assume γ = (1, 1, 1, . . . , 1). For N ∈ N and j ∈
SN := {0, 1, . . . , N − 1}d let Kj = j/N + [a, a + γ/N ] so that K = ∪j∈SNKj

with Ko
j ∩Ko

j′ = ∅ if j 6= j′. Let {Qj : j = 1 . . . ,M} be the collection of those
{Kj : j ∈ SN} which intersect C. For each j, let pj ∈ Qj∩C and for x ∈ Qj−pj
we have

f(pj + x) = f(pj) + f ′(pj)x+Rj(x)

where |Rj(x)| ≤ εj(N)/N and ε(N) := maxj εj(N)→ 0 as N →∞. Now

m (f(Qj)) = m (f(pj) + (f ′(pj) +Rj) (Qj − pj))
= m ((f ′(pj) +Rj) (Qj − pj))
= m (Oj (f ′(pj) +Rj) (Qj − pj)) (27.1)

where Oj ∈ SO(d) is chosen so that Ojf
′(pj)Rd ⊂ Rm−1 × {0} . Now

Ojf
′(pj)(Qj − pj) is contained in Γ × {0} where Γ ⊂ Rm−1 is a cube cen-

tered at 0 ∈ Rm−1 with side length at most 2 |f ′(pj)| /N ≤ 2M/N where
M = maxp∈K |f ′(p)| . It now follows that Oj (f ′(pj) +Rj) (Qj − pj) is con-
tained the set of all points within ε(N)/N of Γ × {0} and in particular

Oj (f ′(pj) +Rj) (Qj − pj) ⊂ (1 + ε(N)/N)Γ × [ε(N)/N, ε(N)/N ].

From this inclusion and Eq. (27.1) it follows that

m (f(Qj)) ≤
[
2
M

N
(1 + ε(N)/N)

]m−1

2ε(N)/N

= 2mMm−1 [(1 + ε(N)/N)]
m−1

ε(N)
1

Nm

and therefore,

m (f(C ∩K)) ≤
∑
j

m (f(Qj)) ≤ Nd2mMm−1 [(1 + ε(N)/N)]
m−1

ε(N)
1

Nm

= 2dMd−1 [(1 + ε(N)/N)]
d−1

ε(N)
1

Nm−d → 0 as N →∞

since m ≥ d. This proves the easy case since we may write U as a countable
union of cubes K as above.
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Remark. The case (m < d) also follows from the case m = d as follows.
When m < d, C = U and we must show m(f(U)) = 0. Letting F : U ×
Rd−m → Rd be the map F (x, y) = f(x). Then F ′(x, y)(v, w) = f ′(x)v, and
hence CF := U × Rd−m. So if the assertion holds for m = d we have

m(f(U)) = m(F (U × Rd−m)) = 0.

Case 2. (m > d) This is the hard case and the case we will need in the co-area
formula to be proved later. Here I will follow the proof in Milnor. Let

Ci := {x ∈ U : ∂αf(x) = 0 when |α| ≤ i}

so that C ⊃ C1 ⊃ C2 ⊃ C3 ⊃ . . . . The proof is by induction on d and goes by
the following steps:

1. m(f(C \ C1)) = 0.
2. m(f(Ci \ Ci+1)) = 0 for all i ≥ 1.
3. m(f(Ci)) = 0 for all i sufficiently large.

Step 1. If m = 1, there is nothing to prove since C = C1 so we may assume
m ≥ 2. Suppose that x ∈ C \ C1, then f ′(p) 6= 0 and so by reordering the
components of x and f(p) if necessary we may assume that ∂1f1 (p) 6= 0 where
we are writing ∂f(p)/∂xi as ∂if (p) . The map h(x) := (f1(x), x2, . . . , xd) has
differential

h′(p) =


∂1f1 (p) ∂2f1 (p) . . . ∂df1 (p)

0 1 0 0
...

...
. . .

...
0 0 0 1


which is not singular. So by the implicit function theorem, there exists there
exists V ∈ τp such that h : V → h(V ) ∈ τh(p) is a diffeomorphism and in
particular ∂f1(x)/∂x1 6= 0 for x ∈ V and hence V ⊂ U \C1. Consider the map
g := f ◦ h−1 : V ′ := h(V )→ Rm, which satisfies

(f1(x), f2(x), . . . , fm(x)) = f(x) = g(h(x)) = g((f1(x), x2, . . . , xd))

which implies g(t, y) = (t, u(t, y)) for (t, y) ∈ V ′ := h(V ) ∈ τh(p), see Figure
27.1 below where p = x̄ and m = p. Since

g′(t, y) =

[
1 0

∂tu(t, y) ∂yu(t, y)

]
it follows that (t, y) is a critical point of g iff y ∈ C ′t – the set of critical points
of y → u(t, y). Since h is a diffeomorphism we have C ′ := h(C ∩ V ) are the
critical points of g in V ′ and

Fig. 27.1. Making a change of variable so as to apply induction.

f(C ∩ V ) = g(C ′) = ∪t [{t} × ut(C ′t)] .

By the induction hypothesis, mm−1(ut(C
′
t)) = 0 for all t, and therefore by

Fubini’s theorem,

m(f(C ∩ V )) =

∫
R
mm−1(ut(C

′
t))1V ′t 6=∅

dt = 0.

Since C\C1 may be covered by a countable collection of open sets V as above, it
follows that m(f(C\C1)) = 0. Step 2. Suppose that p ∈ Ck\Ck+1, then there is
an α such that |α| = k+1 such that ∂αf(p) = 0 while ∂βf(p) = 0 for all |β| ≤ k.
Again by permuting coordinates we may assume that α1 6= 0 and ∂αf1(p) 6= 0.
Let w(x) := ∂α−e1f1(x), then w(p) = 0 while ∂1w(p) 6= 0. So again the implicit
function theorem there exists V ∈ τp such that h(x) := (w (x) , x2, . . . , xd) maps
V → V ′ := h(V ) ∈ τh(p) in a diffeomorphic way and in particular ∂1w(x) 6= 0
on V so that V ⊂ U \ Ck+1. As before, let g := f ◦ h−1 and notice that
C ′k := h(Ck ∩ V ) ⊂ {0} × Rd−1 and

f(Ck ∩ V ) = g(C ′k) = ḡ (C ′k)

where ḡ := g|({0}×Rd−1)∩V ′ . Clearly C ′k is contained in the critical points of ḡ,
and therefore, by induction

0 = m(ḡ(C ′k)) = m(f(Ck ∩ V )).

Since Ck \Ck+1 is covered by a countable collection of such open sets, it follows
that

m(f(Ck \ Ck+1)) = 0 for all k ≥ 1.
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Step 3. Suppose that Q is a closed cube with edge length δ contained in U
and k > d/m − 1. We will show m(f(Q ∩ Ck)) = 0 and since Q is arbitrary it
will follows that m(f(Ck)) = 0 as desired. By Taylor’s theorem with (integral)
remainder, it follows for x ∈ Q ∩ Ck and h such that x+ h ∈ Q that

f(x+ h) = f(x) +R(x, h)

where
|R(x, h)| ≤ c ‖h‖k+1

where c = c(Q, k). Now subdivide Q into rd cubes of edge size δ/r and let Q′ be
one of the cubes in this subdivision such that Q′ ∩Ck 6= ∅ and let x ∈ Q′ ∩Ck.
It then follows that f(Q′) is contained in a cube centered at f(x) ∈ Rm with

side length at most 2c (δ/r)
k+1

and hence volume at most (2c)
m

(δ/r)
m(k+1)

.
Therefore, f(Q ∩ Ck) is contained in the union of at most rd cubes of volume

(2c)
m

(δ/r)
m(k+1)

and hence meach

m (f(Q ∩ Ck)) ≤ (2c)
m

(δ/r)
m(k+1)

rd = (2c)
m
δm(k+1)rd−m(k+1) → 0 as r ↑ ∞

provided that d−m(k + 1) < 0, i.e. provided k > d/m− 1.





Part VI

More on Lp – Spaces





28

More Inequalities

28.1 Jensen’s Inequality

Definition 28.1. Given any function, ϕ : (a, b)→ R, we say that ϕ is convex
if for all a < x0 ≤ x1 < b and t ∈ [0, 1] ,

ϕ (xt) ≤ ht := (1− t)ϕ(x0) + tϕ(x1) for all t ∈ [0, 1] , (28.1)

where
xt := x0 + t (x1 − x0) = (1− t)x0 + tx1, (28.2)

see Figure 28.1 below.

0u = x0 v = xt w = x1

(w,ϕ(w))

(u, ϕ(u))

(v, ϕ(v))

(v, h) = (xt, ht)

m1

m2

m3

ϕ

Fig. 28.1. A convex function with three cords. Notice the slope relationships; m1 ≤
m3 ≤ m2.

Example 28.2. The functions exp(x) and − log(x) are convex and |x|p is
convex iff p ≥ 1 as follows from Corollary 28.5. below which, in part, states
that any ϕ ∈ C2 ((a, b) ,R) such that ϕ′′ ≥ 0 is convex.

Given any function ϕ : (a, b)→ R and x, y ∈ (a, b) with x < y, let1

1 The same formula would define F (x, y) for x 6= y. However, since F (x, y) =
F (y, x) , we would gain no new information by this extension.

F (x, y) = Fϕ (x, y) :=
ϕ (y)− ϕ (x)

y − x
. (28.3)

In words, F (x, y) is the slope of the line segment joining (x, ϕ (x)) to (y, ϕ (y)) .
The proof of the following elementary but useful lemma is left to the reader.
The geometric meaning of this lemma is easily digested by referring to Figure
28.1.

Lemma 28.3. Suppose that ϕ : (a, b)→ R is a function and a < u < v < w < b
then each of the slope relations;

F (u, v) ≤ F (u,w) , (28.4)

F (u, v) ≤ F (v, w) , and (28.5)

F (u,w) ≤ F (v, w) (28.6)

are equivalent to the inequality,

ϕ (v) ≤ w − v
w − u

ϕ (u) +
v − u
w − u

ϕ (w) . (28.7)

Corollary 28.4. Let ϕ : (a, b)→ R be a function then ϕ is convex iff any and
hence all of the inequalities in Eqs. (28.4 – 28.7) hold for all a < u < v < w < b.
We also have that ϕ is convex iff F is increasing in each of its arguments.

Proof. The first assertion follows directly from Lemma 28.3. If ϕ is convex
it follows from Eq. (28.4) that F is increasing in its second variable and from
Eq. (28.6) that F is increasing in its first variable. Conversely if F is increasing
in both of its variables and a < u < v < w < b it follows (for example) that Eq.
(28.4) holds and hence ϕ is convex.

Corollary 28.5. Suppose that ϕ : (a, b) → R is on once differentiable func-
tion. Then ϕ is convex iff ϕ′ (x) is non-decreasing in x. In particular if
ϕ ∈ C2 ((a, b)→ R) then ϕ is convex iff ϕ′′ (x) ≥ 0 for all a < x < b.

Proof. If ϕ is convex and a < u < v < b and h > 0 is such that v + h < b,
then F (u, u+ h) ≤ F (v, v + h) . Letting h ↓ 0 shows ϕ′ (u) ≤ ϕ′ (v) , i.e. .ϕ′ is
increasing. Conversely if ϕ′ is increasing and a < u < v < w < b, then by the
mean value theorem there exists c ∈ (u, v) and d ∈ (v, w) such that
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F (u, v) = ϕ′ (c) ≤ ϕ′ (d) = F (v, w)

which shows that Eq. (28.5) and hence ϕ is convex.

Theorem 28.6. If ϕ : (a, b) → R is a convex function, then for all u ∈ (a, b)
the limits

ϕ′+ (u) =
d

du+
ϕ (u) := lim

v↓u

ϕ (v)− ϕ (u)

v − u
and (28.8)

ϕ′− (u) :=
d

du−
ϕ (u) = lim

v↑u

ϕ (v)− ϕ (u)

v − u
(28.9)

exist and satisfy −∞ < ϕ′− (u) ≤ ϕ′+ (u) < ∞. Furthermore ϕ′± are both in-
creasing functions and further satisfy,

−∞ < ϕ′− (u) ≤ ϕ′+ (u) ≤ ϕ′− (v) <∞ ∀ a < u < v < b. (28.10)

Proof. Let F = Fϕ be as defined in Eq. (28.3). As F is increasing in each
of its arguments the following monotone limits exist;

ϕ′+ (u) = F (u, u+) = lim
v↓u

F (u, v) <∞ and

ϕ′− (u) = F (u−, u) := lim
v↑u

F (v, u) > −∞.

The monotonicity properties of F also implies

ϕ′− (u) = F (u−, u) ≤ F (u, u+) = ϕ′+ (u)

and
ϕ′+ (u) = F (u, u+) ≤ F (v−, v) = ϕ′− (v) .

Theorem 28.7. If ϕ : (a, b)→ R is a convex function then ϕ is continuous. In
fact, if a < α < β < b and K := max

{∣∣ϕ′+ (α)
∣∣ , ∣∣ϕ′− (β)

∣∣} , then

|ϕ (y)− ϕ (x)| ≤ K |y − x| for all x, y ∈ [α, β] , (28.11)

i.e. is ϕ is Lipschitz continuous on [α, β] . Furthermore, for any m ∈[
ϕ′− (u) , ϕ′+ (u)

]
,

ϕ (x) ≥ ϕ (u) +m (x− u) for all a < x < b. (28.12)

Proof. For a < α ≤ x < y ≤ β < b, we have

ϕ′+ (α) ≤ ϕ′+ (x) = F (x, x+) ≤ F (x, y) ≤ F (y−, y) = ϕ′− (y) ≤ ϕ′− (β) .
(28.13)

From this inequality we may easily conclude that |F (x, y)| ≤ K which is equiv-
alent to Eq. (28.11).

Now let m ∈
[
ϕ′− (u) , ϕ′+ (u)

]
. If x ∈ (a, u) the monotonicity properties of

F implies
ϕ (u)− ϕ (x)

u− x
= F (x, u) ≤ F (u−, u) ≤ m

and solving this equality for ϕ (x) (keep in mind u − x < 0) gives Eq. (28.12)
for a < x < u. Similarly, for x ∈ (u, b) we have

m ≤ F (u, u+) ≤ F (u, x) =
ϕ (x)− ϕ (u)

x− u

which again gives Eq. (28.12).

Exercise 28.1. Suppose that ϕ is a C1 – function on (a, b) such that ϕ′ (x) is
non-decreasing. Give a direct proof of Eq. (28.12) with m = ϕ′ (u) .

Theorem 28.8 (Jensen’s Inequality). Suppose that (X,M, µ) is a proba-
bility space, i.e. µ is a positive measure and µ(X) = 1. Also suppose that
f ∈ L1(µ), f : X → (a, b), and ϕ : (a, b)→ R is a convex function. Then

ϕ

(∫
X

fdµ

)
≤
∫
X

ϕ(f)dµ

where if ϕ ◦ f /∈ L1(µ), then ϕ ◦ f is integrable in the extended sense and∫
X
ϕ(f)dµ =∞.

Proof. Let u =
∫
X
fdµ ∈ (a, b) and let m ∈ R be such that ϕ(s)− ϕ(u) ≥

m(s − u) for all s ∈ (a, b). Then integrating the inequality, ϕ(f) − ϕ(u) ≥
m(f − u), implies that

0 ≤
∫
X

ϕ(f)dµ− ϕ(u) =

∫
X

ϕ(f)dµ− ϕ(

∫
X

fdµ).

Moreover, if ϕ(f) is not integrable, then ϕ(f) ≥ ϕ(u) +m(f − u) which shows
that negative part of ϕ(f) is integrable. Therefore,

∫
X
ϕ(f)dµ =∞ in this case.

Example 28.9. The convex functions in Example 28.2 lead to the following in-
equalities,

exp

(∫
X

fdµ

)
≤
∫
X

efdµ, (28.14)∫
X

log(|f |)dµ ≤ log

(∫
X

|f | dµ
)
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and for p ≥ 1, ∣∣∣∣∫
X

fdµ

∣∣∣∣p ≤ (∫
X

|f | dµ
)p
≤
∫
X

|f |p dµ.

The last equation may also easily be derived using Hölder’s inequality. As a
special case of the first equation, we get another proof of Lemma 4.28. Indeed,
more generally, suppose pi, si > 0 for i = 1, 2, . . . , n and

∑n
i=1

1
pi

= 1, then

s1 . . . sn = e
∑n

i=1
ln si = e

∑n

i=1

1
pi

ln s
pi
i ≤

n∑
i=1

1

pi
eln s

pi
i =

n∑
i=1

spii
pi

(28.15)

where the inequality follows from Eq. (28.14) with X = {1, 2, . . . , n} , µ =∑n
i=1

1
pi
δi and f (i) := ln spii . Of course Eq. (28.15) may be proved directly

using the convexity of the exponential function.

Exercise 28.2. Use the inequality in Eq. (28.15) to give another proof of Corol-
lary 16.3.

The next theorem may safely be skipped on your first reading.

Theorem 28.10 (Continuity properties of ϕ±). Suppose that ϕ : (a, b) →
R is convex and x, y ∈ (a, b) with x < y and ϕ′± be the left and right derivatives
of ϕ as in Theorem 28.7. Then;

1. The function ϕ′+ is right continuous and ϕ′− is left continuous.
2. The set of discontinuity points for ϕ′+ and for ϕ′− are the same as the set of

points of non-differentiability of ϕ. Moreover this set is at most countable.

Proof.

1. For a < c < x < y < b, we have ϕ′+ (x) = F (x, x+) ≤ F (x, y) and
letting x ↓ c (using the continuity of F which follows from item 4.) we learn
ϕ′+ (c+) ≤ F (c, y) . We may now let y ↓ c to conclude ϕ′+ (c+) ≤ ϕ′+ (c) .
Since ϕ′+ (c) ≤ ϕ′+ (c+) , it follows that ϕ′+ (c) = ϕ′+ (c+) and hence that
ϕ′+ is right continuous.
Similarly, for a < x < y < c < b, we have ϕ′− (y) ≥ F (x, y) and letting
y ↑ c (using the continuity of F ) we learn ϕ′− (c−) ≥ F (x, c) . Now let
x ↑ c to conclude ϕ′− (c−) ≥ ϕ′− (c) . Since ϕ′− (c) ≥ ϕ′− (c−) , it follows that
ϕ′− (c) = ϕ′− (c−) , i.e. ϕ′− is left continuous.

2. Since ϕ± are increasing functions, they have at most countably many
points of discontinuity. Letting x ↑ y in Eq. (28.10), using the left con-
tinuity of ϕ′−, shows ϕ′− (y) = ϕ′+ (y−) . Hence if ϕ′− is continuous at y,
ϕ′− (y) = ϕ′− (y+) = ϕ′+ (y) and ϕ is differentiable at y. Conversely if ϕ is
differentiable at y, then

ϕ′+ (y−) = ϕ′− (y) = ϕ′ (y) = ϕ′+ (y)

which shows ϕ′+ is continuous at y. Thus we have shown that set of disconti-
nuity points of ϕ′+ is the same as the set of points of non-differentiability of
ϕ. That the discontinuity set of ϕ′− is the same as the non-differentiability
set of ϕ is proved similarly.

28.2 Interpolation of Lp – spaces

The Lp(µ) – norm controls two types of behaviors of f, namely the “behavior
at infinity” and the behavior of “local singularities.” So in particular, if f blows
up at a point x0 ∈ X, then locally near x0 it is harder for f to be in Lp(µ)
as p increases. On the other hand a function f ∈ Lp(µ) is allowed to decay
at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect Lp(µ) ⊂ Lq(µ) or Lq(µ) ⊂ Lp(µ). However,
there are two notable exceptions. (1) If µ(X) <∞, then there is no behavior at
infinity to worry about and Lq(µ) ⊂ Lp(µ) for all q ≥ p as is shown in Corollary
28.11 below. (2) If µ is counting measure, i.e. µ(A) = #(A), then all functions
in Lp(µ) for any p can not blow up on a set of positive measure, so there are no
local singularities. In this case Lp(µ) ⊂ Lq(µ) for all q ≥ p, see Corollary 28.15
below.

Corollary 28.11. If µ(X) < ∞ and 0 < p < q ≤ ∞, then Lq(µ) ⊂ Lp(µ), the
inclusion map is bounded and in fact

‖f‖p ≤ [µ(X)](
1
p−

1
q ) ‖f‖q .

Proof. Take a ∈ [1,∞] such that

1

p
=

1

a
+

1

q
, i.e. a =

pq

q − p
.

Then by Corollary 16.3,

‖f‖p = ‖f · 1‖p ≤ ‖f‖q · ‖1‖a = µ(X)1/a‖f‖q = µ(X)( 1
p−

1
q )‖f‖q.

The reader may easily check this final formula is correct even when q = ∞
provided we interpret 1/p− 1/∞ to be 1/p.

Proposition 28.12. Suppose that 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈
(p0, p1) be defined by

1

pλ
=

1− λ
p0

+
λ

p1
(28.16)
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with the interpretation that λ/p1 = 0 if p1 = ∞.2 Then Lpλ ⊂ Lp0 + Lp1 , i.e.
every function f ∈ Lpλ may be written as f = g + h with g ∈ Lp0 and h ∈ Lp1 .
For 1 ≤ p0 < p1 ≤ ∞ and f ∈ Lp0 + Lp1 let

‖f‖ := inf
{
‖g‖p0 + ‖h‖p1 : f = g + h

}
.

Then (Lp0 + Lp1 , ‖·‖) is a Banach space and the inclusion map from Lpλ to
Lp0 + Lp1 is bounded; in fact ‖f‖ ≤ 2 ‖f‖pλ for all f ∈ Lpλ .

Proof. Let M > 0, then the local singularities of f are contained in the
set E := {|f | > M} and the behavior of f at “infinity” is solely determined by
f on Ec. Hence let g = f1E and h = f1Ec so that f = g + h. By our earlier
discussion we expect that g ∈ Lp0 and h ∈ Lp1 and this is the case since,

‖g‖p0p0 =

∫
|f |p0 1|f |>M = Mp0

∫ ∣∣∣∣ fM
∣∣∣∣p0 1|f |>M

≤Mp0

∫ ∣∣∣∣ fM
∣∣∣∣pλ 1|f |>M ≤Mp0−pλ ‖f‖pλpλ <∞

and

‖h‖p1p1 =
∥∥f1|f |≤M

∥∥p1
p1

=

∫
|f |p1 1|f |≤M = Mp1

∫ ∣∣∣∣ fM
∣∣∣∣p1 1|f |≤M

≤Mp1

∫ ∣∣∣∣ fM
∣∣∣∣pλ 1|f |≤M ≤Mp1−pλ ‖f‖pλpλ <∞.

Moreover this shows

‖f‖ ≤M1−pλ/p0 ‖f‖pλ/p0pλ
+M1−pλ/p1 ‖f‖pλ/p1pλ

.

Taking M = α ‖f‖pλ with α > 0 implies

‖f‖ ≤
(
α1−pλ/p0 + α1−pλ/p1

)
‖f‖pλ

and then taking α = 1 shows ‖f‖ ≤ 2 ‖f‖pλ . The proof that (Lp0 + Lp1 , ‖·‖) is
a Banach space is left as Exercise 28.7 to the reader.

Corollary 28.13 (Interpolation of Lp – norms). Suppose that 0 < p0 <
p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) be defined as in Eq. (28.16), then Lp0 ∩
Lp1 ⊂ Lpλ and

2 A little algebra shows that λ may be computed in terms of p0, pλ and p1 by

λ =
p0
pλ
· p1 − pλ
p1 − p0

.

‖f‖pλ ≤ ‖f‖
1−λ
p0
‖f‖λp1 . (28.17)

Further assume 1 ≤ p0 < pλ < p1 ≤ ∞, and for f ∈ Lp0 ∩ Lp1 let

‖f‖ := ‖f‖p0 + ‖f‖p1 .

Then (Lp0 ∩Lp1 , ‖·‖) is a Banach space and the inclusion map of Lp0 ∩Lp1 into
Lpλ is bounded, in fact

‖f‖pλ ≤ max
(
λ−1, (1− λ)−1

) (
‖f‖p0 + ‖f‖p1

)
. (28.18)

The heuristic explanation of this corollary is that if f ∈ Lp0 ∩ Lp1 , then f
has local singularities no worse than an Lp1 function and behavior at infinity
no worse than an Lp0 function. Hence f ∈ Lpλ for any pλ between p0 and p1.

Proof. Let λ be determined as above, a = p0/(1 − λ) and b = p1/λ, then
by Corollary 16.3,

‖f‖pλ =
∥∥∥|f |λ |f |1−λ∥∥∥

pλ
≤
∥∥∥|f |1−λ∥∥∥

a

∥∥∥|f |λ∥∥∥
b

= ‖f‖1−λp0
‖f‖λp1 .

which proves Eq. (28.17).
It is easily checked that ‖·‖ is a norm on Lp0 ∩ Lp1 . To show this space is

complete, suppose that {fn} ⊂ Lp0 ∩Lp1 is a ‖·‖ – Cauchy sequence. Then {fn}
is both Lp0 and Lp1 – Cauchy. Hence there exist f ∈ Lp0 and g ∈ Lp1 such
that limn→∞ ‖f − fn‖p0 = 0 and limn→∞ ‖g − fn‖pλ = 0. By Chebyshev’s
inequality (Lemma 16.18) fn → f and fn → g in measure and therefore by
Theorem 16.20, f = g a.e. It now is clear that limn→∞ ‖f − fn‖ = 0. The
estimate in Eq. (28.18) is left as Exercise 28.6 to the reader.

Exercise 28.3. Show that Eq. (28.17) may be alternatively stated by saying
that ϕ (p) := ln ‖f‖pp is a convex function of p.

Exercise 28.4. Give a second proof of that Eq. (28.17) may be alternatively
stated by saying that ϕ (p) := ln ‖f‖pp is a convex function of p by explicitly
computing ϕ′′ (p) when f is nice. Then pass to the limit to get the general case
from these consideration.

Remark 28.14. Combining Proposition 28.12 and Corollary 28.13 gives

Lp0 ∩ Lp1 ⊂ Lpλ ⊂ Lp0 + Lp1

for 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) as in Eq. (28.16).

Corollary 28.15. Suppose now that µ is counting measure on X. Then Lp(µ) ⊂
Lq(µ) for all 0 < p < q ≤ ∞ and ‖f‖q ≤ ‖f‖p .
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Proof. Suppose that 0 < p < q =∞, then

‖f‖p∞ = sup {|f(x)|p : x ∈ X} ≤
∑
x∈X
|f(x)|p = ‖f‖pp ,

i.e. ‖f‖∞ ≤ ‖f‖p for all 0 < p <∞. For 0 < p ≤ q ≤ ∞, apply Corollary 28.13

with p0 = p and p1 =∞ and take q = pλ ( 1
q = 1−λ

p or λ = 1− p/q) to find

‖f‖q ≤ ‖f‖
p/q
p ‖f‖1−p/q∞ ≤ ‖f‖p/qp ‖f‖1−p/qp = ‖f‖p .

28.2.1 Summary:

1. Since µ(|f | > ε) ≤ ε−p ‖f‖pp , Lp – convergence implies L0 – convergence.

2. L0 – convergence implies almost everywhere convergence for some subse-
quence.

3. If µ(X) < ∞ then almost everywhere convergence implies uniform con-
vergence off certain sets of small measure and in particular we have L0 –
convergence.

4. If µ(X) < ∞, then Lq ⊂ Lp for all p ≤ q and Lq – convergence implies Lp

– convergence.
5. Lp0 ∩ Lp1 ⊂ Lq ⊂ Lp0 + Lp1 for any q ∈ (p0, p1).
6. If p ≤ q, then `p ⊂ `q and‖f‖q ≤ ‖f‖p .

28.3 Exercises

Exercise 28.5. Let f ∈ Lp∩L∞ for some p <∞. Show ‖f‖∞ = limq→∞ ‖f‖q .
If we further assume µ(X) <∞, show ‖f‖∞ = limq→∞ ‖f‖q for all measurable
functions f : X → C. In particular, f ∈ L∞ iff limq→∞ ‖f‖q < ∞. Hints:
Use Corollary 28.13 on interpolation of Lp – norms to show lim supq→∞ ‖f‖q ≤
‖f‖∞ and to show lim infq→∞ ‖f‖q ≥ ‖f‖∞ , let M < ‖f‖∞ and make use of
Chebyshev’s inequality.

Exercise 28.6 (Part of Folland 6.3 on p. 186.). Prove Eq. (28.18) in Corol-
lary 28.13. In detail suppose that 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1)
be defined by

1

pλ
=

1− λ
p0

+
λ

p1

as in Eq. (28.16). Show

‖f‖pλ ≤ max (λ, (1− λ))
(
‖f‖p0 + ‖f‖p1

)
.

Hint: Use the inequality

st ≤ sa

a
+
tb

b
,

where a, b ≥ 1 with a−1 + b−1 = 1 are chosen appropriately,(see Lemma 4.28
for Eq. (28.15)) applied to the right side of the interpolation inequality;

‖f‖pλ ≤ ‖f‖
1−λ
p0
‖f‖λp1 . (28.19)

Exercise 28.7. Complete the proof of Proposition 28.12 by showing (Lp +
Lr, ‖·‖) is a Banach space. Hint: you may find using Theorem 14.18 (on the
sum – criteria for completeness) is helpful here.

Exercise 28.8 (Folland 6.5 on p. 186.). Suppose 0 < p < q ≤ ∞. Then
Lp * Lq iff X contains sets of arbitrarily small positive measure. Also Lq * Lp

iff X contains sets of of arbitrarily large finite measure.

Exercise 28.9. Folland 6.27 on p. 196. Hint: Theorem 29.4.
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The Dual of Lp

29.1 Converse of Hölder’s Inequality

Exercise 29.1. Let (X,B, µ) be a measure space and g ∈ L1 (µ) . Show that∣∣∫
X
gdµ

∣∣ = ‖g‖1 iff there exists z ∈ C with |z| = 1 such that g = |g| z a.e.
(This may be equivalently stated as sgn(g (x)) := g (x) / |g (x)| is constant for
µ -a.e. on the set where g 6= 0.) In particular for f ∈ Lp (µ) and g ∈ Lq (µ) with
q = p/ (p− 1) , we have,∣∣∣∣∫
X

fgdµ

∣∣∣∣ =

∫
X

|fg| dµ ⇐⇒ sgn(f (x)) = sgn(g (x)) for µ–a.e. x ∈ {fg 6= 0} .

Throughout this section we assume (X,M, µ) is a σ – finite measure space,
q ∈ [1,∞] and p ∈ [1,∞] are conjugate exponents, i.e. p−1 + q−1 = 1. For
g ∈ Lq, let ϕg ∈ (Lp)∗ be given by

ϕg(f) =

∫
gf dµ =: 〈g, f〉. (29.1)

By Hölder’s inequality

|ϕg(f)| ≤
∫
|gf |dµ ≤ ‖g‖q‖f‖p (29.2)

which implies that

‖ϕg‖(Lp)∗ := sup{|ϕg(f)| : ‖f‖p = 1} ≤ ‖g‖q. (29.3)

Proposition 29.1 (Converse of Hölder’s Inequality). Let (X,M, µ) be a
σ – finite measure space and 1 ≤ p ≤ ∞ as above. For all g ∈ Lq,

‖g‖q = ‖ϕg‖(Lp)∗ := sup
{
|ϕg(f)| : ‖f‖p = 1

}
(29.4)

and for any measurable function g : X → C,

‖g‖q = sup

{∫
X

|g| fdµ : ‖f‖p = 1 and f ≥ 0

}
. (29.5)

(In Theorem 29.6 below we will see that every element of (Lp)
∗

is of the form
ϕg for some g ∈ Lq.) Moreover, Eq. (29.4) holds for arbitrary measure spaces
if 1 < p <∞ and g ∈ Lq (µ) .

Proof. We begin by proving Eq. (29.4). Assume first that q <∞ so p > 1.
Then

|ϕg(f)| =
∣∣∣∣∫ gf dµ

∣∣∣∣ ≤ ∫ |gf | dµ ≤ ‖g‖q‖f‖p
and equality occurs in the first inequality when sgn(gf) is constant a.e. while
equality in the second occurs, by Theorem 16.1, when |f |p = c|g|q for some
constant c > 0. So let f := sgn(g)|g|q/p which for p =∞ is to be interpreted as

f = sgn(g), i.e. |g|q/∞ ≡ 1. When p =∞,

|ϕg(f)| =
∫
X

g sgn(g)dµ = ‖g‖L1(µ) = ‖g‖1 ‖f‖∞

which shows that ‖ϕg‖(L∞)∗ ≥ ‖g‖1. If p <∞, then

‖f‖pp =

∫
|f |p =

∫
|g|q = ‖g‖qq

while

ϕg(f) =

∫
gfdµ =

∫
|g||g|q/pdµ =

∫
|g|qdµ = ‖g‖qq.

Hence
|ϕg(f)|
‖f‖p

=
‖g‖qq
‖g‖q/pq

= ‖g‖q(1−
1
p )

q = ‖g‖q.

This shows that ||ϕg‖ ≥ ‖g‖q which combined with Eq. (29.3) implies Eq.
(29.4).

The last case to consider is p = 1 and q = ∞. Let M := ‖g‖∞ and choose
Xn ∈ M such that Xn ↑ X as n → ∞ and µ(Xn) < ∞ for all n. For any
ε > 0, µ(|g| ≥M − ε) > 0 and Xn ∩ {|g| ≥M − ε} ↑ {|g| ≥M − ε}. Therefore,
µ(Xn ∩ {|g| ≥M − ε}) > 0 for n sufficiently large. Let

f = sgn(g)1Xn∩{|g|≥M−ε},

then
‖f‖1 = µ(Xn ∩ {|g| ≥M − ε}) ∈ (0,∞)

and
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|ϕg(f)| =
∫
Xn∩{|g|≥M−ε}

sgn(g)gdµ =

∫
Xn∩{|g|≥M−ε}

|g|dµ

≥ (M − ε)µ(Xn ∩ {|g| ≥M − ε}) = (M − ε)‖f‖1.

Since ε > 0 is arbitrary, it follows from this equation that ‖ϕg‖(L1)∗ ≥ M =
‖g‖∞.

Now for the proof of Eq. (29.5). The key new point is that we no longer are
assuming that g ∈ Lq. Let M(g) denote the right member in Eq. (29.5) and
set gn := 1Xn∩{|g|≤n}g. Then |gn| ↑ |g| as n → ∞ and it is clear that M(gn)
is increasing in n. Therefore using Lemma 4.10 and the monotone convergence
theorem,

lim
n→∞

M(gn) = sup
n
M(gn) = sup

n
sup

{∫
X

|gn| fdµ : ‖f‖p = 1 and f ≥ 0

}
= sup

{
sup
n

∫
X

|gn| fdµ : ‖f‖p = 1 and f ≥ 0

}
= sup

{
lim
n→∞

∫
X

|gn| fdµ : ‖f‖p = 1 and f ≥ 0

}
= sup

{∫
X

|g| fdµ : ‖f‖p = 1 and f ≥ 0

}
= M(g).

Since gn ∈ Lq for all n and M(gn) = ‖ϕgn‖(Lp)∗ (as you should verify), it

follows from Eq. (29.4) that M(gn) = ‖gn‖q . When q < ∞ (by the monotone
convergence theorem) and when q =∞ (directly from the definitions) one learns
that limn→∞ ‖gn‖q = ‖g‖q . Combining this fact with limn→∞M(gn) = M(g)
just proved shows M(g) = ‖g‖q .

As an application we can derive a sweeping generalization of Minkowski’s
inequality. (See Reed and Simon, Vol II. Appendix IX.4 for a more thorough
discussion of complex interpolation theory.)

Theorem 29.2 (Minkowski’s Inequality for Integrals). Let (X,M, µ) and
(Y,N , ν) be σ – finite measure spaces and 1 ≤ p ≤ ∞. If f is a M ⊗ N
measurable function, then y → ‖f(·, y)‖Lp(µ) is measurable and

1. if f is a positive M⊗N measurable function, then∥∥∥∥∫
Y

f(·, y)dν(y)

∥∥∥∥
Lp(µ)

≤
∫
Y

‖f(·, y)‖Lp(µ)dν(y). (29.6)

2. If f : X × Y → C is a M ⊗ N measurable function and∫
Y
‖f(·, y)‖Lp(µ)dν(y) <∞ then

a) for µ – a.e. x, f(x, ·) ∈ L1(ν),
b) the µ –a.e. defined function, x→

∫
Y
f(x, y)dν(y), is in Lp(µ) and

c) the bound in Eq. (29.6) holds.

Proof. For p ∈ [1,∞], let Fp(y) := ‖f(·, y)‖Lp(µ). If p ∈ [1,∞)

Fp(y) = ‖f(·, y)‖Lp(µ) =

(∫
X

|f(x, y)|p dµ(x)

)1/p

is a measurable function on Y by Fubini’s theorem. To see that F∞ is measur-
able, let Xn ∈M such that Xn ↑ X and µ(Xn) <∞ for all n. Then by Exercise
28.5,

F∞(y) = lim
n→∞

lim
p→∞

‖f(·, y)1Xn‖Lp(µ)

which shows that F∞ is (Y,N ) – measurable as well. This shows that integral
on the right side of Eq. (29.6) is well defined.

Now suppose that f ≥ 0, q = p/(p − 1)and g ∈ Lq(µ) such that g ≥ 0 and
‖g‖Lq(µ) = 1. Then by Tonelli’s theorem and Hölder’s inequality,∫

X

[∫
Y

f(x, y)dν(y)

]
g(x)dµ(x) =

∫
Y

dν(y)

∫
X

dµ(x)f(x, y)g(x)

≤ ‖g‖Lq(µ)

∫
Y

‖f(·, y)‖Lp(µ)dν(y)

=

∫
Y

‖f(·, y)‖Lp(µ)dν(y).

Therefore by the converse to Hölder’s inequality (Proposition 29.1),∥∥∥∥∫
Y

f(·, y)dν(y)

∥∥∥∥
Lp(µ)

= sup

{∫
X

[∫
Y

f(x, y)dν(y)

]
g(x)dµ(x) : ‖g‖Lq(µ) = 1 and g ≥ 0

}
≤
∫
Y

‖f(·, y)‖Lp(µ)dν(y)

proving Eq. (29.6) in this case.
Now let f : X × Y → C be as in item 2) of the theorem. Applying the first

part of the theorem to |f | shows∫
Y

|f(x, y)| dν(y) <∞ for µ– a.e. x,

i.e. f(x, ·) ∈ L1(ν) for the µ –a.e. x. Since
∣∣∫
Y
f(x, y)dν(y)

∣∣ ≤ ∫
Y
|f(x, y)| dν(y)

it follows by item 1) that
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Y

f(·, y)dν(y)

∥∥∥∥
Lp(µ)

≤
∥∥∥∥∫

Y

|f(·, y)| dν(y)

∥∥∥∥
Lp(µ)

≤
∫
Y

‖f(·, y)‖Lp(µ) dν(y).

Hence the function, x ∈ X →
∫
Y
f(x, y)dν(y), is in Lp(µ) and the bound in Eq.

(29.6) holds.

Example 29.3. Suppose p ∈ [1,∞], u ∈ L1 (Rn,m) and v ∈ Lp (Rn,m) , then
u ∗ v(x) :=

∫
Rn u (y) v (x− y) dy exists for almost every x, u ∗ v ∈ Lp and

‖u ∗ v‖p ≤ ‖u‖1 ‖v‖p .

Take f (x, y) := u (y) v (x− y) and observe that∫
Rn
‖f (·, y)‖p dy =

∫
Rn
|u (y)| ‖v‖p dy = ‖u‖1 · ‖v‖p <∞.

The result now follows from Theorem 29.2.

Here is another application of Minkowski’s inequality for integrals. In this
theorem we will be using the convention that x−1/∞ := 1.

Theorem 29.4 (Theorem 6.20 in Folland). Suppose that k : (0,∞) ×
(0,∞) → C is a measurable function such that k is homogenous of degree −1,
i.e. k(λx, λy) = λ−1k(x, y) for all λ > 0. If, for some p ∈ [1,∞],

Cp :=

∫ ∞
0

|k(x, 1)|x−1/pdx <∞

then for f ∈ Lp((0,∞),m), k(x, ·)f(·) ∈ L1((0,∞),m) for m – a.e. x. Moreover,
the m – a.e. defined function

(Kf)(x) =

∫ ∞
0

k(x, y)f(y)dy (29.7)

is in Lp((0,∞),m) and

‖Kf‖Lp((0,∞),m) ≤ Cp‖f‖Lp((0,∞),m).

Proof. By the homogeneity of k, k(x, y) = x−1k(1, yx ). Using this relation
and making the change of variables, y = zx, gives∫ ∞

0

|k(x, y)f(y)| dy =

∫ ∞
0

x−1
∣∣∣k(1,

y

x
)f(y)

∣∣∣ dy
=

∫ ∞
0

x−1 |k(1, z)f(xz)|xdz =

∫ ∞
0

|k(1, z)f(xz)| dz.

Since

‖f(· z)‖pLp((0,∞),m) =

∫ ∞
0

|f(yz)|pdy =

∫ ∞
0

|f(x)|p dx

z
,

‖f(· z)‖Lp((0,∞),m) = z−1/p‖f‖Lp((0,∞),m).

Using Minkowski’s inequality for integrals then shows∥∥∥∥∫ ∞
0

|k(·, y)f(y)| dy
∥∥∥∥
Lp((0,∞),m)

≤
∫ ∞

0

|k(1, z)| ‖f(·z)‖Lp((0,∞),m) dz

= ‖f‖Lp((0,∞),m)

∫ ∞
0

|k(1, z)| z−1/pdz

= Cp‖f‖Lp((0,∞),m) <∞.

This shows that Kf in Eq. (29.7) is well defined from m – a.e. x. The proof is
finished by observing

‖Kf‖Lp((0,∞),m) ≤
∥∥∥∥∫ ∞

0

|k(·, y)f(y)| dy
∥∥∥∥
Lp((0,∞),m)

≤ Cp‖f‖Lp((0,∞),m)

for all f ∈ Lp((0,∞),m).
The following theorem is a strengthening of Proposition 29.1. It may be

skipped on the first reading.

Theorem 29.5 (Converse of Hölder’s Inequality II). Assume that
(X,M, µ) is a σ – finite measure space, q, p ∈ [1,∞] are conjugate exponents
and let Sf denote the set of simple functions ϕ on X such that µ (ϕ 6= 0) <∞.
Let g : X → C be a measurable function such that ϕg ∈ L1 (µ) for all ϕ ∈ Sf ,1
and define

Mq(g) := sup

{∣∣∣∣∫
X

ϕgdµ

∣∣∣∣ : ϕ ∈ Sf with ‖ϕ‖p = 1

}
. (29.8)

If Mq(g) <∞ then g ∈ Lq (µ) and Mq(g) = ‖g‖q .

Proof. Let Xn ∈ M be sets such that µ(Xn) < ∞ and Xn ↑ X as n ↑ ∞.
Suppose that q = 1 and hence p = ∞. Choose simple functions ϕn on X
such that |ϕn| ≤ 1 and sgn(g) = limn→∞ ϕn in the pointwise sense. Then
1Xmϕn ∈ Sf and therefore ∣∣∣∣∫

X

1Xmϕngdµ

∣∣∣∣ ≤Mq(g)

for all m,n. By assumption 1Xmg ∈ L1(µ) and therefore by the dominated
convergence theorem we may let n→∞ in this equation to find

1 This is equivalent to requiring 1Ag ∈ L1(µ) for all A ∈M such that µ(A) <∞.
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X

1Xm |g| dµ ≤Mq(g)

for all m. The monotone convergence theorem then implies that∫
X

|g| dµ = lim
m→∞

∫
X

1Xm |g| dµ ≤Mq(g)

showing g ∈ L1(µ) and ‖g‖1 ≤ Mq(g). Since Holder’s inequality implies that
Mq(g) ≤ ‖g‖1 , we have proved the theorem in case q = 1. For q > 1, we will
begin by assuming that g ∈ Lq(µ). Since p ∈ [1,∞) we know that Sf is a dense
subspace of Lp(µ) and therefore, using ϕg is continuous on Lp(µ),

Mq(g) = sup

{∣∣∣∣∫
X

ϕgdµ

∣∣∣∣ : ϕ ∈ Lp(µ) with ‖ϕ‖p = 1

}
= ‖g‖q

where the last equality follows by Proposition 29.1. So it remains to show that
if ϕg ∈ L1 for all ϕ ∈ Sf and Mq(g) < ∞ then g ∈ Lq(µ). For n ∈ N, let
gn := 1Xn1|g|≤ng. Then gn ∈ Lq(µ), in fact ‖gn‖q ≤ nµ(Xn)1/q <∞. So by the
previous paragraph, ‖gn‖q = Mq(gn) and hence

‖gn‖q = sup

{∣∣∣∣∫
X

ϕ1Xn1|g|≤ngdµ

∣∣∣∣ : ϕ ∈ Lp(µ) with ‖ϕ‖p = 1

}
≤Mq(g)

∥∥ϕ1Xn1|g|≤n
∥∥
p
≤Mq(g) · 1 = Mq(g)

wherein the second to last inequality we have made use of the definition of
Mq(g) and the fact that ϕ1Xn1|g|≤n ∈ Sf . If q ∈ (1,∞), an application of the
monotone convergence theorem (or Fatou’s Lemma) along with the continuity
of the norm, ‖·‖p , implies

‖g‖q = lim
n→∞

‖gn‖q ≤Mq(g) <∞.

If q = ∞, then ‖gn‖∞ ≤ Mq(g) < ∞ for all n implies |gn| ≤ Mq(g) a.e. which
then implies that |g| ≤ Mq(g) a.e. since |g| = limn→∞ |gn| . That is g ∈ L∞(µ)
and ‖g‖∞ ≤M∞(g).

Theorem 29.6 (Dual of Lp – spaces). Let (X,M, µ) be a measure space
and suppose that p, q ∈ (1,∞) are conjugate exponents. Then the map g ∈
Lq → ϕg ∈ (Lp)∗ (where ϕg = 〈·, g〉µ was defined in Eq. 29.1) is an isometric
isomorphism of Banach spaces. We summarize this by writing (Lp)∗ = Lq for
all 1 < p < ∞. Moreover, if we further assume that (X,M, µ) is a σ – finite
measure space, then the above results hold for p = 1 (q =∞) as well. (The
result is in general false for p = ∞ as can be seen from Theorem 21.20 and
Lemma 21.21 below.)

Proof. The only results of this theorem which are not covered in Proposition
29.1 is the surjectivity of the map g ∈ Lq → ϕg ∈ (Lp)∗. When p = 2, this
surjectivity is a direct consequence of the Riesz Theorem 18.17.

Case 1. We will begin the proof under the extra assumption that µ(X) <∞
in which cased bounded functions are in Lp(µ) for all p. So let ϕ ∈ (Lp)

∗
. We

need to find g ∈ Lq(µ) such that ϕ = ϕg. When p ∈ [1, 2], L2(µ) ⊂ Lp(µ)
so that we may restrict ϕ to L2(µ) and again the result follows fairly easily
from the Riesz Theorem, see Exercise 24.4 below. To handle general p ∈ [1,∞),
define ν(A) := ϕ(1A). If A =

∐∞
n=1An with An ∈M, then

‖1A −
N∑
n=1

1An‖Lp = ‖1∪∞
n=N+1

An‖Lp =
[
µ(∪∞n=N+1An)

] 1
p → 0 as N →∞.

Therefore

ν(A) = ϕ(1A) =

∞∑
1

ϕ(1An) =

∞∑
1

ν(An)

showing ν is a complex measure.2 For A ∈M, let |ν| (A) be the “total variation”
of A defined by

|ν| (A) := sup {|ϕ(f1A)| : |f | ≤ 1} (29.9)

and notice that

|ν(A)| ≤ |ν| (A) ≤ ‖ϕ‖(Lp)∗ µ(A)1/p for all A ∈M. (29.10)

You are asked to show in Exercise 24.5 that |ν| is a measure on (X,M). (This
can also be deduced from Lemma 24.28 and Proposition 24.32 below.) By Eq.
(29.10) |ν| � µ, by Theorem 24.6 dν = hd |ν| for some |h| ≤ 1 and by Theorem
24.13 d |ν| = ρdµ for some ρ ∈ L1(µ). Hence, letting g = ρh ∈ L1(µ), dν = gdµ
or equivalently

ϕ(1A) =

∫
X

g1Adµ ∀ A ∈M. (29.11)

By linearity this equation implies

ϕ(f) =

∫
X

gfdµ (29.12)

for all simple functions f on X. Replacing f by 1{|g|≤M}f in Eq. (29.12) shows

ϕ(f1{|g|≤M}) =

∫
X

1{|g|≤M}gfdµ

holds for all simple functions f and then by continuity for all f ∈ Lp(µ). By
the converse to Holder’s inequality, (Proposition 29.1) we learn that

2 It is at this point that the proof breaks down when p =∞.
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∥∥
q

= sup
‖f‖p=1

∣∣ϕ(f1{|g|≤M})
∣∣

≤ sup
‖f‖p=1

‖ϕ‖(Lp)∗
∥∥f1{|g|≤M}

∥∥
p
≤ ‖ϕ‖(Lp)∗ .

Using the monotone convergence theorem we may let M →∞ in the previous
equation to learn ‖g‖q ≤ ‖ϕ‖(Lp)∗ .With this result, Eq. (29.12) extends by

continuity to hold for all f ∈ Lp(µ) and hence we have shown that ϕ = ϕg.
Case 2. Now suppose that µ is σ – finite and Xn ∈ M are sets such that

µ(Xn) < ∞ and Xn ↑ X as n → ∞. We will identify f ∈ Lp(Xn, µ) with
f1Xn ∈ Lp(X,µ) and this way we may consider Lp(Xn, µ) as a subspace of
Lp(X,µ) for all n and p ∈ [1,∞]. By Case 1. there exists gn ∈ Lq(Xn, µ) such
that

ϕ(f) =

∫
Xn

gnfdµ for all f ∈ Lp(Xn, µ)

and

‖gn‖q = sup
{
|ϕ(f)| : f ∈ Lp(Xn, µ) and ‖f‖Lp(Xn,µ) = 1

}
≤ ‖ϕ‖[Lp(µ)]∗ .

It is easy to see that gn = gm a.e. onXn∩Xm for allm,n so that g := limn→∞ gn
exists µ – a.e. By the above inequality and Fatou’s lemma, ‖g‖q ≤ ‖ϕ‖[Lp(µ)]∗ <
∞ and since ϕ(f) =

∫
Xn

gfdµ for all f ∈ Lp(Xn, µ) and n and ∪∞n=1L
p(Xn, µ)

is dense in Lp(X,µ) it follows by continuity that ϕ(f) =
∫
X
gfdµ for all f ∈

Lp(X,µ), i.e. ϕ = ϕg.
Case 3. Now suppose that (X,M, µ) is a general measure space and 1 <

p < ∞. Given E ∈ M we will identify f ∈ Lp(E,µ) with its f1E (i.e. its
extension to 0 on X \ E) inside of Lp(X,µ). If µ is σ – finite on E ∈ M, then
by Case 2. there exists gE ∈ Lq (E,µ) such that

ϕ (f) =

∫
E

fgEdµ for all f ∈ Lp(E,µ).

Moreover we have

‖gE‖Lq(µ) =
∥∥ϕ|Lp(E,µ)

∥∥
[Lp(µ)]∗

≤ ‖ϕ‖[Lp(µ)]∗ .

Let us observe that if µ is σ – finite on F and E ⊂ F then gF = gE a.e. on E
and ‖gE‖Lq(µ) ≤ ‖gF ‖Lq(µ) . So if we let

M := sup
{
‖gE‖Lq(µ) : µ is σ – finite on E

}
we can find En ∈M on which µ is σ – finite so that M = limn→∞ ‖gEn‖Lq(µ) .
Moreover by the previous comments if we now let E := ∪∞n=1En on which µ is
σ – finite, then ‖gE‖Lq(µ) ≥ ‖gEn‖Lq(µ) for all n and therefore M = ‖gE‖Lq(µ) .

If f ∈ Lp (µ) , the set F = {|f | > 0} is σ – finite and therefore E ∪ F is σ –
finite. Since gE = gE∪F a.e. on E (using q <∞ as p > 1)

Mq ≥ ‖gE∪F ‖qLq(µ) = ‖gE‖qLq(µ) +
∥∥gE∪F 1[E∪F ]\E

∥∥q
Lq(µ)

= Mq +
∥∥gE∪F 1[E∪F ]\E

∥∥q
Lq(µ)

from which it follows that gEUF = 0 a.e. on [E ∪ F ] \E. Therefore gE∪F = gE
a.e. and so

ϕ (f) =

∫
E∪F

gE∪F fdµ =

∫
E

gEfdµ =

∫
X

gEfdµ.

As f ∈ Lp (µ) was arbitrary, this shows that ϕ = ϕgE to complete the proof.
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30

Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L0 – convergent sequence is Lp – convergent.

Notation 30.1 For f ∈ L1(µ) and E ∈M, let

µ(f : E) :=

∫
E

fdµ.

and more generally if A,B ∈M let

µ(f : A,B) :=

∫
A∩B

fdµ.

Lemma 30.2. Suppose g ∈ L1(µ), then for any ε > 0 there exist a δ > 0 such
that µ(|g| : E) < ε whenever µ(E) < δ.

Proof. If the Lemma is false, there would exist ε > 0 and sets En such that
µ(En) → 0 while µ(|g| : En) ≥ ε for all n. Since |1Eng| ≤ |g| ∈ L1 and for any
δ ∈ (0, 1), µ(1En |g| > δ) ≤ µ(En) → 0 as n → ∞, the dominated convergence
theorem of Corollary 16.21 implies limn→∞ µ(|g| : En) = 0. This contradicts
µ(|g| : En) ≥ ε for all n and the proof is complete.

Suppose that {fn}∞n=1 is a sequence of measurable functions which converge
in L1(µ) to a function f. Then for E ∈M and n ∈ N,

|µ(fn : E)| ≤ |µ(f − fn : E)|+ |µ(f : E)| ≤ ‖f − fn‖1 + |µ(f : E)| .

Let εN := supn>N ‖f − fn‖1 , then εN ↓ 0 as N ↑ ∞ and

sup
n
|µ(fn : E)| ≤ sup

n≤N
|µ(fn : E)|∨(εN + |µ(f : E)|) ≤ εN+µ (gN : E) , (30.1)

where gN = |f |+
∑N
n=1 |fn| ∈ L1. From Lemma 30.2 and Eq. (30.1) one easily

concludes,

∀ ε > 0 ∃ δ > 0 3 sup
n
|µ(fn : E)| < ε when µ(E) < δ. (30.2)

Definition 30.3. Functions {fn}∞n=1 ⊂ L1(µ) satisfying Eq. (30.2) are said to
be uniformly integrable.

Remark 30.4. Let {fn} be real functions satisfying Eq. (30.2), E be a set where
µ(E) < δ and En = E ∩ {fn ≥ 0} . Then µ(En) < δ so that µ(f+

n : E) = µ(fn :
En) < ε and similarly µ(f−n : E) < ε. Therefore if Eq. (30.2) holds then

sup
n
µ(|fn| : E) < 2ε when µ(E) < δ. (30.3)

Similar arguments work for the complex case by looking at the real and imagi-
nary parts of fn. Therefore {fn}∞n=1 ⊂ L1(µ) is uniformly integrable iff

∀ ε > 0 ∃ δ > 0 3 sup
n
µ(|fn| : E) < ε when µ(E) < δ. (30.4)

Lemma 30.5. Assume that µ(X) < ∞, then {fn} is uniformly bounded in
L1(µ) (i.e. K = supn ‖fn‖1 <∞) and {fn} is uniformly integrable iff

lim
M→∞

sup
n
µ(|fn| : |fn| ≥M) = 0. (30.5)

Proof. Since {fn} is uniformly bounded in L1(µ), µ(|fn| ≥M) ≤ K/M. So
if (30.4) holds and ε > 0 is given, we may choose M sufficiently large so that
µ(|fn| ≥M) < δ(ε) for all n and therefore,

sup
n
µ(|fn| : |fn| ≥M) ≤ ε.

Since ε is arbitrary, we concluded that Eq. (30.5) must hold. Conversely, suppose
that Eq. (30.5) holds, then automatically K = supn µ(|fn|) <∞ because

µ(|fn|) = µ(|fn| : |fn| ≥M) + µ(|fn| : |fn| < M)

≤ sup
n
µ(|fn| : |fn| ≥M) +Mµ(X) <∞.

Moreover,

µ(|fn| : E) = µ(|fn| : |fn| ≥M,E) + µ(|fn| : |fn| < M,E)

≤ sup
n
µ(|fn| : |fn| ≥M) +Mµ(E).

So given ε > 0 choose M so large that supn µ(|fn| : |fn| ≥ M) < ε/2 and then
take δ = ε/ (2M) .
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Lemma 30.6 (Saks’ Lemma [4, Lemma 7 on p. 308]). Suppose that
(Ω,B, P ) is a probability space such that P has no atoms. (Recall that A ∈ B is
an atom if P (A) > 0 and for any B ⊂ A with B ∈ B we have either P (B) = 0
or P (B) = P (A) .) Then for every δ > 0 there exists a partition {E`}n`=1 of Ω
with µ(E`) < δ. (For related results along this line also see [3, 5, 8, 11] to name
a few.)

Proof. For any A ∈ B let

β (A) := sup {P (B) : B ⊂ A and P (B) ≤ δ} .

We begin by showing if µ (A) > 0 then β (A) > 0. As there are no atoms there
exists A1 ⊂ A such that 0 < P (A1) < P (A) . Similarly there exists A2 ⊂ A\A1

such that 0 < P (A2) < P (A \A1) and continuing inductively we find {An}∞n=1

disjoint subsets of A such that An ⊂ A \ (A1 ∪ · · · ∪An−1) and

0 < P (An) < P (A \ (A1 ∪ · · · ∪An−1)) .

As
∑∞
n=1An ⊂ A we must have

∑∞
n=1 P (An) ≤ P (A) < ∞ and therefore

limn→∞ P (An) = 0. Thus for sufficiently large n we have 0 < P (An) ≤ δ and
therefore β (A) ≥ P (An) > 0.

Now to construct the desired partition. Choose A1 ⊂ Ω such that δ ≥
P (A1) ≥ 1

2β (Ω) . If P (Ω \A1) > 0 we may then choose A2 ⊂ Ω \A1 such that
δ ≥ P (A2) ≥ 1

2β (Ω \ [A1 ∪A2]) . We may continue on this way inductively to
find disjoint subsets {Ak}nk=1 of Ω

δ ≥ P (Ak) ≥ 1

2
β (Ω \ [A1 ∪ · · · ∪Ak−1])

with either P (Ω \ [A1 ∪ · · · ∪An−1]) > 0. If it happens that
P (Ω \ [A1 ∪ · · · ∪An]) = 0 it is easy to see we are done. So we may as-
sume that process can be carried on indefinitely. We then let F := Ω \ ∪∞k=1Ak
and observe that

β (F ) ≤ β (Ω \ [A1 ∪ · · · ∪An−1]) ≤ 2P (An)→ 0 as n→∞

as
∞∑
n=1

P (An) ≤ P (Ω) <∞.

But by the first paragraph this implies that P (F ) = 0. Hence there exists
n < ∞ such that P

(
Ω \ ∪n−1

k=1Ak
)
≤ δ. We may then define Ek = Ak for

1 ≤ k ≤ n−1 and En = Ω \∪n−1
k=1Ak in order to construct the desired partition.

Corollary 30.7. Suppose that (Ω,B, P ) is a probability space such that P has
no atoms. Then for any α ∈ (0, 1) there exists A ∈ B with P (A) = α.

Proof. We may assume the α ∈ (0, 1/2) . By dividing Ω into a partition

{El}Nl=1 with P (El) ≤ α/2 we may let A1 := ∪kl=1El with k chosen so that
P (A1) ≤ α but

α < P (A1 ∪ Ek+1) ≤ 3

2
α.

Notice that α/2 ≤ P (A1) ≤ α. Apply this procedure to Ω \A1 in order to find
A2 ⊃ A1 such that α/4 ≤ P (A2) ≤ α. Continue this way inductively to find
An ↑ A such that P (An) ↑ α = P (A) . (BRUCE: clean this proof up.)

Remark 30.8. It is not in general true that if {fn} ⊂ L1(µ) is uniformly inte-
grable then supn µ(|fn|) <∞. For example take X = {∗} and µ({∗}) = 1. Let
fn(∗) = n. Since for δ < 1 a set E ⊂ X such that µ(E) < δ is in fact the empty
set, we see that Eq. (30.3) holds in this example. However, for finite measure
spaces with out “atoms”, for every δ > 0 we may find a finite partition of X by
sets {E`}k`=1 with µ(E`) < δ. Then if Eq. (30.3) holds with 2ε = 1, then

µ(|fn|) =

k∑
`=1

µ(|fn| : E`) ≤ k

showing that µ(|fn|) ≤ k for all n.

The following Lemmas gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly bounded and uniformly inte-
grable.

Lemma 30.9. Suppose that µ(X) < ∞, and Λ ⊂ L0(X) is a collection of
functions.

1. If there exists a non decreasing function ϕ : R+ → R+ such that
limx→∞ ϕ(x)/x =∞ and

K := sup
f∈Λ

µ(ϕ(|f |)) <∞ (30.6)

then
lim
M→∞

sup
f∈Λ

µ
(
|f | 1|f |≥M

)
= 0. (30.7)

2. Conversely if Eq. (30.7) holds, there exists a non-decreasing continuous
function ϕ : R+ → R+ such that ϕ(0) = 0, limx→∞ ϕ(x)/x = ∞ and Eq.
(30.6) is valid.

Proof. 1. Let ϕ be as in item 1. above and set εM := supx≥M
x

ϕ(x) → 0 as

M →∞ by assumption. Then for f ∈ Λ
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µ(|f | : |f | ≥M) = µ(
|f |

ϕ (|f |)
ϕ (|f |) : |f | ≥M) ≤ εMµ(ϕ (|f |) : |f | ≥M)

≤ εMµ(ϕ (|f |)) ≤ KεM
and hence

lim
M→∞

sup
f∈Λ

µ
(
|f | 1|f |≥M

)
≤ lim
M→∞

KεM = 0.

2. By assumption, εM := supf∈Λ µ
(
|f | 1|f |≥M

)
→ 0 as M →∞. Therefore we

may choose Mn ↑ ∞ such that

∞∑
n=0

(n+ 1) εMn
<∞

where by convention M0 := 0. Now define ϕ so that ϕ(0) = 0 and

ϕ′(x) =

∞∑
n=0

(n+ 1) 1(Mn,Mn+1](x),

i.e.

ϕ(x) =

∫ x

0

ϕ′(y)dy =

∞∑
n=0

(n+ 1) (x ∧Mn+1 − x ∧Mn) .

By construction ϕ is continuous, ϕ(0) = 0, ϕ′(x) is increasing (so ϕ is convex)
and ϕ′(x) ≥ (n+ 1) for x ≥Mn. In particular

ϕ(x)

x
≥ ϕ(Mn) + (n+ 1)x

x
≥ n+ 1 for x ≥Mn

from which we conclude limx→∞ ϕ(x)/x =∞. We also have ϕ′(x) ≤ (n+ 1) on
[0,Mn+1] and therefore

ϕ(x) ≤ (n+ 1)x for x ≤Mn+1.

So for f ∈ Λ,

µ (ϕ(|f |)) =

∞∑
n=0

µ
(
ϕ(|f |)1(Mn,Mn+1](|f |)

)
≤
∞∑
n=0

(n+ 1)µ
(
|f | 1(Mn,Mn+1](|f |)

)
≤
∞∑
n=0

(n+ 1)µ
(
|f | 1|f |≥Mn

)
≤
∞∑
n=0

(n+ 1) εMn

and hence

sup
f∈Λ

µ (ϕ(|f |)) ≤
∞∑
n=0

(n+ 1) εMn <∞.

Theorem 30.10 (Vitali Convergence Theorem). (Folland 6.15) Suppose
that 1 ≤ p <∞. A sequence {fn} ⊂ Lp is Cauchy iff

1. {fn} is L0 – Cauchy,
2. {|fn|p} – is uniformly integrable.
3. For all ε > 0, there exists a set E ∈ M such that µ(E) < ∞ and∫

Ec
|fn|p dµ < ε for all n. (This condition is vacuous when µ(X) <∞.)

Proof. (=⇒) Suppose {fn} ⊂ Lp is Cauchy. Then (1) {fn} is L0 –
Cauchy by Lemma 16.18. (2) By completeness of Lp, there exists f ∈ Lp such
that ‖fn − f‖p → 0 as n→∞. By the mean value theorem,

||f |p − |fn|p| ≤ p(max(|f | , |fn|))p−1 ||f | − |fn|| ≤ p(|f |+ |fn|)p−1 ||f | − |fn||

and therefore by Hölder’s inequality,∫
||f |p − |fn|p| dµ ≤ p

∫
(|f |+ |fn|)p−1 ||f | − |fn|| dµ ≤ p

∫
(|f |+ |fn|)p−1|f − fn|dµ

≤ p‖f − fn‖p‖(|f |+ |fn|)p−1‖q = p‖ |f |+ |fn|‖p/qp ‖f − fn‖p
≤ p(‖f‖p + ‖fn‖p)p/q‖f − fn‖p

where q := p/(p − 1). This shows that
∫
||f |p − |fn|p| dµ → 0 as n → ∞.1 By

the remarks prior to Definition 30.3, {|fn|p} is uniformly integrable. To verify
(3), for M > 0 and n ∈ N let EM = {|f | ≥ M} and EM (n) = {|fn| ≥ M}.
Then µ(EM ) ≤ 1

Mp ‖f ||pp <∞ and by the dominated convergence theorem,∫
Ec
M

|f |p dµ =

∫
|f |p 1|f |<Mdµ→ 0 as M → 0.

Moreover,∥∥fn1Ec
M

∥∥
p
≤
∥∥f1Ec

M

∥∥
p

+
∥∥(fn − f)1Ec

M

∥∥
p
≤
∥∥f1Ec

M

∥∥
p

+ ‖fn − f‖p . (30.8)

So given ε > 0, choose N sufficiently large such that for all n ≥ N, ‖f −
fn‖pp < ε. Then choose M sufficiently small such that

∫
Ec
M
|f |p dµ < ε and∫

Ec
M

(n)
|f |p dµ < ε for all n = 1, 2, . . . , N − 1. Letting E := EM ∪EM (1)∪ · · · ∪

EM (N − 1), we have

µ(E) <∞,
∫
Ec
|fn|p dµ < ε for n ≤ N − 1

1 Here is an alternative proof. Let hn ≡ ||fn|p − |f |p| ≤ |fn|p + |f |p =: gn ∈ L1 and

g ≡ 2|f |p. Then gn
µ→ g, hn

µ→ 0 and
∫
gn →

∫
g. Therefore by the dominated

convergence theorem in Corollary 16.21, lim
n→∞

∫
hn dµ = 0.
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and by Eq. (30.8)∫
Ec
|fn|p dµ < (ε1/p + ε1/p)p ≤ 2pε for n ≥ N.

Therefore we have found E ∈M such that µ(E) <∞ and

sup
n

∫
Ec
|fn|p dµ ≤ 2pε

which verifies (3) since ε > 0 was arbitrary.
(⇐=) Now suppose{fn} ⊂ Lp satisfies conditions (1) - (3). Let ε > 0, E be

as in (3) and
Amn := {x ∈ E|fm(x)− fn(x)| ≥ ε}.

Then
‖(fn − fm) 1Ec‖p ≤ ‖fn1Ec‖p + ‖fm 1Ec‖p < 2ε1/p

and

‖fn − fm‖p = ‖(fn − fm)1Ec‖p + ‖(fn − fm)1E\Amn‖p
+ ‖(fn − fm)1Amn‖p
≤ ‖(fn − fm)1E\Amn‖p + ‖(fn − fm)1Amn‖p + 2ε1/p. (30.9)

Using properties (1) and (3) and 1E∩{|fm−fn|<ε}|fm − fn|p ≤ εp1E ∈ L1, the
dominated convergence theorem in Corollary 16.21 implies

‖(fn − fm) 1E\Amn‖
p
p =

∫
1E∩{|fm−fn|<ε} |fm − fn|

p −→
m,n→∞

0.

which combined with Eq. (30.9) implies

lim sup
m,n→∞

‖fn − fm‖p ≤ lim sup
m,n→∞

‖(fn − fm)1Amn‖p + 2ε1/p.

Finally
‖(fn − fm)1Amn‖p ≤ ‖fn1Amn‖p + ‖fm 1Amn‖p ≤ 2δ(ε)

where
δ(ε) := sup

n
sup{ ‖fn 1E‖p : E ∈M 3 µ(E) ≤ ε}

By property (2), δ(ε)→ 0 as ε→ 0. Therefore

lim sup
m,n→∞

‖fn − fm‖p ≤ 2ε1/p + 0 + 2δ(ε)→ 0 as ε ↓ 0

and therefore {fn} is Lp-Cauchy.
Here is another version of Vitali’s Convergence Theorem.

Theorem 30.11 (Vitali Convergence Theorem). (This is problem 9 on p.
133 in Rudin.) Assume that µ(X) < ∞, {fn} is uniformly integrable, fn → f
a.e. and |f | <∞ a.e., then f ∈ L1(µ) and fn → f in L1(µ).

Proof. Let ε > 0 be given and choose δ > 0 as in the Eq. (30.3). Now use
Egoroff’s Theorem 16.22 to choose a set Ec where {fn} converges uniformly on
Ec and µ(E) < δ. By uniform convergence on Ec, there is an integer N < ∞
such that |fn − fm| ≤ 1 on Ec for all m,n ≥ N. Letting m→∞, we learn that

|fN − f | ≤ 1 on Ec.

Therefore |f | ≤ |fN |+ 1 on Ec and hence

µ(|f |) = µ(|f | : Ec) + µ(|f | : E)

≤ µ(|fN |) + µ(X) + µ(|f | : E).

Now by Fatou’s lemma,

µ(|f | : E) ≤ lim inf
n→∞

µ(|fn| : E) ≤ 2ε <∞

by Eq. (30.3). This shows that f ∈ L1. Finally

µ(|f − fn|) = µ(|f − fn| : Ec) + µ(|f − fn| : E)

≤ µ(|f − fn| : Ec) + µ(|f |+ |fn| : E)

≤ µ(|f − fn| : Ec) + 4ε

and so by the Dominated convergence theorem we learn that

lim sup
n→∞

µ(|f − fn|) ≤ 4ε.

Since ε > 0 was arbitrary this completes the proof.

Theorem 30.12 (Vitali again). Suppose that fn → f in µ measure and Eq.
(30.5) holds, then fn → f in L1.

Proof. This could of course be proved using 30.11 after passing to subse-
quences to get {fn} to converge a.s. However I wish to give another proof. First
off, by Fatou’s lemma, f ∈ L1(µ). Now let

ϕK(x) = x1|x|≤K +K1|x|>K .

then ϕK(fn)
µ→ ϕK(f) because |ϕK(f)− ϕK(fn)| ≤ |f − fn| and since

|f − fn| ≤ |f − ϕK(f)|+ |ϕK(f)− ϕK(fn)|+ |ϕK(fn)− fn|
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we have that

µ|f − fn| ≤ µ |f − ϕK(f)|+ µ|ϕK(f)− ϕK(fn)|+ µ |ϕK(fn)− fn|
= µ(|f | : |f | ≥ K) + µ|ϕK(f)− ϕK(fn)|+ µ(|fn| : |fn| ≥ K).

Therefore by the dominated convergence theorem

lim sup
n→∞

µ|f − fn| ≤ µ(|f | : |f | ≥ K) + lim sup
n→∞

µ(|fn| : |fn| ≥ K).

This last expression goes to zero as K →∞ by uniform integrability.

30.1 Exercises

Exercise 30.1. Show `∞ (N) is not separable. Hint: find an uncountable set
Λ ⊂ `∞ (N) as in the hypothesis of Exercise 13.6.

Exercise 30.2. Let (X,B, µ) be a σ – finite measure space. Suppose that 1 ≤
p <∞ and to each ϕ ∈ L∞ (µ) show Mϕ ∈ L (Lp (µ)) be defined by Mϕf = ϕf
for all f ∈ Lp (µ) – so Mϕ is multiplication by ϕ. Show ‖Mϕ‖op = ‖ϕ‖∞ , i.e.

L∞ (µ) 3 ϕ→ Mϕ ∈ L (Lp (µ)) is an isometry.

Exercise 30.3. Let m be Lebesgue measure on ([0,∞),B,m) .

1. Show L∞ (([0,∞),B,m)) is not separable. Hint:you might produce an isom-
etry from `∞ (N) into L∞ ([0,∞),m) and then use Exercise 30.1. find an
uncountable set Λ ⊂ L∞ (R,m) as in the hypothesis of Exercise 13.6.

2. Use this result along with Exercise 30.2 in order to show
L (Lp (([0,∞),B,m))) is not separable for all 1 ≤ p <∞.

Definition 30.13. The essential range of f, essran(f), consists of those λ ∈
C such that µ(|f − λ| < ε) > 0 for all ε > 0.

Definition 30.14. Let (X, τ) be a topological space and ν be a measure on
BX = σ(τ). The support of ν, supp(ν), consists of those x ∈ X such that
ν(V ) > 0 for all open neighborhoods, V, of x.

Exercise 30.4. Let (X, τ) be a second countable topological space and ν be a
measure on BX – the Borel σ – algebra on X. Show

1. supp(ν) is a closed set. (This is actually true on all topological spaces.)
2. ν(X \ supp(ν)) = 0 and use this to conclude that W := X \ supp(ν) is the

largest open set in X such that ν(W ) = 0. Hint: let U ⊂ τ be a countable
base for the topology τ. Show that W may be written as a union of elements
from V ∈ V with the property that µ(V ) = 0.

Exercise 30.5. Prove the following facts about essran(f).

1. Let ν = f∗µ := µ ◦ f−1 – a Borel measure on C. Show essran(f) = supp(ν).
2. essran(f) is a closed set and f(x) ∈ essran(f) for almost every x, i.e. µ(f /∈

essran(f)) = 0.
3. If F ⊂ C is a closed set such that f(x) ∈ F for almost every x then

essran(f) ⊂ F. So essran(f) is the smallest closed set F such that f(x) ∈ F
for almost every x.

4. ‖f‖∞ = sup {|λ| : λ ∈ essran(f)} .

Exercise 30.6. By making the change of variables, u = lnx, prove the following
facts: ∫ 1/2

0

x−a |lnx|b dx <∞⇐⇒ a < 1 or a = 1 and b < −1∫ ∞
2

x−a |lnx|b dx <∞⇐⇒ a > 1 or a = 1 and b < −1∫ 1

0

x−a |lnx|b dx <∞⇐⇒ a < 1 and b > −1∫ ∞
1

x−a |lnx|b dx <∞⇐⇒ a > 1 and b > −1.

Suppose 0 < p0 < p1 ≤ ∞ and m is Lebesgue measure on (0,∞) . Use the above
results to manufacture a function f on (0,∞) such that f ∈ Lp ((0,∞) ,m) iff
(a) p ∈ (p0, p1) , (b) p ∈ [p0, p1] and (c) p = p0.

Exercise 30.7. Folland 6.9 on p. 186.

Exercise 30.8. Folland 6.10 on p. 186. Use the strong form of Theorem ??.

Exercise 30.9. Folland 2.32 on p. 63. Suppose that µ (X) <∞. If f and g are
complex-valued measurable functions on X, define

ρ (f, g) :=

∫
X

|f − g|
1 + |f − g|

dµ.

Show ρ is a metric on the space of measurable functions provided we agree to
identify functions that are equal a.e.. Also show that ρ (fn, f) → 0 as n → ∞
iff fn

µ→ f as n→∞.

Exercise 30.10. Folland 2.38 on p. 63.

Exercise 30.11. Suppose A is an index set, {fα}α∈A and {gα}α∈A are two
collections of random variables. If {gα}α∈A is uniformly integrable and |fα| ≤
|gα| for all α ∈ A, show {fα}α∈A is uniformly integrable as well.
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31

Approximation Theorems and Convolutions

31.1 Density Theorems

BRUCE: there is a lot of redundancy of this Section with Section 16.2. In this
section, (X,M, µ) will be a measure space A will be a subalgebra of M.

Notation 31.1 Suppose (X,M, µ) is a measure space and A ⊂ M is a sub-
algebra of M. Let S(A) denote those simple functions ϕ : X → C such that
ϕ−1({λ}) ∈ A for all λ ∈ C and let Sf (A, µ) denote those ϕ ∈ S(A) such that
µ(ϕ 6= 0) <∞.

Remark 31.2. For ϕ ∈ Sf (A, µ) and p ∈ [1,∞), |ϕ|p =
∑
z 6=0 |z|p1{ϕ=z} and

hence ∫
|ϕ|p dµ =

∑
z 6=0

|z|pµ(ϕ = z) <∞ (31.1)

so that Sf (A, µ) ⊂ Lp(µ). Conversely if ϕ ∈ S(A)∩Lp(µ), then from Eq. (31.1)
it follows that µ (ϕ = z) <∞ for all z 6= 0 and therefore µ (ϕ 6= 0) <∞. Hence
we have shown, for any 1 ≤ p <∞,

Sf (A, µ) = S(A) ∩ Lp(µ).

Lemma 31.3 (Simple Functions are Dense). The simple functions,
Sf (M, µ), form a dense subspace of Lp(µ) for all 1 ≤ p <∞.

Proof. Let {ϕn}∞n=1 be the simple functions in the approximation Theorem
??. Since |ϕn| ≤ |f | for all n, ϕn ∈ Sf (M, µ) and

|f − ϕn|p ≤ (|f |+ |ϕn|)p ≤ 2p |f |p ∈ L1 (µ) .

Therefore, by the dominated convergence theorem,

lim
n→∞

∫
|f − ϕn|pdµ =

∫
lim
n→∞

|f − ϕn|pdµ = 0.

The goal of this section is to find a number of other dense subspaces of
Lp (µ) for p ∈ [1,∞). The next theorem is the key result of this section.

Theorem 31.4 (Density Theorem). Let p ∈ [1,∞), (X,M, µ) be a measure
space and M be an algebra of bounded F – valued (F = R or F = C) measurable
functions such that

1. M ⊂ Lp (µ,F) and σ (M) =M.
2. There exists ψk ∈M such that ψk → 1 boundedly.
3. If F = C we further assume that M is closed under complex conjugation.

Then to every function f ∈ Lp (µ,F) , there exist ϕn ∈ M such that
limn→∞ ‖f − ϕn‖Lp(µ) = 0, i.e. M is dense in Lp (µ,F) .

Proof. Fix k ∈ N for the moment and let H denote those bounded M –
measurable functions, f : X → F, for which there exists {ϕn}∞n=1 ⊂ M such
that limn→∞ ‖ψkf − ϕn‖Lp(µ) = 0. A routine check shows H is a subspace of

`∞ (M,F) such that 1 ∈ H, M ⊂ H and H is closed under complex conjugation
if F = C. Moreover, H is closed under bounded convergence. To see this suppose
fn ∈ H and fn → f boundedly. Then, by the dominated convergence theorem,
limn→∞ ‖ψk (f − fn)‖Lp(µ) = 0.1 (Take the dominating function to be g =

[2C |ψk|]p where C is a constant bounding all of the {|fn|}∞n=1 .) We may now
choose ϕn ∈M such that ‖ϕn − ψkfn‖Lp(µ) ≤

1
n then

lim sup
n→∞

‖ψkf − ϕn‖Lp(µ) ≤ lim sup
n→∞

‖ψk (f − fn)‖Lp(µ)

+ lim sup
n→∞

‖ψkfn − ϕn‖Lp(µ) = 0 (31.2)

which implies f ∈ H. An application of Dynkin’s Multiplicative System The-
orem 11.28 if F = R or Theorem 11.29 if F = C now shows H contains all
bounded measurable functions on X.

Let f ∈ Lp (µ) be given. The dominated convergence theorem implies
limk→∞

∥∥ψk1{|f |≤k}f − f
∥∥
Lp(µ)

= 0. (Take the dominating function to be

g = [2C |f |]p where C is a bound on all of the |ψk| .) Using this and what
we have just proved, there exists ϕk ∈M such that∥∥ψk1{|f |≤k}f − ϕk

∥∥
Lp(µ)

≤ 1

k
.

1 It is at this point that the proof would break down if p =∞.
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The same line of reasoning used in Eq. (31.2) now implies
limk→∞ ‖f − ϕk‖Lp(µ) = 0.

Definition 31.5. Let (X, τ) be a topological space and µ be a measure on BX =
σ (τ) . A locally integrable function is a Borel measurable function f : X → C
such that

∫
K
|f | dµ <∞ for all compact subsets K ⊂ X. We will write L1

loc(µ)
for the space of locally integrable functions. More generally we say f ∈ Lploc (µ)
iff ‖1Kf‖Lp(µ) <∞ for all compact subsets K ⊂ X.

Definition 31.6. Let (X, τ) be a topological space. A K-finite measure on
X is Borel measure µ such that µ (K) <∞ for all compact subsets K ⊂ X.

Lebesgue measure on R is an example of a K-finite measure while counting
measure on R is not a K-finite measure.

Example 31.7. Suppose that µ is a K-finite measure on BRd . An application of
Theorem 31.4 shows Cc (R,C) is dense in Lp(Rd,BRd , µ;C). To apply Theorem
31.4, let M := Cc

(
Rd,C

)
and ψk (x) := ψ (x/k) where ψ ∈ Cc

(
Rd,C

)
with

ψ (x) = 1 in a neighborhood of 0. The proof is completed by showing σ (M) =
σ
(
Cc
(
Rd,C

))
= BRd , which follows directly from Lemma 11.34.

We may also give a more down to earth proof as follows. Let x0 ∈ Rd, R > 0,

A := B (x0, R)
c

and fn (x) := d
1/n
A (x) . Then fn ∈ M and fn → 1B(x0,R) as

n→∞ which shows 1B(x0,R) is σ (M)-measurable, i.e. B (x0, R) ∈ σ (M) . Since

x0 ∈ Rd and R > 0 were arbitrary, σ (M) = BRd .

More generally we have the following result.

Theorem 31.8. Let (X, τ) be a second countable locally compact Hausdorff
space and µ : BX → [0,∞] be a K-finite measure. Then Cc(X) (the space of
continuous functions with compact support) is dense in Lp(µ) for all p ∈ [1,∞).
(See also Proposition 38.17 below.)

Proof. Let M := Cc(X) and use Item 3. of Lemma 11.34 to find functions
ψk ∈ M such that ψk → 1 to boundedly as k → ∞. The result now follows
from an application of Theorem 31.4 along with the aid of item 4. of Lemma
11.34.

Exercise 31.1. Show that BC (R,C) is not dense in L∞(R,BR,m;C). Hence
the hypothesis that p <∞ in Theorem 31.4 can not be removed.

Corollary 31.9. Suppose X ⊂ Rn is an open set, BX is the Borel σ – algebra
on X and µ be a K-finite measure on (X,BX) . Then Cc(X) is dense in Lp(µ)
for all p ∈ [1,∞).

Corollary 31.10. Suppose that X is a compact subset of Rn and µ is a finite
measure on (X,BX), then polynomials are dense in Lp(X,µ) for all 1 ≤ p <∞.

Proof. Consider X to be a metric space with usual metric induced from Rn.
Then X is a locally compact separable metric space and therefore Cc(X,C) =
C(X,C) is dense in Lp(µ) for all p ∈ [1,∞). Since, by the dominated con-
vergence theorem, uniform convergence implies Lp(µ) – convergence, it follows
from the Weierstrass approximation theorem (see Theorem 32.39 and Corollary
32.41 or Theorem 37.31 and Corollary 37.32) that polynomials are also dense
in Lp(µ).

Lemma 31.11. Let (X, τ) be a second countable locally compact Hausdorff
space and µ : BX → [0,∞] be a K-finite measure on X. If h ∈ L1

loc(µ) is a
function such that ∫

X

fhdµ = 0 for all f ∈ Cc(X) (31.3)

then h(x) = 0 for µ – a.e. x. (See also Corollary 38.20 below.)

Proof. Let dν(x) = |h(x)| dx, then ν is a K-finite measure on X and hence
Cc(X) is dense in L1(ν) by Theorem 31.8. Notice that∫

X

f · sgn(h)dν =

∫
X

fhdµ = 0 for all f ∈ Cc(X). (31.4)

Let {Kk}∞k=1 be a sequence of compact sets such that Kk ↑ X as in Lemma

36.5. Then 1Kksgn(h) ∈ L1(ν) and therefore there exists fm ∈ Cc(X) such that

fm → 1Kksgn(h) in L1(ν). So by Eq. (31.4),

ν(Kk) =

∫
X

1Kkdν = lim
m→∞

∫
X

fmsgn(h)dν = 0.

Since Kk ↑ X as k →∞, 0 = ν(X) =
∫
X
|h| dµ, i.e. h(x) = 0 for µ – a.e. x.

As an application of Lemma 31.11 and Example 37.34, we will show that
the Laplace transform is injective.

Theorem 31.12 (Injectivity of the Laplace Transform). For f ∈
L1([0,∞), dx), the Laplace transform of f is defined by

Lf(λ) :=

∫ ∞
0

e−λxf(x)dx for all λ > 0.

If Lf(λ) := 0 then f(x) = 0 for m -a.e. x.

Proof. Suppose that f ∈ L1([0,∞), dx) such that Lf(λ) ≡ 0. Let g ∈
C0([0,∞),R) and ε > 0 be given. By Example 37.34 we may choose {aλ}λ>0

such that # ({λ > 0 : aλ 6= 0}) <∞ and

|g(x)−
∑
λ>0

aλe
−λx| < ε for all x ≥ 0.
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Then ∣∣∣∣∫ ∞
0

g(x)f(x)dx

∣∣∣∣ =

∣∣∣∣∣
∫ ∞

0

(
g(x)−

∑
λ>0

aλe
−λx

)
f(x)dx

∣∣∣∣∣
≤
∫ ∞

0

∣∣∣∣∣g(x)−
∑
λ>0

aλe
−λx

∣∣∣∣∣ |f(x)| dx ≤ ε‖f‖1.

Since ε > 0 is arbitrary, it follows that
∫∞

0
g(x)f(x)dx = 0 for all g ∈

C0([0,∞),R). The proof is finished by an application of Lemma 31.11.
Here is another variant of Theorem 31.8.

Theorem 31.13. Let (X, d) be a metric space, τd be the topology on X gener-
ated by d and BX = σ(τd) be the Borel σ – algebra. Suppose µ : BX → [0,∞]
is a measure which is σ – finite on τd and let BCf (X) denote the bounded
continuous functions on X such that µ(f 6= 0) <∞. Then BCf (X) is a dense
subspace of Lp(µ) for any p ∈ [1,∞).

Proof. Let Xk ∈ τd be open sets such that Xk ↑ X and µ(Xk) <∞ and let

ψk(x) = min(1, k · dXc
k
(x)) = ϕk(dXc

k
(x)),

see Figure 31.1 below. It is easily verified that M := BCf (X) is an algebra,

Fig. 31.1. The plot of φn for n = 1, 2, and 4. Notice that φn → 1(0,∞).

ψk ∈M for all k and ψk → 1 boundedly as k →∞.Given V ∈ τ and k, n ∈ N,let

fk,n (x) := min(1, n · d(V ∩Xk)c(x)).

Then {fk,n 6= 0} = V ∩Xk so fk,n ∈ BCf (X). Moreover

lim
k→∞

lim
n→∞

fk,n = lim
k→∞

1V ∩Xk = 1V

which shows V ∈ σ (M) and hence σ (M) = BX . The proof is now completed
by an application of Theorem 31.4.

Exercise 31.2. (BRUCE: Should drop this exercise.) Suppose that (X, d) is
a metric space, µ is a measure on BX := σ(τd) which is finite on bounded
measurable subsets of X. Show BCb(X,R), defined in Eq. (??), is dense in
Lp (µ) . Hints: let ψk be as defined in Eq. (??) which incidentally may be used
to show σ (BCb(X,R)) = σ (BC(X,R)) . Then use the argument in the proof
of Corollary 11.32 to show σ (BC(X,R)) = BX .

Theorem 31.14. Suppose p ∈ [1,∞), A ⊂ M is an algebra such that σ(A) =
M and µ is σ – finite on A. Then Sf (A, µ) is dense in Lp(µ). (See also Remark
?? below.)

Proof. Let M := Sf (A, µ). By assumption there exists Xk ∈ A such that
µ(Xk) <∞ andXk ↑ X as k →∞. If A ∈ A, thenXk∩A ∈ A and µ (Xk ∩A) <
∞ so that 1Xk∩A ∈ M. Therefore 1A = limk→∞ 1Xk∩A is σ (M) – measurable
for every A ∈ A. So we have shown that A ⊂ σ (M) ⊂ M and therefore
M = σ (A) ⊂ σ (M) ⊂ M, i.e. σ (M) = M. The theorem now follows from
Theorem 31.4 after observing ψk := 1Xk ∈M and ψk → 1 boundedly.

Theorem 31.15 (Separability of Lp – Spaces). Suppose, p ∈ [1,∞), A ⊂
M is a countable algebra such that σ(A) =M and µ is σ – finite on A. Then
Lp(µ) is separable and

D = {
∑

aj1Aj : aj ∈ Q+ iQ, Aj ∈ A with µ(Aj) <∞}

is a countable dense subset.

Proof. It is left to reader to check D is dense in Sf (A, µ) relative to the
Lp(µ) – norm. The proof is then complete since Sf (A, µ) is a dense subspace of
Lp (µ) by Theorem 31.14.

Example 31.16. The collection of functions of the form ϕ =
∑n
k=1 ck1(ak,bk]

with ak, bk ∈ Q and ak < bk are dense in Lp(R,BR,m;C) and Lp(R,BR,m;C)
is separable for any p ∈ [1,∞). To prove this simply apply Theorem 31.14 with
A being the algebra on R generated by the half open intervals (a, b] ∩ R with
a < b and a, b ∈ Q∪{±∞} , i.e. A consists of sets of the form

∐n
k=1(ak, bk]∩R,

where ak, bk ∈ Q∪{±∞} .

Exercise 31.3. Show L∞([0, 1] ,BR,m;C) is not separable. Hint: Suppose Γ is
a dense subset of L∞([0, 1] ,BR,m;C) and for λ ∈ (0, 1) , let fλ (x) := 1[0,λ] (x) .
For each λ ∈ (0, 1) , choose gλ ∈ Γ such that ‖fλ − gλ‖∞ < 1/2 and then show
the map λ ∈ (0, 1)→ gλ ∈ Γ is injective. Use this to conclude that Γ must be
uncountable.

Corollary 31.17 (Riemann Lebesgue Lemma). Suppose that
f ∈ L1(R,m), then

lim
λ→±∞

∫
R
f(x)eiλxdm(x) = 0.
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Proof. By Example 31.16, given ε > 0 there exists ϕ =
∑n
k=1 ck1(ak,bk]

with ak, bk ∈ R such that ∫
R
|f − ϕ|dm < ε.

Notice that∫
R
ϕ(x)eiλxdm(x) =

∫
R

n∑
k=1

ck1(ak,bk](x)eiλxdm(x)

=

n∑
k=1

ck

∫ bk

ak

eiλxdm(x) =

n∑
k=1

ckλ
−1eiλx|bkak

= λ−1
n∑
k=1

ck
(
eiλbk − eiλak

)
→ 0 as |λ| → ∞.

Combining these two equations with∣∣∣∣∫
R
f(x)eiλxdm(x)

∣∣∣∣ ≤ ∣∣∣∣∫
R

(f(x)− ϕ(x)) eiλxdm(x)

∣∣∣∣+

∣∣∣∣∫
R
ϕ(x)eiλxdm(x)

∣∣∣∣
≤
∫
R
|f − ϕ|dm+

∣∣∣∣∫
R
ϕ(x)eiλxdm(x)

∣∣∣∣
≤ ε+

∣∣∣∣∫
R
ϕ(x)eiλxdm(x)

∣∣∣∣
we learn that

lim sup
|λ|→∞

∣∣∣∣∫
R
f(x)eiλxdm(x)

∣∣∣∣ ≤ ε+ lim sup
|λ|→∞

∣∣∣∣∫
R
ϕ(x)eiλxdm(x)

∣∣∣∣ = ε.

Since ε > 0 is arbitrary, this completes the proof of the Riemann Lebesgue
lemma.

Corollary 31.18. Suppose A ⊂ M is an algebra such that σ(A) = M and µ
is σ – finite on A. Then for every B ∈M such that µ(B) <∞ and ε > 0 there
exists D ∈ A such that µ(B4D) < ε. (See also Remark ?? below.)

Proof. By Theorem 31.14, there exists a collection, {Ai}ni=1 , of pairwise
disjoint subsets of A and λi ∈ R such that

∫
X
|1B − f | dµ < ε where f =∑n

i=1 λi1Ai . Let A0 := X \ ∪ni=1Ai ∈ A then

∫
X

|1B − f | dµ =

n∑
i=0

∫
Ai

|1B − f | dµ

= µ (A0 ∩B) +

n∑
i=1

[∫
Ai∩B

|1B − λi| dµ+

∫
Ai\B

|1B − λi| dµ

]

= µ (A0 ∩B) +

n∑
i=1

[|1− λi|µ (B ∩Ai) + |λi|µ (Ai \B)] (31.5)

≥ µ (A0 ∩B) +

n∑
i=1

min {µ (B ∩Ai) , µ (Ai \B)} (31.6)

where the last equality is a consequence of the fact that 1 ≤ |λi|+ |1− λi| . Let

αi =

{
0 if µ (B ∩Ai) < µ (Ai \B)
1 if µ (B ∩Ai) ≥ µ (Ai \B)

and g =
∑n
i=1 αi1Ai = 1D where

D := ∪{Ai : i > 0 & αi = 1} ∈ A.

Equation (31.5) with λi replaced by αi and f by g implies∫
X

|1B − 1D| dµ = µ (A0 ∩B) +

n∑
i=1

min {µ (B ∩Ai) , µ (Ai \B)} .

The latter expression, by Eq. (31.6), is bounded by
∫
X
|1B − f | dµ < ε and

therefore,

µ(B4D) =

∫
X

|1B − 1D| dµ < ε.

Remark 31.19. We have to assume that µ(B) < ∞ as the following example
shows. Let X = R,M = B, µ = m, A be the algebra generated by half open
intervals of the form (a, b], and B = ∪∞n=1(2n, 2n+ 1]. It is easily checked that
for every D ∈ A, that m(B∆D) =∞.

31.2 Convolution and Young’s Inequalities

Throughout this section we will be solely concerned with d – dimensional
Lebesgue measure, m, and we will simply write Lp for Lp

(
Rd,m

)
.
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Definition 31.20 (Convolution). Let f, g : Rd → C be measurable functions.
We define

f ∗ g(x) =

∫
Rd
f(x− y)g(y)dy (31.7)

whenever the integral is defined, i.e. either f (x− ·) g (·) ∈ L1(Rd,m) or
f (x− ·) g (·) ≥ 0. Notice that the condition that f (x− ·) g (·) ∈ L1(Rd,m)
is equivalent to writing |f | ∗ |g| (x) < ∞. By convention, if the integral in Eq.
(31.7) is not defined, let f ∗ g(x) := 0.

Notation 31.21 Given a multi-index α ∈ Zd+, let |α| = α1 + · · ·+ αd,

xα :=

d∏
j=1

x
αj
j , and ∂αx =

(
∂

∂x

)α
:=

d∏
j=1

(
∂

∂xj

)αj
.

For z ∈ Rd and f : Rd → C, let τzf : Rd → C be defined by τzf(x) = f(x− z).

Remark 31.22 (The Significance of Convolution).

1. Suppose that f, g ∈ L1 (m) are positive functions and let µ be the measure

on
(
Rd
)2

defined by

dµ (x, y) := f (x) g (y) dm (x) dm (y) .

Then if h : R→ [0,∞] is a measurable function we have∫
(Rd)2

h (x+ y) dµ (x, y) =

∫
(Rd)2

h (x+ y) f (x) g (y) dm (x) dm (y)

=

∫
(Rd)2

h (x) f (x− y) g (y) dm (x) dm (y)

=

∫
Rd
h (x) f ∗ g (x) dm (x) .

In other words, this shows the measure (f ∗ g)m is the same as S∗µ where
S (x, y) := x+ y. In probability lingo, the distribution of a sum of two “in-
dependent” (i.e. product measure) random variables is the the convolution
of the individual distributions.

2. Suppose that L =
∑
|α|≤k aα∂

α is a constant coefficient differential operator

and suppose that we can solve (uniquely) the equation Lu = g in the form

u(x) = Kg(x) :=

∫
Rd
k(x, y)g(y)dy

where k(x, y) is an “integral kernel.” (This is a natural sort of assumption
since, in view of the fundamental theorem of calculus, integration is the

inverse operation to differentiation.) Since τzL = Lτz for all z ∈ Rd, (this is
another way to characterize constant coefficient differential operators) and
L−1 = K we should have τzK = Kτz. Writing out this equation then says∫

Rd
k(x− z, y)g(y)dy = (Kg) (x− z) = τzKg(x) = (Kτzg) (x)

=

∫
Rd
k(x, y)g(y − z)dy =

∫
Rd
k(x, y + z)g(y)dy.

Since g is arbitrary we conclude that k(x− z, y) = k(x, y+ z). Taking y = 0
then gives

k(x, z) = k(x− z, 0) =: ρ(x− z).
We thus find that Kg = ρ ∗ g. Hence we expect the convolution operation
to appear naturally when solving constant coefficient partial differential
equations. More about this point later.

Proposition 31.23. Suppose p ∈ [1,∞], f ∈ L1 and g ∈ Lp, then f ∗ g(x)
exists for almost every x, f ∗ g ∈ Lp and

‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p .

Proof. This follows directly from Minkowski’s inequality for integrals, The-
orem 29.2, and was explained in Example 29.3.

Example 31.24. Suppose that Ω is a bounded Borel subset of Rn, α < n, then
the operator K : L2(Ω,m)→ L2(Ω,m) defined by

Kf(x) :=

∫
Ω

1

|x− y|α
f(y)dy

is compact.

Proof. For ε ≥ 0, let

Kεf(x) :=

∫
Ω

1

|x− y|α + ε
f(y)dy = [gε ∗ (1Ωf)] (x)

where gε(x) = 1
|x|α+ε1C(x) with C ⊂ Rn a sufficiently large ball such that

Ω −Ω ⊂ C. Since α < n, it follows that

gε ≤ g0 = |·|−α 1C ∈ L1(Rn,m).

Hence it follows by Proposition 31.23 that

‖(K −Kε) f‖L2(Ω) ≤ ‖(g0 − gε) ∗ (1Ωf)‖L2(Rn)

≤ ‖(g0 − gε)‖L1(Rn) ‖1Ωf‖L2(Rn)

= ‖(g0 − gε)‖L1(Rn) ‖f‖L2(Ω)
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which implies

‖K −Kε‖B(L2(Ω)) ≤ ‖g0 − gε‖L1(Rn)

=

∫
C

∣∣∣∣ 1

|x|α + ε
− 1

|x|α
∣∣∣∣ dx→ 0 as ε ↓ 0 (31.8)

by the dominated convergence theorem. For any ε > 0,∫
Ω×Ω

[
1

|x− y|α + ε

]2

dxdy <∞,

and hence Kε is Hilbert Schmidt and hence compact. By Eq. (31.8), Kε → K
as ε ↓ 0 and hence it follows that K is compact as well.

Proposition 31.25. Suppose that p ∈ [1,∞), then τz : Lp → Lp is an isometric
isomorphism and for f ∈ Lp, z ∈ Rd → τzf ∈ Lp is continuous.

Proof. The assertion that τz : Lp → Lp is an isometric isomorphism follows
from translation invariance of Lebesgue measure and the fact that τ−z ◦τz = id.
For the continuity assertion, observe that

‖τzf − τyf‖p = ‖τ−y (τzf − τyf)‖p = ‖τz−yf − f‖p

from which it follows that it is enough to show τzf → f in Lp as z → 0 ∈ Rd.
When f ∈ Cc(Rd), τzf → f uniformly and since the K := ∪|z|≤1supp(τzf) is
compact, it follows by the dominated convergence theorem that τzf → f in Lp

as z → 0 ∈ Rd. For general g ∈ Lp and f ∈ Cc(Rd),

‖τzg − g‖p ≤‖τzg − τzf‖p + ‖τzf − f‖p + ‖f − g‖p
= ‖τzf − f‖p + 2 ‖f − g‖p

and thus

lim sup
z→0
‖τzg − g‖p ≤ lim sup

z→0
‖τzf − f‖p + 2 ‖f − g‖p = 2 ‖f − g‖p .

Because Cc(Rd) is dense in Lp, the term ‖f − g‖p may be made as small as we
please.

Exercise 31.4. Let p ∈ [1,∞] and ‖τz − I‖L(Lp(m)) be the operator norm τz−I.
Show ‖τz − I‖L(Lp(m)) = 2 for all z ∈ Rd \ {0} and conclude from this that

z ∈ Rd → τz ∈ L (Lp (m)) is not continuous.
Hints: 1) Show ‖τz − I‖L(Lp(m)) =

∥∥τ|z|e1 − I∥∥L(Lp(m))
. 2) Let z = te1

with t > 0 and look for f ∈ Lp (m) such that τzf is approximately equal to −f.
(In fact, if p = ∞, you can find f ∈ L∞ (m) such that τzf = −f.) (BRUCE:
add on a problem somewhere showing that σ (τz) = S1 ⊂ C. This is very simple
to prove if p = 2 by using the Fourier transform.)

Definition 31.26. Suppose that (X, τ) is a topological space and µ is a measure
on BX = σ(τ). For a measurable function f : X → C we define the essential
support of f by

suppµ(f) = {x ∈ X : µ({y ∈ V : f(y) 6= 0}}) > 0 ∀ neighborhoods V of x}.
(31.9)

Equivalently, x /∈ suppµ(f) iff there exists an open neighborhood V of x such
that 1V f = 0 a.e.

It is not hard to show that if supp(µ) = X (see Definition 30.14) and
f ∈ C (X) then suppµ(f) = supp(f) := {f 6= 0} , see Exercise 31.7.

Lemma 31.27. Suppose (X, τ) is second countable and f : X → C is a mea-
surable function and µ is a measure on BX . Then X := U \ suppµ(f) may be
described as the largest open set W such that f1W (x) = 0 for µ – a.e. x. Equiv-
alently put, C := suppµ(f) is the smallest closed subset of X such that f = f1C
a.e.

Proof. To verify that the two descriptions of suppµ(f) are equivalent, sup-
pose suppµ(f) is defined as in Eq. (31.9) and W := X \ suppµ(f). Then

W = {x ∈ X : ∃ τ 3 V 3 x such that µ({y ∈ V : f(y) 6= 0}}) = 0}
= ∪{V ⊂o X : µ (f1V 6= 0) = 0}
= ∪{V ⊂o X : f1V = 0 for µ – a.e.} .

So to finish the argument it suffices to show µ (f1W 6= 0) = 0. To to this let U
be a countable base for τ and set

Uf := {V ∈ U : f1V = 0 a.e.}.

Then it is easily seen that W = ∪Uf and since Uf is countable

µ (f1W 6= 0) ≤
∑
V ∈Uf

µ (f1V 6= 0) = 0.

Lemma 31.28. Suppose f, g, h : Rd → C are measurable functions and assume
that x is a point in Rd such that |f | ∗ |g| (x) < ∞ and |f | ∗ (|g| ∗ |h|) (x) < ∞,
then

1. f ∗ g(x) = g ∗ f(x)
2. f ∗ (g ∗ h)(x) = (f ∗ g) ∗ h(x)
3. If z ∈ Rd and τz(|f | ∗ |g|)(x) = |f | ∗ |g| (x− z) <∞, then

τz(f ∗ g)(x) = τzf ∗ g(x) = f ∗ τzg(x)
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4. If x /∈ suppm(f) + suppm(g) then f ∗ g(x) = 0 and in particular,

suppm(f ∗ g) ⊂ suppm(f) + suppm(g)

where in defining suppm(f ∗g) we will use the convention that “f ∗g(x) 6= 0”
when |f | ∗ |g| (x) =∞.

Proof. For item 1.,

|f | ∗ |g| (x) =

∫
Rd
|f | (x− y) |g| (y)dy =

∫
Rd
|f | (y) |g| (y − x)dy = |g| ∗ |f | (x)

where in the second equality we made use of the fact that Lebesgue measure
invariant under the transformation y → x−y. Similar computations prove all of
the remaining assertions of the first three items of the lemma. Item 4. Since f ∗
g(x) = f̃ ∗ g̃(x) if f = f̃ and g = g̃ a.e. we may, by replacing f by f1suppm(f) and
g by g1suppm(g) if necessary, assume that {f 6= 0} ⊂ suppm(f) and {g 6= 0} ⊂
suppm(g). So if x /∈ (suppm(f) + suppm(g)) then x /∈ ({f 6= 0}+ {g 6= 0}) and
for all y ∈ Rd, either x − y /∈ {f 6= 0} or y /∈ {g 6= 0} . That is to say either
x−y ∈ {f = 0} or y ∈ {g = 0} and hence f(x−y)g(y) = 0 for all y and therefore

f ∗ g(x) = 0. This shows that f ∗ g = 0 on Rd \
(

suppm(f) + suppm(g)
)

and

therefore
Rd \

(
suppm(f) + suppm(g)

)
⊂ Rd \ suppm(f ∗ g),

i.e. suppm(f ∗ g) ⊂ suppm(f) + suppm(g).

Remark 31.29. Let A,B be closed sets of Rd, it is not necessarily true that A+B
is still closed. For example, take

A = {(x, y) : x > 0 and y ≥ 1/x} and B = {(x, y) : x < 0 and y ≥ 1/ |x|} ,

then every point of A+B has a positive y - component and hence is not zero.
On the other hand, for x > 0 we have (x, 1/x) + (−x, 1/x) = (0, 2/x) ∈ A+B
for all x and hence 0 ∈ A+B showing A+B is not closed. Nevertheless if one of
the sets A or B is compact, then A+B is closed again. Indeed, if A is compact
and xn = an + bn ∈ A+B and xn → x ∈ Rd, then by passing to a subsequence
if necessary we may assume limn→∞ an = a ∈ A exists. In this case

lim
n→∞

bn = lim
n→∞

(xn − an) = x− a ∈ B

exists as well, showing x = a+ b ∈ A+B.

Proposition 31.30. Suppose that p, q ∈ [1,∞] and p and q are conjugate ex-
ponents, f ∈ Lp and g ∈ Lq, then f ∗ g ∈ BC(Rd), ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q and

if p, q ∈ (1,∞) then f ∗ g ∈ C0(Rd).

Proof. The existence of f ∗ g(x) and the estimate |f ∗ g| (x) ≤ ‖f‖p ‖g‖q
for all x ∈ Rd is a simple consequence of Holders inequality and the translation
invariance of Lebesgue measure. In particular this shows ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q .
By relabeling p and q if necessary we may assume that p ∈ [1,∞). Since

‖τz (f ∗ g)− f ∗ g‖u = ‖τzf ∗ g − f ∗ g‖u
≤ ‖τzf − f‖p ‖g‖q → 0 as z → 0

it follows that f ∗ g is uniformly continuous. Finally if p, q ∈ (1,∞), we learn
from Lemma 31.28 and what we have just proved that fm ∗ gm ∈ Cc(Rd) where
fm = f1|f |≤m and gm = g1|g|≤m. Moreover,

‖f ∗ g − fm ∗ gm‖∞ ≤ ‖f ∗ g − fm ∗ g‖∞ + ‖fm ∗ g − fm ∗ gm‖∞
≤ ‖f − fm‖p ‖g‖q + ‖fm‖p ‖g − gm‖q
≤ ‖f − fm‖p ‖g‖q + ‖f‖p ‖g − gm‖q → 0 as m→∞

showing, with the aid of Proposition 37.23, f ∗ g ∈ C0(Rd).

Theorem 31.31 (Young’s Inequality). Let p, q, r ∈ [1,∞] satisfy

1

p
+

1

q
= 1 +

1

r
. (31.10)

If f ∈ Lp and g ∈ Lq then |f | ∗ |g| (x) <∞ for m – a.e. x and

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q . (31.11)

In particular L1 is closed under convolution. (The space (L1, ∗) is an example
of a “Banach algebra” without unit.)

Remark 31.32. Before going to the formal proof, let us first understand Eq.
(31.10) by the following scaling argument. For λ > 0, let fλ(x) := f(λx), then
after a few simple change of variables we find

‖fλ‖p = λ−d/p ‖f‖ and (f ∗ g)λ = λdfλ ∗ gλ.

Therefore if Eq. (31.11) holds for some p, q, r ∈ [1,∞], we would also have

‖f ∗ g‖r = λd/r ‖(f ∗ g)λ‖r ≤ λ
d/rλd ‖fλ‖p ‖gλ‖q = λ(d+d/r−d/p−d/q) ‖f‖p ‖g‖q

for all λ > 0. This is only possible if Eq. (31.10) holds.

Proof. By the usual sorts of arguments, we may assume f and g are positive
functions. Let α, β ∈ [0, 1] and p1, p2 ∈ (0,∞] satisfy p−1

1 +p−1
2 +r−1 = 1. Then

by Hölder’s inequality, Corollary 16.3,
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f ∗ g(x) =

∫
Rd

[
f(x− y)(1−α)g(y)(1−β)

]
f(x− y)αg(y)βdy

≤
(∫

Rd
f(x− y)(1−α)rg(y)(1−β)rdy

)1/r (∫
Rd
f(x− y)αp1dy

)1/p1

×

×
(∫

Rd
g(y)βp2dy

)1/p2

=

(∫
Rd
f(x− y)(1−α)rg(y)(1−β)rdy

)1/r

‖f‖ααp1 ‖g‖
β
βp2

.

Taking the rth power of this equation and integrating on x gives

‖f ∗ g‖rr ≤
∫
Rd

(∫
Rd
f(x− y)(1−α)rg(y)(1−β)rdy

)
dx · ‖f‖ααp1 ‖g‖

β
βp2

= ‖f‖(1−α)r
(1−α)r ‖g‖

(1−β)r
(1−β)r ‖f‖

αr
αp1
‖g‖βrβp2 . (31.12)

Let us now suppose, (1 − α)r = αp1 and (1 − β)r = βp2, in which case Eq.
(31.12) becomes,

‖f ∗ g‖rr ≤ ‖f‖
r
αp1
‖g‖rβp2

which is Eq. (31.11) with

p := (1− α)r = αp1 and q := (1− β)r = βp2. (31.13)

So to finish the proof, it suffices to show p and q are arbitrary indices in
[1,∞] satisfying p−1 + q−1 = 1 + r−1. If α, β, p1, p2 satisfy the relations above,
then

α =
r

r + p1
and β =

r

r + p2

and

1

p
+

1

q
=

1

αp1
+

1

αp2
=

1

p1

r + p1

r
+

1

p2

r + p2

r

=
1

p1
+

1

p2
+

2

r
= 1 +

1

r
.

Conversely, if p, q, r satisfy Eq. (31.10), then let α and β satisfy p = (1 − α)r
and q = (1− β)r, i.e.

α :=
r − p
r

= 1− p

r
≤ 1 and β =

r − q
r

= 1− q

r
≤ 1.

Using Eq. (31.10) we may also express α and β as

α = p(1− 1

q
) ≥ 0 and β = q(1− 1

p
) ≥ 0

and in particular we have shown α, β ∈ [0, 1]. If we now define p1 := p/α ∈
(0,∞] and p2 := q/β ∈ (0,∞], then

1

p1
+

1

p2
+

1

r
= β

1

q
+ α

1

p
+

1

r

= (1− 1

q
) + (1− 1

p
) +

1

r

= 2−
(

1 +
1

r

)
+

1

r
= 1

as desired.

Theorem 31.33 (Approximate δ – functions). Let p ∈ [1,∞], ϕ ∈ L1(Rd),
a :=

∫
Rd ϕ(x)dx, and for t > 0 let ϕt(x) = t−dϕ(x/t). Then

1. If f ∈ Lp with p <∞ then ϕt ∗ f → af in Lp as t ↓ 0.
2. If f ∈ BC(Rd) and f is uniformly continuous then ‖ϕt ∗ f − af‖∞ → 0 as
t ↓ 0.

3. If f ∈ L∞ and f is continuous on U ⊂o Rd then ϕt ∗ f → af uniformly on
compact subsets of U as t ↓ 0.

(See Proposition 31.34 below and for a statement about almost everywhere
convergence.)

Proof. Making the change of variables y = tz implies

ϕt ∗ f(x) =

∫
Rd
f(x− y)ϕt(y)dy =

∫
Rd
f(x− tz)ϕ(z)dz

so that

ϕt ∗ f(x)− af(x) =

∫
Rd

[f(x− tz)− f(x)]ϕ(z)dz

=

∫
Rd

[τtzf(x)− f(x)]ϕ(z)dz. (31.14)

Hence by Minkowski’s inequality for integrals (Theorem 29.2), Proposition 31.25
and the dominated convergence theorem,

‖ϕt ∗ f − af‖p ≤
∫
Rd
‖τtzf − f‖p |ϕ(z)| dz → 0 as t ↓ 0.

Item 2. is proved similarly. Indeed, form Eq. (31.14)

‖ϕt ∗ f − af‖∞ ≤
∫
Rd
‖τtzf − f‖∞ |ϕ(z)| dz
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which again tends to zero by the dominated convergence theorem because
limt↓0 ‖τtzf − f‖∞ = 0 uniformly in z by the uniform continuity of f.

Item 3. Let BR = B(0, R) be a large ball in Rd and K @@ U, then

sup
x∈K
|ϕt ∗ f(x)− af(x)|

≤
∣∣∣∣∫
BR

[f(x− tz)− f(x)]ϕ(z)dz

∣∣∣∣+

∣∣∣∣∣
∫
Bc
R

[f(x− tz)− f(x)]ϕ(z)dz

∣∣∣∣∣
≤
∫
BR

|ϕ(z)| dz · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 ‖f‖∞
∫
Bc
R

|ϕ(z)| dz

≤ ‖ϕ‖1 · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 ‖f‖∞
∫
|z|>R

|ϕ(z)| dz

so that using the uniform continuity of f on compact subsets of U,

lim sup
t↓0

sup
x∈K
|ϕt ∗ f(x)− af(x)| ≤ 2 ‖f‖∞

∫
|z|>R

|ϕ(z)| dz → 0 as R→∞.

The next two results give a version of Theorem 31.33 where the convergence
holds almost everywhere. For f ∈ L1

loc (Rn) let

L (f) :=

x ∈ Rn : lim
r↓0

1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)|dy = 0


be the Lebesgue set of f. We will see below in Theorem 25.13 that
m (Rn \ L (f)) = 0.

Proposition 31.34 (Theorem 31.33 continued). Let p ∈ [1,∞), ρ > 0 and
ϕ ∈ L∞

(
Rd
)

such that 0 ≤ ϕ ≤ C1B(0,ρ) for some C <∞ and
∫
Rd ϕ (x) dx = 1.

If f ∈ L1
loc(m), and x ∈ L (f) , then

lim
t↓0

(ϕt ∗ f) (x) = f (x) ,

where ϕt (x) := t−dϕ (x/t) . In particular, ϕt ∗ f → f a.e. as t ↓ 0.

Proof. Notice that 0 ≤ ϕt ≤ Ct−d1B(0,ρt) and therefore for x ∈ L (f) we
have,

|ϕt ∗ f (x)− f (x)| =
∣∣∣∣∫

Rd
[f (x− y)− f (x)]ϕt (y) dy

∣∣∣∣
≤
∫
Rd
|f (x− y)− f (x)|ϕt (y) dy

≤ Ct−d
∫
B(0,ρt)

|f (x− y)− f (x)| dy

= C (ρ, d)
1

|B (0, ρt)|

∫
B(0,ρt)

|f (x− y)− f (x)| dy → 0 as t ↓ 0.

Theorem 31.35 (Theorem 8.15 of Folland). More general version, assume

that |ϕ (x)| ≤ C (1 + |x|)−(d+ε)
and

∫
Rd ϕ (x) dx = a. Then for all x ∈ L (f) ,

lim
t↓0

(ϕt ∗ f) (x) = af (x)

and in fact,

L (x) := lim sup
t↓0

∫
|f (x− y)− f (x)| |ϕt (y)| dy = 0.

Proof. Throughout this proof f ∈ L1
(
Rd
)

and x ∈ L (f) be fixed and for
b > 0 let

δ (b) :=
1

bd

∫
|y|≤b

|f (x− y)− f (x)| dy.

From the definition if L (f) we know that limb↓0 δ (b) = 0. The remainder of the
proof will be broken into a number of steps.

1. For any η > 0,

L (x) = lim sup
t↓0

∫
|y|≤η

|f (x− y)− f (x)| |ϕt (y)| dy

which is seen as follows;∫
|y|>η

|f (x− y)− f (x)| |ϕt (y)| dy

≤
∫
|y|>η

|f (x− y)| |ϕt (y)| dy + |f (x)|
∫
|y|>η

|ϕt (y)| dy

≤ Ct−n
∫
|y|>η

|f (x− y)|
(

1

1 + |y| /t

)n+ε

dy + |f (x)|
∫
|z|>η/t

|ϕ (z)| dy

≤ Ctε

(t+ η)
n+ε ‖f‖1 + |f (x)|

∫
|z|>η/t

|ϕ (z)| dy → 0 as t ↓ 0.
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2. For any ρ > 0,∫
|y|≤ρ

|f (x− y)− f (x)| |ϕt (y)| dy = t−d
∫
|y|≤ρ

|f (x− y)− f (x)| |ϕ (y/t)| dy

≤ Ct−dδ (ρ) · ρd = Cδ (ρ) ·
(ρ
t

)d
.

In particular ρ ≤ kt for some k, then∫
|y|≤ρ

|f (x− y)− f (x)| |ϕt (y)| dy ≤ Ckdδ (kt)→ 0 as t ↓ 0·

3. Given items 1. and 2., in order to finish the proof we must estimate the
integral over the annular region

{
y ∈ Rd : kt ≤ |y| ≤ η

}
. In order to control this

integral we are going to have to divide this annular region up into a number
of concentric annular regions which we will do shortly. For the moment, let
0 < a < b <∞ be given, then∫

a<|y|≤b
|f (x− y)− f (x)| |ϕt (y)| dy

≤ Ct−d
∫
a<|y|≤b

|f (x− y)− f (x)|
(

1 +
∣∣∣y
t

∣∣∣)−(d+ε)

dy

≤ Ct−d
∫
a<|y|≤b

|f (x− y)− f (x)|
(

1 +
a

t

)−(d+ε)

dy

≤ Ct−dδ (b) bd
(

1 +
a

t

)−(d+ε)

= Ct−(d+ε)δ (b) b(d+ε)
(

1 +
a

t

)−(d+ε)

tεb−ε

= Cδ (b)

(
t

b

)ε
1(

t+ a
b

)d+ε
.

Taking a = b/2 in this expression shows,∫
b
2<|y|≤b

|f (x− y)− f (x)| · |ϕt (y)| dy

≤ Cδ (b)

(
t

b

)ε
1(

t+ 1
2

)d+ε

= Cδ (b)

(
t

b

)ε
1

(2t+ 1)
d+ε

.

Taking b = 2−kη and summing the result on 0 ≤ k ≤ K − 1 shows

K−1∑
k=0

∫
2−(k+1)η<|y|≤2−kη

|f (x− y)− f (x)| |ϕt (y)| dy

≤ C
K−1∑
k=0

δ
(
2−kη

)( t

2−kη

)ε
1

(2t+ 1)
d+ε

=
Cδ (η)

(2t+ 1)
d+ε

(
t

η

)ε K−1∑
k=0

2εk

=
Cδ (η)

(2t+ 1)
d+ε

(
t

η

)ε
2εK − 1

2ε − 1
.

We now choose K so that 2K t
η ∼ 1 (i.e. 2−Kη ∼ t) and we have shown,∫

2−Kη<|y|≤η
|f (x− y)− f (x)| |ϕt (y)| dy

=

K−1∑
k=0

∫
2−(k+1)η<|y|≤2−kη

|f (x− y)− f (x)| |ϕt (y)| dy ≤ Cδ (η) .

4. Combining item 2. with ρ = 2−Kη ∼ t with item 3. shows∫
|y|≤η

|f (x− y)− f (x)| |ϕt (y)| dy ≤ Cδ (η) .

Combining this result with item 1. implies,

L (x) = lim sup
t↓0

∫
|y|≤η

|f (x− y)− f (x)| |ϕt (y)| dy

≤ Cδ (η)→ 0 as η ↓ 0.

Exercise 31.5. Let

f(t) =

{
e−1/t if t > 0

0 if t ≤ 0.

Show f ∈ C∞(R, [0, 1]).

Lemma 31.36. There exists ϕ ∈ C∞c (Rd, [0,∞)) such that ϕ(0) > 0,
supp(ϕ) ⊂ B̄(0, 1) and

∫
Rd ϕ(x)dx = 1.

Proof. Define h(t) = f(1−t)f(t+1) where f is as in Exercise 31.5. Then h ∈
C∞c (R, [0, 1]), supp(h) ⊂ [−1, 1] and h(0) = e−2 > 0. Define c =

∫
Rd h(|x|2)dx.

Then ϕ(x) = c−1h(|x|2) is the desired function.
The reader asked to prove the following proposition in Exercise 31.9 below.
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Proposition 31.37. Suppose that f ∈ L1
loc(Rd,m) and ϕ ∈ C1

c (Rd), then f ∗
ϕ ∈ C1(Rd) and ∂i(f ∗ ϕ) = f ∗ ∂iϕ. Moreover if ϕ ∈ C∞c (Rd) then f ∗ ϕ ∈
C∞(Rd).

Corollary 31.38 (C∞ – Uryshon’s Lemma). Given K @@ U ⊂o Rd, there
exists f ∈ C∞c (Rd, [0, 1]) such that supp(f) ⊂ U and f = 1 on K.

Proof. Let ϕ be as in Lemma 31.36, ϕt(x) = t−dϕ(x/t) be as in Theorem
31.33, d be the standard metric on Rd and ε = d(K,U c). Since K is compact
and U c is closed, ε > 0. Let Vδ =

{
x ∈ Rd : d(x,K) < δ

}
and f = ϕε/3 ∗ 1Vε/3 ,

then
supp(f) ⊂ supp(ϕε/3) + Vε/3 ⊂ V̄2ε/3 ⊂ U.

Since V̄2ε/3 is closed and bounded, f ∈ C∞c (U) and for x ∈ K,

f(x) =

∫
Rd

1d(y,K)<ε/3 · ϕε/3(x− y)dy =

∫
Rd
ϕε/3(x− y)dy = 1.

The proof will be finished after the reader (easily) verifies 0 ≤ f ≤ 1.
Here is an application of this corollary whose proof is left to the reader,

Exercise 31.10.

Lemma 31.39 (Integration by Parts). Suppose f and g are measur-
able functions on Rd such that t → f(x1, . . . , xi−1, t, xi+1, . . . , xd) and t →
g(x1, . . . , xi−1, t, xi+1, . . . , xd) are continuously differentiable functions on R for
each fixed x = (x1, . . . , xd) ∈ Rd. Moreover assume f · g, ∂f

∂xi
· g and f · ∂g∂xi are

in L1(Rd,m). Then ∫
Rd

∂f

∂xi
· gdm = −

∫
Rd
f · ∂g

∂xi
dm.

With this result we may give another proof of the Riemann Lebesgue
Lemma.

Lemma 31.40 (Riemann Lebesgue Lemma). For f ∈ L1(Rd,m) let

f̂(ξ) := (2π)−d/2
∫
Rd
f(x)e−iξ·xdm(x)

be the Fourier transform of f. Then f̂ ∈ C0(Rd) and
∥∥∥f̂∥∥∥

∞
≤ (2π)−d/2 ‖f‖1 .

(The choice of the normalization factor, (2π)−d/2, in f̂ is for later convenience.)

Proof. The fact that f̂ is continuous is a simple application of the dominated
convergence theorem. Moreover,

∣∣∣f̂(ξ)
∣∣∣ ≤ ∫

Rd
|f(x)| dm(x) ≤ (2π)−d/2 ‖f‖1

so it only remains to see that f̂(ξ) → 0 as |ξ| → ∞. First suppose that f ∈
C∞c (Rd) and let ∆ =

∑d
j=1

∂2

∂x2
j

be the Laplacian on Rd. Notice that ∂
∂xj

e−iξ·x =

−iξje−iξ·x and ∆e−iξ·x = − |ξ|2 e−iξ·x. Using Lemma 31.39 repeatedly,∫
Rd
∆kf(x)e−iξ·xdm(x) =

∫
Rd
f(x)∆k

xe
−iξ·xdm(x) = − |ξ|2k

∫
Rd
f(x)e−iξ·xdm(x)

= −(2π)d/2 |ξ|2k f̂(ξ)

for any k ∈ N. Hence

(2π)d/2
∣∣∣f̂(ξ)

∣∣∣ ≤ |ξ|−2k ∥∥∆kf
∥∥

1
→ 0

as |ξ| → ∞ and f̂ ∈ C0(Rd). Suppose that f ∈ L1(m) and fk ∈ C∞c (Rd) is a

sequence such that limk→∞ ‖f − fk‖1 = 0, then limk→∞

∥∥∥f̂ − f̂k∥∥∥
∞

= 0. Hence

f̂ ∈ C0(Rd) by an application of Proposition 37.23.

Corollary 31.41. Let X ⊂ Rd be an open set and µ be a K-finite measure on
BX .

1. Then C∞c (X) is dense in Lp(µ) for all 1 ≤ p <∞.
2. If h ∈ L1

loc(µ) satisfies∫
X

fhdµ = 0 for all f ∈ C∞c (X) (31.15)

then h(x) = 0 for µ – a.e. x.

Proof. Let f ∈ Cc(X), ϕ be as in Lemma 31.36, ϕt be as in Theorem 31.33
and set ψt := ϕt ∗ (f1X) . Then by Proposition 31.37 ψt ∈ C∞(X) and by
Lemma 31.28 there exists a compact set K ⊂ X such that supp(ψt) ⊂ K for
all t sufficiently small. By Theorem 31.33, ψt → f uniformly on X as t ↓ 0

1. The dominated convergence theorem (with dominating function being
‖f‖∞ 1K), shows ψt → f in Lp(µ) as t ↓ 0. This proves Item 1., since
Theorem 31.8 guarantees that Cc(X) is dense in Lp(µ).

2. Keeping the same notation as above, the dominated convergence theorem
(with dominating function being ‖f‖∞ |h| 1K) implies

0 = lim
t↓0

∫
X

ψthdµ =

∫
X

lim
t↓0

ψthdµ =

∫
X

fhdµ.

The proof is now finished by an application of Lemma 31.11.
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31.2.1 Smooth Partitions of Unity

We have the following smooth variants of Proposition 37.16, Theorem 37.18
and Corollary 37.20. The proofs of these results are the same as their continu-
ous counterparts. One simply uses the smooth version of Urysohn’s Lemma of
Corollary 31.38 in place of Lemma 37.8.

Proposition 31.42 (Smooth Partitions of Unity for Compacts). Sup-
pose that X is an open subset of Rd, K ⊂ X is a compact set and U = {Uj}nj=1

is an open cover of K. Then there exists a smooth (i.e. hj ∈ C∞(X, [0, 1]))
partition of unity {hj}nj=1 of K such that hj ≺ Uj for all j = 1, 2, . . . , n.

Theorem 31.43 (Locally Compact Partitions of Unity). Suppose that X
is an open subset of Rd and U is an open cover of X. Then there exists a smooth
partition of unity of {hi}Ni=1 (N =∞ is allowed here) subordinate to the cover
U such that supp(hi) is compact for all i.

Corollary 31.44. Suppose that X is an open subset of Rd and U = {Uα}α∈A ⊂
τ is an open cover of X. Then there exists a smooth partition of unity of
{hα}α∈A subordinate to the cover U such that supp(hα) ⊂ Uα for all α ∈ A.
Moreover if Ūα is compact for each α ∈ A we may choose hα so that hα ≺ Uα.

31.3 Classical Weierstrass Approximation Theorem

Lemma 31.45 (More approximate δ – sequences). Suppose that {qn}∞n=1

is a sequence non-negative continuous real valued functions on R with compact
support that satisfy ∫

R
qn(x) dx = 1 and (31.16)

lim
n→∞

∫
|x|≥ε

qn(x)dx = 0 for all ε > 0. (31.17)

If f ∈ BC(R, Z) where Z is a Banach space, then

qn ∗ f (x) :=

∫
R
qn(y)f(x− y)dy

converges to f uniformly on compact subsets of R.

Proof. Let x ∈ R, then because of Eq. (31.16),

‖qn ∗ f(x)− f(x)‖ =

∥∥∥∥∫
R
qn(y) (f(x− y)− f(x)) dy

∥∥∥∥
≤
∫
R
qn(y) ‖f(x− y)− f(x)‖ dy.

Let M = sup {‖f(x)‖ : x ∈ R} . Then for any ε > 0, using Eq. (31.16),

‖qn ∗ f(x)− f(x)‖ ≤
∫
|y|≤ε

qn(y) ‖f(x− y)− f(x)‖ dy

+

∫
|y|>ε

qn(y) ‖f(x− y)− f(x)‖ dy

≤ sup
|w|≤ε

‖f(x+ w)− f(x)‖+ 2M

∫
|y|>ε

qn(y)dy.

So if K is a compact subset of R (for example a large interval) we have

sup
(x)∈K

‖qn ∗ f(x)− f(x)‖

≤ sup
|w|≤ε, x∈K

‖f(x+ w)− f(x)‖+ 2M

∫
‖y‖>ε

qn(y)dy

and hence by Eq. (31.17),

lim sup
n→∞

sup
x∈K
‖qn ∗ f(x)− f(x)‖

≤ sup
|w|≤ε, x∈K

‖f(x+ w)− f(x)‖ .

This finishes the proof since the right member of this equation tends to 0 as
ε ↓ 0 by uniform continuity of f on compact subsets of R.

Let qn : R→[0,∞) be defined by

qn(x) :=
1

cn
(1− x2)n1|x|≤1 where cn :=

∫ 1

−1

(1− x2)ndx. (31.18)

Figure 31.2 displays the key features of the functions qn.

Lemma 31.46. The sequence {qn}∞n=1 is an approximate δ – sequence, i.e. they
satisfy Eqs. (31.16) and (31.17).

Proof. By construction, qn ∈ Cc (R, [0,∞)) for each n and Eq. 31.16 holds.
Since
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Fig. 31.2. A plot of q1, q50, and q100. The most peaked curve is q100 and the least is
q1. The total area under each of these curves is one.

∫
|x|≥ε

qn(x)dx =
2
∫ 1

ε
(1− x2)ndx

2
∫ ε

0
(1− x2)ndx+ 2

∫ 1

ε
(1− x2)ndx

≤
∫ 1

ε
x
ε (1− x2)ndx∫ ε

0
x
ε (1− x2)ndx

=
(1− x2)n+1|1ε
(1− x2)n+1|ε0

=
(1− ε2)n+1

1− (1− ε2)n+1
→ 0 as n→∞,

the proof is complete.

Theorem 31.47 (Classical Weierstrass Approximation Theorem). Sup-
pose −∞ < a < b < ∞, J = [a, b] and f ∈ C(J, Z). Then there exists polyno-
mials pn on R with values in Z such that pn → f uniformly on J.

Proof. By replacing f by F where

F (t) := f (a+ t (b− a))− [f (a) + t (f (b)− f (a))] for t ∈ [0, 1] ,

it suffices to assume a = 0, b = 1 and f (0) = f (1) = 0. Furthermore we may
now extend f to a continuous function on all R by setting f ≡ 0 on R \ [0, 1] .

With qn defined as in Eq. (31.18), let fn(x) := (qn ∗ f)(x) and recall from
Lemma 31.45 that fn (x)→ f (x) as n→∞ with the convergence being uniform
in x ∈ [0, 1]. This completes the proof since fn is equal to a polynomial function
on [0, 1] . Indeed, there are polynomials, ak (y) , such that

(1− (x− y)2)n =

2n∑
k=0

ak (y)xk,

and therefore, for x ∈ [0, 1] ,

fn(x) =

∫
R
qn(x− y)f(y)dy

=
1

cn

∫
[0,1]

f(y)
[
(1− (x− y)2)n1|x−y|≤1

]
dy

=
1

cn

∫
[0,1]

f(y)(1− (x− y)2)ndy

=
1

cn

∫
[0,1]

f(y)

2n∑
k=0

ak (y)xkdy =

2n∑
k=0

Akx
k

where

Ak =
1

cn

∫
[0,1]

f (y) ak (y) dy ∈ Z.

31.4 Exercises

Exercise 31.6. Let (X, τ) be a topological space, µ a measure on BX = σ(τ)
and f : X → C be a measurable function. Letting ν be the measure, dν = |f | dµ,
show supp(ν) = suppµ(f), where supp(ν) is defined in Definition 30.14).

Exercise 31.7. Let (X, τ) be a topological space, µ a measure on BX = σ(τ)
such that supp(µ) = X (see Definition 30.14). Show suppµ(f) = supp(f) =

{f 6= 0} for all f ∈ C (X) .

Exercise 31.8. Prove the following strong version of item 3. of Proposition
35.52, namely to every pair of points, x0, x1, in a connected open subset V of
Rd there exists σ ∈ C∞(R, V ) such that σ(0) = x0 and σ(1) = x1. Hint: First
choose a continuous path γ : [0, 1] → V such that γ (t) = x0 for t near 0 and
γ (t) = x1 for t near 1 and then use a convolution argument to smooth γ.

Exercise 31.9. Prove Proposition 31.37 by appealing to Corollary 10.30.

Exercise 31.10 (Integration by Parts). Suppose that (x, y) ∈ R× Rd−1 →
f(x, y) ∈ C and (x, y) ∈ R× Rd−1 → g(x, y) ∈ C are measurable functions
such that for each fixed y ∈ Rd, x → f(x, y) and x → g(x, y) are continuously
differentiable. Also assume f · g, ∂xf · g and f · ∂xg are integrable relative to
Lebesgue measure on R× Rd−1, where ∂xf(x, y) := d

dtf(x+ t, y)|t=0. Show
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R×Rd−1

∂xf(x, y) · g(x, y)dxdy = −
∫
R×Rd−1

f(x, y) · ∂xg(x, y)dxdy. (31.19)

(Note: this result and Fubini’s theorem proves Lemma 31.39.)
Hints: Let ψ ∈ C∞c (R) be a function which is 1 in a neighborhood of

0 ∈ R and set ψε(x) = ψ(εx). First verify Eq. (31.19) with f(x, y) replaced by
ψε(x)f(x, y) by doing the x – integral first. Then use the dominated convergence
theorem to prove Eq. (31.19) by passing to the limit, ε ↓ 0.

Exercise 31.11 (Folland 8.4 on p. 239). If f ∈ L∞ (Rn,m) and
‖τyf − f‖∞ → 0 as |y| → ∞, then f agrees a.e. with a uniformly conti-
nous function. (See hints in the book.)

Definition 31.48 (Strong Differentiability). Let 1 ≤ p ≤ ∞, v ∈ Rd, and
u ∈ Lp

(
Rd
)
, then ∂vu is said to exist strongly in Lp if the d

dt |0τ−tvu exists in
Lp. To be more precise, there should exist a g ∈ Lp such that

0 = lim
t→0

∥∥∥∥τ−tvu− ut
− g
∥∥∥∥
p

.

Exercise 31.12. Suppose that 1 ≤ p < ∞, ∂vu = g exists strongly in Lp as
in Definition 31.48, then d

dtτ−tvu = τ−tvg for all t ∈ R. Note that we already
know that R 3 t→ τ−tvg ∈ Lp is continuous.

Remark 31.49. It is not hard to develop Riemann style integrals of continuous
functions, f : R→ X where X is a Banach space. This integrals satisfy;

1. The fundamental theorem of calculus holds; i.e.

f (t)− f (s) =

∫ t

s

ḟ (τ) dτ ∀ f ∈ C1 (R, X)

and if f ∈ C (R, X) then

d

dt

∫ t

a

f (s) ds = f (t)

where the derivative is take as an X – valued function.
2. the triangle inequality holds, i.e.∥∥∥∥∥

∫ b

a

f (t) dt

∥∥∥∥∥
X

≤
∫ b

a

‖f (t)‖X dt.

Exercise 31.13. 1. In particular in the context of Exercise ?? we have

τ−tvu− u =

∫ t

0

(τ−svg) ds

whenever ∂vu = g exists strongly in Lp where 1 ≤ p <∞.

Exercise 31.14. Suppose that 1 ≤ p <∞, v ∈ Rd, f ∈ Lp
(
Rd
)
∩C1

(
Rd
)

such

that ∂vf ∈ Lp
(
Rd
)
. Then Lp − d

dt |0τ−tvf exists and equals ∂vf.

Exercise 31.15. Suppose 1 ≤ p < ∞, v ∈ Rd, and {un}∞n=1 ⊂ Lp
(
Rd
)

are

such that ∂vun exists strongly for all n and un → u and ∂vun → g in Lp
(
Rd
)
.

Show ∂vu exists strongly and ∂vu = g. Hint: Make use of Remark 31.49.

Definition 31.50 (Weak Differentiability). Let v ∈ Rd and u ∈ Lp(Rd),
then ∂vu is said to exist weakly in Lp(Rd) if there exists a function g ∈ Lp(Rd)
such that

〈u, ∂vϕ〉 = −〈g, ϕ〉 for all ϕ ∈ C∞c (Rd) (31.20)

where

〈u, v〉 :=

∫
Rd
u (x) v (x) dx.

More generally if p (ξ) =
∑
|α|≤N aαξ

α is a polynomial in ξ ∈ Rd and p (∂) :=∑
|α|≤N aα∂

α, then we say p (∂)u exists weakly in Lp
(
Rd
)

if there exists a

function g ∈ Lp(Rd) such that

〈u, p (−∂)ϕ〉 = 〈g, ϕ〉 for all ϕ ∈ C∞c (Rd). (31.21)

Exercise 31.16. Suppose 1 ≤ p < ∞, v ∈ Rd, and u, g ∈ Lp(Rd) such that
∂vu = g exists strongly in Lp. Show ∂vu exists weakly as is still equal to g.
Hint: observe that

〈u, τyv〉 =

∫
Rd
u (x) v (x− y) dx =

∫
Rd
u (x+ y) v (x) dx = 〈τyu, v〉 .

Exercise 31.17. Suppose 1 ≤ p < ∞, v ∈ Rd, and u, g ∈ Lp(Rd) such that
∂vu = g exists weakly in Lp. Show for all ϕ ∈ C∞c

(
Rd
)

that ∂v (u ∗ ϕ) = g ∗ ϕ
strongly in Lp.

Exercise 31.18. Suppose 1 ≤ p < ∞, v ∈ Rd, and u, g ∈ Lp(Rd) such that
∂vu = g exists weakly in Lp. Show ∂vu exists strongly in Lp and the strong
derivative is g. Hint, let ϕ ∈ C∞c

(
Rd
)

such that
∫
Rd ϕ (x) dx = 1 and set

ϕn (x) := ndϕ (nx) so that {ϕn}∞n=1 is an approximate δ – sequence. Then
consider un := u ∗ ϕn.

Remark 31.51. Because of the above results, if 1 ≤ p <∞, v ∈ Rd, u ∈ Lp(Rd)
we will simply say ∂vu = g in Lp to mean ∂vu exists strongly or equivalently
weakly in Lp.

Exercise 31.19. Suppose 1 ≤ p < ∞, v ∈ Rd, and u, g ∈ Lp(Rd) such that
there exists {tn}∞n=1 ⊂ R\ {0} such that
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lim
n→∞

〈
τ−tnvu− u

tn
, ϕ

〉
= 〈g, ϕ〉 for all ϕ ∈ C∞c

(
Rd
)
,

then ∂vu exists in Lp and is equal to g. [Hint: show ∂vu = g in the weak sense.]

Remark 31.52 (Bounded difference quotients implies differentiability). Combin-
ing these exercises with the Banach - Alaoglu’s Theorem (see Proposition 41.16),

the fact that Lp
(
Rd
) ∼= [

Lp/(p−1)
(
Rd
)]∗

for 1 ≤ p < ∞, and the fact that

Lq
(
Rd
)

is separable for 1 ≤ q <∞, one can show; if 1 < p <∞, u ∈ Lp
(
Rd
)
,

and there exists {tn}∞n=1 ⊂ R\ {0} such that

sup
n

∥∥∥∥τ−tnvu− utn

∥∥∥∥
p

<∞,

then ∂vu exists in Lp
(
Rd
)
!

Exercise 31.20. Suppose 1 ≤ p < ∞, v ∈ Rd, p (ξ) is a polynomial function
on Rd, and u, g ∈ Lp(Rd) such that p (∂)u = g exists weakly in Lp. Show there
exists un ∈ C∞c (Rn) such that un → u and p (∂)un → g in Lp. Hint, let
ϕ ∈ C∞c

(
Rd
)

such that
∫
Rd ϕ (x) dx = 1 and set ϕn (x) := ndϕ (nx) so that

{ϕn}∞n=1 is an approximate δ – sequence. Then consider un := ψn ·u∗ϕn where
ψn (x) = ψ (x/n) and ψ ∈ C∞c

(
Rd
)

such that ψ = 1 near 0 ∈ Rd.

Here is a summary of what the previous exercises prove.

Theorem 31.53 (Weak and Strong Differentiability). Suppose p ∈ [1,∞),
u ∈ Lp(Rd) and v ∈ Rd \ {0} and let

∂hv u :=
u (·+ hv)− u (·)

h
for all h 6= 0.

Then the following are equivalent:

1. There exists g ∈ Lp(Rd) and {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0
and

lim
n→∞

〈∂hnv u, ϕ〉 = 〈g, ϕ〉 for all ϕ ∈ C∞c (Rd).

2. ∂
(w)
v u exists and is equal to g ∈ Lp(Rd), i.e. 〈u, ∂vϕ〉 = −〈g, ϕ〉 for all
ϕ ∈ C∞c (Rd).

3. There exists g ∈ Lp(Rd) and un ∈ C∞c (Rd) such that un
Lp→ u and ∂vun

Lp→ g
as n→∞.

4. ∂
(s)
v u exists and is is equal to g ∈ Lp(Rd), i.e. ∂hv u→ g in Lp as h→ 0.

Moreover if p ∈ (1,∞) any one of the equivalent conditions 1. – 4. above
are implied by the following condition.

1′. There exists {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0 and
supn

∥∥∂hnv u
∥∥
p
<∞.

Exercise 31.21. Suppose v ∈ Rd, p, q, r ∈ [1,∞] satisfy 1 + 1
r = 1

p + 1
q , f ∈

Lp
(
Rd
)
, and g ∈ Lq

(
Rd
)

such that ∂vf exists strongly in Lq. Show ∂v (f ∗ g)
exists strongly in Lr and f ∗ ∂vg = f ∗ ∂vg.

31.5 Consider putting Chapter 40 here.
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32

The Riemann Integral

In this Chapter, the Riemann integral for Banach space valued functions is
defined and developed. Our exposition will be brief, since the Lebesgue integral
and the Bochner Lebesgue integral will subsume the content of this chapter. In
Definition 35.54 below, we will give a general notion of a compact subset of a
“topological” space. However, by Corollary 35.62 below, when we are working
with subsets of Rd this definition is equivalent to the following definition.

Definition 32.1. A subset A ⊂ Rd is said to be compact if A is closed and
bounded.

Theorem 32.2. Suppose that K ⊂ Rd is a compact set and f ∈ C (K,X) .
Then

1. Every sequence {un}∞n=1 ⊂ K has a convergent subsequence.
2. The function f is uniformly continuous on K, namely for every ε > 0 there

exists a δ > 0 only depending on ε such that ‖f (u)− f (v)‖ < ε whenever
u, v ∈ K and |u− v| < δ where |·| is the standard Euclidean norm on Rd.

Proof.

1. (This is a special case of Theorem 35.60 and Corollary 35.62 below.) Since

K is bounded, K ⊂ [−R,R]
d

for some sufficiently large d. Let tn be the
first component of un so that tn ∈ [−R,R] for all n. Let J1 = [0, R] if
tn ∈ J1 for infinitely many n otherwise let J1 = [−R, 0]. Similarly split J1

in half and let J2 ⊂ J1 be one of the halves such that tn ∈ J2 for infinitely
many n. Continue this way inductively to find a nested sequence of intervals
J1 ⊃ J2 ⊃ J3 ⊃ J4 ⊃ . . . such that the length of Jk is 2−(k−1)R and for each
k, tn ∈ Jk for infinitely many n. We may now choose a subsequence, {nk}∞k=1

of {n}∞n=1 such that τk := tnk ∈ Jk for all k. The sequence {τk}∞k=1 is
Cauchy and hence convergent. Thus by replacing {un}∞n=1 by a subsequence
if necessary we may assume the first component of {un}∞n=1 is convergent.
Repeating this argument for the second, then the third and all the way
through the dth – components of {un}∞n=1 , we may, by passing to further
subsequences, assume all of the components of un are convergent. But this
implies limun = u exists and since K is closed, u ∈ K.

2. (This is a special case of Exercise 35.20 below.) If f were not uniformly
continuous on K, there would exists an ε > 0 and sequences {un}∞n=1 and
{vn}∞n=1 in K such that

‖f (un)− f (vn)‖ ≥ ε while lim
n→∞

|un − vn| = 0.

By passing to subsequences if necessary we may assume that limn→∞ un
and limn→∞ vn exists. Since limn→∞ |un − vn| = 0, we must have

lim
n→∞

un = u = lim
n→∞

vn

for some u ∈ K. Since f is continuous, vector addition is continuous and
the norm is continuous, we may now conclude that

ε ≤ lim
n→∞

‖f (un)− f (vn)‖ = ‖f (u)− f (u)‖ = 0

which is a contradiction.

For the remainder of the chapter, let [a, b] be a fixed compact interval and
X be a Banach space. The collection S = S([a, b], X) of step functions, f :
[a, b]→ X, consists of those functions f which may be written in the form

f(t) = x01[a,t1](t) +

n−1∑
i=1

xi1(ti,ti+1](t), (32.1)

where π := {a = t0 < t1 < · · · < tn = b} is a partition of [a, b] and xi ∈ X. For
f as in Eq. (32.1), let

I(f) :=

n−1∑
i=0

(ti+1 − ti)xi ∈ X. (32.2)

Exercise 32.1. Show that I(f) is well defined, independent of how f is repre-
sented as a step function. (Hint: show that adding a point to a partition π of
[a, b] does not change the right side of Eq. (32.2).) Also verify that I : S → X
is a linear operator.

Notation 32.3 Let S̄ denote the closure of S inside the Banach space,
`∞([a, b], X) as defined in Remark 14.7.

The following simple “Bounded Linear Transformation” theorem will often
be used in the sequel to define linear transformations.
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Theorem 32.4 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach space, and S ⊂ Z is a dense linear subspace of Z. If T : S → X is a
bounded linear transformation (i.e. there exists C <∞ such that ‖Tz‖ ≤ C ‖z‖
for all z ∈ S), then T has a unique extension to an element T̄ ∈ L(Z,X) and
this extension still satisfies∥∥T̄ z∥∥ ≤ C ‖z‖ for all z ∈ S̄.

Exercise 32.2. Prove Theorem 32.4.

Proposition 32.5 (Riemann Integral). The linear function I : S → X ex-
tends uniquely to a continuous linear operator Ī from S̄ to X and this operator
satisfies,

‖Ī(f)‖ ≤ (b− a) ‖f‖∞ for all f ∈ S̄. (32.3)

Furthermore, C([a, b], X) ⊂ S̄ ⊂ `∞([a, b], X) and for f ∈ C([a, b], X), Ī(f)
may be computed as

Ī(f) = lim
|π|→0

n−1∑
i=0

f(cπi )(ti+1 − ti) (32.4)

where π := {a = t0 < t1 < · · · < tn = b} denotes a partition of [a, b], |π| =
max {|ti+1 − ti| : i = 0, . . . , n− 1} is the mesh size of π and cπi may be chosen
arbitrarily inside [ti, ti+1]. See Figure 32.1.

Fig. 32.1. The usual picture associated to the Riemann integral.

Proof. Taking the norm of Eq. (32.2) and using the triangle inequality
shows,

‖I(f)‖ ≤
n−1∑
i=0

(ti+1 − ti)‖xi‖ ≤
n−1∑
i=0

(ti+1 − ti)‖f‖∞ ≤ (b− a)‖f‖∞. (32.5)

The existence of Ī satisfying Eq. (32.3) is a consequence of Theorem 32.4. Given
f ∈ C([a, b], X), π := {a = t0 < t1 < · · · < tn = b} a partition of [a, b], and
cπi ∈ [ti, ti+1] for i = 0, 1, 2 . . . , n− 1, let fπ ∈ S be defined by

fπ(t) := f(c0)01[t0,t1](t) +

n−1∑
i=1

f(cπi )1(ti,ti+1](t).

Then by the uniform continuity of f on [a, b] (Theorem 32.2), lim|π|→0 ‖f −
fπ‖∞ = 0 and therefore f ∈ S̄. Moreover,

I (f) = lim
|π|→0

I(fπ) = lim
|π|→0

n−1∑
i=0

f(cπi )(ti+1 − ti)

which proves Eq. (32.4).
If fn ∈ S and f ∈ S̄ such that limn→∞ ‖f − fn‖∞ = 0, then for a ≤ α <

β ≤ b, then 1(α,β]fn ∈ S and limn→∞
∥∥1(α,β]f − 1(α,β]fn

∥∥
∞ = 0. This shows

1(α,β]f ∈ S̄ whenever f ∈ S̄.

Notation 32.6 For f ∈ S̄ and a ≤ α ≤ β ≤ b we will denote Ī(1(α,β]f) by∫ β
α
f(t) dt or

∫
(α,β]

f(t)dt. Also following the usual convention, if a ≤ β ≤ α ≤ b,
we will let ∫ β

α

f(t) dt = −Ī(1(β,α]f) = −
∫ α

β

f(t) dt.

The next Lemma, whose proof is left to the reader, contains some of the
many familiar properties of the Riemann integral.

Lemma 32.7. For f ∈ S̄([a, b], X) and α, β, γ ∈ [a, b], the Riemann integral
satisfies:

1.
∥∥∥∫ βα f(t) dt

∥∥∥
X
≤ (β − α) sup {‖f(t)‖ : α ≤ t ≤ β} .

2.
∫ γ
α
f(t) dt =

∫ β
α
f(t) dt+

∫ γ
β
f(t) dt.

3. The function G(t) :=
∫ t
a
f(τ)dτ is continuous on [a, b].

4. If Y is another Banach space and T ∈ L(X,Y ), then Tf ∈ S̄([a, b], Y ) and

T

(∫ β

α

f(t) dt

)
=

∫ β

α

Tf(t) dt.
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32.1 The Fundamental Theorem of Calculus 349

5. The function t→ ‖f(t)‖X is in S̄([a, b],R) and∥∥∥∥∥
∫ b

a

f(t) dt

∥∥∥∥∥
X

≤
∫ b

a

‖f(t)‖X dt.

6. If f, g ∈ S̄([a, b],R) and f ≤ g, then∫ b

a

f(t) dt ≤
∫ b

a

g(t) dt.

Exercise 32.3. Prove Lemma 32.7.

Remark 32.8 (BRUCE: todo?). Perhaps the Riemann Stieljtes integral, Lemma
??, should be done here. Maybe this should be done in the more genral context
of Banach valued functions in preparation of T. Lyon’s rough path analysis.
The point would be to let Xt take values in a Banach space and assume that
Xt had finite variation. Then define µX (t) := supπ

∑
l

∥∥Xt∧tl −Xt∧tl−1

∥∥ . Then
we could define ∫ T

0

ZtdXt := lim
|π|→0

∑
Ztl−1

(
Xt∧tl −Xt∧tl−1

)
for continuous operator valued paths, Zt. This integral would then satisfy the
estimates, ∥∥∥∥∥

∫ T

0

ZtdXt

∥∥∥∥∥ ≤
∫ T

0

‖Zt‖ dµX (t) ≤ sup
0≤t≤T

‖Zt‖µX (T ) .

32.1 The Fundamental Theorem of Calculus

Our next goal is to show that our Riemann integral interacts well with differ-
entiation, namely the fundamental theorem of calculus holds. Before doing this
we will need a couple of basic definitions and results of differential calculus,
more details and the next few results below will be done in greater detail in
Chapter 34.

Definition 32.9. Let (a, b) ⊂ R. A function f : (a, b) → X is differentiable at
t ∈ (a, b) iff

L := lim
h→0

(
h−1 [f(t+ h)− f(t)]

)
= lim
h→0

“
f(t+ h)− f(t)

h
”

exists in X. The limit L, if it exists, will be denoted by ḟ(t) or df
dt (t). We also

say that f ∈ C1((a, b), X) if f is differentiable at all points t ∈ (a, b) and
ḟ ∈ C((a, b), X).

As for the case of real valued functions, the derivative operator d
dt is easily

seen to be linear. The next two results have proofs very similar to their real
valued function analogues.

Lemma 32.10 (Product Rules). Suppose that t → U (t) ∈ L (X) , t →
V (t) ∈ L (X) and t→ x (t) ∈ X are differentiable at t = t0, then

1. d
dt |t0 [U (t)x (t)] ∈ X exists and

d

dt
|t0 [U (t)x (t)] =

[
U̇ (t0)x (t0) + U (t0) ẋ (t0)

]
and

2. d
dt |t0 [U (t)V (t)] ∈ L (X) exists and

d

dt
|t0 [U (t)V (t)] =

[
U̇ (t0)V (t0) + U (t0) V̇ (t0)

]
.

3. If U (t0) is invertible, then t→ U (t)
−1

is differentiable at t = t0 and

d

dt
|t0U (t)

−1
= −U (t0)

−1
U̇ (t0)U (t0)

−1
. (32.6)

Proof. The reader is asked to supply the proof of the first two items in
Exercise 32.9. Before proving item 3., let us assume that U (t)

−1
is differentiable,

then using the product rule we would learn

0 =
d

dt
|t0I =

d

dt
|t0
[
U (t)

−1
U (t)

]
=

[
d

dt
|t0U (t)

−1

]
U (t0) + U (t0)

−1
U̇ (t0) .

Solving this equation for d
dt |t0U (t)

−1
gives the formula in Eq. (32.6). The prob-

lem with this argument is that we have not yet shown t→ U (t)
−1

is invertible
at t0. Here is the formal proof. Since U (t) is differentiable at t0, U (t)→ U (t0)
as t→ t0 and by Corollary 14.27, U (t0 + h) is invertible for h near 0 and

U (t0 + h)
−1 → U (t0)

−1
as h→ 0.

Therefore, using Lemma 14.16, we may let h→ 0 in the identity,

U (t0 + h)
−1 − U (t0)

−1

h
= U (t0 + h)

−1

(
U (t0)− U (t0 + h)

h

)
U (t0)

−1
,

to learn

lim
h→0

U (t0 + h)
−1 − U (t0)

−1

h
= −U (t0)

−1
U̇ (t0)U (t0)

−1
.
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350 32 The Riemann Integral

Proposition 32.11 (Chain Rule). Suppose s → x (s) ∈ X is differentiable
at s = s0 and t → T (t) ∈ R is differentiable at t = t0 and T (t0) = s0, then
t→ x (T (t)) is differentiable at t0 and

d

dt
|t0x (T (t)) = x′ (T (t0))T ′ (t0) .

The proof of the chain rule is essentially the same as the real valued function
case, see Exercise 32.10.

Proposition 32.12. Suppose that f : [a, b]→ X is a continuous function such
that ḟ(t) exists and is equal to zero for t ∈ (a, b). Then f is constant.

Proof. Let ε > 0 and α ∈ (a, b) be given. (We will later let ε ↓ 0.) By the
definition of the derivative, for all τ ∈ (a, b) there exists δτ > 0 such that

‖f(t)− f(τ)‖ =
∥∥∥f(t)− f(τ)− ḟ(τ)(t− τ)

∥∥∥ ≤ ε |t− τ | if |t− τ | < δτ .

(32.7)
Let

A = {t ∈ [α, b] : ‖f(t)− f(α)‖ ≤ ε(t− α)} (32.8)

and t0 be the least upper bound for A. We will now use a standard argument
which is sometimes referred to as continuous induction to show t0 = b. Eq.
(32.7) with τ = α shows t0 > α and a simple continuity argument shows t0 ∈ A,
i.e.

‖f(t0)− f(α)‖ ≤ ε(t0 − α). (32.9)

For the sake of contradiction, suppose that t0 < b. By Eqs. (32.7) and (32.9),

‖f(t)− f(α)‖ ≤ ‖f(t)− f(t0)‖+ ‖f(t0)− f(α)‖
≤ ε(t0 − α) + ε(t− t0) = ε(t− α)

for 0 ≤ t − t0 < δt0 which violates the definition of t0 being an upper bound.
Thus we have shown b ∈ A and hence

‖f(b)− f(α)‖ ≤ ε(b− α).

Since ε > 0 was arbitrary we may let ε ↓ 0 in the last equation to conclude
f(b) = f (α) . Since α ∈ (a, b) was arbitrary it follows that f(b) = f (α) for all
α ∈ (a, b] and then by continuity for all α ∈ [a, b], i.e. f is constant.

Remark 32.13. The usual real variable proof of Proposition 32.12 makes use
of Rolle’s theorem which in turn uses the extreme value theorem. This latter
theorem is not available to vector valued functions. However with the aid of
the Hahn Banach Theorem 21.7 (or Corollary 21.8) below and Lemma 32.7,
it is possible to reduce the proof of Proposition 32.12 and the proof of the
Fundamental Theorem of Calculus 32.14 to the real valued case, see Exercise
21.6.

Theorem 32.14 (Fundamental Theorem of Calculus). Suppose that f ∈
C([a, b], X), Then

1. d
dt

∫ t
a
f(τ) dτ = f(t) for all t ∈ (a, b).

2. Now assume that F ∈ C([a, b], X), F is continuously differentiable on (a, b)
(i.e. Ḟ (t) exists and is continuous for t ∈ (a, b)) and Ḟ extends to a con-
tinuous function on [a, b] which is still denoted by Ḟ . Then∫ b

a

Ḟ (t) dt = F (b)− F (a).

Proof. Let h > 0 be a small number and consider∥∥∥∥∥
∫ t+h

a

f(τ)dτ −
∫ t

a

f(τ)dτ − f(t)h

∥∥∥∥∥ =

∥∥∥∥∥
∫ t+h

t

(f(τ)− f(t)) dτ

∥∥∥∥∥
≤
∫ t+h

t

‖(f(τ)− f(t))‖ dτ ≤ hε(h),

where ε(h) := maxτ∈[t,t+h] ‖(f(τ)− f(t))‖. Combining this with a similar com-
putation when h < 0 shows, for all h ∈ R sufficiently small, that∥∥∥∥∥

∫ t+h

a

f(τ)dτ −
∫ t

a

f(τ)dτ − f(t)h

∥∥∥∥∥ ≤ |h|ε(h),

where now ε(h) := maxτ∈[t−|h|,t+|h|] ‖(f(τ) − f(t))‖. By continuity of f at t,

ε(h) → 0 and hence d
dt

∫ t
a
f(τ) dτ exists and is equal to f(t). For the second

item, set G(t) :=
∫ t
a
Ḟ (τ) dτ − F (t). Then G is continuous by Lemma 32.7 and

Ġ(t) = 0 for all t ∈ (a, b) by item 1. An application of Proposition 32.12 shows

G is a constant and in particular G(b) = G(a), i.e.
∫ b
a
Ḟ (τ) dτ −F (b) = −F (a).

Corollary 32.15 (Mean Value Inequality). Suppose that f : [a, b] → X is
a continuous function such that ḟ(t) exists for t ∈ (a, b) and ḟ extends to a
continuous function on [a, b]. Then

‖f(b)− f(a)‖ ≤
∫ b

a

‖ḟ(t)‖dt ≤ (b− a) ·
∥∥∥ḟ∥∥∥

∞
. (32.10)

Proof. By the fundamental theorem of calculus, f(b) − f(a) =
∫ b
a
ḟ(t)dt

and then by Lemma 32.7,

‖f(b)− f(a)‖ =

∥∥∥∥∥
∫ b

a

ḟ(t)dt

∥∥∥∥∥ ≤
∫ b

a

‖ḟ(t)‖dt

≤
∫ b

a

∥∥∥ḟ∥∥∥
∞
dt = (b− a) ·

∥∥∥ḟ∥∥∥
∞
.
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Corollary 32.16 (Change of Variable Formula). Suppose that f ∈
C([a, b], X) and T : [c, d] → (a, b) is a continuous function such that T (s)
is continuously differentiable for s ∈ (c, d) and T ′ (s) extends to a continuous
function on [c, d]. Then∫ d

c

f (T (s))T ′ (s) ds =

∫ T (d)

T (c)

f (t) dt.

Proof. For t ∈ (a, b) define F (t) :=
∫ t
T (c)

f (τ) dτ. Then F ∈ C1 ((a, b) , X)

and by the fundamental theorem of calculus and the chain rule,

d

ds
F (T (s)) = F ′ (T (s))T ′ (s) = f (T (s))T ′ (s) .

Integrating this equation on s ∈ [c, d] and using the chain rule again gives∫ d

c

f (T (s))T ′ (s) ds = F (T (d))− F (T (c)) =

∫ T (d)

T (c)

f (t) dt.

32.2 Integral Operators as Examples of Bounded
Operators

In the examples to follow, all integrals are the standard Riemann integrals and
we will make use of the following notation.

Notation 32.17 Given an open set U ⊂ Rd, let Cc (U) denote the collection
of real valued continuous functions f on U such that

supp(f) := {x ∈ U : f (x) 6= 0}

is a compact subset of U.

Example 32.18. Suppose that K : [0, 1] × [0, 1] → C is a continuous function.
For f ∈ C([0, 1]), let

Tf(x) =

∫ 1

0

K(x, y)f(y)dy.

Since

|Tf(x)− Tf(z)| ≤
∫ 1

0

|K(x, y)−K(z, y)| |f(y)| dy

≤ ‖f‖∞max
y
|K(x, y)−K(z, y)| (32.11)

and the latter expression tends to 0 as x → z by uniform continuity of K.
Therefore Tf ∈ C([0, 1]) and by the linearity of the Riemann integral, T :
C([0, 1])→ C([0, 1]) is a linear map. Moreover,

|Tf(x)| ≤
∫ 1

0

|K(x, y)| |f(y)| dy ≤
∫ 1

0

|K(x, y)| dy · ‖f‖∞ ≤ A ‖f‖∞

where

A := sup
x∈[0,1]

∫ 1

0

|K(x, y)| dy <∞. (32.12)

This shows ‖T‖ ≤ A <∞ and therefore T is bounded. We may in fact show
‖T‖ = A. To do this let x0 ∈ [0, 1] be such that

sup
x∈[0,1]

∫ 1

0

|K(x, y)| dy =

∫ 1

0

|K(x0, y)| dy.

Such an x0 can be found since, using a similar argument to that in Eq. (32.11),

x→
∫ 1

0
|K(x, y)| dy is continuous. Given ε > 0, let

fε(y) :=
K(x0, y)√

ε+ |K(x0, y)|2

and notice that limε↓0 ‖fε‖∞ = 1 and

‖Tfε‖∞ ≥ |Tfε(x0)| = Tfε(x0) =

∫ 1

0

|K(x0, y)|2√
ε+ |K(x0, y)|2

dy.

Therefore,

‖T‖ ≥ lim
ε↓0

1

‖fε‖∞

∫ 1

0

|K(x0, y)|2√
ε+ |K(x0, y)|2

dy

= lim
ε↓0

∫ 1

0

|K(x0, y)|2√
ε+ |K(x0, y)|2

dy = A

since

0 ≤ |K(x0, y)| − |K(x0, y)|2√
ε+ |K(x0, y)|2

=
|K(x0, y)|√
ε+ |K(x0, y)|2

[√
ε+ |K(x0, y)|2 − |K(x0, y)|

]

≤
√
ε+ |K(x0, y)|2 − |K(x0, y)|
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352 32 The Riemann Integral

and the latter expression tends to zero uniformly in y as ε ↓ 0.
We may also consider other norms on C([0, 1]). Let (for now) L1 ([0, 1])

denote C([0, 1]) with the norm

‖f‖1 =

∫ 1

0

|f(x)| dx,

then T : L1 ([0, 1], dm) → C([0, 1]) is bounded as well. Indeed, let M =
sup {|K(x, y)| : x, y ∈ [0, 1]} , then

|(Tf)(x)| ≤
∫ 1

0

|K(x, y)f(y)| dy ≤M ‖f‖1

which shows ‖Tf‖∞ ≤M ‖f‖1 and hence,

‖T‖L1→C ≤ max {|K(x, y)| : x, y ∈ [0, 1]} <∞.

We can in fact show that ‖T‖ = M as follows. Let (x0, y0) ∈ [0, 1]2 satisfying
|K(x0, y0)| = M. Then given ε > 0, there exists a neighborhood U = I ×
J of (x0, y0) such that |K(x, y)−K(x0, y0)| < ε for all (x, y) ∈ U. Let f ∈
Cc(I, [0,∞)) such that

∫ 1

0
f(x)dx = 1. Choose α ∈ C such that |α| = 1 and

αK(x0, y0) = M, then

|(Tαf)(x0)| =
∣∣∣∣∫ 1

0

K(x0, y)αf(y)dy

∣∣∣∣ =

∣∣∣∣∫
I

K(x0, y)αf(y)dy

∣∣∣∣
≥ Re

∫
I

αK(x0, y)f(y)dy

≥
∫
I

(M − ε) f(y)dy = (M − ε) ‖αf‖L1

and hence
‖Tαf‖C ≥ (M − ε) ‖αf‖L1

showing that ‖T‖ ≥ M − ε. Since ε > 0 is arbitrary, we learn that ‖T‖ ≥ M
and hence ‖T‖ = M.

One may also view T as a map from T : C([0, 1])→ L1([0, 1]) in which case
one may show

‖T‖L1→C ≤
∫ 1

0

max
y
|K(x, y)| dx <∞.

32.3 Linear Ordinary Differential Equations

Let X be a Banach space, J = (a, b) ⊂ R be an open interval with 0 ∈ J,
h ∈ C(J,X) and A ∈ C(J, L(X)). In this section we are going to consider the
ordinary differential equation,

ẏ(t) = A(t)y(t) + h (t) and y(0) = x ∈ X, (32.13)

where y is an unknown function in C1(J,X). This equation may be written in
its equivalent (as the reader should verify) integral form, namely we are looking
for y ∈ C(J,X) such that

y(t) = x+

∫ t

0

h (τ) dτ +

∫ t

0

A(τ)y(τ)dτ. (32.14)

In what follows, we will abuse notation and use ‖·‖ to denote the operator norm
on L (X) associated to the norm, ‖·‖ , on X and let ‖ϕ‖∞ := maxt∈J ‖ϕ(t)‖ for
ϕ ∈ BC(J,X) or BC(J, L (X)).

Notation 32.19 For t ∈ R and n ∈ N, let

∆n(t) =

{
{(τ1, . . . , τn) ∈ Rn : 0 ≤ τ1 ≤ · · · ≤ τn ≤ t} if t ≥ 0
{(τ1, . . . , τn) ∈ Rn : t ≤ τn ≤ · · · ≤ τ1 ≤ 0} if t ≤ 0

and also write dτ = dτ1 . . . dτn and∫
∆n(t)

f(τ1, . . . , τn)dτ : = (−1)n·1t<0

∫ t

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1f(τ1, . . . , τn)

where

1t<0 =

{
1 if t < 0
0 if t ≥ 0

.

Lemma 32.20. Suppose that ψ ∈ C (R,R) , then

(−1)n·1t<0

∫
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1

n!

(∫ t

0

ψ(τ)dτ

)n
. (32.15)

Proof. Let Ψ(t) :=
∫ t

0
ψ(τ)dτ. The proof will go by induction on n. The

case n = 1 is easily verified since

(−1)1·1t<0

∫
∆1(t)

ψ(τ1)dτ1 =

∫ t

0

ψ(τ)dτ = Ψ(t).

Now assume the truth of Eq. (32.15) for n− 1 for some n ≥ 2, then

(−1)
n·1t<0

∫
∆n(t)

ψ(τ1) . . . ψ(τn)dτ

=

∫ t

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1ψ(τ1) . . . ψ(τn)

=

∫ t

0

dτn
Ψn−1(τn)

(n− 1)!
ψ(τn) =

∫ t

0

dτn
Ψn−1(τn)

(n− 1)!
Ψ̇(τn)

=

∫ Ψ(t)

0

un−1

(n− 1)!
du =

Ψn(t)

n!
,
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wherein we made the change of variables, u = Ψ(τn), in the second to last
equality.

Remark 32.21. Eq. (32.15) is equivalent to∫
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1

n!

(∫
∆1(t)

ψ(τ)dτ

)n
and another way to understand this equality is to view

∫
∆n(t)

ψ(τ1) . . . ψ(τn)dτ

as a multiple integral (see Chapter ?? below) rather than an iterated integral.
Indeed, taking t > 0 for simplicity and letting Sn be the permutation group on
{1, 2, . . . , n} we have

[0, t]n = ∪σ∈Sn{(τ1, . . . , τn) ∈ Rn : 0 ≤ τσ1 ≤ · · · ≤ τσn ≤ t}

with the union being “essentially” disjoint. Therefore, making a change of vari-
ables and using the fact that ψ(τ1) . . . ψ(τn) is invariant under permutations,
we find(∫ t

0

ψ(τ)dτ

)n
=

∫
[0,t]n

ψ(τ1) . . . ψ(τn)dτ

=
∑
σ∈Sn

∫
{(τ1,...,τn)∈Rn:0≤τσ1≤···≤τσn≤t}

ψ(τ1) . . . ψ(τn)dτ

=
∑
σ∈Sn

∫
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(sσ−11) . . . ψ(sσ−1n)ds

=
∑
σ∈Sn

∫
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(s1) . . . ψ(sn)ds

= n!

∫
∆n(t)

ψ(τ1) . . . ψ(τn)dτ.

Theorem 32.22. Let ϕ ∈ BC(J,X), then the integral equation

y(t) = ϕ(t) +

∫ t

0

A(τ)y(τ)dτ (32.16)

has a unique solution given by

y(t) = ϕ(t) +

∞∑
n=1

(−1)
n·1t<0

∫
∆n(t)

A(τn) . . . A(τ1)ϕ(τ1)dτ (32.17)

and this solution satisfies the bound

‖y‖∞ ≤ ‖ϕ‖∞ e

∫
J
‖A(τ)‖dτ

.

Proof. Define Λ : BC(J,X)→ BC(J,X) by

(Λy)(t) =

∫ t

0

A(τ)y(τ)dτ.

Then y solves Eq. (32.14) iff y = ϕ + Λy or equivalently iff (I − Λ)y = ϕ. An
induction argument shows

(Λnϕ)(t) =

∫ t

0

dτnA(τn)(Λn−1ϕ)(τn)

=

∫ t

0

dτn

∫ τn

0

dτn−1A(τn)A(τn−1)(Λn−2ϕ)(τn−1)

...

=

∫ t

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1A(τn) . . . A(τ1)ϕ(τ1)

= (−1)
n·1t<0

∫
∆n(t)

A(τn) . . . A(τ1)ϕ(τ1)dτ.

Taking norms of this equation and using the triangle inequality along with
Lemma 32.20 gives,

‖(Λnϕ)(t)‖ ≤ ‖ϕ‖∞ ·
∫
∆n(t)

‖A(τn)‖ . . . ‖A(τ1)‖dτ

≤‖ϕ‖∞ ·
1

n!

(∫
∆1(t)

‖A(τ)‖dτ

)n
≤‖ϕ‖∞ ·

1

n!

(∫
J

‖A(τ)‖dτ
)n

.

Therefore,

‖Λn‖op ≤
1

n!

(∫
J

‖A(τ)‖dτ
)n

(32.18)

and
∞∑
n=0

‖Λn‖op ≤ e
∫
J
‖A(τ)‖dτ

<∞

where ‖·‖op denotes the operator norm on L (BC(J,X)) . An application of

Proposition 14.26 now shows (I − Λ)−1 =
∞∑
n=0

Λn exists and

∥∥(I − Λ)−1
∥∥
op
≤ e
∫
J
‖A(τ)‖dτ

.

It is now only a matter of working through the notation to see that these
assertions prove the theorem.
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354 32 The Riemann Integral

Corollary 32.23. Suppose h ∈ C(J,X) and x ∈ X, then there exists a unique
solution, y ∈ C1 (J,X) , to the linear ordinary differential Eq. (32.13).

Proof. Let

ϕ (t) = x+

∫ t

0

h (τ) dτ.

By applying Theorem 32.22 with J replaced by any open interval J0 such that
0 ∈ J0 and J̄0 is a compact subinterval1 of J, there exists a unique solution yJ0
to Eq. (32.13) which is valid for t ∈ J0. By uniqueness of solutions, if J1 is a
subinterval of J such that J0 ⊂ J1 and J̄1 is a compact subinterval of J, we
have yJ1 = yJ0 on J0. Because of this observation, we may construct a solution
y to Eq. (32.13) which is defined on the full interval J by setting y (t) = yJ0 (t)
for any J0 as above which also contains t ∈ J.

Corollary 32.24. Suppose that A ∈ L(X) is independent of time, then the
solution to

ẏ(t) = Ay(t) with y(0) = x

is given by y(t) = etAx where

etA =

∞∑
n=0

tn

n!
An. (32.19)

Moreover,
e(t+s)A = etAesA for all s, t ∈ R. (32.20)

Proof. The first assertion is a simple consequence of Eq. 32.17 and Lemma
32.20 with ψ = 1. The assertion in Eq. (32.20) may be proved by explicit
computation but the following proof is more instructive. Given x ∈ X, let
y (t) := e(t+s)Ax. By the chain rule,

d

dt
y (t) =

d

dτ
|τ=t+se

τAx = AeτAx|τ=t+s

= Ae(t+s)Ax = Ay (t) with y (0) = esAx.

The unique solution to this equation is given by

y (t) = etAx (0) = etAesAx.

This completes the proof since, by definition, y (t) = e(t+s)Ax.
We also have the following converse to this corollary whose proof is outlined

in Exercise 32.20 below.

Theorem 32.25. Suppose that Tt ∈ L(X) for t ≥ 0 satisfies

1 We do this so that φ|J0 will be bounded.

1. (Semi-group property.) T0 = IdX and TtTs = Tt+s for all s, t ≥ 0.
2. (Norm Continuity) t → Tt is continuous at 0, i.e. ‖Tt − I‖L(X) → 0 as
t ↓ 0.

Then there exists A ∈ L(X) such that Tt = etA where etA is defined in Eq.
(32.19).

32.4 Operator Logarithms

Our goal in this section is to find an explicit local inverse to the exponential
function, A → eA for A near zero. The existence of such an inverse can be
deduced from the inverse function theorem although we will not need this fact
here. We begin with the real variable fact that

ln (1 + x) =

∫ 1

0

d

ds
ln (1 + sx) ds =

∫ 1

0

x (1 + sx)
−1
ds.

Definition 32.26. When A ∈ L (X) satisfies 1 + sA is invertible for 0 ≤ s ≤ 1
we define

ln (1 +A) =

∫ 1

0

A (1 + sA)
−1
ds. (32.21)

The invertibility of 1 + sA for 0 ≤ s ≤ 1 is satisfied if;

1. A is nilpotent, i.e. AN = 0 for some N ∈ N or more generally if
2.
∑∞
n=0 ‖An‖ <∞ (for example assume that ‖A‖ < 1), of

3. if X is a Hilbert space and A∗ = A with A ≥ 0.

In the first two cases

(1 + sA)
−1

=

∞∑
n=0

(−s)nAn.

Proposition 32.27. If 1 + sA is invertible for 0 ≤ s ≤ 1, then

∂B ln (1 +A) =

∫ 1

0

(1 + sA)
−1
B (1 + sA)

−1
ds. (32.22)

If 0 = [A,B] := AB −BA, Eq. (32.22) reduces to

∂B ln (1 +A) = B (1 +A)
−1
. (32.23)
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Proof. Differentiating Eq. (32.21) shows

∂B ln (1 +A) =

∫ 1

0

[
B (1 + sA)

−1 −A (1 + sA)
−1
sB (1 + sA)

−1
]
ds

=

∫ 1

0

[
B − sA (1 + sA)

−1
B
]

(1 + sA)
−1
ds.

Combining this last equality with

sA (1 + sA)
−1

= (1 + sA− 1) (1 + sA)
−1

= 1− (1 + sA)
−1

gives Eq. (32.22). In case [A,B] = 0,

(1 + sA)
−1
B (1 + sA)

−1
= B (1 + sA)

−2

= B
d

ds

[
−A−1 (1 + sA)

−1
]

and so by the fundamental theorem of calculus

∂B ln (1 +A) = B

∫ 1

0

(1 + sA)
−2
ds = B

[
−A−1 (1 + sA)

−1
]s=1

s=0

= B
[
A−1 −A−1 (1 +A)

−1
]

= BA−1
[
1− (1 +A)

−1
]

= B
[
A−1 (1 +A)−A−1

]
(1 +A)

−1
= B (1 +A)

−1
.

Corollary 32.28. Suppose that t→ A (t) ∈ L (X) is a C1 – function 1+sA (t)
is invertible for 0 ≤ s ≤ 1 for all t ∈ J = (a, b) ⊂ R. If g (t) := 1 + A (t) and
t ∈ J, then

d

dt
ln (g (t)) =

∫ 1

0

(1− s+ sg (t))
−1
ġ (t) (1− s+ sg (t))

−1
ds. (32.24)

Moreover if [A (t) , A (τ)] = 0 for all t, τ ∈ J then,

d

dt
ln (g (t)) = Ȧ (t) (1 +A (t))

−1
. (32.25)

Proof. Differentiating past the integral and then using Eq. (32.22) gives

d

dt
ln (g (t)) =

∫ 1

0

(1 + sA (t))
−1
Ȧ (t) (1 + sA (t))

−1
ds

=

∫ 1

0

(1 + s (g (t)− 1))
−1
ġ (t) (1 + s (g (t)− 1))

−1
ds

=

∫ 1

0

(1− s+ sg (t))
−1
ġ (t) (1− s+ sg (t))

−1
ds.

For the second assertion we may use Eq. (32.23) instead Eq. (32.22) in order
to immediately arrive at Eq. (32.25).

Theorem 32.29. If A ∈ L (X) satisfies, 1 + sA is invertible for 0 ≤ s ≤ 1,
then

eln(I+A) = I +A. (32.26)

If C ∈ L (X) satisfies
∑∞
n=1

1
n! ‖C

n‖n < 1 (for example assume ‖C‖ < ln 2, i.e.

e‖C‖ < 2), then
ln eC = C. (32.27)

This equation also holds of C is nilpotent or if X is a Hilbert space and C = C∗

with C ≥ 0.

Proof. For 0 ≤ t ≤ 1 let

C (t) = ln (I + tA) = t

∫ 1

0

A (1 + stA)
−1
ds.

Since [C (t) , C (τ)] = 0 for all τ, t ∈ [0, 1] , if we let g (t) := eC(t), then

ġ (t) =
d

dt
eC(t) = Ċ (t) eC(t) = A (1 + tA)

−1
g (t) with g (0) = I.

Noting that g (t) = 1 + tA solves this ordinary differential equation, it follows
by uniqueness of solutions to ODE’s that eC(t) = g (t) = 1 + tA. Evaluating
this equation at t = 1 implies Eq. (32.26).

Now let C ∈ L (X) as in the statement of the theorem and for t ∈ R set

A (t) := etC − 1 =

∞∑
n=1

tn

n!
Cn.

Therefore,

1 + sA (t) = 1 + s

∞∑
n=1

tn

n!
Cn

with ∥∥∥∥∥s
∞∑
n=1

tn

n!
Cn

∥∥∥∥∥ ≤ s
∞∑
n=1

tn

n!
‖Cn‖n < 1 for 0 ≤ s, t ≤ 1.

Because of this observation, ln
(
etC
)

:= ln (1 +A (t)) is well defined and because
[A (t) , A (τ)] = 0 for all τ and t we may use Eq. (32.25) to learn,

d

dt
ln
(
etC
)

:= Ȧ (t) (1 +A (t))
−1

= CetCe−tC = C with ln
(
e0C
)

= 0.

The unique solution to this simple ODE is ln
(
etC
)

= tC and evaluating this at
t = 1 gives Eq. (32.27).
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32.5 Classical Weierstrass Approximation Theorem

Definition 32.30 (Support). Let f : X → Z be a function from a metric
space (X, ρ) to a vector space Z. The support of f is the closed subset, supp(f),
of X defined by

supp(f) := {x ∈ X : f(x) 6= 0}.

Example 32.31. For example if f : R→ R is defined by f(x) = sin(x)1[0,4π](x) ∈
R, then

{f 6= 0} = (0, 4π) \ {π, 2π, 3π}

and therefore supp(f) = [0, 4π].

For the remainder of this section, Z will be used to denote a Banach space.

Definition 32.32 (Convolution). For f, g ∈ C (R) with either f or g having
compact support, we define the convolution of f and g by

f ∗ g(x) =

∫
R
f(x− y)g(y)dy =

∫
R
f(y)g(x− y)dy.

We will also use this definition when one of the functions, either f or g, takes
values in a Banach space Z.

Lemma 32.33 (Approximate δ – sequences). Suppose that {qn}∞n=1 is a
sequence non-negative continuous real valued functions on R with compact sup-
port that satisfy ∫

R
qn(x) dx = 1 and (32.28)

lim
n→∞

∫
|x|≥ε

qn(x)dx = 0 for all ε > 0. (32.29)

If f ∈ BC(R, Z), then

qn ∗ f (x) :=

∫
R
qn(y)f(x− y)dy

converges to f uniformly on compact subsets of R.

Proof. Let x ∈ R, then because of Eq. (32.28),

‖qn ∗ f(x)− f(x)‖ =

∥∥∥∥∫
R
qn(y) (f(x− y)− f(x)) dy

∥∥∥∥
≤
∫
R
qn(y) ‖f(x− y)− f(x)‖ dy.

Let M = sup {‖f(x)‖ : x ∈ R} . Then for any ε > 0, using Eq. (32.28),

‖qn ∗ f(x)− f(x)‖ ≤
∫
|y|≤ε

qn(y) ‖f(x− y)− f(x)‖ dy

+

∫
|y|>ε

qn(y) ‖f(x− y)− f(x)‖ dy

≤ sup
|w|≤ε

‖f(x+ w)− f(x)‖+ 2M

∫
|y|>ε

qn(y)dy.

So if K is a compact subset of R (for example a large interval) we have

sup
(x)∈K

‖qn ∗ f(x)− f(x)‖

≤ sup
|w|≤ε, x∈K

‖f(x+ w)− f(x)‖+ 2M

∫
‖y‖>ε

qn(y)dy

and hence by Eq. (32.29),

lim sup
n→∞

sup
x∈K
‖qn ∗ f(x)− f(x)‖

≤ sup
|w|≤ε, x∈K

‖f(x+ w)− f(x)‖ .

This finishes the proof since the right member of this equation tends to 0 as
ε ↓ 0 by uniform continuity of f on compact subsets of R.

Let qn : R→[0,∞) be defined by

qn(x) :=
1

cn
(1− x2)n1|x|≤1 where cn :=

∫ 1

−1

(1− x2)ndx. (32.30)

Figure 32.2 displays the key features of the functions qn.

Lemma 32.34. The sequence {qn}∞n=1 is an approximate δ – sequence, i.e. they
satisfy Eqs. (32.28) and (32.29).

Proof. By construction, qn ∈ Cc (R, [0,∞)) for each n and Eq. 32.28 holds.
Since ∫

|x|≥ε
qn(x)dx =

2
∫ 1

ε
(1− x2)ndx

2
∫ ε

0
(1− x2)ndx+ 2

∫ 1

ε
(1− x2)ndx

≤
∫ 1

ε
x
ε (1− x2)ndx∫ ε

0
x
ε (1− x2)ndx

=
(1− x2)n+1|1ε
(1− x2)n+1|ε0

=
(1− ε2)n+1

1− (1− ε2)n+1
→ 0 as n→∞,

the proof is complete.
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32.5 Classical Weierstrass Approximation Theorem 357

Fig. 32.2. A plot of q1, q50, and q100. The most peaked curve is q100 and the least is
q1. The total area under each of these curves is one.

Notation 32.35 Let Z+ := N ∪ {0} and for x ∈ Rd and α ∈ Zd+ let xα =∏d
i=1 x

αi
i and |α| =

∑d
i=1 αi. A polynomial on Rd with values in Z is a function

p : Rd → Z of the form

p(x) =
∑

α:|α|≤N

pαx
α with pα ∈ Z and N ∈ Z+.

If pα 6= 0 for some α such that |α| = N, then we define deg(p) := N to be
the degree of p. If Z is a complex Banach space, the function p has a natural
extension to z ∈ Cd, namely p(z) =

∑
α:|α|≤N pαz

α where zα =
∏d
i=1 z

αi
i .

Given a compact subset K ⊂ Rd and f ∈ C (K,C)2, we are going to show, in
the Weierstrass approximation Theorem 32.39 below, that f may be uniformly
approximated by polynomial functions on K. The next theorem addresses this
question when K is a compact subinterval of R.

Theorem 32.36 (Weierstrass Approximation Theorem). Suppose −∞ <
a < b <∞, J = [a, b] and f ∈ C(J, Z). Then there exists polynomials pn on R
such that pn → f uniformly on J.

2 Note that f is automatically bounded because if not there would exist un ∈ K
such that limn→∞ |f (un)| = ∞. Using Theorem 32.2 we may, by passing to a
subsequence if necessary, assume un → u ∈ K as n→∞ . Now the continuity of f
would then imply

∞ = lim
n→∞

|f (un)| = |f (u)|

which is absurd since f takes values in C.

Proof. By replacing f by F where

F (t) := f (a+ t (b− a))− [f (a) + t (f (b)− f (a))] for t ∈ [0, 1] ,

it suffices to assume a = 0, b = 1 and f (0) = f (1) = 0. Furthermore we may
now extend f to a continuous function on all R by setting f ≡ 0 on R \ [0, 1] .

With qn defined as in Eq. (32.30), let fn(x) := (qn ∗ f)(x) and recall from
Lemma 32.33 that fn (x)→ f (x) as n→∞ with the convergence being uniform
in x ∈ [0, 1]. This completes the proof since fn is equal to a polynomial function
on [0, 1] . Indeed, there are polynomials, ak (y) , such that

(1− (x− y)2)n =

2n∑
k=0

ak (y)xk,

and therefore, for x ∈ [0, 1] ,

fn(x) =

∫
R
qn(x− y)f(y)dy

=
1

cn

∫
[0,1]

f(y)
[
(1− (x− y)2)n1|x−y|≤1

]
dy

=
1

cn

∫
[0,1]

f(y)(1− (x− y)2)ndy

=
1

cn

∫
[0,1]

f(y)

2n∑
k=0

ak (y)xkdy =

2n∑
k=0

Akx
k

where

Ak =
1

cn

∫
[0,1]

f (y) ak (y) dy.

Lemma 32.37. Suppose J = [a, b] is a compact subinterval of R and K is
a compact subset of Rd−1, then the linear mapping R : C (J ×K,Z) →
C (J,C (K,Z)) defined by (Rf) (t) = f (t, ·) ∈ C (K,Z) for t ∈ J is an iso-
metric isomorphism of Banach spaces.

Proof. By uniform continuity of f on J ×K (see Theorem 32.2),

‖(Rf) (t)− (Rf) (s)‖C(K,Z) = max
y∈K
‖f (t, y)− f (s, y)‖Z → 0 as s→ t

which shows that Rf is indeed in C (J,C (K,Z)) . Moreover,

‖Rf‖C(J→C(K,Z)) = max
t∈J
‖(Rf) (t)‖C(K,Z)

= max
t∈J

max
y∈K
‖f (t, y)‖Z = ‖f‖C(J×K,Z) ,
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showing R is isometric and therefore injective.
To see that R is surjective, let F ∈ C (J,C (K,Z)) and define f (t, y) :=

F (t) (y) . Since

‖f (t, y)− f (s, y′)‖Z ≤ ‖f (t, y)− f (s, y)‖Z + ‖f (s, y)− f (s, y′)‖Z
≤ ‖F (t)− F (s)‖C(K,Z) + ‖F (s) (y)− F (s) (y′)‖Z ,

it follows by the continuity of t→ F (t) and y → F (s) (y) that

‖f (t, y)− f (s, y′)‖Z → 0 as (t, y)→ (s, y′) .

This shows f ∈ C (J ×K,Z) and thus completes the proof because Rf = F by
construction.

Corollary 32.38 (Weierstrass Approximation Theorem). Let d ∈ N,
Ji = [ai, bi] be compact subintervals of R for i = 1, 2, . . . , d, J := J1 × · · · × Jd
and f ∈ C(J, Z). Then there exists polynomials pn on Rd such that pn → f
uniformly on J.

Proof. The proof will be by induction on d with the case d = 1 being the
content of Theorem 32.36. Now suppose that d > 1 and the theorem holds with
d replaced by d−1. Let K := J2×· · ·×Jd, Z0 = C (K,Z) , R : C (J1 ×K,Z)→
C (J1, Z0) be as in Lemma 32.37 and F := Rf. By Theorem 32.36, for any ε > 0
there exists a polynomial function

p (t) =

n∑
k=0

ckt
k

with ck ∈ Z0 = C (K,Z) such that ‖F − p‖C(J1,Z0) < ε. By the induction
hypothesis, there exists polynomial functions qk : K → Z such that

‖ck − qk‖Z0
<

ε

n (|a|+ |b|)k
.

It is now easily verified (you check) that the polynomial function,

ρ (x) :=

n∑
k=0

xk1qk (x2, . . . , xd) for x ∈ J

satisfies ‖f − ρ‖C(J,Z) < 2ε and this completes the induction argument and
hence the proof.

The reader is referred to Chapter ?? for two more alternative proofs of this
corollary.

Theorem 32.39 (Weierstrass Approximation Theorem). Suppose that
K ⊂ Rd is a compact subset and f ∈ C(K,C). Then there exists polynomi-
als pn on Rd such that pn → f uniformly on K.

Proof. Choose λ > 0 and b ∈ Rd such that

K0 := λK − b := {λx− b : x ∈ K} ⊂ Bd

where Bd := (0, 1)
d
. The function F (y) := f

(
λ−1 (y + b)

)
for y ∈ K0 is in

C (K0,C) and if p̂n (y) are polynomials on Rd such that p̂n → F uniformly
on K0 then pn (x) := p̂n (λx− b) are polynomials on Rd such that pn → f
uniformly on K. Hence we may now assume that K is a compact subset of Bd.
Let g ∈ C (K ∪Bcd) be defined by

g (x) =

{
f (x) if x ∈ K

0 if x ∈ Bcd
and then use the Tietze extension Theorem 14.5 (applied to the real and
imaginary parts of F ) to find a continuous function F ∈ C(Rd,C) such that

F = g|K∪Bc
d
. If pn are polynomials on Rd such that pn → F uniformly on [0, 1]

d

then pn also converges to f uniformly on K. Hence, by replacing f by F, we
may now assume that f ∈ C(Rd,C), K = B̄d = [0, 1]

d
, and f ≡ 0 on Bcd. The

result now follows by an application of Corollary 32.38 with Z = C.

Remark 32.40. The mapping (x, y) ∈ Rd × Rd → z = x + iy ∈ Cd is an iso-
morphism of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2 and
y = z−z̄

2i . Therefore under this identification any polynomial p(x, y) on Rd×Rd
may be written as a polynomial q in (z, z̄), namely

q(z, z̄) = p(
z + z̄

2
,
z − z̄

2i
).

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x+ iy, x− iy).

Corollary 32.41 (Complex Weierstrass Approximation Theorem).
Suppose that K ⊂ Cd is a compact set and f ∈ C(K,C). Then there exists
polynomials pn(z, z̄) for z ∈ Cd such that supz∈K |pn(z, z̄)− f(z)| → 0 as
n→∞.

Proof. This is an immediate consequence of Theorem 32.39 and Remark
32.40.

Example 32.42. Let K = S1 = {z ∈ C : |z| = 1} andA be the set of polynomials
in (z, z̄) restricted to S1. Then A is dense in C(S1).3 Since z̄ = z−1 on S1,

3 Note that it is easy to extend f ∈ C(S1) to a function F ∈ C(C) by setting
F (z) = |z| f( z

|z| ) for z 6= 0 and F (0) = 0. So this special case does not require the
Tietze extension theorem.
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we have shown polynomials in z and z−1 are dense in C(S1). This example

generalizes in an obvious way to K =
(
S1
)d ⊂ Cd.

Exercise 32.4. Suppose −∞ < a < b <∞ and f ∈ C ([a, b],C) satisfies∫ b

a

f (t) tndt = 0 for n = 0, 1, 2 . . . .

Show f ≡ 0.

Exercise 32.5. Suppose f ∈ C (R,C) is a 2π – periodic function (i.e.
f (x+ 2π) = f (x) for all x ∈ R) and∫ 2π

0

f (x) einxdx = 0 for all n ∈ Z,

show again that f ≡ 0. Hint: Use Example 32.42 to show that any 2π – periodic
continuous function g on R is the uniform limit of trigonometric polynomials
of the form

p (x) =

n∑
k=−n

pke
ikx with pk ∈ C for all k.

32.6 Iterated Integrals

Theorem 32.43 (Baby Fubini Theorem). Let ai, bi ∈ R with ai 6= bi for i =
1, 2 . . . , n, f(t1, t2, . . . , tn) ∈ Z be a continuous function of (t1, t2, . . . , tn) where
ti between ai and bi for each i and for any given permutation, σ, of {1, 2 . . . , n}
let

Iσ (f) :=

∫ bσ1

aσ1

dtσ1
. . .

∫ bσn

aσn

dtσnf(t1, t2, . . . , tn). (32.31)

Then Iσ (f) is well defined and independent of σ, i.e. the order of iterated inte-
grals is irrelevant under these hypothesis.

Proof. Let Ji := [min (ai, bi) ,max (ai, bi)] , J := J1 × · · · × Jn and |Ji| :=
max (ai, bi) − min (ai, bi) . Using the uniform continuity of f (Theorem 32.2)
and the continuity of the Riemann integral, it is easy to prove (compare with
the proof of Lemma 32.37) that the map

(t1, . . . , t̂σn, . . . , tn) ∈ (J1 × · · · × Ĵσn × · · · × Jn)→
∫ bσn

aσn

dtσnf(t1, t2, . . . , tn)

is continuous, where the hat is used to denote a missing element from a list. From
this remark, it follows that each of the integrals in Eq. (32.31) are well defined

and hence so is Iσ (f) . Moreover by an induction argument using Lemma 32.37
and the boundedness of the Riemann integral, we have the estimate,

‖Iσ (f)‖Z ≤

(
n∏
i=1

|Ji|

)
‖f‖C(J,Z) . (32.32)

Now suppose τ is another permutation. Because of Eq. (32.32), Iσ and Iτ
are bounded operators on C (J, Z) and so to shows Iσ = Iτ is suffices to shows
there are equal on the dense set of polynomial functions (see Corollary 32.38)
in C (J, Z) . Moreover by linearity, it suffices to show Iσ (f) = Iτ (f) when f
has the form

f(t1, t2, . . . , tn) = tk11 . . . tknn z

for some ki ∈ N0 and z ∈ Z. However for this function, explicit computations
show

Iσ (f) = Iτ (f) =

(
n∏
i=1

bki+1
i − aki+1

i

ki + 1

)
· z.

Proposition 32.44 (Equality of Mixed Partial Derivatives). Let Q =
(a, b) × (c, d) be an open rectangle in R2 and f ∈ C(Q,Z). Assume that
∂
∂tf(s, t), ∂

∂sf(s, t) and ∂
∂t

∂
∂sf(s, t) exists and are continuous for (s, t) ∈ Q,

then ∂
∂s

∂
∂tf(s, t) exists for (s, t) ∈ Q and

∂

∂s

∂

∂t
f(s, t) =

∂

∂t

∂

∂s
f(s, t) for (s, t) ∈ Q. (32.33)

Proof. Fix (s0, t0) ∈ Q. By two applications of Theorem 32.14,

f(s, t) = f(s0, t) +

∫ s

s0

∂

∂σ
f(σ, t)dσ

= f(s0, t) +

∫ s

s0

∂

∂σ
f(σ, t0)dσ +

∫ s

s0

dσ

∫ t

t0

dτ
∂

∂τ

∂

∂σ
f(σ, τ) (32.34)

and then by Fubini’s Theorem 32.43 we learn

f(s, t) = f(s0, t) +

∫ s

s0

∂

∂σ
f(σ, t0)dσ +

∫ t

t0

dτ

∫ s

s0

dσ
∂

∂τ

∂

∂σ
f(σ, τ).

Differentiating this equation in t and then in s (again using two more applica-
tions of Theorem 32.14) shows Eq. (32.33) holds.
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32.7 Exercises

Throughout these problems, (X, ‖·‖) is a Banach space.

Exercise 32.6. Show f = (f1, . . . , fn) ∈ S̄([a, b],Rn) iff fi ∈ S̄([a, b],R) for
i = 1, 2, . . . , n and∫ b

a

f(t)dt =

(∫ b

a

f1(t)dt, . . . ,

∫ b

a

fn(t)dt

)
.

Here Rn is to be equipped with the usual Euclidean norm. Hint: Use Lemma
32.7 to prove the forward implication.

Exercise 32.7. Give another proof of Proposition 32.44 which does not use
Fubini’s Theorem 32.43 as follows.

1. By a simple translation argument we may assume (0, 0) ∈ Q and we are
trying to prove Eq. (32.33) holds at (s, t) = (0, 0).

2. Let h(s, t) := ∂
∂t

∂
∂sf(s, t) and

G(s, t) :=

∫ s

0

dσ

∫ t

0

dτh(σ, τ)

so that Eq. (32.34) states

f(s, t) = f(0, t) +

∫ s

0

∂

∂σ
f(σ, t0)dσ +G(s, t)

and differentiating this equation at t = 0 shows

∂

∂t
f(s, 0) =

∂

∂t
f(0, 0) +

∂

∂t
G(s, 0). (32.35)

Now show using the definition of the derivative that

∂

∂t
G(s, 0) =

∫ s

0

dσh(σ, 0). (32.36)

Hint: Consider

G(s, t)− t
∫ s

0

dσh(σ, 0) =

∫ s

0

dσ

∫ t

0

dτ [h(σ, τ)− h(σ, 0)] .

3. Now differentiate Eq. (32.35) in s using Theorem 32.14 to finish the proof.

Exercise 32.8. Give another proof of Eq. (32.31) in Theorem 32.43 based on
Proposition 32.44. To do this let t0 ∈ (c, d) and s0 ∈ (a, b) and define

G(s, t) :=

∫ t

t0

dτ

∫ s

s0

dσf(σ, τ)

Show G satisfies the hypothesis of Proposition 32.44 which combined with two
applications of the fundamental theorem of calculus implies

∂

∂t

∂

∂s
G(s, t) =

∂

∂s

∂

∂t
G(s, t) = f(s, t).

Use two more applications of the fundamental theorem of calculus along with
the observation that G = 0 if t = t0 or s = s0 to conclude

G(s, t) =

∫ s

s0

dσ

∫ t

t0

dτ
∂

∂τ

∂

∂σ
G(σ, τ) =

∫ s

s0

dσ

∫ t

t0

dτ
∂

∂τ
f(σ, τ). (32.37)

Finally let s = b and t = d in Eq. (32.37) and then let s0 ↓ a and t0 ↓ c to prove
Eq. (32.31).

Exercise 32.9 (Product Rule). Prove items 1. and 2. of Lemma 32.10. This
can be modeled on the standard proof for real valued functions.

Exercise 32.10 (Chain Rule). Prove the chain rule in Proposition 32.11.
Again this may be modeled on the standard proof for real valued functions.

Exercise 32.11. To each A ∈ L (X) , we may define LA, RA : L (X) → L (X)
by

LAB = AB and RAB = BA for all B ∈ L (X) .

Show LA, RA ∈ L (L (X)) and that

‖LA‖L(L(X)) = ‖A‖L(X) = ‖RA‖L(L(X)) .

Exercise 32.12. Suppose that A : R → L(X) is a continuous function and
U, V : R→ L(X) are the unique solution to the linear differential equations

V̇ (t) = A(t)V (t) with V (0) = I (32.38)

and
U̇(t) = −U(t)A(t) with U(0) = I. (32.39)

Prove that V (t) is invertible and that V −1(t) = U(t)4, where by abuse of

notation I am writing V −1 (t) for [V (t)]
−1
. Hints: 1) show d

dt [U(t)V (t)] = 0
(which is sufficient if dim(X) <∞) and 2) show y(t) := V (t)U(t) solves a linear
differential ordinary differential equation that has y ≡ I as an obvious solution.
(The results of Exercise 32.11 may be useful here.) Then use the uniqueness of
solutions to linear ODEs.
4 The fact that U(t) must be defined as in Eq. (32.39) follows from Lemma 32.10.
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Exercise 32.13. Suppose that (X, ‖·‖) is a Banach space, J = (a, b) with
−∞ ≤ a < b ≤ ∞ and fn : R → X are continuously differentiable functions
such that there exists a summable sequence {an}∞n=1 satisfying

‖fn (t)‖+
∥∥∥ḟn (t)

∥∥∥ ≤ an for all t ∈ J and n ∈ N.

Show:

1. sup
{∥∥∥ fn(t+h)−fn(t)

h

∥∥∥ : (t, h) ∈ J × R 3 t+ h ∈ J and h 6= 0
}
≤ an.

2. The function F : R→ X defined by

F (t) :=

∞∑
n=1

fn (t) for all t ∈ J

is differentiable and for t ∈ J,

Ḟ (t) =

∞∑
n=1

ḟn (t) .

Exercise 32.14. Suppose that A ∈ L(X). Show directly that:

1. etA define in Eq. (32.19) is convergent in L(X) when equipped with the
operator norm.

2. etA is differentiable in t and that d
dte

tA = AetA.

Exercise 32.15. Suppose that A ∈ L(X) and v ∈ X is an eigenvector of A
with eigenvalue λ, i.e. that Av = λv. Show etAv = etλv. Also show that if
X = Rn and A is a diagonalizable n× n matrix with

A = SDS−1 with D = diag(λ1, . . . , λn)

then etA = SetDS−1 where etD = diag(etλ1 , . . . , etλn). Here diag(λ1, . . . , λn)
denotes the diagonal matrix Λ such that Λii = λi for i = 1, 2, . . . , n.

Exercise 32.16. Suppose that A,B ∈ L(X) and [A,B] := AB−BA = 0. Show
that e(A+B) = eAeB .

Exercise 32.17. Suppose A ∈ C(R, L(X)) satisfies [A(t), A(s)] = 0 for all
s, t ∈ R. Show

y(t) := e

(∫ t
0
A(τ)dτ

)
x

is the unique solution to ẏ(t) = A(t)y(t) with y(0) = x.

Exercise 32.18. Compute etA when

A =

(
0 1
−1 0

)
and use the result to prove the formula

cos(s+ t) = cos s cos t− sin s sin t.

Hint: Sum the series and use etAesA = e(t+s)A.

Exercise 32.19. Compute etA when

A =

 0 a b
0 0 c
0 0 0


with a, b, c ∈ R. Use your result to compute et(λI+A) where λ ∈ R and I is the
3× 3 identity matrix. Hint: Sum the series.

Exercise 32.20. Prove Theorem 32.25 using the following outline.

1. Using the right continuity at 0 and the semi-group property for Tt, show
there are constants M and C such that ‖Tt‖L(X) ≤MCt for all t > 0.

2. Show t ∈ [0,∞)→ Tt ∈ L(X) is continuous.
3. For ε > 0, let Sε := 1

ε

∫ ε
0
Tτdτ ∈ L(X). Show Sε → I as ε ↓ 0 and conclude

from this that Sε is invertible when ε > 0 is sufficiently small. For the
remainder of the proof fix such a small ε > 0.

4. Show

TtSε =
1

ε

∫ t+ε

t

Tτdτ

and conclude from this that

lim
t↓0

(
Tt − I
t

)
Sε =

1

ε
(Tε − IdX) .

5. Using the fact that Sε is invertible, conclude A = limt↓0 t
−1 (Tt − I) exists

in L(X) and that

A =
1

ε
(Tε − I)S−1

ε .

6. Now show, using the semigroup property and step 5., that d
dtTt = ATt for

all t > 0.
7. Using step 6., show d

dte
−tATt = 0 for all t > 0 and therefore e−tATt =

e−0AT0 = I.
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Exercise 32.21 (Duhamel’ s Principle I). Suppose that A : R → L(X) is
a continuous function and V : R → L(X) is the unique solution to the linear
differential equation in Eq. (32.38). Let x ∈ X and h ∈ C(R, X) be given. Show
that the unique solution to the differential equation:

ẏ(t) = A(t)y(t) + h(t) with y(0) = x (32.40)

is given by

y(t) = V (t)x+ V (t)

∫ t

0

V (τ)−1h(τ) dτ. (32.41)

Hint: compute d
dt [V

−1(t)y(t)] (see Exercise 32.12) when y solves Eq. (32.40).

Exercise 32.22 (Duhamel’ s Principle II). Suppose that A : R→ L(X) is
a continuous function and V : R → L(X) is the unique solution to the linear
differential equation in Eq. (32.38). Let W0 ∈ L(X) and H ∈ C(R, L(X)) be
given. Show that the unique solution to the differential equation:

Ẇ (t) = A(t)W (t) +H(t) with W (0) = W0 (32.42)

is given by

W (t) = V (t)W0 + V (t)

∫ t

0

V (τ)−1H(τ) dτ. (32.43)



33

Ordinary Differential Equations in a Banach Space

Let X be a Banach space, U ⊂o X, J = (a, b) 3 0 and Z ∈ C (J × U,X) .
The function Z is to be interpreted as a time dependent vector-field on U ⊂ X.
In this section we will consider the ordinary differential equation (ODE for
short)

ẏ(t) = Z(t, y(t)) with y(0) = x ∈ U. (33.1)

The reader should check that any solution y ∈ C1(J, U) to Eq. (33.1) gives a
solution y ∈ C(J, U) to the integral equation:

y(t) = x+

∫ t

0

Z(τ, y(τ))dτ (33.2)

and conversely if y ∈ C(J, U) solves Eq. (33.2) then y ∈ C1(J, U) and y solves
Eq. (33.1).

Remark 33.1. For notational simplicity we have assumed that the initial condi-
tion for the ODE in Eq. (33.1) is taken at t = 0. There is no loss in generality
in doing this since if ỹ solves

dỹ

dt
(t) = Z̃(t, ỹ(t)) with ỹ(t0) = x ∈ U

iff y(t) := ỹ(t+ t0) solves Eq. (33.1) with Z(t, x) = Z̃(t+ t0, x).

33.1 Examples

Let X = R, Z(x) = xn with n ∈ N and consider the ordinary differential
equation

ẏ(t) = Z(y(t)) = yn(t) with y(0) = x ∈ R. (33.3)

If y solves Eq. (33.3) with x 6= 0, then y(t) is not zero for t near 0. Therefore
up to the first time y possibly hits 0, we must have

t =

∫ t

0

ẏ(τ)

y(τ)n
dτ =

∫ y(t)

y(0)

u−ndu =


[y(t)]1−n−x1−n

1−n if n > 1

ln
∣∣∣y(t)
x

∣∣∣ if n = 1

and solving these equations for y(t) implies

y(t) = y(t, x) =

{
x

n−1
√

1−(n−1)txn−1
if n > 1

etx if n = 1.
(33.4)

The reader should verify by direct calculation that y(t, x) defined above does
indeed solve Eq. (33.3). The above argument shows that these are the only
possible solutions to the Equations in (33.3).

Notice that when n = 1, the solution exists for all time while for n > 1, we
must require

1− (n− 1)txn−1 > 0

or equivalently that

t <
1

(1− n)xn−1
if xn−1 > 0 and

t > − 1

(1− n) |x|n−1 if xn−1 < 0.

Moreover for n > 1, y(t, x) blows up as t approaches (n− 1)
−1
x1−n. The reader

should also observe that, at least for s and t close to 0,

y(t, y(s, x)) = y(t+ s, x) (33.5)

for each of the solutions above. Indeed, if n = 1 Eq. (33.5) is equivalent to the
well know identity, etes = et+s and for n > 1,
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y(t, y(s, x)) =
y(s, x)

n−1
√

1− (n− 1)ty(s, x)n−1

=

x
n−1
√

1−(n−1)sxn−1

n−1

√
1− (n− 1)t

[
x

n−1
√

1−(n−1)sxn−1

]n−1

=

x
n−1
√

1−(n−1)sxn−1

n−1

√
1− (n− 1)t xn−1

1−(n−1)sxn−1

=
x

n−1
√

1− (n− 1)sxn−1 − (n− 1)txn−1

=
x

n−1
√

1− (n− 1)(s+ t)xn−1
= y(t+ s, x).

Now suppose Z(x) = |x|α with 0 < α < 1 and we now consider the ordinary
differential equation

ẏ(t) = Z(y(t)) = |y(t)|α with y(0) = x ∈ R. (33.6)

Working as above we find, if x 6= 0 that

t =

∫ t

0

ẏ(τ)

|y(t)|α
dτ =

∫ y(t)

y(0)

|u|−α du =
[y(t)]

1−α − x1−α

1− α
,

where u1−α := |u|1−α sgn(u). Since sgn(y(t)) = sgn(x) the previous equation
implies

sgn(x)(1− α)t = sgn(x)
[
sgn(y(t)) |y(t)|1−α − sgn(x) |x|1−α

]
= |y(t)|1−α − |x|1−α

and therefore,

y(t, x) = sgn(x)
(
|x|1−α + sgn(x)(1− α)t

) 1
1−α

(33.7)

is uniquely determined by this formula until the first time t where |x|1−α +
sgn(x)(1− α)t = 0.

As before y(t) = 0 is a solution to Eq. (33.6) when x = 0, however it is far
from being the unique solution. For example letting x ↓ 0 in Eq. (33.7) gives a
function

y(t, 0+) = ((1− α)t)
1

1−α

which solves Eq. (33.6) for t > 0. Moreover if we define

y(t) :=

{
((1− α)t)

1
1−α if t > 0

0 if t ≤ 0
,

(for example if α = 1/2 then y(t) = 1
4 t

21t≥0) then the reader may easily check
y also solve Eq. (33.6). Furthermore, ya(t) := y(t− a) also solves Eq. (33.6) for
all a ≥ 0, see Figure 33.1 below.

Fig. 33.1. Three different solutions to the ODE ẏ(t) = |y(t)|1/2 with y(0) = 0.

With these examples in mind, let us now go to the general theory. The case
of linear ODE’s has already been studied in Section 32.3 above.

33.2 Uniqueness Theorem and Continuous Dependence
on Initial Data

Lemma 33.2 (Gronwall’s Lemma). Suppose that f, ε, and k are non-
negative locally integrable functions of t ∈ [0,∞) such that

f(t) ≤ ε(t) +

∣∣∣∣∫ t

0

k(τ)f(τ)dτ

∣∣∣∣ . (33.8)

Then

f(t) ≤ ε(t) +

∣∣∣∣∫ t

0

k(τ)ε(τ)e

∣∣∫ t
τ
k(s)ds

∣∣
dτ

∣∣∣∣ , (33.9)

and in particular if ε and k are constants we find that

f(t) ≤ εek|t|. (33.10)

Page: 364 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



33.3 Local Existence (Non-Linear ODE) 365

Proof. I will only prove the case t ≥ 0. The case t ≤ 0 can be derived by
applying the t ≥ 0 to f̃(t) = f(−t), k̃(t) = k(−t) and ε(t) = ε(−t).

Set F (t) =
∫ t

0
k(τ)f(τ)dτ . Then by (33.8) and the Lebesgue version of the

fundamental theorem of calculus,

Ḟ = kf ≤ kε+ kF a.e.

Hence,

d

dt

(
e
−
∫ t
0
k(s)ds

F (t)

)
a.e.
= e

−
∫ t
0
k(s)ds

(Ḟ (t)−k (t)F (t))
a.e.
≤ k (t) ε (t) e

−
∫ t
0
k(s)ds

.

Integrating this last inequality from 0 to t and then solving for F yields:

F (t) ≤ e
∫ t
0
k(s)ds ·

∫ t

0

dτk(τ)ε(τ)e
−
∫ τ
0
k(s)ds

=

∫ t

0

dτk(τ)ε(τ)e

∫ t
τ
k(s)ds

.

But by the definition of F and Eq. (33.8) we have,

f (t) ≤ ε (t) + F (t) ≤
∫ t

0

dτk(τ)ε(τ)e

∫ t
τ
k(s)ds

which is Eq. (33.9). Equation (33.10) follows from (33.9) by a simple integration.

Corollary 33.3 (Continuous Dependence on Initial Data). Let U ⊂o X,
0 ∈ (a, b) and Z : (a, b)×U → X be a continuous function which is K–Lipschitz
function on U, i.e. ‖Z(t, x)−Z(t, x′)‖ ≤ K‖x−x′‖ for all x and x′ in U. Suppose
y1, y2 : (a, b)→ U solve

dyi(t)

dt
= Z(t, yi(t)) with yi(0) = xi for i = 1, 2. (33.11)

Then
‖y2(t)− y1(t)‖ ≤ ‖x2 − x1‖eK|t| for t ∈ (a, b) (33.12)

and in particular, there is at most one solution to Eq. (33.1) under the above
Lipschitz assumption on Z.

Proof. Let f(t) := ‖y2(t) − y1(t)‖. Then by the fundamental theorem of
calculus,

f(t) = ‖y2(0)− y1(0) +

∫ t

0

(ẏ2(τ)− ẏ1(τ)) dτ‖

≤ f(0) +

∣∣∣∣∫ t

0

‖Z(τ, y2(τ))− Z(τ, y1(τ))‖ dτ
∣∣∣∣

= ‖x2 − x1‖+K

∣∣∣∣∫ t

0

f(τ) dτ

∣∣∣∣ .

Therefore by Gronwall’s inequality we have,

‖y2(t)− y1(t)‖ = f(t) ≤ ‖x2 − x1‖eK|t|.

33.3 Local Existence (Non-Linear ODE)

Lemma 33.4. Suppose that K (t) is a locally integrable function of t ∈ [0,∞)
and {εn (t)}∞n=0 is a sequence of non-negative continuous functions such that

εn+1 (t) ≤
∫ t

0

K (τ) εn (τ) dτ for all n ≥ 0 (33.13)

and ε0 (t) ≤ δ <∞ for all t ∈ [0,∞). Then

εn (t) ≤ δ

n!

[∫ t

0

K (s) dτ

]n
. (33.14)

Proof. The proof is by induction. Notice that

ε1 (t) ≤
∫ t

0

K (τ) ε0 (τ) dτ ≤ δ
∫ t

0

K (τ) dτ

as desired. If Eq. (33.14) holds for level n, then

εn+1 (t) ≤
∫ t

0

K (τ) εn (τ) dτ ≤ δ

n!

∫ t

0

K (τ)

[∫ τ

0

K (s) dτ

]n
dτ

=
δ

n!

∫ t

0

1

n+ 1

d

dτ

[∫ τ

0

K (s) dτ

]n+1

dτ

=
δ

(n+ 1)!

[∫ t

0

K (s) dτ

]n+1

which is Eq. (33.14) at level n+ 1.
We now show that Eq. (33.1) has a unique solution when Z satisfies the Lip-

schitz condition in Eq. (33.16). See Exercise 36.17 below for another existence
theorem.

Theorem 33.5 (Local Existence). Let T > 0, J = (−T, T ), x0 ∈ X, r > 0
and

C(x0, r) := {x ∈ X : ‖x− x0‖ ≤ r}

be the closed r – ball centered at x0 ∈ X. Assume
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M = sup {‖Z(t, x)‖ : (t, x) ∈ J × C(x0, r)} <∞ (33.15)

and there exists K <∞ such that

‖Z(t, x)− Z(t, y)‖ ≤ K ‖x− y‖ for all x, y ∈ C(x0, r) and t ∈ J. (33.16)

Let T0 < min {r/M, T} and J0 := (−T0, T0), then for each x ∈ B(x0, r −MT0)
there exists a unique solution y(t) = y(t, x) to Eq. (33.2) in C (J0, C(x0, r)) .
Moreover y(t, x) is jointly continuous in (t, x), y(t, x) is differentiable in t,
ẏ(t, x) is jointly continuous for all (t, x) ∈ J0 × B(x0, r −MT0) and satisfies
Eq. (33.1).

Proof. The uniqueness assertion has already been proved in Corollary 33.3.
To prove existence, let Cr := C(x0, r), Y := C (J0, C(x0, r)) and

Sx(y)(t) := x+

∫ t

0

Z(τ, y(τ))dτ. (33.17)

With this notation, Eq. (33.2) becomes y = Sx(y), i.e. we are looking for a fixed
point of Sx. If y ∈ Y, then

‖Sx(y)(t)− x0‖ ≤ ‖x− x0‖+

∣∣∣∣∫ t

0

‖Z(τ, y(τ))‖ dτ
∣∣∣∣ ≤ ‖x− x0‖+M |t|

≤ ‖x− x0‖+MT0 ≤ r −MT0 +MT0 = r,

showing Sx (Y ) ⊂ Y for all x ∈ B(x0, r −MT0). Moreover if y, z ∈ Y,

‖Sx(y)(t)− Sx(z)(t)‖ =

∥∥∥∥∫ t

0

[Z(τ, y(τ))− Z(τ, z(τ))] dτ

∥∥∥∥
≤
∣∣∣∣∫ t

0

‖Z(τ, y(τ))− Z(τ, z(τ))‖ dτ
∣∣∣∣

≤ K
∣∣∣∣∫ t

0

‖y(τ)− z(τ)‖ dτ
∣∣∣∣ . (33.18)

Let y0(t, x) = x and yn(·, x) ∈ Y defined inductively by

yn(·, x) := Sx(yn−1(·, x)) = x+

∫ t

0

Z(τ, yn−1(τ, x))dτ. (33.19)

Using the estimate in Eq. (33.18) repeatedly we find

‖ yn+1(t)− yn(t) ‖

≤ K
∣∣∣∣∫ t

0

‖yn(τ)− yn−1(τ)‖ dτ
∣∣∣∣

≤ K2

∣∣∣∣∫ t

0

dt1

∣∣∣∣∫ t1

0

dt2 ‖yn−1(t2)− yn−2(t2)‖
∣∣∣∣∣∣∣∣

...

≤ Kn

∣∣∣∣∫ t

0

dt1

∣∣∣∣∫ t1

0

dt2 . . .

∣∣∣∣∫ tn−1

0

dtn ‖y1(tn)− y0(tn)‖
∣∣∣∣ . . . ∣∣∣∣∣∣∣∣

≤ Kn ‖y1(·, x)− y0(·, x)‖∞
∫
∆n(t)

dτ

=
Kn |t|n

n!
‖y1(·, x)− y0(·, x)‖∞ (33.20)

wherein we have also made use of Lemma 32.20 (or see Lemma 33.4 BRUCE
perhaps one lemma should be deleted.) Combining this estimate with

‖y1(t, x)− y0(t, x)‖ =

∥∥∥∥∫ t

0

Z(τ, x)dτ

∥∥∥∥ ≤ ∣∣∣∣∫ t

0

‖Z(τ, x)‖ dτ
∣∣∣∣ ≤M0,

where

M0 = max

{∫ T0

0

‖Z(τ, x)‖ dτ,
∫ 0

−T0

‖Z(τ, x)‖ dτ

}
≤MT0,

shows

‖yn+1(t, x)− yn(t, x)‖ ≤M0
Kn |t|n

n!
≤M0

KnTn0
n!

and this implies

∞∑
n=0

sup{ ‖yn+1(·, x)− yn(·, x)‖∞,J0 : t ∈ J0}

≤
∞∑
n=0

M0
KnTn0
n!

= M0e
KT0 <∞

where

‖yn+1(·, x)− yn(·, x)‖∞,J0 := sup {‖yn+1(t, x)− yn(t, x)‖ : t ∈ J0} .

So y(t, x) := limn→∞ yn(t, x) exists uniformly for t ∈ J and using Eq. (33.16)
we also have
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sup{ ‖Z(t, y(t))− Z(t, yn−1(t))‖ : t ∈ J0}
≤ K ‖y(·, x)− yn−1(·, x)‖∞,J0 → 0 as n→∞.

Now passing to the limit in Eq. (33.19) shows y solves Eq. (33.2). From this
equation it follows that y(t, x) is differentiable in t and y satisfies Eq. (33.1).
The continuity of y(t, x) follows from Corollary 33.3 and mean value inequality
(Corollary 32.15):

‖y(t, x)− y(t′, x′)‖ ≤ ‖y(t, x)− y(t, x′)‖+ ‖y(t, x′)− y(t′, x′)‖

= ‖y(t, x)− y(t, x′)‖+

∥∥∥∥∫ t

t′
Z(τ, y(τ, x′))dτ

∥∥∥∥
≤ ‖y(t, x)− y(t, x′)‖+

∣∣∣∣∫ t

t′
‖Z(τ, y(τ, x′))‖ dτ

∣∣∣∣
≤ ‖x− x′‖eKT +

∣∣∣∣∫ t

t′
‖Z(τ, y(τ, x′))‖ dτ

∣∣∣∣ (33.21)

≤ ‖x− x′‖eKT +M |t− t′| .

The continuity of ẏ(t, x) is now a consequence Eq. (33.1) and the continuity of
y and Z.

Corollary 33.6. Let J = (a, b) 3 0 and suppose Z ∈ C(J ×X,X) satisfies

‖Z(t, x)− Z(t, y)‖ ≤ K ‖x− y‖ for all x, y ∈ X and t ∈ J. (33.22)

Then for all x ∈ X, there is a unique solution y(t, x) (for t ∈ J) to Eq. (33.1).
Moreover y(t, x) and ẏ(t, x) are jointly continuous in (t, x).

Proof. Let J0 = (a0, b0) 3 0 be a precompact subinterval of J and Y :=
BC (J0, X) . By compactness, M := supt∈J̄0 ‖Z(t, 0)‖ < ∞ which combined
with Eq. (33.22) implies

sup
t∈J̄0
‖Z(t, x)‖ ≤M +K ‖x‖ for all x ∈ X.

Using this estimate and Lemma 32.7 one easily shows Sx(Y ) ⊂ Y for all x ∈ X.
The proof of Theorem 33.5 now goes through without any further change.

33.4 Global Properties

Definition 33.7 (Local Lipschitz Functions). Let U ⊂o X, J be an open
interval and Z ∈ C(J ×U,X). The function Z is said to be locally Lipschitz in
x if for all x ∈ U and all compact intervals I ⊂ J there exists K = K(x, I) <∞
and ε = ε(x, I) > 0 such that B(x, ε(x, I)) ⊂ U and

‖Z(t, x1)− Z(t, x0)‖ ≤ K(x, I)‖x1 − x0‖ ∀ x0, x1 ∈ B(x, ε(x, I)) & t ∈ I.
(33.23)

For the rest of this section, we will assume J is an open interval containing
0, U is an open subset of X and Z ∈ C(J×U,X) is a locally Lipschitz function.

Lemma 33.8. Let Z ∈ C(J × U,X) be a locally Lipschitz function in X and
E be a compact subset of U and I be a compact subset of J. Then there exists
ε > 0 such that Z(t, x) is bounded for (t, x) ∈ I × Eε and and Z(t, x) is K –
Lipschitz on Eε for all t ∈ I, where

Eε := {x ∈ U : dist(x,E) < ε} .

Proof. Let ε(x, I) andK(x, I) be as in Definition 33.7 above. Since E is com-
pact, there exists a finite subset Λ ⊂ E such that E ⊂ V := ∪x∈ΛB(x, ε(x, I)/2).
If y ∈ V, there exists x ∈ Λ such that ‖y − x‖ < ε(x, I)/2 and therefore

‖Z(t, y)‖ ≤ ‖Z(t, x)‖+K(x, I) ‖y − x‖ ≤ ‖Z(t, x)‖+K(x, I)ε(x, I)/2

≤ sup
x∈Λ,t∈I

{‖Z(t, x)‖+K(x, I)ε(x, I)/2} =: M <∞.

This shows Z is bounded on I × V. Let

ε := d(E, V c) ≤ 1

2
min
x∈Λ

ε(x, I)

and notice that ε > 0 since E is compact, V c is closed and E ∩ V c = ∅.
If y, z ∈ Eε and ‖y − z‖ < ε, then as before there exists x ∈ Λ such that
‖y − x‖ < ε(x, I)/2. Therefore

‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖ < ε+ ε(x, I)/2 ≤ ε(x, I)

and since y, z ∈ B(x, ε(x, I)), it follows that

‖Z(t, y)− Z(t, z)‖ ≤ K(x, I)‖y − z‖ ≤ K0‖y − z‖

where K0 := maxx∈ΛK(x, I) < ∞. On the other hand if y, z ∈ Eε and
‖y − z‖ ≥ ε, then

‖Z(t, y)− Z(t, z)‖ ≤ 2M ≤ 2M

ε
‖y − z‖ .

Thus if we let K := max {2M/ε,K0} , we have shown

‖Z(t, y)− Z(t, z)‖ ≤ K‖y − z‖ for all y, z ∈ Eε and t ∈ I.
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Proposition 33.9 (Maximal Solutions). Let Z ∈ C(J × U,X) be a locally
Lipschitz function in x and let x ∈ U be fixed. Then there is an interval Jx =
(a(x), b(x)) with a ∈ [−∞, 0) and b ∈ (0,∞] and a C1–function y : J → U with
the following properties:

1. y solves ODE in Eq. (33.1).
2. If ỹ : J̃ = (ã, b̃) → U is another solution of Eq. (33.1) (we assume that

0 ∈ J̃) then J̃ ⊂ J and ỹ = y| J̃ .

The function y : J → U is called the maximal solution to Eq. (33.1).

Proof. Suppose that yi : Ji = (ai, bi) → U, i = 1, 2, are two solutions to
Eq. (33.1). We will start by showing that y1 = y2 on J1 ∩ J2. To do this1 let
J0 = (a0, b0) be chosen so that 0 ∈ J̄0 ⊂ J1 ∩ J2, and let E := y1(J̄0)∪ y2(J̄0) –
a compact subset of X. Choose ε > 0 as in Lemma 33.8 so that Z is Lipschitz
on Eε. Then y1|J0 , y2|J0 : J0 → Eε both solve Eq. (33.1) and therefore are equal
by Corollary 33.3. Since J0 = (a0, b0) was chosen arbitrarily so that [a0, b0] ⊂
J1 ∩ J2, we may conclude that y1 = y2 on J1 ∩ J2. Let (yα, Jα = (aα, bα))α∈A
denote the possible solutions to (33.1) such that 0 ∈ Jα. Define Jx = ∪Jα and
set y = yα on Jα. We have just checked that y is well defined and the reader
may easily check that this function y : Jx → U satisfies all the conclusions of
the theorem.

Notation 33.10 For each x ∈ U, let Jx = (a(x), b(x)) be the maximal interval
on which Eq. (33.1) may be solved, see Proposition 33.9. Set D(Z) := ∪x∈U (Jx×
{x}) ⊂ J × U and let ϕ : D(Z) → U be defined by ϕ(t, x) = y(t) where y is
the maximal solution to Eq. (33.1). (So for each x ∈ U, ϕ(·, x) is the maximal
solution to Eq. (33.1).)

Proposition 33.11. Let Z ∈ C(J × U,X) be a locally Lipschitz function in x
and y : Jx = (a(x), b(x))→ U be the maximal solution to Eq. (33.1). If b(x) < b,
then either lim supt↑b(x) ‖Z(t, y(t))‖ = ∞ or y(b(x)−) := limt↑b(x) y(t) exists
and y(b(x)−) /∈ U. Similarly, if a > a(x), then either lim supt↓a(x) ‖y(t)‖ = ∞
or y(a(x)+) := limt↓a(x) y(t) exists and y(a(x)+) /∈ U.
1 Here is an alternate proof of the uniqueness. Let

T ≡ sup{t ∈ [0,min{b1, b2}) : y1 = y2 on [0, t]}.

(T is the first positive time after which y1 and y2 disagree.)
Suppose, for sake of contradiction, that T < min{b1, b2}. Notice that y1(T ) =

y2(T ) =: x′. Applying the local uniqueness theorem to y1(· − T ) and y2(· − T )
thought as function from (−δ, δ) → B(x′, ε(x′)) for some δ sufficiently small, we
learn that y1(·−T ) = y2(·−T ) on (−δ, δ). But this shows that y1 = y2 on [0, T +δ)
which contradicts the definition of T. Hence we must have the T = min{b1, b2}, i.e.
y1 = y2 on J1∩J2∩[0,∞).A similar argument shows that y1 = y2 on J1∩J2∩(−∞, 0]
as well.

Proof. Suppose that b < b(x) and M := lim supt↑b(x) ‖Z(t, y(t))‖ < ∞.
Then there is a b0 ∈ (0, b(x)) such that ‖Z(t, y(t))‖ ≤ 2M for all t ∈ (b0, b(x)).
Thus, by the usual fundamental theorem of calculus argument,

‖y(t)− y(t′)‖ ≤

∣∣∣∣∣
∫ t′

t

‖Z(t, y(τ))‖ dτ

∣∣∣∣∣ ≤ 2M |t− t′|

for all t, t′ ∈ (b0, b(x)). From this it is easy to conclude that y(b(x)−) =
limt↑b(x) y(t) exists. If y(b(x)−) ∈ U, by the local existence Theorem 33.5, there
exists δ > 0 and w ∈ C1 ((b(x)− δ, b(x) + δ), U) such that

ẇ(t) = Z(t, w(t)) and w(b(x)) = y(b(x)−).

Now define ỹ : (a, b(x) + δ)→ U by

ỹ(t) =

{
y(t) if t ∈ Jx
w(t) if t ∈ [b(x), b(x) + δ)

.

The reader may now easily show ỹ solves the integral Eq. (33.2) and hence also
solves Eq. 33.1 for t ∈ (a(x), b(x) + δ).2 But this violates the maximality of y
and hence we must have that y(b(x)−) /∈ U. The assertions for t near a(x) are
proved similarly.

Example 33.12. Let X = R2, J = R, U =
{

(x, y) ∈ R2 : 0 < r < 1
}

where
r2 = x2 + y2 and

Z(x, y) =
1

r
(x, y) +

1

1− r2
(−y, x).

Then the unique solution (x(t), y(t)) to

d

dt
(x(t), y(t)) = Z(x(t), y(t)) with (x(0), y(0)) = (

1

2
, 0)

is given by

(x(t), y(t)) =

(
t+

1

2

)(
cos

(
1

1/2− t

)
, sin

(
1

1/2− t

))
for t ∈ J(1/2,0) = (−1/2, 1/2) . Notice that ‖Z(x(t), y(t))‖ → ∞ as t ↑ 1/2 and
dist((x(t), y(t)), U c)→ 0 as t ↑ 1/2.

2 See the argument in Proposition 33.14 for a slightly different method of extending
y which avoids the use of the integral equation (33.2).
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Example 33.13. (Not worked out completely.) Let X = U = `2, ψ ∈ C∞(R2)
be a smooth function such that ψ = 1 in a neighborhood of the line segment
joining (1, 0) to (0, 1) and being supported within the 1/10 – neighborhood of
this segment. Choose an ↑ ∞ and bn ↑ ∞ and define

Z(x) =

∞∑
n=1

anψ(bn(xn, xn+1))(en+1 − en). (33.24)

For any x ∈ `2, only a finite number of terms are non-zero in the above sum
in a neighborhood of x. Therefor Z : `2 → `2 is a smooth and hence locally
Lipschitz vector field. Let (y(t), J = (a, b)) denote the maximal solution to

ẏ(t) = Z(y(t)) with y(0) = e1.

Then if the an and bn are chosen appropriately, then b < ∞ and there will
exist tn ↑ b such that y(tn) is approximately en for all n. So again y(tn) does
not have a limit yet supt∈[0,b) ‖y(t)‖ <∞. The idea is that Z is constructed to
“blow” the particle from e1 to e2 to e3 to e4 etc. etc. with the time it takes to
travel from en to en+1 being on order 1/2n. The vector field in Eq. (33.24) is
a first approximation at such a vector field, it may have to be adjusted a little
more to provide an honest example. In this example, we are having problems
because y(t) is “going off in dimensions.”

Here is another version of Proposition 33.11 which is more useful when
dim(X) <∞.

Proposition 33.14. Let Z ∈ C(J × U,X) be a locally Lipschitz function in x
and y : Jx = (a(x), b(x))→ U be the maximal solution to Eq. (33.1).

1. If b(x) < b, then for every compact subset K ⊂ U there exists TK < b(x)
such that y(t) /∈ K for all t ∈ [TK , b(x)).

2. When dim(X) <∞, we may write this condition as: if b(x) < b, then either

lim sup
t↑b(x)

‖y(t)‖ =∞ or lim inf
t↑b(x)

dist(y(t), U c) = 0.

Proof. 1) Suppose that b(x) < b and, for sake of contradiction, there exists
a compact set K ⊂ U and tn ↑ b(x) such that y(tn) ∈ K for all n. Since K
is compact, by passing to a subsequence if necessary, we may assume y∞ :=
limn→∞ y(tn) exists in K ⊂ U. By the local existence Theorem 33.5, there exists
T0 > 0 and δ > 0 such that for each x′ ∈ B (y∞, δ) there exists a unique solution
w(·, x′) ∈ C1((−T0, T0), U) solving

w(t, x′) = Z(t, w(t, x′)) and w(0, x′) = x′.

Now choose n sufficiently large so that tn ∈ (b(x)− T0/2, b(x)) and y(tn) ∈
B (y∞, δ) . Define ỹ : (a(x), b(x) + T0/2)→ U by

ỹ(t) =

{
y(t) if t ∈ Jx
w(t− tn, y(tn)) if t ∈ (tn − T0, b(x) + T0/2).

wherein we have used (tn−T0, b(x) +T0/2) ⊂ (tn−T0, tn +T0). By uniqueness
of solutions to ODE’s ỹ is well defined, ỹ ∈ C1((a(x), b(x) + T0/2) , X) and ỹ
solves the ODE in Eq. 33.1. But this violates the maximality of y.

2) For each n ∈ N let

Kn := {x ∈ U : ‖x‖ ≤ n and dist(x, U c) ≥ 1/n} .

Then Kn ↑ U and each Kn is a closed bounded set and hence compact if
dim(X) < ∞. Therefore if b(x) < b, by item 1., there exists Tn ∈ [0, b(x))
such that y(t) /∈ Kn for all t ∈ [Tn, b(x)) or equivalently ‖y(t)‖ > n or
dist(y(t), U c) < 1/n for all t ∈ [Tn, b(x)).

Remark 33.15 (This remark is still rather rough.). In general it is not true that
the functions a and b are continuous. For example, let U be the region in R2

described in polar coordinates by r > 0 and 0 < θ < 3π/2 and Z(x, y) = (0,−1)
as in Figure 33.2 below. Then b(x, y) = y for all x ≥ 0 and y > 0 while
b(x, y) = ∞ for all x < 0 and y ∈ R which shows b is discontinuous. On the
other hand notice that

{b > t} = {x < 0} ∪ {(x, y) : x ≥ 0, y > t}

is an open set for all t > 0. An example of a vector field for which b(x) is
discontinuous is given in the top left hand corner of Figure 33.2. The map
ψ (r (cos θ, sin θ)) :=

(
ln r, tan

(
2
3θ −

π
2

))
, would allow the reader to find an

example on R2 if so desired. Some calculations shows that Z transferred to R2

by the map ψ is given by the new vector

Z̃(x, y) = −e−x
(

sin

(
3π

8
+

3

4
tan−1 (y)

)
, cos

(
3π

8
+

3

4
tan−1 (y)

))
.

(Bruce: Check this!)

Theorem 33.16 (Global Continuity). Let Z ∈ C(J × U,X) be a locally
Lipschitz function in x. Then D(Z) is an open subset of J×U and the functions
ϕ : D(Z)→ U and ϕ : D(Z)→ U are continuous. More precisely, for all x0 ∈ U
and all open intervals J0 such that 0 ∈ J0 @@ Jx0

there exists δ = δ(x0, J0, Z) >
0 and C = C(x0, J0, Z) <∞ such that for all x ∈ B(x0, δ), J0 ⊂ Jx and

‖ϕ(·, x)− ϕ(·, x0)‖BC(J0,U) ≤ C ‖x− x0‖ . (33.25)
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Fig. 33.2. Manufacturing vector fields where b(x) is discontinuous.

Proof. Let |J0| = b0 − a0, I = J̄0 and E := y(J̄0) – a compact subset of U
and let ε > 0 and K < ∞ be given as in Lemma 33.8, i.e. K is the Lipschitz
constant for Z on Eε. Also recall the notation: ∆1(t) = [0, t] if t > 0 and
∆1(t) = [t, 0] if t < 0. Suppose that x ∈ Eε, then by Corollary 33.3,

‖ϕ(t, x)− ϕ(t, x0)‖ ≤ ‖x− x0‖eK|t| ≤ ‖x− x0‖eK|J0| (33.26)

for all t ∈ J0∩Jx such that such that ϕ (∆1(t), x) ⊂ Eε. Letting δ := εe−K|J0|/2,
and assuming x ∈ B(x0, δ), the previous equation implies

‖ϕ(t, x)− ϕ(t, x0)‖ ≤ ε/2 < ε ∀ t ∈ J0 ∩ Jx 3 ϕ (∆1(t), x) ⊂ Eε.

This estimate further shows that ϕ(t, x) remains bounded and strictly away
from the boundary of U for all such t. Therefore, it follows from Proposition
33.9 and “continuous induction3” that J0 ⊂ Jx and Eq. (33.26) is valid for all
t ∈ J0. This proves Eq. (33.25) with C := eK|J0|. Suppose that (t0, x0) ∈ D(Z)
and let 0 ∈ J0 @@ Jx0

such that t0 ∈ J0 and δ be as above. Then we have just
shown J0×B(x0, δ) ⊂ D(Z) which proves D(Z) is open. Furthermore, since the
evaluation map

(t0, y) ∈ J0 ×BC(J0, U)
e→ y(t0) ∈ X

3 See the argument in the proof of Proposition 32.12.

is continuous (as the reader should check) it follows that ϕ = e ◦ (x→ ϕ(·, x)) :
J0 × B(x0, δ) → U is also continuous; being the composition of continuous
maps. The continuity of ϕ(t0, x) is a consequence of the continuity of ϕ and the
differential equation 33.1 Alternatively using Eq. (33.2),

‖ϕ(t0, x)− ϕ(t, x0)‖ ≤ ‖ϕ(t0, x)− ϕ(t0, x0)‖+ ‖ϕ(t0, x0)− ϕ(t, x0)‖

≤ C ‖x− x0‖+

∣∣∣∣∫ t0

t

‖Z(τ, ϕ(τ, x0))‖ dτ
∣∣∣∣

≤ C ‖x− x0‖+M |t0 − t|

where C is the constant in Eq. (33.25) and M = supτ∈J0 ‖Z(τ, ϕ(τ, x0))‖ <∞.
This clearly shows ϕ is continuous.

33.5 Semi-Group Properties of time independent flows

To end this chapter we investigate the semi-group property of the flow associated
to the vector-field Z. It will be convenient to introduce the following suggestive
notation. For (t, x) ∈ D(Z), set etZ(x) = ϕ(t, x). So the path t→ etZ(x) is the
maximal solution to

d

dt
etZ(x) = Z(etZ(x)) with e0Z(x) = x.

This exponential notation will be justified shortly. It is convenient to have the
following conventions.

Notation 33.17 We write f : X → X to mean a function defined on some
open subset D(f) ⊂ X. The open set D(f) will be called the domain of f. Given
two functions f : X → X and g : X → X with domains D(f) and D(g)
respectively, we define the composite function f ◦ g : X → X to be the function
with domain

D(f ◦ g) = {x ∈ X : x ∈ D(g) and g(x) ∈ D(f)} = g−1(D(f))

given by the rule f ◦ g(x) = f(g(x)) for all x ∈ D(f ◦ g). We now write f = g
iff D(f) = D(g) and f(x) = g(x) for all x ∈ D(f) = D(g). We will also write
f ⊂ g iff D(f) ⊂ D(g) and g|D(f) = f.

Theorem 33.18. For fixed t ∈ R we consider etZ as a function from X to X
with domain D(etZ) = {x ∈ U : (t, x) ∈ D(Z)}, where D(ϕ) = D(Z) ⊂ R × U,
D(Z) and ϕ are defined in Notation 33.10. Conclusions:

1. If t, s ∈ R and t · s ≥ 0, then etZ ◦ esZ = e(t+s)Z .
2. If t ∈ R, then etZ ◦ e−tZ = IdD(e−tZ).
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3. For arbitrary t, s ∈ R, etZ ◦ esZ ⊂ e(t+s)Z .

Proof. Item 1. For simplicity assume that t, s ≥ 0. The case t, s ≤ 0 is left
to the reader. Suppose that x ∈ D(etZ ◦ esZ). Then by assumption x ∈ D(esZ)
and esZ(x) ∈ D(etZ). Define the path y(τ) via:

y(τ) =

{
eτZ(x) if 0 ≤ τ ≤ s
e(τ−s)Z(x) if s ≤ τ ≤ t+ s

.

It is easy to check that y solves ẏ(τ) = Z(y(τ)) with y(0) = x. But since,
eτZ(x) is the maximal solution we must have that x ∈ D(e(t+s)Z) and y(t +
s) = e(t+s)Z(x). That is e(t+s)Z(x) = etZ ◦ esZ(x). Hence we have shown that
etZ ◦ esZ ⊂ e(t+s)Z . To finish the proof of item 1. it suffices to show that
D(e(t+s)Z) ⊂ D(etZ ◦ esZ). Take x ∈ D(e(t+s)Z), then clearly x ∈ D(esZ). Set
y(τ) = e(τ+s)Z(x) defined for 0 ≤ τ ≤ t. Then y solves

ẏ(τ) = Z(y(τ)) with y(0) = esZ(x).

But since τ → eτZ(esZ(x)) is the maximal solution to the above initial valued
problem we must have that y(τ) = eτZ(esZ(x)), and in particular at τ = t,
e(t+s)Z(x) = etZ(esZ(x)). This shows that x ∈ D(etZ◦esZ) and in fact e(t+s)Z ⊂
etZ ◦ esZ .

Item 2. Let x ∈ D(e−tZ) – again assume for simplicity that t ≥ 0. Set
y(τ) = e(τ−t)Z(x) defined for 0 ≤ τ ≤ t. Notice that y(0) = e−tZ(x) and
ẏ(τ) = Z(y(τ)). This shows that y(τ) = eτZ(e−tZ(x)) and in particular that
x ∈ D(etZ ◦ e−tZ) and etZ ◦ e−tZ(x) = x. This proves item 2.

Item 3. I will only consider the case that s < 0 and t + s ≥ 0, the other
cases are handled similarly. Write u for t+ s, so that t = −s+u. We know that
etZ = euZ ◦ e−sZ by item 1. Therefore

etZ ◦ esZ = (euZ ◦ e−sZ) ◦ esZ .

Notice in general, one has (f ◦ g) ◦h = f ◦ (g ◦h) (you prove). Hence, the above
displayed equation and item 2. imply that

etZ ◦ esZ = euZ ◦ (e−sZ ◦ esZ) = e(t+s)Z ◦ ID(esZ) ⊂ e(t+s)Z .

The following result is trivial but conceptually illuminating partial converse
to Theorem 33.18.

Proposition 33.19 (Flows and Complete Vector Fields). Suppose U ⊂o
X, ϕ ∈ C(R× U,U) and ϕt(x) = ϕ(t, x). Suppose ϕ satisfies:

1. ϕ0 = IU ,

2. ϕt ◦ ϕs = ϕt+s for all t, s ∈ R, and
3. Z(x) := ϕ̇(0, x) exists for all x ∈ U and Z ∈ C(U,X) is locally Lipschitz.

Then ϕt = etZ .

Proof. Let x ∈ U and y(t) := ϕt(x). Then using Item 2.,

ẏ(t) =
d

ds
|0y(t+ s) =

d

ds
|0ϕ(t+s)(x) =

d

ds
|0ϕs ◦ ϕt(x) = Z(y(t)).

Since y(0) = x by Item 1. and Z is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary 33.3) that ϕt(x) = y(t) = etZ(x).

33.6 Exercises

Exercise 33.1. Find a vector field Z such that e(t+s)Z is not contained in
etZ ◦ esZ .

Definition 33.20. A locally Lipschitz function Z : U ⊂o X → X is said to be
a complete vector field if D(Z) = R × U. That is for any x ∈ U, t → etZ(x) is
defined for all t ∈ R.

Exercise 33.2. Suppose that Z : X → X is a locally Lipschitz function. As-
sume there is a constant C > 0 such that

‖Z(x)‖ ≤ C(1 + ‖x‖) for all x ∈ X.

Then Z is complete. Hint: use Gronwall’s Lemma 33.2 and Proposition 33.11.

Exercise 33.3. Suppose y is a solution to ẏ(t) = |y(t)|1/2 with y(0) = 0. Show
there exists a, b ∈ [0,∞] such that

y(t) =


1
4 (t− b)2 if t ≥ b

0 if −a < t < b
− 1

4 (t+ a)2 if t ≤ −a.

Exercise 33.4. Using the fact that the solutions to Eq. (33.3) are never 0 if
x 6= 0, show that y(t) = 0 is the only solution to Eq. (33.3) with y(0) = 0.

Exercise 33.5 (Higher Order ODE). Let X be a Banach space, , U ⊂o Xn

and f ∈ C (J × U , X) be a Locally Lipschitz function in x = (x1, . . . , xn). Show
the nth ordinary differential equation,

y(n)(t) = f(t, y(t), ẏ(t), . . . , y(n−1)(t)) with y(k)(0) = yk0 for k < n (33.27)
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where (y0
0 , . . . , y

n−1
0 ) is given in U , has a unique solution for small t ∈ J. Hint:

let y(t) =
(
y(t), ẏ(t), . . . , y(n−1)(t)

)
and rewrite Eq. (33.27) as a first order ODE

of the form
ẏ(t) = Z(t,y(t)) with y(0) = (y0

0 , . . . , y
n−1
0 ).

Exercise 33.6. Use the results of Exercises 32.19 and 33.5 to solve

ÿ(t)− 2ẏ(t) + y(t) = 0 with y(0) = a and ẏ(0) = b.

Hint: The 2 × 2 matrix associated to this system, A, has only one eigenvalue
1 and may be written as A = I +B where B2 = 0.

Exercise 33.7 (Non-Homogeneous ODE). Suppose that U ⊂o X is open
and Z : R × U → X is a continuous function. Let J = (a, b) be an interval
and t0 ∈ J. Suppose that y ∈ C1(J, U) is a solution to the “non-homogeneous”
differential equation:

ẏ(t) = Z(t, y(t)) with y(to) = x ∈ U. (33.28)

Define Y ∈ C1(J − t0,R×U) by Y (t) := (t+ t0, y(t+ t0)). Show that Y solves
the “homogeneous” differential equation

Ẏ (t) = Z̃(Y (t)) with Y (0) = (t0, y0), (33.29)

where Z̃(t, x) := (1, Z(x)). Conversely, suppose that Y ∈ C1(J − t0,R×U) is a
solution to Eq. (33.29). Show that Y (t) = (t+t0, y(t+t0)) for some y ∈ C1(J, U)
satisfying Eq. (33.28). (In this way the theory of non-homogeneous O.D.E.’s may
be reduced to the theory of homogeneous O.D.E.’s.)

Exercise 33.8 (Differential Equations with Parameters). Let W be an-
other Banach space, U × V ⊂o X × W and Z ∈ C(U × V,X) be a locally
Lipschitz function on U × V. For each (x,w) ∈ U × V, let t ∈ Jx,w → ϕ(t, x, w)
denote the maximal solution to the ODE

ẏ(t) = Z(y(t), w) with y(0) = x. (33.30)

Prove
D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w} (33.31)

is open in R× U × V and ϕ and ϕ̇ are continuous functions on D.
Hint: If y(t) solves the differential equation in (33.30), then v(t) := (y(t), w)

solves the differential equation,

v̇(t) = Z̃(v(t)) with v(0) = (x,w), (33.32)

where Z̃(x,w) := (Z(x,w), 0) ∈ X ×W and let ψ(t, (x,w)) := v(t). Now apply
the Theorem 33.16 to the differential equation (33.32).

Exercise 33.9 (Abstract Wave Equation). For A ∈ L(X) and t ∈ R, let

cos(tA) :=

∞∑
n=0

(−1)n

(2n)!
t2nA2n and

sin(tA)

A
:=

∞∑
n=0

(−1)n

(2n+ 1)!
t2n+1A2n.

Show that the unique solution y ∈ C2 (R, X) to

ÿ(t) +A2y(t) = 0 with y(0) = y0 and ẏ(0) = ẏ0 ∈ X (33.33)

is given by

y(t) = cos(tA)y0 +
sin(tA)

A
ẏ0.

Remark 33.21. Exercise 33.9 can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (33.33) as a first order ODE using Exercise
33.5. In doing so you will be lead to compute etB where B ∈ L(X×X) is given
by

B =

(
0 I
−A2 0

)
,

where we are writing elements of X×X as column vectors,

(
x1

x2

)
. You should

then show

etB =

(
cos(tA) sin(tA)

A
−A sin(tA) cos(tA)

)
where

A sin(tA) :=

∞∑
n=0

(−1)n

(2n+ 1)!
t2n+1A2(n+1).

Exercise 33.10 (Duhamel’s Principle for the Abstract Wave Equa-
tion). Continue the notation in Exercise 33.9, but now consider the ODE,

ÿ(t) +A2y(t) = f(t) with y(0) = y0 and ẏ(0) = ẏ0 ∈ X (33.34)

where f ∈ C(R, X). Show the unique solution to Eq. (33.34) is given by

y(t) = cos(tA)y0 +
sin(tA)

A
ẏ0 +

∫ t

0

sin((t− τ)A)

A
f(τ)dτ (33.35)

Hint: Again this could be proved by direct calculation. However it is more
instructive to deduce Eq. (33.35) from Exercise 32.21 and the comments in
Remark 33.21.
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Banach Space Calculus

In this section, X and Y will be Banach space and U will be an open subset
of X.

Notation 34.1 (ε, O, and o notation) Let 0 ∈ U ⊂o X, and f : U → Y be
a function. We will write:

1. f(x) = ε(x) if limx→0 ‖f(x)‖ = 0.
2. f(x) = O(x) if there are constants C < ∞ and r > 0 such that
‖f(x)‖ ≤ C‖x‖ for all x ∈ B(0, r). This is equivalent to the condition
that lim supx→0

(
‖x‖−1‖f(x)‖

)
<∞, where

lim sup
x→0

‖f(x)‖
‖x‖

:= lim
r↓0

sup{‖f(x)‖ : 0 < ‖x‖ ≤ r}.

3. f(x) = o(x) if f(x) = ε(x)O(x), i.e. limx→0 ‖f(x)‖/‖x‖ = 0.

Example 34.2. Here are some examples of properties of these symbols.

1. A function f : U ⊂o X → Y is continuous at x0 ∈ U if f(x0 + h) =
f(x0) + ε(h).

2. If f(x) = ε(x) and g(x) = ε(x) then f(x) + g(x) = ε(x).
Now let g : Y → Z be another function where Z is another Banach space.

3. If f(x) = O(x) and g(y) = o(y) then g ◦ f(x) = o(x).
4. If f(x) = ε(x) and g(y) = ε(y) then g ◦ f(x) = ε(x).

34.1 The Differential

Definition 34.3. A function f : U ⊂o X → Y is differentiable at x0 ∈ U if
there exists a linear transformation Λ ∈ L(X,Y ) such that

f(x0 + h)− f(x0)− Λh = o(h). (34.1)

We denote Λ by f ′(x0) or Df(x0) if it exists. As with continuity, f is differ-
entiable on U if f is differentiable at all points in U.

Remark 34.4. The linear transformation Λ in Definition 34.3 is necessarily
unique. Indeed if Λ1 is another linear transformation such that Eq. (34.1) holds
with Λ replaced by Λ1, then

(Λ− Λ1)h = o(h),

i.e.

lim sup
h→0

‖(Λ− Λ1)h‖
‖h‖

= 0.

On the other hand, by definition of the operator norm,

lim sup
h→0

‖(Λ− Λ1)h‖
‖h‖

= ‖Λ− Λ1‖.

The last two equations show that Λ = Λ1.

Exercise 34.1. Show that a function f : (a, b) → X is a differentiable at
t ∈ (a, b) in the sense of Definition 32.9 iff it is differentiable in the sense of
Definition 34.3. Also show Df(t)v = vḟ(t) for all v ∈ R.

Example 34.5. If T ∈ L (X,Y ) and x, h ∈ X, then

T (x+ h)− T (x)− Th = 0

which shows T ′ (x) = T for all x ∈ X.

Example 34.6. Assume that GL(X,Y ) is non-empty. Then by Corollary 14.27,
GL(X,Y ) is an open subset of L(X,Y ) and the inverse map f : GL(X,Y ) →
GL(Y,X), defined by f(A) := A−1, is continuous. We will now show that f is
differentiable and

f ′(A)B = −A−1BA−1 for all B ∈ L(X,Y ).

This is a consequence of the identity,

f(A+H)− f(A) = (A+H)−1 (A− (A+H))A−1 = −(A+H)−1HA−1

which may be used to find the estimate,
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∥∥ =

∥∥[A−1 − (A+H)−1
]
HA−1

∥∥
≤
∥∥A−1 − (A+H)−1

∥∥ ‖H‖ ∥∥A−1
∥∥

≤ ‖A−1‖3 ‖H‖2

1− ‖A−1‖ ‖H‖
= O

(
‖H‖2

)
wherein we have used the bound in Eq. (14.13) of Corollary 14.27 for the last
inequality.

34.2 Product and Chain Rules

The following theorem summarizes some basic properties of the differential.

Theorem 34.7. The differential D has the following properties:

1. Linearity: D is linear, i.e. D(f + λg) = Df + λDg.
2. Product Rule: If f : U ⊂o X → Y and A : U ⊂o X → L(Y,Z) are

differentiable at x0 then so is x→ (Af)(x) := A(x)f(x) and

D(Af)(x0)h = (DA(x0)h)f(x0) +A(x0)Df(x0)h.

3. Chain Rule: If f : U ⊂o X → V ⊂o Y is differentiable at x0 ∈ U, and
g : V ⊂o Y → Z is differentiable at y0 := f(x0), then g ◦ f is differentiable
at x0 and (g ◦ f)′(x0) = g′(y0)f ′(x0).

4. Converse Chain Rule: Suppose that f : U ⊂o X → V ⊂o Y is contin-
uous at x0 ∈ U, g : V ⊂o Y → Z is differentiable y0 := f(ho), g

′(y0) is
invertible, and g ◦f is differentiable at x0, then f is differentiable at x0 and

f ′(x0) := [g′(y0)]−1(g ◦ f)′(x0). (34.2)

Proof. Linearity. Let f, g : U ⊂o X → Y be two functions which are
differentiable at x0 ∈ U and λ ∈ R, then

(f + λg)(x0 + h)

= f(x0) +Df(x0)h+ o(h) + λ(g(x0) +Dg(x0)h+ o(h)

= (f + λg)(x0) + (Df(x0) + λDg(x0))h+ o(h),

which implies that (f + λg) is differentiable at x0 and that

D(f + λg)(x0) = Df(x0) + λDg(x0).

Product Rule. The computation,

A(x0 + h)f(x0 + h)

= (A(x0) +DA(x0)h+ o(h))(f(x0) + f ′(x0)h+ o(h))

= A(x0)f(x0) +A(x0)f ′(x0)h+ [DA(x0)h]f(x0) + o(h),

verifies the product rule holds. This may also be considered as a special case of
Proposition 34.9.

Chain Rule. Using f(x0+h)−f(x0) = O(h) (see Eq. (34.1)) and o(O(h)) =
o(h),

(g◦f)(x0 + h)

= g(f(x0)) + g′(f(x0))(f(x0 + h)− f(x0)) + o(f(x0 + h)− f(x0))

= g(f(x0)) + g′(f(x0))(Df(x0)x0 + o(h)) + o(f(x0 + h)− f(x0)

= g(f(x0)) + g′(f(x0))Df(x0)h+ o(h).

Converse Chain Rule. Since g is differentiable at y0 = f(x0) and g′ (y0) is
invertible,

g(f(x0 + h))− g(f(x0))

= g′(f(x0))(f(x0 + h)− f(x0)) + o(f(x0 + h)− f(x0))

= g′(f(x0)) [f(x0 + h)− f(x0) + o(f(x0 + h)− f(x0))] .

And since g ◦ f is differentiable at x0,

(g ◦ f)(x0 + h)− g(f(x0)) = (g ◦ f)′(x0)h+ o(h).

Comparing these two equations shows that

f(x0 + h)− f(x0) + o(f(x0 + h)− f(x0))

= g′(f(x0))−1 [(g ◦ f)′(x0)h+ o(h)]

which is equivalent to

f(x0 + h)− f(x0) + o(f(x0 + h)− f(x0))

= g′(f(x0))−1 [(g ◦ f)′(x0)h+ o(h)]

= g′(f(x0))−1{(g ◦ f)′(x0)h+ o(h)− o(f(x0 + h)− f(x0))}
= g′(f(x0))−1(g ◦ f)′(x0)h+ o(h) + o(f(x0 + h)− f(x0)). (34.3)

Using the continuity of f, f(x0 + h) − f(x0) is close to 0 if h is close to zero,
and hence

‖o(f(x0 + h)− f(x0))‖ ≤ 1

2
‖f(x0 + h)− f(x0)‖ (34.4)

for all h sufficiently close to 0. (We may replace 1
2 by any number α > 0 above.)

Taking the norm of both sides of Eq. (34.3) and making use of Eq. (34.4) shows,
for h close to 0, that
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‖f(x0 + h)− f(x0)‖

≤ ‖g′(f(x0))−1(g ◦ f)′(x0)‖‖h‖+ o(‖h‖) +
1

2
‖f(x0 + h)− f(x0)‖.

Solving for ‖f(x0 + h)− f(x0)‖ in this last equation shows that

f(x0 + h)− f(x0) = O(h). (34.5)

(This is an improvement, since the continuity of f only guaranteed that f(x0 +
h) − f(x0) = ε(h).) Because of Eq. (34.5), we now know that o(f(x0 + h) −
f(x0)) = o(h), which combined with Eq. (34.3) shows that

f(x0 + h)− f(x0) = g′(f(x0))−1(g ◦ f)′(x0)h+ o(h),

i.e. f is differentiable at x0 and f ′(x0) = g′(f(x0))−1(g ◦ f)′(x0).

Corollary 34.8 (Chain Rule). Suppose that σ : (a, b) → U ⊂o X is differ-
entiable at t ∈ (a, b) and f : U ⊂o X → Y is differentiable at σ(t) ∈ U. Then
f ◦ σ is differentiable at t and

d(f ◦ σ)(t)/dt = f ′(σ(t))σ̇(t).

Proposition 34.9 (Product Rule II). Suppose that X := X1×· · ·×Xn with
each Xi being a Banach space and T : X1×· · ·×Xn → Y is a multilinear map,
i.e.

xi ∈ Xi → T (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ Y

is linear when x1, . . . , xi−1, xi+1, . . . , xn are held fixed. Then the following are
equivalent:

1. T is continuous.
2. T is continuous at 0 ∈ X.
3. There exists a constant C <∞ such that

‖T (x)‖Y ≤ C
n∏
i=1

‖xi‖Xi (34.6)

for all x = (x1, . . . , xn) ∈ X.
4. T is differentiable at all x ∈ X1 × · · · ×Xn.

Moreover if T the differential of T is given by

T ′ (x)h =

n∑
i=1

T (x1, . . . , xi−1, hi, xi+1, . . . , xn) (34.7)

where h = (h1, . . . , hn) ∈ X.

Proof. Let us equip X with the norm

‖x‖X := max
{
‖xi‖Xi

}
.

If T is continuous then T is continuous at 0. If T is continuous at 0, using
T (0) = 0, there exists a δ > 0 such that ‖T (x)‖Y ≤ 1 whenever ‖x‖X ≤ δ. Now

if x ∈ X is arbitrary, let x′ := δ
(
‖x1‖−1

X1
x1, . . . , ‖xn‖−1

Xn
xn

)
. Then ‖x′‖X ≤ δ

and hence ∥∥∥∥∥
(
δn

n∏
i=1

‖xi‖−1
Xi

)
T (x1, . . . , xn)

∥∥∥∥∥
Y

= ‖T (x′)‖ ≤ 1

from which Eq. (34.6) follows with C = δ−n.
Now suppose that Eq. (34.6) holds. For x, h ∈ X and ε ∈ {0, 1}n let |ε| =∑n
i=1 εi and

xε (h) := ((1− ε1)x1 + ε1h1, . . . , (1− εn)xn + εnhn) ∈ X.

By the multi-linearity of T,

T (x+ h) = T (x1 + h1, . . . , xn + hn) =
∑

ε∈{0,1}n
T (xε (h))

= T (x) +

n∑
i=1

T (x1, . . . , xi−1, hi, xi+1, . . . , xn)

+
∑

ε∈{0,1}n:|ε|≥2

T (xε (h)) . (34.8)

From Eq. (34.6), ∥∥∥∥∥∥
∑

ε∈{0,1}n:|ε|≥2

T (xε (h))

∥∥∥∥∥∥ = O
(
‖h‖2

)
,

and so it follows from Eq. (34.8) that T ′ (x) exists and is given by Eq. (34.7).
This completes the proof since it is trivial to check that T being differentiable
at x ∈ X implies continuity of T at x ∈ X.

Exercise 34.2. Let det : L (Rn) → R be the determinant function on n × n
matrices and for A ∈ L ( 6 Rn) we will let Ai denote the ith – column of A and
write A = (A1|A2| . . . |An) .

1. Show det′ (A) exists for all A ∈ L ( 6 Rn) and
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det ′ (A)H =

n∑
i=1

det (A1| . . . |Ai−1|Hi|Ai+1| . . . |An) (34.9)

for all H ∈ L (Rn) . Hint: recall that det (A) is a multilinear function of its
columns.

2. Use Eq. (34.9) along with basic properties of the determinant to show
det′ (I)H = tr(H).

3. Suppose now that A ∈ GL (Rn) , show

det ′ (A)H = det (A) tr(A−1H).

Hint: Notice that det (A+H) = det (A) det
(
I +A−1H

)
.

4. If A ∈ L (Rn) , show det
(
eA
)

= etr(A). Hint: use the previous item and
Corollary 34.8 to show

d

dt
det
(
etA
)

= det
(
etA
)

tr(A).

Definition 34.10. Let X and Y be Banach spaces and let L1(X,Y ) :=
L(X,Y ) and for k ≥ 2 let Lk(X,Y ) be defined inductively by Lk+1(X,Y ) =
L(X,Lk(X,Y )). For example L2(X,Y ) = L(X,L(X,Y )) and L3(X,Y ) =
L (X,L(X,L(X,Y ))) .

Suppose f : U ⊂o X → Y is a function. If f is differentiable on U, then it
makes sense to ask if f ′ = Df : U → L(X,Y ) = L1(X,Y ) is differentiable. If
Df is differentiable on U then f ′′ = D2f := DDf : U → L2(X,Y ). Similarly
we define f (n) = Dnf : U → Ln(X,Y ) inductively.

Definition 34.11. Given k ∈ N, let Ck (U, Y ) denote those functions f : U →
Y such that f (j) := Djf : U → Lj (X,Y ) exists and is continuous for j =
1, 2, . . . , k.

Example 34.12. Let us continue on with Example 34.6 but now let X = Y to
simplify the notation. So f : GL(X)→ GL(X) is the map f(A) = A−1 and

f ′(A) = −LA−1RA−1 , i.e. f ′ = −LfRf .

where LAB = AB and RAB = BA for all A,B ∈ L(X). As the reader may
easily check, the maps

A ∈ L(X)→ LA, RA ∈ L(L(X))

are linear and bounded. So by the chain and the product rule we find f ′′(A)
exists for all A ∈ L(X) and

f ′′(A)B = −Lf ′(A)BRf − LfRf ′(A)B .

More explicitly

[f ′′(A)B]C = A−1BA−1CA−1 +A−1CA−1BA−1. (34.10)

Working inductively one shows f : GL(X) → GL(X) defined by f(A) := A−1

is C∞.

34.3 Partial Derivatives

Definition 34.13 (Partial or Directional Derivative). Let f : U ⊂o X →
Y be a function, x0 ∈ U, and v ∈ X. We say that f is differentiable at x0 in
the direction v iff d

dt |0(f(x0 + tv)) =: (∂vf)(x0) exists. We call (∂vf)(x0) the
directional or partial derivative of f at x0 in the direction v.

Notice that if f is differentiable at x0, then ∂vf(x0) exists and is equal to
f ′(x0)v, see Corollary 34.8.

Proposition 34.14. Let f : U ⊂o X → Y be a continuous function and D ⊂ X
be a dense subspace of X. Assume ∂vf(x) exists for all x ∈ U and v ∈ D, and
there exists a continuous function A : U → L(X,Y ) such that ∂vf(x) = A(x)v
for all v ∈ D and x ∈ U ∩D. Then f ∈ C1(U, Y ) and Df = A.

Proof. Let x0 ∈ U, ε > 0 such that B(x0, 2ε) ⊂ U and M := sup{‖A(x)‖ :
x ∈ B(x0, 2ε)} < ∞1. For x ∈ B(x0, ε) ∩ D and v ∈ D ∩ B(0, ε), by the
fundamental theorem of calculus,

f(x+ v)− f(x) =

∫ 1

0

df(x+ tv)

dt
dt

=

∫ 1

0

(∂vf)(x+ tv) dt =

∫ 1

0

A(x+ tv) v dt. (34.11)

For general x ∈ B(x0, ε) and v ∈ B(0, ε), choose xn ∈ B(x0, ε) ∩ D and vn ∈
D ∩B(0, ε) such that xn → x and vn → v. Then

1 It should be noted well, unlike in finite dimensions closed and bounded sets need not
be compact, so it is not sufficient to choose ε sufficiently small so that B(x0, 2ε) ⊂ U.
Here is a counterexample. Let X ≡ H be a Hilbert space, {en}∞n=1 be an orthonor-
mal set. Define f(x) ≡

∑∞
n=1 nφ(‖x− en‖), where φ is any continuous function on

R such that φ(0) = 1 and φ is supported in (−1, 1). Notice that ‖en− em‖2 = 2 for
all m 6= n, so that ‖en − em‖ =

√
2. Using this fact it is rather easy to check that

for any x0 ∈ H, there is an ε > 0 such that for all x ∈ B(x0, ε), only one term in
the sum defining f is non-zero. Hence, f is continuous. However, f(en) = n → ∞
as n→∞.
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f(xn + vn)− f(xn) =

∫ 1

0

A(xn + tvn) vn dt (34.12)

holds for all n. The left side of this last equation tends to f(x + v) − f(x) by
the continuity of f. For the right side of Eq. (34.12) we have

‖
∫ 1

0

A(x+ tv) v dt−
∫ 1

0

A(xn + tvn) vn dt‖

≤
∫ 1

0

‖A(x+ tv)−A(xn + tvn) ‖‖v‖ dt+M‖v − vn‖.

It now follows by the continuity of A, the fact that ‖A(x+ tv)−A(xn+ tvn) ‖ ≤
M, and the dominated convergence theorem that right side of Eq. (34.12) con-

verges to
∫ 1

0
A(x + tv) v dt. Hence Eq. (34.11) is valid for all x ∈ B(x0, ε) and

v ∈ B(0, ε). We also see that

f(x+ v)− f(x)−A(x)v = ε(v)v, (34.13)

where ε(v) :=
∫ 1

0
[A(x+ tv) −A(x)] dt. Now

‖ε(v)‖ ≤
∫ 1

0

‖A(x+ tv) −A(x)‖ dt

≤ max
t∈[0,1]

‖A(x+ tv) −A(x)‖ → 0 as v → 0,

by the continuity of A. Thus, we have shown that f is differentiable and that
Df(x) = A(x).

Corollary 34.15. Suppose now that X = Rd, f : U ⊂o X → Y be a continuous
function such that ∂if(x) := ∂eif (x) exists and is continuous on U for i =

1, 2, . . . , d, where {ei}di=1 is the standard basis for Rd. Then f ∈ C1(U, Y ) and
Df (x) ei = ∂if (x) for all i.

Proof. For x ∈ U, let A (x) : Rd → Y be the unique linear map such that
A (x) ei = ∂if (x) for i = 1, 2, . . . , d. Then A : U → L(Rd, Y ) is a continuous
map. Now let v ∈ Rd and v(i) := (v1, v2, . . . , vi, 0, . . . , 0) for i = 1, 2, . . . , d and
v(0) := 0. Then for t ∈ R near 0, using the fundamental theorem of calculus
and the definition of ∂if (x) ,

f (x+ tv)− f (x) =

d∑
i=1

[
f
(
x+ tv(i)

)
− f

(
x+ tv(i−1)

)]
=

d∑
i=1

∫ 1

0

d

ds
f
(
x+ tv(i−1) + stviei

)
ds

=

d∑
i=1

tvi

∫ 1

0

∂if
(
x+ tv(i−1) + stviei

)
ds

=

d∑
i=1

tvi

∫ 1

0

A
(
x+ tv(i−1) + stviei

)
eids.

Using the continuity of A, it now follows that

lim
t→0

f (x+ tv)− f (x)

t
=

d∑
i=1

vi lim
t→0

∫ 1

0

A
(
x+ tv(i−1) + stviei

)
eids

=

d∑
i=1

vi

∫ 1

0

A (x) eids = A (x) v

which shows ∂vf (x) exists and ∂vf (x) = A (x) v. The result now follows from
an application of Proposition 34.14.

34.4 Higher Order Derivatives

It is somewhat inconvenient to work with the Banach spaces Lk(X,Y ) in Def-
inition 34.10. For this reason we will introduce an isomorphic Banach space,
Mk(X,Y ).

Definition 34.16. For k ∈ {1, 2, 3, . . .}, let Mk(X,Y ) denote the set of func-
tions f : Xk → Y such that

1. For i ∈ {1, 2, . . . , k}, v ∈ X → f〈v1, v2, . . . , vi−1, v, vi+1, . . . , vk〉 ∈ Y is
linear 2 for all {vi}ni=1 ⊂ X.

2. The norm ‖f‖Mk(X,Y ) should be finite, where

‖f‖Mk(X,Y ) := sup{‖f〈v1, v2, . . . , vk〉‖Y
‖v1‖‖v2‖ · · · ‖vk‖

: {vi}ki=1 ⊂ X \ {0}}.

2 I will routinely write f〈v1, v2, . . . , vk〉 rather than f(v1, v2, . . . , vk) when the func-
tion f depends on each of variables linearly, i.e. f is a multi-linear function.
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Lemma 34.17. There are linear operators jk : Lk(X,Y ) → Mk(X,Y ) defined
inductively as follows: j1 = IdL(X,Y ) (notice that M1(X,Y ) = L1(X,Y ) =
L(X,Y )) and

(jk+1A)〈v0, v1, . . . , vk〉 = (jk(Av0))〈v1, v2, . . . , vk〉 ∀vi ∈ X.

(Notice that Av0 ∈ Lk(X,Y ).) Moreover, the maps jk are isometric isomor-
phisms.

Proof. To get a feeling for what jk is let us write out j2 and j3 explicitly.
If A ∈ L2(X,Y ) = L(X,L(X,Y )), then (j2A)〈v1, v2〉 = (Av1)v2 and if A ∈
L3(X,Y ) = L(X,L(X,L(X,Y ))), (j3A)〈v1, v2, v3〉 = ((Av1)v2)v3 for all vi ∈ X.
It is easily checked that jk is linear for all k. We will now show by induction
that jk is an isometry and in particular that jk is injective. Clearly this is true
if k = 1 since j1 is the identity map. For A ∈ Lk+1(X,Y ),

‖jk+1A‖Mk+1(X,Y )

:= sup{‖(jk(Av0))〈v1, v2, . . . , vk〉‖Y
‖v0‖‖v1‖‖v2‖ · · · ‖vk‖

: {vi}ki=0 ⊂ X \ {0}}

= sup{
‖(jk(Av0))‖Mk(X,Y )

‖v0‖
: v0 ∈ X \ {0}}

= sup{
‖Av0‖Lk(X,Y )

‖v0‖
: v0 ∈ X \ {0}}

= ‖A‖L(X,Lk(X,Y )) := ‖A‖Lk+1(X,Y ),

wherein the second to last inequality we have used the induction hypothesis.
This shows that jk+1 is an isometry provided jk is an isometry. To finish the
proof it suffices to show that jk is surjective for all k. Again this is true for
k = 1. Suppose that jk is invertible for some k ≥ 1. Given f ∈Mk+1(X,Y ) we
must produce A ∈ Lk+1(X,Y ) = L(X,Lk(X,Y )) such that jk+1A = f. If such
an equation is to hold, then for v0 ∈ X, we would have jk(Av0) = f〈v0, · · · 〉.
That is Av0 = j−1

k (f〈v0, · · · 〉). It is easily checked that A so defined is linear,
bounded, and jk+1A = f.

From now on we will identify Lk with Mk without further mention. In
particular, we will view Dkf as function on U with values in Mk(X,Y ).

Theorem 34.18 (Differentiability). Suppose k ∈ {1, 2, . . .} and D is a dense
subspace of X, f : U ⊂o X → Y is a function such that (∂v1∂v2 · · · ∂vlf)(x)
exists for all x ∈ D ∩ U, {vi}li=1 ⊂ D, and l = 1, 2, . . . k. Further assume
there exists continuous functions Al : U ⊂o X → Ml(X,Y ) such that such
that (∂v1∂v2 · · · ∂vlf)(x) = Al(x)〈v1, v2, . . . , vl〉 for all x ∈ D ∩ U, {vi}li=1 ⊂ D,
and l = 1, 2, . . . k. Then Dlf(x) exists and is equal to Al(x) for all x ∈ U and
l = 1, 2, . . . , k.

Proof. We will prove the theorem by induction on k.We have already proved
the theorem when k = 1, see Proposition 34.14. Now suppose that k > 1 and
that the statement of the theorem holds when k is replaced by k− 1. Hence we
know that Dlf(x) = Al(x) for all x ∈ U and l = 1, 2, . . . , k − 1. We are also
given that

(∂v1∂v2 · · · ∂vkf)(x) = Ak(x)〈v1, v2, . . . , vk〉 ∀x ∈ U ∩D, {vi} ⊂ D. (34.14)

Now we may write (∂v2 · · · ∂vkf)(x) as (Dk−1f)(x)〈v2, v3, . . . , vk〉 so that Eq.
(34.14) may be written as

∂v1(Dk−1f)(x)〈v2, v3, . . . , vk〉)
= Ak(x)〈v1, v2, . . . , vk〉 ∀x ∈ U ∩D, {vi} ⊂ D. (34.15)

So by the fundamental theorem of calculus, we have that

((Dk−1f)(x+ v1)− (Dk−1f)(x))〈v2, v3, . . . , vk〉

=

∫ 1

0

Ak(x+ tv1)〈v1, v2, . . . , vk〉 dt (34.16)

for all x ∈ U∩D and {vi} ⊂ D with v1 sufficiently small. By the same argument
given in the proof of Proposition 34.14, Eq. (34.16) remains valid for all x ∈
U and {vi} ⊂ X with v1 sufficiently small. We may write this last equation
alternatively as,

(Dk−1f)(x+ v1)− (Dk−1f)(x) =

∫ 1

0

Ak(x+ tv1)〈v1, · · · 〉 dt. (34.17)

Hence

(Dk−1f)(x+ v1)− (Dk−1f)(x)−Ak(x)〈v1, · · · 〉

=

∫ 1

0

[Ak(x+ tv1)−Ak(x)]〈v1, · · · 〉 dt

from which we get the estimate,

‖(Dk−1f)(x+ v1)− (Dk−1f)(x)−Ak(x)〈v1, · · · 〉‖ ≤ ε(v1)‖v1‖ (34.18)

where ε(v1) :=
∫ 1

0
‖Ak(x + tv1) − Ak(x)‖ dt. Notice by the continuity of Ak

that ε(v1) → 0 as v1 → 0. Thus it follow from Eq. (34.18) that Dk−1f is
differentiable and that (Dkf)(x) = Ak(x).

Example 34.19. Let f : GL(X,Y )→ GL(Y,X) be defined by f(A) := A−1. We
assume that GL(X,Y ) is not empty. Then f is infinitely differentiable and
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(Dkf)(A)〈V1, V2, . . . , Vk〉

= (−1)k
∑
σ

{B−1Vσ(1)B
−1Vσ(2)B

−1 · · ·B−1Vσ(k)B
−1}, (34.19)

where sum is over all permutations of σ of {1, 2, . . . , k}.

Let me check Eq. (34.19) in the case that k = 2. Notice that we have already
shown that (∂V1

f)(B) = Df(B)V1 = −B−1V1B
−1. Using the product rule we

find that

(∂V2
∂V1

f)(B) = B−1V2B
−1V1B

−1 +B−1V1B
−1V2B

−1 =: A2(B)〈V1, V2〉.

Notice that ‖A2(B)〈V1, V2〉‖ ≤ 2‖B−1‖3‖V1‖ · ‖V2‖, so that ‖A2(B)‖ ≤
2‖B−1‖3 <∞. Hence A2 : GL(X,Y )→M2(L(X,Y ), L(Y,X)). Also

‖(A2(B)−A2(C))〈V1, V2〉‖ ≤ 2‖B−1V2B
−1V1B

−1 − C−1V2C
−1V1C

−1‖
≤ 2‖B−1V2B

−1V1B
−1 −B−1V2B

−1V1C
−1‖

+ 2‖B−1V2B
−1V1C

−1 −B−1V2C
−1V1C

−1‖
+ 2‖B−1V2C

−1V1C
−1 − C−1V2C

−1V1C
−1‖

≤ 2‖B−1‖2‖V2‖‖V1‖‖B−1 − C−1‖
+ 2‖B−1‖‖C−1‖‖V2‖‖V1‖‖B−1 − C−1‖

+ 2‖C−1‖2‖V2‖‖V1‖‖B−1 − C−1‖.

This shows that

‖A2(B)−A2(C)‖ ≤ 2‖B−1 − C−1‖{‖B−1‖2 + ‖B−1‖‖C−1‖+ ‖C−1‖2}.

Since B → B−1 is differentiable and hence continuous, it follows that A2(B) is
also continuous in B. Hence by Theorem 34.18 D2f(A) exists and is given as
in Eq. (34.19)

Example 34.20. Suppose that f : R → R is a C∞– function and F (x) :=∫ 1

0
f(x(t)) dt for x ∈ X := C([0, 1],R) equipped with the norm ‖x‖ :=

maxt∈[0,1] |x(t)|. Then F : X → R is also infinitely differentiable and

(DkF )(x)〈v1, v2, . . . , vk〉 =

∫ 1

0

f (k)(x(t))v1(t) · · · vk(t) dt, (34.20)

for all x ∈ X and {vi} ⊂ X.

To verify this example, notice that

(∂vF )(x) :=
d

ds
|0F (x+ sv) =

d

ds
|0
∫ 1

0

f(x(t) + sv(t)) dt

=

∫ 1

0

d

ds
|0f(x(t) + sv(t)) dt =

∫ 1

0

f ′(x(t))v(t) dt.

Similar computations show that

(∂v1∂v2 · · · ∂vkf)(x) =

∫ 1

0

f (k)(x(t))v1(t) · · · vk(t) dt =: Ak(x)〈v1, v2, . . . , vk〉.

Now for x, y ∈ X,

|Ak(x)〈v1, v2, . . . , vk〉 −Ak(y)〈v1, v2, . . . , vk〉|

≤
∫ 1

0

|f (k)(x(t))− f (k)(y(t))| · |v1(t) · · · vk(t) |dt

≤
k∏
i=1

‖vi‖
∫ 1

0

|f (k)(x(t))− f (k)(y(t))|dt,

which shows that

‖Ak(x)−Ak(y)‖ ≤
∫ 1

0

|f (k)(x(t))− f (k)(y(t))|dt.

This last expression is easily seen to go to zero as y → x in X. Hence Ak is
continuous. Thus we may apply Theorem 34.18 to conclude that Eq. (34.20) is
valid.

34.5 Inverse and Implicit Function Theorems

In this section, let X be a Banach space, R > 0, U = B = B(0, R) ⊂ X and
ε : U → X be a continuous function such that ε (0) = 0. Our immediate goal is
to give a sufficient condition on ε so that F (x) := x+ ε(x) is a homeomorphism
from U to F (U) with F (U) being an open subset of X. Let’s start by looking
at the one dimensional case first. So for the moment assume that X = R,
U = (−1, 1), and ε : U → R is C1. Then F will be injective iff F is either
strictly increasing or decreasing. Since we are thinking that F is a “small”
perturbation of the identity function we will assume that F is strictly increasing,
i.e. F ′ = 1 + ε′ > 0. This positivity condition is not so easily interpreted for
operators on a Banach space. However the condition that |ε′| ≤ α < 1 is easily
interpreted in the Banach space setting and it implies 1 + ε′ > 0.

Lemma 34.21. Suppose that U = B = B(0, R) (R > 0) is a ball in X and
ε : B → X is a C1 function such that ‖Dε‖ ≤ α <∞ on U. Then

‖ε(x)− ε(y)‖ ≤ α‖x− y‖ for all x, y ∈ U. (34.21)
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Proof. By the fundamental theorem of calculus and the chain rule:

ε(y)− ε(x) =

∫ 1

0

d

dt
ε(x+ t(y − x))dt

=

∫ 1

0

[Dε(x+ t(y − x))](y − x)dt.

Therefore, by the triangle inequality and the assumption that ‖Dε(x)‖ ≤ α on
B,

‖ε(y)− ε(x)‖ ≤
∫ 1

0

‖Dε(x+ t(y − x))‖dt · ‖(y − x)‖ ≤ α‖(y − x)‖.

Remark 34.22. It is easily checked that if ε : U = B(0, R) → X is C1 and
satisfies (34.21) then ‖Dε‖ ≤ α on U.

Using the above remark and the analogy to the one dimensional example,
one is lead to the following proposition.

Proposition 34.23. Suppose α ∈ (0, 1), R > 0, U = B(0, R) ⊂o X and ε :
U → X is a continuous function such that ε (0) = 0 and

‖ε(x)− ε(y)‖ ≤ α‖x− y‖ ∀ x, y ∈ U. (34.22)

Then F : U → X defined by F (x) := x+ ε(x) for x ∈ U satisfies:

1. F is an injective map and G = F−1 : V → U is continuous where V :=
F (U) .

2. If x0 ∈ U, z0 = F (x0) and r > 0 such that B(x0, r) ⊂ U, then

B(z0, (1− α)r) ⊂ F (B(x0, r)) ⊂ B(z0, (1 + α)r). (34.23)

In particular, for all r ≤ R,

B(0, (1− α) r) ⊂ F (B(0, r)) ⊂ B(0, (1 + α) r), (34.24)

see Figure 34.1 below.
3. V := F (U) is open subset of X and F : U → V is a homeomorphism.

Proof.

1. Using the definition of F and the estimate in Eq. (34.22),

‖x− y‖ = ‖(F (x)− F (y))− (ε(x)− ε(y))‖
≤ ‖F (x)− F (y)‖+ ‖ε(x)− ε(y)‖
≤ ‖F (x)− F (y)‖+ α‖(x− y)‖

Fig. 34.1. Nesting of F (B(x0, r)) between B(z0, (1− α)r) and B(z0, (1 + α)r).

for all x, y ∈ U. This implies

‖x− y‖ ≤ (1− α)−1‖F (x)− F (y)‖ (34.25)

which shows F is injective on U and hence shows the inverse function G =
F−1 : V := F (U) → U is well defined. Moreover, replacing x, y in Eq.
(34.25) by G (x) and G (y) respectively with x, y ∈ V shows

‖G (x)−G (y) ‖ ≤ (1− α)−1‖x− y‖ for all x, y ∈ V. (34.26)

Hence G is Lipschitz on V and hence continuous.
2. Let x0 ∈ U, r > 0 and z0 = F (x0) = x0 + ε(x0) be as in item 2. The second

inclusion in Eq. (34.23) follows from the simple computation:

‖F (x0 + h)− z0‖ = ‖h+ ε (x0 + h)− ε (x0)‖
≤ ‖h‖+ ‖ε (x0 + h)− ε (x0)‖
≤ (1 + α) ‖h‖ < (1 + α) r

for all h ∈ B (0, r) . To prove the first inclusion in Eq. (34.23) we must find,
for every z ∈ B(z0, (1 − α)r), an h ∈ B (0, r) such that z = F (x0 + h) or
equivalently an h ∈ B (0, r) solving

z − z0 = F (x0 + h)− F (x0) = h+ ε(x0 + h)− ε(x0).

Let k := z − z0 and for h ∈ B (0, r) , let δ (h) := ε(x0 + h) − ε(x0). With
this notation it suffices to show for each k ∈ B(z0, (1 − α)r) there exists
h ∈ B (0, r) such that k = h+ δ (h) . Notice that δ (0) = 0 and

‖δ (h1)− δ (h2)‖ = ‖ε(x0 + h1)− ε(x0 + h2)‖ ≤ α ‖h1 − h2‖ (34.27)

for all h1, h2 ∈ B (0, r) . We are now going to solve the equation k = h+δ (h)
for h by the method of successive approximations starting with h0 = 0 and
then defining hn inductively by
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hn+1 = k − δ (hn) . (34.28)

A simple induction argument using Eq. (34.27) shows that

‖hn+1 − hn‖ ≤ αn ‖k‖ for all n ∈ N0

and in particular that

‖hN‖ =

∥∥∥∥∥
N−1∑
n=0

(hn+1 − hn)

∥∥∥∥∥ ≤
N−1∑
n=0

‖hn+1 − hn‖

≤
N−1∑
n=0

αn ‖k‖ =
1− αN

1− α
‖k‖ . (34.29)

Since ‖k‖ < (1− α) r, this implies that ‖hN‖ < r for all N showing the
approximation procedure is well defined. Let

h := lim
N→∞

hn =

∞∑
n=0

(hn+1 − hn) ∈ X

which exists since the sum in the previous equation is absolutely convergent.
Passing to the limit in Eqs. (34.29) and (34.28) shows that ‖h‖ ≤ (1 −
α)−1 ‖k‖ < r and h = k − δ (h) , i.e. h ∈ B (0, r) solves k = h + δ (h) as
desired.

3. Given x0 ∈ U, the first inclusion in Eq. (34.23) shows that z0 = F (x0)
is in the interior of F (U) . Since z0 ∈ F (U) was arbitrary, it follows that
V = F (U) is open. The continuity of the inverse function has already been
proved in item 1.

For the remainder of this section letX and Y be two Banach spaces, U ⊂o X,
k ≥ 1, and f ∈ Ck(U, Y ).

Lemma 34.24. Suppose x0 ∈ U, R > 0 is such that BX(x0, R) ⊂ U and
T : BX(x0, R)→ Y is a C1 – function such that T ′(x0) is invertible. Let

α (R) := sup
x∈BX(x0,R)

∥∥T ′(x0)−1T ′(x)− I
∥∥
L(X)

(34.30)

and ε ∈ C1
(
BX(0, R), X

)
be defined by

ε (h) = T ′(x0)−1 [T (x0 + h)− T (x0)]− h (34.31)

so that
T (x0 + h) = T (x0) + T ′(x0) (h+ ε(h)) . (34.32)

Then ε(h) = o(h) as h→ 0 and

‖ε(h′)− ε(h)‖ ≤ α (R) ‖h′ − h‖ for all h, h′ ∈ BX(0, R). (34.33)

If α (R) < 1 (which may be achieved by shrinking R if necessary), then T ′(x)
is invertible for all x ∈ BX(x0, R) and

sup
x∈BX(x0,R)

∥∥T ′(x)−1
∥∥
L(Y,X)

≤ 1

1− α (R)

∥∥T ′(x0)−1
∥∥
L(Y,X)

. (34.34)

Proof. By definition of T ′ (x0) and using T ′ (x0)
−1

exists,

T (x0 + h)− T (x0) = T ′(x0)h+ o(h)

from which it follows that ε(h) = o(h). In fact by the fundamental theorem of
calculus,

ε(h) =

∫ 1

0

(
T ′(x0)−1T ′(x0 + th)− I

)
hdt

but we will not use this here. Let h, h′ ∈ BX(0, R) and apply the fundamental
theorem of calculus to t→ T (x0 + t(h′ − h)) to conclude

ε(h′)− ε(h) = T ′(x0)−1 [T (x0 + h′)− T (x0 + h)]− (h′ − h)

=

[∫ 1

0

(
T ′(x0)−1T ′(x0 + t(h′ − h))− I

)
dt

]
(h′ − h).

Taking norms of this equation gives

‖ε(h′)− ε(h)‖ ≤
[∫ 1

0

∥∥T ′(x0)−1T ′(x0 + t(h′ − h))− I
∥∥ dt] ‖h′ − h‖

≤ α (R) ‖h′ − h‖ .

It only remains to prove Eq. (34.34), so suppose now that α (R) < 1. Then by
Proposition 14.26, T ′(x0)−1T ′(x) = I −

(
I − T ′(x0)−1T ′(x)

)
is invertible and∥∥∥[T ′(x0)−1T ′(x)

]−1
∥∥∥ ≤ 1

1− α (R)
for all x ∈ BX(x0, R).

Since T ′(x) = T ′(x0)
[
T ′(x0)−1T ′(x)

]
this implies T ′(x) is invertible and

∥∥T ′(x)−1
∥∥ =

∥∥∥[T ′(x0)−1T ′(x)
]−1

T ′(x0)−1
∥∥∥ ≤ 1

1− α (R)

∥∥T ′(x0)−1
∥∥

for all x ∈ BX(x0, R).
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Theorem 34.25 (Inverse Function Theorem). Suppose U ⊂o X, k ≥ 1
and T ∈ Ck(U, Y ) such that T ′(x) is invertible for all x ∈ U. Further assume
x0 ∈ U and R > 0 such that BX(x0, R) ⊂ U.

1. For all r ≤ R,

T (BX(x0, r)) ⊂ T (x0) + T ′ (x0)BX (0, (1 + α (r))r) . (34.35)

2. If we further assume that

α (R) := sup
x∈BX(x0,R)

∥∥T ′(x0)−1T ′(x)− I
∥∥ < 1,

which may always be achieved by taking R sufficiently small, then

T (x0) + T ′ (x0)BX (0, (1− α (r))r) ⊂ T (BX(x0, r)) (34.36)

for all r ≤ R, see Figure 34.2.
3. T : U → Y is an open mapping, in particular V := T (U) ⊂o Y.
4. Again if R is sufficiently small so that α (R) < 1, then
T |BX(x0,R) : BX(x0, R) → T (BX(x0, R)) is invertible and

T |−1
BX(x0,R)

: T
(
BX(x0, R)

)
→ BX(x0, R) is a Ck – map.

5. If T is injective, then T−1 : V → U is also a Ck – map and(
T−1

)′
(y) =

[
T ′(T−1(y))

]−1
for all y ∈ V.

Fig. 34.2. The nesting of T (BX(x0, r)) between T (x0) + T ′ (x0)BX (0, (1− α (r))r)
andT (x0) + T ′ (x0)BX (0, (1 + α (r))r) .

Proof. Let ε ∈ C1
(
BX(0, R), X

)
be as defined in Eq. (34.31).

1. Using Eqs. (34.32) and (34.24),

T
(
BX(x0, r)

)
= T (x0) + T ′ (x0) (I + ε)

(
BX (0, r)

)
(34.37)

⊂ T (x0) + T ′ (x0)BX (0, (1 + α (r)) r)

which proves Eq. (34.35).
2. Now assume α (R) < 1, then by Eqs. (34.37) and (34.24),

T (x0) + T ′ (x0)BX (0, (1− α (r)) r)

⊂ T (x0) + T ′ (x0) (I + ε)
(
BX (0, r)

)
= T

(
BX (x0, r)

)
which proves Eq. (34.36).

3. Notice that h ∈ X → T (x0) + T ′ (x0)h ∈ Y is a homeomorphism. The fact
that T is an open map follows easily from Eq. (34.36) which shows that
T (x0) is interior of T (W ) for any W ⊂o X with x0 ∈W.

4. The fact that T |BX(x0,R) : BX(x0, R) → T (BX(x0, R)) is invertible with
a continuous inverse follows from Eq. (34.32) and Proposition 34.23. It
now follows from the converse to the chain rule, Theorem 34.7, that g :=
T |−1
BX(x0,R)

: T
(
BX(x0, R)

)
→ BX(x0, R) is differentiable and

g′ (y) = [T ′ (g (y))]
−1

for all y ∈ T
(
BX(x0, R)

)
.

This equation shows g is C1. Now suppose that k ≥ 2. Since T ′ ∈
Ck−1(B,L(X)) and i(A) := A−1 is a smooth map by Example 34.19,
g′ = i ◦ T ′ ◦ g is C1, i.e. g is C2. If k ≥ 2, we may use the same argu-
ment to now show g is C3. Continuing this way inductively, we learn g is
Ck.

5. Since differentiability and smoothness is local, the assertion in item 5. fol-
lows directly from what has already been proved.

Theorem 34.26 (Implicit Function Theorem). Suppose that X, Y, and
W are three Banach spaces, k ≥ 1, A ⊂ X × Y is an open set, (x0, y0) is
a point in A, and f : A → W is a Ck – map such f(x0, y0) = 0. Assume
that D2f(x0, y0) := D(f(x0, ·))(y0) : Y → W is a bounded invertible linear
transformation. Then there is an open neighborhood U0 of x0 in X such that
for all connected open neighborhoods U of x0 contained in U0, there is a unique
continuous function u : U → Y such that u(x0) = yo, (x, u(x)) ∈ A and
f(x, u(x)) = 0 for all x ∈ U. Moreover u is necessarily Ck and

Du(x) = −D2f(x, u(x))−1D1f(x, u(x)) for all x ∈ U. (34.38)
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Proof. By replacing f by (x, y) → D2f(x0, y0)−1f(x, y) if necessary, we
may assume with out loss of generality that W = Y and D2f(x0, y0) = IY .
Define F : A→ X × Y by F (x, y) := (x, f(x, y)) for all (x, y) ∈ A. Notice that

DF (x, y) =

[
I D1f(x, y)
0 D2f(x, y)

]
which is invertible iff D2f(x, y) is invertible and if D2f(x, y) is invertible then

DF (x, y)−1 =

[
I −D1f(x, y)D2f(x, y)−1

0 D2f(x, y)−1

]
.

Since D2f(x0, y0) = I is invertible, the inverse function theorem guarantees
that there exists a neighborhood U0 of x0 and V0 of y0 such that U0 × V0 ⊂ A,
F (U0 × V0) is open in X × Y, F |(U0×V0) has a Ck–inverse which we call F−1.

Let π2(x, y) := y for all (x, y) ∈ X × Y and define Ck – function u0 on U0 by
u0(x) := π2 ◦ F−1(x, 0). Since F−1(x, 0) = (x̃, u0(x)) iff

(x, 0) = F (x̃, u0(x)) = (x̃, f(x̃, u0(x))),

it follows that x = x̃ and f(x, u0(x)) = 0. Thus

(x, u0(x)) = F−1(x, 0) ∈ U0 × V0 ⊂ A

and f(x, u0(x)) = 0 for all x ∈ U0. Moreover, u0 is Ck being the composition
of the Ck– functions, x→ (x, 0), F−1, and π2. So if U ⊂ U0 is a connected set
containing x0, we may define u := u0|U to show the existence of the functions
u as described in the statement of the theorem. The only statement left to
prove is the uniqueness of such a function u. Suppose that u1 : U → Y is
another continuous function such that u1(x0) = y0, and (x, u1(x)) ∈ A and
f(x, u1(x)) = 0 for all x ∈ U. Let

O := {x ∈ U |u(x) = u1(x)} = {x ∈ U |u0(x) = u1(x)}.

Clearly O is a (relatively) closed subset of U which is not empty since x0 ∈ O.
Because U is connected, if we show that O is also an open set we will have
shown that O = U or equivalently that u1 = u0 on U. So suppose that x ∈ O,
i.e. u0(x) = u1(x). For x̃ near x ∈ U,

0 = 0− 0 = f(x̃, u0(x̃))− f(x̃, u1(x̃)) = R(x̃)(u1(x̃)− u0(x̃)) (34.39)

where

R(x̃) :=

∫ 1

0

D2f((x̃, u0(x̃) + t(u1(x̃)− u0(x̃)))dt. (34.40)

From Eq. (34.40) and the continuity of u0 and u1, limx̃→xR(x̃) = D2f(x, u0(x))
which is invertible.3 Thus R(x̃) is invertible for all x̃ sufficiently close to x which
combined with Eq. (34.39) implies that u1(x̃) = u0(x̃) for all x̃ sufficiently close
to x. Since x ∈ O was arbitrary, we have shown that O is open.

34.6 Smooth Dependence of ODE’s on Initial Conditions*

In this subsection, let X be a Banach space, U ⊂o X and J be an open interval
with 0 ∈ J.

Lemma 34.27. If Z ∈ C(J × U,X) such that DxZ(t, x) exists for all (t, x) ∈
J × U and DxZ(t, x) ∈ C(J × U,X) then Z is locally Lipschitz in x, see Defi-
nition 33.7.

Proof. Suppose I @@ J and x ∈ U. By the continuity of DZ, for every t ∈ I
there an open neighborhood Nt of t ∈ I and εt > 0 such that B(x, εt) ⊂ U and

sup {‖DxZ(t′, x′)‖ : (t′, x′) ∈ Nt ×B(x, εt)} <∞.

By the compactness of I, there exists a finite subset Λ ⊂ I such that I ⊂ ∪t∈INt.
Let ε(x, I) := min {εt : t ∈ Λ} and

K(x, I) := sup {‖DZ(t, x′)‖(t, x′) ∈ I ×B(x, ε(x, I))} <∞.

Then by the fundamental theorem of calculus and the triangle inequality,

‖Z(t, x1)− Z(t, x0)‖ ≤
(∫ 1

0

‖DxZ(t, x0 + s(x1 − x0)‖ ds
)
‖x1 − x0‖

≤ K(x, I)‖x1 − x0‖

for all x0, x1 ∈ B(x, ε(x, I)) and t ∈ I.

Theorem 34.28 (Smooth Dependence of ODE’s on Initial Condi-
tions). Let X be a Banach space, U ⊂o X, Z ∈ C(R × U,X) such that
DxZ ∈ C(R × U,X) and ϕ : D(Z) ⊂ R × X → X denote the maximal so-
lution operator to the ordinary differential equation

ẏ(t) = Z(t, y(t)) with y(0) = x ∈ U, (34.41)

see Notation 33.10 and Theorem 33.16. Then ϕ ∈ C1(D(Z), U), ∂tDxϕ(t, x)
exists and is continuous for (t, x) ∈ D(Z) and Dxϕ(t, x) satisfies the linear
differential equation,

3 Notice that DF (x, u0(x)) is invertible for all x ∈ U0 since F |U0×V0 has a C1 inverse.
Therefore D2f(x, u0(x)) is also invertible for all x ∈ U0.
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d

dt
Dxϕ(t, x) = [(DxZ) (t, ϕ(t, x))]Dxϕ(t, x) with Dxϕ(0, x) = IX (34.42)

for t ∈ Jx.

Proof. Let x0 ∈ U and J be an open interval such that 0 ∈ J ⊂ J̄ @@ Jx0 ,
y0 := y(·, x0)|J and

Oε := {y ∈ BC(J, U) : ‖y − y0‖∞ < ε} ⊂o BC(J,X).

By Lemma 34.27, Z is locally Lipschitz and therefore Theorem 33.16 is appli-
cable. By Eq. (33.25) of Theorem 33.16, there exists ε > 0 and δ > 0 such that
G : B(x0, δ)→ Oε defined by G(x) := ϕ(·, x)|J is continuous. By Lemma 34.29
below, for ε > 0 sufficiently small the function F : Oε → BC(J,X) defined by

F (y) := y −
∫ ·

0

Z(t, y(t))dt (34.43)

is C1 and

DF (y)v = v −
∫ ·

0

DyZ(t, y(t))v(t)dt. (34.44)

By the existence and uniqueness for linear ordinary differential equations, The-
orem 32.22, DF (y) is invertible for any y ∈ BC(J, U). By the definition of ϕ,
F (G(x)) = h(x) for all x ∈ B(x0, δ) where h : X → BC(J,X) is defined by
h(x)(t) = x for all t ∈ J, i.e. h(x) is the constant path at x. Since h is a bounded
linear map, h is smooth and Dh(x) = h for all x ∈ X. We may now apply the
converse to the chain rule in Theorem 34.7 to conclude G ∈ C1 (B(x0, δ),O) and
DG(x) = [DF (G(x))]−1Dh(x) or equivalently, DF (G(x))DG(x) = h which in
turn is equivalent to

Dxϕ(t, x)−
∫ t

0

[DZ(ϕ(τ, x)]Dxϕ(τ, x) dτ = IX .

As usual this equation implies Dxϕ(t, x) is differentiable in t, Dxϕ(t, x) is con-
tinuous in (t, x) and Dxϕ(t, x) satisfies Eq. (34.42).

Lemma 34.29. Continuing the notation used in the proof of Theorem 34.28
and further let

f(y) :=

∫ ·
0

Z(τ, y(τ)) dτ for y ∈ Oε.

Then f ∈ C1(Oε, Y ) and for all y ∈ Oε,

f ′(y)h =

∫ ·
0

DxZ(τ, y(τ))h(τ) dτ =: Λyh.

Proof. Let h ∈ Y be sufficiently small and τ ∈ J, then by fundamental
theorem of calculus,

Z(τ,y(τ) + h(τ))− Z(τ, y(τ))

=

∫ 1

0

[DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))]dr

and therefore,

f(y + h)− f(y)− Λyh(t)

=

∫ t

0

[Z(τ, y(τ) + h(τ))− Z(τ, y(τ))−DxZ(τ, y(τ))h(τ) ] dτ

=

∫ t

0

dτ

∫ 1

0

dr[DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))]h(τ).

Therefore,
‖(f(y + h)− f(y)− Λyh)‖∞ ≤ ‖h‖∞δ(h) (34.45)

where

δ(h) :=

∫
J

dτ

∫ 1

0

dr ‖DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))‖ .

With the aid of Lemmas 34.27 and Lemma 33.8,

(r, τ, h) ∈ [0, 1]× J × Y → ‖DxZ(τ, y(τ) + rh(τ))‖

is bounded for small h provided ε > 0 is sufficiently small. Thus it follows from
the dominated convergence theorem that δ(h) → 0 as h → 0 and hence Eq.
(34.45) implies f ′(y) exists and is given by Λy. Similarly,

‖f ′(y + h)− f ′(y)‖op

≤
∫
J

‖DxZ(τ, y(τ) + h(τ))−DxZ(τ, y(τ))‖ dτ → 0 as h→ 0

showing f ′ is continuous.

Remark 34.30. If Z ∈ Ck(U,X), then an inductive argument shows that
ϕ ∈ Ck(D(Z), X). For example if Z ∈ C2(U,X) then (y(t), u(t)) :=
(ϕ(t, x), Dxϕ(t, x)) solves the ODE,

d

dt
(y(t), u(t)) = Z̃ ((y(t), u(t))) with (y(0), u(0)) = (x, IdX)

where Z̃ is the C1 – vector field defined by
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Z̃ (x, u) = (Z(x), DxZ(x)u) .

Therefore Theorem 34.28 may be applied to this equation to deduce: D2
xϕ(t, x)

and D2
xϕ(t, x) exist and are continuous. We may now differentiate Eq. (34.42)

to find D2
xϕ(t, x) satisfies the ODE,

d

dt
D2
xϕ(t, x) = [

(
∂Dxϕ(t,x)DxZ

)
(t, ϕ(t, x))]Dxϕ(t, x)

+ [(DxZ) (t, ϕ(t, x))]D2
xϕ(t, x)

with D2
xϕ(0, x) = 0.

34.7 Existence of Periodic Solutions

A detailed discussion of the inverse function theorem on Banach and Frechét
spaces may be found in Richard Hamilton’s, “The Inverse Function Theorem of
Nash and Moser.” The applications in this section are taken from this paper.
In what follows we say f ∈ Ck2π(R, (c, d)) if f ∈ Ck2π(R, (c, d)) and f is 2π –
periodic, i.e. f (x+ 2π) = f (x) for all x ∈ R.

Theorem 34.31 (Taken from Hamilton, p. 110.). Let p : U := (a, b) →
V := (c, d) be a smooth function with p′ > 0 on (a, b). For every g ∈
C∞2π(R, (c, d)) there exists a unique function y ∈ C∞2π(R, (a, b)) such that

ẏ(t) + p(y(t)) = g(t).

Proof. Let Ṽ := C0
2π(R, (c, d)) ⊂o C0

2π(R,R) and Ũ ⊂o C1
2π(R, (a, b)) be

given by

Ũ :=
{
y ∈ C1

2π(R,R) : a < y(t) < b & c < ẏ(t) + p(y(t)) < d ∀ t
}
.

The proof will be completed by showing P : Ũ → Ṽ defined by

P (y)(t) = ẏ(t) + p(y(t)) for y ∈ Ũ and t ∈ R

is bijective. Note that if P (y) is smooth then so is y.
Step 1. The differential of P is given by P ′(y)h = ḣ+ p′(y)h, see Exercise

34.8. We will now show that the linear mapping P ′(y) is invertible. Indeed let
f = p′(y) > 0, then the general solution to the Eq. ḣ+ fh = k is given by

h(t) = e
−
∫ t
0
f(τ)dτ

h0 +

∫ t

0

e
−
∫ t
τ
f(s)ds

k(τ)dτ

where h0 is a constant. We wish to choose h0 so that h(2π) = h0, i.e. so that

h0

(
1− e−c(f)

)
=

∫ 2π

0

e
−
∫ t
τ
f(s)ds

k(τ)dτ

where

c(f) =

∫ 2π

0

f(τ)dτ =

∫ 2π

0

p′(y(τ))dτ > 0.

The unique solution h ∈ C1
2π(R,R) to P ′(y)h = k is given by

h(t) =
(

1− e−c(f)
)−1

e
−
∫ t
0
f(τ)dτ

∫ 2π

0

e
−
∫ t
τ
f(s)ds

k(τ)dτ +

∫ t

0

e
−
∫ t
τ
f(s)ds

k(τ)dτ

=
(

1− e−c(f)
)−1

e
−
∫ t
0
f(s)ds

∫ 2π

0

e
−
∫ t
τ
f(s)ds

k(τ)dτ +

∫ t

0

e
−
∫ t
τ
f(s)ds

k(τ)dτ.

Therefore P ′(y) is invertible for all y. Hence by the inverse function Theorem
(Theorem 34.25), P : Ũ → Ṽ is an open mapping which is locally invertible.

Step 2. Let us now prove P : Ũ → Ṽ is injective. For this suppose y1, y2 ∈ Ũ
such that P (y1) = g = P (y2) and let z = y2 − y1. Since

ż(t) + p(y2(t))− p(y1(t)) = g(t)− g(t) = 0,

if tm ∈ R is point where z(tm) takes on its maximum, then ż(tm) = 0 and hence

p(y2(tm))− p(y1(tm)) = 0.

Since p is increasing this implies y2(tm) = y1(tm) and hence z(tm) = 0. This
shows z(t) ≤ 0 for all t and a similar argument using a minimizer of z shows
z(t) ≥ 0 for all t. So we conclude y1 = y2.

Step 3. Let W := P (Ũ), we wish to show W = Ṽ . By step 1., we know
W is an open subset of Ṽ and since Ṽ is connected, to finish the proof it
suffices to show W is relatively closed in Ṽ . So suppose yj ∈ Ũ such that

gj := P (yj)→ g ∈ Ṽ . We must now show g ∈W, i.e. g = P (y) for some y ∈W.
If tm is a maximizer of yj , then ẏj(tm) = 0 and hence gj(tm) = p(yj(tm)) < d
and therefore yj(tm) < b because p is increasing. A similar argument works for
the minimizers then allows us to conclude Ran (p ◦ yj) ⊂ Ran (gj) @@ (c, d) for
all j. Since gj is converging uniformly to g, there exists c < γ < δ < d such that
Ran(p ◦ yj) ⊂ Ran(gj) ⊂ [γ, δ] for all j. Again since p′ > 0,

Ran(yj) ⊂ p−1 ([γ, δ]) = [α, β] @@ (a, b) for all j.

In particular sup {|ẏj(t)| : t ∈ R and j} <∞ since

ẏj(t) = gj(t)− p(yj(t)) ⊂ [γ, δ]− [γ, δ] (34.46)

which is a compact subset of R. The Arzela-Ascoli Theorem (see Theoerem
36.11 below) now allows us to assume, by passing to a subsequence if necessary,
that yj is converging uniformly to y ∈ C0

2π(R, [α, β]). It now follows that
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ẏj(t) = gj(t)− p(yj(t))→ g − p(y)

uniformly in t. Hence we conclude that y ∈ C1
2π(R,R) ∩ C0

2π(R, [α, β]), ẏj → y
and P (y) = g. This has proved that g ∈ W and hence that W is relatively
closed in Ṽ .

34.8 Contraction Mapping Principle

Some of the arguments used in Chapter 33 as well as this chapter may be
abstracted to a general principle of finding fixed points on a complete metric
space. This is the content of this section.

Theorem 34.32 (Contraction Mapping Principle). Suppose that (X, ρ)
is a complete metric space and S : X → X is a contraction, i.e. there exists
α ∈ (0, 1) such that ρ(S(x), S(y)) ≤ αρ(x, y) for all x, y ∈ X. Then S has
a unique fixed point in X, i.e. there exists a unique point x ∈ X such that
S(x) = x.

Proof. For uniqueness suppose that x and x′ are two fixed points of S, then

ρ(x, x′) = ρ(S(x), S(x′)) ≤ αρ(x, x′).

Therefore (1 − α)ρ(x, x′) ≤ 0 which implies that ρ(x, x′) = 0 since 1 − α > 0.
Thus x = x′. For existence, let x0 ∈ X be any point in X and define xn ∈ X
inductively by xn+1 = S(xn) for n ≥ 0. We will show that x := limn→∞ xn
exists in X and because S is continuous this will imply,

x = lim
n→∞

xn+1 = lim
n→∞

S(xn) = S( lim
n→∞

xn) = S(x),

showing x is a fixed point of S. So to finish the proof, because X is complete,
it suffices to show {xn}∞n=1 is a Cauchy sequence in X. An easy inductive com-
putation shows, for n ≥ 0, that

ρ(xn+1, xn) = ρ(S(xn), S(xn−1)) ≤ αρ(xn, xn−1) ≤ · · · ≤ αnρ(x1, x0).

Another inductive argument using the triangle inequality shows, for m > n,
that,

ρ(xm, xn) ≤ ρ(xm, xm−1) + ρ(xm−1, xn) ≤ · · · ≤
m−1∑
k=n

ρ(xk+1, xk).

Combining the last two inequalities gives (using again that α ∈ (0, 1)),

ρ(xm, xn) ≤
m−1∑
k=n

αkρ(x1, x0) ≤ ρ(x1, x0)αn
∞∑
l=0

αl = ρ(x1, x0)
αn

1− α
.

This last equation shows that ρ(xm, xn) → 0 as m,n → ∞, i.e. {xn}∞n=0 is a
Cauchy sequence.

Corollary 34.33 (Contraction Mapping Principle II). Suppose that
(X, ρ) is a complete metric space and S : X → X is a continuous map such
that S(n) is a contraction for some n ∈ N. Here

S(n) :=

n times︷ ︸︸ ︷
S ◦ S ◦ . . . ◦ S

and we are assuming there exists α ∈ (0, 1) such that ρ(S(n)(x), S(n)(y)) ≤
αρ(x, y) for all x, y ∈ X. Then S has a unique fixed point in X.

Proof. Let T := S(n), then T : X → X is a contraction and hence T has a
unique fixed point x ∈ X. Since any fixed point of S is also a fixed point of T,
we see if S has a fixed point then it must be x. Now

T (S(x)) = S(n)(S(x)) = S(S(n)(x)) = S(T (x)) = S(x),

which shows that S(x) is also a fixed point of T. Since T has only one fixed
point, we must have that S(x) = x. So we have shown that x is a fixed point
of S and this fixed point is unique.

Lemma 34.34. Suppose that (X, ρ) is a complete metric space, n ∈ N, Z is
a topological space, and α ∈ (0, 1). Suppose for each z ∈ Z there is a map
Sz : X → X with the following properties:

Contraction property ρ(S
(n)
z (x), S

(n)
z (y)) ≤ αρ(x, y) for all x, y ∈ X and z ∈ Z.

Continuity in z For each x ∈ X the map z ∈ Z → Sz(x) ∈ X is continuous.

By Corollary 34.33 above, for each z ∈ Z there is a unique fixed point
G(z) ∈ X of Sz.

Conclusion: The map G : Z → X is continuous.

Proof. Let Tz := S
(n)
z . If z, w ∈ Z, then

ρ(G(z), G(w)) = ρ(Tz(G(z)), Tw(G(w)))

≤ ρ(Tz(G(z)), Tw(G(z))) + ρ(Tw(G(z)), Tw(G(w)))

≤ ρ(Tz(G(z)), Tw(G(z))) + αρ(G(z), G(w)).

Solving this inequality for ρ(G(z), G(w)) gives

ρ(G(z), G(w)) ≤ 1

1− α
ρ(Tz(G(z)), Tw(G(z))).

Since w → Tw(G(z)) is continuous it follows from the above equation that
G(w)→ G(z) as w → z, i.e. G is continuous.
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34.9 Exercises

Exercise 34.3. Suppose that A : R → L(X) is a continuous function and
V : R→ L(X) is the unique solution to the linear differential equation

V̇ (t) = A(t)V (t) with V (0) = I. (34.47)

Assuming that V (t) is invertible for all t ∈ R, show that V −1(t) := [V (t)]−1

must solve the differential equation

d

dt
V −1(t) = −V −1(t)A(t) with V −1(0) = I. (34.48)

See Exercise 32.12 as well.

Exercise 34.4 (Differential Equations with Parameters). Let W be an-
other Banach space, U × V ⊂o X × W and Z ∈ C1(U × V,X). For each
(x,w) ∈ U × V, let t ∈ Jx,w → ϕ(t, x, w) denote the maximal solution to the
ODE

ẏ(t) = Z(y(t), w) with y(0) = x (34.49)

and
D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w}

as in Exercise 33.8.

1. Prove that ϕ is C1 and that Dwϕ(t, x, w) solves the differential equation:

d

dt
Dwϕ(t, x, w) = (DxZ)(ϕ(t, x, w), w)Dwϕ(t, x, w) + (DwZ)(ϕ(t, x, w), w)

with Dwϕ(0, x, w) = 0 ∈ L(W,X). Hint: See the hint for Exercise 33.8
with the reference to Theorem 33.16 being replace by Theorem 34.28.

2. Also show with the aid of Duhamel’s principle (Exercise 32.22) and Theorem
34.28 that

Dwϕ(t, x, w) = Dxϕ(t, x, w)

∫ t

0

Dxϕ(τ, x, w)−1(DwZ)(ϕ(τ, x, w), w)dτ

Exercise 34.5. (Differential of eA) Let f : L(X)→ GL(X) be the exponen-
tial function f(A) = eA. Prove that f is differentiable and that

Df(A)B =

∫ 1

0

e(1−t)ABetA dt. (34.50)

Hint: Let B ∈ L(X) and define w(t, s) = et(A+sB) for all t, s ∈ R. Notice that

dw(t, s)/dt = (A+ sB)w(t, s) with w(0, s) = I ∈ L(X). (34.51)

Use Exercise 34.4 to conclude that w is C1 and that w′(t, 0) := dw(t, s)/ds|s=0

satisfies the differential equation,

d

dt
w′(t, 0) = Aw′(t, 0) +BetA with w(0, 0) = 0 ∈ L(X). (34.52)

Solve this equation by Duhamel’s principle (Exercise 32.22) and then apply
Proposition 34.14 to conclude that f is differentiable with differential given by
Eq. (34.50).

Exercise 34.6 (Local ODE Existence). Let Sx be defined as in Eq. (33.17)
from the proof of Theorem 33.5. Verify that Sx satisfies the hypothesis of Corol-
lary 34.33. In particular we could have used Corollary 34.33 to prove Theorem
33.5.

Exercise 34.7 (Local ODE Existence Again). Let J = (−1, 1) , Z ∈
C1(X,X), Y := BC(J,X) and for y ∈ Y and s ∈ J let ys ∈ Y be defined
by ys(t) := y(st). Use the following outline to prove the ODE

ẏ(t) = Z(y(t)) with y(0) = x (34.53)

has a unique solution for small t and this solution is C1 in x.

1. If y solves Eq. (34.53) then ys solves

ẏs(t) = sZ(ys(t)) with ys(0) = x

or equivalently

ys(t) = x+ s

∫ t

0

Z(ys(τ))dτ. (34.54)

Notice that when s = 0, the unique solution to this equation is y0(t) = x.
2. Let F : J × Y → J × Y be defined by

F (s, y) := (s, y(t)− s
∫ t

0

Z(y(τ))dτ).

Show the differential of F is given by

F ′(s, y)(a, v) =

(
a, t→ v(t)− s

∫ t

0

Z ′(y(τ))v(τ)dτ − a
∫ ·

0

Z(y(τ))dτ

)
.

3. Verify F ′(0, y) : R× Y → R× Y is invertible for all y ∈ Y and notice that
F (0, y) = (0, y).

4. For x ∈ X, let Cx ∈ Y be the constant path at x, i.e. Cx(t) = x for all t ∈ J.
Use the inverse function Theorem 34.25 to conclude there exists ε > 0 and
a C1 map ϕ : (−ε, ε)×B(x0, ε)→ Y such that

F (s, ϕ(s, x)) = (s, Cx) for all (s, x) ∈ (−ε, ε)×B(x0, ε).
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5. Show, for s ≤ ε that ys(t) := ϕ(s, x)(t) satisfies Eq. (34.54). Now define
y(t, x) = ϕ(ε/2, x)(2t/ε) and show y(t, x) solve Eq. (34.53) for |t| < ε/2
and x ∈ B(x0, ε).

Exercise 34.8. Show P defined in Theorem 34.31 is continuously differentiable
and P ′(y)h = ḣ+ p′(y)h.

Exercise 34.9. Embedded sub-manifold problems.

Exercise 34.10. Lagrange Multiplier problems.

34.9.1 Alternate construction of g. To be made into an exercise.

Suppose U ⊂o X and f : U → Y is a C2 – function. Then we are looking for a
function g(y) such that f(g(y)) = y. Fix an x0 ∈ U and y0 = f(x0) ∈ Y. Suppose
such a g exists and let x(t) = g(y0 + th) for some h ∈ Y. Then differentiating
f(x(t)) = y0 + th implies

d

dt
f(x(t)) = f ′(x(t))ẋ(t) = h

or equivalently that

ẋ(t) = [f ′(x(t))]
−1
h = Z(h, x(t)) with x(0) = x0 (34.55)

where Z(h, x) = [f ′(x(t))]
−1
h. Conversely if x solves Eq. (34.55) we have

d
dtf(x(t)) = h and hence that

f(x(1)) = y0 + h.

Thus if we define
g(y0 + h) := eZ(h,·)(x0),

then f(g(y0 + h)) = y0 + h for all h sufficiently small. This shows f is an open
mapping.
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35

Topological Space Basics

Using the metric space results above as motivation we will axiomatize the
notion of being an open set to more general settings. See [12,13] and many more
references on point-set topology.

Definition 35.1. A collection of subsets τ of X is a topology if

1. ∅, X ∈ τ.
2. τ is closed under arbitrary unions, i.e. if Vα ∈ τ, for α ∈ I then

⋃
α∈I

Vα ∈ τ .

3. τ is closed under finite intersections, i.e. if V1, . . . , Vn ∈ τ then V1∩· · ·∩Vn ∈
τ.
A pair (X, τ) where τ is a topology on X will be called a topological space.

Notation 35.2 Let (X, τ) be a topological space.

1. The elements, V ∈ τ, are called open sets. We will often write V ⊂o X to
indicate V is an open subset of X.

2. A subset F ⊂ X is closed if F c is open and we will write F @ X if F is a
closed subset of X.

3. An open neighborhood of a point x ∈ X is an open set V ⊂ X such that
x ∈ V. Let τx = {V ∈ τ : x ∈ V } denote the collection of open neighborhoods
of x.

4. A subset W ⊂ X is a neighborhood of x if there exists V ∈ τx such that
V ⊂W.

5. A collection η ⊂ τx is called a neighborhood base at x ∈ X if for all
V ∈ τx there exists W ∈ η such that W ⊂ V .

The notation τx should not be confused with

τ{x} := i−1
{x}(τ) = {{x} ∩ V : V ∈ τ} = {∅, {x}} .

Example 35.3. 1. Let (X, d) be a metric space, we write τd for the collection of
d – open sets in X. We have already seen that τd is a topology, see Exercise
13.2. The collection of sets η = {Bx(ε) : ε ∈ D} where D is any dense subset
of (0, 1] is a neighborhood base at x.

2. LetX be any set, then τ = 2X is the discrete topology onX. In this topology
all subsets of X are both open and closed. At the opposite extreme we have
the trivial topology, τ = {∅, X} . In this topology only the empty set and
X are open (closed).

3. Let X = {1, 2, 3}, then τ = {∅, X, {2, 3}} is a topology on X which does
not come from a metric.

4. Again let X = {1, 2, 3}. Then τ = {{1}, {2, 3}, ∅, X}. is a topology, and the
sets X, {1}, {2, 3}, ∅ are open and closed. The sets {1, 2} and {1, 3} are
neither open nor closed.

Fig. 35.1. A topology.

Definition 35.4. Let (X, τX) and (Y, τY ) be topological spaces. A function f :
X → Y is continuous if

f−1(τY ) :=
{
f−1 (V ) : V ∈ τY

}
⊂ τX .

We will also say that f is τX/τY –continuous or (τX , τY ) – continuous. Let
C(X,Y ) denote the set of continuous functions from X to Y.

Exercise 35.1. Show f : X → Y is continuous iff f−1(C) is closed in X for all
closed subsets C of Y.

Definition 35.5. A map f : X → Y between topological spaces is called a
homeomorphism provided that f is bijective, f is continuous and f−1 : Y →
X is continuous. If there exists f : X → Y which is a homeomorphism, we say
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that X and Y are homeomorphic. (As topological spaces X and Y are essentially
the same.)

35.1 Constructing Topologies and Checking Continuity

Proposition 35.6. Let E be any collection of subsets of X. Then there exists
a unique smallest topology τ(E) which contains E .

Proof. Since 2X is a topology and E ⊂ 2X , E is always a subset of a topology.
It is now easily seen that

τ(E) :=
⋂
{τ : τ is a topology and E ⊂ τ}

is a topology which is clearly the smallest possible topology containing E .
The following proposition gives an explicit descriptions of τ(E).

Proposition 35.7. Let X be a set and E ⊂ 2X . For simplicity of notation,
assume that X, ∅ ∈ E . (If this is not the case simply replace E by E ∪ {X, ∅} .)
Then

τ (E) := {arbitrary unions of finite intersections of elements from E}. (35.1)

Proof. Let τ be given as in the right side of Eq. (35.1). From the definition of
a topology any topology containing E must contain τ and hence E ⊂ τ ⊂ τ(E).
The proof will be completed by showing τ is a topology. The validation of τ
being a topology is routine except for showing that τ is closed under taking
finite intersections. Let V,W ∈ τ which by definition may be expressed as

V = ∪α∈AVα and W = ∪β∈BWβ ,

where Vα and Wβ are sets which are finite intersection of elements from E . Then

V ∩W = (∪α∈AVα) ∩ (∪β∈BWβ) =
⋃

(α,β)∈A×B

Vα ∩Wβ .

Since for each (α, β) ∈ A× B, Vα ∩Wβ is still a finite intersection of elements
from E , V ∩W ∈ τ showing τ is closed under taking finite intersections.

Definition 35.8. Let (X, τ) be a topological space. We say that S ⊂ τ is a sub-
base for the topology τ iff τ = τ(S) and X = ∪S := ∪V ∈SV. We say V ⊂ τ is a
base for the topology τ iff V is a sub-base with the property that every element
V ∈ τ may be written as

V = ∪{B ∈ V : B ⊂ V }.

Fig. 35.2. Fitting balls in the intersection.

Exercise 35.2. Suppose that S is a sub-base for a topology τ on a set X.

1. Show V := Sf (Sf is the collection of finite intersections of elements from
S) is a base for τ.

2. Show S is itself a base for τ iff

V1 ∩ V2 = ∪{S ∈ S : S ⊂ V1 ∩ V2}.

for every pair of sets V1, V2 ∈ S.

Remark 35.9. Let (X, d) be a metric space, then E = {Bx(δ) : x ∈ X and δ > 0}
is a base for τd – the topology associated to the metric d. This is the content
of Exercise 13.3.

Let us check directly that E is a base for a topology. Suppose that x, y ∈ X
and ε, δ > 0. If z ∈ B(x, δ) ∩B(y, ε), then

B(z, α) ⊂ B(x, δ) ∩B(y, ε) (35.2)

where α = min{δ − d(x, z), ε − d(y, z)}, see Figure 35.2. This is a for-
mal consequence of the triangle inequality. For example let us show that
B(z, α) ⊂ B(x, δ). By the definition of α, we have that α ≤ δ − d(x, z) or
that d(x, z) ≤ δ − α. Hence if w ∈ B(z, α), then

d(x,w) ≤ d(x, z) + d(z, w) ≤ δ − α+ d(z, w) < δ − α+ α = δ

which shows that w ∈ B(x, δ). Similarly we show that w ∈ B(y, ε) as well.
Owing to Exercise 35.2, this shows E is a base for a topology. We do not

need to use Exercise 35.2 here since in fact Equation (35.2) may be generalized
to finite intersection of balls. Namely if xi ∈ X, δi > 0 and z ∈ ∩ni=1B(xi, δi),
then
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B(z, α) ⊂ ∩ni=1B(xi, δi) (35.3)

where now α := min {δi − d(xi, z) : i = 1, 2, . . . , n} . By Eq. (35.3) it follows
that any finite intersection of open balls may be written as a union of open
balls.

Exercise 35.3. Suppose f : X → Y is a function and τX and τY are topologies
on X and Y respectively. Show

f−1τY :=
{
f−1 (V ) ⊂ X : V ∈ τY

}
and f∗τX :=

{
V ⊂ Y : f−1 (V ) ∈ τX

}
(as in Notation 2.7) are also topologies on X and Y respectively.

Remark 35.10. Let f : X → Y be a function. Given a topology τY ⊂ 2Y , the
topology τX := f−1(τY ) is the smallest topology on X such that f is (τX , τY )
- continuous. Similarly, if τX is a topology on X then τY = f∗τX is the largest
topology on Y such that f is (τX , τY ) - continuous.

Definition 35.11. Let (X, τ) be a topological space and A subset of X. The
relative topology or induced topology on A is the collection of sets

τA = i−1
A (τ) = {A ∩ V : V ∈ τ} ,

where iA : A→ X is the inclusion map as in Definition 2.8.

Lemma 35.12. The relative topology, τA, is a topology on A. Moreover a subset
B ⊂ A is τA – closed iff there is a τ – closed subset, C, of X such that B = C∩A.

Proof. The first assertion is a consequence of Exercise 35.3. For the second,
B ⊂ A is τA – closed iff A \ B = A ∩ V for some V ∈ τ which is equivalent to
B = A \ (A ∩ V ) = A ∩ V c for some V ∈ τ.

Exercise 35.4. Show if (X, d) is a metric space and τ = τd is the topology
coming from d, then (τd)A is the topology induced by making A into a metric
space using the metric d|A×A.

Lemma 35.13. Suppose that (X, τX), (Y, τY ) and (Z, τZ) are topological
spaces. If f : (X, τX) → (Y, τY ) and g : (Y, τY ) → (Z, τZ) are continuous
functions then g ◦ f : (X, τX)→ (Z, τZ) is continuous as well.

Proof. This is easy since by assumption g−1(τZ) ⊂ τY and f−1 (τY ) ⊂ τX
so that

(g ◦ f)
−1

(τZ) = f−1
(
g−1 (τZ)

)
⊂ f−1 (τY ) ⊂ τX .

The following elementary lemma turns out to be extremely useful because
it may be used to greatly simplify the verification that a given function is
continuous.

Lemma 35.14. Suppose that f : X → Y is a function, E ⊂ 2Y and A ⊂ Y,
then

τ
(
f−1(E)

)
= f−1(τ(E)) and (35.4)

τ (EA) = (τ(E))A . (35.5)

Moreover, if τY = τ (E) and τX is a topology on X, then f is (τX , τY ) – con-
tinuous iff f−1(E) ⊂ τX .

Proof. We will give two proof of Eq. (35.4). The first proof is more con-
structive than the second, but the second proof works in the context of σ –
algebras, see Lemma 9.3.

First Proof. There is no harm (as the reader should verify) in replacing E
by E ∪{∅, Y } if necessary so that we may assume that ∅, Y ∈ E . By Proposition
35.7, the general element V of τ(E) is an arbitrary unions of finite intersections
of elements from E . Since f−1 preserves all of the set operations, it follows
that f−1τ(E) consists of sets which are arbitrary unions of finite intersections
of elements from f−1E , which is precisely τ

(
f−1(E)

)
by another application of

Proposition 35.7.
Second Proof. By Exercise 35.3, f−1(τ(E)) is a topology and since E ⊂

τ (E) , f−1(E) ⊂ f−1(τ(E)). It now follows that τ(f−1(E)) ⊂ f−1(τ(E)). For
the reverse inclusion notice that

f∗τ
(
f−1(E)

)
=
{
B ⊂ Y : f−1(B) ∈ τ

(
f−1(E)

)}
is a topology which contains E and thus τ(E) ⊂ f∗τ

(
f−1(E)

)
. Hence if B ∈ τ(E)

we know that f−1(B) ∈ τ
(
f−1(E)

)
, i.e. f−1(τ(E)) ⊂ τ

(
f−1(E)

)
and Eq. (35.4)

has been proved. Applying Eq. (35.4) with X = A and f = iA being the
inclusion map implies

(τ(E))A = i−1
A (τ(E)) = τ(i−1

A (E)) = τ(EA).

Lastly if f−1E ⊂ τX , then f−1τ (E) = τ
(
f−1E

)
⊂ τX which shows f is (τX , τY )

– continuous.

Corollary 35.15. If (X, τ) is a topological space and f : X → R is a function
then the following are equivalent:

1. f is (τ, τR) - continuous,
2. f−1((a, b)) ∈ τ for all −∞ < a < b <∞,
3. f−1((a,∞)) ∈ τ and f−1((−∞, b)) ∈ τ for all a, b ∈ Q.

(We are using τR to denote the standard topology on R induced by the metric
d(x, y) = |x− y|.)
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Proof. Apply Lemma 35.14 with appropriate choices of E .
Definition 35.16. Let (X, τX) and (Y, τY ) be topological spaces. A function
f : X → Y is continuous at a point x ∈ X if for every open neighborhood V
of f(x) there is an open neighborhood U of x such that U ⊂ f−1(V ). See Figure
35.3.

Y
V

f(x)

f

X

U

x

f−1(V )

Fig. 35.3. Checking that a function is continuous at x ∈ X.

Exercise 35.5. Show f : X → Y is continuous (Definition 35.16) iff f is con-
tinuous at all points x ∈ X.
Definition 35.17. Given topological spaces (X, τ) and (Y, τ ′) and a subset A ⊂
X. We say a function f : A→ Y is continuous iff f is τA/τ

′ – continuous.

Definition 35.18. Let (X, τ) be a topological space and A ⊂ X. A collection of
subsets U ⊂ τ is an open cover of A if A ⊂

⋃
U :=

⋃
U∈U U.

Proposition 35.19 (Localizing Continuity). Let (X, τ) and (Y, τ ′) be topo-
logical spaces and f : X → Y be a function.

1. If f is continuous and A ⊂ X then f |A : A→ Y is continuous.
2. Suppose there exists an open cover, U ⊂ τ, of X such that f |A is continuous

for all A ∈ U , then f is continuous.

Proof. 1. If f : X → Y is continuous then f |A = f ◦ iA is the composition
of continuous maps and hence continuous. Here iA : A → X is the inclusion
map.

2. Let V ∈ τ ′, then

f−1(V ) = ∪A∈U
(
f−1(V ) ∩A

)
= ∪A∈Uf |−1

A (V ). (35.6)

Since each A ∈ U is open, τA ⊂ τ and by assumption, f |−1
A (V ) ∈ τA ⊂ τ. Hence

Eq. (35.6) shows f−1 (V ) is a union of τ – open sets and hence is also τ – open.

Exercise 35.6 (A Baby Extension Theorem). Suppose V ∈ τ and f : V →
C is a continuous function. Further assume there is a closed subset C such that
{x ∈ V : f (x) 6= 0} ⊂ C ⊂ V, then F : X → C defined by

F (x) =

{
f(x) if x ∈ V

0 if x /∈ V

is continuous.

Exercise 35.7 (Building Continuous Functions). Prove the following vari-
ant of item 2. of Proposition 35.19. Namely, suppose there exists a finite col-
lection F of closed subsets of X such that X = ∪A∈FA and f |A is continuous
for all A ∈ F , then f is continuous. Given an example showing that the as-
sumption that F is finite can not be eliminated. Hint: consider f−1 (C) where
C is a closed subset of Y.

35.2 Product Spaces I

Definition 35.20. Let X be a set and suppose there is a collection of topological
spaces {(Yα, τα) : α ∈ A} and functions fα : X → Yα for all α ∈ A. Let τ(fα :
α ∈ A) denote the smallest topology on X such that each fα is continuous, i.e.

τ(fα : α ∈ A) = τ(∪αf−1
α (τα)).

A neighborhood base for this topology about a point x ∈ X can be taken to be
all sets of the form

V = ∩α∈Λf−1
α (Vα) ,

where Λ is any finite subset of A and Vα are open neighborhood of fα (x) ∈ Yα
for all α ∈ Λ.

Proposition 35.21 (Topologies Generated by Functions). Assuming the
notation in Definition 35.20 and additionally let (Z, τZ) be a topological space
and g : Z → X be a function. Then g is (τZ , τ(fα : α ∈ A)) – continuous iff
fα ◦ g is (τZ , τα)–continuous for all α ∈ A.

Proof. (⇒) If g is (τZ , τ(fα : α ∈ A)) – continuous, then the composition
fα ◦ g is (τZ , τα) – continuous by Lemma 35.13. (⇐) Let

τX = τ(fα : α ∈ A) = τ
(
∪α∈Af−1

α (τα)
)
.

If fα ◦ g is (τZ , τα) – continuous for all α, then

g−1f−1
α (τα) ⊂ τZ ∀α ∈ A
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and therefore

g−1
(
∪α∈Af−1

α (τα)
)

= ∪α∈Ag−1f−1
α (τα) ⊂ τZ

Hence

g−1 (τX) = g−1
(
τ
(
∪α∈Af−1

α (τα)
))

= τ(g−1
(
∪α∈Af−1

α (τα)
)
⊂ τZ

which shows that g is (τZ , τX) – continuous.
Let {(Xα, τα)}α∈A be a collection of topological spaces, X = XA =

∏
α∈A

Xα

and πα : XA → Xα be the canonical projection map as in Notation 2.2.

Definition 35.22. The product topology τ = ⊗α∈Aτα is the smallest topology
on XA such that each projection πα is continuous. Explicitly, τ is the topology
generated by the collection of sets,

E = {π−1
α (Vα) : α ∈ A, Vα ∈ τα} = ∪α∈Aπ−1τα. (35.7)

Applying Proposition 35.21 in this setting implies the following proposition.

Proposition 35.23. Suppose Y is a topological space and f : Y → XA is a
map. Then f is continuous iff πα ◦ f : Y → Xα is continuous for all α ∈ A. In
particular if A = {1, 2, . . . , n} so that XA = X1 × X2 × · · · × Xn and f(y) =
(f1(y), f2(y), . . . , fn(y)) ∈ X1 ×X2 × · · · ×Xn, then f : Y → XA is continuous
iff fi : Y → Xi is continuous for all i.

Proposition 35.24. Suppose that (X, τ) is a topological space and {fn} ⊂ XA

(see Notation 2.2) is a sequence. Then fn → f in the product topology of XA

iff fn(α)→ f(α) for all α ∈ A.

Proof. Since πα is continuous, if fn → f then fn(α) = πα(fn) → πα(f) =
f(α) for all α ∈ A. Conversely, fn(α)→ f(α) for all α ∈ A iff πα(fn)→ πα(f)
for all α ∈ A. Therefore if V = π−1

α (Vα) ∈ E (with E as in Eq. (35.7)) and
f ∈ V, then πα(f) ∈ Vα and πα(fn) ∈ Vα for a.a. n and hence fn ∈ V for a.a.
n. This shows that fn → f as n→∞.

Proposition 35.25. Suppose that (Xα, τα)α∈A is a collection of topological
spaces and ⊗α∈Aτα is the product topology on X :=

∏
α∈AXα.

1. If Eα ⊂ τα generates τα for each α ∈ A, then

⊗α∈A τα = τ
(
∪α∈Aπ−1

α (Eα)
)

(35.8)

2. If Bα ⊂ τα is a base for τα for each α, then the collection of sets, V, of the
form

V = ∩α∈Λπ−1
α Vα =

∏
α∈Λ

Vα ×
∏
α/∈Λ

Xα =: VΛ ×XA\Λ, (35.9)

where Λ ⊂⊂ A and Vα ∈ Bα for all α ∈ Λ is base for ⊗α∈Aτα.

Proof. 1. Since

∪απ−1
α Eα ⊂ ∪απ−1

α τα = ∪απ−1
α (τ(Eα))

= ∪ατ(π−1
α Eα) ⊂ τ

(
∪απ−1

α Eα
)
,

it follows that
τ
(
∪απ−1

α Eα
)
⊂ ⊗ατα ⊂ τ

(
∪απ−1

α Eα
)
.

2. Now let U =
[
∪απ−1

α τα
]
f

denote the collection of sets consisting of finite

intersections of elements from ∪απ−1
α τα. Notice that U may be described as

those sets in Eq. (35.9) where Vα ∈ τα for all α ∈ Λ. By Exercise 35.2, U is a
base for the product topology, ⊗α∈Aτα. Hence for W ∈ ⊗α∈Aτα and x ∈ W,
there exists a V ∈ U of the form in Eq. (35.9) such that x ∈ V ⊂ W. Since Bα
is a base for τα, there exists Uα ∈ Bα such that xα ∈ Uα ⊂ Vα for each α ∈ Λ.
With this notation, the set UΛ×XA\Λ ∈ V and x ∈ UΛ×XA\Λ ⊂ V ⊂W. This
shows that every open set in X may be written as a union of elements from V,
i.e. V is a base for the product topology.

Notation 35.26 Let Ei ⊂ 2Xi be a collection of subsets of a set Xi for each
i = 1, 2, . . . , n. We will write, by abuse of notation, E1 × E2 × · · · × En for the
collection of subsets of X1×· · ·×Xn of the form A1×A2×· · ·×An with Ai ∈ Ei
for all i. That is we are identifying (A1, A2, . . . , An) with A1 ×A2 × · · · ×An.

Corollary 35.27. Suppose A = {1, 2, . . . , n} so X = X1 ×X2 × · · · ×Xn.

1. If Ei ⊂ 2Xi , τi = τ (Ei) and Xi ∈ Ei for each i, then

τ1 ⊗ τ2 ⊗ · · · ⊗ τn = τ(E1 × E2 × · · · × En) (35.10)

and in particular

τ1 ⊗ τ2 ⊗ · · · ⊗ τn = τ(τ1 × · · · × τn). (35.11)

2. Furthermore if Bi ⊂ τi is a base for the topology τi for each i, then B1 ×
· · · × Bn is a base for the product topology, τ1 ⊗ τ2 ⊗ · · · ⊗ τn.

Proof. (The proof is a minor variation on the proof of Proposition 35.25.) 1.
Let

[
∪i∈Aπ−1

i (Ei)
]
f

denotes the collection of sets which are finite intersections

from ∪i∈Aπ−1
i (Ei), then, using Xi ∈ Ei for all i,

∪i∈Aπ−1
i (Ei) ⊂ E1 × E2 × · · · × En ⊂

[
∪i∈Aπ−1

i (Ei)
]
f
.

Therefore

τ = τ
(
∪i∈Aπ−1

i (Ei)
)
⊂ τ (E1 × E2 × · · · × En) ⊂ τ

([
∪i∈Aπ−1

i (Ei)
]
f

)
= τ.
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2. Observe that τ1 × · · · × τn is closed under finite intersections and generates
τ1⊗ τ2⊗· · ·⊗ τn, therefore τ1×· · ·× τn is a base for the product topology. The
proof that B1 × · · · × Bn is also a base for τ1 ⊗ τ2 ⊗ · · · ⊗ τn follows the same
method used to prove item 2. in Proposition 35.25.

Lemma 35.28. Let (Xi, di) for i = 1, . . . , n be metric spaces, X := X1 × · · · ×
Xn and for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in X let

d(x, y) =

n∑
i=1

di(xi, yi). (35.12)

Then the topology, τd, associated to the metric d is the product topology on X,
i.e.

τd = τd1 ⊗ τd2 ⊗ · · · ⊗ τdn .

Proof. Let ρ(x, y) = max{di(xi, yi) : i = 1, 2, . . . , n}. Then ρ is equivalent
to d and hence τρ = τd. Moreover if ε > 0 and x = (x1, x2, . . . , xn) ∈ X, then

Bρx(ε) = Bd1x1
(ε)× · · · ×Bdnxn(ε).

By Remark 35.9,
E := {Bρx(ε) : x ∈ X and ε > 0}

is a base for τρ and by Proposition 35.25 E is also a base for τd1⊗τd2⊗· · ·⊗τdn .
Therefore,

τd1 ⊗ τd2 ⊗ · · · ⊗ τdn = τ(E) = τρ = τd.

35.3 Closure operations

Definition 35.29. Let (X, τ) be a topological space and A be a subset of X.

1. The closure of A is the smallest closed set Ā containing A, i.e.

Ā := ∩{F : A ⊂ F @ X} .

(Because of Exercise 13.4 this is consistent with Definition 13.10 for the
closure of a set in a metric space.)

2. The interior of A is the largest open set Ao contained in A, i.e.

Ao = ∪{V ∈ τ : V ⊂ A} .

(With this notation the definition of a neighborhood of x ∈ X may be stated
as: A ⊂ X is a neighborhood of a point x ∈ X if x ∈ Ao.)

3. The accumulation points of A is the set

acc(A) = {x ∈ X : V ∩ [A \ {x}] 6= ∅ for all V ∈ τx}.

4. The boundary of A is the set bd(A) := Ā \Ao.

Remark 35.30. The relationships between the interior and the closure of a set
are:

(Ao)c =
⋂
{V c : V ∈ τ and V ⊂ A} =

⋂
{C : C is closed C ⊃ Ac} = Ac

and similarly, (Ā)c = (Ac)o. Hence the boundary of A may be written as

bd(A) := Ā \Ao = Ā ∩ (Ao)c = Ā ∩Ac, (35.13)

which is to say bd(A) consists of the points in both the closures of A and Ac.
Notice that Ā = Ao ∪ bd (A) = A ∪ bd (A) .

Exercise 35.8. Show that bd (A) \A = acc(A) \A.

Proposition 35.31. Let A ⊂ X and x ∈ X.

1. If V ⊂o X and A ∩ V = ∅ then Ā ∩ V = ∅.
2. x ∈ Ā iff V ∩A 6= ∅ for all V ∈ τx.
3. x ∈ bd(A) iff V ∩A 6= ∅ and V ∩Ac 6= ∅ for all V ∈ τx.
4. Ā = A ∪ acc(A).

Proof. 1. Since A∩ V = ∅, A ⊂ V c and since V c is closed, Ā ⊂ V c. That is
to say Ā ∩ V = ∅.

2. By Remark 35.301, Ā = ((Ac)o)
c

so x ∈ Ā iff x /∈ (Ac)o which happens
iff V * Ac for all V ∈ τx, i.e. iff V ∩A 6= ∅ for all V ∈ τx.

3. This assertion easily follows from the Item 2. and Eq. (35.13).
4. Item 4. is an easy consequence of the definition of acc(A) and item 2.

Lemma 35.32. Let A ⊂ Y ⊂ X, ĀY denote the closure of A in Y with its
relative topology and Ā = ĀX be the closure of A in X, then ĀY = ĀX ∩ Y.

Proof. Using Lemma 35.12,

ĀY = ∩{B @ Y : A ⊂ B} = ∩{C ∩ Y : A ⊂ C @ X}
= Y ∩ (∩{C : A ⊂ C @ X}) = Y ∩ ĀX .

Alternative proof. Let x ∈ Y then x ∈ ĀY iff V ∩ A 6= ∅ for all V ∈ τY
such that x ∈ V. This happens iff for all U ∈ τx, U ∩ Y ∩A = U ∩A 6= ∅ which
happens iff x ∈ ĀX . That is to say ĀY = ĀX ∩ Y.

The support of a function may now be defined as in Definition 32.30 above.

1 Here is another direct proof of item 2. which goes by showing x /∈ Ā iff there exists
V ∈ τx such that V ∩A = ∅. If x /∈ Ā then V =

(
Ā
)c ∈ τx and V ∩A ⊂ V ∩ Ā = ∅.

Conversely if there exists V ∈ τx such that A ∩ V = ∅ then by Item 1. Ā ∩ V = ∅.
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Definition 35.33 (Support). Let f : X → Y be a function from a topological
space (X, τX) to a vector space Y. Then we define the support of f by

supp(f) := {x ∈ X : f(x) 6= 0},

a closed subset of X.

The next result is included for completeness but will not be used in the
sequel so may be omitted.

Lemma 35.34. Suppose that f : X → Y is a map between topological spaces.
Then the following are equivalent:

1. f is continuous.
2. f(Ā) ⊂ f(A) for all A ⊂ X
3. f−1(B) ⊂ f−1(B̄) for all B ⊂ Y.

Proof. If f is continuous, then f−1
(
f(A)

)
is closed and since A ⊂

f−1 (f(A)) ⊂ f−1
(
f(A)

)
it follows that Ā ⊂ f−1

(
f(A)

)
. From this equa-

tion we learn that f(Ā) ⊂ f(A) so that 1. implies 2. Now assume 2., then for
B ⊂ Y (taking A = f−1(B̄)) we have

f(f−1(B)) ⊂ f(f−1(B̄)) ⊂ f(f−1(B̄)) ⊂ B̄

and therefore
f−1(B) ⊂ f−1(B̄). (35.14)

This shows that 2. implies 3. Finally if Eq. (35.14) holds for all B, then when
B is closed this shows that

f−1(B) ⊂ f−1(B̄) = f−1(B) ⊂ f−1(B)

which shows that
f−1(B) = f−1(B).

Therefore f−1(B) is closed whenever B is closed which implies that f is con-
tinuous.

35.4 Countability Axioms

Definition 35.35. Let (X, τ) be a topological space. A sequence {xn}∞n=1 ⊂
X converges to a point x ∈ X if for all V ∈ τx, xn ∈ V almost always
(abbreviated a.a.), i.e. # ({n : xn /∈ V }) <∞. We will write xn → x as n→∞
or limn→∞ xn = x when xn converges to x.

Example 35.36. Let X = {1, 2, 3} and τ = {X, ∅, {1, 2}, {2, 3}, {2}} and xn = 2
for all n. Then xn → x for every x ∈ X. So limits need not be unique!

Definition 35.37 (First Countable). A topological space, (X, τ), is first
countable iff every point x ∈ X has a countable neighborhood base as defined
in Notation 35.2

Example 35.38. All metric spaces, (X, d) , are first countable. Indeed, if x ∈ X
then

{
B
(
x, 1

n

)
: n ∈ N

}
is a countable neighborhood base at x ∈ X.

Exercise 35.9. Suppose X is an uncountable set and define τ ⊂ 2X so that
V ∈ τ iff V c is finite or countable or V = ∅. Show τ is a topology on X which
is closed under countable intersections and that (X, τ) is not first countable.

Exercise 35.10. Let {0, 1} be equipped with the discrete topology and X =

{0, 1}R be equipped with the product topology, τ. Show (X, τ) is not first
countable.

The spaces described in Exercises 35.9 and 35.10 are examples of topological
spaces which are not metrizable, i.e. the topology is not induced by any metric
on X. Like for metric spaces, when τ is first countable, we may formulate many
topological notions in terms of sequences.

Proposition 35.39. If f : X → Y is continuous at x ∈ X and limn→∞ xn =
x ∈ X, then limn→∞ f(xn) = f(x) ∈ Y. Moreover, if there exists a countable
neighborhood base η of x ∈ X, then f is continuous at x iff lim

n→∞
f(xn) = f(x)

for all sequences {xn}∞n=1 ⊂ X such that xn → x as n→∞.

Proof. If f : X → Y is continuous and W ∈ τY is a neighborhood of f(x) ∈
Y, then there exists a neighborhood V of x ∈ X such that f(V ) ⊂ W. Since
xn → x, xn ∈ V a.a. and therefore f(xn) ∈ f(V ) ⊂ W a.a., i.e. f(xn) → f(x)
as n→∞. Conversely suppose that η := {Wn}∞n=1 is a countable neighborhood
base at x and lim

n→∞
f(xn) = f(x) for all sequences {xn}∞n=1 ⊂ X such that

xn → x. By replacing Wn by W1 ∩ · · · ∩Wn if necessary, we may assume that
{Wn}∞n=1 is a decreasing sequence of sets. If f were not continuous at x then

there exists V ∈ τf(x) such that x /∈
[
f−1(V )

]o
. Therefore, Wn is not a subset

of f−1(V ) for all n. Hence for each n, we may choose xn ∈ Wn \ f−1(V ). This
sequence then has the property that xn → x as n→∞ while f(xn) /∈ V for all
n and hence limn→∞ f(xn) 6= f(x).

Lemma 35.40. Suppose there exists {xn}∞n=1 ⊂ A such that xn → x, then
x ∈ Ā. Conversely if (X, τ) is a first countable space (like a metric space) then
if x ∈ Ā there exists {xn}∞n=1 ⊂ A such that xn → x.
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Proof. Suppose {xn}∞n=1 ⊂ A and xn → x ∈ X. Since Āc is an open
set, if x ∈ Āc then xn ∈ Āc ⊂ Ac a.a. contradicting the assumption that
{xn}∞n=1 ⊂ A. Hence x ∈ Ā. For the converse we now assume that (X, τ) is first
countable and that {Vn}∞n=1 is a countable neighborhood base at x such that
V1 ⊃ V2 ⊃ V3 ⊃ . . . . By Proposition 35.31, x ∈ Ā iff V ∩ A 6= ∅ for all V ∈ τx.
Hence x ∈ Ā implies there exists xn ∈ Vn ∩ A for all n. It is now easily seen
that xn → x as n→∞.

Definition 35.41. A topological space, (X, τ), is second countable if there
exists a countable base V for τ, i.e. V ⊂ τ is a countable set such that for every
W ∈ τ,

W = ∪{V : V ∈ V such that V ⊂W}.

Definition 35.42. A subset D of a topological space X is dense if D̄ = X. A
topological space is said to be separable if it contains a countable dense subset,
D.

Example 35.43. The following are examples of countable dense sets.

1. The rational numbers, Q, are dense in R equipped with the usual topology.
2. More generally, Qd is a countable dense subset of Rd for any d ∈ N.
3. Even more generally, for any function µ : N→ (0,∞), `p(µ) is separable for

all 1 ≤ p <∞. For example, let Γ ⊂ F be a countable dense set, then

D := {x ∈ `p(µ) : xi ∈ Γ for all i and #{j : xj 6= 0} <∞}.

The set Γ can be taken to be Q if F = R or Q+ iQ if F = C.
4. If (X, d) is a metric space which is separable then every subset Y ⊂ X is

also separable in the induced topology.

To prove 4. above, let A = {xn}∞n=1 ⊂ X be a countable dense subset of X.
Let dY (x) = inf{d(x, y) : y ∈ Y } be the distance from x to Y and recall that
dY : X → [0,∞) is continuous. Let εn = max

{
dY (xn), 1

n

}
≥ 0 and for each n

let yn ∈ Bxn(2εn). Then if y ∈ Y and ε > 0 we may choose n ∈ N such that
d(y, xn) ≤ εn < ε/3. Then d(yn, xn) ≤ 2εn < 2ε/3 and therefore

d(y, yn) ≤ d(y, xn) + d(xn, yn) < ε.

This shows that B := {yn}∞n=1 is a countable dense subset of Y.

Exercise 35.11. Show `∞ (N) is not separable.

Exercise 35.12. Show every second countable topological space (X, τ) is sep-
arable. Show the converse is not true by showing X := R with τ = {∅} ∪
{V ⊂ R : 0 ∈ V } is a separable, first countable but not a second countable topo-
logical space.

Exercise 35.13. Every separable metric space, (X, d) is second countable.

Exercise 35.14. Suppose E ⊂ 2X is a countable collection of subsets of X,
then τ = τ(E) is a second countable topology on X.

35.5 Connectedness

Definition 35.44. (X, τ) is disconnected if there exist non-empty open sets
U and V of X such that U ∩ V = ∅ and X = U ∪ V . We say {U, V } is a
disconnection of X. The topological space (X, τ) is called connected if it
is not disconnected, i.e. if there is no disconnection of X. If A ⊂ X we say
A is connected iff (A, τA) is connected where τA is the relative topology on
A. Explicitly, A is disconnected in (X, τ) iff there exists U, V ∈ τ such that
U ∩A 6= ∅, U ∩A 6= ∅, A ∩ U ∩ V = ∅ and A ⊂ U ∪ V.

The reader should check that the following statement is an equivalent defi-
nition of connectivity. A topological space (X, τ) is connected iff the only sets
A ⊂ X which are both open and closed are the sets X and ∅. This version of
the definition is often used in practice.

Remark 35.45. Let A ⊂ Y ⊂ X. Then A is connected in X iff A is connected in
Y .

Proof. Since

τA := {V ∩A : V ⊂ X} = {V ∩A ∩ Y : V ⊂ X} = {U ∩A : U ⊂o Y },

the relative topology on A inherited from X is the same as the relative topology
on A inherited from Y . Since connectivity is a statement about the relative
topologies on A, A is connected in X iff A is connected in Y.

Theorem 35.46 (The Connected Subsets of R). The connected subsets of
R are intervals.

Proof. Suppose that A ⊂ R is a connected subset and that a, b ∈ A with
a < b. If there exists c ∈ (a, b) such that c /∈ A, then U := (−∞, c) ∩ A
and V := (c,∞) ∩ A would form a disconnection of A. Hence (a, b) ⊂ A. Let
α := inf(A) and β := sup(A) and choose αn, βn ∈ A such that αn < βn and
αn ↓ α and βn ↑ β as n→∞. By what we have just shown, (αn, βn) ⊂ A for all
n and hence (α, β) = ∪∞n=1(αn, βn) ⊂ A. From this it follows that A = (α, β),
[α, β), (α, β] or [α, β], i.e. A is an interval.

Conversely suppose that A is a sub-interval of R. For the sake of contra-
diction, suppose that {U, V } is a disconnection of A with a ∈ U, b ∈ V. After
relabelling U and V if necessary we may assume that a < b. Since A is an
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interval [a, b] ⊂ A. Let p = sup ([a, b] ∩ U) , then because U and V are open,
a < p < b. Now p can not be in U for otherwise sup ([a, b] ∩ U) > p and p
can not be in V for otherwise p < sup ([a, b] ∩ U) . From this it follows that
p /∈ U ∪ V and hence A 6= U ∪ V contradicting the assumption that {U, V } is a
disconnection.

Alternative proof of the converse. Because of Proposition 35.49 below,
it suffices to assume that A is an open interval. For the sake of contradiction,
suppose that {U, V } is a disconnection of A with a ∈ U, b ∈ V. After relabelling
U and V if necessary we may assume that a < b. Let Ja = (α, β) be the maximal
open interval in U which contains a. (See Exercise 35.22 or the footnote to
Proposition 25.48 for the structure of open subsets of R.) If β ∈ U we could
extend Ja to the right and still be in U violating the definition of β. Moreover
we can not have β ∈ V because in this case Ja would not be in U. Therefore
β /∈ U ∪ V = A while on the other hand a < β < b and so β ∈ A as A is an
interval and we have reached the desired contradiction.

For x ∈ V, let ax := inf {a : (a, x] ⊂ V } and bx := sup {b : [x, b) ⊂ V } . Since
V is open, ax < x < bx and it is easily seen that Jx := (ax, bx) ⊂ V. Moreover
if y ∈ V and Jx ∩ Jy 6= ∅, then Jx = Jy. The collection, {Jx : x ∈ V } , is at
most countable since we may label each J ∈ {Jx : x ∈ V } by choosing a rational
number r ∈ J. Letting {Jn : n < N}, with N =∞ allowed, be an enumeration
of {Jx : x ∈ V } , we have V =

∐
n<N Jn as desired.

The following elementary but important lemma is left as an exercise to the
reader.

Lemma 35.47. Suppose that f : X → Y is a continuous map between topolog-
ical spaces. Then f(X) ⊂ Y is connected if X is connected.

Here is a typical way these connectedness ideas are used.

Example 35.48. Suppose that f : X → Y is a continuous map between two
topological spaces, the space X is connected and the space Y is “T1,” i.e. {y}
is a closed set for all y ∈ Y as in Definition 37.37 below. Further assume f is
locally constant, i.e. for all x ∈ X there exists an open neighborhood V of x
in X such that f |V is constant. Then f is constant, i.e. f(X) = {y0} for some
y0 ∈ Y. To prove this, let y0 ∈ f(X) and let W := f−1({y0}). Since {y0} ⊂ Y
is a closed set and since f is continuous W ⊂ X is also closed. Since f is locally
constant, W is open as well and since X is connected it follows that W = X,
i.e. f(X) = {y0} .

As a concrete application of this result, suppose that X is a connected open
subset of Rd and f : X → R is a C1 – function such that ∇f ≡ 0. If x ∈ X and
ε > 0 such that B (x, ε) ⊂ X, we have, for any |v| < ε and t ∈ [−1, 1] , that

d

dt
f (x+ tv) = ∇f (x+ tv) · v = 0.

Therefore f (x+ v) = f (x) for all |v| < ε and this shows f is locally constant.
Hence, by what we have just proved, f is constant on X.

Theorem 35.49 (Properties of Connected Sets). Let (X, τ) be a topolog-
ical space.

1. If B ⊂ X is a connected set and X is the disjoint union of two open sets U
and V, then either B ⊂ U or B ⊂ V.

2. If A ⊂ X is connected,

a) then Ā is connected.
b) More generally, if A is connected and B ⊂ acc(A) or B ⊂ bd (A) , then
A∪B is connected as well. (Recall that acc(A) – the set of accumulation
points of A was defined in Definition 35.29 above. Moreover by Exercise
35.8, we know that acc(A)\A = bd (A)\A. What we are really showing
here is that for any B such that A ⊂ B ⊂ Ā, then B is connected.)

3. If {Eα}α∈A is a collection of connected sets such that Eα ∩ Eβ 6= ∅ for all
α, β ∈ A,2 then Y :=

⋃
α∈AEα is connected as well.

4. Suppose A,B ⊂ X are non-empty connected subsets of X such that Ā∩B 6=
∅, then A ∪B is connected in X.

5. Every point x ∈ X is contained in a unique maximal connected subset Cx of
X and this subset is closed. The set Cx is called the connected component
of x.

Proof.

1. Since B is the disjoint union of the relatively open sets B∩U and B∩V, we
must have B ∩ U = B or B ∩ V = B for otherwise {B ∩ U,B ∩ V } would
be a disconnection of B.

2. a) Let Y = Ā be equipped with the relative topology from X. Suppose
that U, V ⊂o Y form a disconnection of Y = Ā. Then by 1. either A ⊂ U
or A ⊂ V. Say that A ⊂ U. Since U is both open and closed in Y, it
follows that Y = Ā ⊂ U. Therefore V = ∅ and we have a contradiction to
the assumption that {U, V } is a disconnection of Y = Ā. Hence we must
conclude that Y = Ā is connected as well.
b) Now let Y = A ∪B with B ⊂ acc(A), then

ĀY = Ā ∩ Y = (A ∪ acc(A)) ∩ Y = A ∪B.

Because A is connected in Y, by (2a) Y = A ∪B = ĀY is also connected.

2 One may assume much less here. What we really need is for any α, β ∈ A there
exists {αi}ni=0 in A such that α0 = α, αn = β, and Eαi∩Eαi+1 6= ∅ for all 0 ≤ i < n.
Moreover if we make use of item 4. it suffices to assume that

Ēαi ∩ Eαi+1 ∪ Eαi ∩ Ēαi+1 6= ∅ for all 0 ≤ i < n.
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3. Let Y :=
⋃
α∈AEα. By Remark 35.45, we know that Eα is connected in

Y for each α ∈ A. If {U, V } were a disconnection of Y, by item (1), either
Eα ⊂ U or Eα ⊂ V for all α. Let Λ = {α ∈ A : Eα ⊂ U} then U = ∪α∈ΛEα
and V = ∪α∈A\ΛEα. (Notice that neither Λ or A \Λ can be empty since U
and V are not empty.) Since

∅ = U ∩ V =
⋃

α∈Λ,β∈Λc (Eα ∩ Eβ) 6= ∅.

we have reached a contradiction and hence no such disconnection exists.
4. (A good example to keep in mind here is X = R, A = (0, 1) and B = [1, 2).)

For sake of contradiction suppose that {U, V } were a disconnection of Y =
A∪B. By item (1) either A ⊂ U or A ⊂ V, say A ⊂ U in which case B ⊂ V.
Since Y = A∪B we must have A = U and B = V and so we may conclude:
A and B are disjoint subsets of Y which are both open and closed. This
implies

A = ĀY = Ā ∩ Y = Ā ∩ (A ∪B) = A ∪
(
Ā ∩B

)
and therefore

∅ = A ∩B =
[
A ∪

(
Ā ∩B

)]
∩B = Ā ∩B 6= ∅

which gives us the desired contradiction.
Alternative proof. Let A′ := A ∪

[
B ∩ Ā

]
so that A ∪ B = A′ ∪ B. By

item 2b. we know A′ is still connected and since A′ ∩ B 6= ∅ we may now
apply item 3. to finish the proof.

5. Let C denote the collection of connected subsets C ⊂ X such that x ∈ C.
Then by item 3., the set Cx := ∪C is also a connected subset of X which
contains x and clearly this is the unique maximal connected set containing
x. Since C̄x is also connected by item (2) and Cx is maximal, Cx = C̄x, i.e.
Cx is closed.

Theorem 35.50 (Intermediate Value Theorem). Suppose that (X, τ) is
a connected topological space and f : X → R is a continuous map. Then f
satisfies the intermediate value property. Namely, for every pair x, y ∈ X such
that f (x) < f(y) and c ∈ (f (x) , f(y)), there exists z ∈ X such that f(z) = c.

Proof. By Lemma 35.47, f (X) is a connected subset of R. So by Theorem
35.46, f (X) is a subinterval of R and this completes the proof.

Definition 35.51. A topological space X is path connected if to every pair of
points {x0, x1} ⊂ X there exists a continuous path, σ ∈ C([0, 1], X), such that
σ(0) = x0 and σ(1) = x1. The space X is said to be locally path connected
if for each x ∈ X, there is an open neighborhood V ⊂ X of x which is path
connected.

Proposition 35.52. Let X be a topological space.

1. If X is path connected then X is connected.
2. If X is connected and locally path connected, then X is path connected.
3. If X is any connected open subset of Rn, then X is path connected.

Proof. The reader is asked to prove this proposition in Exercises 35.28 –
35.30 below.

Proposition 35.53 (Stability of Connectedness Under Products). Let
(Xα, τα) be connected topological spaces. Then the product space XA =∏
α∈AXα equipped with the product topology is connected.

Proof. Let us begin with the case of two factors, namely assume that X and
Y are connected topological spaces, then we will show that X ×Y is connected
as well. Given x ∈ X, let fx : Y → X ×Y be the map fx(y) = (x, y) and notice
that fx is continuous since πX ◦ fx(y) = x and πY ◦ fx(y) = y are continuous
maps. From this we conclude that {x} × Y = fx(Y ) is connected by Lemma
35.47. A similar argument shows X × {y} is connected for all y ∈ Y.

Let p = (x0, y0) ∈ X × Y and Cp denote the connected component of p.
Since {x0} × Y is connected and p ∈ {x0} × Y it follows that {x0} × Y ⊂ Cp
and hence Cp is also the connected component (x0, y) for all y ∈ Y. Similarly,
X × {y} ⊂ C(x0,y) = Cp is connected, and therefore X × {y} ⊂ Cp. So we have
shown (x, y) ∈ Cp for all x ∈ X and y ∈ Y, see Figure 35.4. By induction the
theorem holds whenever A is a finite set, i.e. for products of a finite number of
connected spaces.

For the general case, again choose a point p ∈ XA = XA and again let
C = Cp be the connected component of p. Recall that Cp is closed and therefore
if Cp is a proper subset of XA, then XA \ Cp is a non-empty open set. By the
definition of the product topology, this would imply that XA \ Cp contains a
non-empty open set of the form

V := ∩α∈Λπ−1
α (Vα) = VΛ ×XA\Λ ⊂ XA \ Cp (35.15)

where Λ ⊂⊂ A and Vα ∈ τα for all α ∈ Λ.
On the other hand, let ϕ : XΛ → XA by ϕ(y) = x where

xα =

{
yα if α ∈ Λ
pα if α /∈ Λ.

If α ∈ Λ, πα ◦ϕ(y) = yα = πα(y) and if α ∈ A\Λ then πα ◦ϕ(y) = pα so that in
every case πα ◦ϕ : XΛ → Xα is continuous and therefore ϕ is continuous. Since
XΛ is a product of a finite number of connected spaces and so is connected
and thus so is the continuous image, ϕ(XΛ) = XΛ × {pα}α∈A\Λ ⊂ XΛ. Since

p ∈ ϕ (XΛ) we must have
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X

Y

y0 p

X × Y

x0

X × {y0}

X × {y}

{x0} × Y

y

Fig. 35.4. This picture illustrates why the connected component of p in X ×Y must
contain all points of X × Y.

XΛ × {pα}α∈A\Λ ⊂ Cp. (35.16)

Hence it follows from Eqs. (35.15) and (35.16) that

VΛ × {pα}α∈A\Λ =
(
XΛ × {pα}α∈A\Λ

)
∩ V ⊂ Cp ∩ [XA \ Cp] = ∅

which is a contradiction since VΛ × {pα}α∈A\Λ 6= ∅.

35.6 Compactness

Definition 35.54. The subset A of a topological space (X, τ) is said to be com-
pact if every open cover (Definition 35.18) of A has finite a sub-cover, i.e. if U
is an open cover of A there exists U0 ⊂⊂ U such that U0 is a cover of A. (We
will write A @@ X to denote that A ⊂ X and A is compact.) A subset A ⊂ X
is precompact if Ā is compact.

Proposition 35.55. Suppose that K ⊂ X is a compact set and F ⊂ K is a
closed subset. Then F is compact. If {Ki}ni=1 is a finite collections of compact
subsets of X then K = ∪ni=1Ki is also a compact subset of X.

Proof. Let U ⊂ τ be an open cover of F, then U∪{F c} is an open cover of
K. The cover U∪{F c} of K has a finite subcover which we denote by U0∪{F c}

where U0 ⊂⊂ U . Since F ∩ F c = ∅, it follows that U0 is the desired subcover
of F. For the second assertion suppose U ⊂ τ is an open cover of K. Then U
covers each compact set Ki and therefore there exists a finite subset Ui ⊂⊂ U
for each i such that Ki ⊂ ∪Ui. Then U0 := ∪ni=1Ui is a finite cover of K.

Exercise 35.15 (Suggested by Michael Gurvich). Show by example that
the intersection of two compact sets need not be compact. (This pathology
disappears if one assumes the topology is Hausdorff, see Definition 37.2 below.)

Exercise 35.16. Suppose f : X → Y is continuous and K ⊂ X is compact,
then f(K) is a compact subset of Y. Give an example of continuous map,
f : X → Y, and a compact subset K of Y such that f−1(K) is not compact.

Exercise 35.17 (Dini’s Theorem). Let X be a compact topological space
and fn : X → [0,∞) be a sequence of continuous functions such that fn(x) ↓ 0
as n → ∞ for each x ∈ X. Show that in fact fn ↓ 0 uniformly in x, i.e.
supx∈X fn(x) ↓ 0 as n → ∞. Hint: Given ε > 0, consider the open sets Vn :=
{x ∈ X : fn(x) < ε}.

Definition 35.56. A collection F of closed subsets of a topological space (X, τ)
has the finite intersection property if ∩F0 6= ∅ for all F0 ⊂⊂ F .

The notion of compactness may be expressed in terms of closed sets as
follows.

Proposition 35.57. A topological space X is compact iff every family of closed
sets F ⊂ 2X having the finite intersection property satisfies

⋂
F 6= ∅.

Proof. The basic point here is that complementation interchanges open
and closed sets and open covers go over to collections of closed sets with empty
intersection. Here are the details.

(⇒) Suppose that X is compact and F ⊂ 2X is a collection of closed sets
such that

⋂
F = ∅. Let

U = Fc := {Cc : C ∈ F} ⊂ τ,

then U is a cover of X and hence has a finite subcover, U0. Let F0 = Uc0 ⊂⊂ F ,
then ∩F0 = ∅ so that F does not have the finite intersection property.

(⇐) If X is not compact, there exists an open cover U of X with no finite
subcover. Let

F = Uc := {U c : U ∈ U} ,
then F is a collection of closed sets with the finite intersection property while⋂
F = ∅.

Exercise 35.18. Let (X, τ) be a topological space. Show that A ⊂ X is com-
pact iff (A, τA) is a compact topological space.
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Metric Space Compactness Criteria

Let (X, d) be a metric space and for x ∈ X and ε > 0 let

B′x(ε) := Bx(ε) \ {x}

be the ball centered at x of radius ε > 0 with x deleted. Recall from Definition
35.29 that a point x ∈ X is an accumulation point of a subset E ⊂ X if
∅ 6= E ∩ V \ {x} for all open neighborhoods, V, of x. The proof of the following
elementary lemma is left to the reader.

Lemma 35.58. Let E ⊂ X be a subset of a metric space (X, d) . Then the
following are equivalent:

1. x ∈ X is an accumulation point of E.
2. B′x(ε) ∩ E 6= ∅ for all ε > 0.
3. Bx(ε) ∩ E is an infinite set for all ε > 0.
4. There exists {xn}∞n=1 ⊂ E \ {x} with limn→∞ xn = x.

Definition 35.59. A metric space (X, d) is ε – bounded (ε > 0) if there exists
a finite cover of X by balls of radius ε and it is totally bounded if it is ε –
bounded for all ε > 0.

Theorem 35.60. Let (X, d) be a metric space. The following are equivalent.

(a)X is compact.
(b) Every infinite subset of X has an accumulation point.
(c) Every sequence {xn}∞n=1 ⊂ X has a convergent subsequence.
(d)X is totally bounded and complete.

Proof. The proof will consist of showing that a⇒ b⇒ c⇒ d⇒ a.
(a⇒ b) We will show that not b⇒ not a. Suppose there exists an infinite

subset E ⊂ X which has no accumulation points. Then for all x ∈ X there
exists δx > 0 such that Vx := Bx(δx) satisfies (Vx \ {x}) ∩ E = ∅. Clearly
V = {Vx}x∈X is a cover of X, yet V has no finite sub cover. Indeed, for each
x ∈ X, Vx ∩ E ⊂ {x} and hence if Λ ⊂⊂ X, ∪x∈ΛVx can only contain a finite
number of points from E (namely Λ ∩E). Thus for any Λ ⊂⊂ X, E " ∪x∈ΛVx
and in particular X 6= ∪x∈ΛVx. (See Figure 35.5.)

(b ⇒ c) Let {xn}∞n=1 ⊂ X be a sequence and E := {xn : n ∈ N} . If
#(E) < ∞, then {xn}∞n=1 has a subsequence {xnk}

∞
k=1 which is constant and

hence convergent. On the other hand if #(E) = ∞ then by assumption E has
an accumulation point and hence by Lemma 35.58, {xn}∞n=1 has a convergent
subsequence.

(c⇒ d) Suppose {xn}∞n=1 ⊂ X is a Cauchy sequence. By assumption there
exists a subsequence {xnk}

∞
k=1 which is convergent to some point x ∈ X. Since

e
δe

x
δx

Fig. 35.5. The black dots represents an infinite set, E, with not accumulation points.
For each x ∈ X \ E we choose δx > 0 so that Bx (δx) ∩ E = ∅ and for x ∈ E so that
Bx (δx) ∩ E = {x} .

{xn}∞n=1 is Cauchy it follows that xn → x as n→∞ showing X is complete. We
now show that X is totally bounded. Let ε > 0 be given and choose an arbitrary
point x1 ∈ X. If possible choose x2 ∈ X such that d(x2, x1) ≥ ε, then if possible
choose x3 ∈ X such that d{x1,x2}(x3) ≥ ε and continue inductively choosing
points {xj}nj=1 ⊂ X such that d{x1,...,xn−1}(xn) ≥ ε. (See Figure 35.6.) This

process must terminate, for otherwise we would produce a sequence {xn}∞n=1 ⊂
X which can have no convergent subsequences. Indeed, the xn have been chosen
so that d (xn, xm) ≥ ε > 0 for every m 6= n and hence no subsequence of
{xn}∞n=1 can be Cauchy.

x2

x1 x3

x4

x5 x6

x7

x8

Fig. 35.6. Constructing a set with out an accumulation point.

(d ⇒ a) For sake of contradiction, assume there exists an open cover V =
{Vα}α∈A of X with no finite subcover. Since X is totally bounded for each
n ∈ N there exists Λn ⊂⊂ X such that

X =
⋃
x∈Λn

Bx(1/n) ⊂
⋃
x∈Λn

Cx(1/n).

Choose x1 ∈ Λ1 such that no finite subset of V covers K1 := Cx1
(1). Since

K1 = ∪x∈Λ2
K1 ∩Cx(1/2), there exists x2 ∈ Λ2 such that K2 := K1 ∩Cx2

(1/2)
can not be covered by a finite subset of V, see Figure 35.7. Continuing this way
inductively, we construct sets Kn = Kn−1∩Cxn(1/n) with xn ∈ Λn such that no
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Kn can be covered by a finite subset of V. Now choose yn ∈ Kn for each n. Since
{Kn}∞n=1 is a decreasing sequence of closed sets such that diam(Kn) ≤ 2/n, it
follows that {yn} is a Cauchy and hence convergent with

y = lim
n→∞

yn ∈ ∩∞m=1Km.

Since V is a cover of X, there exists V ∈ V such that y ∈ V. Since Kn ↓ {y}
and diam(Kn) → 0, it now follows that Kn ⊂ V for some n large. But this
violates the assertion that Kn can not be covered by a finite subset of V.

Fig. 35.7. Nested Sequence of cubes.

Corollary 35.61. Any compact metric space (X, d) is second countable and
hence also separable by Exercise 35.12. (See Example 37.25 below for an example
of a compact topological space which is not separable.)

Proof. To each integer n, there exists Λn ⊂⊂ X such that X =
∪x∈ΛnB(x, 1/n). The collection of open balls,

V := ∪n∈N ∪x∈Λn {B(x, 1/n)}

forms a countable basis for the metric topology on X. To check this, suppose
that x0 ∈ X and ε > 0 are given and choose n ∈ N such that 1/n < ε/2
and x ∈ Λn such that d (x0, x) < 1/n. Then B(x, 1/n) ⊂ B (x0, ε) because for
y ∈ B(x, 1/n),

d (y, x0) ≤ d (y, x) + d (x, x0) < 2/n < ε.

Corollary 35.62. The compact subsets of Rn are the closed and bounded sets.

Proof. This is a consequence of Theorem 32.2 and Theorem 35.60. Here is
another proof. If K is closed and bounded then K is complete (being the closed
subset of a complete space) and K is contained in [−M,M ]n for some positive
integer M. For δ > 0, let

Λδ = δZn ∩ [−M,M ]n := {δx : x ∈ Zn and δ|xi| ≤M for i = 1, 2, . . . , n}.

We will show, by choosing δ > 0 sufficiently small, that

K ⊂ [−M,M ]n ⊂ ∪x∈ΛδB(x, ε) (35.17)

which shows that K is totally bounded. Hence by Theorem 35.60, K is compact.
Suppose that y ∈ [−M,M ]n, then there exists x ∈ Λδ such that |yi − xi| ≤ δ
for i = 1, 2, . . . , n. Hence

d2(x, y) =

n∑
i=1

(yi − xi)2 ≤ nδ2

which shows that d(x, y) ≤
√
nδ. Hence if choose δ < ε/

√
n we have shows that

d(x, y) < ε, i.e. Eq. (35.17) holds.

Example 35.63. Let X = `p(N) with p ∈ [1,∞) and µ ∈ `p(N) such that µ(k) ≥
0 for all k ∈ N. The set

K := {x ∈ X : |x(k)| ≤ µ(k) for all k ∈ N}

is compact. To prove this, let {xn}∞n=1 ⊂ K be a sequence. By compactness of
closed bounded sets in C, for each k ∈ N there is a subsequence of {xn(k)}∞n=1 ⊂
C which is convergent. By Cantor’s diagonalization trick, we may choose a
subsequence {yn}∞n=1 of {xn}∞n=1 such that y(k) := limn→∞ yn(k) exists for all
k ∈ N.3 Since |yn(k)| ≤ µ(k) for all n it follows that |y(k)| ≤ µ(k), i.e. y ∈ K.
Finally

3 The argument is as follows. Let {n1
j}∞j=1 be a subsequence of N = {n}∞n=1 such that

limj→∞ xn1
j
(1) exists. Now choose a subsequence {n2

j}∞j=1 of {n1
j}∞j=1 such that

limj→∞ xn2
j
(2) exists and similarly {n3

j}∞j=1 of {n2
j}∞j=1 such that limj→∞ xn3

j
(3)

exists. Continue on this way inductively to get

{n}∞n=1 ⊃ {n
1
j}∞j=1 ⊃ {n2

j}∞j=1 ⊃ {n3
j}∞j=1 ⊃ . . .

such that limj→∞ xnkj
(k) exists for all k ∈ N. Let mj := njj so that eventually

{mj}∞j=1 is a subsequence of {nkj }∞j=1 for all k. Therefore, we may take yj := xmj .
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lim
n→∞

‖y − yn‖pp = lim
n→∞

∞∑
k=1

|y(k)− yn(k)|p =

∞∑
k=1

lim
n→∞

|y(k)− yn(k)|p = 0

wherein we have used the Dominated convergence theorem. (Note

|y(k)− yn(k)|p ≤ 2pµp(k)

and µp is summable.) Therefore yn → y and we are done.
Alternatively, we can prove K is compact by showing that K is closed and

totally bounded. It is simple to show K is closed, for if {xn}∞n=1 ⊂ K is a
convergent sequence in X, x := limn→∞ xn, then

|x(k)| ≤ lim
n→∞

|xn(k)| ≤ µ(k) ∀ k ∈ N.

This shows that x ∈ K and hence K is closed. To see that K is totally

bounded, let ε > 0 and choose N such that
(∑∞

k=N+1 |µ(k)|p
)1/p

< ε. Since∏N
k=1 Cµ(k)(0) ⊂ CN is closed and bounded, it is compact. Therefore there

exists a finite subset Λ ⊂
∏N
k=1 Cµ(k)(0) such that

N∏
k=1

Cµ(k)(0) ⊂ ∪z∈ΛBNz (ε)

where BNz (ε) is the open ball centered at z ∈ CN relative to the
`p({1, 2, 3, . . . , N}) – norm. For each z ∈ Λ, let z̃ ∈ X be defined by
z̃(k) = z(k) if k ≤ N and z̃(k) = 0 for k ≥ N + 1. I now claim that

K ⊂ ∪z∈ΛBz̃(2ε) (35.18)

which, when verified, shows K is totally bounded. To verify Eq. (35.18), let
x ∈ K and write x = u + v where u(k) = x(k) for k ≤ N and u(k) = 0 for
k < N. Then by construction u ∈ Bz̃(ε) for some z̃ ∈ Λ and

‖v‖p ≤

( ∞∑
k=N+1

|µ(k)|p
)1/p

< ε.

So we have

‖x− z̃‖p = ‖u+ v − z̃‖p ≤ ‖u− z̃‖p + ‖v‖p < 2ε.

Exercise 35.19 (Extreme value theorem). Let (X, τ) be a compact topo-
logical space and f : X → R be a continuous function. Show −∞ < inf f ≤
sup f <∞ and there exists a, b ∈ X such that f(a) = inf f and f(b) = sup f4.
Hint: use Exercise 35.16 and Corollary 35.62.

4 Here is a proof if X is a metric space. Let {xn}∞n=1 ⊂ X be a sequence such that
f(xn) ↑ sup f. By compactness of X we may assume, by passing to a subsequence
if necessary that xn → b ∈ X as n→∞. By continuity of f, f(b) = sup f.

Exercise 35.20 (Uniform Continuity). Let (X, d) be a compact metric
space, (Y, ρ) be a metric space and f : X → Y be a continuous function.
Show that f is uniformly continuous, i.e. if ε > 0 there exists δ > 0 such that
ρ(f(y), f(x)) < ε if x, y ∈ X with d(x, y) < δ. Hint: you could follow the
argument in the proof of Theorem 32.2.

Definition 35.64. Let L be a vector space. We say that two norms, |·| and ‖·‖ ,
on L are equivalent if there exists constants α, β ∈ (0,∞) such that

‖f‖ ≤ α |f | and |f | ≤ β ‖f‖ for all f ∈ L.

Theorem 35.65. Let L be a finite dimensional vector space. Then any two
norms |·| and ‖·‖ on L are equivalent. (This is typically not true for norms on
infinite dimensional spaces, see for example Exercise 14.8.)

Proof. Let {fi}ni=1 be a basis for L and define a new norm on L by∥∥∥∥∥
n∑
i=1

aifi

∥∥∥∥∥
2

:=

√√√√ n∑
i=1

|ai|2 for ai ∈ F.

By the triangle inequality for the norm |·| , we find∣∣∣∣∣
n∑
i=1

aifi

∣∣∣∣∣ ≤
n∑
i=1

|ai| |fi| ≤

√√√√ n∑
i=1

|fi|2
√√√√ n∑

i=1

|ai|2 ≤M

∥∥∥∥∥
n∑
i=1

aifi

∥∥∥∥∥
2

where M =
√∑n

i=1 |fi|
2
. Thus we have |f | ≤ M ‖f‖2 for all f ∈ L and this

inequality shows that |·| is continuous relative to ‖·‖2 . Since the normed space
(L, ‖·‖2) is homeomorphic and isomorphic to Fn with the standard euclidean
norm, the closed bounded set, S := {f ∈ L : ‖f‖2 = 1} ⊂ L, is a compact subset
of L relative to ‖·‖2 . Therefore by Exercise 35.19 there exists f0 ∈ S such that

m = inf {|f | : f ∈ S} = |f0| > 0.

Hence given 0 6= f ∈ L, then f
‖f‖2

∈ S so that

m ≤
∣∣∣∣ f

‖f‖2

∣∣∣∣ = |f | 1

‖f‖2
or equivalently

‖f‖2 ≤
1

m
|f | .

This shows that |·| and ‖·‖2 are equivalent norms. Similarly one shows that ‖·‖
and ‖·‖2 are equivalent and hence so are |·| and ‖·‖ .
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Corollary 35.66. If (L, ‖·‖) is a finite dimensional normed space, then A ⊂ L
is compact iff A is closed and bounded relative to the given norm, ‖·‖ .

Corollary 35.67. Every finite dimensional normed vector space (L, ‖·‖) is
complete. In particular any finite dimensional subspace of a normed vector space
is automatically closed.

Proof. If {fn}∞n=1 ⊂ L is a Cauchy sequence, then {fn}∞n=1 is bounded and
hence has a convergent subsequence, gk = fnk , by Corollary 35.66. It is now
routine to show limn→∞ fn = f := limk→∞ gk.

Theorem 35.68. Suppose that (X, ‖·‖) is a normed vector in which the unit
ball, V := B0 (1) , is precompact. Then dimX <∞.

An alternate proof is given in Proposition 35.70.. Since V̄ is compact,
we may choose Λ ⊂⊂ X such that

V̄ ⊂ ∪x∈Λ
(
x+

1

2
V

)
(35.19)

where, for any δ > 0,

δV := {δx : x ∈ V } = B0 (δ) .

Let Y := span(Λ), then Eq. (35.19) implies,

V ⊂ V̄ ⊂ Y +
1

2
V.

Multiplying this equation by 1
2 then shows

1

2
V ⊂ 1

2
Y +

1

4
V = Y +

1

4
V

and hence

V ⊂ Y +
1

2
V ⊂ Y + Y +

1

4
V = Y +

1

4
V.

Continuing this way inductively then shows that

V ⊂ Y +
1

2n
V for all n ∈ N. (35.20)

Indeed, if Eq. (35.20) holds, then

V ⊂ Y +
1

2
V ⊂ Y +

1

2

(
Y +

1

2n
V

)
= Y +

1

2n+1
V.

Hence if x ∈ V, there exists yn ∈ Y and zn ∈ B0 (2−n) such that yn + zn → x.
Since limn→∞ zn = 0, it follows that x = limn→∞ yn ∈ Ȳ . Since dimY ≤
# (Λ) <∞, Corollary 35.67 implies Y = Ȳ and so we have shown that V ⊂ Y.
Since for any x ∈ X, 1

2‖x‖x ∈ V ⊂ Y, we have x ∈ Y for all x ∈ X, i.e. X = Y.

Lemma 35.69. Let H be a normed linear space and H0 a closed proper sub-
space. For any ε > 0, there exists x0 ∈ H such that ‖x0‖ = 1 and ‖x−x0‖ ≥ 1−ε
whenever x ∈ H0.

Proof. Can assume ε < 1. Take any z0 /∈ H0. Let d = infx∈H0
‖x− z0‖. For

any δ > 0, there exists z ∈ H0, such that ‖z − z0‖ ≤ d+ δ. Take δ = εd
1−ε . Let

x0 = (z − z0)/‖z − z0‖, where z is determined for this δ. Then ‖x0‖ = 1, and if
x ∈ H0,

‖x− x0‖ =
‖‖z − z0‖x− z + z0‖

‖z − z0‖
≥ d

‖z − z0‖
≥ d

d+ δ
= 1− ε.

[Here is the proof again at a higher level. Choose h ∈ H0 such that d :=
dist (z0, H0) ∼= ‖h− z0‖ and then take x0 := (h− z0)/‖h− z0‖ as above. Then

dist (x0, H0) =
1

‖h− z0‖
dist (h− z0, H0)

=
1

‖h− z0‖
dist (z0, H0) ∼= 1,

where we have used the easily verified fact that dist (ax+ h,H) = |a|dist (x,H)
for all a ∈ R and h ∈ H.]

Proposition 35.70. A locally compact Banach space is finite dimensional.

Proof. We prove that an infinite dimensional Banach space is not locally
compact. We construct a sequence x1, x2, . . . , xn, . . . such that ‖xn‖ = 1, ‖xi −
xj‖ ≥ 1/2, i 6= j. Take x1 to be any unit vector. Suppose vectors x1, . . . , xn
are constructed. Let H0 be the linear span of x1, . . . , xn. By Corollary 35.67,
H0 is closed. By Lemma 35.69, there exists xn+1such that ‖xi − xn+1‖ ≥ 1/2,
i = 1, . . . , n. Now the sequence just constructed has no Cauchy subsequence.
Hence the closed unit ball is not compact. Similarly the closed ball of radius
r > 0 is also not compact.

Exercise 35.21. Suppose (Y, ‖·‖Y ) is a normed space and (X, ‖·‖X) is a finite
dimensional normed space. Show every linear transformation T : X → Y is
necessarily bounded.

35.7 Exercises

35.7.1 General Topological Space Problems

Exercise 35.22. Let V be an open subset of R. Show V may be written as
a disjoint union of open intervals Jn = (an, bn), where an, bn ∈ R∪{±∞} for
n = 1, 2, · · · < N with N =∞ possible.
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Exercise 35.23. Let (X, τ) and (Y, τ ′) be a topological spaces, f : X → Y be
a function, U be an open cover of X and {Fj}nj=1 be a finite cover of X by
closed sets.

1. If A ⊂ X is any set and f : X → Y is (τ, τ ′) – continuous then f |A : A→ Y
is (τA, τ

′) – continuous.
2. Show f : X → Y is (τ, τ ′) – continuous iff f |U : U → Y is (τU , τ

′) –
continuous for all U ∈ U .

3. Show f : X → Y is (τ, τ ′) – continuous iff f |Fj : Fj → Y is (τFj , τ
′) –

continuous for all j = 1, 2, . . . , n.

Exercise 35.24. Suppose that X is a set, {(Yα, τα) : α ∈ A} is a family of
topological spaces and fα : X → Yα is a given function for all α ∈ A. Assuming
that Sα ⊂ τα is a sub-base for the topology τα for each α ∈ A, show S :=
∪α∈Af−1

α (Sα) is a sub-base for the topology τ := τ(fα : α ∈ A).

35.7.2 Connectedness Problems

Exercise 35.25. Show any non-trivial interval in Q is disconnected.

Exercise 35.26. Suppose a < b and f : (a, b)→ R is a non-decreasing function.
Show if f satisfies the intermediate value property (see Theorem 35.50), then
f is continuous.

Exercise 35.27. Suppose −∞ < a < b ≤ ∞ and f : [a, b) → R is a strictly
increasing continuous function. Using the intermediate value theorem, one sees
that f ([a, b)) is an interval and since f is strictly increasing it must of the
form [c, d) for some c ∈ R and d ∈ R̄ with c < d. Show the inverse function
f−1 : [c, d) → [a, b) is continuous and is strictly increasing. In particular if
n ∈ N, apply this result to f (x) = xn for x ∈ [0,∞) to construct the positive
nth – root of a real number. Compare with Exercise 3.8.

Exercise 35.28. Prove item 1. of Proposition 35.52, i.e. if X is path connected
then X is connected.. Hint: show X is not connected implies X is not path
connected.

Exercise 35.29. Prove item 2. of Proposition 35.52, i.e. if X is connected and
locally path connected, then X is path connected. Hint: fix x0 ∈ X and let
W denote the set of x ∈ X such that there exists σ ∈ C([0, 1], X) satisfying
σ(0) = x0 and σ(1) = x. Then show W is both open and closed.

Exercise 35.30. Prove item 3. of Proposition 35.52, i.e. if X is any connected
open subset of Rn, then X is path connected.

Exercise 35.31. Let

X :=
{

(x, y) ∈ R2 : y = sin(x−1) with x 6= 0
}
∪ {(0, 0)}

equipped with the relative topology induced from the standard topology on R2.
Show X is connected but not path connected.

35.7.3 Metric Spaces as Topological Spaces

Definition 35.71. Two metrics d and ρ on a set X are said to be equivalent
if there exists a constant c ∈ (0,∞) such that c−1ρ ≤ d ≤ cρ.

Exercise 35.32. Suppose that d and ρ are two metrics on X.

1. Show τd = τρ if d and ρ are equivalent.
2. Show by example that it is possible for τd = τρ even though d and ρ are

inequivalent.

Exercise 35.33. Let (Xi, di) for i = 1, . . . , n be a finite collection of metric
spaces and for 1 ≤ p ≤ ∞ and x = (x1, x2, . . . , xn) and y = (y1, . . . , yn) in
X :=

∏n
i=1Xi, let

ρp(x, y) =

{
(
∑n
i=1 [di(xi, yi)]

p
)
1/p

if p 6=∞
maxi di(xi, yi) if p =∞

.

1. Show (X, ρp) is a metric space for p ∈ [1,∞]. Hint: Minkowski’s inequality.
2. Show for any p, q ∈ [1,∞], the metrics ρp and ρq are equivalent. Hint: This

can be done with explicit estimates or you could use Theorem 35.65 below.

Notation 35.72 Let X be a set and p := {pn}∞n=0 be a family of semi-metrics
on X, i.e. pn : X × X → [0,∞) are functions satisfying the assumptions of
metric except for the assertion that pn(x, y) = 0 implies x = y. Further assume
that pn(x, y) ≤ pn+1(x, y) for all n and if pn(x, y) = 0 for all n ∈ N then x = y.
Given n ∈ N and x ∈ X let

Bn(x, ε) := {y ∈ X : pn(x, y) < ε} .

We will write τ(p) form the smallest topology on X such that pn(x, ·) : X →
[0,∞) is continuous for all n ∈ N and x ∈ X, i.e. τ(p) := τ(pn(x, ·) : n ∈ N
and x ∈ X).

Exercise 35.34. Using Notation 35.72, show that collection of balls,

B := {Bn(x, ε) : n ∈ N, x ∈ X and ε > 0} ,

forms a base for the topology τ(p). Hint: Use Exercise 35.24 to show B is a
sub-base for the topology τ(p) and then use Exercise 35.2 to show B is in fact
a base for the topology τ(p).
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Exercise 35.35 (A minor variant of Exercise 13.16). Let pn be as in
Notation 35.72 and

d(x, y) :=

∞∑
n=0

2−n
pn(x, y)

1 + pn(x, y)
.

Show d is a metric on X and τd = τ(p). Conclude that a sequence {xk}∞k=1 ⊂ X
converges to x ∈ X iff

lim
k→∞

pn(xk, x) = 0 for all n ∈ N.

Exercise 35.36. Let {(Xn, dn)}∞n=1 be a sequence of metric spaces, X :=∏∞
n=1Xn, and for x = (x(n))

∞
n=1 and y = (y(n))

∞
n=1 in X let

d(x, y) =

∞∑
n=1

2−n
dn(x(n), y(n))

1 + dn(x(n), y(n))
.

(See Exercise 13.16.) Moreover, let πn : X → Xn be the projection maps, show

τd = ⊗∞n=1τdn := τ({πn : n ∈ N}).

That is show the d – metric topology is the same as the product topology on
X. Suggestions: 1) show πn is τd continuous for each n and 2) show for each
x ∈ X that d (x, ·) is ⊗∞n=1τdn – continuous. For the second assertion notice

that d (x, ·) =
∑∞
n=1 fn where fn = 2−n

(
dn(x(n),·)

1+dn(x(n),·)

)
◦ πn.

35.7.4 Compactness Problems

Exercise 35.37 (Tychonoff’s Theorem for Compact Metric Spaces).
Let us continue the Notation used in Exercise 13.16. Further assume that the
spaces Xn are compact for all n. Show (without using Theorem 36.16 below)
that (X, d) is compact. Hint: Either use Cantor’s method to show every se-
quence {xm}∞m=1 ⊂ X has a convergent subsequence or alternatively show
(X, d) is complete and totally bounded. (Compare with Example 35.63 and
see Theorem 36.16 below for the general version of this theorem.)





36

Compactness

36.1 Local and σ – Compactness

Notation 36.1 If X is a topological space and Y is a normed space, let

BC(X,Y ) := {f ∈ C(X,Y ) : sup
x∈X
‖f(x)‖Y <∞}

and
Cc(X,Y ) := {f ∈ C(X,Y ) : supp(f) is compact}.

If Y = R or C we will simply write C (X) , BC (X) and Cc(X) for C(X,Y ),
BC(X,Y ) and Cc(X,Y ) respectively.

Remark 36.2. Let X be a topological space and Y be a Banach space. By com-
bining Exercise 35.16 and Theorem 35.60 it follows that Cc(X,Y ) ⊂ BC(X,Y ).

Definition 36.3 (Local and σ – compactness). Let (X, τ) be a topological
space.

1. (X, τ) is locally compact if for all x ∈ X there exists an open neighborhood
V ⊂ X of x such that V̄ is compact. (Alternatively, in view of Definition
35.29 (also see Definition 13.5), this is equivalent to requiring that to each
x ∈ X there exists a compact neighborhood Nx of x.)

2. (X, τ) is σ – compact if there exists compact sets Kn ⊂ X such that X =
∪∞n=1Kn. (Notice that we may assume, by replacing Kn by K1∪K2∪· · ·∪Kn

if necessary, that Kn ↑ X.)

Example 36.4. Any open subset of U ⊂ Rn is a locally compact and σ – compact
metric space. The proof of local compactness is easy and is left to the reader.
To see that U is σ – compact, for k ∈ N, let

Kk := {x ∈ U : |x| ≤ k and dUc(x) ≥ 1/k} .

Then Kk is a closed and bounded subset of Rn and hence compact. Moreover
Ko
k ↑ U as k →∞ since1

Ko
k ⊃ {x ∈ U : |x| < k and dUc(x) > 1/k} ↑ U as k →∞.

1 In fact this is an equality, but we will not need this here.

Exercise 36.1. If (X, τ) is locally compact and second countable, then there is
a countable basis B0 for the topology consisting of precompact open sets. Use
this to show (X, τ) is σ - compact.

Exercise 36.2. Every separable locally compact metric space is σ – compact.

Exercise 36.3. Every σ – compact metric space is second countable (or equiv-
alently separable), see Corollary 35.61.

Exercise 36.4. Suppose that (X, d) is a metric space and U ⊂ X is an open
subset.

1. If X is locally compact then (U, d) is locally compact.
2. If X is σ – compact then (U, d) is σ – compact. Hint: Mimic Example 36.4,

replacing {x ∈ Rn : |x| ≤ k} by compact sets Xk @@ X such that Xk ↑ X.

Lemma 36.5. Let (X, τ) be locally and σ – compact. Then there exists compact
sets Kn ↑ X such that Kn ⊂ Ko

n+1 ⊂ Kn+1 for all n.

Proof. Suppose that C ⊂ X is a compact set. For each x ∈ C let Vx ⊂o X
be an open neighborhood of x such that V̄x is compact. Then C ⊂ ∪x∈CVx so
there exists Λ ⊂⊂ C such that

C ⊂ ∪x∈ΛVx ⊂ ∪x∈ΛV̄x =: K.

Then K is a compact set, being a finite union of compact subsets of X, and
C ⊂ ∪x∈ΛVx ⊂ Ko. Now let Cn ⊂ X be compact sets such that Cn ↑ X as
n → ∞. Let K1 = C1 and then choose a compact set K2 such that C2 ⊂ Ko

2 .
Similarly, choose a compact set K3 such that K2 ∪ C3 ⊂ Ko

3 and continue
inductively to find compact sets Kn such that Kn ∪ Cn+1 ⊂ Ko

n+1 for all n.
Then {Kn}∞n=1 is the desired sequence.

Remark 36.6. Lemma 36.5 may also be stated as saying there exists precompact
open sets {Gn}∞n=1 such that Gn ⊂ Ḡn ⊂ Gn+1 for all n and Gn ↑ X as n→∞.
Indeed if {Gn}∞n=1 are as above, let Kn := Ḡn and if {Kn}∞n=1 are as in Lemma
36.5, let Gn := Ko

n.

Proposition 36.7. Suppose X is a locally compact metric space and U ⊂o X
and K @@ U. Then there exists V ⊂o X such that K ⊂ V ⊂ V ⊂ U ⊂ X and
V̄ is compact.



410 36 Compactness

Proof. (This is done more generally in Proposition 37.7 below.) By local
compactness of X, for each x ∈ K there exists εx > 0 such that Bx(εx) is
compact and by shrinking εx if necessary we may assume,

Bx(εx) ⊂ Cx(εx) ⊂ Bx(2εx) ⊂ U

for each x ∈ K. By compactness of K, there exists Λ ⊂⊂ K such that K ⊂
∪x∈ΛBx(εx) =: V. Notice that V̄ ⊂ ∪x∈ΛBx(εx) ⊂ U and V̄ is a closed subset
of the compact set ∪x∈ΛBx(εx) and hence compact as well.

Definition 36.8. Let U be an open subset of a topological space (X, τ). We
will write f ≺ U to mean a function f ∈ Cc(X, [0, 1]) such that supp(f) :=
{f 6= 0} ⊂ U.

Lemma 36.9 (Urysohn’s Lemma for Metric Spaces). Let X be a locally
compact metric space and K @@ U ⊂o X. Then there exists f ≺ U such that
f = 1 on K. In particular, if K is compact and C is closed in X such that
K ∩C = ∅, there exists f ∈ Cc(X, [0, 1]) such that f = 1 on K and f = 0 on C.

Proof. Let V be as in Proposition 36.7 and then use Lemma 13.21 to find
a function f ∈ C(X, [0, 1]) such that f = 1 on K and f = 0 on V c. Then
supp(f) ⊂ V̄ ⊂ U and hence f ≺ U.

36.2 Function Space Compactness Criteria

In this section, let (X, τ) be a topological space.

Definition 36.10. Let F ⊂ C (X) .

1. F is equicontinuous at x ∈ X iff for all ε > 0 there exists U ∈ τx such
that |f(y)− f(x)| < ε for all y ∈ U and f ∈ F .

2. F is equicontinuous if F is equicontinuous at all points x ∈ X.
3. F is pointwise bounded if sup{|f(x)| : f ∈ F} <∞ for all x ∈ X.

Theorem 36.11 (Ascoli-Arzela Theorem). Let (X, τ) be a compact topo-
logical space and F ⊂ C (X) . Then F is precompact in C (X) iff F is equicon-
tinuous and point-wise bounded.

Proof. (⇐) Since C (X) ⊂ `∞(X) is a complete metric space, we must
show F is totally bounded. Let ε > 0 be given. By equicontinuity, for all x ∈ X,
there exists Vx ∈ τx such that |f(y) − f(x)| < ε/2 if y ∈ Vx and f ∈ F . Since
X is compact we may choose Λ ⊂⊂ X such that X = ∪x∈ΛVx. We have now
decomposed X into “blocks” {Vx}x∈Λ such that each f ∈ F is constant to

within ε on Vx. Since sup {|f(x)| : x ∈ Λ and f ∈ F} < ∞, it is now evident
that

M = sup {|f(x)| : x ∈ X and f ∈ F}
≤ sup {|f(x)| : x ∈ Λ and f ∈ F}+ ε <∞.

Let D := {kε/2 : k ∈ Z} ∩ [−M,M ]. If f ∈ F and ϕ ∈ DΛ (i.e. ϕ : Λ → D is a
function) is chosen so that |ϕ(x)− f(x)| ≤ ε/2 for all x ∈ Λ, then

|f(y)− ϕ(x)| ≤ |f(y)− f(x)|+ |f(x)− ϕ(x)| < ε ∀ x ∈ Λ and y ∈ Vx.

From this it follows that F =
⋃{
Fϕ : ϕ ∈ DΛ

}
where, for ϕ ∈ DΛ,

Fϕ := {f ∈ F : |f(y)− ϕ(x)| < ε for y ∈ Vx and x ∈ Λ}.

Let Γ :=
{
ϕ ∈ DΛ : Fϕ 6= ∅

}
and for each ϕ ∈ Γ choose fϕ ∈ Fϕ ∩ F . For

f ∈ Fϕ, x ∈ Λ and y ∈ Vx we have

|f(y)− fϕ(y)| ≤ |f(y)− ϕ(x))|+ |ϕ(x)− fϕ(y)| < 2ε.

So ‖f − fϕ‖∞ < 2ε for all f ∈ Fϕ showing that Fϕ ⊂ Bfϕ(2ε). Therefore,

F = ∪ϕ∈ΓFϕ ⊂ ∪ϕ∈ΓBfϕ(2ε)

and because ε > 0 was arbitrary we have shown that F is totally bounded.
(⇒) (*The rest of this proof may safely be skipped.) Since ‖·‖∞ : C (X)→

[0,∞) is a continuous function on C (X) it is bounded on any compact sub-
set F ⊂ C (X) . This shows that sup {‖f‖∞ : f ∈ F} < ∞ which clearly im-
plies that F is pointwise bounded.2 Suppose F were not equicontinuous at
some point x ∈ X that is to say there exists ε > 0 such that for all V ∈ τx,
sup
y∈V

sup
f∈F
|f(y)− f(x)| > ε.3 Equivalently said, to each V ∈ τx we may choose

2 One could also prove that F is pointwise bounded by considering the continuous
evaluation maps ex : C(X)→ R given by ex(f) = f(x) for all x ∈ X.

3 If X is first countable we could finish the proof with the following argument. Let
{Vn}∞n=1 be a neighborhood base at x such that V1 ⊃ V2 ⊃ V3 ⊃ . . . . By the
assumption that F is not equicontinuous at x, there exist fn ∈ F and xn ∈ Vn such
that |fn(x) − fn(xn)| ≥ ε ∀ n. Since F is a compact metric space by passing to
a subsequence if necessary we may assume that fn converges uniformly to some
f ∈ F . Because xn → x as n→∞ we learn that

ε ≤ |fn(x)− fn(xn)| ≤ |fn(x)− f(x)|+ |f(x)− f(xn)|+ |f(xn)− fn(xn)|
≤ 2‖fn − f‖+ |f(x)− f(xn)| → 0 as n→∞

which is a contradiction.

Page: 410 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12
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fV ∈ F and xV ∈ V 3 |fV (x)− fV (xV )| ≥ ε. (36.1)

Set CV = {fW : W ∈ τx and W ⊂ V }
‖·‖∞ ⊂ F and notice for any V ⊂⊂ τx that

∩V ∈VCV ⊇ C∩V 6= ∅,

so that {CV }V ∈ τx ⊂ F has the finite intersection property.4 Since F is
compact, it follows that there exists some

f ∈
⋂
V ∈τx

CV 6= ∅.

Since f is continuous, there exists V ∈ τx such that |f(x)− f(y)| < ε/3 for all
y ∈ V. Because f ∈ CV , there exists W ⊂ V such that ‖f − fW ‖ < ε/3. We
now arrive at a contradiction;

ε ≤ |fW (x)− fW (xW )|
≤ |fW (x)− f(x)|+ |f(x)− f(xW )|+ |f(xW )− fW (xW )|
< ε/3 + ε/3 + ε/3 = ε.

Alternate proof of the first part. For ε > 0 let Λε ⊂f X and {V εx }x∈Λε
be a finite open cover of X with the property; for all x ∈ X we have

|f(y)− f(x)| < ε ∀ y ∈ Vx and f ∈ F .

Let D := ∪∞m=1Λ1/m – countable set and suppose that {fn} ⊂ F is a given
sequence. Since {fn (x)}∞n=1 is bounded in R for all x ∈ D, by Cantor’s di-
agonalization argument, we may choose a subsequence, gk := fnk such that
g0 (x) := limk→∞ gk (x) exists for all x ∈ D. To finish the proof we need only
show {gk} is uniformly Cauchy. To this end, observe that for y ∈ X and m ∈ N
we may choose an x ∈ Λ1/m such that y ∈ V 1/m

x and therefore,

|gk (y)− gl (y)| ≤ |gk (y)− gk (x)|+ |gk (x)− gl (x)|+ |gl (x)− gl (y)|
≤ 2/m+ |gk (x)− gl (x)|

and therefore,

4 If we are willing to use Net’s described in Appendix ?? below we could finish the
proof as follows. Since F is compact, the net {fV }V ∈τx ⊂ F has a cluster point
f ∈ F ⊂ C(X). Choose a subnet {gα}α∈A of {fV }V ∈τX such that gα → f uniformly.
Then, since xV → x implies xVα → x, we may conclude from Eq. (36.1) that

ε ≤ |gα(x)− gα(xVα)| → |g(x)− g(x)| = 0

which is a contradiction.

‖gk − gl‖u ≤ 2/m+ max
x∈Λ1/m

|gk (x)− gl (x)| .

Passing to the limit as k, l→∞ then shows

lim sup
k,l→∞

‖gk − gl‖u ≤ 2/m→ 0 as m→∞.

Exercise 36.5. Give an alternative proof of the implication, (⇐) , in Theorem
36.11 by showing every subsequence {fn : n ∈ N} ⊂ F has a convergence sub-
sequence.

Exercise 36.6. Suppose k ∈ C
(

[0, 1]
2
,R
)

and for f ∈ C ([0, 1] ,R) , let

Kf (x) :=

∫ 1

0

k (x, y) f (y) dy for all x ∈ [0, 1] .

Show K is a compact operator on (C ([0, 1] ,R) , ‖·‖∞) .

The following result is a corollary of Lemma 36.5 and Theorem 36.11.

Corollary 36.12 (Locally Compact Ascoli-Arzela Theorem). Let (X, τ)
be a locally compact and σ – compact topological space and {fm} ⊂ C (X) be a
pointwise bounded sequence of functions such that {fm|K} is equicontinuous for
any compact subset K ⊂ X. Then there exists a subsequence {mn} ⊂ {m} such
that {gn := fmn}

∞
n=1 ⊂ C (X) is a sequence which is uniformly convergent on

compact subsets of X.

Proof. Let {Kn}∞n=1 be the compact subsets of X constructed in Lemma
36.5. We may now apply Theorem 36.11 repeatedly to find a nested family of
subsequences

{fm} ⊃ {g1
m} ⊃ {g2

m} ⊃ {g3
m} ⊃ . . .

such that the sequence {gnm}
∞
m=1 ⊂ C (X) is uniformly convergent on Kn. Using

Cantor’s trick, define the subsequence {hn} of {fm} by hn := gnn . Then {hn}
is uniformly convergent on Kl for each l ∈ N. Now if K ⊂ X is an arbitrary
compact set, there exists l <∞ such that K ⊂ Ko

l ⊂ Kl and therefore {hn} is
uniformly convergent on K as well.

Proposition 36.13. Let Ω ⊂o Rd such that Ω̄ is compact and 0 ≤ α < β ≤ 1.
Then the inclusion map i : Cβ(Ω) ↪→ Cα(Ω) is a compact operator. See Chapter
15 and Lemma 15.9 for the notation being used here.
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Let {un}∞n=1 ⊂ Cβ(Ω) such that ‖un‖Cβ ≤ 1, i.e. ‖un‖∞ ≤ 1 and

|un(x)− un(y)| ≤ |x− y|β for all x, y ∈ Ω.

By the Arzela-Ascoli Theorem 36.11, there exists a subsequence of {ũn}∞n=1 of
{un}∞n=1 and u ∈ Co(Ω̄) such that ũn → u in C0. Since

|u(x)− u(y)| = lim
n→∞

|ũn(x)− ũn(y)| ≤ |x− y|β ,

u ∈ Cβ as well. Define gn := u− ũn ∈ Cβ , then

[gn]β + ‖gn‖C0 = ‖gn‖Cβ ≤ 2

and gn → 0 in C0. To finish the proof we must show that gn → 0 in Cα. Given
δ > 0,

[gn]α = sup
x 6=y

|gn(x)− gn(y)|
|x− y|α

≤ An +Bn

where

An = sup

{
|gn(x)− gn(y)|
|x− y|α

: x 6= y and |x− y| ≤ δ
}

= sup

{
|gn(x)− gn(y)|
|x− y|β

· |x− y|β−α : x 6= y and |x− y| ≤ δ
}

≤ δβ−α · [gn]β ≤ 2δβ−α

and

Bn = sup

{
|gn(x)− gn(y)|
|x− y|α

: |x− y| > δ

}
≤ 2δ−α ‖gn‖C0 → 0 as n→∞.

Therefore,

lim sup
n→∞

[gn]α ≤ lim sup
n→∞

An + lim sup
n→∞

Bn ≤ 2δβ−α + 0→ 0 as δ ↓ 0.

This proposition generalizes to the following theorem which the reader is asked
to prove in Exercise 36.18 below.

Theorem 36.14. Let Ω be a precompact open subset of Rd, α, β ∈ [0, 1] and
k, j ∈ N0. If j + β > k + α, then Cj,β

(
Ω̄
)

is compactly contained in Ck,α
(
Ω̄
)
.

36.3 Tychonoff’s Theorem

The goal of this section is to show that arbitrary products of compact spaces is
still compact. Before going to the general case of an arbitrary number of factors
let us start with only two factors.

Proposition 36.15. Suppose that X and Y are non-empty compact topological
spaces, then X × Y is compact in the product topology.

Proof. Let U be an open cover of X × Y. Then for each (x, y) ∈ X × Y
there exist U ∈ U such that (x, y) ∈ U. By definition of the product topology,
there also exist Vx ∈ τXx and Wy ∈ τYy such that Vx × Wy ⊂ U. Therefore
V := {Vx ×Wy : (x, y) ∈ X × Y } is also an open cover of X × Y. We will now
show that V has a finite sub-cover, say V0 ⊂⊂ V. Assuming this is proved for
the moment, this implies that U also has a finite subcover because each V ∈ V0

is contained in some UV ∈ U . So to complete the proof it suffices to show every
cover V of the form V = {Vα ×Wα : α ∈ A} where Vα ⊂o X and Wα ⊂o Y has
a finite subcover. Given x ∈ X, let fx : Y → X × Y be the map fx(y) = (x, y)
and notice that fx is continuous since πX ◦ fx(y) = x and πY ◦ fx(y) = y are
continuous maps. From this we conclude that {x} × Y = fx(Y ) is compact.
Similarly, it follows that X ×{y} is compact for all y ∈ Y. Since V is a cover of
{x}×Y, there exist Γx ⊂⊂ A such that {x}×Y ⊂

⋃
α∈Γx

(Vα×Wα) without loss

of generality we may assume that Γx is chosen so that x ∈ Vα for all α ∈ Γx.
Let Ux :=

⋂
α∈Γx

Vα ⊂o X, and notice that

⋃
α∈Γx

(Vα ×Wα) ⊃
⋃
α∈Γx

(Ux ×Wα) = Ux × Y, (36.2)

see Figure 36.1 below. Since {Ux}x∈X is now an open cover of X and X is

Fig. 36.1. Constructing the open set Ux.

compact, there exists Λ ⊂⊂ X such that X = ∪x∈ΛUx. The finite subcollection,
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36.3 Tychonoff’s Theorem 413

V0 := {Vα×Wα : α ∈ ∪x∈ΛΓx}, of V is the desired finite subcover. Indeed using
Eq. (36.2),

∪V0 = ∪x∈Λ ∪α∈Γx (Vα ×Wα) ⊃ ∪x∈Λ (Ux × Y ) = X × Y.

The results of Exercises 35.37 and 35.36 prove Tychonoff’s Theorem for a
countable product of compact metric spaces. We now state the general version
of the theorem.

Theorem 36.16 (Tychonoff’s Theorem). Let {Xα}α∈A be a collection of
non-empty compact spaces. Then X := XA =

∏
α∈A

Xα is compact in the product

space topology. (Compare with Exercise 35.37 which covers the special case of
a countable product of compact metric spaces.)

Proof. (The proof is taken from Loomis [14] which followed Bourbaki. Re-
mark 36.17 below should help the reader understand the strategy of the proof
to follow.) The proof requires a form of “induction” known as Zorn’s lemma
which is equivalent to the axiom of choice, see Theorem 2.14 of Appendix 2.2.

For α ∈ A let πα denote the projection map from X to Xα. Suppose that
F is a family of closed subsets of X which has the finite intersection property,
see Definition 35.56. By Proposition 35.57 the proof will be complete if we can
show ∩F 6= ∅.

The first step is to apply Zorn’s lemma to construct a maximal collection,
Fm, of (not necessarily closed) subsets of X with the finite intersection property
such that F ⊂ Fm. To do this, let Γ :=

{
G ⊂ 2X : F ⊂ G

}
equipped with the

partial order, G1 < G2 if G1 ⊂ G2. If Φ is a linearly ordered subset of Γ, then
G:= ∪Φ is an upper bound for Φ which still has the finite intersection property
as the reader should check. So by Zorn’s lemma, Γ has a maximal element Fm.
The maximal Fm has the following properties.

1. Fm is closed under finite intersections. Indeed, if we let (Fm)f denote the
collection of all finite intersections of elements from Fm, then (Fm)f has
the finite intersection property and contains Fm. Since Fm is maximal, this
implies (Fm)f = Fm.

2. If B ⊂ X and B ∩ F 6= ∅ for all F ∈ Fm then B ∈ Fm. For if not
Fm ∪ {B} would still satisfy the finite intersection property and would
properly contain Fm and this would violate the maximallity of Fm.

3. For each α ∈ A,

πa(Fm) := {πα(F ) ⊂ Xα : F ∈ Fm}

has the finite intersection property. Indeed, if {Fi}ni=1 ⊂ Fm, then
∩ni=1πα(Fi) ⊃ πα (∩ni=1Fi) 6= ∅.

Since Xα is compact, property 3. above along with Proposition 35.57 implies
∩F∈Fmπα(F ) 6= ∅. Since this true for each α ∈ A, using the axiom of choice,
there exists p ∈ X such that pα = πα(p) ∈ ∩F∈Fmπα(F ) for all α ∈ A. The
proof will be completed by showing ∩F 6= ∅ by showing p ∈ ∩F . As F ⊂{
F̄ : F ∈ Fm

}
, it follows that C := ∩

{
F̄ : F ∈ Fm

}
⊂ ∩F . So to finish the

proof it suffices to show p ∈ C, i.e. p ∈ F̄ for all F ∈ Fm.
Let U be any open neighborhood of p in X. By the definition of the product

topology (or item 2. of Proposition 35.25), there exists Λ ⊂⊂ A and open sets
Uα ⊂ Xα for all α ∈ Λ such that p ∈ ∩α∈Λπ−1

α (Uα) ⊂ U, i.e. pα ∈ Uα for
α ∈ Λ. Since pα ∈ ∩F∈Fmπα(F ) and pα ∈ Uα for all α ∈ Λ, it follows that
Uα∩πα(F ) 6= ∅ for all F ∈ Fm and all α ∈ Λ. This then implies, for all F ∈ Fm
and all α ∈ Λ, that π−1

α (Uα)∩F 6= ∅.5 By property 2.6 above we concluded that
π−1
α (Uα) ∈ Fm for all α ∈ Λ and then by property 1. that ∩α∈Λπ−1

α (Uα) ∈ Fm.
In particular, for all F ∈ Fm,

∅ 6= F ∩
(
∩α∈Λπ−1

α (Uα)
)
⊂ F ∩ U

which shows p ∈ F̄ for each F ∈ Fm, i.e. p ∈ C.

Remark 36.17. Consider the following simple example where X = [−1, 1] ×
[−1, 1] and F = {F1, F2} as in Figure 36.2. Notice that πi(F1)∩πi (F2) = [−1, 1]
for each i and so gives no help in trying to find the ith – coordinate of one of the
two points in F1∩F2. This is why it is necessary to introduce the collection F0 in
the proof of Theorem 36.16. In this case one might take F0 to be the collection
of all subsets F ⊂ X such that p ∈ F. We then have ∩F∈F0πi (F ) = {pi} ,
so the ith – coordinate of p may now be determined by observing the sets,
{πi (F ) : F ∈ F0} .

Theorem 36.18 (Generalized Ascoli-Arzela Theorem). Let (Ω, τ) be a
compact topological space, X be a Banach space, and F ⊂ C (Ω,X) . Then
F is precompact in C (Ω,X) iff F is equicontinuous and point-wise totally
bounded, i.e. Kω := {f (ω) : f ∈ F} is compact in X for all ω ∈ Ω.

Proof. (⇐) Since C (Ω,X) ⊂ `∞ (Ω,X) is a complete metric space, we
must show F is totally bounded. Let ε > 0 be given. By equicontinuity, for all
ω ∈ Ω, there exists Vω ∈ τω such that |f(γ) − f(ω)| < ε if γ ∈ Vω and f ∈ F .
Since Ω is compact we may choose Λ ⊂f Ω such that Ω = ∪ω∈ΛVω. We have
now decomposed Ω into “blocks” {Vω}ω∈Λ such that each f ∈ F is constant to
within ε on Vω. Let KΛ :=

∏
ω∈ΛKω which by Tychnoff’s theorem is a compact

subset of `∞ (Λ,X) . Therefore for all ε > 0 there exists a finite subset Γ ⊂f KΛ

5 If q ∈ F such that πα (q) ∈ Uα, then q ∈ π−1
α (U) ∩ F.

6 Here is where we use that F0 is maximal among the collection of all, not just closed,
sets having the finite intersection property and containing F .
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Fig. 36.2. Here F = {F1, F2} where F1 and F2 are the two parabolic arcs and
F1 ∩ F2 = {p, q}.

such that KΛ ⊂ ∪ϕ∈ΓB`
∞(Λ,X)
ϕ (ε) . By construction if f ∈ F , then f |Λ ∈ KΛ

and therefore there exists ϕ ∈ Γ such that ‖f |Λ − ϕ‖`∞(Λ,X) < ε. This shows

that F =
⋃
ϕ∈Γ Fϕ where, for ϕ ∈ �,

Fϕ := {f ∈ F : ‖f |Λ − ϕ‖`∞(Λ,X) < ε}.

Let Γ̃ = {ϕ ∈ Γ : Fϕ 6= ∅} and for ϕ ∈ Γ̃ let fϕ ∈ Fϕ. If f ∈ Fϕ and γ ∈ Ω,
choose ω ∈ Λ such that γ ∈ Vω. Then we find

|f (γ)− fϕ (γ)| ≤ |f (γ)− f (ω)|+ |f (ω)− ϕ (ω)|
+ |ϕ (ω)− fϕ (ω)|+ |fϕ (ω)− fϕ (γ)| < 4ε.

As γ ∈ Ω is arbitrary we have shown ‖f − fϕ‖∞ ≤ 4ε for all f ∈ Fϕ, i.e.

F =
⋃
ϕ∈Γ̃

Fϕ ⊂
⋃
ϕ∈Γ̃

B
C(Ω,X)
fϕ

(5ε) .

This shows that F is 5ε – bounded for all ε > 0.
(⇒) (*The rest of this proof may safely be skipped.) Let me first give the ar-

gument under the added restriction that τ = τd for some metric, d, and Ω. Since
‖·‖∞ : C (Ω,X)→ [0,∞) is a continuous function on C (Ω,X) it is bounded on
any compact subset F ⊂ C (Ω,X) . This shows that sup {‖f‖∞ : f ∈ F} < ∞
which clearly implies that F is pointwise bounded.7 Suppose F were not
equicontinuous at some point ω ∈ Ω, i.e. there exists ε > 0 such that for all

7 One could also prove that F is pointwise bounded by considering the continuous
evaluation maps ex : C(X)→ R given by ex(f) = f(x) for all x ∈ X.

V ∈ τω, sup
γ∈V

sup
f∈F
‖f(γ)− f(ω)‖ > ε. Let {Vn = Bω (1/n)}∞n=1. By the assump-

tion that F is not equicontinuous at ω, there exist fn ∈ F and ωn ∈ Vn such
that |fn(ω)− fn(ωn)| ≥ ε for all n. Since F is a compact metric space by pass-
ing to a subsequence if necessary we may assume that fn converges uniformly
to some f ∈ F . Because ωn → ω as n→∞ we learn that

ε ≤ ‖fn(ω)− fn(ωn)‖ ≤ ‖fn(ω)− f(ω)‖+ ‖f(ω)− f(ωn)‖+ ‖f(ωn)− fn(ωn)‖
≤ 2 ‖fn − f‖∞ + ‖f(ω)− f(ωn)‖ → 0 as n→∞

which is a contradiction.
(⇒) (Here is the general argument for arbitrary topological spaces.) As in

the proof above, F is pointwise bounded. Suppose F were not equicontinu-
ous at some point ω ∈ Ω, i.e. there exists ε > 0 such that for all V ∈ τω,
sup
γ∈V

sup
f∈F
‖f(γ)− f(ω)‖ > ε.8 Equivalently said, to each V ∈ τω we may choose

fV ∈ F and ωV ∈ V 3 |fV (ω)− fV (ωV )| ≥ ε.

Set CV = {fW : W ∈ τω and W ⊂ V }
‖·‖∞ ⊂ F and notice for any V ⊂f τω that

∩V ∈VCV ⊇ C∩V 6= ∅,

so that {CV }V ∈ τω ⊂ F has the finite intersection property.9 Since F is
compact, it follows that there exists some

f ∈
⋂
V ∈τω

CV 6= ∅.

8 If X is first countable we could finish the proof with the following argument. Let
{Vn}∞n=1 be a neighborhood base at x such that V1 ⊃ V2 ⊃ V3 ⊃ . . . . By the
assumption that F is not equicontinuous at x, there exist fn ∈ F and xn ∈ Vn such
that |fn(x) − fn(xn)| ≥ ε ∀ n. Since F is a compact metric space by passing to
a subsequence if necessary we may assume that fn converges uniformly to some
f ∈ F . Because xn → x as n→∞ we learn that

ε ≤ |fn(x)− fn(xn)| ≤ |fn(x)− f(x)|+ |f(x)− f(xn)|+ |f(xn)− fn(xn)|
≤ 2‖fn − f‖+ |f(x)− f(xn)| → 0 as n→∞

which is a contradiction.
9 If we are willing to use Net’s described in Appendix ?? below we could finish the

proof as follows. Since F is compact, the net {fV }V ∈τx ⊂ F has a cluster point
f ∈ F ⊂ C(X). Choose a subnet {gα}α∈A of {fV }V ∈τX such that gα → f uniformly.
Then, since xV → x implies xVα → x, we may conclude from Eq. (36.1) that

ε ≤ |gα(x)− gα(xVα)| → |g(x)− g(x)| = 0

which is a contradiction.
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36.4 Banach – Alaoglu’s Theorem 415

Since f is continuous, there exists V ∈ τω such that ‖f(ω)− f(γ)‖ < ε/3 for
all γ ∈ V. Because f ∈ CV , there exists W ⊂ V such that ‖f − fW ‖ < ε/3. We
now arrive at a contradiction;

ε ≤ ‖fW (ω)− fW (ωW )‖
≤ ‖fW (ω)− f(ω)‖+ ‖f(ω)− f(ωW )‖+ ‖f(ωW )− fW (ωW )‖
< ε/3 + ε/3 + ε/3 = ε.

36.4 Banach – Alaoglu’s Theorem

36.4.1 Weak and Strong Topologies

Definition 36.19. Let X and Y be be a normed vector spaces and L(X,Y ) the
normed space of bounded linear transformations from X to Y.

1. The weak topology on X is the topology generated by X∗, i.e. the smallest
topology on X such that every element f ∈ X∗ is continuous.

2. The weak-∗ topology on X∗ is the topology generated by X, i.e. the smallest
topology on X∗ such that the maps f ∈ X∗ → f(x) ∈ C are continuous for
all x ∈ X.

3. The strong operator topology on L(X,Y ) is the smallest topology such
that T ∈ L(X,Y ) −→ Tx ∈ Y is continuous for all x ∈ X.

4. The weak operator topology on L(X,Y ) is the smallest topology such
that T ∈ L(X,Y ) −→ f(Tx) ∈ C is continuous for all x ∈ X and f ∈ Y ∗.

Let us be a little more precise about the topologies described in the above
definitions.

1. The weak topology has a neighborhood base at x0 ∈ X consisting of sets
of the form

N = ∩ni=1{x ∈ X : |fi(x)− fi(x0)| < ε}

where fi ∈ X∗ and ε > 0.
2. The weak-∗ topology on X∗ has a neighborhood base at f ∈ X∗ consisting

of sets of the form

N := ∩ni=1{g ∈ X∗ : |f(xi)− g(xi)| < ε}

where xi ∈ X and ε > 0.

3. The strong operator topology on L(X,Y ) has a neighborhood base at
T ∈ X∗ consisting of sets of the form

N := ∩ni=1{S ∈ L (X,Y ) : ‖Sxi − Txi‖ < ε}

where xi ∈ X and ε > 0.
4. The weak operator topology on L(X,Y ) has a neighborhood base at
T ∈ X∗ consisting of sets of the form

N := ∩ni=1{S ∈ L (X,Y ) : |fi (Sxi − Txi)| < ε}

where xi ∈ X, fi ∈ X∗ and ε > 0.

Theorem 36.20 (Alaoglu’s Theorem). If X is a normed space the closed
unit ball,

C∗ := {f ∈ X∗ : ‖f‖ ≤ 1} ⊂ X∗,

is weak - ∗ compact. (Also see Theorem 36.31 and Proposition 41.16.)

Proof. For all x ∈ X let Dx = {z ∈ C : |z| ≤ ‖x‖}. Then Dx ⊂ C
is a compact set and so by Tychonoff’s Theorem Ω :=

∏
x∈X

Dx is compact in

the product topology. If f ∈ C∗, |f(x)| ≤ ‖f‖ ‖x‖ ≤ ‖x‖ which implies that
f(x) ∈ Dx for all x ∈ X, i.e. C∗ ⊂ Ω. The topology on C∗ inherited from the
weak–∗ topology on X∗ is the same as that relative topology coming from the
product topology on Ω. So to finish the proof it suffices to show C∗ is a closed
subset of the compact space Ω. To prove this let πx(f) = f(x) be the projection
maps. Then

C∗ = {f ∈ Ω : f is linear}
= {f ∈ Ω : f(x+ cy)− f(x)− cf(y) = 0 for all x, y ∈ X and c ∈ C}

=
⋂

x,y∈X

⋂
c∈C
{f ∈ Ω : f(x+ cy)− f(x)− cf(y) = 0}

=
⋂

x,y∈X

⋂
c∈C

(πx+cy − πx − cπy)
−1

({0})

which is closed because (πx+cy − πx − cπy) : Ω → C is continuous.

Example 36.21 (Compactness does not imply sequential compactness). (This
example was taken from [9].) According to Theorem 14.21 `∞ ([0, 2π]) ∼=
`1 ([0, 2π])

∗
. In this case the functions, fn (θ) := einθ are in the closed unit

ball in `∞ ([0, 2π]) . We are going to show that {fn}∞n=1 does not have a weak-∗
convergent subsequence. For if it did, there would exists gk := fnk with nk ↑ ∞
and f ∈ `∞ ([0, 2π]) such that
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gk (θ)ψ (θ)→
∑
θ

f (θ)ψ (θ) for all ψ ∈ `1 ([0, 2π]) .

Taking ψ (θ) = δα,θ with α ∈ [0, 2π] we would infer that limk→∞ gk (α) = f (α)
for all α. In particular, it would follows that f : [0, 2π]→ C is a Borel measurable
function such that |f (α)| = 1 for all α. So by the dominated convergence
theorem, it would follow that

0 = lim
k→∞

∫ 2π

0

gk (α) e−inαdα =

∫ 2π

0

f (α) e−inαdα for all n ∈ Z,

wherein we have used
∫ 2π

0
gk (α) e−inαdα = 0 for all k where nk 6= n which

eventually happens for k large. This then implies that f (α) = 0 for m – a.e. α
which contradicts the assertion that |f (α)| = 1 for all α. See also Blue Rudin
around p. 143.

There are a number of situations where the pathology in the above example
does not happen. One is described in Theorem 36.25 below. The other is when
X is a reflexive Banach space.

Theorem 36.22. If X is a reflexive Banach space, then weak and the weak-*
topologies on X∗ are the same. Moreover, the closed unit ball in X∗ is weak-∗
(= weakly) sequentially compact. In particular this result holds for Lp – spaces
with 1 < p <∞.

Proof. Since X∗∗ = X̂, it follows that the weak-* topology on X∗ is the
same as the weak topology on X∗. (See Theorem 21.19 below where it is shown
that X is reflexive iff X∗ is reflexive.) Hence the unit ball in X∗ is also now
weakly compact. The Eberlein-Smulian Theorem 36.24 now guarantees that the
unit ball in X∗ is also weakly sequentially compact. See problem 28c on p. 86
of Rudin’s functional analysis and the note on p. 376. For a short proof, see
Whitley [23] and Henry B. Cohen [1].

Lemma 36.23. If X is a separable Banach space, there exists a countable sub-
set, {ϕn}∞n=1 contained in the unit ball in X∗ such that if x ∈ X and ϕn (x) = 0
for all n then x = 0. Moreover if K ⊂ X is a weakly compact set, then for
x, y ∈ K,

d (x, y) :=

∞∑
n=1

1

2n
|ϕn (x− y)| (36.3)

is a metric on K which induces the weak topology on K.

Proof. Let {xn}∞n=1 be a countable dense subset in the unit sphere in X. By
the Hahn Banach Theorem 21.7 (or Corollary 21.8) below, there exists ϕn ∈ X∗
with ‖ϕn‖ = 1 such that ϕn (xn) = 1. Notice that for x ∈ X, we have

sup
n
|ϕn (x)| = ‖x‖ sup

n

∣∣∣∣ϕn( x

‖x‖

)∣∣∣∣ ≤ ‖x‖ .
Moreover we may choose xnk such that xnk → x

‖x‖ = y. Since and

ϕnk (y) = ϕnk (xnk) + ϕnk (xnk − y) = 1 + ϕnk (xnk − y)

and |ϕnk (xnk − y)| ≤ ‖xnk − y‖ → 0 as k → ∞, it follows that in fact
supn |ϕn (x)| = ‖x‖ and hence {ϕn}∞n=1 has the desired properties.

If K ⊂ X is a weakly compact set, then ϕ (K) is compact for all ϕ ∈ X∗
and in particular,

sup
x∈K
|x̂ (ϕ)| = sup

x∈K
|ϕ (x)| <∞ for all ϕ ∈ X∗.

By the uniform boundedness principle,

sup
x∈K
‖x‖X = sup

x∈K
‖x̂‖X∗∗ <∞

which is to say K is norm bounded.
The function d is easily seen to be a metric on X. Moreover if B is any

norm bounded subset of X, d|B×B is the uniform limit of continuous functions
relative to the product of the weak topologies on B. Therefore d|B×B is weak
product topology continuous. In particular, any open d – ball in B is a weakly
open subset of B.

By the previous paragraph, it follows that id : (K, τw) → (K, τd) is a con-
tinuous bijective map. Since (K, τw) is compact and closed subsets of compact
sets are compact, it follows that id takes closed sets to compact subsets of
(K, τd) which are necessarily closed since (K, τd) is Hausdorff. Therefore id is a
homeomorphism of topological spaces as was to be proved.

Theorem 36.24 (Eberlein-Smulian Theorem). For a Banach space X with
the weak topology, a subset A ⊂ X is weakly precompact iff it is weakly countably
compact iff it is weakly sequentially compact.

Proof. The direction of most interest to us is fairly easy. Namely sup-
pose that A ⊂ X weakly precompact and {an}∞n=1 is a sequence in A, we
will show that {an}∞n=1 has a weakly convergent subsequence. Let Y :=

span({an}∞n=1)
‖·‖X

. By the Hahn Banach Theorem 21.7 (or Corollary 21.8)
below, Y is also weakly closed. Therefore Āτw ∩ Y = Āτw|Y (see Lemma 35.32)
is compact as well. Since Y is separable, Āτw ∩ Y is metrizable by Lemma
36.23 and therefore compactness implies completness and sequential compact-
ness. Hence there exists an a ∈ Āτw|Y = Āτw ∩ Y and a convergent subse-
quence a′k = ank → a in Āτw|Y = Āτw ∩ Y. Thus for every ϕ ∈ Y ∗, we have
ϕ (ank) → ϕ (a) and in particular for every ϕ ∈ X∗, ϕ|Y ∈ Y ∗ and hence
ϕ (ank)→ ϕ (a) . This shows ank → a relative to the weak topology on X.
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Theorem 36.25 (Alaoglu’s Theorem for separable spaces). Suppose that
X is a separable Banach space, C∗ := {f ∈ X∗ : ‖f‖ ≤ 1} is the closed unit ball
in X∗ and {xn}∞n=1 is an countable dense subset of C := {x ∈ X : ‖x‖ ≤ 1} .
Then

ρ(f, g) :=

∞∑
n=1

1

2n
|f(xn)− g(xn)| (36.4)

defines a metric on C∗ which is compatible with the weak topology on C∗, τC∗ :=
(τw∗)C∗ = {V ∩ C : V ∈ τw∗} . Moreover (C∗, ρ) is a compact metric space.

Proof. The routine check that ρ is a metric is left to the reader. Let τρ
be the topology on C∗ induced by ρ. For any g ∈ X∗ and n ∈ N, the map
f ∈ X∗ → (f(xn)− g(xn))∈C is τw∗ continuous and since the sum in Eq.
(36.4) is uniformly convergent for f ∈ C∗, it follows that f → ρ(f, g) is τC∗ –
continuous. This implies the open balls relative to ρ are contained in τC∗ and
therefore τρ ⊂ τC∗ .

We now wish to prove τC∗ ⊂ τρ. Since τC∗ is the topology generated by
{x̂|C∗ : x ∈ C} , it suffices to show x̂ is τρ – continuous for all x ∈ C. But given
x ∈ C there exists a subsequence yk := xnk of {xn}∞n=1 such that such that
x = limk→∞ yk. Since

sup
f∈C∗

|x̂(f)− ŷk(f)| = sup
f∈C∗

|f(x− yk)| ≤ ‖x− yk‖ → 0 as k →∞,

ŷk → x̂ uniformly on C∗ and using ŷk is τρ – continuous for all k (as is easily
checked) we learn x̂ is also τρ continuous. Hence τC∗ = τ(x̂|C∗ : x ∈ X) ⊂ τρ.

The compactness assertion follows from Theorem 36.20. The compactness
assertion may also be verified directly using: 1) sequential compactness is equiv-
alent to compactness for metric spaces and 2) a Cantor’s diagonalization argu-
ment as in the proof of Theorem 36.31. (See Proposition 41.16 below.)

36.5 Weak Convergence in Hilbert Spaces

Suppose H is an infinite dimensional Hilbert space and {xn}∞n=1 is an orthonor-
mal subset of H. Then, by Eq. (18.1), ‖xn − xm‖2 = 2 for all m 6= n and in
particular, {xn}∞n=1 has no convergent subsequences. From this we conclude
that C := {x ∈ H : ‖x‖ ≤ 1} , the closed unit ball in H, is not compact. To
overcome this problems it is sometimes useful to introduce a weaker topology
on X having the property that C is compact.

Definition 36.26. Let (X, ‖·‖) be a Banach space and X∗ be its continuous
dual. The weak topology, τw, on X is the topology generated by X∗. If {xn}∞n=1 ⊂
X is a sequence we will write xn

w→ x as n → ∞ to mean that xn → x in the
weak topology.

Because τw = τ(X∗) ⊂ τ‖·‖ := τ({‖x− ·‖ : x ∈ X}), it is harder for a
function f : X → F to be continuous in the τw – topology than in the norm
topology, τ‖·‖. In particular if ϕ : X → F is a linear functional which is τw –
continuous, then ϕ is τ‖·‖ – continuous and hence ϕ ∈ X∗.

Exercise 36.7. Show the vector space operations of X are continuous in the
weak topology, i.e. show:

1. (x, y) ∈ X ×X → x+ y ∈ X is (τw ⊗ τw, τw) – continuous and
2. (λ, x) ∈ F×X → λx ∈ X is (τF ⊗ τw, τw) – continuous.

Proposition 36.27. Let {xn}∞n=1 ⊂ X be a sequence, then xn
w→ x ∈ X as

n→∞ iff ϕ(x) = limn→∞ ϕ(xn) for all ϕ ∈ X∗.

Proof. By definition of τw, we have xn
w→ x ∈ X iff for all Γ ⊂⊂ X∗ and

ε > 0 there exists an N ∈ N such that |ϕ(x)− ϕ(xn)| < ε for all n ≥ N and ϕ ∈
Γ. This later condition is easily seen to be equivalent to ϕ(x) = limn→∞ ϕ(xn)
for all ϕ ∈ X∗.

The topological space (X, τw) is still Hausdorff as follows from the Hahn
Banach Theorem, see Theorem 21.9 below. For the moment we will concentrate
on the special case where X = H is a Hilbert space in which case H∗ =
{ϕz := 〈·|z〉 : z ∈ H} , see Theorem 18.17. If x, y ∈ H and z := y − x 6= 0, then

0 < ε := ‖z‖2 = ϕz(z) = ϕz(y)− ϕz(x).

Thus

Vx := {w ∈ H : |ϕz(x)− ϕz(w)| < ε/2} and

Vy := {w ∈ H : |ϕz(y)− ϕz(w)| < ε/2}

are disjoint sets from τw which contain x and y respectively. This shows that
(H, τw) is a Hausdorff space. In particular, this shows that weak limits are
unique if they exist.

Remark 36.28. Suppose that H is an infinite dimensional Hilbert space {xn}∞n=1

is an orthonormal subset of H. Then Bessel’s inequality (Proposition 18.21)

implies xn
w→ 0 ∈ H as n→∞. This points out the fact that if xn

w→ x ∈ H as
n → ∞, it is no longer necessarily true that ‖x‖ = limn→∞ ‖xn‖ . However we
do always have ‖x‖ ≤ lim infn→∞ ‖xn‖ because,

‖x‖2 = lim
n→∞

〈xn|x〉 ≤ lim inf
n→∞

[‖xn‖ ‖x‖] = ‖x‖ lim inf
n→∞

‖xn‖ .

Proposition 36.29. Let H be a Hilbert space, β ⊂ H be an orthonormal ba-
sis for H and {xn}∞n=1 ⊂ H be a bounded sequence, then the following are
equivalent:
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1. xn
w→ x ∈ H as n→∞.

2. 〈x|y〉 = limn→∞〈xn|y〉 for all y ∈ H.
3. 〈x|y〉 = limn→∞〈xn|y〉 for all y ∈ β.

Moreover, if cy := limn→∞〈xn|y〉 exists for all y ∈ β, then
∑
y∈β |cy|

2
<∞

and xn
w→ x :=

∑
y∈β cyy ∈ H as n→∞.

Proof. 1. =⇒ 2. This is a consequence of Theorem 18.17 and Proposition
36.27. 2. =⇒ 3. is trivial. 3. =⇒ 1. Let M := supn ‖xn‖ and H0 denote the
algebraic span of β. Then for y ∈ H and z ∈ H0,

|〈x− xn|y〉| ≤ |〈x− xn|z〉|+ |〈x− xn|y − z〉| ≤ |〈x− xn|z〉|+ 2M ‖y − z‖ .

Passing to the limit in this equation implies lim supn→∞ |〈x− xn|y〉| ≤
2M ‖y − z‖ which shows lim supn→∞ |〈x− xn|y〉| = 0 since H0 is dense in H. To
prove the last assertion, let Γ ⊂⊂ β. Then by Bessel’s inequality (Proposition
18.21), ∑

y∈Γ
|cy|2 = lim

n→∞

∑
y∈Γ
|〈xn|y〉|2 ≤ lim inf

n→∞
‖xn‖2 ≤M2.

Since Γ ⊂⊂ β was arbitrary, we conclude that
∑
y∈β |cy|

2 ≤M <∞ and hence
we may define x :=

∑
y∈β cyy. By construction we have

〈x|y〉 = cy = lim
n→∞

〈xn|y〉 for all y ∈ β

and hence xn
w→ x ∈ H as n→∞ by what we have just proved.

Theorem 36.30. Suppose {xn}∞n=1 is a bounded sequence in a Hilbert space,
H. Then there exists a subsequence yk := xnk of {xn}∞n=1 and x ∈ H such that

yk
w→ x as k →∞.

Proof. This is a consequence of Proposition 36.29 and a Cantor’s diagonal-
ization argument which is left to the reader, see Exercise 36.12.

Theorem 36.31 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that
H is a separable Hilbert space, C := {x ∈ H : ‖x‖ ≤ 1} is the closed unit ball
in H and {en}∞n=1 is an orthonormal basis for H. Then

ρ(x, y) :=

∞∑
n=1

1

2n
|〈x− y|en〉| (36.5)

defines a metric on C which is compatible with the weak topology on C,
τC := (τw)C = {V ∩ C : V ∈ τw} . Moreover (C, ρ) is a compact metric space.
(This theorem will be extended to Banach spaces, see Theorems 36.20 and 36.25
below.)

Proof. The routine check that ρ is a metric is left to the reader. Let τρ
be the topology on C induced by ρ. For any y ∈ H and n ∈ N, the map
x ∈ H → 〈x − y|en〉 = 〈x|en〉 − 〈y|en〉 is τw continuous and since the sum in
Eq. (36.5) is uniformly convergent for x, y ∈ C, it follows that x → ρ(x, y) is
τC – continuous. This implies the open balls relative to ρ are contained in τC
and therefore τρ ⊂ τC . For the converse inclusion, let z ∈ H, x→ ϕz(x) = 〈x|z〉
be an element of H∗, and for N ∈ N let zN :=

∑N
n=1〈z|en〉en. Then ϕzN =∑N

n=1 〈z|en〉ϕen is ρ continuous, being a finite linear combination of the ϕen
which are easily seen to be ρ – continuous. Because zN → z as N → ∞ it
follows that

sup
x∈C
|ϕz(x)− ϕzN (x)| = ‖z − zN‖ → 0 as N →∞.

Therefore ϕz|C is ρ – continuous as well and hence τC = τ(ϕz|C : z ∈ H) ⊂
τρ. The last assertion follows directly from Theorem 36.30 and the fact that
sequential compactness is equivalent to compactness for metric spaces.

The next theorem give an elementary argument to show that bounded sets
in a Hilbert space are always weakly sequentially compact.

Theorem 36.32 (Same as Theorem 36.30). Suppose {xn}∞n=1 is a bounded
sequence in H (i.e. C := supn ‖xn‖ < ∞), then there exists a sub-sequence,
yk := xnk and an x ∈ H such that limk→∞ 〈yk|h〉 = 〈x|h〉 for all h ∈ H. We
say that yk → x weakly in this case.

Proof. Let H0 := span(xk : k ∈ N). Then H0 is a closed separable Hilbert
subspace of H and {xk}∞k=1 ⊂ H0. Let {hn}∞n=1 be a countable dense subset of
H0. Since |〈xk|hn〉| ≤ ‖xk‖ ‖hn‖ ≤ C ‖hn‖ <∞, the sequence, {〈xk|hn〉}∞k=1 ⊂
C, is bounded and hence has a convergent sub-sequence for all n ∈ N. By the
Cantor’s diagonalization argument we can find a a sub-sequence, yk := xnk , of
{xn} such that limk→∞ 〈yk|hn〉 exists for all n ∈ N.

We now show ϕ (z) := limk→∞ 〈yk|z〉 exists for all z ∈ H0. Indeed, for any
k, l, n ∈ N, we have

|〈yk|z〉 − 〈yl|z〉| = |〈yk − yl|z〉| ≤ |〈yk − yl|hn〉|+ |〈yk − yl|z − hn〉|
≤ |〈yk − yl|hn〉|+ 2C ‖z − hn‖ .

Letting k, l→∞ in this estimate then shows

lim sup
k,l→∞

|〈yk|z〉 − 〈yl|z〉| ≤ 2C ‖z − hn‖ .

Since we may choose n ∈ N such that ‖z − hn‖ is as small as we please, we may
conclude that lim supk,l→∞ |〈yk|z〉 − 〈yl|z〉| , i.e. ϕ (z) := limk→∞ 〈yk|z〉 exists.

The function, ϕ̄ (z) = limk→∞ 〈z|yk〉 is a bounded linear functional on H
because
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|ϕ̄ (z)| = lim inf
k→∞

|〈z|yk〉| ≤ C ‖z‖ .

Therefore by the Riesz Theorem 18.17, there exists x ∈ H0 such that ϕ̄ (z) =
〈z|x〉 for all z ∈ H0. Thus, for this x ∈ H0 we have shown

lim
k→∞

〈yk|z〉 = 〈x|z〉 for all z ∈ H0. (36.6)

To finish the proof we need only observe that Eq. (36.6) is valid for all z ∈ H.
Indeed if z ∈ H, then z = z0 + z1 where z0 = PH0

z ∈ H0 and z1 = z − PH0
z ∈

H⊥0 . Since yk, x ∈ H0, we have

lim
k→∞

〈yk|z〉 = lim
k→∞

〈yk|z0〉 = 〈x|z0〉 = 〈x|z〉 for all z ∈ H.

36.6 Exercises

Exercise 36.8. Prove Lemma 35.58 which is repeated here. Let E ⊂ X be a
subset of a metric space (X, d) . Then the following are equivalent:

Lemma 36.33. 1. x ∈ X is an accumulation point of E.
2. B′x(ε) ∩ E 6= ∅ for all ε > 0.
3. Bx(ε) ∩ E is an infinite set for all ε > 0.
4. There exists {xn}∞n=1 ⊂ E \ {x} with limn→∞ xn = x.

Exercise 36.9. Let C be a closed proper subset of Rn and x ∈ Rn \ C. Show
there exists a y ∈ C such that d(x, y) = dC(x).

Exercise 36.10. Let F = R in this problem and A ⊂ `2(N) be defined by

A = {x ∈ `2(N) : x(n) ≥ 1 + 1/n for some n ∈ N}
= ∪∞n=1{x ∈ `2(N) : x(n) ≥ 1 + 1/n}.

Show A is a closed subset of `2(N) with the property that dA(0) = 1 while there
is no y ∈ A such that d(0, y) = 1. (Remember that in general an infinite union
of closed sets need not be closed.)

Exercise 36.11. Let p ∈ [1,∞] and X be an infinite set. Show directly, without
using Theorem 35.68, the closed unit ball in `p(X) is not compact.

36.6.1 Weak Convergence Problems

Exercise 36.12. Prove Theorem 36.30. Hint: Let H0 := span {xn : n ∈ N} – a
separable Hilbert subspace of H. Let {λm}∞m=1 ⊂ H0 be an orthonormal basis
and use Cantor’s diagonalization argument to find a subsequence yk := xnk such
that cm := limk→∞〈yk|λm〉 exists for all m ∈ N. Finish the proof by appealing
to Proposition 36.29.

Definition 36.34. We say a sequence {xn}∞n=1 of a Hilbert space, H, converges

weakly to x ∈ H (and denote this by writing xn
w→ x ∈ H as n → ∞) iff

limn→∞ 〈xn|y〉 = 〈x|y〉 for all y ∈ H.

Exercise 36.13. Suppose that {xn}∞n=1 ⊂ H and xn
w→ x ∈ H as n → ∞.

Show xn → x as n→∞ (i.e. limn→∞ ‖x− xn‖ = 0) iff limn→∞ ‖xn‖ = ‖x‖ .

Exercise 36.14 (Banach-Saks). Suppose that {xn}∞n=1 ⊂ H, xn
w→ x ∈ H as

n→∞, and c := supn ‖xn‖ <∞.10 Show there exists a subsequence, yk = xnk
such that

lim
N→∞

∥∥∥∥∥x− 1

N

N∑
k=1

yk

∥∥∥∥∥ = 0,

i.e. 1
N

∑N
k=1 yk → x as N →∞. Hints: 1. show it suffices to assume x = 0 and

then choose {yk}∞k=1 so that |〈yk|yl〉| ≤ l−1 (or even smaller if you like) for all
k ≤ l.

36.6.2 Arzela-Ascoli Theorem Problems

Exercise 36.15. Let (X, τ) be a compact topological space and F :=
{fn}∞n=1 ⊂ C (X) is a sequence of functions which are equicontinuous and
pointwise convergent. Show f (x) := limn→∞ fn (x) is continuous and that
limn→∞ ‖f − fn‖∞ = 0, i.e. fn → f uniformly as n→∞.

Exercise 36.16. Let T ∈ (0,∞) and F ⊂ C([0, T ]) be a family of functions
such that:

1. ḟ(t) exists for all t ∈ (0, T ) and f ∈ F .
2. supf∈F |f(0)| <∞ and

3. M := supf∈F supt∈(0,T )

∣∣∣ḟ(t)
∣∣∣ <∞.

Show F is precompact in the Banach space C([0, T ]) equipped with the
norm ‖f‖∞ = supt∈[0,T ] |f(t)| .
10 The assumption that c < ∞ is superfluous because of the “uniform boundedness

principle,” see Theorem 23.9 below.
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Exercise 36.17 (Peano’s Existence Theorem). Suppose Z : R× Rd → Rd
is a bounded continuous function. Then for each T <∞11 there exists a solution
to the differential equation

ẋ(t) = Z(t, x(t)) for − T < t < T with x(0) = x0. (36.7)

Do this by filling in the following outline for the proof.

1. Given ε > 0, show there exists a unique function xε ∈ C([−ε,∞) → Rd)
such that xε(t) := x0 for −ε ≤ t ≤ 0 and

xε(t) = x0 +

∫ t

0

Z(τ, xε(τ − ε))dτ for all t ≥ 0. (36.8)

Here∫ t

0

Z(τ, xε(τ−ε))dτ =

(∫ t

0

Z1(τ, xε(τ − ε))dτ, . . . ,
∫ t

0

Zd(τ, xε(τ − ε))dτ
)

where Z = (Z1, . . . , Zd) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For
t ∈ [0, ε], it follows from Eq. (36.8) that

xε(t) = x0 +

∫ t

0

Z(τ, x0)dτ.

Now that xε(t) is known for t ∈ [−ε, ε] it can be found by integration for
t ∈ [−ε, 2ε]. The process can be repeated.

2. Then use Exercise 36.16 to show there exists {εk}∞k=1 ⊂ (0,∞) such that
limk→∞ εk = 0 and xεk converges to some x ∈ C([0, T ]) with respect to the
sup-norm: ‖x‖∞ = supt∈[0,T ] |x(t)|). Also show for this sequence that

lim
k→∞

sup
εk≤τ≤T

|xεk(τ − εk)− x (τ)| = 0.

3. Pass to the limit (with justification) in Eq. (36.8) with ε replaced by εk
to show x satisfies

x(t) = x0 +

∫ t

0

Z(τ, x(τ))dτ ∀ t ∈ [0, T ].

4. Conclude from this that ẋ(t) exists for t ∈ (0, T ) and that x solves Eq.
(36.7).

11 Using Corollary 36.12, we may in fact allow T =∞.

5. Apply what you have just proved to the ODE,

ẏ(t) = −Z(−t, y(t)) for 0 ≤ t < T with y(0) = x0.

Then extend x(t) above to (−T, T ) by setting x(t) = y(−t) if t ∈ (−T, 0].
Show x so defined solves Eq. (36.7) for t ∈ (−T, T ).

Exercise 36.18. Prove Theorem 36.14. Hint: First prove Cj,β
(
Ω̄
)

@@
Cj,α

(
Ω̄
)

is compact if 0 ≤ α < β ≤ 1. Then use Lemma 19.27 repeatedly
to handle all of the other cases.
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37

Locally Compact Hausdorff Spaces

In this section X will always be a topological space with topology τ. We
are now interested in restrictions on τ in order to insure there are “plenty” of
continuous functions. One such restriction is to assume τ = τd – is the topology
induced from a metric on X. For example the results in Lemma 13.21 and
Theorem 14.5 above shows that metric spaces have lots of continuous functions.

The main thrust of this section is to study locally compact (and σ – compact)
“Hausdorff” spaces as defined in Definitions 37.2 and 36.3. We will see again that
this class of topological spaces have an ample supply of continuous functions. We
will start out with the notion of a Hausdorff topology. The following example
shows a pathology which occurs when there are not enough open sets in a
topology.

Example 37.1. As in Example 35.36, let

X := {1, 2, 3} with τ := {X, ∅, {1, 2}, {2, 3}, {2}}.

Example 35.36 shows limits need not be unique in this space and moreover it
is easy to verify that the only continuous functions, f : Y → R, are necessarily
constant.

Definition 37.2 (Hausdorff Topology). A topological space, (X, τ), is
Hausdorff if for each pair of distinct points, x, y ∈ X, there exists disjoint
open neighborhoods, U and V of x and y respectively. (Metric spaces are typical
examples of Hausdorff spaces.)

Remark 37.3. When τ is Hausdorff the “pathologies” appearing in Example 37.1
do not occur. Indeed if xn → x ∈ X and y ∈ X \ {x} we may choose V ∈ τx
and W ∈ τy such that V ∩W = ∅. Then xn ∈ V a.a. implies xn /∈ W for all
but a finite number of n and hence xn 9 y, so limits are unique.

Proposition 37.4. Let (Xα, τα) be Hausdorff topological spaces. Then the prod-
uct space XA =

∏
α∈AXα equipped with the product topology is Hausdorff.

Proof. Let x, y ∈ XA be distinct points. Then there exists α ∈ A such that
πα(x) = xα 6= yα = πα(y). Since Xα is Hausdorff, there exists disjoint open
sets U, V ⊂ Xα such πα(x) ∈ U and πα(y) ∈ V. Then π−1

α (U) and π−1
α (V ) are

disjoint open sets in XA containing x and y respectively.

Proposition 37.5. Suppose that (X, τ) is a Hausdorff space, K @@ X and
x ∈ Kc. Then there exists U, V ∈ τ such that U ∩ V = ∅, x ∈ U and K ⊂ V.
In particular K is closed. (So compact subsets of Hausdorff topological spaces
are closed.) More generally if K and F are two disjoint compact subsets of X,
there exist disjoint open sets U, V ∈ τ such that K ⊂ V and F ⊂ U.

Proof. Because X is Hausdorff, for all y ∈ K there exists Vy ∈ τy and
Uy ∈ τx such that Vy ∩ Uy = ∅. The cover {Vy}y∈K of K has a finite subcover,

{Vy}y∈Λ for some Λ ⊂⊂ K. Let V = ∪y∈ΛVy and U = ∩y∈ΛUy, then U, V ∈ τ
satisfy x ∈ U, K ⊂ V and U ∩ V = ∅. This shows that Kc is open and hence
that K is closed. Suppose that K and F are two disjoint compact subsets of X.
For each x ∈ F there exists disjoint open sets Ux and Vx such that K ⊂ Vx and
x ∈ Ux. Since {Ux}x∈F is an open cover of F, there exists a finite subset Λ of F
such that F ⊂ U := ∪x∈ΛUx. The proof is completed by defining V := ∩x∈ΛVx.

Exercise 37.1. Show any finite set X admits exactly one Hausdorff topology
τ.

Exercise 37.2. Let (X, τ) and (Y, τY ) be topological spaces.

1. Show τ is Hausdorff iff ∆ := {(x, x) : x ∈ X} is a closed set in X × X
equipped with the product topology τ ⊗ τ.

2. Suppose τ is Hausdorff and f, g : Y → X are continuous maps. If

{f = g}
Y

= Y then f = g. Hint: make use of the map f × g : Y → X ×X
defined by (f × g) (y) = (f(y), g(y)).

Exercise 37.3. Give an example of a topological space which has a non-closed
compact subset.

Proposition 37.6. Suppose that X is a compact topological space, Y is a Haus-
dorff topological space, and f : X → Y is a continuous bijection then f is a
homeomorphism, i.e. f−1 : Y → X is continuous as well.

Proof. Since closed subsets of compact sets are compact, continuous images
of compact subsets are compact and compact subsets of Hausdorff spaces are

closed, it follows that
(
f−1

)−1
(C) = f(C) is closed in X for all closed subsets

C of X. Thus f−1 is continuous.
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The next two results show that locally compact Hausdorff spaces have plenty
of open sets and plenty of continuous functions.

Proposition 37.7. Suppose X is a locally compact Hausdorff space and U ⊂o
X and K @@ U. Then there exists V ⊂o X such that K ⊂ V ⊂ V ⊂ U ⊂ X
and V̄ is compact. (Compare with Proposition 36.7 above.)

Proof. By local compactness, for all x ∈ K, there exists Ux ∈ τx such that
Ūx is compact. Since K is compact, there exists Λ ⊂⊂ K such that {Ux}x∈Λ is a
cover of K. The set O = U ∩(∪x∈ΛUx) is an open set such that K ⊂ O ⊂ U and
O is precompact since Ō is a closed subset of the compact set ∪x∈ΛŪx. (∪x∈ΛŪx.
is compact because it is a finite union of compact sets.) So by replacing U by
O if necessary, we may assume that Ū is compact. Since Ū is compact and
bd(U) = Ū∩U c is a closed subset of Ū , bd(U) is compact. Because bd(U) ⊂ U c,
it follows that bd(U)∩K = ∅, so by Proposition 37.5, there exists disjoint open
sets V and W such that K ⊂ V and bd(U) ⊂ W. By replacing V by V ∩ U if
necessary we may further assume that K ⊂ V ⊂ U, see Figure 37.1. Because

Fig. 37.1. The construction of V.

Ū ∩W c is a closed set containing V and bd(U) ∩W c = ∅,

V̄ ⊂ Ū ∩W c = (U ∪ bd(U)) ∩W c = U ∩W c ⊂ U ⊂ Ū .

Since Ū is compact it follows that V̄ is compact and the proof is complete.
The following Lemma is analogous to Lemma 36.9.

Lemma 37.8 (Urysohn’s Lemma for LCH Spaces). Let X be a locally
compact Hausdorff space and K @@ U ⊂o X. Then there exists f ≺ U (see

Definition 36.8) such that f = 1 on K. In particular, if K is compact and C is
closed in X such that K ∩ C = ∅, there exists f ∈ Cc(X, [0, 1]) such that f = 1
on K and f = 0 on C.

Proof. For notational ease later it is more convenient to construct g := 1−f
rather than f. To motivate the proof, suppose g ∈ C(X, [0, 1]) such that g = 0
on K and g = 1 on U c. For r > 0, let Ur = {g < r} . Then for 0 < r < s ≤ 1,
Ur ⊂ {g ≤ r} ⊂ Us and since {g ≤ r} is closed this implies

K ⊂ Ur ⊂ Ūr ⊂ {g ≤ r} ⊂ Us ⊂ U.

Therefore associated to the function g is the collection open sets {Ur}r>0 ⊂ τ
with the property that K ⊂ Ur ⊂ Ūr ⊂ Us ⊂ U for all 0 < r < s ≤ 1 and
Ur = X if r > 1. Finally let us notice that we may recover the function g from
the sequence {Ur}r>0 by the formula

g(x) = inf{r > 0 : x ∈ Ur}. (37.1)

The idea of the proof to follow is to turn these remarks around and define g by
Eq. (37.1).

Step 1. (Construction of the Ur.) Let

D :=
{
k2−n : k = 1, 2, . . . , 2−n, n = 1, 2, . . .

}
be the dyadic rationals in (0, 1]. Use Proposition 37.7 to find a precompact open
set U1 such that K ⊂ U1 ⊂ Ū1 ⊂ U. Apply Proposition 37.7 again to construct
an open set U1/2 such that

K ⊂ U1/2 ⊂ Ū1/2 ⊂ U1

and similarly use Proposition 37.7 to find open sets U1/2, U3/4 ⊂o X such that

K ⊂ U1/4 ⊂ Ū1/4 ⊂ U1/2 ⊂ Ū1/2 ⊂ U3/4 ⊂ Ū3/4 ⊂ U1.

Likewise there exists open set U1/8, U3/8, U5/8, U7/8 such that

K ⊂ U1/8 ⊂ Ū1/8 ⊂ U1/4 ⊂ Ū1/4 ⊂ U3/8 ⊂ Ū3/8 ⊂ U1/2

⊂ Ū1/2 ⊂ U5/8 ⊂ Ū5/8 ⊂ U3/4 ⊂ Ū3/4 ⊂ U7/8 ⊂ Ū7/8 ⊂ U1.

Continuing this way inductively, one shows there exists precompact open sets
{Ur}r∈D ⊂ τ such that

K ⊂ Ur ⊂ Ur ⊂ Us ⊂ U1 ⊂ Ū1 ⊂ U

for all r, s ∈ D with 0 < r < s ≤ 1.
Step 2. Let Ur := X if r > 1 and define

Page: 422 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



37.1 Locally compact form of Urysohn’s Metrization Theorem 423

Fig. 37.2. Determining g from {Ur} .

g(x) = inf{r ∈ D ∪ (1, 2) : x ∈ Ur},

see Figure 37.2. Then g(x) ∈ [0, 1] for all x ∈ X, g(x) = 0 for x ∈ K since
x ∈ K ⊂ Ur for all r ∈ D. If x ∈ U c1 , then x /∈ Ur for all r ∈ D and hence
g(x) = 1. Therefore f := 1 − g is a function such that f = 1 on K and
{f 6= 0} = {g 6= 1} ⊂ U1 ⊂ Ū1 ⊂ U so that supp(f) = {f 6= 0} ⊂ Ū1 ⊂ U is
a compact subset of U. Thus it only remains to show f, or equivalently g, is
continuous.

Since E = {(α,∞), (−∞, α) : α ∈ R} generates the standard topology on R,
to prove g is continuous it suffices to show {g < α} and {g > α} are open sets
for all α ∈ R. But g(x) < α iff there exists r ∈ D∪ (1,∞) with r < α such that
x ∈ Ur. Therefore

{g < α} =
⋃
{Ur : r ∈ D ∪ (1,∞) 3 r < α}

which is open in X. If α ≥ 1, {g > α} = ∅ and if α < 0, {g > α} = X. If
α ∈ (0, 1), then g(x) > α iff there exists r ∈ D such that r > α and x /∈ Ur.
Now if r > α and x /∈ Ur then for s ∈ D ∩ (α, r), x /∈ Ūs ⊂ Ur. Thus we have
shown that

{g > α} =
⋃{(

Us
)c

: s ∈ D 3 s > α
}

which is again an open subset of X.

Theorem 37.9 (Locally Compact Tietz Extension Theorem). Let (X, τ)
be a locally compact Hausdorff space, K @@ U ⊂o X, f ∈ C(K,R), a =
min f(K) and b = max f(K). Then there exists F ∈ C(X, [a, b]) such that

F |K = f. Moreover given c ∈ [a, b], F can be chosen so that supp(F − c) =
{F 6= c} ⊂ U.

The proof of this theorem is similar to Theorem 14.5 and will be left to the
reader, see Exercise 37.7.

37.1 Locally compact form of Urysohn’s Metrization
Theorem

Definition 37.10 (Polish spaces). A Polish space is a separable topological
space (X, τ) which admits a complete metric, ρ, such that τ = τρ.

Notation 37.11 Let Q := [0, 1]N denote the (infinite dimensional) unit cube
in RN. For a, b ∈ Q let

d(a, b) :=

∞∑
n=1

1

2n
|an − bn| . (37.2)

The metric introduced in Exercise 35.37 would be defined, in this context,

as d̃(a, b) :=
∑∞
n=1

1
2n

|an−bn|
1+|an−bn| . Since 1 ≤ 1 + |an − bn| ≤ 2, it follows that d̃ ≤

d ≤ 2d. So the metrics d and d̃ are equivalent and in particular the topologies
induced by d and d̃ are the same. By Exercises 35.36, the d – topology on Q
is the same as the product topology and by Tychonoff’s Theorem 36.16 or by
Exercise 35.37, (Q, d) is a compact metric space.

Theorem 37.12. To every separable metric space (X, ρ), there exists a contin-
uous injective map G : X → Q such that G : X → G(X) ⊂ Q is a homeomor-
phism. Moreover if the metric, ρ, is also complete, then G (X) is a Gδ –set, i.e.
the G (X) is the countable intersection of open subsets of (Q, d) . In short, any
separable metrizable space X is homeomorphic to a subset of (Q, d) and if X is
a Polish space then X is homeomorphic to a Gδ – subset of (Q, d).

Proof. (See Rogers and Williams [19], Theorem 82.5 on p. 106.) By replacing
ρ by ρ

1+ρ if necessary, we may assume that 0 ≤ ρ < 1. Let D = {an}∞n=1 be a
countable dense subset of X and define

G (x) = (ρ (x, a1) , ρ (x, a2) , ρ (x, a3) , . . . ) ∈ Q

and

γ (x, y) = d (G (x) , G (y)) =

∞∑
n=1

1

2n
|ρ (x, an)− ρ (y, an)|

for x, y ∈ X. To prove the first assertion, we must show G is injective and γ is
a metric on X which is compatible with the topology determined by ρ.
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If G (x) = G (y) , then ρ (x, a) = ρ (y, a) for all a ∈ D. Since D is a dense
subset of X, we may choose αk ∈ D such that

0 = lim
k→∞

ρ (x, αk) = lim
k→∞

ρ (y, αk) = ρ (y, x)

and therefore x = y. A simple argument using the dominated convergence
theorem shows y → γ (x, y) is ρ – continuous, i.e. γ (x, y) is small if ρ (x, y) is
small. Conversely,

ρ (x, y) ≤ ρ (x, an) + ρ (y, an) = 2ρ (x, an) + ρ (y, an)− ρ (x, an)

≤ 2ρ (x, an) + |ρ (x, an)− ρ (y, an)| ≤ 2ρ (x, an) + 2nγ (x, y) .

Hence if ε > 0 is given, we may choose n so that 2ρ (x, an) < ε/2 and so if
γ (x, y) < 2−(n+1)ε, it will follow that ρ (x, y) < ε. This shows τγ = τρ. Since
G : (X, γ)→ (Q, d) is isometric, G is a homeomorphism.

Now suppose that (X, ρ) is a complete metric space. Let S := G (X) and σ
be the metric on S defined by σ (G (x) , G (y)) = ρ (x, y) for all x, y ∈ X. Then
(S, σ) is a complete metric (being the isometric image of a complete metric
space) and by what we have just prove, τσ = τdS .Consequently, if u ∈ S and ε >
0 is given, we may find δ′ (ε) such that Bσ (u, δ′ (ε)) ⊂ Bd (u, ε) . Taking δ (ε) =
min (δ′ (ε) , ε) , we have diamd (Bd (u, δ (ε))) < ε and diamσ (Bd (u, δ (ε))) < ε
where

diamσ (A) := {supσ (u, v) : u, v ∈ A} and

diamd (A) := {sup d (u, v) : u, v ∈ A} .

Let S̄ denote the closure of S inside of (Q, d) and for each n ∈ N let

Nn := {N ∈ τd : diamd (N) ∨ diamσ (N ∩ S) < 1/n}

and let Un := ∪Nn ∈ τd. From the previous paragraph, it follows that S ⊂ Un
and therefore S ⊂ S̄ ∩ (∩∞n=1Un) .

Conversely if u ∈ S̄ ∩ (∩∞n=1Un) and n ∈ N, there exists Nn ∈ Nn such
that u ∈ Nn. Moreover, since N1 ∩ · · · ∩Nn is an open neigborhood of u ∈ S̄,
there exists un ∈ N1 ∩ · · · ∩ Nn ∩ S for each n ∈ N. From the definition of
Nn, we have limn→∞ d (u, un) = 0 and σ (un, um) ≤ max

(
n−1,m−1

)
→ 0 as

m,n → ∞. Since (S, σ) is complete, it follows that {un}∞n=1 is convergent in
(S, σ) to some element u0 ∈ S. Since (S, dS) has the same topology as (S, σ)
it follows that d (un, u0) → 0 as well and thus that u = u0 ∈ S. We have
now shown, S = S̄ ∩ (∩∞n=1Un) . This completes the proof because we may
write S̄ =

(⋂∞
n=1 S1/n

)
where S1/n :=

{
u ∈ Q : d

(
u, S̄

)
< 1/n

}
and therefore,

S = (
⋂∞
n=1 Un) ∩

(⋂∞
n=1 S1/n

)
is a Gδ set.

Theorem 37.13 (Urysohn Metrization Theorem for LCH’s). Every sec-
ond countable locally compact Hausdorff space, (X, τ) , is metrizable, i.e. there

is a metric ρ on X such that τ = τρ. Moreover, ρ may be chosen so that X is
isometric to a subset Q0 ⊂ Q equipped with the metric d in Eq. (37.2). In this
metric X is totally bounded and hence the completion of X (which is isometric
to Q̄0 ⊂ Q) is compact. (Also see Theorem 37.45.)

Proof. Let B be a countable base for τ and set

Γ := {(U, V ) ∈ B × B | Ū ⊂ V and Ū is compact}.

To each O ∈ τ and x ∈ O there exist (U, V ) ∈ Γ such that x ∈ U ⊂ V ⊂ O.
Indeed, since B is a base for τ, there exists V ∈ B such that x ∈ V ⊂ O.
Now apply Proposition 37.7 to find U ′ ⊂o X such that x ∈ U ′ ⊂ Ū ′ ⊂ V
with Ū ′ being compact. Since B is a base for τ, there exists U ∈ B such that
x ∈ U ⊂ U ′ and since Ū ⊂ Ū ′, Ū is compact so (U, V ) ∈ Γ. In particular this
shows that B′ := {U ∈ B : (U, V ) ∈ Γ for some V ∈ B} is still a base for τ. If Γ
is a finite, then B′ is finite and τ only has a finite number of elements as well.
Since (X, τ) is Hausdorff, it follows that X is a finite set. Letting {xn}Nn=1 be
an enumeration of X, define T : X → Q by T (xn) = en for n = 1, 2, . . . , N
where en = (0, 0, . . . , 0, 1, 0, . . . ), with the 1 occurring in the nth spot. Then
ρ(x, y) := d(T (x), T (y)) for x, y ∈ X is the desired metric.

So we may now assume that Γ is an infinite set and let {(Un, Vn)}∞n=1 be an
enumeration of Γ. By Urysohn’s Lemma 37.8 there exists fU,V ∈ C(X, [0, 1])
such that fU,V = 0 on Ū and fU,V = 1 on V c. Let F := {fU,V | (U, V ) ∈ Γ}
and set fn := fUn,Vn – an enumeration of F . We will now show that

ρ(x, y) :=

∞∑
n=1

1

2n
|fn(x)− fn(y)|

is the desired metric on X. The proof will involve a number of steps.

1. (ρ is a metric on X.) It is routine to show ρ satisfies the triangle inequal-
ity and ρ is symmetric. If x, y ∈ X are distinct points then there exists
(Un0

, Vn0
) ∈ Γ such that x ∈ Un0

and Vn0
⊂ O := {y}c . Since fn0

(x) = 0
and fn0

(y) = 1, it follows that ρ(x, y) ≥ 2−n0 > 0.
2. (Let τ0 = τ (fn : n ∈ N) , then τ = τ0 = τρ.) As usual we have τ0 ⊂ τ.

Since, for each x ∈ X, y → ρ(x, y) is τ0 – continuous (being the uni-
formly convergent sum of continuous functions), it follows that Bx(ε) :=
{y ∈ X : ρ(x, y) < ε} ∈ τ0 for all x ∈ X and ε > 0. Thus τρ ⊂ τ0 ⊂ τ.
Suppose that O ∈ τ and x ∈ O. Let (Un0

, Vn0
) ∈ Γ be such that x ∈ Un0

and Vn0 ⊂ O. Then fn0(x) = 0 and fn0 = 1 on Oc. Therefore if y ∈ X and
fn0(y) < 1, then y ∈ O so x ∈ {fn0 < 1} ⊂ O. This shows that O may be
written as a union of elements from τ0 and therefore O ∈ τ0. So τ ⊂ τ0 and
hence τ = τ0. Moreover, if y ∈ Bx(2−n0) then 2−n0 > ρ(x, y) ≥ 2−n0fn0

(y)
and therefore x ∈ Bx(2−n0) ⊂ {fn0

< 1} ⊂ O. This shows O is ρ – open
and hence τρ ⊂ τ0 ⊂ τ ⊂ τρ.
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3. (X is isometric to some Q0 ⊂ Q.) Let T : X → Q be defined by T (x) =
(f1(x), f2(x), . . . , fn(x), . . . ). Then T is an isometry by the very definitions
of d and ρ and therefore X is isometric to Q0 := T (X). Since Q0 is a subset
of the compact metric space (Q, d), Q0 is totally bounded and therefore X
is totally bounded.

BRUCE: Add Stone Chech Compactification results.

37.2 Partitions of Unity

Definition 37.14. Let (X, τ) be a topological space and X0 ⊂ X be a set. A
collection of sets {Bα}α∈A ⊂ 2X is locally finite on X0 if for all x ∈ X0, there
is an open neighborhood Nx ∈ τ of x such that #{α ∈ A : Bα ∩Nx 6= ∅} <∞.

Definition 37.15. Suppose that U is an open cover of X0 ⊂ X. A collection
{ϕα}α∈A ⊂ C(X, [0, 1]) (N = ∞ is allowed here) is a partition of unity on
X0 subordinate to the cover U if:

1. for all α there is a U ∈ U such that supp(ϕα) ⊂ U,
2. the collection of sets, {supp(ϕα)}α∈A, is locally finite on X, and
3.
∑
α∈A ϕα = 1 on X0.

Notice by item 2. that, for each x ∈ X, there is a neighborhood Nx such that

Λ := {α ∈ A : supp(ϕα) ∩Nx 6= ∅}

is a finite set. Therefore,
∑
α∈A ϕα|Nx =

∑
α∈Λ ϕα|Nx which shows the sum∑

α∈A ϕα is well defined and defines a continuous function on Nx and there-
fore on X since continuity is a local property. We will summarize these last
comments by saying the sum,

∑
α∈A ϕα, is locally finite.

Proposition 37.16 (Partitions of Unity: The Compact Case). Suppose
that X is a locally compact Hausdorff space, K ⊂ X is a compact set and
U = {Uj}nj=1 is an open cover of K. Then there exists a partition of unity

{hj}nj=1 of K such that hj ≺ Uj for all j = 1, 2, . . . , n.

Proof. For all x ∈ K choose a precompact open neighborhood, Vx, of x
such that V x ⊂ Uj . Since K is compact, there exists a finite subset, Λ, of K
such that K ⊂

⋃
x∈Λ

Vx. Let

Fj = ∪
{
V̄x : x ∈ Λ and V x ⊂ Uj

}
.

Then Fj is compact, Fj ⊂ Uj for all j, and K ⊂ ∪nj=1Fj . By Urysohn’s Lemma
37.8 there exists fj ≺ Uj such that fj = 1 on Fj for j = 1, 2, . . . , n and by
convention let fn+1 ≡ 1. We will now give two methods to finish the proof.

Method 1. Let h1 = f1, h2 = f2(1− h1) = f2(1− f1),

h3 = f3(1− h1 − h2) = f3(1− f1 − (1− f1)f2) = f3(1− f1)(1− f2)

and continue on inductively to define

hk = (1− h1 − · · · − hk−1)fk = fk ·
k−1∏
j=1

(1− fj)∀ k = 2, 3, . . . , n (37.3)

and to show

hn+1 = (1− h1 − · · · − hn) · 1 = 1 ·
n∏
j=1

(1− fj). (37.4)

From these equations it clearly follows that hj ∈ Cc(X, [0, 1]) and that
supp(hj) ⊂ supp(fj) ⊂ Uj , i.e. hj ≺ Uj . Since

∏n
j=1(1 − fj) = 0 on K,∑n

j=1 hj = 1 on K and {hj}nj=1 is the desired partition of unity.

Method 2. Let g :=
n∑
j=1

fj ∈ Cc(X). Then g ≥ 1 on K and hence K ⊂ {g >
1
2}. Choose ϕ ∈ Cc(X, [0, 1]) such that ϕ = 1 on K and supp(ϕ) ⊂ {g > 1

2} and
define f0 := 1− ϕ. Then f0 = 0 on K, f0 = 1 if g ≤ 1

2 and therefore,

f0 + f1 + · · ·+ fn = f0 + g > 0

on X. The desired partition of unity may be constructed as

hj(x) =
fj(x)

f0(x) + · · ·+ fn(x)
.

Indeed supp (hj) = supp (fj) ⊂ Uj , hj ∈ Cc(X, [0, 1]) and on K,

h1 + · · ·+ hn =
f1 + · · ·+ fn

f0 + f1 + · · ·+ fn
=
f1 + · · ·+ fn
f1 + · · ·+ fn

= 1.

Proposition 37.17. Let (X, τ) be a locally compact and σ – compact Hausdorff
space. Suppose that U ⊂ τ is an open cover of X. Then we may construct two
locally finite open covers V = {Vi}Ni=1 and W = {Wi}Ni=1 of X (N = ∞ is
allowed here) such that:

1. Wi ⊂ W̄i ⊂ Vi ⊂ V̄i and V̄i is compact for all i.
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2. For each i there exist U ∈ U such that V̄i ⊂ U.

Proof. By Remark 36.6, there exists an open cover of G = {Gn}∞n=1 of X
such that Gn ⊂ Ḡn ⊂ Gn+1. Then X = ∪∞k=1(Ḡk \ Ḡk−1), where by convention
G−1 = G0 = ∅. For the moment fix k ≥ 1. For each x ∈ Ḡk\Gk−1, let Ux ∈ U be
chosen so that x ∈ Ux and by Proposition 37.7 choose an open neighborhood
Nx of x such that N̄x ⊂ Ux ∩ (Gk+1 \ Ḡk−2), see Figure 37.3 below. Since

Fig. 37.3. Constructing the {Wi}Ni=1 .

{Nx}x∈Ḡk\Gk−1
is an open cover of the compact set Ḡk \ Gk−1, there exist a

finite subset Γk ⊂ {Nx}x∈Ḡk\Gk−1
which also covers Ḡk \Gk−1.

By construction, for each W ∈ Γk, there is a U ∈ U such that W̄ ⊂ U ∩
(Gk+1 \ Ḡk−2) and by another application of Proposition 37.7, there exists an
open set VW such that W̄ ⊂ VW ⊂ V̄W ⊂ U ∩ (Gk+1 \ Ḡk−2). We now choose
and enumeration {Wi}Ni=1 of the countable open cover, ∪∞k=1Γk, of X and define
Vi = VWi

. Then the collection {Wi}Ni=1 and {Vi}Ni=1 are easily checked to satisfy
all the conclusions of the proposition. In particular notice that for each k;
Vi ∩Gk 6= ∅ for only a finite number of i’s.

Theorem 37.18 (Partitions of Unity for σ – Compact LCH Spaces).
Let (X, τ) be locally compact, σ – compact and Hausdorff and let U ⊂ τ be an
open cover of X. Then there exists a partition of unity of {hi}Ni=1 (N = ∞ is
allowed here) subordinate to the cover U such that supp(hi) is compact for all
i.

Proof. Let V = {Vi}Ni=1 and W = {Wi}Ni=1 be open covers of X with the
properties described in Proposition 37.17. By Urysohn’s Lemma 37.8, there
exists fi ≺ Vi such that fi = 1 on W̄i for each i. As in the proof of Proposition
37.16 there are two methods to finish the proof.

Method 1. Define h1 = f1, hj by Eq. (37.3) for all other j. Then as in Eq.
(37.4), for all n < N + 1,

1−
∞∑
j=1

hj = lim
n→∞

fn n∏
j=1

(1− fj)

 = 0

since for x ∈ X, fj(x) = 1 for some j. As in the proof of Proposition 37.16, it

is easily checked that {hi}Ni=1 is the desired partition of unity.

Method 2. Let f :=
∑N
i=1 fi, a locally finite sum, so that f ∈ C (X) .

Since {Wi}∞i=1 is a cover of X, f ≥ 1 on X so that 1/f ∈ C (X)) as well. The
functions hi := fi/f for i = 1, 2, . . . , N give the desired partition of unity.

Lemma 37.19. Let (X, τ) be a locally compact Hausdorff space.

1. A subset E ⊂ X is closed iff E ∩K is closed for all K @@ X.
2. Let {Cα}α∈A be a locally finite collection of closed subsets of X, then C =
∪α∈ACα is closed in X. (Recall that in general closed sets are only closed
under finite unions.)

Proof. 1. Since compact subsets of Hausdorff spaces are closed, E ∩ K is
closed if E is closed and K is compact. Now suppose that E ∩K is closed for
all compact subsets K ⊂ X and let x ∈ Ec. Since X is locally compact, there
exists a precompact open neighborhood, V, of x.1 By assumption E∩V̄ is closed
so x ∈

(
E ∩ V̄

)c
– an open subset of X. By Proposition 37.7 there exists an

open set U such that x ∈ U ⊂ Ū ⊂
(
E ∩ V̄

)c
, see Figure 37.4. Let W := U ∩V.

Since
W ∩ E = U ∩ V ∩ E ⊂ U ∩ V̄ ∩ E = ∅,

and W is an open neighborhood of x and x ∈ Ec was arbitrary, we have shown
Ec is open hence E is closed.

2. Let K be a compact subset of X and for each x ∈ K let Nx be an
open neighborhood of x such that #{α ∈ A : Cα ∩ Nx 6= ∅} < ∞. Since K is
compact, there exists a finite subset Λ ⊂ K such that K ⊂ ∪x∈ΛNx. Letting
Λ0 := {α ∈ A : Cα ∩K 6= ∅}, then

1 If X were a metric space we could finish the proof as follows. If there does not
exist an open neighborhood of x which is disjoint from E, then there would exists
xn ∈ E such that xn → x. Since E ∩ V̄ is closed and xn ∈ E ∩ V̄ for all large n,
it follows (see Exercise 13.4) that x ∈ E ∩ V̄ and in particular that x ∈ E. But we
chose x ∈ Ec.
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Fig. 37.4. Showing Ec is open.

# (Λ0) ≤
∑
x∈Λ

#{α ∈ A : Cα ∩Nx 6= ∅} <∞

and hence K ∩ (∪α∈ACα) = K ∩ (∪α∈Λ0Cα) . The set (∪α∈Λ0Cα) is a finite
union of closed sets and hence closed. Therefore, K ∩ (∪α∈ACα) is closed and
by item 1. it follows that ∪α∈ACα is closed as well.

Corollary 37.20. Let (X, τ) be a locally compact and σ – compact Hausdorff
space and U = {Uα}α∈A ⊂ τ be an open cover of X. Then there exists a partition
of unity of {hα}α∈A subordinate to the cover U such that supp(hα) ⊂ Uα for
all α ∈ A. (Notice that we do not assert that hα has compact support. However
if Ūα is compact then supp(hα) will be compact.)

Proof. By the σ – compactness of X, we may choose a countable sub-
set, {αi}Ni=1 (N = ∞ allowed here), of A such that {Ui := Uαi}

N
i=1 is still

an open cover of X. Let {gj}∞j=1 be a partition of unity2 subordinate to the

cover {Ui}Ni=1 as in Theorem 37.18. Define Γ̃k := {j : supp(gj) ⊂ Uk} and

Γk := Γ̃k \
(
∪k−1
j=1 Γ̃k

)
, where by convention Γ̃0 = ∅. Then

N =

∞⋃
k=1

Γ̃k =

∞∐
k=1

Γk.

If Γk = ∅ let hk := 0 otherwise let hk :=
∑
j∈Γk gj , a locally finite sum. Then

N∑
k=1

hk =

∞∑
j=1

gj = 1.

2 So as to simplify the indexing we assume there countable number of gj ’s. This can
always be arranged by taking gk ≡ 0 for large k if necessary.

By Item 2. of Lemma 37.19, ∪j∈Γksupp(gj) is closed and therefore,

supp(hk) = {hk 6= 0} = ∪j∈Γk {gj 6= 0} ⊂ ∪j∈Γksupp(gj) ⊂ Uk

and hence hk ≺ Uk and the sum
∑N
k=1 hk is still locally finite. (Why?) The

desired partition of unity is now formed by letting hαk := hk for k < N + 1 and
hα ≡ 0 if α /∈ {αi}Ni=1.

Corollary 37.21. Let (X, τ) be a locally compact and σ – compact Hausdorff
space and A,B be disjoint closed subsets of X. Then there exists f ∈ C(X, [0, 1])
such that f = 1 on A and f = 0 on B. In fact f can be chosen so that
supp(f) ⊂ Bc.

Proof. Let U1 = Ac and U2 = Bc, then {U1, U2} is an open cover of X.
By Corollary 37.20 there exists h1, h2 ∈ C(X, [0, 1]) such that supp(hi) ⊂ Ui
for i = 1, 2 and h1 + h2 = 1 on X. The function f = h2 satisfies the desired
properties.

37.3 C0(X) and the Alexanderov Compactification

Definition 37.22. Let (X, τ) be a topological space. A continuous function f :
X → C is said to vanish at infinity if {|f | ≥ ε} is compact in X for all
ε > 0. The functions, f ∈ C (X) , vanishing at infinity will be denoted by
C0(X). (Notice that C0 (X) = C (X) whenever X is compact.)

Proposition 37.23. Let X be a topological space, BC (X) be the space of
bounded continuous functions on X with the supremum norm topology. Then

1. C0(X) is a closed subspace of BC (X) .
2. If we further assume that X is a locally compact Hausdorff space, then
C0(X) = Cc(X).

Proof.

1. If f ∈ C0(X), K1 := {|f | ≥ 1} is a compact subset of X and therefore f(K1)
is a compact and hence bounded subset of C and so M := supx∈K1

|f(x)| <
∞. Therefore ‖f‖∞ ≤ M ∨ 1 < ∞ showing f ∈ BC (X) . Now suppose
fn ∈ C0(X) and fn → f in BC (X) . Let ε > 0 be given and choose n
sufficiently large so that ‖f − fn‖∞ ≤ ε/2. Since

|f | ≤ |fn|+ |f − fn| ≤ |fn|+ ‖f − fn‖∞ ≤ |fn|+ ε/2,

{|f | ≥ ε} ⊂ {|fn|+ ε/2 ≥ ε} = {|fn| ≥ ε/2} .
Because {|f | ≥ ε} is a closed subset of the compact set {|fn| ≥ ε/2} ,
{|f | ≥ ε} is compact and we have shown f ∈ C0(X).
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2. Since C0(X) is a closed subspace of BC (X) and Cc(X) ⊂ C0(X), we always
have Cc(X) ⊂ C0(X). Now suppose that f ∈ C0(X) and let Kn := {|f | ≥
1
n} @@ X. By Lemma 37.8 we may choose ϕn ∈ Cc(X, [0, 1]) such that
ϕn ≡ 1 on Kn. Define fn := ϕnf ∈ Cc(X). Then

‖f − fn‖u = ‖(1− ϕn)f‖∞ ≤
1

n
→ 0 as n→∞.

This shows that f ∈ Cc(X).

Proposition 37.24 (Alexanderov Compactification). Suppose that (X, τ)
is a non-compact locally compact Hausdorff space. Let X∗ = X ∪ {∞} , where
{∞} is a new symbol not in X. The collection of sets,

τ∗ = τ ∪ {X∗ \K : K @@ X} ⊂ 2X
∗
,

is a topology on X∗ and (X∗, τ∗) is a compact Hausdorff space. Moreover f ∈
C (X) extends continuously to X∗ iff f = g + c with g ∈ C0(X) and c ∈ C in
which case the extension is given by f(∞) = c.

Proof. 1. (τ∗ is a topology.) Let F := {F ⊂ X∗ : X∗ \ F ∈ τ∗}, i.e. F ∈ F
iff F is a compact subset of X or F = F0∪{∞} with F0 being a closed subset of
X. Since the finite union of compact (closed) subsets is compact (closed), it is
easily seen that F is closed under finite unions. Because arbitrary intersections
of closed subsets of X are closed and closed subsets of compact subsets of X are
compact, it is also easily checked that F is closed under arbitrary intersections.
Therefore F satisfies the axioms of the closed subsets associated to a topology
and hence τ∗ is a topology.

2. ((X∗, τ∗) is a Hausdorff space.) It suffices to show any point x ∈ X can be
separated from ∞. To do this use Proposition 37.7 to find an open precompact
neighborhood, U, of x. Then U and V := X∗ \ Ū are disjoint open subsets of
X∗ such that x ∈ U and ∞ ∈ V.

3. ((X∗, τ∗) is compact.) Suppose that U ⊂ τ∗ is an open cover of X∗.
Since U covers ∞, there exists a compact set K ⊂ X such that X∗ \ K ∈ U .
Clearly X is covered by U0 := {V \ {∞} : V ∈ U} and by the definition of τ∗

(or using (X∗, τ∗) is Hausdorff), U0 is an open cover of X. In particular U0 is
an open cover of K and since K is compact there exists Λ ⊂⊂ U such that
K ⊂ ∪{V \ {∞} : V ∈ Λ} . It is now easily checked that Λ ∪ {X∗ \K} ⊂ U is
a finite subcover of X∗.

4. (Continuous functions on C(X∗) statements.) Let i : X → X∗ be the
inclusion map. Then i is continuous and open, i.e. i(V ) is open in X∗ for all V
open in X. If f ∈ C(X∗), then g = f |X − f(∞) = f ◦ i − f(∞) is continuous

on X. Moreover, for all ε > 0 there exists an open neighborhood V ∈ τ∗ of ∞
such that

|g(x)| = |f(x)− f(∞)| < ε for all x ∈ V.

Since V is an open neighborhood of ∞, there exists a compact subset,
K ⊂ X, such that V = X∗ \ K. By the previous equation we see that
{x ∈ X : |g(x)| ≥ ε} ⊂ K, so {|g| ≥ ε} is compact and we have shown g vanishes
at ∞.

Conversely if g ∈ C0(X), extend g to X∗ by setting g(∞) = 0. Given
ε > 0, the set K = {|g| ≥ ε} is compact, hence X∗ \ K is open in X∗. Since
g(X∗ \K) ⊂ (−ε, ε) we have shown that g is continuous at ∞. Since g is also
continuous at all points in X it follows that g is continuous on X∗. Now it
f = g + c with c ∈ C and g ∈ C0(X), it follows by what we just proved that
defining f(∞) = c extends f to a continuous function on X∗.

Example 37.25. Let X be an uncountable set and τ be the discrete topology
on X. Let (X∗ = X ∪ {∞} , τ∗) be the one point compactification of X. The
smallest dense subset of X∗ is the uncountable set X. Hence X∗ is a compact
but non-separable and hence non-metrizable space.

Exercise 37.4. Let X := {0, 1}R and τ be the product topology on X where
{0, 1} is equipped with the discrete topology. Show (X, τ) is separable. (Com-
bining this with Exercise 35.10 and Tychonoff’s Theorem 36.16, we see that
(X, τ) is compact and separable but not first countable.)

The next proposition gathers a number of results involving countability
assumptions which have appeared in the exercises.

Proposition 37.26 (Summary). Let (X, τ) be a topological space.

1. If (X, τ) is second countable, then (X, τ) is separable; see Exercise 35.12.
2. If (X, τ) is separable and metrizable then (X, τ) is second countable; see

Exercise 35.13.
3. If (X, τ) is locally compact and metrizable then (X, τ) is σ – compact iff

(X, τ) is separable; see Exercises 36.3 and 36.4.
4. If (X, τ) is locally compact and second countable, then (X, τ) is σ - compact,

see Exercise 36.1.
5. If (X, τ) is locally compact and metrizable, then (X, τ) is σ – compact iff

(X, τ) is separable, see Exercises 36.2 and 36.3.
6. There exists spaces, (X, τ) , which are both compact and separable but not

first countable and in particular not metrizable, see Exercise 37.4.
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37.4 Stone-Weierstrass Theorem

We now wish to generalize Theorem 32.39 to more general topological spaces.
We will first need some definitions.

Definition 37.27. Let X be a topological space and A ⊂ C (X) = C(X,R) or
C(X,C) be a collection of functions. Then

1. A is said to separate points if for all distinct points x, y ∈ X there exists
f ∈ A such that f(x) 6= f(y).

2. A is an algebra if A is a vector subspace of C (X) which is closed under
pointwise multiplication. (Note well: we do not assume 1 ∈ A.)

3. A ⊂ C(X,R) is called a lattice if f∨g := max(f, g) and f∧g = min(f, g) ∈
A for all f, g ∈ A.

4. A ⊂ C(X,C) is closed under conjugation if f̄ ∈ A whenever f ∈ A.

Remark 37.28. If X is a topological space such that C(X,R) separates points
then X is Hausdorff. Indeed if x, y ∈ X and f ∈ C(X,R) such that f(x) 6= f(y),
then f−1(J) and f−1(I) are disjoint open sets containing x and y respectively
when I and J are disjoint intervals containing f(x) and f(y) respectively.

Lemma 37.29. If A is a closed sub-algebra of BC(X,R) then |f | ∈ A for all
f ∈ A and A is a lattice.

Proof. Let f ∈ A and let M = sup
x∈X
|f(x)| . By either Exercise 4.9 or Theo-

rems 7.36, 31.47, or 32.39, there are polynomials pn(t) such that

lim
n→∞

sup
|t|≤M

||t| − pn(t)| = 0.

By replacing pn by pn−pn(0) if necessary we may assume that pn(0) = 0. Since
A is an algebra, it follows that fn = pn(f) ∈ A and |f | ∈ A, because |f | is the
uniform limit of the fn’s. Since

f ∨ g =
1

2
(f + g + |f − g|) and

f ∧ g =
1

2
(f + g − |f − g|),

we have shown A is a lattice.

Lemma 37.30. Let A ⊂ C(X,R) be an algebra which separates points and
suppose x and y are distinct points of X. If there exists f, g ∈ A such that

f(x) 6= 0 and g(y) 6= 0, (37.5)

then
V := {(f(x), f(y)) : f ∈ A}= R2. (37.6)

Proof. It is clear that V is a non-zero subspace of R2. If dim(V ) = 1, then
V = span(a, b) for some (a, b) ∈ R2 which, necessarily by Eq. (37.5), satisfy
a 6= 0 6= b. Since (a, b) = (f(x), f(y)) for some f ∈ A and f2 ∈ A, it follows
that (a2, b2) = (f2(x), f2(y)) ∈ V as well. Since dimV = 1, (a, b) and (a2, b2)
are linearly dependent and therefore

0 = det

(
a b
a2 b2

)
= ab2 − a2b = ab(b− a)

which implies that a = b. But this the implies that f(x) = f(y) for all f ∈ A,
violating the assumption that A separates points. Therefore we conclude that
dim(V ) = 2, i.e. V = R2.

Theorem 37.31 (Stone-Weierstrass Theorem). Suppose X is a locally
compact Hausdorff space and A ⊂ C0(X,R) is a closed subalgebra which sepa-
rates points. For x ∈ X let

Ax := {f(x) : f ∈ A} and

Ix = {f ∈ C0(X,R) : f(x) = 0}.

Then either one of the following two cases hold.

1. A = C0(X,R) or
2. there exists a unique point x0 ∈ X such that A = Ix0

.

Moreover, case 1. holds iff Ax = R for all x ∈ X and case 2. holds iff there
exists a point x0 ∈ X such that Ax0

= {0} .

Proof. If there exists x0 such that Ax0
= {0} (x0 is unique since A separates

points) then A ⊂ Ix0
. If such an x0 exists let C = Ix0

and if Ax = R for all
x, set C = C0(X,R). Let f ∈ C be given. By Lemma 37.30, for all x, y ∈ X
such that x 6= y, there exists gxy ∈ A such that f = gxy on {x, y}.3 When X is
compact the basic idea of the proof is contained in the following identity,

f(z) = inf
x∈X

sup
y∈X

gxy(z) for all z ∈ X. (37.7)

To prove this identity, let gx := supy∈X gxy and notice that gx ≥ f since
gxy(y) = f(y) for all y ∈ X. Moreover, gx(x) = f(x) for all x ∈ X since
gxy(x) = f(x) for all x. Therefore,

inf
x∈X

sup
y∈X

gxy = inf
x∈X

gx = f.

3 If Ax0 = {0} and x = x0 or y = x0, then gxy exists merely by the fact that A
separates points.
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The rest of the proof is devoted to replacing the inf and the sup above by
min and max over finite sets at the expense of Eq. (37.7) becoming only an
approximate identity. We also have to modify Eq. (37.7) slightly to take care
of the non-compact case.

Claim. Given ε > 0 and x ∈ X there exists gx ∈ A such that gx(x) = f(x) and
f < gx + ε on X.

To prove this, let Vy be an open neighborhood of y such that |f − gxy| < ε
on Vy; in particular f < ε+ gxy on Vy. Also let gx,∞ be any fixed element in A
such that gx,∞ (x) = f (x) and let

K =
{
|f | ≥ ε

2

}
∪
{
|gx,∞| ≥

ε

2

}
. (37.8)

Since K is compact, there exists Λ ⊂⊂ K such that K ⊂
⋃
y∈Λ

Vy. Define

gx(z) = max{gxy : y ∈ Λ ∪ {∞}}.

Since
f < ε+ gxy < ε+ gx on Vy,

for any y ∈ Λ, and

f <
ε

2
< ε+ gx,∞ ≤ gx + ε on Kc,

f < ε + gx on X and by construction f(x) = gx(x), see Figure 37.5. This
completes the proof of the claim.

Fig. 37.5. Constructing the “dominating approximates,” gx for each x ∈ X.

To complete the proof of the theorem, let g∞ be a fixed element of A such
that f < g∞ + ε on X; for example let g∞ = gx0

∈ A for some fixed x0 ∈ X.

For each x ∈ X, let Ux be a neighborhood of x such that |f − gx| < ε on Ux.
Choose

Γ ⊂⊂ F :=
{
|f | ≥ ε

2

}
∪
{
|g∞| ≥

ε

2

}
such that F ⊂

⋃
x∈Γ

Ux (Γ exists since F is compact) and define

g = min{gx : x ∈ Γ ∪ {∞}} ∈ A.

Then, for x ∈ F, gx < f+ε on Ux and hence g < f+ε on
⋃
x∈Γ

Ux ⊃ F. Likewise,

g ≤ g∞ < ε/2 < f + ε on F c.

Therefore we have now shown,

f < g + ε and g < f + ε on X,

i.e. |f − g| < ε on X. Since ε > 0 is arbitrary it follows that f ∈ Ā = A and so
A = C.

Corollary 37.32 (Complex Stone-Weierstrass Theorem). Let X be a lo-
cally compact Hausdorff space. Suppose A ⊂ C0(X,C) is closed in the uniform
topology, separates points, and is closed under complex conjugation. Then either
A = C0(X,C) or

A = ICx0
:= {f ∈ C0(X,C) : f(x0) = 0}

for some x0 ∈ X.

Proof. Since

Re f =
f + f̄

2
and Im f =

f − f̄
2i

,

Re f and Im f are both in A. Therefore

AR = {Re f, Im f : f ∈ A}

is a real sub-algebra of C0(X,R) which separates points. Therefore either AR =
C0(X,R) or AR = Ix0

∩ C0(X,R) for some x0 and hence A = C0(X,C) or ICx0

respectively.
As an easy application, Theorem 37.31 and Corollary 37.32 imply Theorem

32.39 and Corollary 32.41 respectively. Here are a few more applications.

Example 37.33. Let f ∈ C([a, b]) be a positive function which is injective. Then

functions of the form
∑N
k=1 akf

k with ak ∈ C and N ∈ N are dense in C([a, b]).
For example if a = 1 and b = 2, then one may take f(x) = xα for any α 6= 0,
or f(x) = ex, etc.
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Exercise 37.5. Let (X, d) be a separable compact metric space. Show that
C (X) is also separable. Hint: Let E ⊂ X be a countable dense set and then
consider the algebra, A ⊂ C (X) , generated by {d(x, ·)}x∈E .

Example 37.34. Let X = [0,∞), λ > 0 be fixed, A be the real algebra generated
by t→ e−λt. So the general element f ∈ A is of the form f(t) = p(e−λt), where
p(x) is a polynomial function in x with real coefficients. Since A ⊂ C0(X,R)
separates points and e−λt ∈ A is pointwise positive, Ā = C0(X,R).

As an application of Example 37.34, suppose that g ∈ Cc (X,R) satisfies,∫ ∞
0

g (t) e−λtdt = 0 for all λ > 0. (37.9)

(Note well that the integral in Eq. (37.9) is really over a finite interval since g
is compactly supported.) Equation (37.9) along with linearity of the Riemann
integral implies ∫ ∞

0

g (t) f (t) dt = 0 for all f ∈ A.

We may now choose fn ∈ A such that fn → g uniformly and therefore, using the
continuity of the Riemann integral under uniform convergence (see Proposition
32.5),

0 = lim
n→∞

∫ ∞
0

g (t) fn (t) dt =

∫ ∞
0

g2 (t) dt.

From this last equation it is easily deduced, using the continuity of g, that
g ≡ 0. See Theorem 31.12 below, where this is done in greater generality.

Definition 37.35 (Laplace Transform). Suppose that f : R+ → C is a mea-
surable function such that∫ ∞

0

|f (t)| e−atdt <∞ for some a ∈ (0,∞) .

Then for λ ∈ (a,∞) we define (Lf) (λ) :=
∫∞

0
f (t) e−λtdt and refer to Lf as

the Laplace transform of f.

Theorem 37.36 (Injectivity of the Laplace Transform). Continuing the
notation in Definition 37.35 we have;

1. Lf ∈ C∞ ((a,∞)) and for all n ∈ N0 we have(
− d

dλ

)n
(Lf) (λ) = L (t→ tnf (t)) (λ) =

∫ ∞
0

tnf (t) e−λtdt.

2. If Lf ≡ 0, then f (t) = 0 for m -a.e. t.

Proof. The first assertion is an easy consequence of Corollary 10.30 on
differentiating past integrals. For the second, let λ > 0 be fixed, then by as-
sumption, ∫ ∞

0

f (t) e−atp
(
e−λt

)
dt = 0 (37.10)

for all polynomials p (·) without constant term. It now follows by the Stone-
Wierstrass Theorem (Corollary 37.32) that

A =
{
p
(
e−λt

)
: p is a polynomial w/o constant term

}
is dense in C0 ([0,∞)) . Since f (t) e−at ∈ L1 ([0,∞), dt) , we may combine the
previous assertion with the dominated convergence theorem and Eq. (37.10) in
order to learn, ∫ ∞

0

f (t) e−atg (t) dt = 0 for all g ∈ C0 ([0,∞)) .

An application of the multiplicative system theorem now shows this equation
holds for all bounded measurable g. Taking g (t) = sgn(f (t) e−at) then shows,∫ ∞

0

∣∣f (t) e−at
∣∣ dt = 0 =⇒ f (t) e−at = 0 for m - a.e. t.

As e−at > 0 for all the proof is complete.

Exercise 37.6. Let g ∈ L1 ([0,∞),m) . Show that g = 0 a.e. if∫ ∞
0

g (x)

(
x

1 + x

)n
dx = 0 for n = 1, 2, . . .

37.5 *More on Separation Axioms: Normal Spaces

(This section may safely be omitted on the first reading.)

Definition 37.37 (T0 – T2 Separation Axioms). Let (X, τ) be a topological
space. The topology τ is said to be:

1. T0 if for x 6= y in X there exists V ∈ τ such that x ∈ V and y /∈ V or V
such that y ∈ V but x /∈ V.

2. T1 if for every x, y ∈ X with x 6= y there exists V ∈ τ such that x ∈ V and
y /∈ V. Equivalently, τ is T1 iff all one point subsets of X are closed.4

4 If one point subsets are closed and x 6= y in X then V := {x}c is an open set
containing y but not x. Conversely if τ is T1 and x ∈ X there exists Vy ∈ τ such
that y ∈ Vy and x /∈ Vy for all y 6= x. Therefore, {x}c = ∪y 6=xVy ∈ τ.
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3. T2 if it is Hausdorff.

Note T2 implies T1 which implies T0. The topology in Example 37.1 is T0

but not T1. If X is a finite set and τ is a T1 – topology on X then τ = 2X . To
prove this let x ∈ X be fixed. Then for every y 6= x in X there exists Vy ∈ τ
such that x ∈ Vy while y /∈ Vy. Thus {x} = ∩y 6=xVy ∈ τ showing τ contains all
one point subsets of X and therefore all subsets of X. So we have to look to
infinite sets for an example of T1 topology which is not T2.

Example 37.38. Let X be any infinite set and let τ = {A ⊂ X : #(Ac) <∞} ∪
{∅} – the so called cofinite topology. This topology is T1 because if x 6= y in
X, then V = {x}c ∈ τ with x /∈ V while y ∈ V. This topology however is not
T2. Indeed if U, V ∈ τ are open sets such that x ∈ U, y ∈ V and U ∩ V = ∅
then U ⊂ V c. But this implies #(U) < ∞ which is impossible unless U = ∅
which is impossible since x ∈ U.

The uniqueness of limits of sequences which occurs for Hausdorff topologies
(see Remark 37.3) need not occur for T1 – spaces. For example, let X = N and
τ be the cofinite topology on X as in Example 37.38. Then xn = n is a sequence
in X such that xn → x as n → ∞ for all x ∈ N. For the most part we will
avoid these pathologies in the future by only considering Hausdorff topologies.

Definition 37.39 (Normal Spaces: T4 – Separation Axiom). A topological
space (X, τ) is said to be normal or T4 if:

1. X is Hausdorff and
2. if for any two closed disjoint subsets A,B ⊂ X there exists disjoint open

sets V,W ⊂ X such that A ⊂ V and B ⊂W.

Example 37.40. By Lemma 13.21 and Corollary 37.21 it follows that metric
spaces and topological spaces which are locally compact, σ – compact and
Hausdorff (in particular compact Hausdorff spaces) are normal. Indeed, in each
case if A,B are disjoint closed subsets of X, there exists f ∈ C(X, [0, 1]) such
that f = 1 on A and f = 0 on B. Now let U =

{
f > 1

2

}
and V = {f < 1

2}.

Remark 37.41. A topological space, (X, τ), is normal iff for any C ⊂ W ⊂ X
with C being closed and W being open there exists an open set U ⊂o X such
that

C ⊂ U ⊂ Ū ⊂W.

To prove this first suppose X is normal. Since W c is closed and C ∩W c = ∅,
there exists disjoint open sets U and V such that C ⊂ U and W c ⊂ V. Therefore
C ⊂ U ⊂ V c ⊂W and since V c is closed, C ⊂ U ⊂ Ū ⊂ V c ⊂W.

For the converse direction suppose A and B are disjoint closed subsets of
X. Then A ⊂ Bc and Bc is open, and so by assumption there exists U ⊂o X

such that A ⊂ U ⊂ Ū ⊂ Bc and by the same token there exists W ⊂o X such
that Ū ⊂W ⊂ W̄ ⊂ Bc. Taking complements of the last expression implies

B ⊂ W̄ c ⊂W c ⊂ Ū c.

Let V = W̄ c. Then A ⊂ U ⊂o X, B ⊂ V ⊂o X and U ∩ V ⊂ U ∩W c = ∅.

Theorem 37.42 (Urysohn’s Lemma for Normal Spaces). Let X be a
normal space. Assume A,B are disjoint closed subsets of X. Then there exists
f ∈ C(X, [0, 1]) such that f = 0 on A and f = 1 on B.

Proof. To make the notation match Lemma 37.8, let U = Ac and K = B.
Then K ⊂ U and it suffices to produce a function f ∈ C(X, [0, 1]) such that
f = 1 on K and supp(f) ⊂ U. The proof is now identical to that for Lemma
37.8 except we now use Remark 37.41 in place of Proposition 37.7.

Theorem 37.43 (Tietze Extension Theorem). Let (X, τ) be a normal
space, D be a closed subset of X, −∞ < a < b < ∞ and f ∈ C(D, [a, b]).
Then there exists F ∈ C(X, [a, b]) such that F |D = f.

Proof. The proof is identical to that of Theorem 14.5 except we now use
Theorem 37.42 in place of Lemma 13.21.

Corollary 37.44. Suppose that X is a normal topological space, D ⊂ X is
closed, F ∈ C(D,R). Then there exists F ∈ C (X) such that F |D = f.

Proof. Let g = arctan(f) ∈ C(D, (−π2 ,
π
2 )). Then by the Tietze ex-

tension theorem, there exists G ∈ C(X, [−π2 ,
π
2 ]) such that G|D = g. Let

B := G−1({−π2 ,
π
2 }) @ X, then B ∩ D = ∅. By Urysohn’s lemma (Theo-

rem 37.42) there exists h ∈ C(X, [0, 1]) such that h ≡ 1 on D and h = 0
on B and in particular hG ∈ C(D, (−π2 ,

π
2 )) and (hG) |D = g. The function

F := tan(hG) ∈ C (X) is an extension of f.

Theorem 37.45 (Urysohn Metrization Theorem for Normal Spaces).
Every second countable normal space, (X, τ) , is metrizable, i.e. there is a metric
ρ on X such that τ = τρ. Moreover, ρ may be chosen so that X is isometric
to a subset Q0 ⊂ Q (Q is as in Notation 37.11) equipped with the metric d in
Eq. (37.2). In this metric X is totally bounded and hence the completion of X
(which is isometric to Q̄0 ⊂ Q) is compact.

Proof. (The proof here will be very similar to the proof of Theorem 37.13.)
Let B be a countable base for τ and set

Γ := {(U, V ) ∈ B × B | Ū ⊂ V }.

To each O ∈ τ and x ∈ O there exist (U, V ) ∈ Γ such that x ∈ U ⊂ V ⊂ O.
Indeed, since B is a base for τ, there exists V ∈ B such that x ∈ V ⊂ O. Because
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Fig. 37.6. Constructing (U, V ) ∈ Γ.

{x}∩V c = ∅, there exists disjoint open sets Ũ and W such that x ∈ Ũ , V c ⊂W
and Ũ ∩W = ∅. Choose U ∈ B such that x ∈ U ⊂ Ũ . Since U ⊂ Ũ ⊂ W c,
U ⊂ W c ⊂ V and hence (U, V ) ∈ Γ. See Figure 37.6 below. In particular this
shows that

B0 := {U ∈ B : (U, V ) ∈ Γ for some V ∈ B}

is still a base for τ.
If Γ is a finite set, the previous comment shows that τ only has a finite

number of elements as well. Since (X, τ) is Hausdorff, it follows that X is a

finite set. Letting {xn}Nn=1 be an enumeration of X, define T : X → Q by
T (xn) = en for n = 1, 2, . . . , N where en = (0, 0, . . . , 0, 1, 0, . . . ), with the 1
occurring in the nth spot. Then ρ(x, y) := d(T (x), T (y)) for x, y ∈ X is the
desired metric.

So we may now assume that Γ is an infinite set and let {(Un, Vn)}∞n=1 be
an enumeration of Γ. By Urysohn’s Lemma for normal spaces (Theorem 37.42)
there exists fU,V ∈ C(X, [0, 1]) such that fU,V = 0 on Ū and fU,V = 1 on V c.
Let F := {fU,V | (U, V ) ∈ Γ} and set fn := fUn,Vn – an enumeration of F . The
proof that

ρ(x, y) :=

∞∑
n=1

1

2n
|fn(x)− fn(y)|

is the desired metric on X now follows exactly as the corresponding argument
in the proof of Theorem 37.13.

37.6 Exercises

Exercise 37.7. Prove Theorem 37.9. Hints:

1. By Proposition 37.7, there exists a precompact open set V such that K ⊂
V ⊂ V̄ ⊂ U. Now suppose that f : K → [0, α] is continuous with α ∈ (0, 1]
and let A := f−1([0, 1

3α]) and B := f−1([ 2
3α, 1]). Appeal to Lemma 37.8 to

find a function g ∈ C(X, [0, α/3]) such that g = α/3 on B and supp(g) ⊂
V \A.

2. Now follow the argument in the proof of Theorem 14.5 to construct F ∈
C(X, [a, b]) such that F |K = f.

3. For c ∈ [a, b], choose ϕ ≺ U such that ϕ = 1 on K and replace F by
Fc := ϕF + (1− ϕ)c.

Exercise 37.8 (Sterographic Projection). Let X = Rn, X∗ := X ∪ {∞}
be the one point compactification of X, Sn := {y ∈ Rn+1 : |y| = 1} be the
unit sphere in Rn+1 and N = (0, . . . , 0, 1) ∈ Rn+1. Define f : Sn → X∗ by
f(N) = ∞, and for y ∈ Sn \ {N} let f(y) = b ∈ Rn be the unique point such
that (b, 0) is on the line containing N and y, see Figure 37.7 below. Find a
formula for f and show f : Sn → X∗ is a homeomorphism. (So the one point
compactification of Rn is homeomorphic to the n sphere.)

Fig. 37.7. Sterographic projection and the one point compactification of Rn.

Exercise 37.9. Let (X, τ) be a locally compact Hausdorff space. Show (X, τ)
is separable iff (X∗, τ∗) is separable.

Exercise 37.10. Show by example that there exists a locally compact metric
space (X, d) such that the one point compactification, (X∗ := X ∪ {∞} , τ∗) ,
is not metrizable. Hint: use exercise 37.9.
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Exercise 37.11. Suppose (X, d) is a locally compact and σ – compact metric
space. Show the one point compactification, (X∗ := X ∪ {∞} , τ∗) , is metriz-
able.

Exercise 37.12. In this problem, suppose Theorem 37.31 has only been proved
when X is compact. Show that it is possible to prove Theorem 37.31 by using
Proposition 37.24 to reduce the non-compact case to the compact case.

Hints:

1. If Ax = R for all x ∈ X let X∗ = X∪{∞} be the one point compactification
of X.

2. If Ax0
= {0} for some x0 ∈ X, let Y := X \ {x0} and Y ∗ = Y ∪ {∞} be

the one point compactification of Y.
3. For f ∈ A define f (∞) = 0. In this way A may be considered to be a

sub-algebra of C(X∗,R) in case 1. or a sub-algebra of C(Y ∗,R) in case 2.

Exercise 37.13. Given a continuous function f : R → C which is 2π -
periodic and ε > 0. Show there exists a trigonometric polynomial, p(θ) =
n∑

n=−N
αne

inθ, such that |f(θ)− P (θ)| < ε for all θ ∈ R. Hint: show that there

exists a unique function F ∈ C(S1) such that f(θ) = F (eiθ) for all θ ∈ R.

Remark 37.46. Exercise 37.13 generalizes to 2π – periodic functions on Rd, i.e.
functions such that f(θ+2πei) = f(θ) for all i = 1, 2, . . . , d where {ei}di=1 is the
standard basis for Rd. A trigonometric polynomial p(θ) is a function of θ ∈ Rd
of the form

p(θ) =
∑
n∈Γ

αne
in·θ

where Γ is a finite subset of Zd. The assertion is again that these trigonometric
polynomials are dense in the 2π – periodic functions relative to the supremum
norm.



38

Examples of Measures

In this chapter we are going to state a couple of construction theorems for
measures. The proofs of these theorems will be deferred until the next chapter,
also see Chapter ??. Our goal in this chapter is to apply these construction
theorems to produce a fairly broad class of examples of measures.

38.1 The Riesz-Markov Theorem

Now suppose that X is a locally compact Hausdorff space and B = BX is the
Borel σ – algebra on X. Open subsets of Rd and locally compact separable
metric spaces are examples of such spaces, see Section 36.1.

Definition 38.1. A linear functional I on Cc(X) is positive if I(f) ≥ 0 for
all f ∈ Cc(X, [0,∞)).

Proposition 38.2. If I is a positive linear functional on Cc(X) and K is a
compact subset of X, then there exists CK <∞ such that |I(f)| ≤ CK‖f‖∞ for
all f ∈ Cc(X) with supp(f) ⊂ K.

Proof. By Urysohn’s Lemma 37.8, there exists ϕ ∈ Cc(X, [0, 1]) such that
ϕ = 1 on K. Then for all f ∈ Cc(X,R) such that supp(f) ⊂ K, |f | ≤ ‖f‖∞ϕ or
equivalently ‖f‖∞ϕ±f ≥ 0. Hence ‖f‖∞I(ϕ)± I(f) ≥ 0 or equivalently which
is to say |I(f)| ≤ ‖f‖∞I(ϕ). Letting CK := I(ϕ), we have shown that |I(f)| ≤
CK‖f‖∞ for all f ∈ Cc(X,R) with supp(f) ⊂ K. For general f ∈ Cc(X,C)
with supp(f) ⊂ K, choose |α| = 1 such that αI(f) ≥ 0. Then

|I(f)| = αI(f) = I(α f) = I(Re(αf)) ≤ CK‖Re (αf) ‖∞ ≤ CK‖f‖∞.

Example 38.3. If µ is a K-finite measure on X, then

Iµ(f) =

∫
X

fdµ ∀f ∈ Cc(X)

defines a positive linear functional on Cc(X). In the future, we will often simply
write µ(f) for Iµ(f).

The Riesz-Markov Theorem 38.9 below asserts that every positive linear
functional on Cc(X) comes from a K-finite measure µ.

Example 38.4. Let X = R and τ = τd = 2X be the discrete topology on X.
Now let µ(A) = 0 if A is countable and µ(A) = ∞ otherwise. Since K ⊂ X is
compact iff # (K) <∞, µ is a K-finite measure on X and

Iµ(f) =

∫
X

fdµ = 0 for all f ∈ Cc(X).

This shows that the correspondence µ→ Iµ from K-finite measures to positive
linear functionals on Cc (X) is not injective without further restriction.

Definition 38.5. Suppose that µ is a Borel measure on X and B ∈ BX . We
say µ is inner regular on B if

µ(B) = sup{µ(K) : K @@ B} (38.1)

and µ is outer regular on B if

µ(B) = inf{µ(U) : B ⊂ U ⊂o X}. (38.2)

The measure µ is said to be a regular Borel measure on X, if it is both inner
and outer regular on all Borel measurable subsets of X.

Definition 38.6. A measure µ : BX → [0,∞] is a Radon measure on X ifµ
is a K-finite measure which is inner regular on all open subsets of X and outer
regular on all Borel subsets of X.

The measure in Example 38.4 is an example of a K-finite measure on X
which is not a Radon measure on X. BRUCE: Add exercise stating the sum of
two radon measures is still a radon measure. It is not true for countable sums
since this does not even preserve the K - finite condition.

Example 38.7. If the topology on a set, X, is the discrete topology, then a
measure µ on BX is a Radon measure iff µ is of the form

µ =
∑
x∈X

µxδx (38.3)
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where µx ∈ [0,∞) for all x ∈ X. To verify this first notice that BX = τX = 2X

and hence every measure on BX is necessarily outer regular on all subsets of X.
The measure µ is K-finite iff µx := µ ({x}) <∞ for all x ∈ X. If µ is a Radon
measure, then for A ⊂ X we have, by inner regularity,

µ(A) = sup {µ(Λ) : Λ ⊂⊂ A} = sup

{∑
x∈Λ

µx : Λ ⊂⊂ A

}
=
∑
x∈A

µx.

On the other hand if µ is given by Eq. (38.3) and A ⊂ X, then

µ(A) =
∑
x∈A

µx = sup

{
µ(Λ) =

∑
x∈Λ

µx : Λ ⊂⊂ A

}

showing µ is inner regular on all (open) subsets of X.

Recall from Definition 36.8 that if U is an open subset of X, we write f ≺ U
to mean that f ∈ Cc(X, [0, 1]) with supp(f) := {f 6= 0} ⊂ U.

Notation 38.8 Given a positive linear functional, I, on Cc(X) define µ = µI
on BX by

µ(U) = sup{I(f) : f ≺ U} (38.4)

for all U ⊂o X and then define

µ(B) = inf{µ(U) : B ⊂ U and U is open}. (38.5)

Theorem 38.9 (Riesz-Markov Theorem). The map µ → Iµ taking Radon
measures on X to positive linear functionals on Cc(X) is bijective. Moreover
if I is a positive linear functional on Cc(X), the function µ := µI defined in
Notation 38.8 has the following properties.

1. µ is a Radon measure on X and the map I → µI is the inverse to the map
µ→ Iµ.

2. For all compact subsets K ⊂ X,

µ(K) = inf{I(f) : 1K ≤ f ≺ X}. (38.6)

3. If ‖Iµ‖ denotes the dual norm of I = Iµ on Cc(X,R)∗, then ‖I‖ = µ(X).
In particular, the linear functional, Iµ, is bounded iff µ(X) <∞.

Proof. (Also see Theorem ?? and related material about the Daniel inte-
gral.) The proof of the surjectivity of the map µ→ Iµ and the assertion in item
1. is the content of Theorem 38.11 below.

Injectivity of µ → Iµ. Suppose that µ is a is a Radon measure on X. To
each open subset U ⊂ X let

µ0(U) := sup{Iµ(f) : f ≺ U}. (38.7)

It is evident that µ0(U) ≤ µ(U) because f ≺ U implies f ≤ 1U . Given a
compact subset K ⊂ U, Urysohn’s Lemma 37.8 implies there exists f ≺ U such
that f = 1 on K. Therefore,

µ(K) ≤
∫
X

fdµ ≤ µ0(U) ≤ µ(U) (38.8)

By assumption µ is inner regular on open sets, and therefore taking the supre-
mum of Eq. (38.8) over compact subsets, K, of U shows

µ(U) = µ0(U) = sup{Iµ(f) : f ≺ U}. (38.9)

If µ and ν are two Radon measures such that Iµ = Iν . Then by Eq. (38.9)
it follows that µ = ν on all open sets. Then by outer regularity, µ = ν on BX
and this shows the map µ→ Iµ is injective.

Item 2. Let K ⊂ X be a compact set, then by monotonicity of the integral,

µ(K) ≤ inf{Iµ(f) : f ∈ Cc(X) with f ≥ 1K}. (38.10)

To prove the reverse inequality, choose, by outer regularity, U ⊂o X such that
K ⊂ U and µ(U \K) < ε. By Urysohn’s Lemma 37.8 there exists f ≺ U such
that f = 1 on K and hence,

Iµ(f) =

∫
X

f dµ = µ(K) +

∫
U\K

f dµ ≤ µ(K) + µ(U \K) < µ(K) + ε.

Consequently,

inf{Iµ(f) : f ∈ Cc(X) with f ≥ 1K} < µ(K) + ε

and because ε > 0 was arbitrary, the reverse inequality in Eq. (38.10) holds and
Eq. (38.6) is verified.

Item 3. If f ∈ Cc(X), then

|Iµ(f)| ≤
∫
X

|f | dµ =

∫
supp(f)

|f | dµ ≤ ‖f‖∞ µ(supp(f)) ≤ ‖f‖∞ µ(X)

(38.11)
and thus ‖Iµ‖ ≤ µ(X). For the reverse inequality let K be a compact subset
of X and use Urysohn’s Lemma 37.8 again to find a function f ≺ X such that
f = 1 on K. By Eq. (38.8) we have

µ(K) ≤
∫
X

fdµ = Iµ(f) ≤ ‖Iµ‖ ‖f‖∞ = ‖Iµ‖ ,
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which by the inner regularity of µ on open sets implies

µ(X) = sup{µ(K) : K @@ X} ≤ ‖Iµ‖ .

Example 38.10 (Discrete Version of Theorem 38.9). Suppose X is a set, τ = 2X

is the discrete topology on X and for x ∈ X, let ex ∈ Cc(X) be defined by
ex(y) = 1{x}(y). Let I be positive linear functional on Cc (X) and define a
Radon measure, µ, on X by

µ(A) :=
∑
x∈A

I(ex) for all A ⊂ X.

Then for f ∈ Cc(X) (so f is a complex valued function on X supported on a
finite set), ∫

X

fdµ =
∑
x∈X

f(x)I(ex) = I

(∑
x∈X

f(x)ex

)
= I(f),

so that I = Iµ. It is easy to see in this example that µ defined above is the
unique regular radon measure on X such that I = Iµ while example Example
38.4 shows the uniqueness is lost if the regularity assumption is dropped.

38.2 Proof of the Riesz-Markov Theorem 38.9

This section is devoted to completing the proof of the Riesz-Markov Theorem
38.9.

Theorem 38.11. Suppose (X, τ) is a locally compact Hausdorff space, I is a
positive linear functional on Cc(X) and µ := µI be as in Notation 38.8. Then
µ is a Radon measure on X such that I = Iµ, i.e.

I (f) =

∫
X

fdµ for all f ∈ Cc (X) .

Proof. Let µ : τ → [0,∞] be as in Eq. (38.4) and µ∗ : 2X → [0,∞] be the
associate outer measure as in Proposition ??. As we have seen in Lemma ??, µ
is sub-additive on τ and

µ∗ (E) = inf {µ (U) : E ⊂ U ⊂o X} .

By Theorem ??, M :=M (µ∗) is a σ-algebra and µ∗|M is a measure on M.

To show BX ⊂ M it suffices to show U ∈ M for all U ∈ τ, i.e. we must
show;

µ∗ (E) ≥ µ∗ (E ∩ U) + µ∗ (E \ U) (38.12)

for every E ⊂ X such that µ∗ (E) <∞. First suppose E is open, in which case
E ∩ U is open as well. Let f ≺ E ∩ U and K := supp(f). Then E \ U ⊂ E \K
and if g ≺ E \K ∈ τ then f + g ≺ E (see Figure 38.1) and hence

µ∗ (E) ≥ I (f + g) = I (f) + I (g) .

Taking the supremum of this inequality over g ≺ E \K shows

µ∗ (E) ≥ I (f) + µ∗ (E \K) ≥ I (f) + µ∗ (E \ U) .

Taking the supremum of this inequality over f ≺ U shows Eq. (38.12) is valid
for E ∈ τ.

Fig. 38.1. Constructing a function g which approximates 1E\U .

For general E ⊂ X, let V ∈ τ with E ⊂ V, then

µ∗ (V ) ≥ µ∗ (V ∩ U) + µ∗ (V \ U) ≥ µ∗ (E ∩ U) + µ∗ (E \ U)

and taking the infimum of this inequality over such V shows Eq. (38.12) is valid
for general E ⊂ X. Thus U ∈M for all U ∈ τ and therefore BX ⊂M.

Up to this point it has been shown that µ = µ∗|BX is a measure which, by
very construction, is outer regular. We now verify that µ satisfies Eq. (38.6),
namely that µ (K) = ν (K) for all compact sets K ⊂ X where

ν (K) := inf {I (f) : f ∈ Cc (X, [0, 1]) 3 f ≥ 1K} .

To do this let f ∈ Cc (X, [0, 1]) with f ≥ 1K and ε > 0 be given. Let

Uε := {f > 1− ε} ∈ τ and g ≺ Uε, then g ≤ (1− ε)−1
f and hence
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I (g) ≤ (1− ε)−1
I (f) . Taking the supremum of this inequality over all g ≺ Uε

then gives,
µ (K) ≤ µ (Uε) ≤ (1− ε)−1

I (f) .

Since ε > 0 was arbitrary, we learn µ (K) ≤ I (f) for all 1K ≤ f ≺ X and
therefore, µ (K) ≤ ν (K) . Now suppose that U ∈ τ and K ⊂ U. By Urysohn’s
Lemma 37.8 (also see Lemma 36.9), there exists f ≺ U such that f ≥ 1K and
therefore

µ (K) ≤ ν (K) ≤ I (f) ≤ µ (U) .

By the outer regularity of µ, we have

µ (K) ≤ ν (K) ≤ inf {µ (U) : K ⊂ U ⊂o X} = µ (K) ,

i.e.

µ (K) = ν (K) = inf {I (f) : f ∈ Cc (X, [0, 1]) 3 f ≥ 1K} . (38.13)

This inequality clearly establishes that µ is K-finite and therefore
Cc (X, [0,∞)) ⊂ L1 (µ) .

Next we will establish,

I (f) = Iµ (f) :=

∫
X

fdµ (38.14)

for all f ∈ Cc (X) . By the linearity, it suffices to verify Eq. (38.14) holds for
f ∈ Cc (X, [0,∞)) . To do this we will use the “layer cake method” to slice f
into thin pieces. Explicitly, fix an N ∈ N and for n ∈ N let

fn := min

(
max

(
f − n− 1

N
, 0

)
,

1

N

)
, (38.15)

see Figure 38.2. It should be clear from Figure 38.2 that f =
∑∞
n=1 fn with

the sum actually being a finite sum since fn ≡ 0 for all n sufficiently large.
Let K0 := supp(f) and Kn :=

{
f ≥ n

N

}
. Then (again see Figure 38.2) for all

n ∈ N,
1Kn ≤ Nfn ≤ 1Kn−1

which upon integrating on µ gives

µ (Kn) ≤ NIµ (fn) ≤ µ (Kn−1) . (38.16)

Moreover, if U is any open set containing Kn−1, then Nfn ≺ U and so by Eq.
(38.13) and the definition of µ, we have

µ (Kn) ≤ NI (fn) ≤ µ (U) . (38.17)

Fig. 38.2. This sequence of figures shows how the function fn is constructed. The
idea is to think of f as describing a “cake” set on a “table,” X. We then slice the cake
into slabs, each of which is placed back on the table. Each of these slabs is described
by one of the functions, fn, as in Eq. (38.15).

From the outer regularity of µ, it follows from Eq. (38.17) that

µ (Kn) ≤ NI (fn) ≤ µ (Kn−1) . (38.18)

As a consequence of Eqs. (38.16) and (38.18), we have

N |Iµ (fn)− I (fn)| ≤ µ (Kn−1)− µ (Kn) = µ (Kn−1 \Kn) .

Therefore

|Iµ (f)− I (f)| =

∣∣∣∣∣
∞∑
n=1

Iµ (fn)− I (fn)

∣∣∣∣∣ ≤
∞∑
n=1

|Iµ (fn)− I (fn)|

≤ 1

N

∞∑
n=1

µ (Kn−1 \Kn) =
1

N
µ (K0)→ 0 as N →∞

which establishes Eq. (38.14).
It now only remains to show µ is inner regular on open sets to complete the

proof. If U ∈ τ and µ (U) <∞, then for any ε > 0 there exists f ≺ U such that

µ (U) ≤ I (f) + ε =

∫
X

fdµ+ ε ≤ µ (supp(f)) + ε.

Hence if K = supp(f), we have K ⊂ U and µ (U \K) < ε and this shows µ is
inner regular on open sets with finite measure. Finally if U ∈ τ and µ (U) =∞,
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there exists fn ≺ U such that I (fn) ↑ ∞ as n → ∞. Then, letting Kn =
supp(fn), we have Kn ⊂ U and µ (Kn) ≥ I (fn) and therefore µ (Kn) ↑ µ (U) =
∞.

38.2.1 Rudin’s Proof of the Riesz-Markov Theorem 38.9

Proof. As usual we let µ : τ → [0,∞] be as in Eq. (38.4) and by Lemma ?? we
know that µ is sub-additive on τ. We now define µ : 2X → [0,∞] by setting

µ (A) := inf {µ (V ) : A ⊂ V ⊂o X} .

I claim that µ is the outer measure associated to µ|τ . Indeed, if A ⊂ V := ∪Vi
with Vi ∈ τ,

µ (A) ≤ µ (V ) ≤
∑
i

µ (Vi)

from which it follows that µ (A) ≤ µ|∗τ (A) . The reverse inequality is trivial. It
now follows by Proposition ?? that µ is subadditive on 2X as well. This is also
easily proved directly since if A = ∪Ai and Ai ⊂ Vi ⊂o X, then A ⊂ V := ∪iVi
so that

µ (A) ≤ µ (V ) ≤
∑
i

µ (Vi) .

Since the Vi ∈ τ is arbitrary subject to the restriction that Ai ⊂ Vi, it follows
that

µ (A) ≤
∑
i

µ (Ai) .

Now let

MF :=
{
A ∈ 2X :∞ > µ (A) = sup {µ (K) : K ⊂ A}

}
be those sets A of X which are µ -finite and and are µ – inner regular and let

M :=
{
A ∈ 2X : A ∩K ∈MF for all K @@ X

}
be those sets which are locally µ – inner regular.

1. Suppose K @@ X and choose f ≺ X such that f = 1 on K. For α ∈ (0, 1) ,
let Vα := {f > α} , then Vα ∈ τ and K ⊂ Vα. Hence if g ≺ Vα, then we
have αg ≤ f so that αI (g) ≤ I (f) which shows

µ (K) ≤ µ (Vα) ≤ α−1I (f) .

Letting α ↑ 1 in this last inequality shows that µ (K) ≤ I (f) < ∞ which
shows K ∈MF and that

µ (K) ≤ inf {I (f) : 1K ≤ f ≺ X} .

Given ε > 0, let V ∈ τ be chosen so that K ⊂ V and µ (V ) < µ (K) + ε
and then choose f such that 1K ≤ f ≺ V. Then

I (f) ≤ µ (V ) < µ (K) + ε

from which it follows that

inf {I (f) : 1K ≤ f ≺ X} ≤ µ (K)

and we have shown that

µ (K) = inf {I (f) : 1K ≤ f ≺ X} <∞.

2. Now suppose that V ∈ τ with µ (V ) < ∞ and let α ∈ (0, µ (V )) . Choose
f ≺ V such that α ≤ I (f) ≤ µ (V ) . Letting K = supp(f) and W ∈ τ
such that K ⊂W, we have f ≺W and therefore that I (f) ≤ µ (W ) . Since
W ∈ τ such that K ⊂W was arbitrary, it follows that

α ≤ I (f) ≤ inf {µ (W ) : K ⊂W ⊂o X} = µ (K) .

Since α < µ (V ) was arbitrary, it follows that µ (V ) = sup {µ (K) : K ⊂ V }
and therefore that V ∈MF .

3. Suppose that K and F are pairwise disjoint compact subsets of X and
choose 1K + 1F ≤ f ≺ X such I (f) ≤ µ (K ∪ F ) + ε. Let α ∈ Cc (X, [0, 1])
be chosen so that α = 1 on K and α = 0 on F. Then 1K ≤ αf and
1F ≤ (1− α) f so that

µ (K)+µ (F ) ≤ I (αf)+I ((1− α) f) = I (f) ≤ µ (K ∪ F )+ε ≤ µ (K)+µ (F )+ε.

Since ε > 0 was arbitrary, it follows that

µ (K) + µ (F ) = µ (K ∪ F ) .

4. Now suppose that {Ai}∞i=1 are pairwise disjoint membersMF and let A :=
∪∞i=1Ai. As we have already seen

µ (A) ≤
∞∑
i=1

µ (Ai)

with equality if µ (A) =∞. We now suppose that µ (A) <∞. There exists
Ki ⊂ Ai such that µ (Ai) ≤ µ (Ki) + εi for any εi > 0. Thus

N∑
i=1

µ (Ai) ≤
N∑
i=1

[µ (Ki) + εi] = µ

(
N⋃
i=1

Ki

)
+

N∑
i=1

εi ≤ µ (A) +

∞∑
i=1

εi
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and hence
∞∑
i=1

µ (Ai) = lim
N↑∞

N∑
i=1

µ (Ai) ≤ µ (A) +

∞∑
i=1

εi.

Since that εi > 0 were arbitrary, it follows that

∞∑
i=1

µ (Ai) ≤ µ (A) ≤
∞∑
i=1

µ (Ai)

and hence that
∞∑
i=1

µ (Ai) = µ (A) .

In particular if µ (A) <∞, then A ∈MF as well.
5. Suppose that A ∈MF and K is compact and V is open so that K ⊂ A ⊂ V

and µ (V )− µ (K) < ε. We have already shown that K and V \K ∈ τ are
inMF . Since V = K ∪ (V \K) , it follows that µ (V ) = µ (K) +µ (V \K) ,
i.e. that

µ (V \K) = µ (V )− µ (K) .

6. We now show that MF is closed under finite unions, intersections and
differences. Indeed if Ai ∈ MF we may choose Ki ⊂ Ai ⊂ Vi such that
µ (Vi \Ki) < ε for i = 1, 2. Then

V1 \K2 ⊂ (V1 \K1) ∪ (K1 \K2) ,

K1 \K2 ⊂ (K1 \ V2) ∪ (V2 \K2) ,

and hence

K1 \ V2 ⊂ A1 \A2 ⊂ V1 \K2 ⊂ (V1 \K1) ∪ (K1 \ V2) ∪ (V2 \K2) .

and hence it follows that

µ (V1 \K2) ≤ 2ε+ µ ((K1 \ V2))

and since K1 \ V2 is compact we learn that A1 \A2 ∈MF . Furthermore,

A1 ∪A2 = (A1 \A2) ∪A2 ∈MF

and
A1 ∩A2 = A1 \ (A1 \A2) ∈MF .

Alternatively,
K1 ∪K2 ⊂ A1 ∪A2 ⊂ V1 ∪ V2

so that

µ (V1 ∪ V2 \ (K1 ∪K2)) ≤ µ ((V1 \K1) ∪ (V2 \K2)) ≤ µ ((V1 \K1))+µ ((V2 \K2)) ≤ 2ε

from which it follows that A1 ∪A2 ∈MF etc.

7. M is a σ - algebra which contains BX . If A ∈ M and K is compact then
A ∩K ∈MF and hence

Ac ∩K = K \A = K \ (A ∩K) ∈MF .

Since K was arbitrary it follows that A ∈ M and we have shown M is
stable under complementation. Now suppose that A = ∪Ai with Ai ∈ M
and K is compact. Then

A ∩K =

∞⋃
i=1

(Ai ∩K) =

∞⋃
i=1

Bi

where
Bi := (Ai ∩K) \

[
∪ij=1 (Aj ∩K)

]
∈MF .

Since that Bi ∈ MF are pairwise disjoint, it follows that A ∩K ∈ MF as
well and hence that A ∈M.
Moreover if C is a closed set then C ∩K is compact and hence in MF for
all compact sets K. Thus M is a σ algebra which contains all closed sets
and therefore the contains the Borel σ – algebra.

8. We have MF = {A ∈M : µ (A) <∞} . As we have seen if A ∈ MF then
A∩K ∈MF for all K compact and hence it easily follows thatMF ⊂M.
Conversely if A ∈M with µ (A) <∞, then choose V ∈ τ such that A ⊂ V
and µ (A) ∼= µ (V ) < ∞. Then choose K @@ V such that µ (V \K) ∼= 0.
Since K ∩A ∈MF there exists a compact set H such that H ⊂ A∩K ⊂ A
such that µ (A ∩K) ∼= µ (H) . Since

A ⊂ (A ∩K) ∪ (A \K) ⊂ (A ∩K) ∪ (V \K)

it follows that

µ (A) ≤ µ (A ∩K) + µ (V \K) ∼= µ (H)

which shows that A is inner regular and hence that A ∈MF .
9. µ is a measure on M. To see this suppose that A is the disjoint union

of Ai ∈ M. If µ (A) < ∞, then Ai ∈ MF for all i and we know that
µ (A) =

∑
i µ (Ai) . Conversely, if µ (A) = ∞ then ∞ = µ (A) ≤

∑
i µ (Ai)

as desired.
10. The fact that I (f) =

∫
X
fdµ for all f ∈ Cc (X) follows as in the previous

proof.
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38.2.2 Regularity Results For Radon Measures

Proposition 38.12. If µ is a Radon measure on X then µ is inner regular on
all σ-finite Borel sets.

Proof. Suppose A ∈ BX and µ(A) < ∞ and ε > 0 is given. By outer
regularity of µ, there exist an open set U ⊂o X such that A ⊂ U and µ(U \A) <
ε. By inner regularity on open sets, there exists a compact set F @@ U such
that µ(U \ F ) < ε. Again by outer regularity of µ, there exist V ⊂o X such
that (U \A) ⊂ V and µ(V ) < ε. Then K := F \ V is compact set and

K ⊂ F \ (U \A) = F ∩ (U ∩Ac)c = F ∩ (U c ∪A) = F ∩A,

see Figure 38.3. Since,

Fig. 38.3. Constructing the compact set K.

µ(K) = µ(F )− µ(F ∩ V ) ≈ µ(U) ≈ µ(A),

or more formally,

µ(K) = µ(F )− µ(F ∩ V ) ≥ µ(U)− ε− µ(F ∩ V )

≥ µ(U)− 2ε ≥ µ(A)− 3ε,

we see that µ(A \K) ≤ 3ε. This proves the proposition when µ(A) <∞.
If µ(A) =∞ and there exists An ↑ A as n→∞ with µ(An) <∞. Then by

the first part, there exist compact set Kn such that Kn ⊂ An and µ(An \Kn) <
1/n or equivalently µ(Kn) > µ(An)− 1/n→∞ as n→∞.

Corollary 38.13. Every σ-finite Radon measure, µ, is a regular Borel measure,
i.e. µ is both outer and inner regular on all Borel subsets.

Notation 38.14 If (X, τ) is a topological space, let Fσ denote the collection of
sets formed by taking countable unions of closed sets and Gδ = τδ denote the
collection of sets formed by taking countable intersections of open sets.

Proposition 38.15. Suppose that µ is a σ -finite Radon measure and B ∈ B.
Then

1. For all ε > 0 there exists sets F ⊂ B ⊂ U with F closed, U open and
µ(U \ F ) < ε.

2. There exists A ∈ Fσ and C ∈ Gδ such that A ⊂ B ⊂ C such that and
µ(C \A) = 0.

Proof. 1. Let Xn ∈ B such that Xn ↑ X and µ (Xn) < ∞ and choose
open set Un such that B ∩Xn ⊂ Un and µ (Un \ (B ∩Xn)) < ε2−(n+1). Then
U :=

⋃∞
n=1 Un is an open set such that

µ (U \B) ≤
∞∑
n=1

µ (Un \B) ≤
∞∑
n=1

µ (Un \ (B ∩Xn)) <
ε

2
.

Applying this same result to Bc allows us to find a closed set F such that
Bc ⊂ F c and

µ (B \ F ) = µ (F c \Bc) < ε

2
.

Thus F ⊂ B ⊂ U and µ (U \ F ) < ε as desired.
2. This a simple consequence of item 1.

Theorem 38.16. Let X be a locally compact Hausdorff space such that every
open set V ⊂o X is σ – compact, i.e. there exists Kn @@ V such that V =
∪nKn. Then any K-finite measure ν on X is a Radon measure and in fact is a
regular Borel measure. (The reader should check that if X is second countable,
then open sets are σ compact, see Exercise 36.1. In particular this condition
holds for Rn with the standard topology.)

Proof. By the Riesz-Markov Theorem 38.9, the positive linear functional,

I (f) :=

∫
X

fdν for all f ∈ Cc(X),

may be represented by a Radon measure µ on (X,B) , i.e. such that I (f) =∫
X

fdµ for all f ∈ Cc(X). By Corollary 38.13, µ is also a regular Borel measure

on (X,B) . So to finish the proof it suffices to show ν = µ. We will give two
proofs of this statement.

First Proof. The same arguments used in the proof of Lemma 11.34 shows
σ (Cc (X)) = BX . Let K be a compact subset of X and use Urysohn’s Lemma
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37.8 to find ϕ ≺ X such that ϕ ≥ 1K . By a simple application of the multi-
plicative system Theorem 11.28 one shows∫

X

ϕfdν =

∫
X

ϕfdµ

for all bounded BX = σ (Cc (X)) – measurable functions on X. Taking f = 1K
then shows that ν (K) = µ (K) with K @@ X. An application of Theorem ??
implies µ = ν on σ – algebra generated by the compact sets. This completes
the proof, since, by assumption, this σ – algebra contains all of the open sets
and hence is the Borel σ – algebra.

Second Proof. Since µ is a Radon measure on X, it follows from Eq. (38.9),
that

µ(U) = sup


∫
X

fdµ : f ≺ U

 = sup


∫
X

fdν : f ≺ U

 ≤ ν (U) (38.19)

for all open subsets U of X. For each compact subset K ⊂ U, there exists, by
Uryshon’s Lemma 37.8, a function f ≺ U such that f ≥ 1K . Thus

ν(K) ≤
∫
X

fdν =

∫
X

fdµ ≤ µ (U) . (38.20)

Combining Eqs. (38.19) and (38.20) implies ν(K) ≤ µ(U) ≤ ν(U). By assump-
tion there exists compact sets, Kn ⊂ U, such that Kn ↑ U as n → ∞ and
therefore by continuity of ν,

ν(U) = lim
n→∞

ν(Kn) ≤ µ(U) ≤ ν(U).

Hence we have shown, ν (U) = µ (U) for all U ∈ τ.
If B ∈ B = BX and ε > 0, by Proposition 38.15, there exists F ⊂ B ⊂ U

such that F is closed, U is open and µ(U \ F ) < ε. Since U \ F is open,
ν(U \ F ) = µ(U \ F ) < ε and therefore

ν (U)− ε ≤ ν (B) ≤ ν (U) and

µ (U)− ε ≤ µ (B) ≤ µ (U) .

Since ν (U) = µ (U) , ν (B) = ∞ iff µ (B) = ∞ and if ν (B) < ∞ then
|ν (B)− µ (B)| < ε. Because ε > 0 is arbitrary, we may conclude that
ν (B) = µ (B) for all B ∈ B.

Proposition 38.17 (Density of Cc (X) in Lp (µ)). If µ is a Radon measure
on X, then Cc(X) is dense in Lp(µ) for all 1 ≤ p <∞.

Proof. Let ε > 0 and B ∈ BX with µ(B) <∞. By Proposition 38.12, there
exists K @@ B ⊂ U ⊂o X such that µ(U \K) < εp and by Urysohn’s Lemma
37.8, there exists f ≺ U such that f = 1 on K. This function f satisfies

‖f − 1B‖pp =

∫
X

|f − 1B |p dµ ≤
∫
U\K
|f − 1B |p dµ ≤ µ(U \K) < εp.

From this it easy to conclude that Cc (X) is dense in Sf (B, µ) – the simple
functions on X which are in L1 (µ) . Combining this with Lemma 31.3 which
asserts that Sf (B, µ) is dense in Lp (µ) completes the proof of the theorem.

Theorem 38.18 (Lusin’s Theorem). Suppose (X, τ) is a locally compact
Hausdorff space, BX is the Borel σ – algebra on X, and µ is a Radon mea-
sure on (X,BX) . Also let ε > 0 be given. If f : X → C is a measurable function
such that µ(f 6= 0) <∞, there exists a compact set K ⊂ {f 6= 0} such that f |K
is continuous and µ({f 6= 0} \K) < ε. Moreover there exists ϕ ∈ Cc(X) such
that µ(f 6= ϕ) < ε and if f is bounded the function ϕ may be chosen so that

‖ϕ‖u ≤ ‖f‖u := sup
x∈X
|f(x)| .

Proof. Suppose first that f is bounded, in which case∫
X

|f | dµ ≤ ‖f‖u µ(f 6= 0) <∞.

By Proposition 38.17, there exists fn ∈ Cc(X) such that fn → f in L1(µ) as
n→∞. By passing to a subsequence if necessary, we may assume ‖f − fn‖1 <
εn−12−n and hence by Chebyshev’s inequality (Lemma ??),

µ
(
|f − fn| > n−1

)
< ε2−n for all n.

Let E := ∪∞n=1

{
|f − fn| > n−1

}
, so that µ(E) < ε. On Ec, |f − fn| ≤ 1/n, i.e.

fn → f uniformly on Ec and hence f |Ec is continuous. By Proposition 38.12,
there exists a compact set K and open set V such that

K ⊂ {f 6= 0} \ E ⊂ V

such that µ(V \K) < ε. Notice that

µ({f 6= 0} \K) = µ (({f 6= 0} \K) \ E) + µ (({f 6= 0} \K) ∩ E)

≤ µ(V \K) + µ(E) < 2ε.

By the Tietze extension Theorem 37.9, there exists F ∈ C (X) such that
f = F |K . By Urysohn’s Lemma 37.8 there exists ψ ≺ V such that ψ = 1 on
K. So letting ϕ = ψF ∈ Cc(X), we have ϕ = f on K, ‖ϕ‖∞ ≤ ‖f‖∞ and
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since {ϕ 6= f} ⊂ E ∪ (V \K), µ(ϕ 6= f) < 3ε. This proves the assertions in the
theorem when f is bounded.

Suppose that f : X → C is (possibly) unbounded and ε > 0 is given. Then
BN := {0 < |f | ≤ N} ↑ {f 6= 0} as N →∞ and therefore for all N sufficiently
large,

µ ({f 6= 0} \BN ) < ε/3.

Since µ is a Radon measure, Proposition 38.12, guarantee’s there is a compact
set C ⊂ {f 6= 0} such that µ ({f 6= 0} \ C) < ε/3. Therefore,

µ ({f 6= 0} \ (BN ∩ C)) < 2ε/3.

We may now apply the bounded case already proved to the function 1BN∩Cf
to find a compact subset K and an open set V such that K ⊂ V,

K ⊂ {1BN∩Cf 6= 0} = BN ∩ C ∩ {f 6= 0}

such thatµ ((BN ∩ C ∩ {f 6= 0}) \K) < ε/3 and ϕ ∈ Cc (X) such that ϕ =
1BN∩Cf = f on K. This completes the proof, since

µ ({f 6= 0} \K) ≤ µ ((BN ∩ C ∩ {f 6= 0}) \K) + µ ({f 6= 0} \ (BN ∩ C)) < ε

which implies µ (f 6= ϕ) < ε.

Example 38.19. To illustrate Theorem 38.18, suppose that X = (0, 1), µ = m is
Lebesgue measure and f = 1(0,1)∩Q. Then Lusin’s theorem asserts for any ε > 0
there exists a compact set K ⊂ (0, 1) such that m((0, 1) \K) < ε and f |K is
continuous. To see this directly, let {rn}∞n=1 be an enumeration of the rationals
in (0, 1),

Jn = (rn − ε2−n, rn + ε2−n) ∩ (0, 1) and W = ∪∞n=1Jn.

Then W is an open subset of X and µ(W ) < ε. Therefore Kn := [1/n, 1−1/n]\
W is a compact subset of X and m(X \Kn) ≤ 2

n +µ(W ). Taking n sufficiently
large we have m(X \Kn) < ε and f |Kn ≡ 0 which is of course continuous.

The following result is a slight generalization of Lemma 31.11.

Corollary 38.20. Let (X, τ) be a locally compact Hausdorff space, µ : BX →
[0,∞] be a Radon measure on X and h ∈ L1

loc(µ). If∫
X

fhdµ = 0 for all f ∈ Cc(X) (38.21)

then 1Kh = 0 for µ – a.e. for every compact subset K ⊂ X. (BRUCE: either
show h = 0 a.e. or give a counterexample. Also, either prove or give a coun-
terexample to the question to the statement the dν = ρdµ is a Radon measure
if ρ ≥ 0 and in L1

loc (µ) .)

Proof. By considering the real and imaginary parts of h we may assume
with out loss of generality that h is real valued. Let K be a compact subset of
X. Then 1Ksgn(h̄) ∈ L1 (µ) and by Proposition 38.17, there exists fn ∈ Cc (X)
such that limn→∞ ‖fn − 1Ksgn(h)‖L1(µ) = 0. Let ϕ ∈ Cc (X, [0, 1]) such that

ϕ = 1 on K and gn = ϕmin (−1,max (1, fn)) . Since

|gn − 1Ksgn(h)| ≤ |fn − 1Ksgn(h)|

we have found gn ∈ Cc (X,R) such that |gn| ≤ 1supp(ϕ) and gn → 1Ksgn(h) in
L1 (µ) . By passing to a sub-sequence if necessary we may assume the conver-
gence happens µ – almost everywhere. Using Eq. (38.21) and the dominated
convergence theorem (the dominating function is |h| 1supp(ϕ)) we conclude that

0 = lim
n→∞

∫
X

gnhdµ =

∫
X

1Ksgn(h̄)hdµ =

∫
K

|h| dµ

which shows h (x) = 0 for µ-a.e. x ∈ K.

38.2.3 The dual of C0(X)

Definition 38.21. Let (X, τ) be a locally compact Hausdorff space and B =
σ (τ) be the Borel σ – algebra. A signed Radon measure is a signed measure
µ on B such that the measures, µ±, in the Jordan decomposition of µ are both
Radon measures. A complex Radon measure is a complex measure µ on B
such that Reµ and Imµ are signed radon measures.

Example 38.22. Every complex measure µ on BRd is a Radon measure. BRUCE:
add some more examples and perhaps some exercises here.

BRUCE: Compare and combine with results from Section ??.

Proposition 38.23. Suppose (X, τ) is a topological space and I ∈ C0(X,R)∗.
Then we may write I = I+ − I− where I± ∈ C0(X,R)∗ are positive linear
functionals.

Proof. For f ∈ C0(X, [0,∞)), let

I+(f) := sup {I(g) : g ∈ C0(X, [0,∞)) and g ≤ f}

and notice that |I+(f)| ≤ ‖I‖ ‖f‖ . If c > 0, then I+(cf) = cI+(f). Suppose
that f1, f2 ∈ C0(X, [0,∞)) and gi ∈ C0(X, [0,∞)) such that gi ≤ fi, then
g1 + g2 ≤ f1 + f2 so that

I(g1) + I(g2) = I(g1 + g2) ≤ I+(f1 + f2)

and therefore

Page: 443 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



444 38 Examples of Measures

I+(f1) + I+(f2) ≤ I+(f1 + f2). (38.22)

Moreover, if g ∈ C0(X, [0,∞)) and g ≤ f1 + f2, let g1 = min(f1, g), so that

0 ≤ g2 := g − g1 ≤ f1 − g1 + f2 ≤ f2.

Hence I(g) = I(g1) + I(g2) ≤ I+(f1) + I+(f2) for all such g and therefore,

I+(f1 + f2) ≤ I+(f1) + I+(f2). (38.23)

Combining Eqs. (38.22) and (38.23) shows that I+(f1 + f2) = I+(f1) + I+(f2).
For general f ∈ C0(X,R), let I+(f) = I+(f+) − I+(f−) where f+ = max(f, 0)
and f− = −min(f, 0). (Notice that f = f+ − f−.) If f = h − g with h, g ∈
C0(X,R), then g + f+ = h+ f− and therefore,

I+(g) + I+(f+) = I+(h) + I+(f−)

and hence I+(f) = I+(h)− I+(g). In particular,

I+(−f) = I+(f− − f+) = I+(f−)− I+(f+) = −I+(f)

so that I+(cf) = cI+(f) for all c ∈ R. Also,

I+(f + g) = I+(f+ + g+ − (f− + g−)) = I+(f+ + g+)− I+(f− + g−)

= I+(f+) + I+(g+)− I+(f−)− I+(g−)

= I+(f) + I+(g).

Therefore I+ is linear. Moreover,

|I+(f)| ≤ max (|I+(f+)| , |I+(f−)|) ≤ ‖I‖max (‖f+‖ , ‖f−‖) = ‖I‖ ‖f‖

which shows that ‖I+‖ ≤ ‖I‖ . Let I− = I+ − I ∈ C0(X,R)∗, then for f ≥ 0,

I−(f) = I+(f)− I(f) ≥ 0

by definition of I+, so I− ≥ 0 as well.

Remark 38.24. The above proof works for functionals on linear spaces of
bounded functions which are closed under taking f∧g and f∨g. As an example,

let λ(f) =
∫ 1

0
f(x)dx for all bounded measurable functions f : [0, 1] → R. By

the Hahn Banach Theorem 21.7 (or Corollary 21.8) below, we may extend λ
to a linear functional Λ on all bounded functions on [0, 1] in such a way that
‖Λ‖ = 1. Let Λ+ be as above, then Λ+ = λ on bounded measurable functions
and ‖Λ+‖ = 1. Define µ(A) := Λ(1A) for all A ⊂ [0, 1] and notice that if A is
measurable, the µ(A) = m(A). So µ is a finitely additive extension of m to all
subsets of [0, 1].

Exercise 38.1. Suppose that µ is a signed Radon measure and I = Iµ. Let
µ+ and µ− be the Radon measures associated to I± with I± being constructed
as in the proof of Proposition 38.23. Show that µ = µ+ − µ− is the Jordan
decomposition of µ.

Theorem 38.25. Let X be a locally compact Hausdorff space, M(X) be the
space of complex Radon measures on X and for µ ∈ M (X) let ‖µ‖ = |µ|(X).
Then the map

µ ∈M(X)→ Iµ ∈ C0(X)∗

is an isometric isomorphism. Here again Iµ(f) :=
∫
X
f dµ.

Proof. To show that the map M(X)→ C0(X)∗ is surjective, let I ∈ C0(X)∗

and then write I = Ire + iIim be the decomposition into real and imaginary
parts. Then further decompose these into there plus and minus parts so

I = Ire+ − Ire− + i
(
Iim+ − Iim−

)
and let µre± and µim± be the corresponding positive Radon measures associated
to Ire± and Iim± . Then I = Iµ where

µ = µre+ − µre− + i
(
µim+ − µim−

)
.

To finish the proof it suffices to show ‖Iµ‖C0(X)∗ = ‖µ‖ = |µ|(X). We have

‖Iµ‖C0(X)∗ = sup

{∣∣∣∣∫
X

fdµ

∣∣∣∣ : f ∈ C0(X) 3 ‖f‖∞ ≤ 1

}
≤ sup

{∣∣∣∣∫
X

fdµ

∣∣∣∣ : f measurable and ‖f‖∞ ≤ 1

}
= ‖µ‖ .

To prove the opposite inequality, write dµ = gd |µ| with g a complex measurable
function such that |g| = 1. By Proposition 38.17, there exist fn ∈ Cc(X) such
that fn → g in L1(|µ|) as n → ∞. Let gn = ϕ(fn) where ϕ : C→ C is the
continuous function defined by ϕ(z) = z if |z| ≤ 1 and ϕ(z) = z/ |z| if |z| ≥ 1.
Then |gn| ≤ 1 and gn → g in L1(µ). Thus

‖µ‖ = |µ| (X) =

∫
X

d |µ| =
∫
X

ḡdµ = lim
n→∞

∫
X

ḡndµ ≤ ‖Iµ‖C0(X)∗ .

Exercise 38.2. Let (X, τ) be a compact Hausdorff space which supports a
positive measure ν on B = σ (τ) such that ν (X) 6=

∑
x∈X ν ({x}) , i.e. ν is a

not a counting type measure. (Example X = [0, 1] .) Then C (X) is not reflexive.
Hint: recall that C (X)

∗
is isomorphic to the space of complex Radon mea-

sures on (X,B) . Using this isomorphism, define λ ∈ C (X)
∗∗

by
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λ (µ) =
∑
x∈X

µ ({x})

and then show λ 6= f̂ for any f ∈ C (X) .

38.3 Classifying Radon Measures on R

Throughout this section, let X = R, E be the elementary class

E = {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}, (38.24)

and A = A(E) be the algebra formed by taking finite disjoint unions of elements
from E , see Proposition ??. The aim of this section is to prove Theorem ?? which
we restate here for convenience.

Theorem 38.26. The collection of K-finite measure on (R,BR) are in one
to one correspondence with a right continuous non-decreasing functions, F :
R→ R, with F (0) = 0. The correspondence is as follows. If F is a right contin-
uous non-decreasing function F : R→ R, then there exists a unique measure,
µF , on BR such that

µF ((a, b]) = F (b)− F (a) ∀ −∞ < a ≤ b <∞

and this measure may be defined by

µF (A) = inf

{ ∞∑
i=1

(F (bi)− F (ai)) : A ⊂ ∪∞i=1(ai, bi]

}

= inf

{ ∞∑
i=1

(F (bi)− F (ai)) : A ⊂
∞∐
i=1

(ai, bi]

}
(38.25)

for allA ∈ BR. Conversely if µ is K-finite measure on (R,BR) , then

F (x) :=

{
−µ((x, 0]) if x ≤ 0
µ((0, x]) if x ≥ 0

(38.26)

is a right continuous non-decreasing function and this map is the inverse to the
map, F → µF .

There are three aspects to this theorem; namely the existence of the map
F → µF , the surjectivity of the map and the injectivity of this map. Assuming
the map F → µF exists, the surjectivity follows from Eq. (38.26) and the
injectivity is an easy consequence of Theorem ??. The rest of this section is
devoted to giving two proofs for the existence of the map F → µF .

Exercise 38.3. Show by direct means any measure µ = µF satisfying Eq.
(38.25) is outer regular on all Borel sets. Hint: it suffices to show if B :=∐∞
i=1(ai, bi], then there exists V ⊂o R such that µ (V \B) is as small as you

please.

38.3.1 Classifying Radon Measures on R using Theorem ??

Corollary 38.27. The map F → µF in Theorem 38.26 exists.

Proof. This is simply a combination of Proposition ?? and Theorem ??.

38.3.2 Classifying Radon Measures on R using the Riesz-Markov
Theorem 38.9

38.3.3 The Lebesgue-Stieljtes Integral

Notation 38.28 Given an increasing function F : R→ R, let F (x−) =
limy↑x F (y), F (x+) = limy↓x F (y) and F (±∞) = limx→±∞ F (x) ∈ R̄. Since
F is increasing all of theses limits exists.

Theorem 38.29. If F : R→ R is an increasing function (not necessarily right
continuous), there exists a unique measure µ = µF on BR such that∫ ∞

−∞
fdF =

∫
R
fdµ for all f ∈ Cc(R,R), (38.27)

where
∫∞
−∞ fdF is as in Lemma ?? above. This measure may also be character-

ized as the unique measure on BR such that

µ ((a, b]) = F (b+)− F (a+) for all −∞ < a < b <∞. (38.28)

Moreover, if A ∈ BR then

µF (A) = inf

{ ∞∑
i=1

(F (bi+)− F (ai+)) : A ⊂ ∪∞i=1(ai, bi]

}

= inf

{ ∞∑
i=1

(F (bi+)− F (ai+)) : A ⊂
∞∐
i=1

(ai, bi]

}
. (38.29)

Proof. An application of the Riesz-Markov Theorem 38.9 implies there
exists a unique measure µ on BR such Eq. (38.27) is valid. Let −∞ < a < b <∞,
ε > 0 be small and ϕε(x) be the function defined in Figure 38.4, i.e. ϕε is one on
[a+2ε, b+ε], linearly interpolates to zero on [b+ε, b+2ε] and on [a+ε, a+2ε] and
is zero on (a, b+2ε)c. Since ϕε → 1(a,b] it follows by the dominated convergence
theorem that

µ((a, b]) = lim
ε↓0

∫
R
ϕεdµ = lim

ε↓0

∫
R
ϕεdF. (38.30)

On the other hand we have

1(a+2ε,b+ε] ≤ ϕε ≤ 1(a+ε,b+2ε], (38.31)
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Fig. 38.4. .

and therefore applying IF to both sides of Eq. (38.31) shows;

F (b+ ε)− F (a+ 2ε) =

∫
R

1(a+2ε,b+ε]dF

≤
∫
R
ϕεdF

≤
∫
R

1(a+ε,b+2ε]dF = F (b+ 2ε)− F (a+ ε).

Letting ε ↓ 0 in this equation and using Eq. (38.30) shows

F (b+)− F (a+) ≤ µ((a, b]) ≤ F (b+)− F (a+).

For the last assertion let

µ0(A) = inf

{ ∞∑
i=1

(F (bi)− F (ai)) : A ⊂
∞∐
i=1

(ai, bi]

}
= inf {µ (B) : A ⊂ B ∈ Aσ} ,

where A is the algebra generated by the half open intervals on R. By mono-
tonicity of µ, it follows that

µ0 (A) ≥ µ (A) for all A ∈ B. (38.32)

For the reverse inequality, let A ⊂ V ⊂o R and notice by Exercise 35.22 that
V =

∐∞
i=1 (ai, bi) for some collection of disjoint open intervals in R. Since

(ai, bi) ∈ Aσ (as the reader should verify!), it follows that V ∈ Aσ and therefore,

µ0(A) ≤ inf {µ (V ) : A ⊂ V ⊂o R} = µ (A) .

Combining this with Eq. (38.32) shows µ0(A) = µ (A) which is precisely Eq.
(38.29).

Corollary 38.30. The map F → µF is a one to one correspondence between
right continuous non-decreasing functions F such that F (0) = 0 and Radon
(same as K - finite) measures on (R,BR) .

38.4 Kolmogorov’s Existence of Measure on Products
Spaces

Throughout this section, let {(Xα, τα)}α∈A be second countable locally compact
Hausdorff spaces and let X :=

∏
α∈A

Xα be equipped with the product topology,

τ := ⊗α∈Aτα. More generally for Λ ⊂ A, let XΛ :=
∏
α∈ΛXα and τΛ := ⊗α∈Λτα

and Λ ⊂ Γ ⊂ A, let πΛ,Γ : XΓ → XΛ be the projection map; πΛ,Γ (x) = x|Λ for
x ∈ XΓ . We will simply write πΛ for πΛ,A : X → XΛ. (Notice that if Λ is a finite
subset of A then (XΛ, τΛ) is still second countable as the reader should verify.)
Let M = ⊗α∈ABα be the product σ – algebra on X = XA and BΛ = σ (τΛ) be
the Borel σ – algebra on XΛ.

Theorem 38.31 (Kolmogorov’s Existence Theorem). Suppose
{µΛ : Λ ⊂⊂ A} are probability measures on (XΛ,BΛ) satisfying the following
compatibility condition:

• (πΛ,Γ )∗ µΓ = µΛ whenever Λ ⊂ Γ ⊂⊂ A.

Then there exists a unique probability measure, µ, on (X,M) such that
(πΛ)∗ µ = µΛ whenever Λ ⊂⊂ A. Recall, see Exercise ??, that the condition
(πΛ)∗ µ = µΛ is equivalent to the statement;∫

X

F (πΛ(x))dµ(x) =

∫
XΛ

F (y)dµΛ(y) (38.33)

for all Λ ⊂⊂ A and F : XΛ → R bounded a measurable.

We will first prove the theorem in the following special case. The full proof
will be given after Exercise 38.4 below.

Theorem 38.32. Theorem 38.31 holds under the additional assumption that
each of the spaces, {(Xα, τα)}α∈A, are compact second countable and Hausdorff
and A is countable.

Proof. Recall from Theorem ?? that the Borel σ – algebra, BΛ = σ (τΛ) ,
and the product σ – algebra, ⊗α∈ΛBα, are the same for any Λ ⊂ A. By Ty-
chonoff’s Theorem 36.16 and Proposition 37.4, X and XΛ for any Λ ⊂ A are
still compact Hausdorff spaces which are second countable if Λ is finite. By the
Stone Weierstrass Theorem 37.31,
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D := {f ∈ C (X) : f = F ◦ πΛ with F ∈ C(XΛ) and Λ ⊂⊂ A}

is a dense subspace of C (X) . For f = F ◦ πΛ ∈ D, let

I(f) =

∫
XΛ

F ◦ πΛ(x)dµΛ(x). (38.34)

Let us verify that I is well defined. Suppose that f may also be expressed as
f = F ′ ◦ πΛ′ with Λ′ ⊂⊂ A and F ′ ∈ C(XΛ′). Let Γ := Λ ∪ Λ′ and define
G ∈ C (XΓ ) by G := F ◦ πΛ,Γ . Hence, using Exercise ??,∫

XΓ

GdµΓ =

∫
XΓ

F ◦ πΛ,Γ dµΓ =

∫
XΛ

F d
[
(πΛ,Γ )∗ µΓ

]
=

∫
XΛ

F dµΛ

wherein we have used the compatibility condition in the last equality. Similarly,
using G = F ′ ◦ πΛ′,Γ (as the reader should verify), one shows∫

XΓ

GdµΓ =

∫
XΛ′

F ′ dµΛ′ .

Therefore ∫
XΛ′

F ′ dµΛ′ =

∫
XΓ

GdµΓ =

∫
XΛ

F dµΛ,

which shows I in Eq. (38.34) is well defined.
Since |I(f)| ≤ ‖f‖∞, the B.L.T. Theorem 32.4 allows us to extend I from

the dense subspace, D, to a continuous linear functional, Ī , on C (X) . Because
I was positive on D, it is easy to check that Ī is still positive on C (X) . So by
the Riesz-Markov Theorem 38.9, there exists a Radon measure on B =M such
that Ī(f) =

∫
X

fdµ for all f ∈ C (X) . By the definition of Ī in now follows that

∫
XΛ

Fd (πΛ)∗ µ =

∫
XΛ

F ◦ πΛdµ = Ī(F ◦ πΛ) =

∫
XΛ

FdµΛ

for all F ∈ C(XΛ) and Λ ⊂⊂ A. Since XΛ is a second countable locally compact
Hausdorff space, this identity implies, see Theorem 31.81, that (πΛ)∗ µ = µΛ.
The uniqueness assertion of the theorem follows from the fact that the measure
µ is determined uniquely by its values on the algebra A := ∪Λ⊂⊂Aπ−1

Λ (BXΛ)
which generates B =M, see Theorem ??.

Exercise 38.4. Let (Y, τ) be a locally compact Hausdorff space and (Y ∗ =
Y ∪ {∞} , τ∗) be the one point compactification of Y. Then

1 Alternatively, use Theorems 38.16 and the uniquness assertion in Markov-Riesz
Theorem 38.9 to conclude (πΛ)∗ µ = µΛ.

BY ∗ := σ(τ∗) = {A ⊂ Y ∗ : A ∩ Y ∈ BY = σ(τ)}

or equivalently put

BY ∗ = BY ∪ {A ∪ {∞} : A ∈ BY } .

Also shows that (Y ∗ = Y ∪ {∞} , τ∗) is second countable if (Y, τ) was second
countable.

Proof. Proof of Theorem 38.31.
Case 1; A is a countable. Let (X∗α = Xα ∪ {∞α} , τ∗α) be the one point

compactification of (Xα, τα) . For Λ ⊂ A, let X∗Λ :=
∏
α∈Λ

X∗α equipped with the

product topology and Borel σ – algebra, B∗Λ. Since Λ is at most countable, the
set,

XΛ :=
⋂
α∈A
{πα =∞α} ,

is a measurable subset of X∗Λ. Therefore for each Λ ⊂⊂ A, we may extend µΛ
to a measure, µ̄Λ, on (X∗Λ,B∗Λ) using the formula,

µ̄Λ (B) = µΛ (B ∩XΛ) for all B ∈ X∗Λ.

An application of Theorem 38.32 shows there exists a unique probability mea-
sure, µ̄, on X∗ := X∗A such that (πΛ)∗ µ̄ = µ̄Λ for all Λ ⊂⊂ A. Since

X∗ \X =
⋃
α∈A
{πα =∞α}

and µ̄ ({πα =∞}) = µ̄{α} ({∞α}) = 0, it follows that µ̄ (X∗ \X) = 0. Hence
µ := µ̄|BX is a probability measure on (X,BX) . Finally if B ∈ BX ⊂ BX∗ ,

µΛ (B) = µ̄Λ (B) = (πΛ)∗ µ̄ (B) = µ̄
(
π−1
Λ (B)

)
= µ̄

(
π−1
Λ (B) ∩X

)
= µ

(
πΛ|−1

X (B)
)

which shows µ is the required probability measure on BX .
Case 2; A is uncountable. By case 1. for each countable or finite subset

Γ ⊂ A there is a measure µΓ on (XΓ ,BΓ ) such that (πΛ,Γ )∗ µΓ = µΛ for all
Λ ⊂⊂ Γ. By Exercise 11.9,

M =
⋃{

π−1
Γ (BΓ ) : Γ is a countable subset of A

}
,

i.e. every B ∈ M may be written in the form B = π−1
Γ (C) for some countable

subset, Γ ⊂ A, and C ∈ BΓ . For such a B we define µ (B) := µΓ (C) . It is left
to the reader to check that µ is well defined and that µ is a measure on M.
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(Keep in mind the countable union of countable sets is countable.) If Λ ⊂⊂ A
and C ∈ BΛ, then

[(πΛ)∗ µ] (C) = µ
(
π−1
Λ (C)

)
:= µΛ (C) ,

i.e. (πΛ)∗ µ = µΛ as desired.

Corollary 38.33. Suppose that {µα}α∈A are probability measure on (Xα,Bα)
for all α ∈ A and if Λ ⊂⊂ A let µΛ := ⊗α∈Λµα be the product measure on
(XΛ,BΛ = ⊗α∈ΛBα) . Then there exists a unique probability measure, µ, on
(X,M) such that (πΛ)∗ µ = µΛ for all Λ ⊂⊂ A. (It is possible remove the
topology from this corollary, see Theorem ?? below.)

Exercise 38.5. Prove Corollary 38.33 by showing the measures µΛ := ⊗α∈Λµα
satisfy the compatibility condition in Theorem 38.31.

*** Beginning of WORK material. ***

Lemma 38.34 (Is this true? I am not so sure.). Suppose Λ ⊂ A and µ
is Radon measure on (X, τ) . Then (πΛ)∗ µ := µ ◦ π−1

Λ is a Radon measure on
(XΛ, τΛ) .

Proof. Let Y := XΛ, Z := XΛc and π : Y × Z → Y be the canonical
projection map. We equip Y × Z with the product topology. The mapping
ϕ = (πΛ, πΛc) : X → Y × Z is easily seen to be continuous and bijective and
therefore a homeomorphism by Proposition 37.6. Because of this observation it
suffices to prove; if ν := ϕ∗µ is a Radon probability measure on Y × Z then
π∗ν is a Radon probability measure on Y.

Outer regularity. Suppose that B ∈ BY and U is an open subset in X×Y
such that B × Z = π−1 (B) ⊂ U. Letting then

inf {π∗ν (U) : B ⊂ U ∈ τY } = inf
{
ν
(
π−1 (U)

)
: B ⊂ U ∈ τY

}
and U is an open subset of Y is outer regular on all Borel sets and inner regular
on all open subsets of Y.

*** End of WORK material. ***



39

Probability Measures on Lusin Spaces

Definition 39.1 (Lusin spaces). A Lusin space is a topological space (X, τ)
which is homeomorphic to a Borel subset of a compact metric space.

Example 39.2. By Theorem 37.12, every Polish (i.e. complete separable metric
space) is a Lusin space. Moreover, any Borel subset of Lusin space is again a
Lusin space.

Definition 39.3. Two measurable spaces, (X,M) and (Y,N ) are said to be
isomorphic if there exists a bijective map, f : X → Y such that f (M) = N
and f−1 (N ) =M, i.e. both f and f−1 are measurable.

39.1 Weak Convergence Results

The following is an application of theorem 35.60 characterizing compact sets in
metric spaces. (BRUCE: add Helly’s selection principle here.)

Proposition 39.4. Suppose that (X, ρ) is a complete separable metric space
and µ is a probability measure on B = σ(τρ). Then for all ε > 0, there exists
Kε @@ X such that µ(Kε) ≥ 1− ε.

Proof. Let {xk}∞k=1 be a countable dense subset of X. Then X =
∪kCxk(1/n) for all n ∈ N. Hence by continuity of µ, there exists, for all
n ∈ N, Nn < ∞ such that µ(Fn) ≥ 1 − ε2−n where Fn := ∪Nnk=1Cxk(1/n).
Let K := ∩∞n=1Fn then

µ(X \K) = µ(∪∞n=1F
c
n)

≤
∞∑
n=1

µ(F cn) =

∞∑
n=1

(1− µ(Fn)) ≤
∞∑
n=1

ε2−n = ε

so that µ(K) ≥ 1 − ε. Moreover K is compact since K is closed and totally
bounded; K ⊂ Fn for all n and each Fn is 1/n – bounded.

Definition 39.5. A sequence of probability measures {Pn}∞n=1 is said to con-
verge to a probability P if for every f ∈ BC (X) , Pn(f) → P (f). This is
actually weak-* convergence when viewing Pn ∈ BC (X)

∗
.

Proposition 39.6. The following are equivalent:

1. Pn
w→ P as n→∞

2. Pn(f)→ P (f) for every f ∈ BC (X) which is uniformly continuous.
3. lim supn→∞ Pn(F ) ≤ P (F ) for all F @ X.
4. lim infn→∞ Pn(G) ≥ P (G) for all G ⊂o X.
5. limn→∞ Pn(A) = P (A) for all A ∈ B such that P (bd(A)) = 0.

Proof. 1. =⇒ 2. is obvious. For 2. =⇒ 3.,

ϕ(t) :=

 1 if t ≤ 0
1− t if 0 ≤ t ≤ 1

0 if t ≥ 1
(39.1)

and let fn(x) := ϕ(nd(x, F )). Then fn ∈ BC(X, [0, 1]) is uniformly continuous,
0 ≤ 1F ≤ fn for all n and fn ↓ 1F as n → ∞. Passing to the limit n → ∞ in
the equation

0 ≤ Pn(F ) ≤ Pn(fm)

gives
0 ≤ lim sup

n→∞
Pn(F ) ≤ P (fm)

and then letting m→∞ in this inequality implies item 3. 3. ⇐⇒ 4. Assuming
item 3., let F = Gc, then

1− lim inf
n→∞

Pn(G) = lim sup
n→∞

(1− Pn(G)) = lim sup
n→∞

Pn(Gc)

≤ P (Gc) = 1− P (G)

which implies 4. Similarly 4. =⇒ 3. 3. ⇐⇒ 5. Recall that bd(A) = Ā \ Ao,
so if P (bd(A)) = 0 and 3. (and hence also 4. holds) we have

lim sup
n→∞

Pn(A) ≤ lim sup
n→∞

Pn(Ā) ≤ P (Ā) = P (A) and

lim inf
n→∞

Pn(A) ≥ lim inf
n→∞

Pn(Ao) ≥ P (Ao) = P (A)

from which it follows that limn→∞ Pn(A) = P (A). Conversely, let F @ X and
set Fδ := {x ∈ X : ρ(x, F ) ≤ δ} . Then
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bd(Fδ) ⊂ Fδ \ {x ∈ X : ρ(x, F ) < δ} = Aδ

where Aδ := {x ∈ X : ρ(x, F ) = δ} . Since {Aδ}δ>0 are all disjoint, we must
have ∑

δ>0

P (Aδ) ≤ P (X) ≤ 1

and in particular the set Λ := {δ > 0 : P (Aδ) > 0} is at most countable. Let
δn /∈ Λ be chosen so that δn ↓ 0 as n→∞, then

P (Fδm) = lim
n→∞

Pn(Fδn) ≥ lim sup
n→∞

Pn(F ).

Let m → ∞ this equation to conclude P (F ) ≥ lim supn→∞ Pn(F ) as desired.
To finish the proof we will now show 3. =⇒ 1. By an affine change of variables
it suffices to consider f ∈ C(X, (0, 1)) in which case we have

k∑
i=1

(i− 1)

k
1{ (i−1)

k ≤f< i
k

} ≤ f ≤ k∑
i=1

i

k
1{ (i−1)

k ≤f< i
k

}. (39.2)

Let Fi :=
{
i
k ≤ f

}
and notice that Fk = ∅, then we for any probability P that

k∑
i=1

(i− 1)

k
[P (Fi−1)− P (Fi)] ≤ P (f) ≤

k∑
i=1

i

k
[P (Fi−1)− P (Fi)] . (39.3)

Now

k∑
i=1

(i− 1)

k
[P (Fi−1)− P (Fi)]

=

k∑
i=1

(i− 1)

k
P (Fi−1)−

k∑
i=1

(i− 1)

k
P (Fi)

=

k−1∑
i=1

i

k
P (Fi)−

k∑
i=1

i− 1

k
P (Fi) =

1

k

k−1∑
i=1

P (Fi)

and

k∑
i=1

i

k
[P (Fi−1)− P (Fi)]

=

k∑
i=1

i− 1

k
[P (Fi−1)− P (Fi)] +

k∑
i=1

1

k
[P (Fi−1)− P (Fi)]

=

k−1∑
i=1

P (Fi) +
1

k

so that Eq. (39.3) becomes,

1

k

k−1∑
i=1

P (Fi) ≤ P (f) ≤ 1

k

k−1∑
i=1

P (Fi) + 1/k.

Using this equation with P = Pn and then with P = P we find

lim sup
n→∞

Pn(f) ≤ lim sup
n→∞

[
1

k

k−1∑
i=1

Pn(Fi) + 1/k

]

≤ 1

k

k−1∑
i=1

P (Fi) + 1/k ≤ P (f) + 1/k.

≤

Since k is arbitrary,
lim sup

n→∞
Pn(f) ≤ P (f).

This inequality also hold for 1 − f and this implies lim infn→∞ Pn(f) ≥ P (f)
and hence limn→∞ Pn(f) = P (f) as claimed.

Definition 39.7. Let X be a topological space. A collection of probability mea-
sures Λ on (X,BX) is said to be tight if for every ε > 0 there exists a compact
set Kε ∈ BX such that P (Kε) ≥ 1− ε for all P ∈ Λ.

Theorem 39.8. Suppose X is a separable metrizable space and Λ = {Pn}∞n=1 is
a tight sequence of probability measures on BX . Then there exists a subsequence
{Pnk}

∞
k=1 which is weakly convergent to a probability measure P on BX .

Proof. First suppose that X is compact. In this case C (X) is a Banach
space which is separable by the Stone – Weirstrass theorem, see Exercise 37.5.
By the Riesz theorem, Corollary ??, we know that C (X)

∗
is in one to one cor-

respondence with complex measure on (X,BX). We have also seen that C (X)
∗

is metrizable and the unit ball in C (X)
∗

is weak - * compact, see Theorem
36.25. Hence there exists a subsequence {Pnk}

∞
k=1 which is weak -* convergent

to a probability measure P on X. Alternatively, use the Cantor’s diagonaliza-
tion procedure on a countable dense set Γ ⊂ C (X) so find {Pnk}

∞
k=1 such that

Λ(f) := limk→∞ Pnk(f) exists for all f ∈ Γ. Then for g ∈ C (X) and f ∈ Γ, we
have

|Pnk(g)− Pnl(g)| ≤ |Pnk(g)− Pnk(f)|+ |Pnk(f)− Pnl(f)|
+ |Pnl(f)− Pnl(g)|

≤ 2 ‖g − f‖∞ + |Pnk(f)− Pnl(f)|
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which shows
lim sup

k,l→∞
|Pnk(g)− Pnl(g)| ≤ 2 ‖g − f‖∞ .

Letting f ∈ Λ tend to g in C (X) shows lim supk,l→∞ |Pnk(g)− Pnl(g)| = 0 and
hence Λ(g) := limk→∞ Pnk(g) for all g ∈ C (X) . It is now clear that Λ(g) ≥ 0
for all g ≥ 0 so that Λ is a positive linear functional on X and thus there is a
probability measure P such that Λ(g) = P (g).

General case. By Theorem 37.12 we may assume that X is a subset of
a compact metric space which we will denote by X̄. We now extend Pn to X̄
by setting P̄n(A) := P̄n(A ∩ X̄) for all A ∈ BX̄ . By what we have just proved,
there is a subsequence

{
P̄ ′k := P̄nk

}∞
k=1

such that P̄ ′k converges weakly to a

probability measure P̄ on X̄. The main thing we now have to prove is that
“P̄ (X) = 1,” this is where the tightness assumption is going to be used. Given
ε > 0, let Kε ⊂ X be a compact set such that P̄n(Kε) ≥ 1 − ε for all n. Since
Kε is compact in X it is compact in X̄ as well and in particular a closed subset
of X̄. Therefore by Proposition 39.6

P̄ (Kε) ≥ lim sup
k→∞

P̄
′

k(Kε) = 1− ε.

Since ε > 0 is arbitrary, this shows with X0 := ∪∞n=1K1/n satisfies P̄ (X0) = 1.
Because X0 ∈ BX ∩BX̄ , we may view P̄ as a measure on BX by letting P (A) :=
P̄ (A ∩X0) for all A ∈ BX . Given a closed subset F ⊂ X, choose F̃ @ X̄ such
that F = F̃ ∩X. Then

lim sup
k→∞

P ′k(F ) = lim sup
k→∞

P̄ ′k(F̃ ) ≤ P̄ (F̃ ) = P̄ (F̃ ∩X0) = P (F ),

which shows P ′k
w→ P.

39.2 Haar Measures

To be written.

39.3 Hausdorff Measure

To be written.

39.4 Exercises

Exercise 39.1. Let E ∈ BR with m(E) > 0. Then for any α ∈ (0, 1) there
exists a bounded open interval J ⊂ R such that m(E∩J) ≥ αm(J).1 Hints: 1.
Reduce to the case where m(E) ∈ (0,∞). 2) Approximate E from the outside
by an open set V ⊂ R. 3. Make use of Exercise 35.22, which states that V may
be written as a disjoint union of open intervals.

Exercise 39.2. Let F : R→ R be a right continuous increasing function and
µ = µF be as in Theorem 38.26. For a < b, find the values of µ ({a}) , µ ([a, b)) ,
µ ([a, b]) and µ ((a, b)) in terms of the function F.

Exercise 39.3. Suppose that F ∈ C1(R) is an increasing function and µF is
the unique Borel measure on R such that µF ((a, b]) = F (b)−F (a) for all a ≤ b.
Show that dµF = ρdm for some function ρ ≥ 0. Find ρ explicitly in terms of F.

Exercise 39.4. Suppose that F (x) = e1x≥3+π1x≥7 and µF is the is the unique
Borel measure on R such that µF ((a, b]) = F (b) − F (a) for all a ≤ b. Give an
explicit description of the measure µF .

Exercise 39.5. Let (X, τ) be a locally compact Hausdorff space and I :
C0(X,R) → R be a positive linear functional. Show I is necessarily bounded,
i.e. there exists a C <∞ such that |I(f)| ≤ C ‖f‖∞ for all f ∈ C0(X,R).

Outline. (BRUCE: see Nate’s proof below and then rewrite this outline to
make the problem much easier and to handle more general circumstances.)

1. By the Riesz-Markov Theorem 38.9, there exists a unique Radon measure
µ on (X,BX) such that µ (f) :=

∫
X
fdµ = I (f) for all f ∈ Cc (X,R) . Show

µ (f) ≤ I (f) for all f ∈ C0(X, [0,∞)).
2. Show that if µ (X) = ∞, then there exists a function f ∈ C0(X, [0,∞))

such that ∞ = µ(f) ≤ I (f) contradicting the assumption that I is real
valued.

3. By item 2., µ (X) <∞ and therefore C0(X,R) ⊂ L1 (µ) and µ : C0(X,R)→
R is a well defined positive linear functional. Let J (f) := I (f)−µ (f) , which
by item 1. is a positive linear functional such that J |Cc(X,R) ≡ 0. Show that
any positive linear functional, J, on C0(X,R) satisfying these properties
must necessarily be zero. Thus I (f) = µ (f) and ‖I‖ = µ (X) < ∞ as
claimed.

Exercise 39.6. BRUCE (Drop this exercise or move somewhere else, it is
already proved in the notes in more general terms.) Suppose that I :
C∞c (R,R)→ R is a positive linear functional. Show

1 See also the Lebesgue differentiation Theorem 25.14 from which one may prove the
much stronger form of this theorem, namely for m -a.e. x ∈ E there exits rα(x) > 0
such that m(E ∩ (x− r, x+ r)) ≥ αm((x− r, x+ r)) for all r ≤ rα(x).
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452 39 Probability Measures on Lusin Spaces

1. For each compact subset K @@ R there exists a constant CK < ∞ such
that

|I(f)| ≤ CK ‖f‖∞
whenever supp(f) ⊂ K.

2. Show there exists a unique Radon measure µ on BR (the Borel σ – algebra
on R) such that I(f) =

∫
R fdµ for all f ∈ C∞c (R,R).

39.4.1 The Laws of Large Number Exercises

For the rest of the problems of this section, let ν be a probability measure on
BR such that ∫

R
|x| dν(x) <∞.

By Corollary 38.33, there exists a unique measure µ on (X := RN,B := BRN =
⊗∞n=1BR) such that∫

X

f(x1, x2, . . . , xN )dµ(x) =

∫
RN

f(x1, x2, . . . , xN )dν(x1) . . . dν(xN ) (39.4)

for all N ∈ N and bounded measurable functions f : RN → R, i.e. µ = ⊗∞n=1µn
with µn = ν for every n. We will also use the following notation:

Sn(x) :=
1

n

n∑
k=1

xk for x ∈ X,

m :=

∫
R
xdν(x)

σ2 :=

∫
R
(x−m)2dν(x) =

∫
R
x2dν(x)−m2, and

γ :=

∫
R
(x−m)4dν(x).

As is customary, m is said to be the mean or average of ν and σ2 is the variance
of ν.

Exercise 39.7 (Weak Law of Large Numbers). Assume σ2 < ∞. Show∫
X
Sndµ = m.

‖Sn −m‖22 =

∫
X

(Sn −m)
2
dµ =

σ2

n
,

and µ(|Sn −m| > ε) ≤ σ2

nε2 for all ε > 0 and n ∈ N.

Exercise 39.8 (A simple form of the Strong Law of Large Numbers).
Suppose now that γ :=

∫
R(x −m)4dν(x) < ∞. Show for all ε > 0 and n ∈ N

that

‖Sn −m‖44 =

∫
X

(Sn −m)
4
dµ =

1

n4

(
nγ + 3n(n− 1)σ4

)
=

1

n2

[
n−1γ + 3

(
1− n−1

)
σ4
]

and

µ(|Sn −m| > ε) ≤
n−1γ + 3

(
1− n−1

)
σ4

ε4n2
.

Conclude from the last estimate and the first Borel Cantelli Lemma ?? that
limn→∞ Sn(x) = m for µ – a.e. x ∈ X.

Exercise 39.9. Suppose γ :=
∫
R(x−m)4dν(x) <∞ andm =

∫
R(x−m)dν(x) 6=

0. For λ > 0 let Tλ : RN → RN be defined by Tλ(x) = (λx1, λx2, . . . , λxn, . . . ),
µλ = µ ◦ T−1

λ and

Xλ :=

x ∈ RN : lim
n→∞

1

n

n∑
j=1

xj = λ

 .

Show

µλ(Xλ′) = δλ,λ′ =

{
1 if λ = λ′

0 if λ 6= λ′

and use this to show if λ 6= 1, then dµλ 6= ρdµ for any measurable function
ρ : RN → [0,∞].
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Further Hilbert and Banach Space Techniques





40

L2 - Hilbert Spaces Techniques and Fourier Series

This section is concerned with Hilbert spaces presented as in the following
example.

Example 40.1. Let (X,M, µ) be a measure space. Then H := L2(X,M, µ) with
inner product

〈f |g〉 =

∫
X

f · ḡdµ

is a Hilbert space.

It will be convenient to define

〈f, g〉 :=

∫
X

f (x) g (x) dµ (x) (40.1)

for all measurable functions f, g on X such that fg ∈ L1 (µ) . So with this
notation we have 〈f |g〉 = 〈f, ḡ〉 for all f, g ∈ H.

40.1 Fourier Series Considerations

Throughout this section we will let dθ, dx, dα, etc. denote Lebesgue measure
on Rd normalized so that the cube, Q := (−π, π]d, has measure one, i.e. dθ =
(2π)−ddm(θ) where m is standard Lebesgue measure on Rd. As usual, for α ∈
Nd0, let

Dα
θ =

(
1

i

)|α|
∂|α|

∂θα1
1 . . . ∂θαdd

.

Notation 40.2 Let Ckper(Rd) denote the 2π – periodic functions in Ck(Rd),
that is f ∈ Ckper(Rd) iff f ∈ Ck(Rd) and f(θ + 2πei) = f(θ) for all θ ∈ Rd and
i = 1, 2, . . . , d. Further let 〈·|·〉 denote the inner product on the Hilbert space,
H := L2([−π, π]d), given by

〈f |g〉 :=

∫
Q

f(θ)ḡ(θ)dθ =

(
1

2π

)d ∫
Q

f(θ)ḡ(θ)dm (θ)

and define ϕk(θ) := eik·θ for all k ∈ Zd. For f ∈ L1(Q), we will write f̃(k) for
the Fourier coefficient,

f̃(k) := 〈f |ϕk〉 =

∫
Q

f(θ)e−ik·θdθ. (40.2)

Since any 2π – periodic functions on Rd may be identified with function on

the d - dimensional torus, Td ∼= Rd/ (2πZ)
d ∼=

(
S1
)d
, I may also write Ck(Td)

for Ckper(Rd) and Lp
(
Td
)

for Lp (Q) where elements in f ∈ Lp (Q) are to be

thought of as there extensions to 2π – periodic functions on Rd. The following
theorem is a repeat of Theorem 18.38 above.

Theorem 40.3 (Fourier Series). The functions β :=
{
ϕk : k ∈ Zd

}
form an

orthonormal basis for H, i.e. if f ∈ H then

f =
∑
k∈Zd
〈f |ϕk〉ϕk =

∑
k∈Zd

f̃(k)ϕk (40.3)

where the convergence takes place in L2([−π, π]d).

Proof. Simple computations show β :=
{
ϕk : k ∈ Zd

}
is an orthonormal

set. We now claim that β is an orthonormal basis. To see this recall that
Cc((−π, π)d) is dense in L2((−π, π)d, dm). Any f ∈ Cc((−π, π)d) may be ex-
tended to be a continuous 2π – periodic function on R and hence by Exercise
7.15 (see also Theorem 7.42, Exercise 37.13 and Remark 37.46), f may uniformly
(and hence in L2) be approximated by a trigonometric polynomial. Therefore
β is a total orthonormal set, i.e. β is an orthonormal basis.

Exercise 40.1. Let A be the operator defined in Lemma 20.7 and for g ∈
L2 (T) , let Ug (k) := g̃ (k) so that U : L2 (T) → `2 (Z) is unitary. Show
U−1AU = Ma where a ∈ C∞per (R) is a function to be found. Use this rep-
resentation and the results in Exercise 20.2 to give a simple proof of the results
in Lemma 20.7.

40.1.1 Dirichlet, Fejér and Kernels

Although the sum in Eq. (40.3) is guaranteed to converge relative to the Hilber-
tian norm on H it certainly need not converge pointwise even if f ∈ Cper

(
Rd
)

as will be proved in Section 23.3.1 below. Nevertheless, if f is sufficiently regu-
lar, then the sum in Eq. (40.3) will converge pointwise as we will now show. In
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the process we will give a direct and constructive proof of the result in Exercise
37.13, see Theorem 40.5 below.

Let us restrict our attention to d = 1 here. Consider

fn (θ) =
∑
|k|≤n

f̃(k)ϕk (θ) =
∑
|k|≤n

1

2π

[∫
[−π,π]

f(x)e−ik·xdx

]
ϕk (θ)

=
1

2π

∫
[−π,π]

f(x)
∑
|k|≤n

eik·(θ−x)dx

=
1

2π

∫
[−π,π]

f(x)Dn(θ − x)dx (40.4)

where

Dn(θ) :=

n∑
k=−n

eikθ

is called the Dirichlet kernel. Letting α = eiθ/2, we have

Dn(θ) =

n∑
k=−n

α2k =
α2(n+1) − α−2n

α2 − 1
=
α2n+1 − α−(2n+1)

α− α−1

=
2i sin(n+ 1

2 )θ

2i sin 1
2θ

=
sin(n+ 1

2 )θ

sin 1
2θ

.

and therefore

Dn(θ) :=

n∑
k=−n

eikθ =
sin(n+ 1

2 )θ

sin 1
2θ

, (40.5)

see Figure 40.1.1.

This is a plot D1 and D10.

with the understanding that the right side of this equation is 2n+ 1 whenever
θ ∈ 2πZ.

Theorem 40.4. Suppose f ∈ L1 ([−π, π] , dm) and f is differentiable at some
θ ∈ [−π, π] , then limn→∞ fn (θ) = f (θ) where fn is as in Eq. (40.4).

Proof. Observe that

1

2π

∫
[−π,π]

Dn(θ − x)dx =
1

2π

∫
[−π,π]

∑
|k|≤n

eik·(θ−x)dx = 1

and therefore,

fn (θ)− f (θ) =
1

2π

∫
[−π,π]

[f(x)− f (θ)]Dn(θ − x)dx

=
1

2π

∫
[−π,π]

[f(x)− f (θ − x)]Dn(x)dx

=
1

2π

∫
[−π,π]

[
f(θ − x)− f (θ)

sin 1
2x

]
sin(n+

1

2
)x dx. (40.6)

If f is differentiable at θ, the last expression in Eq. (40.6) tends to 0 as n→∞
by the Riemann Lebesgue Lemma (Corollary 31.17 or Lemma 31.40) and the

fact that 1[−π,π] (x) f(θ−x)−f(θ)

sin 1
2x

∈ L1 (dx) .

Despite the Dirichlet kernel not being positive, it still satisfies the approx-
imate δ – sequence property, 1

2πDn → δ0 as n → ∞, when acting on C1 –
periodic functions in θ. In order to improve the convergence properties it is rea-
sonable to try to replace {fn : n ∈ N0} by the sequence of averages (see Exercise
14.16),

FN (θ) =
1

N + 1

N∑
n=0

fn (θ) =
1

N + 1

N∑
n=0

1

2π

∫
[−π,π]

f(x)
∑
|k|≤n

eik·(θ−x)dx

=
1

2π

∫
[−π,π]

KN (θ − x)f(x)dx

where

KN (θ) :=
1

N + 1

N∑
n=0

∑
|k|≤n

eik·θ (40.7)

is the Fejér kernel.

Theorem 40.5. The Fejér kernel KN in Eq. (40.7) satisfies:
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1.

KN (θ) =

N∑
n=−N

[
1− |n|

N + 1

]
einθ (40.8)

=
1

N + 1

sin2
(
N+1

2 θ
)

sin2
(
θ
2

) . (40.9)

2. KN (θ) ≥ 0.
3. 1

2π

∫ π
−πKN (θ)dθ = 1

4. supε≤|θ|≤πKN (θ)→ 0 as N →∞ for all ε > 0, see Figure 40.1.
5. For any continuous 2π – periodic function f on R, KN ∗ f(θ) → f(θ)

uniformly in θ as N →∞, where

KN ∗ f(θ) =
1

2π

∫ π

−π
KN (θ − α)f(α)dα

=

N∑
n=−N

[
1− |n|

N + 1

]
f̃ (n) einθ. (40.10)

Fig. 40.1. Plots of KN (θ) for N = 2, 7 and 13.

Proof. 1. Equation (40.8) is a consequence of the identity,

N∑
n=0

∑
|k|≤n

eik·θ =
∑

|k|≤n≤N

eik·θ =
∑
|k|≤N

(N + 1− |k|) eik·θ.

Moreover, letting α = eiθ/2 and using Eq. (3.3) shows

KN (θ) =
1

N + 1

N∑
n=0

∑
|k|≤n

α2k =
1

N + 1

N∑
n=0

α2n+2 − α−2n

α2 − 1

=
1

(N + 1) (α− α−1)

N∑
n=0

[
α2n+1 − α−2n−1

]
=

1

(N + 1) (α− α−1)

N∑
n=0

[
αα2n − α−1α−2n

]
=

1

(N + 1) (α− α−1)

[
α
α2N+2 − 1

α2 − 1
− α−1α

−2N−2 − 1

α−2 − 1

]
=

1

(N + 1) (α− α−1)
2

[
α2(N+1) − 1 + α−2(N+1) − 1

]
=

1

(N + 1) (α− α−1)
2

[
α(N+1) − α−(N+1)

]2
=

1

N + 1

sin2 ((N + 1) θ/2)

sin2 (θ/2)
.

Items 2. and 3. follow easily from Eqs. (40.9) and (40.8) respectively. Item
4. is a consequence of the elementary estimate;

sup
ε≤|θ|≤π

KN (θ) ≤ 1

N + 1

1

sin2
(
ε
2

)
and is clearly indicated in Figure 40.1. Item 5. now follows by the standard
approximate δ – function arguments, namely,

|KN ∗ f(θ)− f (θ)| = 1

2π

∣∣∣∣∫ π

−π
KN (θ − α) [f(α)− f (θ)] dα

∣∣∣∣
≤ 1

2π

∫ π

−π
KN (α) |f(θ − α)− f (θ)| dα

≤ 1

π

1

N + 1

1

sin2
(
ε
2

) ‖f‖∞ +
1

2π

∫
|α|≤ε

KN (α) |f(θ − α)− f (θ)| dα

≤ 1

π

1

N + 1

1

sin2
(
ε
2

) ‖f‖∞ + sup
|α|≤ε

|f(θ − α)− f (θ)| .

Therefore,

lim sup
N→∞

‖KN ∗ f − f‖∞ ≤ sup
θ

sup
|α|≤ε

|f(θ − α)− f (θ)| → 0 as ε ↓ 0.
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40.1.2 The Dirichlet Problems on D and the Poisson Kernel

Let D := {z ∈ C : |z| < 1} be the open unit disk in C ∼= R2, write z ∈ C as

z = x + iy or z = reiθ, and let ∆ = ∂2

∂x2 + ∂2

∂y2 be the Laplacian acting on

C2 (D) .

Theorem 40.6 (Dirichlet problem for D). To every continuous function
g ∈ C (bd(D)) there exists a unique function u ∈ C(D̄) ∩ C2(D) solving

∆u(z) = 0 for z ∈ D and u|∂D = g. (40.11)

Moreover for r < 1, u is given by,

u(reiθ) =
1

2π

∫ π

−π
Pr(θ − α)u(eiα)dα =: Pr ∗ u(eiθ) (40.12)

=
1

2π
Re

∫ π

−π

1 + rei(θ−α)

1− rei(θ−α)
u(eiα)dα (40.13)

where Pr is the Poisson kernel defined by

Pr(δ) :=
1− r2

1− 2r cos δ + r2
.

(The problem posed in Eq. (40.11) is called the Dirichlet problem for D.)

Proof. In this proof, we are going to be identifying S1 = bd(D) :={
z ∈ D̄ : |z| = 1

}
with [−π, π]/ (π ∼ −π) by the map θ ∈ [−π, π] → eiθ ∈ S1.

Also recall that the Laplacian ∆ may be expressed in polar coordinates as,

∆u = r−1∂r
(
r−1∂ru

)
+

1

r2
∂2
θu,

where

(∂ru)
(
reiθ

)
=

∂

∂r
u
(
reiθ

)
and (∂θu)

(
reiθ

)
=

∂

∂θ
u
(
reiθ

)
.

Uniqueness. Suppose u is a solution to Eq. (40.11) and let

g̃(k) :=
1

2π

∫ π

−π
g(eikθ)e−ikθdθ

and

ũ(r, k) :=
1

2π

∫ π

−π
u(reiθ)e−ikθdθ (40.14)

be the Fourier coefficients of g (θ) and θ → u
(
reiθ

)
respectively. Then for

r ∈ (0, 1) ,

r−1∂r (r∂rũ(r, k)) =
1

2π

∫ π

−π
r−1∂r

(
r−1∂ru

)
(reiθ)e−ikθdθ

= − 1

2π

∫ π

−π

1

r2
∂2
θu(reiθ)e−ikθdθ

= − 1

r2

1

2π

∫ π

−π
u(reiθ)∂2

θe
−ikθdθ

=
1

r2
k2ũ(r, k)

or equivalently
r∂r (r∂rũ(r, k)) = k2ũ(r, k). (40.15)

Recall the general solution to

r∂r (r∂ry(r)) = k2y(r) (40.16)

may be found by trying solutions of the form y(r) = rα which then implies
α2 = k2 or α = ±k. From this one sees that ũ(r, k) solving Eq. (40.15) may
be written as ũ(r, k) = Akr

|k| + Bkr
−|k| for some constants Ak and Bk when

k 6= 0. If k = 0, the solution to Eq. (40.16) is gotten by simple integration and
the result is ũ(r, 0) = A0 + B0 ln r. Since ũ(r, k) is bounded near the origin for
each k it must be that Bk = 0 for all k ∈ Z. Hence we have shown there exists
Ak ∈ C such that, for all r ∈ (0, 1),

Akr
|k| = ũ(r, k) =

1

2π

∫ π

−π
u(reiθ)e−ikθdθ. (40.17)

Since all terms of this equation are continuous for r ∈ [0, 1], Eq. (40.17) remains
valid for all r ∈ [0, 1] and in particular we have, at r = 1, that

Ak =
1

2π

∫ π

−π
u(eiθ)e−ikθdθ = g̃(k).

Hence if u is a solution to Eq. (40.11) then u must be given by

u(reiθ) =
∑
k∈Z

g̃(k)r|k|eikθ for r < 1. (40.18)

or equivalently,

u(z) =
∑
k∈N0

g̃(k)zk +
∑
k∈N

g̃(−k)z̄k.

Notice that the theory of the Fourier series implies Eq. (40.18) is valid in the
L2 (dθ) - sense. However more is true, since for r < 1, the series in Eq. (40.18) is
absolutely convergent and in fact defines a C∞ – function (see Exercise 4.12 or
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40.2 Weak L2-Derivatives 459

Corollary 10.30) which must agree with the continuous function, θ → u
(
reiθ

)
,

for almost every θ and hence for all θ. This completes the proof of uniqueness.
Existence. Given g ∈ C (bd(D)) , let u be defined as in Eq. (40.18). Then,

again by Exercise 4.12 or Corollary 10.30, u ∈ C∞ (D) . So to finish the proof
it suffices to show limx→y u (x) = g (y) for all y ∈ bd(D). Inserting the formula
for g̃(k) into Eq. (40.18) gives

u(reiθ) =
1

2π

∫ π

−π
Pr (θ − α)u(eiα)dα for all r < 1

where

Pr (δ) =
∑
k∈Z

r|k|eikδ =

∞∑
k=0

rkeikδ +

∞∑
k=0

rke−ikδ − 1 =

= Re

[
2

1

1− reiδ
− 1

]
= Re

[
1 + reiδ

1− reiδ

]
= Re

[(
1 + reiδ

) (
1− re−iδ

)
|1− reiδ|2

]
= Re

[
1− r2 + 2ir sin δ

1− 2r cos δ + r2

]
(40.19)

=
1− r2

1− 2r cos δ + r2
.

The Poisson kernel again solves the usual approximate δ – function proper-
ties (see Figure 2), namely:

1. Pr (δ) > 0 and

1

2π

∫ π

−π
Pr (θ − α) dα =

1

2π

∫ π

−π

∑
k∈Z

r|k|eik(θ−α)dα

=
1

2π

∑
k∈Z

r|k|
∫ π

−π
eik(θ−α)dα = 1

and
2.

sup
ε≤|θ|≤π

Pr(θ) ≤
1− r2

1− 2r cos ε+ r2
→ 0 as r ↑ 1.

A plot of Pr(δ) for r = 0.2, 0.5 and 0.7.

Therefore by the same argument used in the proof of Theorem 40.5,

lim
r↑1

sup
θ

∣∣u (reiθ)− g (eiθ)∣∣ = lim
r↑1

sup
θ

∣∣(Pr ∗ g)
(
eiθ
)
− g

(
eiθ
)∣∣ = 0

which certainly implies limx→y u (x) = g (y) for all y ∈ bd(D).

Remark 40.7 (Harmonic Conjugate). Writing z = reiθ, Eq. (40.13) may be
rewritten as

u(z) =
1

2π
Re

∫ π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα

which shows u = ReF where

F (z) :=
1

2π

∫ π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα.

Moreover it follows from Eq. (40.19) that

ImF (reiθ) =
1

π
Im

∫ π

−π

r sin(θ − α)

1− 2r cos(θ − α) + r2
g(eiα)dα

=: (Qr ∗ u) (eiθ)

where

Qr(δ) :=
r sin(δ)

1− 2r cos(δ) + r2
.

From these remarks it follows that v =: (Qr ∗ g) (eiθ) is the harmonic conjugate
of u and P̃r = Qr. For more on this point see Section 26.7 below.

40.2 Weak L2-Derivatives

Theorem 40.8 (Weak and Strong Differentiability). Suppose that f ∈
L2(Rn) and v ∈ Rn \ {0} . Then the following are equivalent:

1. There exists {tn}∞n=1 ⊂ R\ {0} such that limn→∞ tn = 0 and

sup
n

∥∥∥∥f(·+ tnv)− f(·)
tn

∥∥∥∥
2

<∞.

2. There exists g ∈ L2(Rn) such that 〈f, ∂vϕ〉 = −〈g, ϕ〉 for all ϕ ∈ C∞c (Rn).

3. There exists g ∈ L2(Rn) and fn ∈ C∞c (Rn) such that fn
L2

→ f and ∂vfn
L2

→ g
as n→∞.
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460 40 L2 - Hilbert Spaces Techniques and Fourier Series

4. There exists g ∈ L2 such that

f(·+ tv)− f(·)
t

L2

→ g as t→ 0.

(See Theorem 41.18 for the Lp generalization of this theorem.)

Proof. 1. =⇒ 2. We may assume, using Theorem 36.30 and passing to a

subsequence if necessary, that f(·+tnv)−f(·)
tn

w→ g for some g ∈ L2(Rn). Now for
ϕ ∈ C∞c (Rn),

〈g|ϕ〉 = lim
n→∞

〈
f(·+ tnv)− f(·)

tn
, ϕ

〉
= lim
n→∞

〈
f,
ϕ(· − tnv)− ϕ(·)

tn

〉
=

〈
f, lim
n→∞

ϕ(· − tnv)− ϕ(·)
tn

〉
= −〈f, ∂vϕ〉,

wherein we have used the translation invariance of Lebesgue measure and
the dominated convergence theorem. 2. =⇒ 3. Let ϕ ∈ C∞c (Rn,R) such
that

∫
Rn ϕ(x)dx = 1 and let ϕm(x) = mnϕ(mx), then by Proposition 31.37,

hm := ϕm ∗ f ∈ C∞(Rn) for all m and

∂vhm(x) = ∂vϕm ∗ f(x) =

∫
Rn
∂vϕm(x− y)f(y)dy = 〈f,−∂v [ϕm (x− ·)]〉

= 〈g, ϕm (x− ·)〉 = ϕm ∗ g(x).

By Theorem 31.33, hm → f ∈ L2(Rn) and ∂vhm = ϕm ∗ g → g in L2(Rn) as
m→∞. This shows 3. holds except for the fact that hm need not have compact
support. To fix this let ψ ∈ C∞c (Rn, [0, 1]) such that ψ = 1 in a neighborhood
of 0 and let ψε(x) = ψ(εx) and (∂vψ)ε (x) := (∂vψ) (εx). Then

∂v (ψεhm) = ∂vψεhm + ψε∂vhm = ε (∂vψ)ε hm + ψε∂vhm

so that ψεhm → hm in L2 and ∂v (ψεhm) → ∂vhm in L2 as ε ↓ 0. Let fm =
ψεmhm where εm is chosen to be greater than zero but small enough so that

‖ψεmhm − hm‖2 + ‖∂v (ψεmhm)→ ∂vhm‖2 < 1/m.

Then fm ∈ C∞c (Rn), fm → f and ∂vfm → g in L2 as m→∞. 3. =⇒ 4. By the
fundamental theorem of calculus

τ−tvfm(x)− fm(x)

t
=
fm(x+ tv)− fm(x)

t

=
1

t

∫ 1

0

d

ds
fm(x+ stv)ds =

∫ 1

0

(∂vfm) (x+ stv)ds.

(40.20)

Let

Gt(x) :=

∫ 1

0

τ−stvg(x)ds =

∫ 1

0

g(x+ stv)ds

which is defined for almost every x and is in L2(Rn) by Minkowski’s inequality
for integrals, Theorem 29.2. Therefore

τ−tvfm(x)− fm(x)

t
−Gt(x) =

∫ 1

0

[(∂vfm) (x+ stv)− g(x+ stv)] ds

and hence again by Minkowski’s inequality for integrals,∥∥∥∥τ−tvfm − fmt
−Gt

∥∥∥∥
2

≤
∫ 1

0

‖τ−stv (∂vfm)− τ−stvg‖2 ds

=

∫ 1

0

‖∂vfm − g‖2 ds.

Letting m → ∞ in this equation implies (τ−tvf − f) /t = Gt a.e. Finally one
more application of Minkowski’s inequality for integrals implies,∥∥∥∥τ−tvf − ft

− g
∥∥∥∥

2

= ‖Gt − g‖2 =

∥∥∥∥∫ 1

0

(τ−stvg − g) ds

∥∥∥∥
2

≤
∫ 1

0

‖τ−stvg − g‖2 ds.

By the dominated convergence theorem and Proposition 31.25, the latter term
tends to 0 as t → 0 and this proves 4. The proof is now complete since 4. =⇒
1. is trivial.

40.3 *Conditional Expectation

In this section let (Ω,F , P ) be a probability space, i.e. (Ω,F , P ) is a measure
space and P (Ω) = 1. Let G ⊂ F be a sub – sigma algebra of F and write f ∈ Gb
if f : Ω → C is bounded and f is (G,BC) – measurable. In this section we will
write

Ef :=

∫
Ω

fdP.

Definition 40.9 (Conditional Expectation). Let EG : L2(Ω,F , P ) →
L2(Ω,G, P ) denote orthogonal projection of L2(Ω,F , P ) onto the closed sub-
space L2(Ω,G, P ). For f ∈ L2(Ω,G, P ), we say that EGf ∈ L2(Ω,F , P ) is the
conditional expectation of f.

Theorem 40.10. Let (Ω,F , P ) and G ⊂ F be as above and f, g ∈ L2(Ω,F , P ).
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1. If f ≥ 0, P – a.e. then EGf ≥ 0, P – a.e.
2. If f ≥ g, P – a.e. there EGf ≥ EGg, P – a.e.
3. |EGf | ≤ EG |f | , P – a.e.
4. ‖EGf‖L1 ≤ ‖f‖L1 for all f ∈ L2. So by the B.L.T. Theorem 32.4, EG

extends uniquely to a bounded linear map from L1(Ω,F , P ) to L1(Ω,G, P )
which we will still denote by EG .

5. If f ∈ L1(Ω,F , P ) then F = EGf ∈ L1(Ω,G, P ) iff

E(Fh) = E(fh) for all h ∈ Gb.

6. If g ∈ Gb and f ∈ L1(Ω,F , P ), then EG(gf) = g · EGf, P – a.e.

Proof. By the definition of orthogonal projection for h ∈ Gb,

E(fh) = E(f · EGh) = E(EGf · h).

So if f, h ≥ 0 then 0 ≤ E(fh) ≤ E(EGf · h) and since this holds for all h ≥ 0
in Gb, EGf ≥ 0, P – a.e. This proves (1). Item (2) follows by applying item
(1). to f − g. If f is real, ±f ≤ |f | and so by Item (2), ±EGf ≤ EG |f | , i.e.
|EGf | ≤ EG |f | , P – a.e. For complex f, let h ≥ 0 be a bounded and G –
measurable function. Then

E [|EGf |h] = E
[
EGf · sgn (EGf)h

]
= E

[
f · sgn (EGf)h

]
≤ E [|f |h] = E [EG |f | · h] .

Since h is arbitrary, it follows that |EGf | ≤ EG |f | , P – a.e. Integrating this
inequality implies

‖EGf‖L1 ≤ E |EGf | ≤ E [EG |f | · 1] = E [|f |] = ‖f‖L1 .

Item (5). Suppose f ∈ L1(Ω,F , P ) and h ∈ Gb. Let fn ∈ L2(Ω,F , P ) be a
sequence of functions such that fn → f in L1(Ω,F , P ). Then

E(EGf · h) = E( lim
n→∞

EGfn · h) = lim
n→∞

E(EGfn · h)

= lim
n→∞

E(fn · h) = E(f · h). (40.21)

This equation uniquely determines EG , for if F ∈ L1(Ω,G, P ) also satisfies
E(F · h) = E(f · h) for all h ∈ Gb, then taking h = sgn (F − EGf) in Eq.
(40.21) gives

0 = E((F − EGf)h) = E(|F − EGf |).
This shows F = EGf, P – a.e. Item (6) is now an easy consequence of this
characterization, since if h ∈ Gb,

E [(gEGf)h] = E [EGf · hg] = E [f · hg] = E [gf · h] = E [EG (gf) · h] .

Thus EG (gf) = g · EGf, P – a.e.

Proposition 40.11. If G0 ⊂ G1 ⊂ F . Then

EG0EG1 = EG1EG0 = EG0 . (40.22)

Proof. Equation (40.22) holds on L2(Ω,F , P ) by the basic properties of or-
thogonal projections. It then hold on L1(Ω,F , P ) by continuity and the density
of L2(Ω,F , P ) in L1(Ω,F , P ).

Example 40.12. Suppose that (X,M, µ) and (Y,N , ν) are two σ – finite measure
spaces. Let Ω = X × Y, F =M⊗N and P (dx, dy) = ρ(x, y)µ(dx)ν(dy) where
ρ ∈ L1(Ω,F , µ ⊗ ν) is a positive function such that

∫
X×Y ρd (µ⊗ ν) = 1. Let

πX : Ω → X be the projection map, πX(x, y) = x, and

G := σ(πX) = π−1
X (M) = {A× Y : A ∈M} .

Then f : Ω → R is G – measurable iff f = F ◦πX for some function F : X → R
which is N – measurable, see Lemma ??. For f ∈ L1(Ω,F , P ), we will now
show EGf = F ◦ πX where

F (x) =
1

ρ̄(x)
1(0,∞)(ρ̄(x)) ·

∫
Y

f(x, y)ρ(x, y)ν(dy),

ρ̄(x) :=
∫
Y
ρ(x, y)ν(dy). (By convention,

∫
Y
f(x, y)ρ(x, y)ν(dy) := 0 if∫

Y
|f(x, y)| ρ(x, y)ν(dy) =∞.)
By Tonelli’s theorem, the set

E := {x ∈ X : ρ̄(x) =∞} ∪
{
x ∈ X :

∫
Y

|f(x, y)| ρ(x, y)ν(dy) =∞
}

is a µ – null set. Since

E [|F ◦ πX |] =

∫
X

dµ(x)

∫
Y

dν(y) |F (x)| ρ(x, y) =

∫
X

dµ(x) |F (x)| ρ̄(x)

=

∫
X

dµ(x)

∣∣∣∣∫
Y

ν(dy)f(x, y)ρ(x, y)

∣∣∣∣
≤
∫
X

dµ(x)

∫
Y

ν(dy) |f(x, y)| ρ(x, y) <∞,

F ◦ πX ∈ L1(Ω,G, P ). Let h = H ◦ πX be a bounded G – measurable function,
then

E [F ◦ πX · h] =

∫
X

dµ(x)

∫
Y

dν(y)F (x)H(x)ρ(x, y)

=

∫
X

dµ(x)F (x)H(x)ρ̄(x)

=

∫
X

dµ(x)H(x)

∫
Y

ν(dy)f(x, y)ρ(x, y)

= E [hf ]
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and hence EGf = F ◦ πX as claimed.

This example shows that conditional expectation is a generalization of the
notion of performing integration over a partial subset of the variables in the
integrand. Whereas to compute the expectation, one should integrate over all
of the variables. See also Exercise 40.8 to gain more intuition about conditional
expectations.

Theorem 40.13 (Jensen’s inequality). Let (Ω,F , P ) be a probability space
and ϕ : R→ R be a convex function. Assume f ∈ L1(Ω,F , P ;R) is a function
such that (for simplicity) ϕ(f) ∈ L1(Ω,F , P ;R), then ϕ(EGf) ≤ EG [ϕ(f)] , P
– a.e.

Proof. Let us first assume that ϕ is C1 and f is bounded. In this case

ϕ(x)− ϕ(x0) ≥ ϕ′(x0)(x− x0) for all x0, x ∈ R. (40.23)

Taking x0 = EGf and x = f in this inequality implies

ϕ(f)− ϕ(EGf) ≥ ϕ′(EGf)(f − EGf)

and then applying EG to this inequality gives

EG [ϕ(f)]− ϕ(EGf) = EG [ϕ(f)− ϕ(EGf)]

≥ ϕ′(EGf)(EGf − EGEGf) = 0

The same proof works for general ϕ, one need only use Proposition ?? to replace
Eq. (40.23) by

ϕ(x)− ϕ(x0) ≥ ϕ′−(x0)(x− x0) for all x0, x ∈ R

where ϕ′−(x0) is the left hand derivative of ϕ at x0. If f is not bounded, apply
what we have just proved to fM = f1|f |≤M , to find

EG
[
ϕ(fM )

]
≥ ϕ(EGf

M ). (40.24)

Since EG : L1(Ω,F , P ;R)→ L1(Ω,F , P ;R) is a bounded operator and fM → f
and ϕ(fM ) → ϕ(f) in L1(Ω,F , P ;R) as M → ∞, there exists {Mk}∞k=1 such
that Mk ↑ ∞ and fMk → f and ϕ(fMk) → ϕ(f), P – a.e. So passing to the
limit in Eq. (40.24) shows EG [ϕ(f)] ≥ ϕ(EGf), P – a.e.

40.4 Exercises

Exercise 40.2. Let (X,M, µ) be a measure space and H := L2(X,M, µ).
Given f ∈ L∞(µ) let Mf : H → H be the multiplication operator defined by
Mfg = fg. Show M2

f = Mf iff there exists A ∈M such that f = 1A a.e.

Exercise 40.3. Let O(n) be the orthogonal groups consisting of n × n real
orthogonal matrices O, i.e. OtrO = I. For O ∈ O(n) and f ∈ L2(Rn) let
UOf(x) = f(O−1x). Show

1. UOf is well defined, namely if f = g a.e. then UOf = UOg a.e.
2. UO : L2(Rn) → L2(Rn) is unitary and satisfies UO1

UO2
= UO1O2

for all
O1, O2 ∈ O(n). That is to say the map O ∈ O(n) → U(L2(Rn)) – the
unitary operators on L2(Rn) is a group homomorphism, i.e. a “unitary
representation” of O(n).

3. For each f ∈ L2(Rn), the map O ∈ O(n) → UOf ∈ L2(Rn) is continuous.
Take the topology on O(n) to be that inherited from the Euclidean topology
on the vector space of all n×n matrices. Hint: see the proof of Proposition
31.25.

Exercise 40.4. Euclidean group representation and its infinitesimal generators
including momentum and angular momentum operators.

Exercise 40.5. Spherical Harmonics.

Exercise 40.6. The gradient and the Laplacian in spherical coordinates.

Exercise 40.7. Legendre polynomials.

40.5 Conditional Expectation Exercises

Exercise 40.8. Suppose (Ω,F , P ) is a probability space and A := {Ai}∞i=1 ⊂
F is a partition of Ω. (Recall this means Ω =

∐∞
i=1Ai.) Let G be the σ –

algebra generated by A. Show:

1. B ∈ G iff B = ∪i∈ΛAi for some Λ ⊂ N.
2. g : Ω → R is G – measurable iff g =

∑∞
i=1 λi1Ai for some λi ∈ R.

3. For f ∈ L1(Ω,F , P ), let E(f |Ai) := E [1Aif ] /P (Ai) if P (Ai) 6= 0 and
E(f |Ai) = 0 otherwise. Show

EGf =

∞∑
i=1

E(f |Ai)1Ai .
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41

Weak and Strong Derivatives

For this section, let Ω be an open subset of Rd, p, q, r ∈ [1,∞], Lp(Ω) =
Lp(Ω,BΩ ,m) and Lploc(Ω) = Lploc(Ω,BΩ ,m), where m is Lebesgue measure on
BRd and BΩ is the Borel σ – algebra on Ω. If Ω = Rd, we will simply write Lp

and Lploc for Lp(Rd) and Lploc(Rd) respectively. Also let

〈f, g〉 :=

∫
Ω

fgdm

for any pair of measurable functions f, g : Ω → C such that fg ∈ L1(Ω). For
example, by Hölder’s inequality, if 〈f, g〉 is defined for f ∈ Lp(Ω) and g ∈ Lq(Ω)
when q = p

p−1 .

Definition 41.1. A sequence {un}∞n=1 ⊂ Lploc(Ω) is said to converge to u ∈
Lploc(Ω) if limn→∞ ‖u− un‖Lq(K) = 0 for all compact subsets K ⊂ Ω.

The following simple but useful remark will be used (typically without fur-
ther comment) in the sequel.

Remark 41.2. Suppose r, p, q ∈ [1,∞] are such that r−1 = p−1 +q−1 and ft → f
in Lp(Ω) and gt → g in Lq(Ω) as t→ 0, then ftgt → fg in Lr(Ω). Indeed,

‖ftgt − fg‖r = ‖(ft − f) gt + f (gt − g)‖r
≤ ‖ft − f‖p ‖gt‖q + ‖f‖p ‖gt − g‖q → 0 as t→ 0

41.1 Basic Definitions and Properties

Definition 41.3 (Weak Differentiability). Let v ∈ Rd and u ∈ Lp(Ω)
(u ∈ Lploc(Ω)) then ∂vu is said to exist weakly in Lp(Ω) (Lploc(Ω)) if there
exists a function g ∈ Lp(Ω) (g ∈ Lploc(Ω)) such that

〈u, ∂vϕ〉 = −〈g, ϕ〉 for all ϕ ∈ C∞c (Ω). (41.1)

The function g if it exists will be denoted by ∂
(w)
v u. Similarly if α ∈ Nd0 and

∂α is as in Notation 31.21, we say ∂αu exists weakly in Lp(Ω) (Lploc(Ω)) iff
there exists g ∈ Lp(Ω) (Lploc(Ω)) such that

〈u, ∂αϕ〉 = (−1)|α|〈g, ϕ〉 for all ϕ ∈ C∞c (Ω).

More generally if p(ξ) =
∑
|α|≤N aαξ

α is a polynomial in ξ ∈ Rn, then p(∂)u

exists weakly in Lp(Ω) (Lploc(Ω)) iff there exists g ∈ Lp(Ω) (Lploc(Ω)) such
that

〈u, p(−∂)ϕ〉 = 〈g, ϕ〉 for all ϕ ∈ C∞c (Ω) (41.2)

and we denote g by w−p(∂)u.

By Corollary 31.41, there is at most one g ∈ L1
loc(Ω) such that Eq. (41.2)

holds, so w−p(∂)u is well defined.

Lemma 41.4. Let p(ξ) be a polynomial on Rd, k = deg (p) ∈ N, and u ∈
L1
loc(Ω) such that p(∂)u exists weakly in L1

loc(Ω). Then

1. suppm(w−p(∂)u) ⊂ suppm(u), where suppm(u) is the essential support of
u relative to Lebesgue measure, see Definition 31.26.

2. If deg p = k and u|U ∈ Ck (U,C) for some open set U ⊂ Ω, then w−p(∂)u =
p (∂)u a.e. on U.

Proof.

1. Since

〈w−p(∂)u, ϕ〉 = −〈u, p(−∂)ϕ〉 = 0 for all ϕ ∈ C∞c (Ω \ suppm(u)),

an application of Corollary 31.41 shows w−p(∂)u = 0 a.e. on Ω \
suppm(u). So by Lemma 31.27, Ω \ suppm(u) ⊂ Ω \ suppm(w−p(∂)u),
i.e. suppm(w−p(∂)u) ⊂ suppm(u).

2. Suppose that u|U is Ck and let ψ ∈ C∞c (U). (We view ψ as a function
in C∞c (Rd) by setting ψ ≡ 0 on Rd \ U.) By Corollary 31.38, there exists
γ ∈ C∞c (Ω) such that 0 ≤ γ ≤ 1 and γ = 1 in a neighborhood of supp(ψ).
Then by setting γu = 0 on Rd \ supp(γ) we may view γu ∈ Ckc (Rd) and
so by standard integration by parts (see Lemma 31.39) and the ordinary
product rule,

〈w−p(∂)u, ψ〉 = 〈u, p(−∂)ψ〉 = −〈γu, p(−∂)ψ〉
= 〈p(∂) (γu) , ψ〉 = 〈p(∂)u, ψ〉 (41.3)
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wherein the last equality we have γ is constant on supp(ψ). Since Eq.
(41.3) is true for all ψ ∈ C∞c (U), an application of Corollary 31.41 with
h = w−p(∂)u− p (∂)u and µ = m shows w−p(∂)u = p (∂)u a.e. on U.

Notation 41.5 In light of Lemma 41.4 there is no danger in simply writing
p (∂)u for w−p(∂)u. So in the sequel we will always interpret p(∂)u in the weak
or “distributional” sense.

Example 41.6. Suppose u(x) = |x| for x ∈ R, then ∂u(x) = sgn(x) in L1
loc (R)

while ∂2u(x) = 2δ(x) so ∂2u(x) does not exist weakly in L1
loc (R) .

Example 41.7. Suppose d = 2 and u(x, y) = 1y>x. Then u ∈ L1
loc

(
R2
)
, while

∂x1y>x = −δ (y − x) and ∂y1y>x = δ (y − x) and so that neither ∂xu or ∂yu
exists weakly. On the other hand (∂x + ∂y)u = 0 weakly. To prove these as-
sertions, notice u ∈ C∞

(
R2 \∆

)
where ∆ =

{
(x, x) : x ∈ R2

}
. So by Lemma

41.4, for any polynomial p (ξ) without constant term, if p (∂)u exists weakly
then p (∂)u = 0. However,

〈u,−∂xϕ〉 = −
∫
y>x

ϕx(x, y)dxdy = −
∫
R
ϕ(y, y)dy,

〈u,−∂yϕ〉 = −
∫
y>x

ϕy(x, y)dxdy =

∫
R
ϕ(x, x)dx and

〈u,−(∂x + ∂y)ϕ〉 = 0

from which it follows that ∂xu and ∂yu can not be zero while (∂x + ∂y)u = 0.
On the other hand if p(ξ) and q (ξ) are two polynomials and u ∈ L1

loc (Ω)
is a function such that p(∂)u exists weakly in L1

loc (Ω) and q (∂) [p (∂)u] exists
weakly in L1

loc (Ω) then (qp) (∂)u exists weakly in L1
loc (Ω) . This is because

〈u, (qp) (−∂)ϕ〉 = 〈u, p (−∂) q(−∂)ϕ〉
= 〈p (∂)u, q(−∂)ϕ〉 = 〈q(∂)p (∂)u, ϕ〉 for all ϕ ∈ C∞c (Ω) .

Example 41.8. Let u(x, y) = 1x>0 + 1y>0 in L1
loc

(
R2
)
. Then ∂xu(x, y) = δ(x)

and ∂yu(x, y) = δ(y) so ∂xu(x, y) and ∂yu(x, y) do not exist weakly in
L1
loc

(
R2
)
. However ∂y∂xu does exists weakly and is the zero function. This

shows ∂y∂xu may exists weakly despite the fact both ∂xu and ∂yu do not
exists weakly in L1

loc

(
R2
)
.

Lemma 41.9. Suppose u ∈ L1
loc (Ω) and p(ξ) is a polynomial of degree k such

that p (∂)u exists weakly in L1
loc (Ω) then

〈p (∂)u, ϕ〉 = 〈u, p (−∂)ϕ〉 for all ϕ ∈ Ckc (Ω) . (41.4)

Note: The point here is that Eq. (41.4) holds for all ϕ ∈ Ckc (Ω) not just
ϕ ∈ C∞c (Ω) .

Proof. Let ϕ ∈ Ckc (Ω) and choose η ∈ C∞c (B (0, 1)) such that
∫
Rd η(x)dx =

1 and let ηε(x) := ε−dη(x/ε). Then ηε ∗ϕ ∈ C∞c (Ω) for ε sufficiently small and
p (−∂) [ηε ∗ ϕ] = ηε∗p (−∂)ϕ→ p (−∂)ϕ and ηε∗ϕ→ ϕ uniformly on compact
sets as ε ↓ 0. Therefore by the dominated convergence theorem,

〈p (∂)u, ϕ〉 = lim
ε↓0
〈p (∂)u, ηε ∗ ϕ〉 = lim

ε↓0
〈u, p (−∂) (ηε ∗ ϕ)〉 = 〈u, p (−∂)ϕ〉.

Lemma 41.10 (Product Rule). Let u ∈ L1
loc(Ω), v ∈ Rd and ϕ ∈ C1(Ω). If

∂
(w)
v u exists in L1

loc(Ω), then ∂
(w)
v (ϕu) exists in L1

loc(Ω) and

∂(w)
v (ϕu) = ∂vϕ · u+ ϕ∂(w)

v u a.e.

Moreover if ϕ ∈ C1
c (Ω) and F := ϕu ∈ L1 (here we define F on Rd by setting

F = 0 on Rd \Ω ), then ∂(w)F = ∂vϕ · u+ ϕ∂
(w)
v u exists weakly in L1(Rd).

Proof. Let ψ ∈ C∞c (Ω), then using Lemma 41.9,

−〈ϕu, ∂vψ〉 = −〈u, ϕ∂vψ〉 = −〈u, ∂v (ϕψ)− ∂vϕ · ψ〉
= 〈∂(w)

v u, ϕψ〉+ 〈∂vϕ · u, ψ〉
= 〈ϕ∂(w)

v u, ψ〉+ 〈∂vϕ · u, ψ〉.

This proves the first assertion. To prove the second assertion let γ ∈ C∞c (Ω) such
that 0 ≤ γ ≤ 1 and γ = 1 on a neighborhood of supp(ϕ). So for ψ ∈ C∞c (Rd),
using ∂vγ = 0 on supp(ϕ) and γψ ∈ C∞c (Ω), we find

〈F, ∂vψ〉 = 〈γF, ∂vψ〉 = 〈F, γ∂vψ〉 = 〈(ϕu) , ∂v (γψ)− ∂vγ · ψ〉
= 〈(ϕu) , ∂v (γψ)〉 = −〈∂(w)

v (ϕu) , (γψ)〉
= −〈∂vϕ · u+ ϕ∂(w)

v u, γψ〉 = −〈∂vϕ · u+ ϕ∂(w)
v u, ψ〉.

This show ∂
(w)
v F = ∂vϕ · u+ ϕ∂

(w)
v u as desired.

Lemma 41.11. Suppose q ∈ [1,∞), p(ξ) is a polynomial in ξ ∈ Rd and u ∈
Lqloc(Ω). If there exists {um}∞m=1 ⊂ L

q
loc(Ω) such that p (∂)um exists in Lqloc(Ω)

for all m and there exists g ∈ Lqloc(Ω) such that for all ϕ ∈ C∞c (Ω),

lim
m→∞

〈um, ϕ〉 = 〈u, ϕ〉 and lim
m→∞

〈p (∂)um, ϕ〉 = 〈g, ϕ〉

then p (∂)u exists in Lqloc(Ω) and p (∂)u = g.

Proof. Since

〈u, p (−∂)ϕ〉 = lim
m→∞

〈um, p (−∂)ϕ〉 = lim
m→∞

〈p (∂)um, ϕ〉 = 〈g, ϕ〉

for all ϕ ∈ C∞c (Ω), p (∂)u exists and is equal to g ∈ Lqloc(Ω).
Conversely we have the following proposition.
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Proposition 41.12 (Mollification). Suppose q ∈ [1,∞), p1(ξ), . . . , pN (ξ) is
a collection of polynomials in ξ ∈ Rd and u ∈ Lqloc(Ω) such that pl(∂)u exists
weakly in Lqloc(Ω) for l = 1, 2, . . . , N. Then there exists un ∈ C∞c (Ω) such that
un → u in Lqloc(Ω) and pl (∂)un → pl (∂)u in Lqloc(Ω) for l = 1, 2, . . . , N.

Proof. Let η ∈ C∞c (B(0, 1)) such that
∫
Rd ηdm = 1 and ηε(x) := ε−dη(x/ε)

be as in the proof of Lemma 41.9. For any function f ∈ L1
loc (Ω) , ε > 0 and

x ∈ Ωε := {y ∈ Ω : dist(y,Ωc) > ε} , let

fε(x) := f ∗ ηε(x) := 1Ωf ∗ ηε(x) =

∫
Ω

f(y)ηε(x− y)dy.

Notice that fε ∈ C∞(Ωε) and Ωε ↑ Ω as ε ↓ 0. Given a compact set K ⊂ Ω
let Kε := {x ∈ Ω : dist(x,K) ≤ ε} . Then Kε ↓ K as ε ↓ 0, there exists ε0 > 0
such that K0 := Kε0 is a compact subset of Ω0 := Ωε0 ⊂ Ω (see Figure 41.1)
and for x ∈ K,

f ∗ ηε(x) :=

∫
Ω

f(y)ηε(x− y)dy =

∫
Kε

f(y)ηε(x− y)dy.

Therefore, using Theorem 31.33,

Fig. 41.1. The geomentry of K ⊂ K0 ⊂ Ω0 ⊂ Ω.

‖f ∗ ηε − f‖Lp(K) = ‖(1K0
f) ∗ ηε − 1K0

f‖Lp(K)

≤ ‖(1K0
f) ∗ ηε − 1K0

f‖Lp(Rd) → 0 as ε ↓ 0.

Hence, for all f ∈ Lqloc(Ω), f ∗ ηε ∈ C∞(Ωε) and

lim
ε↓0
‖f ∗ ηε − f‖Lp(K) = 0. (41.5)

Now let p(ξ) be a polynomial on Rd, u ∈ Lqloc(Ω) such that p (∂)u ∈ Lqloc(Ω)
and vε := ηε ∗ u ∈ C∞(Ωε) as above. Then for x ∈ K and ε < ε0,

p(∂)vε(x) =

∫
Ω

u(y)p(∂x)ηε(x− y)dy =

∫
Ω

u(y)p(−∂y)ηε(x− y)dy

=

∫
Ω

u(y)p(−∂y)ηε(x− y)dy = 〈u, p(∂)ηε(x− ·)〉

= 〈p(∂)u, ηε(x− ·)〉 = (p(∂)u)ε (x). (41.6)

From Eq. (41.6) we may now apply Eq. (41.5) with f = u and f = pl(∂)u for
1 ≤ l ≤ N to find

‖vε − u‖Lp(K) +

N∑
l=1

‖pl(∂)vε − pl(∂)u‖Lp(K) → 0 as ε ↓ 0.

For n ∈ N, let

Kn := {x ∈ Ω : |x| ≤ n and d(x,Ωc) ≥ 1/n}

(so Kn ⊂ Ko
n+1 ⊂ Kn+1 for all n and Kn ↑ Ω as n → ∞ or see Lemma 36.5)

and choose ψn ∈ C∞c (Ko
n+1, [0, 1]), using Corollary 31.38, so that ψn = 1 on a

neighborhood of Kn. Choose εn ↓ 0 such that Kn+1 ⊂ Ωεn and

‖vεn − u‖Lp(Kn) +

N∑
l=1

‖pl(∂)vεn − pl(∂)u‖Lp(Kn) ≤ 1/n.

Then un := ψn · vεn ∈ C∞c (Ω) and since un = vεn on Kn we still have

‖un − u‖Lp(Kn) +

N∑
l=1

‖pl(∂)un − pl(∂)u‖Lp(Kn) ≤ 1/n. (41.7)

Since any compact set K ⊂ Ω is contained in Ko
n for all n sufficiently large, Eq.

(41.7) implies

lim
n→∞

[
‖un − u‖Lp(K) +

N∑
l=1

‖pl(∂)un − pl(∂)u‖Lp(K)

]
= 0.

The following proposition is another variant of Proposition 41.12 which the
reader is asked to prove in Exercise 41.2 below.
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Proposition 41.13. Suppose q ∈ [1,∞), p1(ξ), . . . , pN (ξ) is a collection of
polynomials in ξ ∈ Rd and u ∈ Lq = Lq

(
Rd
)

such that pl(∂)u ∈ Lq for

l = 1, 2, . . . , N. Then there exists un ∈ C∞c
(
Rd
)

such that

lim
n→∞

[
‖un − u‖Lq +

N∑
l=1

‖pl(∂)un − pl(∂)u‖Lq

]
= 0.

Notation 41.14 (Difference quotients) For v ∈ Rd and h ∈ R \ {0} and a
function u : Ω → C, let

∂hv u(x) :=
u(x+ hv)− u(x)

h

for those x ∈ Ω such that x + hv ∈ Ω. When v is one of the standard basis
elements, ei for 1 ≤ i ≤ d, we will write ∂hi u(x) rather than ∂heiu(x). Also let

∇hu(x) :=
(
∂h1 u(x), . . . , ∂hnu(x)

)
be the difference quotient approximation to the gradient.

Definition 41.15 (Strong Differentiability). Let v ∈ Rd and u ∈ Lp, then
∂vu is said to exist strongly in Lp if the limh→0 ∂

h
v u exists in Lp. We will

denote the limit by ∂
(s)
v u.

It is easily verified that if u ∈ Lp, v ∈ Rd and ∂
(s)
v u ∈ Lp exists then ∂

(w)
v u

exists and ∂
(w)
v u = ∂

(s)
v u. The key to checking this assertion is the identity,

〈∂hv u, ϕ〉 =

∫
Rd

u(x+ hv)− u(x)

h
ϕ(x)dx

=

∫
Rd
u(x)

ϕ(x− hv)− ϕ(x)

h
dx = 〈u, ∂h−vϕ〉. (41.8)

Hence if ∂
(s)
v u = limh→0 ∂

h
v u exists in Lp and ϕ ∈ C∞c (Rd), then

〈∂(s)
v u, ϕ〉 = lim

h→0
〈∂hv u, ϕ〉 = lim

h→0
〈u, ∂h−vϕ〉 =

d

dh
|0〈u, ϕ (· − hv)〉 = −〈u, ∂vϕ〉

wherein Corollary 10.30 has been used in the last equality to bring the deriva-

tive past the integral. This shows ∂
(w)
v u exists and is equal to ∂

(s)
v u. What is

somewhat more surprising is that the converse assertion that if ∂
(w)
v u exists

then so does ∂
(s)
v u. Theorem 41.18 is a generalization of Theorem 40.8 from

L2 to Lp. For the reader’s convenience, let us give a self-contained proof of the
version of the Banach - Alaoglu’s Theorem which will be used in the proof of
Theorem 41.18. (This is the same as Theorem 36.25 above.)

Proposition 41.16 (Weak-∗ Compactness: Banach - Alaoglu’s Theo-
rem). Let X be a separable Banach space and {fn} ⊂ X∗ be a bounded se-
quence, then there exist a subsequence {f̃n} ⊂ {fn} and f ∈ X∗ such that
lim
n→∞

f̃n(x) = f(x) for all x ∈ X.

Proof. Let D ⊂ X be a countable dense subset of X and let M :=
supn ‖fn‖X∗ < ∞. Using Cantor’s diagonal trick, choose {f̃n} ⊂ {fn} such

that limn→∞ f̃n (x) =: f (x) exists for all x ∈ D. For x ∈ X and y ∈ D we have,∣∣∣f̃n (x)− f̃m (x)
∣∣∣ ≤ ∣∣∣f̃n (x)− f̃n (y)

∣∣∣+
∣∣∣f̃n (y)− f̃m (y)

∣∣∣+
∣∣∣f̃m (y)− f̃m (x)

∣∣∣
≤ 2M ‖x− y‖+

∣∣∣f̃n (y)− f̃m (y)
∣∣∣

and therefore,

lim sup
m,n→∞

∣∣∣f̃n (x)− f̃m (x)
∣∣∣ ≤2M ‖x− y‖+ lim sup

m,n→∞

∣∣∣f̃n (y)− f̃m (y)
∣∣∣

= 2M ‖x− y‖ .

As the right side may be made as small as we please it follows that f (x) :=
limn→∞ f̃n (x) exists for all x ∈ X. The resulting function f is easily seen to be
linear and bounded by M so that f ∈ X∗.

Corollary 41.17. Let p ∈ (1,∞] and q = p
p−1 . Then to every bounded sequence

{un}∞n=1 ⊂ Lp (Ω) there is a subsequence {ũn}∞n=1 and an element u ∈ Lp(Ω)
such that

lim
n→∞

〈ũn, g〉 = 〈u, g〉 for all g ∈ Lq (Ω) .

Proof. By Theorem 29.6, the map

v ∈ Lp(Ω)→ 〈v, ·〉 ∈ (Lq(Ω))
∗

is an isometric isomorphism of Banach spaces. By Theorem 31.15, Lq(Ω) is
separable for all q ∈ [1,∞) and hence the result now follows from Proposition
41.16.

Theorem 41.18 (Weak and Strong Differentiability). Suppose p ∈ [1,∞),
u ∈ Lp(Rd) and v ∈ Rd \ {0} . Then the following are equivalent:

1. There exists g ∈ Lp(Rd) and {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0
and

lim
n→∞

〈∂hnv u, ϕ〉 = 〈g, ϕ〉 for all ϕ ∈ C∞c (Rd).
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2. ∂
(w)
v u exists and is equal to g ∈ Lp(Rd), i.e. 〈u, ∂vϕ〉 = −〈g, ϕ〉 for all
ϕ ∈ C∞c (Rd).

3. There exists g ∈ Lp(Rd) and un ∈ C∞c (Rd) such that un
Lp→ u and ∂vun

Lp→ g
as n→∞.

4. ∂
(s)
v u exists and is is equal to g ∈ Lp(Rd), i.e. ∂hv u→ g in Lp as h→ 0.

Moreover if p ∈ (1,∞) any one of the equivalent conditions 1. – 4. above
are implied by the following condition.

1′. There exists {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0 and
supn

∥∥∂hnv u
∥∥
p
<∞.

Proof. 4. =⇒ 1. is simply the assertion that strong convergence implies
weak convergence. 1. =⇒ 2. For ϕ ∈ C∞c (Rd), Eq. (41.8) and the dominated
convergence theorem implies

〈g, ϕ〉 = lim
n→∞

〈∂hnv u, ϕ〉 = lim
n→∞

〈u, ∂hn−vϕ〉 = −〈u, ∂vϕ〉.

2. =⇒ 3. Let η ∈ C∞c (Rd,R) such that
∫
Rd η(x)dx = 1 and let ηm(x) =

mdη(mx), then by Proposition 31.37, hm := ηm ∗ u ∈ C∞(Rd) for all m and

∂vhm(x) = ∂vηm ∗ u(x) =

∫
Rd
∂vηm(x− y)u(y)dy

= 〈u,−∂v [ηm (x− ·)]〉 = 〈g, ηm (x− ·)〉 = ηm ∗ g(x).

By Theorem 31.33, hm → u ∈ Lp(Rd) and ∂vhm = ηm ∗ g → g in Lp(Rd) as
m→∞. This shows 3. holds except for the fact that hm need not have compact
support. To fix this let ψ ∈ C∞c (Rd, [0, 1]) such that ψ = 1 in a neighborhood
of 0 and let ψε(x) = ψ(εx) and (∂vψ)ε (x) := (∂vψ) (εx). Then

∂v (ψεhm) = ∂vψεhm + ψε∂vhm = ε (∂vψ)ε hm + ψε∂vhm

so that ψεhm → hm in Lp and ∂v (ψεhm) → ∂vhm in Lp as ε ↓ 0. Let um =
ψεmhm where εm is chosen to be greater than zero but small enough so that

‖ψεmhm − hm‖p + ‖∂v (ψεmhm)→ ∂vhm‖p < 1/m.

Then um ∈ C∞c (Rd), um → u and ∂vum → g in Lp as m → ∞. 3. =⇒ 4. By
the fundamental theorem of calculus

∂hv um(x) =
um(x+ hv)− um(x)

h

=
1

h

∫ 1

0

d

ds
um(x+ shv)ds =

∫ 1

0

(∂vum) (x+ shv)ds. (41.9)

and therefore,

∂hv um(x)− ∂vum(x) =

∫ 1

0

[(∂vum) (x+ shv)− ∂vum(x)] ds.

So by Minkowski’s inequality for integrals, Theorem 29.2,∥∥∂hv um(x)− ∂vum
∥∥
p
≤
∫ 1

0

‖(∂vum) (·+ shv)− ∂vum‖p ds

and letting m→∞ in this equation then implies∥∥∂hv u− g∥∥p ≤ ∫ 1

0

‖g(·+ shv)− g‖p ds.

By the dominated convergence theorem and Proposition 31.25, the right mem-
ber of this equation tends to zero as h→ 0 and this shows item 4. holds. (1′. =⇒
1. when p > 1) This is a consequence of Corollary 41.17 (or see Theorem 36.25

above) which asserts, by passing to a subsequence if necessary, that ∂hnv u
w→ g

for some g ∈ Lp(Rd).

Example 41.19. The fact that (1′) does not imply the equivalent conditions 1 –
4 in Theorem 41.18 when p = 1 is demonstrated by the following example. Let
u := 1[0,1], then∫

R

∣∣∣∣u(x+ h)− u(x)

h

∣∣∣∣ dx =
1

|h|

∫
R

∣∣1[−h,1−h](x)− 1[0,1](x)
∣∣ dx = 2

for |h| < 1. On the other hand the distributional derivative of u is ∂u(x) =
δ(x)− δ(x− 1) which is not in L1.

Alternatively, if there exists g ∈ L1(R, dm) such that

lim
n→∞

u(x+ hn)− u(x)

hn
= g(x) in L1

for some sequence {hn}∞n=1 as above. Then for ϕ ∈ C∞c (R) we would have on
one hand,∫

R

u(x+ hn)− u(x)

hn
ϕ(x)dx =

∫
R

ϕ(x− hn)− ϕ(x)

hn
u(x)dx

→ −
∫ 1

0

ϕ′(x)dx = (ϕ(0)− ϕ(1)) as n→∞,

while on the other hand,∫
R

u(x+ hn)− u(x)

hn
ϕ(x)dx→

∫
R
g(x)ϕ(x)dx.
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These two equations imply∫
R
g(x)ϕ(x)dx = ϕ(0)− ϕ(1) for all ϕ ∈ C∞c (R) (41.10)

and in particular that
∫
R g(x)ϕ(x)dx = 0 for all ϕ ∈ Cc(R\ {0, 1}). By Corollary

31.41, g(x) = 0 for m – a.e. x ∈ R\ {0, 1} and hence g(x) = 0 for m – a.e. x ∈ R.
But this clearly contradicts Eq. (41.10). This example also shows that the unit
ball in L1(R, dm) is not weakly sequentially compact. Compare with Lemma
21.21 below.

Corollary 41.20. If 1 ≤ p < ∞, u ∈ Lp such that ∂vu ∈ Lp, then
∥∥∂hv u∥∥Lp ≤

‖∂vu‖Lp for all h 6= 0 and v ∈ Rd.

Proof. By Minkowski’s inequality for integrals, Theorem 29.2, we may let
m→∞ in Eq. (41.9) to find

∂hv u(x) =

∫ 1

0

(∂vu) (x+ shv)ds for a.e. x ∈ Rd

and ∥∥∂hv u∥∥Lp ≤ ∫ 1

0

‖(∂vu) (·+ shv)‖Lp ds = ‖∂vu‖Lp .

Proposition 41.21 (A weak form of Weyls Lemma). If u ∈ L2(Rd) such
that f := 4u ∈ L2(Rd) then ∂αu ∈ L2

(
Rd
)

for |α| ≤ 2. Furthermore if k ∈ N0

and ∂βf ∈ L2
(
Rd
)

for all |β| ≤ k, then ∂αu ∈ L2
(
Rd
)

for |α| ≤ k + 2.

Proof. By Proposition 41.13, there exists un ∈ C∞c
(
Rd
)

such that un → u

and ∆un → ∆u = f in L2
(
Rd
)
. By integration by parts we find∫

Rd
|∇(un − um)|2 dm = (−∆(un − um), (un − um))L2

→ − (f − f, u− u) = 0 as m,n→∞

and hence by item 3. of Theorem 41.18, ∂iu ∈ L2 for each i. Since

‖∇u‖2L2 = lim
n→∞

∫
Rd
|∇un|2 dm = (−∆un, un)L2 → −(f, u) as n→∞

we also learn that

‖∇u‖2L2 = −(f, u) ≤ ‖f‖L2 · ‖u‖L2 . (41.11)

Let us now consider

d∑
i,j=1

∫
Rd
|∂i∂jun|2 dm = −

d∑
i,j=1

∫
Rd
∂jun∂

2
i ∂jundm

= −
d∑
j=1

∫
Rd
∂jun∂j∆undm =

d∑
j=1

∫
Rd
∂2
j un∆undm

=

∫
Rd
|∆un|2 dm = ‖∆un‖2L2 .

Replacing un by un − um in this calculation shows

d∑
i,j=1

∫
Rd
|∂i∂j(un − um)|2 dm = ‖∆(un − um)‖2L2 → 0 as m,n→∞

and therefore by Lemma 41.4 (also see Exercise 41.4), ∂i∂ju ∈ L2
(
Rd
)

for all
i, j and

d∑
i,j=1

∫
Rd
|∂i∂ju|2 dm = ‖∆u‖2L2 = ‖f‖2L2 . (41.12)

Combining Eqs. (41.11) and (41.12) gives the estimate∑
|α|≤2

‖∂αu‖2L2 ≤ ‖u‖2L2 + ‖f‖L2 · ‖u‖L2 + ‖f‖2L2

= ‖u‖2L2 + ‖∆u‖L2 · ‖u‖L2 + ‖∆u‖2L2 . (41.13)

Let us now further assume ∂if = ∂i∆u ∈ L2
(
Rd
)
. Then for h ∈ R \ {0} ,

∂hi u ∈ L2(Rd) and ∆∂hi u = ∂hi ∆u = ∂hi f ∈ L2(Rd) and hence by Eq. (41.13)
and what we have just proved, ∂α∂hi u = ∂hi ∂

αu ∈ L2 and∑
|α|≤2

∥∥∂hi ∂αu∥∥2

L2(Rd)
≤
∥∥∂hi u∥∥2

L2 +
∥∥∂hi f∥∥L2 ·

∥∥∂hi u∥∥L2 +
∥∥∂hi f∥∥2

L2

≤ ‖∂iu‖2L2 + ‖∂if‖L2 · ‖∂iu‖L2 + ‖∂if‖2L2

where the last inequality follows from Corollary 41.20. Therefore applying The-
orem 41.18 again we learn that ∂i∂

αu ∈ L2(Rd) for all |α| ≤ 2 and∑
|α|≤2

‖∂i∂αu‖2L2(Rd) ≤ ‖∂iu‖
2
L2 + ‖∂if‖L2 · ‖∂iu‖L2 + ‖∂if‖2L2

≤ ‖∇u‖2L2 + ‖∂if‖L2 · ‖∇u‖L2 + ‖∂if‖2L2

≤ ‖f‖L2 · ‖u‖L2

+ ‖∂if‖L2 ·
√
‖f‖L2 · ‖u‖L2 + ‖∂if‖2L2 .

The remainder of the proof, which is now an induction argument using the
above ideas, is left as an exercise to the reader.
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Theorem 41.22. Suppose that Ω is an open subset of Rd and V is an open
precompact subset of Ω.

1. If 1 ≤ p <∞, u ∈ Lp(Ω) and ∂iu ∈ Lp(Ω), then ‖∂hi u‖Lp(V ) ≤ ‖∂iu‖Lp(Ω)

for all 0 < |h| < 1
2dist(V,Ωc).

2. Suppose that 1 < p ≤ ∞, u ∈ Lp(Ω) and assume there exists a constants
CV <∞ and εV ∈ (0, 1

2dist(V,Ωc)) such that

‖∂hi u‖Lp(V ) ≤ CV for all 0 < |h| < εV .

Then ∂iu ∈ Lp(V ) and ‖∂iu‖Lp(V ) ≤ CV . Moreover if C := supV⊂⊂Ω CV <
∞ then in fact ∂iu ∈ Lp(Ω) and ‖∂iu‖Lp(Ω) ≤ C.

Proof. 1. Let U ⊂o Ω such that V̄ ⊂ U and Ū is a compact subset of Ω.
For u ∈ C1 (Ω) ∩ Lp(Ω), x ∈ B and 0 < |h| < 1

2dist(V,U c),

∂hi u(x) =
u(x+ hei)− u(x)

h
=

∫ 1

0

∂iu(x+ thei) dt

and in particular,

|∂hi u(x)| ≤
∫ 1

0

|∂u(x+ thei)|dt.

Therefore by Minikowski’s inequality for integrals,

‖∂hi u‖Lp(V ) ≤
∫ 1

0

‖∂u(·+ thei)‖Lp(V )dt ≤ ‖∂iu‖Lp(U). (41.14)

For general u ∈ Lp(Ω) with ∂iu ∈ Lp(Ω), by Proposition 41.12, there exists
un ∈ C∞c (Ω) such that un → u and ∂iun → ∂iu in Lploc(Ω). Therefore we may
replace u by un in Eq. (41.14) and then pass to the limit to find

‖∂hi u‖Lp(V ) ≤ ‖∂iu‖Lp(U) ≤ ‖∂iu‖Lp(Ω).

2. If ‖∂hi u‖Lp(V ) ≤ CV for all h sufficiently small then by Corollary 41.17 there

exists hn → 0 such that ∂hni u
w→ v ∈ Lp(V ). Hence if ϕ ∈ C∞c (V ),∫

V

vϕdm = lim
n→∞

∫
Ω

∂hni uϕdm = lim
n→∞

∫
Ω

u∂−hni ϕdm

= −
∫
Ω

u∂iϕ dm = −
∫
V

u∂iϕ dm.

Therefore ∂iu = v ∈ Lp(V ) and ‖∂iu‖Lp(V ) ≤ ‖v‖Lp(V ) ≤ CV .
1 Finally if

C := supV⊂⊂Ω CV <∞, then by the dominated convergence theorem,

‖∂iu‖Lp(Ω) = lim
V ↑Ω
‖∂iu‖Lp(V ) ≤ C.

We will now give a couple of applications of Theorem 41.18.

Lemma 41.23. Let v ∈ Rd.

1. If h ∈ L1 and ∂vh exists in L1, then
∫
Rd ∂vh(x)dx = 0.

2. If p, q, r ∈ [1,∞) satisfy r−1 = p−1 + q−1, f ∈ Lp and g ∈ Lq are functions
such that ∂vf and ∂vg exists in Lp and Lq respectively, then ∂v(fg) exists in
Lr and ∂v(fg) = ∂vf · g+ f ·∂vg. Moreover if r = 1 we have the integration
by parts formula,

〈∂vf, g〉 = −〈f, ∂vg〉. (41.15)

3. If p = 1, ∂vf exists in L1 and g ∈ BC1(Rd) (i.e. g ∈ C1(Rd) with g and
its first derivatives being bounded) then ∂v(gf) exists in L1 and ∂v(fg) =
∂vf · g + f · ∂vg and again Eq. (41.15) holds.

Proof. 1) By item 3. of Theorem 41.18 there exists hn ∈ C∞c (Rd) such that
hn → h and ∂vhn → ∂vh in L1. Then∫

Rd
∂vhn(x)dx =

d

dt
|0
∫
Rd
hn(x+ hv)dx =

d

dt
|0
∫
Rd
hn(x)dx = 0

and letting n→∞ proves the first assertion.
Alternatively, using the strong derivative notation we find,∫

Rd
∂vh(x)dx =

∫
Rd
L1−lim

t→0

h(x+ tv)− h (x)

t
dx = lim

t→0

∫
Rd

h(x+ tv)− h (x)

t
dx = 0.

2) Similarly there exists fn, gn ∈ C∞c (Rd) such that fn → f and ∂vfn → ∂vf
in Lp and gn → g and ∂vgn → ∂vg in Lq as n→∞. So by the standard product
rule and Remark 41.2, fngn → fg ∈ Lr as n→∞ and

1 Here we have used the result that if f ∈ Lp and fn ∈ Lp such that 〈fn, φ〉 → 〈f, φ〉
for all φ ∈ C∞c (V ) , then ‖f‖Lp(V ) ≤ lim infn→∞ ‖fn‖Lp(V ) . To prove this, we have
with q = p

p−1
that

|〈f, φ〉| = lim
n→∞

|〈fn, φ〉| ≤ lim inf
n→∞

‖fn‖Lp(V ) · ‖φ‖Lq(V )

and therefore,

‖f‖Lp(V ) = sup
φ6=0

|〈f, φ〉|
‖φ‖Lq(V )

≤ lim inf
n→∞

‖fn‖Lp(V ) .
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∂v(fngn) = ∂vfn · gn + fn · ∂vgn → ∂vf · g + f · ∂vg in Lr as n→∞.

It now follows from another application of Theorem 41.18 that ∂v(fg) exists in
Lr and ∂v(fg) = ∂vf · g + f · ∂vg. Eq. (41.15) follows from this product rule
and item 1. when r = 1.

3) Let fn ∈ C∞c (Rd) such that fn → f and ∂vfn → ∂vf in L1 as n → ∞.
Then as above, gfn → gf in L1 and ∂v(gfn)→ ∂vg · f + g∂vf in L1 as n→∞.
In particular if ϕ ∈ C∞c (Rd), then

〈gf, ∂vϕ〉 = lim
n→∞

〈gfn, ∂vϕ〉 = − lim
n→∞

〈∂v (gfn) , ϕ〉

= − lim
n→∞

〈∂vg · fn + g∂vfn, ϕ〉 = −〈∂vg · f + g∂vf, ϕ〉.

This shows ∂v(fg) exists (weakly) and ∂v(fg) = ∂vf · g + f · ∂vg. Again Eq.
(41.15) holds in this case by item 1. already proved.

Lemma 41.24. Let p, q, r ∈ [1,∞] satisfy p−1 + q−1 = 1 + r−1, f ∈ Lp, g ∈ Lq
and v ∈ Rd.

1. If ∂vf exists strongly in Lr, then ∂v(f ∗ g) exists strongly in Lp and

∂v(f ∗ g) = (∂vf) ∗ g.

2. If ∂vg exists strongly in Lq, then ∂v(f ∗ g) exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg.

3. If ∂vf exists weakly in Lp and g ∈ C∞c (Rd), then f ∗ g ∈ C∞(Rd), ∂v(f ∗ g)
exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg = (∂vf) ∗ g.

Proof. Items 1 and 2. By Young’s inequality (Theorem 31.31) and simple
computations: ∥∥∥∥τ−hv(f ∗ g)− f ∗ g

h
− (∂vf) ∗ g

∥∥∥∥
r

=

∥∥∥∥τ−hvf ∗ g − f ∗ gh
− (∂vf) ∗ g

∥∥∥∥
r

=

∥∥∥∥[τ−hvf − fh
− (∂vf)

]
∗ g
∥∥∥∥
r

≤
∥∥∥∥τ−hvf − fh

− (∂vf)

∥∥∥∥
p

‖g‖q

which tends to zero as h → 0. The second item is proved analogously, or just
make use of the fact that f ∗ g = g ∗ f and apply Item 1. Using the fact that
g(x− ·) ∈ C∞c (Rd) and the definition of the weak derivative,

f ∗ ∂vg(x) =

∫
Rd
f(y) (∂vg) (x− y)dy = −

∫
Rd
f(y) (∂vg(x− ·)) (y)dy

=

∫
Rd
∂vf(y)g(x− y)dy = ∂vf ∗ g(x).

Item 3. is a consequence of this equality and items 1. and 2.

Proposition 41.25. Let Ω = (α, β) ⊂ R be an open interval and f ∈ L1
loc(Ω)

such that ∂(w)f = 0 in L1
loc(Ω). Then there exists c ∈ C such that f = c

a.e. More generally, suppose F : C∞c (Ω) → C is a linear functional such that
F (ϕ′) = 0 for all ϕ ∈ C∞c (Ω), where ϕ′(x) = d

dxϕ(x), then there exists c ∈ C
such that

F (ϕ) = 〈c, ϕ〉 =

∫
Ω

cϕ(x)dx for all ϕ ∈ C∞c (Ω). (41.16)

Proof. Before giving a proof of the second assertion, let us show it includes
the first. Indeed, if F (ϕ) :=

∫
Ω
ϕfdm and ∂(w)f = 0, then F (ϕ′) = 0 for all

ϕ ∈ C∞c (Ω) and therefore there exists c ∈ C such that∫
Ω

ϕfdm = F (ϕ) = c〈ϕ, 1〉 = c

∫
Ω

ϕfdm.

But this implies f = c a.e. So it only remains to prove the second assertion. Let
η ∈ C∞c (Ω) such that

∫
Ω
ηdm = 1. Given ϕ ∈ C∞c (Ω) ⊂ C∞c (R) , let ψ(x) =∫ x

−∞ (ϕ(y)− η(y)〈ϕ, 1〉) dy. Then ψ′(x) = ϕ(x)− η(x)〈ϕ, 1〉 and ψ ∈ C∞c (Ω) as
the reader should check. Therefore,

0 = F (ψ) = F (ϕ− 〈ϕ, η〉η) = F (ϕ)− 〈ϕ, 1〉F (η)

which shows Eq. (41.16) holds with c = F (η). This concludes the proof, however
it will be instructive to give another proof of the first assertion.

Alternative proof of first assertion. Suppose f ∈ L1
loc(Ω) and ∂(w)f = 0

and fm := f ∗ηm as is in the proof of Lemma 41.9. Then f ′m = ∂(w)f ∗ηm = 0,
so fm = cm for some constant cm ∈ C. By Theorem 31.33, fm → f in L1

loc(Ω)
and therefore if J = [a, b] is a compact subinterval of Ω,

|cm − ck| =
1

b− a

∫
J

|fm − fk| dm→ 0 as m, k →∞.

So {cm}∞m=1 is a Cauchy sequence and therefore c := limm→∞ cm exists and
f = limm→∞ fm = c a.e.

We will say more about the connection of weak derivatives to pointwise
derivatives in Section 25.5 below.
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41.2 Exercises

Exercise 41.1. Give another proof of Lemma 41.10 base on Proposition 41.12.

Exercise 41.2. Prove Proposition 41.13. Hints: 1. Use uε as defined in the
proof of Proposition 41.12 to show it suffices to consider the case where
u ∈ C∞

(
Rd
)
∩ Lq

(
Rd
)

with ∂αu ∈ Lq
(
Rd
)

for all α ∈ Nd0. 2. Then let
ψ ∈ C∞c (B(0, 1), [0, 1]) such that ψ = 1 on a neighborhood of 0 and let
un(x) := u(x)ψ(x/n).

Exercise 41.3. Suppose p(ξ) is a polynomial in ξ ∈ Rd, p ∈ (1,∞), q := p
p−1 ,

u ∈ Lp such that p(∂)u ∈ Lp and v ∈ Lq such that p (−∂) v ∈ Lq. Show
〈p (∂)u, v〉 = 〈u, p (−∂) v〉.

Exercise 41.4. Let p ∈ [1,∞), α be a multi index (if α = 0 let ∂0 be the
identity operator on Lp),

D (∂α) := {f ∈ Lp(Rn) : ∂αf exists weakly in Lp(Rn)}

and for f ∈ D (∂α) (the domain of ∂α) let ∂αf denote the α – weak derivative
of f. (See Definition 41.3.)

1. Show ∂α is a densely defined operator on Lp, i.e. D (∂α) is a dense linear
subspace of Lp and ∂α : D (∂α)→ Lp is a linear transformation.

2. Show ∂α : D (∂α)→ Lp is a closed operator, i.e. the graph,

Γ (∂α) := {(f, ∂αf) ∈ Lp × Lp : f ∈ D (∂α)} ,

is a closed subspace of Lp × Lp.
3. Show ∂α : D (∂α) ⊂ Lp → Lp is not bounded unless α = 0. (The norm on
D (∂α) is taken to be the Lp – norm.)

Exercise 41.5. Let p ∈ [1,∞), f ∈ Lp and α be a multi index. Show ∂αf exists
weakly (see Definition 41.3) in Lp iff there exists fn ∈ C∞c (Rn) and g ∈ Lp such
that fn → f and ∂αfn → g in Lp as n → ∞. Hints: See exercises 41.2 and
41.4.

Exercise 41.6. 8.8 on p. 246.

Exercise 41.7. Assume n = 1 and let ∂ = ∂e1 where e1 = (1) ∈ R1 = R.

1. Let f(x) = |x| , show ∂f exists weakly in L1
loc(R) and ∂f(x) = sgn(x) for

m – a.e. x.
2. Show ∂(∂f) does not exists weakly in L1

loc(R).
3. Generalize item 1. as follows. Suppose f ∈ C(R,R) and there exists a finite

set Λ := {t1 < t2 < · · · < tN} ⊂ R such that f ∈ C1(R \ Λ,R). Assuming
∂f ∈ L1

loc (R) , show ∂f exists weakly and ∂(w)f(x) = ∂f(x) for m – a.e. x.

Exercise 41.8. Suppose that f ∈ L1
loc(Ω) and v ∈ Rd and {ej}nj=1 is the

standard basis for Rd. If ∂jf := ∂ejf exists weakly in L1
loc(Ω) for all j =

1, 2, . . . , n then ∂vf exists weakly in L1
loc(Ω) and ∂vf =

∑n
j=1 vj∂jf.

Exercise 41.9. Suppose, f ∈ L1
loc(Rd) and ∂vf exists weakly and ∂vf = 0 in

L1
loc(Rd) for all v ∈ Rd. Then there exists λ ∈ C such that f(x) = λ for m – a.e.

x ∈ Rd. Hint: See steps 1. and 2. in the outline given in Exercise 41.10 below.

Exercise 41.10 (A generalization of Exercise 41.9). Suppose Ω is a con-
nected open subset of Rd and f ∈ L1

loc(Ω). If ∂αf = 0 weakly for α ∈ Zn+ with
|α| = N + 1, then f(x) = p(x) for m – a.e. x where p(x) is a polynomial of
degree at most N. Here is an outline.

1. Suppose x0 ∈ Ω and ε > 0 such that C := Cx0
(ε) ⊂ Ω and let ηn be a

sequence of approximate δ – functions such supp(ηn) ⊂ B0(1/n) for all n.
Then for n large enough, ∂α(f ∗ηn) = (∂αf)∗ηn on C for |α| = N +1. Now
use Taylor’s theorem to conclude there exists a polynomial pn of degree at
most N such that fn = pn on C.

2. Show p := limn→∞ pn exists on C and then let n → ∞ in step 1. to show
there exists a polynomial p of degree at most N such that f = p a.e. on C.

3. Use Taylor’s theorem to show if p and q are two polynomials on Rd which
agree on an open set then p = q.

4. Finish the proof with a connectedness argument using the results of steps
2. and 3. above.

Exercise 41.11. Suppose Ω ⊂o Rd and v, w ∈ Rd. Assume f ∈ L1
loc(Ω)

and that ∂v∂wf exists weakly in L1
loc(Ω), show ∂w∂vf also exists weakly and

∂w∂vf = ∂v∂wf.

Exercise 41.12. Let d = 2 and f(x, y) = 1x≥0. Show ∂(1,1)f = 0 weakly in
L1
loc despite the fact that ∂1f does not exist weakly in L1

loc!

Exercise 41.13. Let f ∈ L1
loc(R) such that f ′ = 0 weakly in L1

loc(R), i.e.
〈f, ϕ′〉 = 0 for all ϕ ∈ C∞c (R) . Show there exists c ∈ C such that f = c a.e.
[Hint: you might use convolution to reduce the problem to the case where f is
smooth.]

Exercise 41.14. Let f ∈ L1
loc(R). Then ∂wf = g exists in L1

loc(R) iff f has a

continuous version f̃ which is absolutely continuous on all compact subintervals
of R. Moreover, ∂wf = f̃ ′ a.e., where f̃ ′(x) is the usual pointwise derivative.
[Hint: when ∂wf = g exists in L1

loc(R) consider F := f (x) −
∫ x

0
g (y) dy and

make use of Exercise 41.13.]
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42

Conditional Expectation

Now that we have defined the Bochner integral it is time to move on to
conditional expectations. For now let us now suppose that µ is a probability
measure on (Ω,F) and denote the Bochner integral, µ (F ) =

∫
Ω
Fdµ by EF.

Given a sub-σ – algebra G of F we would like to define E [F |G] as an element
of L1 (Ω,G, µ;X) for each F ∈ L1 (Ω,F , µ;X) . As with the Bochner integral
we will start with simple functions. For any F ∈ S (µ;X) we have the identity,

F =
∑

x∈Ran(F )\{0}

x1{F=x}

and hence it is reasonable to require,

EGF = E [F |G] = E

 ∑
x∈Ran(F )\{0}

x1{F=x}|G

 =
∑

x∈Ran(F )\{0}

E
[
x1{F=x}|G

]
.

Furthermore, since x ∈ X is constant in the previous formula we should further
require,

EGF =
∑

x∈Ran(F )\{0}

x · E
[
1{F=x}|G

]
. (42.1)

Proposition 42.1. If EG : S (µ;X) → L1 (Ω,G, µ;X) is the map defined by
Eq. (42.1), then;

1. EG is linear
2. ‖EGF‖L1(µ) ≤ ‖F‖L1(µ) for all F ∈ S (µ;X) , i.e. EG is a contraction,
3. EGF satisfies,

E [EGF : A] = E [F : A] for all A ∈ G

and
ϕ ◦ EGF = EG [ϕ ◦ F ] a.s. for all ϕ ∈ X∗.

Proof. 1) If 0 6= c ∈ R and F ∈ S (µ;X) , then

EG(cF ) =
∑
x∈X

xE
[
1{cF=x}|G

]
=
∑
x∈X

xE
[
1{F=c−1x}|G

]
=
∑
y∈X

cy E
[
1{F=y}|G

]
= cEG(F )

and if c = 0, EG(0F ) = 0 = 0EG(F ).
If F,G ∈ S (µ;X) ,

EG(F +G) =
∑
x

xEG [1F+G=x]

=
∑
x

x
∑

y+z=x

EG [1F=y & G=z]

=
∑
y,z

(y + z)EG [1F=y & G=z]

=
∑
y

yEG [1F=y] +
∑
z

zEG [1G=z]

= EG(F ) + EG(G).

2) Integrating the pointwise inequality,

‖EGF‖ =
∑

x∈Ran(F )\{0}

‖x‖ · E
[
1{F=x}|G

]
implies,

‖EGF‖L1(µ) ≤
∑

x∈Ran(F )\{0}

‖x‖ · E
(
E
[
1{F=x}|G

])
=

∑
x∈Ran(F )\{0}

‖x‖ · E
(
1{F=x}

)

= E

 ∑
x∈Ran(F )\{0}

‖x‖ 1{F=x}


= E ‖F‖ = ‖F‖L1(µ) .

3. If A ∈ G we have,
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E [EGF : A] = E

∑
x6=0

x · E
[
1{F=x}|G

]
· 1A


= E

∑
x6=0

x · E
[
1A1{F=x}|G

]
=
∑
x6=0

E
[
x · E

[
1A1{F=x}|G

]]
=
∑
x6=0

x · E
[
E
[
1A1{F=x}|G

]]
=
∑
x 6=0

x · E
[
1A1{F=x}

]

= E

∑
x6=0

x · 1A1{F=x}


= E

∑
x6=0

x · 1{1AF=x}


= E [F : A] .

where we have used Example ?? two times in the above computation and all of
the above sums are really over x ∈ Ran (F ) \ {0} . Finally if ϕ ∈ X∗ we have,

ϕ ◦ EGF =
∑
x6=0

ϕ (x) · E
[
1{F=x}|G

]

= E

∑
x6=0

ϕ (x) · 1{F=x}|G

 = E [ϕ ◦ F |G] .

We may now apply the bounded linear transformation Theorem 32.4 in order
to extend EG to all of L1 (Ω,F , µ;X) .

Theorem 42.2 (Conditional expectation). Let F ∈ L1 (Ω,F , µ;X) . There
is a linear map, EG : L1 (Ω,F , µ;X) → L1 (Ω,G, µ;X) , such that EGF is
uniquely determined by either;

1. EGF is the unique element in L1 (Ω,G, µ;X) such that

E [EGF : A] = E [F : A] for all A ∈ G

or

2. EGF is the unique element in L1 (Ω,G, µ;X) such that ϕ◦EGF = EG [ϕ ◦ F ]
a.s. for all ϕ ∈ X∗.

Moreover, EG : L1 (Ω,F , µ;X)→ L1 (Ω,G, µ;X) is a contraction.

Proof. The existence of contraction EG : L1 (Ω,F , µ;X)→ L1 (Ω,G, µ;X)
with the desired properties easily follows from Propositions ?? and 42.1 along
with the bounded linear transformation Theorem 32.4. So it only remains to
verify that EGF is uniquely determined by either of the two conditions above.

1) If G ∈ L1 (Ω,G, µ;X) satisfies E [G : A] = E [F : A] = E [EGF : A] for
all A ∈ G then E [G− EGF : A] = 0 for all A ∈ G. If G 6= EGF a.s., we may
use Lemma ?? in order to find A ∈ G with µ (A) > 0 and ϕ ∈ X∗ such that
ϕ ◦ (G− EGF ) > 0 on A. We then may conclude,

0 = ϕ (0) = ϕ (E [G− EGF : A]) = E [ϕ (G− EGF ) : A] > 0

which is absurd and hence we must have G 6= EGF a.s.
2) If G ∈ L1 (Ω,G, µ;X) satisfies ϕ ◦ G = EG [ϕ ◦ F ] = ϕ ◦ EGF a.s. for all

ϕ ∈ X∗ then ϕ (G− EGF ) = 0 a.s. for all ϕ ∈ X∗ and the result follows from
Corollary ??. Let us recall the proof here. As in the proof of Proposition ??,
there exists a countable subset, D ⊂ X∗, such that ‖x‖ = supϕ∈D ϕ (x) for all
x ∈ X. Therefore we may conclude,

‖G− EGF‖ = sup
ϕ∈D

ϕ (G− EGF ) = 0 a.s.,

i.e. G = EGF a.s.
Alternate proof. If G ∈ L1 (Ω,G, µ;X) satisfies ϕ ◦ G = EG [ϕ ◦ F ] =

ϕ ◦ EGF a.s. for all ϕ ∈ X∗ then for any A ∈ G we have

ϕ (E [G : A]) = E [ϕ ◦G : A] = E [ϕ ◦ EGF : A] = ϕ (E [EGF : A]) .

Therefore by the Hahn - Banach theorem X∗ separates points and we may
conclude that E [G : A] = E [EGF : A] and so by item 1., G = EGF a.s.

Proposition 42.3. Let G ⊂ F and F ∈ L1 (Ω,F , µ;X) . The conditional ex-
pectation operator (EG) satisfies the following additional properties;

1. ‖EGF‖ ≤ EG ‖F‖ a.s..
2. ‖EGF‖Lp(µ) ≤ ‖F‖Lp(µ) for all F ∈ Lp (Ω,F , µ;X) where 1 ≤ p <∞.
3. If h ∈ L∞ (Ω,G, µ) , then EG [hF ] = h · EG [F ] a.s.
4. If G0 ⊂ G ⊂ F then EG0EG = EG0 = EGEG0 .

Proof. We prove each item in turn.
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1. If F ∈ S (µ;X) , then

‖EGF‖ =

∥∥∥∥∥∥
∑
x 6=0

xEG1F=x

∥∥∥∥∥∥ ≤
∑
x 6=0

‖x‖EG1F=x

= EG

∑
x 6=0

‖x‖ 1F=x

 = EG ‖F‖ .

For general F ∈ L1 (Ω,F , µ;X) we may choose Fn ∈ S (µ;X) such that
Fn → F in L1 and therefore, ‖Fn‖ → ‖F‖ , ‖EGFn‖ → ‖EGF‖ , and
EG ‖Fn‖ → EG ‖F‖ in L1 (µ) as n → ∞. Thus we may pass to the limit in
the inequality ‖EGFn‖ ≤ EG ‖Fn‖ in order to show ‖EGF‖ ≤ EG ‖F‖ a.s..
Alternative proof. If ϕ ∈ X∗ with ‖ϕ‖X∗ = 1, we have

|ϕ ◦ EGF | = |EG [ϕ ◦ F ]| ≤ EG |[ϕ ◦ F ]| ≤ EG ‖F‖ a.s.

Therefore if we let {ϕn} be as defined in the proof of Proposition ??, then

‖EGF‖ = sup
n
|ϕn ◦ EGF | ≤ EG ‖F‖ a.s.

2. For the second item we have,

‖EGF‖pLp(µ) = E [‖EGF‖p] ≤ E [(EG ‖F‖)p] ≤ E [EG [‖F‖p]] = E ‖F‖p .

3. If ϕ ∈ X∗ then

ϕ (h · EG [F ]) = h · ϕ ◦ EG [F ] = h · EG [ϕ ◦ F ]

= EG [h · ϕ ◦ F ] = EG [ϕ (h · F )]

= ϕ (EG [h · F ]) .

Since ϕ ∈ X∗ was arbitrary it follows that EG [h · F ] = h · EG [F ] a.s.
4. If ϕ ∈ X∗ then

ϕ (EG0EGF ) = EG0 [ϕ (EGF )] = EG0 [EG (ϕ ◦ F )]

= EG0 (ϕ ◦ F ) = ϕ ◦ EG0F

and similarly,
ϕ (EGEG0F ) = ϕ ◦ EG0F.

Since ϕ ∈ X∗ was arbitrary the result follows.

42.1 Basic Martingale Results

In this section we will write µ for P. Suppose (Ω,F , {Fn}∞n=0 , P ) is a filtered
probability space, 1 ≤ p <∞, and let F∞ := ∨∞n=1Fn := σ (∪∞n=1Fn) . We will
say that Mn : Ω → X is a martingale if {Mn}∞n=1 is an adapted integrable
process such that EBnMn+1 = Mn a.s. Notice that if {Mn} is a martingale then
Xn := ‖Mn‖ is a positive submartingale.

Lemma 42.4. The space ∪∞n=1L
p (Ω,Fn, P ) is dense in Lp (Ω,F∞, P ) .

Proof. The spaces Lp (Ω,Fn, P ) form an increasing sequence of closed sub-
spaces of Lp (Ω,F∞, P ) . Further let A be the algebra of functions consisting
of those f ∈ ∪∞n=1L

p (Ω,Fn, P ) such that f is bounded. As a consequence of
the density Theorem 16.10 (from the probability notes), we know that A and
hence ∪∞n=1L

p (Ω,Fn, P ) is dense in Lp (Ω,F∞, P ) . This completes the proof.
However for the readers convenience let us quickly review the proof of Theorem
16.10 (from the probability notes) in this context.

Let H denote those bounded F∞ – measurable functions, f : Ω → R, for
which there exists {ϕn}∞n=1 ⊂ A such that limn→∞ ‖f − ϕn‖Lp(P ) = 0. A rou-
tine check shows H is a subspace of the bounded F∞ –measurable R – valued
functions on Ω, 1 ∈ H, A ⊂ H and H is closed under bounded convergence. To
verify the latter assertion, suppose fn ∈ H and fn → f boundedly. Then, by the
dominated (or bounded) convergence theorem, limn→∞ ‖(f − fn)‖Lp(P ) = 0.1

We may now choose ϕn ∈ A such that ‖ϕn − fn‖Lp(P ) ≤
1
n then

lim sup
n→∞

‖f − ϕn‖Lp(P ) ≤ lim sup
n→∞

‖(f − fn)‖Lp(P )

+ lim sup
n→∞

‖fn − ϕn‖Lp(P ) = 0,

which implies f ∈ H.
An application of Dynkin’s Multiplicative System Theorem, now shows H

contains all bounded σ (A) = F∞ – measurable functions on Ω. Since for any
f ∈ Lp (Ω,F , P ) , f1|f |≤n ∈ H there exists ϕn ∈ A such that ‖fn − ϕn‖p ≤ n−1.
Using the DCT we know that fn → f in Lp and therefore by Minikowski’s
inequality it follows that ϕn → f in Lp.

Corollary 42.5. The space ∪∞n=1L
p (Ω,Fn, P ;X) is dense in

Lp (Ω,F∞, P ;X) .

Proof. Since S (Ω,F∞, P ;X) is dense in Lp (Ω,F∞, P ;X) it suffices to
show that every element of S (Ω,F∞, P ;X) is well approximated by some
G ∈ ∪∞n=1L

p (Ω,Fn, P ;X) and for this it suffices to show 1A · x is well ap-
proximated by by some G ∈ ∪∞n=1L

p (Ω,Fn, P ;X) for all x ∈ X and A ∈ F∞.
1 It is at this point that the proof would break down if p =∞.
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But as a consequence Lemma 42.4 we may find h ∈ ∪∞n=1L
p (Ω,Fn, P ) such

that ‖h− 1A‖Lp(P ) is as small as we please and therefore

‖1A · x− h · x‖Lp(P ) ≤ ‖x‖ · ‖h− 1A‖Lp(P )

can be made as small as we please as well.

Theorem 42.6. For every F ∈ Lp (Ω,F , P ) , Mn = E [F |Fn] is a martingale
and Mn →M∞ := E [F |F∞] in Lp (Ω,F∞, P ;X) as n→∞.

Proof. The tower property immediately shows Mn = E [F |Fn] is a mar-
tingale. Since conditional expectation is a contraction on Lp it follows that
E ‖Mn‖p ≤ E ‖F‖p <∞ for all n ∈ N∪{∞} . So to finish the proof we need to
show Mn →M∞ in Lp (Ω,F , P ;X) as n→∞.

If F ∈ ∪∞n=1L
p (Ω,Fn, P ;X) , then Mn = F for all sufficiently large n and

for n = ∞ and the result holds. Now suppose that F ∈ Lp (Ω,F∞, P ;X) and
G ∈ ∪∞n=1L

p (Ω,Fn, P ;X) . Then

‖EF∞F − EFnF‖p ≤ ‖EF∞F − EF∞G‖p + ‖EF∞G− EFnG‖p + ‖EFnG− EFnF‖p
≤ 2 ‖F −G‖p + ‖EF∞G− EFnG‖p

and hence
lim sup
n→∞

‖EF∞F − EFnF‖p ≤ 2 ‖F −G‖p .

Using the density Corollary 42.5 we may choose G ∈ ∪∞n=1L
p (Ω,Fn, P ;X)

as close to F ∈ Lp (Ω,F∞, P ;X) as we please and therefore it follows that
lim supn→∞ ‖EF∞F − EFnF‖p = 0.

For general F ∈ Lp (Ω,F , P ) it suffices to observe that M∞ := E [F |F∞] ∈
Lp (Ω,F∞, P ) and by the tower property of conditional expectations,

E [M∞|Fn] = E [E [F |F∞] |Fn] = E [F |Fn] = Mn.

So again Mn →M∞ in Lp as desired.
The converse of Theorem 42.6 holds as well but is not really needed for our

purposes. It use compactness results from the probability notes which need to
be transferred here.

Theorem 42.7 (Probably should skip). Suppose 1 ≤ p < ∞ and
{Mn}∞n=1 ⊂ Lp (Ω,F , P ;X) is a martingale. Further assume that
supn ‖Mn‖p < ∞ and that {Mn}∞n=1 is uniformly integrable if p = 1.
Then there exists M∞ ∈ Lp (Ω,F∞, P ;X) such that Mn := E [M∞|F∞] .
Moreover by Theorem 42.6 we know that Mn → M∞ in Lp (Ω,F∞, P ) as
n→∞ and hence M∞ is uniquely determined by {Mn}∞n=1 .

Proof. By Theorems ?? and ?? exists M∞ ∈ Lp (Ω,F∞, P ) and a subse-
quence, Yk = Mnksuch that

lim
k→∞

E [Ykh] = E [M∞h] for all h ∈ Lq (Ω,F∞, P )

where q := p (p− 1)
−1
. Using the martingale property, if h ∈ (Fn)b for some

n, it follows that E [Ykh] = E [Mnh] for all large k and therefore that

E [M∞h] = E [Mnh] for all h ∈ (Fn)b .

This implies that Mn = E [M∞|Fn] as desired.

Theorem 42.8 (Almost sure convergence). Suppose (Ω,F , {Fn}∞n=0 , P ) is
a filtered probability space, 1 ≤ p <∞, and let F∞ := ∨∞n=1Fn := σ (∪∞n=1Fn) .
Then for every F ∈ L1 (Ω,F , P ;X) , the martingale, Mn = E [F |Fn] , converges
almost surely to M∞ := E [F |F∞] .

Proof. We follow the proof in Stroock [21, Corollary 5.2.7]. Let H denote
those F ∈ L1 (Ω,F∞, P ;X) such that Mn := E [F |Fn] → M∞ = F a.s. As
we saw above H contains the dense subspace ∪∞n=1L

1 (Ω,Fn, P ;X) . It is also
easy to see that H is a linear space. Thus it suffices to show that H is closed
in L1 (P ;X) . To prove this let F (k) ∈ H with F (k) → F in L1 (P ) and let

M
(k)
n := E

[
F (k)|Fn

]
. Then by the Doob’s maximal inequality applied to the

sub-martingale
{∥∥∥Mn −M (k)

n

∥∥∥}∞
n=1

we have

P

(
sup
n

∥∥∥Mn −M (k)
n

∥∥∥ ≥ a) ≤ 1

a
sup
n
E
∥∥∥Mn −M (k)

n

∥∥∥ ≤ 1

a
E
∥∥∥F − F (k)

∥∥∥
for all a > 0 and k ∈ N. Therefore,

P

(
sup
n≥N
‖F −Mn‖ ≥ 3a

)
≤ P

(∥∥∥F − F (k)
∥∥∥ ≥ a)+ P

(
sup
n≥N

∥∥∥F (k) −M (k)
n

∥∥∥ ≥ a)
+ P

(
sup
n≥N

∥∥∥M (k)
n −Mn

∥∥∥ ≥ a)
≤ 2

a
E
∥∥∥F − F (k)

∥∥∥+ P

(
sup
n≥N

∥∥∥F (k) −M (k)
n

∥∥∥ ≥ a)
and hence

lim sup
N→∞

P

(
sup
n≥N
‖F −Mn‖ ≥ 3a

)
≤ 2

a
E
∥∥∥F − F (k)

∥∥∥→ 0 as k →∞.
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Thus we have shown

lim sup
N→∞

P

(
sup
n≥N
‖F −Mn‖ ≥ 3a

)
= 0 for all a > 0.

Since {
lim sup
n→∞

‖F −Mn‖ ≥ 3a

}
⊂
{

sup
n≥N
‖F −Mn‖ ≥ 3a

}
for all N,

it follows that

P

(
lim sup
n→∞

‖F −Mn‖ ≥ 3a

)
= 0 for all a > 0

and therefore lim supn→∞ ‖F −Mn‖ = 0 (P a.s.) which shows that F ∈ H.





Part X

The Fourier Transform and Distributions





43

Fourier Transform

43.1 Motivation

We begin with a little motivation which will be fleshed out more in Exer-
cise 43.10 below. Suppose for simplicity that f ∈ C1

c (R) . For each L > 0
we know that

{
χLk (x) := eikx/L : k ∈ Z

}
is an orthonormal basis for HL :=

L2([−πL, πL]) equipped with the inner product

〈f |g〉L :=
1

2πL

∫
[−πL,πL]

f(x)ḡ(x)dx.

Therefore for L sufficiently large we have for |x| ≤ πL that

f (x) =
∑
k∈Z

〈
f |χLk

〉
L
χLk (x)

=
1√
2π

∑
k∈Z

1

L

(
1√
2π

∫
[−πL,πL]

f(y)e−iky/Ldy

)
χLk (x)

=
1√
2π

∑
k∈Z

1

L
f̂

(
k

L

)
eikx/L (43.1)

where

f̂ (ξ) :=
1√
2π

∫
R
f(y)e−iξydy

Moreover we have,and

‖f‖2L2(m) = 2πL 〈f |f〉L = 2πL
∑
k∈Z

∣∣〈f |χLk 〉L∣∣2
=

1

2πL

∑
k∈Z

∣∣∣∣∣
∫

[−πL,πL]

f(y)e−iky/Ldy

∣∣∣∣∣
2

=
∑
k∈Z

∣∣∣∣f̂ ( kL
)∣∣∣∣2 1

L
. (43.2)

Formally passing to the limit in Eqs. (43.1) and (43.2) suffest that

f (x) =
1√
2π

∫
R
f̂ (ξ) eiξxdξ and ‖f‖2L2(m) =

∥∥∥f̂∥∥∥2

L2(m)
.

In short this predicts the Fourier transform, f → f̂ , is a unitary operator on
L2 (R) . We will eventually show this is the case after first showing how to

interpert f̂ for f ∈ L2 (R) .
We now generalize to the the n – dimensionsal case. The underlying space

in this section is Rn with Lebesgue measure. As suggested above, the Fourier
inversion formula is going to state that

f(x) =

(
1

2π

)n ∫
Rn
dξeiξ·x

[∫
Rn
dyf(y)e−iy·ξ

]
. (43.3)

If we let ξ = 2πη, this may be written as

f(x) =

∫
Rn
dηei2πη·x

∫
Rn
dyf(y)e−i2πy·η

and we have removed the multiplicative factor of
(

1
2π

)n
in Eq. (43.3) at the

expense of placing factors of 2π in the arguments of the exponentials. [This
is what Folland does.] Another way to avoid writing the 2π’s altogether is to
redefine dx and dξ and this is what we will do here.

Notation 43.1 Let m be Lebesgue measure on Rn and define:

dλ (x) := dx :=

(
1√
2π

)n
dm(x) and dξ :=

(
1√
2π

)n
dm(ξ).

To be consistent with this new normalization of Lebesgue measure we will rede-
fine ‖f‖p and 〈f, g〉 as

‖f‖p =

(∫
Rn
|f(x)|p dx

)1/p

=

((
1

2π

)n/2 ∫
Rn
|f(x)|p dm(x)

)1/p

and

〈f, g〉 :=

∫
Rn
f(x)g(x)dx when fg ∈ L1.

Similarly we will define the convolution relative to these normalizations by

fFg :=
(

1
2π

)n/2
f ∗ g, i.e.

fFg(x) =

∫
Rn
f(x− y)g(y)dy =

∫
Rn
f(x− y)g(y)

(
1

2π

)n/2
dm(y).



482 43 Fourier Transform

The following notation will also be convenient; given a multi-index α ∈ Zn+,
let |α| = α1 + · · ·+ αn,

xα :=

n∏
j=1

x
αj
j , ∂

α
x =

(
∂

∂x

)α
:=

n∏
j=1

(
∂

∂xj

)αj
and

Dα
x =

(
1

i

)|α|(
∂

∂x

)α
=

(
1

i

∂

∂x

)α
.

Also let
〈x〉 := (1 + |x|2)1/2

and for s ∈ R let
νs(x) = (1 + |x|)s.

43.2 Fourier Transform formal development

Definition 43.2 (Fourier Transform). For f ∈ L1, let

f̂(ξ) = Ff(ξ) :=

∫
Rn
e−ix·ξf(x)dx (43.4)

g∨(x) = F−1g(x) =

∫
Rn
eix·ξg(ξ)dξ = Fg(−x) (43.5)

The next theorem summarizes some more basic properties of the Fourier
transform.

Theorem 43.3. Suppose that f, g ∈ L1. Then

1. f̂ ∈ C0(Rn) and
∥∥∥f̂∥∥∥

∞
≤ ‖f‖1 .

2. For y ∈ Rn, (τyf) ˆ(ξ) = e−iy·ξ f̂(ξ) where, as usual, τyf(x) := f(x− y).

3. The Fourier transform takes convolution to products, i.e. (fFg)
ˆ

= f̂ ĝ.

4. For f, g ∈ L1, 〈f̂ , g〉 = 〈f, ĝ〉.
5. If T : Rn → Rn is an invertible linear transformation, then

(f ◦ T )
∧

(ξ) = |detT |−1
f̂(
(
T−1

)∗
ξ) and

(f ◦ T )
∨

(ξ) = |detT |−1
f∨(
(
T−1

)∗
ξ)

6. If (1+ |x|)kf(x) ∈ L1, then f̂ ∈ Ck and ∂αf̂ ∈ C0 for all |α| ≤ k. Moreover,

∂αξ f̂(ξ) = F [(−ix)
α
f(x)] (ξ) (43.6)

for all |α| ≤ k.

7. If f ∈ Ck and ∂αf ∈ L1 for all |α| ≤ k, then (1 + |ξ|)kf̂(ξ) ∈ C0 and

(∂αf)
ˆ

(ξ) = (iξ)αf̂(ξ) (43.7)

for all |α| ≤ k.
8. Suppose g ∈ L1(Rk) and h ∈ L1(Rn−k) and f = g ⊗ h, i.e.

f(x) = g(x1, . . . , xk)h(xk+1, . . . , xn),

then f̂ = ĝ ⊗ ĥ.

Proof. Item 1. is the Riemann Lebesgue Lemma 31.40. Items 2. – 5. are
proved by the following straight forward computations:

(τyf) ˆ(ξ) =

∫
Rn
e−ix·ξf(x− y)dx =

∫
Rn
e−i(x+y)·ξf(x)dx = e−iy·ξ f̂(ξ),

〈f̂ , g〉 =

∫
Rn
f̂(ξ)g(ξ)dξ =

∫
Rn

dξg(ξ)

∫
Rn

dxe−ix·ξf(x)

=

∫
Rn×Rn

dxdξe−ix·ξg(ξ)f(x) =

∫
Rn×Rn

dxĝ(x)f(x) = 〈f, ĝ〉,

(fFg)
ˆ

(ξ) =

∫
Rn
e−ix·ξfFg(x)dx =

∫
Rn
e−ix·ξ

(∫
Rn
f(x− y)g(y)dy

)
dx

=

∫
Rn

dy

∫
Rn

dxe−ix·ξf(x− y)g(y)

=

∫
Rn

dy

∫
Rn

dxe−i(x+y)·ξf(x)g(y)

=

∫
Rn

dye−iy·ξg(y)

∫
Rn

dxe−ix·ξf(x) = f̂(ξ)ĝ(ξ)

and letting y = Tx so that dx = |detT |−1
dy

(f ◦ T )
ˆ

(ξ) =

∫
Rn
e−ix·ξf(Tx)dx =

∫
Rn
e−iT

−1y·ξf(y) |detT |−1
dy

= |detT |−1
f̂(
(
T−1

)∗
ξ).

Item 6. is simply a matter of differentiating under the integral sign which is
easily justified because (1 + |x|)kf(x) ∈ L1. Item 7. follows by using Lemma
31.39 repeatedly (i.e. integration by parts) to find

(∂αf)
ˆ

(ξ) =

∫
Rn
∂αx f(x)e−ix·ξdx = (−1)|α|

∫
Rn
f(x)∂αx e

−ix·ξdx

= (−1)|α|
∫
Rn
f(x)(−iξ)αe−ix·ξdx = (iξ)αf̂(ξ).
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Since ∂αf ∈ L1 for all |α| ≤ k, it follows that (iξ)αf̂(ξ) = (∂αf)
ˆ

(ξ) ∈ C0 for
all |α| ≤ k. Since

(1 + |ξ|)k ≤

(
1 +

n∑
i=1

|ξi|

)k
=
∑
|α|≤k

cα |ξα|

where 0 < cα <∞,∣∣∣(1 + |ξ|)k f̂(ξ)
∣∣∣ ≤ ∑

|α|≤k

cα

∣∣∣ξαf̂(ξ)
∣∣∣→ 0 as ξ →∞.

Item 8. is a simple application of Fubini’s theorem.

Example 43.4. If f(x) = e−|x|
2/2 then f̂(ξ) = e−|ξ|

2/2, in short

Fe−|x|
2/2 = e−|ξ|

2/2 and F−1e−|ξ|
2/2 = e−|x|

2/2. (43.8)

More generally, for an s > 0,(
Fe−s|x|

2
)

(ξ) =

(
1

2s

)n/2
e−

1
4s |ξ|

2

. (43.9)

In particular for t > 0 let

pt(x) := t−n/2e−
1
2t |x|

2

(43.10)

then
p̂t(ξ) = e−

t
2 |ξ|

2

and (p̂t)
∨(x) = pt(x). (43.11)

Let us now verify these assertions. By Item 8. of Theorem 43.3, to prove
Eq. (43.8) it suffices to consider the 1 – dimensional case because e−|x|

2/2 =∏n
i=1 e

−x2
i /2. Let g(ξ) :=

(
Fe−x2/2

)
(ξ) , then by Eq. (43.6) and Eq. (43.7),

g′(ξ) = F
[
(−ix) e−x

2/2
]

(ξ) = iF
[
d

dx
e−x

2/2

]
(ξ)

= i(iξ)F
[
e−x

2/2
]

(ξ) = −ξg(ξ). (43.12)

Lemma ?? implies

g(0) =

∫
R
e−x

2/2dx =
1√
2π

∫
R
e−x

2/2dm(x) = 1,

and so solving Eq. (43.12) with g(0) = 1 gives F
[
e−x

2/2
]

(ξ) = g(ξ) = e−ξ
2/2 as

desired. The assertion that F−1e−|ξ|
2/2 = e−|x|

2/2 follows similarly or by using
Eq. (43.5) to conclude,

F−1
[
e−|ξ|

2/2
]

(x) = F
[
e−|−ξ|

2/2
]

(x) = F
[
e−|ξ|

2/2
]

(x) = e−|x|
2/2.

The remaining results are now a matter of scaling. For example making the
change of variables x = y/

√
2s shows

(
Fe−s|x|

2
)

(ξ) =

∫
Rn
e−s|x|

2

e−iξ·xdx =

(
1

2s

)n/2 ∫
Rn
e−

1
2 |y|

2

e−iξ·y/
√

2sdy

=

(
1

2s

)n/2 [
Fe− 1

2 |x|
2
]( ξ√

2s

)
=

(
1

2s

)n/2
e−

1
4s |ξ|

2

.

Similarly the results in Eq. (43.11) now follow from this one or from Eq.
(43.8) and item 5 of Theorem 43.3. For example, since pt(x) = t−n/2p1(x/

√
t),

(p̂t)(ξ) = t−n/2
(√

t
)n

p̂1(
√
tξ) = e−

t
2 |ξ|

2

.

This may also be written as (p̂t)(ξ) = t−n/2p 1
t
(ξ). Using this and the fact that

pt is an even function,

(p̂t)
∨(x) = F p̂t(−x) = t−n/2Fp 1

t
(−x) = t−n/2tn/2pt(−x) = pt(x).

43.3 Schwartz Test Functions

Definition 43.5. A function f ∈ C(Rn,C) is said to have rapid decay or
rapid decrease if

sup
x∈Rn

(1 + |x|)N |f(x)| <∞ for N = 1, 2, . . . .

Equivalently, for each N ∈ N there exists constants CN <∞ such that |f(x)| ≤
CN (1 + |x|)−N for all x ∈ Rn. A function f ∈ C(Rn,C) is said to have (at
most) polynomial growth if there exists N <∞ such

sup (1 + |x|)−N |f(x)| <∞,

i.e. there exists N ∈ N and C < ∞ such that |f(x)| ≤ C(1 + |x|)N for all
x ∈ Rn.

Definition 43.6 (Schwartz Test Functions). Let S denote the space of func-
tions f ∈ C∞(Rn) such that f and all of its partial derivatives have rapid decay
and let

‖f‖N,α = sup
x∈Rn

∣∣(1 + |x|)N∂αf(x)
∣∣

so that

Page: 483 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



484 43 Fourier Transform

S =
{
f ∈ C∞(Rn) : ‖f‖N,α <∞ for all N and α

}
.

Also let P denote those functions g ∈ C∞(Rn) such that g and all of its deriva-
tives have at most polynomial growth, i.e. g ∈ C∞(Rn) is in P iff for all multi-
indices α, there exists Nα <∞ such

sup (1 + |x|)−Nα |∂αg(x)| <∞.

(Notice that any polynomial function on Rn is in P.)

Remark 43.7. Since C∞c (Rn) ⊂ S ⊂ L2 (Rn) , it follows that S is dense in
L2(Rn).

Exercise 43.1. Let
L =

∑
|α|≤k

aα(x)∂α (43.13)

with aα ∈ P. Show L(S) ⊂ S and in particular ∂αf and xαf are back in S for
all multi-indices α.

Notation 43.8 Suppose that p(x, ξ) = Σ|α|≤Naα(x)ξα where each function
aα(x) is a smooth function. We then set

p(x,Dx) := Σ|α|≤Naα(x)Dα
x

and if each aα(x) is also a polynomial in x we will let

p(−Dξ, ξ) := Σ|α|≤Naα(−Dξ)Mξα

where Mξα is the operation of multiplication by ξα.

Proposition 43.9. Let p(x, ξ) be as above and assume each aα(x) is a polyno-
mial in x. Then for f ∈ S,

(p(x,Dx)f)
∧

(ξ) = p(−Dξ, ξ)f̂ (ξ) (43.14)

and
p(ξ,Dξ)f̂(ξ) = [p(Dx,−x)f(x)]∧(ξ). (43.15)

Proof. The identities (−Dξ)
α
e−ix·ξ = xαe−ix·ξ and Dα

x e
ix·ξ = ξαeix·ξ im-

ply, for any polynomial function q on Rn,

q(−Dξ)e
−ix·ξ = q(x)e−ix·ξ and q(Dx)eix·ξ = q(ξ)eix·ξ. (43.16)

Therefore using Eq. (43.16) repeatedly,

(p(x,Dx)f)
∧

(ξ) =

∫
Rn

∑
|α|≤N

aα(x)Dα
xf(x) · e−ix·ξdξ

=

∫
Rn

∑
|α|≤N

Dα
xf(x) · aα(−Dξ)e

−ix·ξdξ

=

∫
Rn
f(x)

∑
|α|≤N

(−Dx)
α [
aα(−Dξ)e

−ix·ξ]dξ
=

∫
Rn
f(x)

∑
|α|≤N

aα(−Dξ)
[
ξαe−ix·ξ

]
dξ = p(−Dξ, ξ)f̂ (ξ)

wherein the third inequality we have used Lemma 31.39 to do repeated integra-
tion by parts, the fact that mixed partial derivatives commute in the fourth,
and in the last we have repeatedly used Corollary 10.30 to differentiate under
the integral. The proof of Eq. (43.15) is similar:

p(ξ,Dξ)f̂(ξ) = p(ξ,Dξ)

∫
Rn
f(x)e−ix·ξdx =

∫
Rn
f(x)p(ξ,−x)e−ix·ξdx

=
∑
|α|≤N

∫
Rn
f(x)(−x)αaα(ξ)e−ix·ξdx

=
∑
|α|≤N

∫
Rn
f(x)(−x)αaα(−Dx)e−ix·ξdx

=
∑
|α|≤N

∫
Rn
e−ix·ξaα(Dx) [(−x)αf(x)] dx

= [p(Dx,−x)f(x)]∧(ξ).

Corollary 43.10. The Fourier transform preserves the space S, i.e. F(S) ⊂ S.

Proof. Let p(x, ξ) = Σ|α|≤Naα(x)ξα with each aα(x) being a polynomial
function in x. If f ∈ S then p(Dx,−x)f ∈ S ⊂ L1 and so by Eq. (43.15),

p(ξ,Dξ)f̂(ξ) is bounded in ξ, i.e.

sup
ξ∈Rn

|p(ξ,Dξ)f̂(ξ)| ≤ C(p, f) <∞.

Taking p(x, ξ) = (1 + |x|2)Nξα with N ∈ Z+ in this estimate shows f̂(ξ) and

all of its derivatives have rapid decay, i.e. f̂ is in S.
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43.4 Fourier Inversion Formula

Theorem 43.11 (Fourier Inversion Theorem). Suppose that f ∈ L1 and

f̂ ∈ L1 (for example suppose f ∈ S), then

1. there exists f0 ∈ C0(Rn) such that f = f0 a.e.,
2. f0 = F−1F f and f0 = FF−1f,
3. f and f̂ are in L1 ∩ L∞ and

4. ‖f‖2 =
∥∥∥f̂∥∥∥

2
.

In particular, F : S → S is a linear isomorphism of vector spaces.

Proof. First notice that f̂ ∈ C0 (Rn) ⊂ L∞ and f̂ ∈ L1 by assumption, so

that f̂ ∈ L1 ∩ L∞. Let pt(x) := t−n/2e−
1
2t |x|

2

be as in Example 43.4 so that

p̂t(ξ) = e−
t
2 |ξ|

2

and p̂∨t = pt. Define f0 := f̂∨ ∈ C0 then

f0(x) = (f̂)∨(x) =

∫
Rn
f̂(ξ)eiξ·xdξ = lim

t↓0

∫
Rn
f̂(ξ)eiξ·xp̂t(ξ)dξ

= lim
t↓0

∫
Rn

∫
Rn
f(y)eiξ·(x−y)p̂t(ξ)dξ dy

= lim
t↓0

∫
Rn
f(y)pt(x− y)dy = f(x) a.e.

wherein we have used Theorem 31.33 in the last equality along with the obser-
vations that pt(y) = p1(y/

√
t) and

∫
Rn p1(y)dy = 1 so that

L1– lim
t↓0

∫
Rn
f(y)pt(x− y)dy = f (x) .

In particular this shows that f0 ∈ L1 ∩ L∞. A similar argument shows that
F−1F f = f0 as well. Let us now compute the L2 – norm of f̂ ,

‖f̂‖22 =

∫
Rn
f̂(ξ)f̂(ξ)dξ =

∫
Rn

dξ f̂(ξ)

∫
Rn

dxf(x)eix·ξ

=

∫
Rn

dx f(x)

∫
Rn

dξ f̂(ξ)eix·ξ (by Fubini)

=

∫
Rn

dx f(x)f(x) = ‖f‖22

because
∫
Rn dξf̂(ξ)eix·ξ = F−1f̂(x) = f(x) a.e.

In the next few exercises you are asked to compute the Fourier transform of
a number of functions.

Exercise 43.2. For any m > 0, show

F
[
e−m|x|

]
(ξ) =

2m√
2π

1

m2 + ξ2

and

F
(

1

m2 + ξ2

)
(x) =

√
2π

2m
e−m|x|.

Exercise 43.3. Using the identity

1

ξ2 + 1
=

∫ ∞
0

e−s(ξ
2+1)ds

along with Exercise 43.2 and the known Fourier transform of Gaussians to show

e−|x| =

∫ ∞
0

ds
1√
πs
e−se−

x2

4s for all x ∈ R. (43.17)

Thus we have written e−|x| as an average of Gaussians.

Exercise 43.4. Now let x ∈ Rn and ‖x‖2 :=
∑n
i=1 x

2
i be the standard Eu-

clidean norm. Show for all m > 0 that

F
[
e−m‖x‖

]
(ξ) =

2n/2√
π
Γ

(
n+ 1

2

)
m(

m2 + |ξ|2
)n+1

2

, (43.18)

where Γ (x) in the gamma function defined as

Γ (x) :=

∫ ∞
0

txe−t
dt

t
.

Hint: By Exercise 43.3 with x replaced by m ‖x‖ we know that

e−m‖x‖ =

∫ ∞
0

ds
1√
πs
e−se−

m2

4s ‖x‖
2

for all x ∈ Rn.

Remark 43.12. This result can be used to show,

e−m
√
−∆f(x) =

∫
Rn
Qm(x− y)f(y)dy

where

Qm(x) = 2n/2
Γ ((n+ 1)/2)

(2π)
n/2√

π

m

(m2 + |x|2)(n+1)/2
=
Γ ((n+ 1)/2)

πn/2
√
π

m

(m2 + |x|2)(n+1)/2

=
Γ ((n+ 1)/2)

π(n+1)/2

m

(m2 + |x|2)(n+1)/2
.

The extra factors of
√

2π come from the normalized convolution.
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Corollary 43.13. By the B.L.T. Theorem 32.4, the maps F|S and F−1|S ex-
tend to bounded linear maps F̄ and F̄−1 from L2 → L2. These maps satisfy the
following properties:

1. F̄ and F̄−1 are unitary and are inverses to one another as the notation
suggests.

2. If f ∈ L2, then F̄f is uniquely characterized as the function, G ∈ L2 such
that

〈G,ψ〉 = 〈f, ψ̂〉 for all ψ ∈ C∞c (Rn).

3. If f ∈ L1 ∩ L2, then F̄f = f̂ a.e.
4. For f ∈ L2 we may compute F̄ and F̄−1 by

F̄f(ξ) = L2– lim
R→∞

∫
|x|≤R

f(x)e−ix·ξdx and (43.19)

F̄−1f(ξ) = L2– lim
R→∞

∫
|x|≤R

f(x)eix·ξdx. (43.20)

5. We may further extend F̄ to a map from L1 + L2 → C0 + L2 (still denote

by F̄) defined by F̄f = ĥ+ F̄g where f = h+g ∈ L1 +L2. For f ∈ L1 +L2,
F̄f may be characterized as the unique function F ∈ L1

loc(Rn) such that

〈F,ϕ〉 = 〈f, ϕ̂〉 for all ϕ ∈ C∞c (Rn). (43.21)

Moreover if Eq. (43.21) holds then F ∈ C0 +L2 ⊂ L1
loc(Rn) and Eq.(43.21)

is valid for all ϕ ∈ S.

Proof. 1. and 2. If f ∈ L2 and ϕn ∈ S such that ϕn → f in L2, then
F̄f := limn→∞ ϕ̂n. Since ϕ̂n ∈ S ⊂ L1, we may concluded that ‖ϕ̂n‖2 = ‖ϕn‖2
for all n. Thus ∥∥F̄f∥∥

2
= lim
n→∞

‖ϕ̂n‖2 = lim
n→∞

‖ϕn‖2 = ‖f‖2

which shows that F̄ is an isometry from L2 to L2 and similarly F̄−1 is an
isometry. Since F̄−1F̄ = F−1F = id on the dense set S, it follows by continuity

that F̄−1F̄ = id on all of L2. Hence F̄F̄−1
= id, and thus F̄−1 is the inverse

of F̄ . This proves item 1. Moreover, if ψ ∈ C∞c (Rn), then

〈F̄f, ψ〉 = lim
n→∞

〈ϕ̂n, ψ〉 = lim
n→∞

〈ϕn, ψ̂〉 = 〈f, ψ〉 (43.22)

and this equation uniquely characterizes F̄f by Corollary 31.41. Notice that
Eq. (43.22) also holds for all ψ ∈ S.

3. If f ∈ L1 ∩ L2, we have already seen that f̂ ∈ C0 (Rn) ⊂ L1
loc and

that 〈f̂ , ψ〉 = 〈f, ψ̂〉 for all ψ ∈ C∞c (Rn). Combining this with item 2. shows

〈f̂−F̄f, ψ〉 = 0 or all ψ ∈ C∞c (Rn) and so again by Corollary 31.41 we conclude

that f̂ − F̄f = 0 a.e.
4. Let f ∈ L2 and R < ∞ and set fR(x) := f(x)1|x|≤R. Then fR ∈ L1 ∩

L2 and therefore F̄fR = f̂R. Since F̄ is an isometry and (by the dominated
convergence theorem) fR → f in L2, it follows that

F̄f = L2– lim
R→∞

F̄fR = L2– lim
R→∞

f̂R.

5. If f = h + g ∈ L1 + L2 and ϕ ∈ S, then by Eq. (43.22) and item 4. of
Theorem 43.3,

〈ĥ+ F̄g, ϕ〉 = 〈h, ϕ̂〉+ 〈g, ϕ̂〉 = 〈h+ g, ϕ̂〉. (43.23)

In particular if h + g = 0 a.e., then 〈ĥ + F̄g, ϕ〉 = 0 for all ϕ ∈ S and since

ĥ+ F̄g ∈ L1
loc it follows from Corollary 31.41 that ĥ+ F̄g = 0 a.e. This shows

that F̄f is well defined independent of how f ∈ L1 + L2 is decomposed into
the sum of an L1 and an L2 function. Moreover Eq. (43.23) shows Eq. (43.21)

holds with F = ĥ + F̄g ∈ C0 + L2 and ϕ ∈ S. Now suppose G ∈ L1
loc and

〈G,ϕ〉 = 〈f, ϕ̂〉 for all ϕ ∈ C∞c (Rn). Then by what we just proved, 〈G,ϕ〉 =
〈F,ϕ〉 for all ϕ ∈ C∞c (Rn) and so another application of Corollary 31.41 shows
G = F ∈ C0 + L2.

Notation 43.14 Given the results of Corollary 43.13, there is little danger in
writing f̂ or Ff for F̄f when f ∈ L1 + L2.

Corollary 43.15. If f and g are L1 functions such that f̂ , ĝ ∈ L1, then

F(fg) = f̂Fĝ and F−1(fg) = f∨Fg∨.

Since S is closed under pointwise products and F : S → S is an isomorphism
it follows that S is closed under convolution as well.

Proof. By Theorem 43.11, f, g, f̂ , ĝ ∈ L1 ∩ L∞ and hence f · g ∈ L1 ∩ L∞
and f̂Fĝ ∈ L1 ∩ L∞. Since

F−1
(
f̂Fĝ

)
= F−1

(
f̂
)
· F−1 (ĝ) = f · g ∈ L1

we may conclude from Theorem 43.11 that

f̂Fĝ = FF−1
(
f̂Fĝ

)
= F(f · g).

Similarly one shows F−1(fg) = f∨Fg∨.
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43.6 Fourier Transforms of Measures and Bochner’s Theorem 487

Corollary 43.16. Let p(x, ξ) and p(x,Dx) be as in Notation 43.8 with each
function aα(x) being a smooth function of x ∈ Rn. Then for f ∈ S,

p(x,Dx)f(x) =

∫
Rn
p(x, ξ)f̂ (ξ) eix·ξdξ. (43.24)

Proof. For f ∈ S, we have

p(x,Dx)f(x) = p(x,Dx)
(
F−1f̂

)
(x) = p(x,Dx)

∫
Rn
f̂ (ξ) eix·ξdξ

=

∫
Rn
f̂ (ξ) p(x,Dx)eix·ξdξ =

∫
Rn
f̂ (ξ) p(x, ξ)eix·ξdξ.

If p(x, ξ) is a more general function of (x, ξ) then that given in Notation
43.8, the right member of Eq. (43.24) may still make sense, in which case we
may use it as a definition of p(x,Dx). A linear operator defined this way is
called a pseudo differential operator and they turn out to be a useful class
of operators to study when working with partial differential equations.

Corollary 43.17. Suppose p(ξ) =
∑
|α|≤N aαξ

α is a polynomial in ξ ∈ Rn

and f ∈ L2. Then p(∂)f exists weakly in L2 (see Definition 31.50 or 41.3) iff

ξ → p(iξ)f̂(ξ) ∈ L2 in which case

(p(∂)f)
ˆ

(ξ) = p(iξ)f̂(ξ) for a.e. ξ.

In particular, if g ∈ L2 then f ∈ L2 solves the equation, p(∂)f = g iff

p(iξ)f̂(ξ) = ĝ(ξ) for a.e. ξ.

Proof. By Exercise 31.20 or Proposition 41.12, if p(∂)f = g in L2, then
there exists fn ∈ C∞c (Rn) such that fn → f and p (∂) fn → g in L2 (Rn) .
Therefore if ϕ ∈ S,1 then by standard integration by parts,

〈g, ϕ〉 = lim
n→∞

〈p (∂) fn, ϕ〉 = lim
n→∞

〈p (∂) fn, ϕ〉

= lim
n→∞

〈fn, p (−∂)ϕ〉 = 〈f, p (−∂)ϕ〉 .

Using this fact, the fact that S is preserved by the Fourier transform, and

p (−∂) ϕ̂ (ξ) = p (−∂ξ)
∫
Rn
ϕ (x) e−iξ·xdx

=

∫
Rn
p (ix)ϕ (x) e−iξ·xdx = (p (ix)ϕ (x))

ˆ
,

1 This actually holds more generally for any ϕ ∈ CN (Rn) such that ϕ and p (−∂)ϕ
are in L2 (Rn) .

we learn

〈ĝ, ϕ〉 = 〈g, ϕ̂〉 = 〈f, p (−∂) ϕ̂〉 =
〈
f, (p (ix)ϕ (x))

ˆ
〉

=
〈
f̂ , p (i (·))ϕ

〉
=
〈
p (i (·)) f̂ , ϕ

〉
from which it follows we find, p (i (·)) f̂ = ĝ a.e.

Conversely if p(iξ)f̂(ξ) = ĝ(ξ), then using 〈ĝ, ϕ∨〉 =
〈
g, (ϕ∨)

ˆ
〉

= 〈g, ϕ〉 for

all g ∈ L2, we find

〈f, p(−∂)ϕ〉 = 〈f̂ , [p(−∂)ϕ]
∨〉 = 〈f̂(ξ), p(iξ)ϕ∨(ξ)〉

=
〈
p(iξ)f̂(ξ), ϕ∨(ξ)

〉
= 〈ĝ, ϕ∨(ξ)〉 = 〈g, ϕ〉

for all ϕ ∈ S(Rn). This shows that p (∂) f = g weakly in L2 (Rn) .

Exercise 43.5 (Variation on the proof of Corollary 43.17). Suppose p(ξ)
is a polynomial in ξ ∈ Rd and u ∈ L2 such that p (∂)u ∈ L2.2 Show

F (p (∂)u) (ξ) = p(iξ)û (ξ) ∈ L2.

Conversely if u ∈ L2 such that p(iξ)û (ξ) ∈ L2, show p (∂)u ∈ L2.

43.5 Summary of Basic Properties of F and F−1

The following table summarizes some of the basic properties of the Fourier
transform and its inverse.

f ←→ f̂ or f∨

Smoothness ←→ Decay at infinity
∂α ←→ Multiplication by (±iξ)α
S ←→ S

L2(Rn) ←→ L2(Rn)
Convolution ←→ Products.

43.6 Fourier Transforms of Measures and Bochner’s
Theorem

To motivate the next definition suppose that µ is a finite measure on Rn which
is absolutely continuous relative to Lebesgue measure, dµ(x) = ρ(x)dx. Then
it is reasonable to require

2 Here we say that p (∂)u = g exists in L2 (Rn) iff 〈g, ϕ〉 = 〈f, p (−∂)ϕ〉 for all
ϕ ∈ C∞c (Rn) .
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µ̂(ξ) := ρ̂(ξ) =

∫
Rn
e−iξ·xρ(x)dx =

∫
Rn
e−iξ·xdµ(x)

and

(µFg) (x) := ρFg(x) =

∫
Rn
g(x− y)ρ(x)dx =

∫
Rn
g(x− y)dµ(y)

when g : Rn → C is a function such that the latter integral is defined, for exam-
ple assume g is bounded. These considerations lead to the following definitions.

Definition 43.18. The Fourier transform, µ̂, of a complex measure µ on BRn
is defined by

µ̂(ξ) =

∫
Rn
e−iξ·xdµ(x) (43.25)

and the convolution with a function g is defined by

(µFg) (x) =

∫
Rn
g(x− y)dµ(y)

when the integral is defined.

It follows from the dominated convergence theorem that µ̂ is continuous.
Also by a variant of Exercise 16.2, if µ and ν are two complex measure on BRn
such that µ̂ = ν̂, then µ = ν. The reader is asked to give another proof of this
fact in Exercise 43.6 below.

Example 43.19. Let σt be the surface measure on the sphere St of radius t
centered at zero in R3. Then

σ̂t(ξ) = 4πt
sin t |ξ|
|ξ|

.

Indeed,

σ̂t(ξ) =

∫
tS2

e−ix·ξdσ(x) = t2
∫
S2

e−itx·ξdσ(x)

= t2
∫
S2

e−itx3|ξ|dσ(x) = t2
∫ 2π

0

dθ

∫ π

0

dϕ sinϕe−it cosϕ|ξ|

= 2πt2
∫ 1

−1

e−itu|ξ|du = 2πt2
1

−it |ξ|
e−itu|ξ||u=1

u=−1 = 4πt2
sin t |ξ|
t |ξ|

.

Definition 43.20. A function χ : Rn → C is said to be positive (semi)
definite iff the matrices A := {χ(ξk − ξj)}mk,j=1 are positive definite for all

m ∈ N and {ξj}mj=1 ⊂ R
n.

Lemma 43.21. If χ ∈ C(Rn,C) is a positive definite function, then

1. χ(0) ≥ 0.
2. χ(−ξ) = χ(ξ) for all ξ ∈ Rn.
3. |χ(ξ)| ≤ χ(0) for all ξ ∈ Rn.
4. For all f ∈ S(Rd), ∫

Rn×Rn
χ(ξ − η)f(ξ)f(η)dξdη ≥ 0. (43.26)

Proof. Taking m = 1 and ξ1 = 0 we learn χ(0) |λ|2 ≥ 0 for all λ ∈ C which
proves item 1. Taking m = 2, ξ1 = ξ and ξ2 = η, the matrix

A :=

[
χ(0) χ(ξ − η)

χ(η − ξ) χ(0)

]
is positive definite from which we conclude χ(ξ − η) = χ(η − ξ) (since A = A∗

by definition) and

0 ≤ det

[
χ(0) χ(ξ − η)

χ(η − ξ) χ(0)

]
= |χ(0)|2 − |χ(ξ − η)|2 .

and hence |χ(ξ)| ≤ χ(0) for all ξ. This proves items 2. and 3. Item 4. follows by
approximating the integral in Eq. (43.26) by Riemann sums,∫

Rn×Rn
χ(ξ − η)f(ξ)f(η)dξdη

= lim
ε↓0

ε−2n
∑

ξ,η∈(εZn)∩[−ε−1,ε−1]n

χ(ξ − η)f(ξ)f(η) ≥ 0.

The details are left to the reader.

Lemma 43.22. If µ is a finite positive measure on BRn , then χ := µ̂ ∈
C(Rn,C) is a positive definite function.

Proof. As has already been observed after Definition 43.18, the dominated
convergence theorem implies µ̂ ∈ C(Rn,C). Since µ is a positive measure (and
hence real),

µ̂(−ξ) =

∫
Rn
eiξ·xdµ(x) =

∫
Rn
e−iξ·xdµ(x) = µ̂(−ξ).

From this it follows that for any m ∈ N and {ξj}mj=1 ⊂ R
n, the matrix A :=

{µ̂(ξk − ξj)}mk,j=1 is self-adjoint. Moreover if λ ∈ Cm,
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m∑
k,j=1

µ̂(ξk − ξj)λkλ̄j =

∫
Rn

m∑
k,j=1

e−i(ξk−ξj)·xλkλ̄jdµ(x)

=

∫
Rn

m∑
k,j=1

e−iξk·xλke−iξj ·xλjdµ(x)

=

∫
Rn

∣∣∣∣∣
m∑
k=1

e−iξk·xλk

∣∣∣∣∣
2

dµ(x) ≥ 0

showing A is positive definite.

Theorem 43.23 (Bochner’s Theorem). Suppose χ ∈ C(Rn,C) is positive
definite function, then there exists a unique positive measure µ on BRn such
that χ = µ̂.

Proof. If χ(ξ) = µ̂(ξ), then for f ∈ S we would have∫
Rn
fdµ =

∫
Rn

(f∨)
ˆ
dµ =

∫
Rn
f∨(ξ)µ̂(ξ)dξ.

This suggests that we define

I(f) :=

∫
Rn
χ(ξ)f∨(ξ)dξ for all f ∈ S.

We will now show I is positive in the sense if f ∈ S and f ≥ 0 then I(f) ≥ 0.
For general f ∈ S we have

I(|f |2) =

∫
Rn
χ(ξ)

(
|f |2

)∨
(ξ)dξ =

∫
Rn
χ(ξ)

(
f∨Ff̄∨

)
(ξ)dξ

=

∫
Rn
χ(ξ)f∨(ξ − η)f̄∨(η)dηdξ =

∫
Rn
χ(ξ)f∨(ξ − η)f∨(−η)dηdξ

=

∫
Rn
χ(ξ − η)f∨(ξ)f∨(η)dηdξ ≥ 0. (43.27)

For t > 0 let pt(x) := t−n/2e−|x|
2/2t ∈ S and define

It (x) := IFpt(x) := I(pt(x− ·)) = I(
∣∣∣√pt(x− ·)∣∣∣2)

which is non-negative by Eq. (43.27) and the fact that
√
pt(x− ·) ∈ S. Using

[pt(x− ·)]∨ (ξ) =

∫
Rn
pt(x− y)eiy·ξdy =

∫
Rn
pt(y)ei(y+x)·ξdy

= eix·ξp∨t (ξ) = eix·ξe−t|ξ|
2/2,

〈It, ψ〉 =

∫
Rn
I(pt(x− ·))ψ(x)dx

=

∫
Rn

(∫
Rn
χ(ξ) [pt(x− ·)]∨ (ξ)ψ(x)dξ

)
dx

=

∫
Rn

(∫
Rn
χ(ξ)eix·ξe−t|ξ|

2/2ψ(x)dξ

)
dx

=

∫
Rn
χ(ξ)ψ∨(ξ)e−t|ξ|

2/2dξ

which coupled with the dominated convergence theorem shows

〈IFpt, ψ〉 →
∫
Rn
χ(ξ)ψ∨(ξ)dξ = I(ψ) as t ↓ 0.

Hence if ψ ≥ 0, then I(ψ) = limt↓0〈It, ψ〉 ≥ 0.
Let K ⊂ R be a compact set and ψ ∈ Cc(R, [0,∞)) be a function such that

ψ = 1 on K. If f ∈ C∞c (R,R) is a smooth function with supp(f) ⊂ K, then
0 ≤ ‖f‖∞ ψ − f ∈ S and hence

0 ≤ 〈I, ‖f‖∞ ψ − f〉 = ‖f‖∞ 〈I, ψ〉 − 〈I, f〉

and therefore 〈I, f〉 ≤ ‖f‖∞ 〈I, ψ〉. Replacing f by −f implies, −〈I, f〉 ≤
‖f‖∞ 〈I, ψ〉 and hence we have proved

|〈I, f〉| ≤ C(supp(f)) ‖f‖∞ (43.28)

for all f ∈ DRn := C∞c (Rn,R) where C(K) is a finite constant for each compact
subset of Rn. Because of the estimate in Eq. (43.28), it follows that I|DRn has a
unique extension I to Cc(Rn,R) still satisfying the estimates in Eq. (43.28) and
moreover this extension is still positive. So by the Riesz – Markov Theorem ??,
there exists a unique Radon – measure µ on Rn such that such that 〈I, f〉 = µ(f)
for all f ∈ Cc(Rn,R).

To finish the proof we must show µ̂(η) = χ(η) for all η ∈ Rn given

µ(f) =

∫
Rn
χ(ξ)f∨(ξ)dξ for all f ∈ C∞c (Rn,R). (43.29)

Let f ∈ C∞c (Rn,R+) be a radial function such f(0) = 1 and f(x) is decreasing
as |x| increases. Let fε(x) := f(εx), then by Theorem 43.3,

F−1
[
e−iηxfε(x)

]
(ξ) = ε−nf∨(

ξ − η
ε

)

and therefore, from Eq. (43.29),
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490 43 Fourier Transform∫
Rn
e−iηxfε(x)dµ(x) =

∫
Rn
χ(ξ)ε−nf∨(

ξ − η
ε

)dξ. (43.30)

Because
∫
Rn f

∨(ξ)dξ = Ff∨(0) = f(0) = 1, we may apply the approximate δ
– function Theorem 31.33 to Eq. (43.30) to find∫

Rn
e−iηxfε(x)dµ(x)→ χ(η) as ε ↓ 0. (43.31)

On the the other hand, when η = 0, the monotone convergence theorem implies
µ(fε) ↑ µ(1) = µ(Rn) and therefore µ(Rn) = µ(1) = χ(0) < ∞. Now knowing
the µ is a finite measure we may use the dominated convergence theorem to
concluded

µ(e−iηxfε(x))→ µ(e−iηx) = µ̂(η) as ε ↓ 0

for all η. Combining this equation with Eq. (43.31) shows µ̂(η) = χ(η) for all
η ∈ Rn.

43.7 Supplement: Heisenberg Uncertainty Principle

Suppose that H is a Hilbert space and A,B are two densely defined symmetric
operators onH.More explicitly,A is a densely defined symmetric linear operator
on H means there is a dense subspace DA ⊂ H and a linear map A : DA → H
such that 〈Aϕ|ψ〉 = 〈ϕ|Aψ〉 for all ϕ,ψ ∈ DA. Let

DAB := {ϕ ∈ H : ϕ ∈ DB and Bϕ ∈ DA}

and for ϕ ∈ DAB let (AB)ϕ = A(Bϕ) with a similar definition of DBA and
BA. Moreover, let DC := DAB ∩ DBA and for ϕ ∈ DC , let

Cϕ =
1

i
[A,B]ϕ =

1

i
(AB −BA)ϕ.

Notice that for ϕ,ψ ∈ DC we have

〈Cϕ|ψ〉 =
1

i
{〈ABϕ|ψ〉 − 〈BAϕ|ψ〉} =

1

i
{〈Bϕ|Aψ〉 − 〈Aϕ|Bψ〉}

=
1

i
{〈ϕ|BAψ〉 − 〈ϕ|ABψ〉} = 〈ϕ|Cψ〉,

so that C is symmetric as well.

Theorem 43.24 (Heisenberg Uncertainty Principle). Continue the above
notation and assumptions,

1

2
|〈ψ|Cψ〉| ≤

√
‖Aψ‖2 − 〈ψ|Aψ〉 ·

√
‖Bψ‖2 − 〈ψ|Bψ〉 (43.32)

for all ψ ∈ DC . Moreover if ‖ψ‖ = 1 and equality holds in Eq. (43.32), then

(A− 〈ψ|Aψ〉I)ψ = iλ (B − 〈ψ|Bψ〉I)ψ or

(B − 〈ψ|Bψ〉I)ψ = iλ (A− 〈ψ|Aψ〉I)ψ (43.33)

for some λ ∈ R.

Proof. By homogeneity (43.32) we may assume that ‖ψ‖ = 1. Let a :=
〈ψ|Aψ〉, b = 〈ψ|Bψ〉, Ã = A− aI, and B̃ = B − bI. Then we have still have

[Ã, B̃] = [A− aI,B − bI] = iC.

Now

i〈ψ|Cψ〉 = −〈ψ|iCψ〉 = −〈ψ|[Ã, B̃]ψ〉 = −〈ψ|ÃB̃ψ〉+ 〈ψ|B̃Ãψ〉

= −
(
〈Ãψ|B̃ψ〉 − 〈B̃ψ|Ãψ〉

)
= −2i Im〈Ãψ|B̃ψ〉

from which we learn

|〈ψ|Cψ〉| = 2
∣∣∣Im〈Ãψ|B̃ψ〉∣∣∣ ≤ 2

∣∣∣〈Ãψ|B̃ψ〉∣∣∣ ≤ 2
∥∥∥Ãψ∥∥∥ ∥∥∥B̃ψ∥∥∥ (43.34)

with equality iff Re〈Ãψ|B̃ψ〉 = 0 and Ãψ and B̃ψ are linearly dependent, i.e.
iff Eq. (43.33) holds. Equation (43.32) now follows from the inequality in Eq.
(43.34) and the identities,∥∥∥Ãψ∥∥∥2

= ‖Aψ − aψ‖2 = ‖Aψ‖2 + a2 ‖ψ‖2 − 2aRe〈Aψ|ψ〉

= ‖Aψ‖2 + a2 − 2a2 = ‖Aψ‖2 − 〈Aψ|ψ〉

and similarly ∥∥∥B̃ψ∥∥∥ = ‖Bψ‖2 − 〈Bψ|ψ〉.

Example 43.25. As an example, take H = L2(R), A = 1
i ∂x and B =

Mx with DA := {f ∈ H : f ′ ∈ H} (f ′ is the weak derivative) and DB :={
f ∈ H :

∫
R |xf(x)|2 dx <∞

}
. In this case,

DC = {f ∈ H : f ′, xf and xf ′ are in H}

and C = −I on DC . Therefore for a unit vector ψ ∈ DC ,

1

2
≤
∥∥∥∥1

i
ψ′ − aψ

∥∥∥∥
2

· ‖xψ − bψ‖2
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where a = i
∫
R ψψ̄

′dm 3 and b =
∫
R x |ψ(x)|2 dm(x). Thus we have

1

4
=

1

4

∫
R
|ψ|2 dm ≤

∫
R

(k − a)
2
∣∣∣ψ̂(k)

∣∣∣2 dk · ∫
R

(x− b)2 |ψ(x)|2 dx. (43.35)

Equality occurs if there exists λ ∈ R such that

iλ (x− b)ψ(x) = (
1

i
∂x − a)ψ(x) a.e.

Working formally, this gives rise to the ordinary differential equation (in weak
form),

ψx = [−λ(x− b) + ia]ψ (43.36)

which has solutions (see Exercise 43.7 below)

ψ = C exp

(∫
R

[−λ(x− b) + ia] dx

)
= C exp

(
−λ

2
(x− b)2 + iax

)
. (43.37)

Let λ = 1
2t and choose C so that ‖ψ‖2 = 1 to find

ψt,a,b(x) =

(
1

2t

)1/4

exp

(
− 1

4t
(x− b)2 + iax

)
are the functions (called coherent states) which saturate the Heisenberg un-
certainty principle in Eq. (43.35).

43.7.1 Exercises

Exercise 43.6. Suppose µ is a complex measure on Rn and

µ̂(ξ) =

∫
Rn
e−iξ·xdµ(x)

is its Fourier transform as defined in Definition 43.18. Show µ satisfies,

〈µ̂, ϕ〉 :=

∫
Rn
µ̂(ξ)ϕ(ξ)dξ = µ(ϕ̂) :=

∫
Rn
ϕ̂dµ for all ϕ ∈ S

and use this to show if µ is a complex measure such that µ̂ ≡ 0, then µ ≡ 0.

3 The constant a may also be described as

a = i

∫
R
ψψ̄′dm =

√
2πi

∫
R
ψ̂(ξ)

(
ψ̄′
)ˆ

(ξ)dξ

=

∫
R
ξ
∣∣∣ψ̂(ξ)

∣∣∣2 dm(ξ).

Exercise 43.7. Show that ψ described in Eq. (43.37) is the general solution to
Eq. (43.36). Hint: Suppose that ϕ is any solution to Eq. (43.36) and ψ is given
as in Eq. (43.37) with C = 1. Consider the weak – differential equation solved
by ϕ/ψ.

43.7.2 More Proofs of the Fourier Inversion Theorem

Exercise 43.8. Suppose that f ∈ L1(R) and assume that f continuously dif-
ferentiable in a neighborhood of 0, show

lim
M→∞

∫ ∞
−∞

sinMx

x
f(x)dx = πf(0) (43.38)

using the following steps.

1. Use Example 12.12 to deduce,

lim
M→∞

∫ 1

−1

sinMx

x
dx = lim

M→∞

∫ M

−M

sinx

x
dx = π.

2. Explain why

0 = lim
M→∞

∫
|x|≥1

sinMx · f(x)

x
dx and

0 = lim
M→∞

∫
|x|≤1

sinMx · f(x)− f(0)

x
dx.

3. Adding identities, making use part (1), proves Eq. (43.38).

Exercise 43.9 (Fourier Inversion Formula). Suppose that f ∈ L1(R) such

that f̂ ∈ L1(R).

1. Further assume that f is continuously differentiable in a neighborhood of
0. Show that

Λ :=

∫
R
f̂(ξ)dξ = f(0).

Hint: by the dominated convergence theorem, Λ := limM→∞
∫
|ξ|≤M f̂(ξ)dξ.

Now use the definition of f̂(ξ), Fubini’s theorem and Exercise 43.8.
2. Apply part 1. of this exercise with f replace by τ−yf := f (·+ y) for some
y ∈ R to prove

f(y) =

∫
R
f̂(ξ)eiy·ξdξ (43.39)

provided f is now continuously differentiable near y.
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492 43 Fourier Transform

The goal of the next exercises is to give yet another proof of the Fourier
inversion formula.

Notation 43.26 For L > 0, let CkL(R) denote the space of Ck – 2πL periodic
functions:

CkL(R) :=
{
f ∈ Ck(R) : f(x+ 2πL) = f(x) for all x ∈ R

}
.

Also let 〈·, ·〉L denote the inner product on the Hilbert space HL :=
L2([−πL, πL]) given by

〈f |g〉L :=
1

2πL

∫
[−πL,πL]

f(x)ḡ(x)dx.

Exercise 43.10. Recall that
{
χLk (x) := eikx/L : k ∈ Z

}
is an orthonormal basis

for HL and in particular for f ∈ HL,

f =
∑
k∈Z
〈f |χLk 〉LχLk (43.40)

where the convergence takes place in L2([−πL, πL]). Suppose now that f ∈
C2
L(R)4. Show (by two integration by parts)

∣∣〈f |χLk 〉L∣∣ ≤ L2

k2
‖f ′′‖∞

where ‖g‖∞ denote the uniform norm of a function g. Use this to conclude that
the sum in Eq. (43.40) is uniformly convergent and from this conclude that Eq.
(43.40) holds pointwise.

Note: it is enough to assume f ∈ C1
L(R) by making use of the identity,∣∣〈f |χLk 〉L∣∣ =
L

|k|
∣∣〈f ′|χLk 〉L∣∣

along with the Cauchy Schwarz inequality to see∑
k 6=0

∣∣〈f |χLk 〉L∣∣
2

≤
∑
k 6=0

∣∣〈f ′|χLk 〉L∣∣2 ·∑
k 6=0

(
L

|k|

)2

.

Exercise 43.11 (Fourier Inversion Formula on S). Let f ∈ S(R), L > 0
and

fL(x) :=
∑
k∈Z

f(x+ 2πkL). (43.41)

Show:
4 We view C2

L(R) as a subspace of HL by identifying f ∈ C2
L(R) with f |[−πL,πL] ∈ HL.

1. The sum defining fL is convergent and moreover that fL ∈ C∞L (R).

2. Show 〈fL|χLk 〉L = 1√
2πL

f̂(k/L).

3. Conclude from Exercise 43.10 that

fL(x) =
1√
2πL

∑
k∈Z

f̂(k/L)eikx/L for all x ∈ R. (43.42)

4. Show, by passing to the limit, L→∞, in Eq. (43.42) that Eq. (43.39) holds

for all x ∈ R. Hint: Recall that f̂ ∈ S.

Exercise 43.12 (See Exercise 18.15). Folland 8.13 on p. 254.

Exercise 43.13 (Wirtinger’s inequality). Given a > 0 and
f ∈ C1 ([0, a] ,C) such that f (0) = f (a) = 0, show∫ a

0

|f (x)|2 dx ≤
( a
π

)2
∫ a

0

|f ′ (x)|2 dx.

Hint: to use the notation above, let L = π/a and extend f to [−a, 0] by setting

f (−x) = −f (x) for 0 ≤ x ≤ a and then extend f. Now compute
∫ a

0
|f (x)|2 dx

and
∫ a

0
|f ′ (x)|2 dx in terms of their Fourier coefficients,

〈
f |χLk

〉
L

and
〈
f ′|χLk

〉
L

respectively.

Exercise 43.14 (Sampling Theorem). Let

sincx =

{
sinπx
πx if x 6= 0
1 if x = 0

and for any a ∈ (0,∞) , let

Ha = {f ∈ L2 (m) : f̂(ξ) = 0 a.e. when |ξ| > πa}.

Show

1. Show that every f ∈ Ha has a version5 f0 ∈ C0 (R) and moreover,

‖f0‖u ≤
√
a ‖f‖L2(m) . (43.43)

[We now identify f with this continuous version.] Hint: after identifying
L2 ([−πa, πa] , λ) as a subspace of L2 (R, λ) one has

Ha = F−1L2 ([−πa, πa] , λ) .

5 We say that f0 is a version of f if f (x) = f0 (x) for m – a.e. x.
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43.7 Supplement: Heisenberg Uncertainty Principle 493

2. Show by direct computation that

F−1

[
1√
2πa

e−inξ/a 1|ξ|≤πa

]
(x) = sinc (ax− n) .

3. If f ∈ Ha then (assuming f is the C0 – version as in part a), show

f(x) =

∞∑
k=−∞

f(k/a)sinc(ax− k),

where the series converges both uniformly and in L2. [Hint: Start by writ-

ing f̂ (ξ) for |ξ| ≤ πa as a Fourier expansion in the orthonormal basis{
e−inξ/a

}∞
n=−∞ for L2

(
[−πa, πa] , m

2πa

)
.]

In the terminology of signal analysis, a signal of band width 2πa is com-
pletely determined by sampling its value at a sequence of points {k/2πa} whose
spacing is the reciprocal of the bandwidth.

Exercise 43.15. Folland 8.16 on p. 255.

Exercise 43.16. Folland 8.17 on p. 255.

Exercise 43.17. Let λ := (2π)
−n/2

m where m is Lebesgue measure on Rn.
Suppose that f ∈ L2 (λ) such that f = f1S a.e. for some S ∈ BRn with
λ (S) <∞. Show for ever E ∈ BRn that∫

E

∣∣∣f̂ ∣∣∣2 dλ ≤ ‖f‖2L2(λ) λ (S) · λ (E) .

(The Fourier transform of a function whose support has finite measure.)

Exercise 43.18. Folland 8.22 on p. 256. (Bessel functions.)

Exercise 43.19. Folland 8.23 on p. 256. (Hermite Polynomial problems and
Harmonic oscillators.)

Exercise 43.20. Folland 8.31 on p. 263. (Poisson Summation formula prob-
lem.)

43.7.3 Disregard this subsection on old variants of Corollary 43.17

Proof. (Old proof of Corollary 43.17. By definition p(∂)f = g in L2 iff

〈g, ϕ〉 = 〈f, p(−∂)ϕ〉 for all ϕ ∈ C∞c (Rn). (43.44)

If follows from repeated use of Lemma 41.23 that the previous equation is
equivalent to

〈g, ϕ〉 = 〈f, p(−∂)ϕ〉 for all ϕ ∈ S(Rn). (43.45)

This may also be easily proved directly as well as follows. Choose ψ ∈ C∞c (Rn)
such that ψ(x) = 1 for x ∈ B0(1) and for ϕ ∈ S(Rn) let ϕn(x) := ψ(x/n)ϕ(x).
By the chain rule and the product rule (Eq. ?? of Appendix ??),

∂αϕn(x) =
∑
β≤α

(
α

β

)
n−|β|

(
∂βψ

)
(x/n) · ∂α−βϕ(x)

along with the dominated convergence theorem shows ϕn → ϕ and ∂αϕn → ∂αϕ
in L2 as n→∞. Therefore if Eq. (43.44) holds, we find Eq. (43.45) holds because

〈g, ϕ〉 = lim
n→∞

〈g, ϕn〉 = lim
n→∞

〈f, p(−∂)ϕn〉 = 〈f, p(−∂)ϕ〉.

To complete the proof simply observe that 〈g, ϕ〉 = 〈ĝ, ϕ∨〉 and

〈f, p(−∂)ϕ〉 = 〈f̂ , [p(−∂)ϕ]
∨〉 = 〈f̂(ξ), p(iξ)ϕ∨(ξ)〉

= 〈p(iξ)f̂(ξ), ϕ∨(ξ)〉

for all ϕ ∈ S(Rn). From these two observations and the fact that F is bijective

on S, one sees that Eq. (43.45) holds iff ξ → p(iξ)f̂(ξ) ∈ L2 and ĝ(ξ) = p(iξ)f̂(ξ)
for a.e. ξ.

Exercise 43.21 (See Corollary 43.17). Let f ∈ L2(Rn) and α be a multi-

index. If ∂αf exists in L2(Rn)6 then F(∂αf) = (iξ)
α
f̂(ξ) in L2(Rn) and con-

versely if
(
ξ → ξαf̂(ξ)

)
∈ L2(Rn) then ∂αf exists.

6 Here we say that ∂αf = g exists in L2 (Rn) iff 〈g, ϕ〉 = (−1)|α| 〈f, ∂αϕ〉 for all
ϕ ∈ C∞c (Rn) .
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44

Constant Coefficient partial differential equations

Suppose that p(ξ) =
∑
|α|≤k aαξ

α with aα ∈ C and

L = p(Dx) := Σ|α|≤NaαD
α
x = Σ|α|≤Naα

(
1

i
∂x

)α
. (44.1)

Then for f ∈ S
L̂f(ξ) = p(ξ)f̂(ξ),

that is to say the Fourier transform takes a constant coefficient partial differ-
ential operator to multiplication by a polynomial. This fact can often be used
to solve constant coefficient partial differential equation. For example suppose
g : Rn → C is a given function and we want to find a solution to the equation
Lf = g. Taking the Fourier transform of both sides of the equation Lf = g
would imply p(ξ)f̂(ξ) = ĝ(ξ) and therefore f̂(ξ) = ĝ(ξ)/p(ξ) provided p(ξ) is
never zero. (We will discuss what happens when p(ξ) has zeros a bit more later
on.) So we should expect

f(x) = F−1

(
1

p(ξ)
ĝ(ξ)

)
(x) = F−1

(
1

p(ξ)

)
Fg(x).

Definition 44.1. Let L = p(Dx) as in Eq. (44.1). Then we let
σ(L) :=Ran(p) ⊂ C and call σ(L) the spectrum of L. Given a measur-
able function G : σ(L) → C, we define (a possibly unbounded operator)
G(L) : L2(Rn,m)→ L2(Rn,m) by

G(L)f := F−1MG◦pF

where MG◦p denotes the operation on L2(Rn,m) of multiplication by G ◦ p, i.e.

MG◦pf = (G ◦ p) f

with domain given by those f ∈ L2 such that (G ◦ p) f ∈ L2.

At a formal level we expect

G(L)f = F−1 (G ◦ p)Fg.

44.1 Elliptic examples

As a specific example consider the equation(
−∆+m2

)
f = g (44.2)

where f, g : Rn → C and ∆ =
∑n
i=1 ∂

2/∂x2
i is the usual Laplacian on Rn. By

Corollary 43.17 (i.e. taking the Fourier transform of this equation), solving Eq.
(44.2) with f, g ∈ L2 is equivalent to solving(

|ξ|2 +m2
)
f̂(ξ) = ĝ(ξ). (44.3)

The unique solution to this latter equation is

f̂(ξ) =
(
|ξ|2 +m2

)−1

ĝ(ξ)

and therefore,

f(x) = F−1

((
|ξ|2 +m2

)−1

ĝ(ξ)

)
(x) =:

(
−∆+m2

)−1
g(x).

We expect

F−1

((
|ξ|2 +m2

)−1

ĝ(ξ)

)
(x) = GmFg(x) =

∫
Rn
Gm(x− y)g(y)dy,

where

Gm(x) := F−1
(
|ξ|2 +m2

)−1

(x) =

∫
Rn

1

m2 + |ξ|2
eiξ·xdξ.

At the moment F−1
(
|ξ|2 +m2

)−1

only makes sense when n = 1, 2, or 3 because

only then is
(
|ξ|2 +m2

)−1

∈ L2(Rn).

For now we will restrict our attention to the one dimensional case, n = 1,
in which case

Gm(x) =
1√
2π

∫
R

1

(ξ +mi) (ξ −mi)
eiξxdξ. (44.4)
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The function Gm may be computed using standard complex variable contour
integration methods to find, for x ≥ 0,

Gm(x) =
1√
2π

2πi
ei

2mx

2im
=

1

2m

√
2πe−mx

and since Gm is an even function,

Gm(x) = F−1
(
|ξ|2 +m2

)−1

(x) =

√
2π

2m
e−m|x|. (44.5)

This result is easily verified to be correct, since

F

[√
2π

2m
e−m|x|

]
(ξ) =

√
2π

2m

∫
R
e−m|x|e−ix·ξdx

=
1

2m

(∫ ∞
0

e−mxe−ix·ξdx+

∫ 0

−∞
emxe−ix·ξdx

)
=

1

2m

(
1

m+ iξ
+

1

m− iξ

)
=

1

m2 + ξ2
.

Hence in conclusion we find that
(
−∆+m2

)
f = g has solution given by

f(x) = GmFg(x) =

√
2π

2m

∫
R
e−m|x−y|g(y)dy =

1

2m

∫
R
e−m|x−y|g(y)dy.

Question. Why do we get a unique answer here given that f(x) =
A sinh(x) +B cosh(x) solves (

−∆+m2
)
f = 0?

The answer is that such an f is not in L2 unless f = 0! More generally it is
worth noting that A sinh(x) +B cosh(x) is not in P unless A = B = 0.

What about when m = 0 in which case m2 + ξ2 becomes ξ2 which has a
zero at 0. Noting that constants are solutions to ∆f = 0, we might look at

lim
m↓0

(Gm(x)− 1) = lim
m↓0

√
2π

2m
(e−m|x| − 1) = −

√
2π

2
|x| .

as a solution, i.e. we might conjecture that

f(x) := −1

2

∫
R
|x− y| g(y)dy

solves the equation −f ′′ = g. To verify this we have

f(x) := −1

2

∫ x

−∞
(x− y) g(y)dy − 1

2

∫ ∞
x

(y − x) g(y)dy

so that

f ′(x) = −1

2

∫ x

−∞
g(y)dy +

1

2

∫ ∞
x

g(y)dy and

f ′′(x) = −1

2
g(x)− 1

2
g(x).

44.2 Poisson Semi-Group

Let us now consider the problems of finding a function (x0, x) ∈ [0,∞)×Rn →
u(x0, x) ∈ C such that(

∂2

∂x2
0

+∆

)
u = 0 with u(0, ·) = f ∈ L2(Rn). (44.6)

Let û(x0, ξ) :=
∫
Rn u(x0, x)e−ix·ξdx denote the Fourier transform of u in the

x ∈ Rn variable. Then Eq. (44.6) becomes(
∂2

∂x2
0

− |ξ|2
)
û(x0, ξ) = 0 with û(0, ξ) = f̂(ξ) (44.7)

and the general solution to this differential equation ignoring the initial condi-
tion is of the form

û(x0, ξ) = A(ξ)e−x0|ξ| +B(ξ)ex0|ξ| (44.8)

for some function A(ξ) and B(ξ). Let us now impose the extra condition that
u(x0, ·) ∈ L2(Rn) or equivalently that û(x0, ·) ∈ L2(Rn) for all x0 ≥ 0. The
solution in Eq. (44.8) will not have this property unless B(ξ) decays very rapidly
at ∞. The simplest way to achieve this is to assume B = 0 in which case we
now get a unique solution to Eq. (44.7), namely

û(x0, ξ) = f̂(ξ)e−x0|ξ|.

Applying the inverse Fourier transform gives

u(x0, x) = F−1
[
f̂(ξ)e−x0|ξ|

]
(x) =:

(
e−x0

√
−∆f

)
(x)

and moreover (
e−x0

√
−∆f

)
(x) = Px0

∗ f(x)
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where Px0
(x) = (2π)

−n/2 (F−1e−x0|ξ|
)

(x). From Exercise 43.4,

Px0
(x) = (2π)

−n/2
(
F−1e−x0|ξ|

)
(x) = cn

x0

(x2
0 + |x|2)(n+1)/2

where

cn = (2π)
−n/2 Γ ((n+ 1)/2)√

π2n/2
=
Γ ((n+ 1)/2)

2nπ(n+1)/2
.

Hence we have proved the following proposition.

Proposition 44.2. For f ∈ L2(Rn),

e−x0

√
−∆f = Px0

∗ f for all x0 ≥ 0

and the function u(x0, x) := e−x0

√
−∆f(x) is C∞ for (x0, x) ∈ (0,∞)×Rn and

solves Eq. (44.6).

44.3 Heat Equation on Rn

The heat equation for a function u : R+ × Rn → C is the partial differential
equation (

∂t −
1

2
∆

)
u = 0 with u(0, x) = f(x), (44.9)

where f is a given function on Rn. By Fourier transforming Eq. (44.9) in the x
– variables only, one finds that (44.9) implies that(

∂t +
1

2
|ξ|2
)
û(t, ξ) = 0 with û(0, ξ) = f̂(ξ). (44.10)

and hence that û(t, ξ) = e−t|ξ|
2/2f̂(ξ). Inverting the Fourier transform then

shows that

u(t, x) = F−1
(
e−t|ξ|

2/2f̂(ξ)
)

(x) =
(
F−1

(
e−t|ξ|

2/2
)
Ff
)

(x) =: et∆/2f(x).

From Example 43.4,

F−1
(
e−t|ξ|

2/2
)

(x) = pt(x) = t−n/2e−
1
2t |x|

2

and therefore,

u(t, x) =

∫
Rn
pt(x− y)f(y)dy.

This suggests the following theorem.

Theorem 44.3. Let

ρ(t, x, y) := (2πt)
−n/2

e−|x−y|
2/2t (44.11)

be the heat kernel on Rn. Then(
∂t −

1

2
∆x

)
ρ(t, x, y) = 0 and lim

t↓0
ρ(t, x, y) = δx(y), (44.12)

where δx is the δ – function at x in Rn. More precisely, if f is a continuous
bounded (can be relaxed considerably) function on Rn, then

u(t, x) =

∫
Rn
ρ(t, x, y)f(y)dy

is a solution to Eq. (44.9) where u(0, x) := limt↓0 u(t, x).

Proof. Direct computations show that
(
∂t − 1

2∆x

)
ρ(t, x, y) = 0 and an

application of Theorem 31.33 shows limt↓0 ρ(t, x, y) = δx(y) or equivalently
that limt↓0

∫
Rn ρ(t, x, y)f(y)dy = f(x) uniformly on compact subsets of Rn.

This shows that limt↓0 u(t, x) = f(x) uniformly on compact subsets of Rn.
This notation suggests that we should be able to compute the solution to g

to (∆−m2)g = f using

g(x) =
(
m2 −∆

)−1
f(x) =

∫ ∞
0

(
e−(m2−∆)tf

)
(x)dt

=

∫ ∞
0

(
e−m

2tp2tFf
)

(x)dt,

a fact which is easily verified using the Fourier transform. This gives us a method
to compute Gm(x) from the previous section, namely

Gm(x) =

∫ ∞
0

e−m
2tp2t(x)dt =

∫ ∞
0

(2t)−n/2e−m
2t− 1

4t |x|
2

dt.

We make the change of variables, λ = |x|2 /4t (t = |x|2 /4λ, dt = − |x|
2

4λ2 dλ) to
find

Gm(x) =

∫ ∞
0

(2t)−n/2e−m
2t− 1

4t |x|
2

dt =

∫ ∞
0

(
|x|2

2λ

)−n/2
e−m

2|x|2/4λ−λ |x|
2

(2λ)
2 dλ

=
2(n/2−2)

|x|n−2

∫ ∞
0

λn/2−2e−λe−m
2|x|2/4λdλ. (44.13)

In case n = 3, Eq. (44.13) becomes
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Gm(x) =

√
π√

2 |x|

∫ ∞
0

1√
πλ

e−λe−m
2|x|2/4λdλ =

√
π√

2 |x|
e−m|x|

where the last equality follows from Exercise 43.3. Hence when n = 3 we have
found(

m2 −∆
)−1

f(x) = GmFf(x) = (2π)−3/2

∫
R3

√
π√

2 |x− y|
e−m|x−y|f(y)dy

=

∫
R3

1

4π |x− y|
e−m|x−y|f(y)dy. (44.14)

The function 1
4π|x|e

−m|x| is called the Yukawa potential.

Let us work out Gm(x) for n odd. By differentiating Eq. (43.17) of Exercise
43.3 we find∫ ∞

0

dλλk−1/2e−
1
4λx

2

e−λm
2

=

∫ ∞
0

dλ
1√
λ
e−

1
4λx

2

(
− d

da

)k
e−λa|a=m2

=

(
− d

da

)k √
π√
a
e−
√
ax = pm,k(x)e−mx

where pm,k(x) is a polynomial in x with deg pm = k with

pm,k(0) =
√
π

(
− d

da

)k
a−1/2|a=m2 =

√
π(

1

2

3

2
. . .

2k − 1

2
)m2k+1

= m2k+1
√
π2−k(2k − 1)!!.

Letting k− 1/2 = n/2− 2 and m = 1 we find k = n−1
2 − 2 ∈ N for n = 3, 5, . . . .

and we find ∫ ∞
0

λn/2−2e−
1
4λx

2

e−λdλ = p1,k(x)e−x for all x > 0.

Therefore,

Gm(x) =
2(n/2−2)

|x|n−2

∫ ∞
0

λn/2−2e−λe−m
2|x|2/4λdλ =

2(n/2−2)

|x|n−2 p1,n/2−2(m |x|)e−m|x|.

Now for even m, I think we get Bessel functions in the answer. (BRUCE:
look this up.) Let us at least work out the asymptotics of Gm(x) for x → ∞.
To this end let

ψ(y) :=

∫ ∞
0

λn/2−2e−(λ+λ−1y2)dλ = yn−2

∫ ∞
0

λn/2−2e−(λy2+λ−1)dλ

The function fy(λ) := (y2λ+ λ−1) satisfies,

f ′y(λ) =
(
y2 − λ−2

)
and f ′′y (λ) = 2λ−3 and f ′′′y (λ) = −6λ−4

so by Taylor’s theorem with remainder we learn

fy(λ) ∼= 2y + y3(λ− y−1)2 for all λ > 0,

see Figure 44.3 below.

Plot of f4 and its second order Taylor approximation.

So by the usual asymptotics arguments,

ψ(y) ∼= yn−2

∫
(−ε+y−1,y−1+ε)

λn/2−2e−(λy2+λ−1)dλ

∼= yn−2

∫
(−ε+y−1,y−1+ε)

λn/2−2 exp
(
−2y − y3(λ− y−1)2

)
dλ

∼= yn−2e−2y

∫
R
λn/2−2 exp

(
−y3(λ− y−1)2

)
dλ (let λ→ λy−1)

= e−2yyn−2y−n/2+1

∫
R
λn/2−2 exp

(
−y(λ− 1)2

)
dλ

= e−2yyn−2y−n/2+1

∫
R
(λ+ 1)n/2−2 exp

(
−yλ2

)
dλ.

The point is we are still going to get exponential decay at ∞.
When m = 0, Eq. (44.13) becomes

G0(x) =
2(n/2−2)

|x|n−2

∫ ∞
0

λn/2−1e−λ
dλ

λ
=

2(n/2−2)

|x|n−2 Γ (n/2− 1)

where Γ (x) in the gamma function defined in Eq. (??). Hence for “reasonable”
functions f (and n 6= 2) we expect that (see Proposition 44.4 below)
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44.4 Wave Equation on Rn 499

(−∆)−1f(x) = G0Ff(x) = 2(n/2−2)Γ (n/2− 1)(2π)−n/2
∫
Rn

1

|x− y|n−2 f(y)dy

=
1

4πn/2
Γ (n/2− 1)

∫
Rn

1

|x− y|n−2 f(y)dy.

The function

G(x) :=
1

4πn/2
Γ (n/2− 1)

1

|x|n−2 (44.15)

is a “Green’s function” for −∆. Recall from Exercise 12.12 that, for n = 2k,
Γ (n2 − 1) = Γ (k − 1) = (k − 2)!, and for n = 2k + 1,

Γ (
n

2
− 1) = Γ (k − 1/2) = Γ (k − 1 + 1/2) =

√
π

1 · 3 · 5 · · · · · (2k − 3)

2k−1

=
√
π

(2k − 3)!!

2k−1
where (−1)!! =: 1.

Hence

G(x) =
1

4

1

|x|n−2

{ 1
πk

(k − 2)! if n = 2k
1
πk

(2k−3)!!
2k−1 if n = 2k + 1

and in particular when n = 3,

G(x) =
1

4π

1

|x|

which is consistent with Eq. (44.14) with m = 0.

Proposition 44.4. Let n ≥ 3 and for x ∈ 6 Rn, let ρt (x) = ρ (t, x, 0) :=(
1

2πt

)n/2
e−

1
2t |x|

2

(see Eq. (44.11))and G (x) be as in Eq. (44.15) so that

G (x) :=
Cn

|x|n−2 =
1

2

∫ ∞
0

ρt (x) dt for x 6= 0.

Then
−∆ (G ∗ u) = −G ∗∆u = u

for all u ∈ C2
c (Rn) .

Proof. For f ∈ Cc (Rn) ,

G ∗ f (x) = Cn

∫
Rn
f (x− y)

1

|y|n−2 dy

is well defined, since∫
Rn
|f (x− y)| 1

|y|n−2 dy ≤M
∫
|y|≤R+|x|

1

|y|n−2 dy <∞

where M is a bound on f and supp(f) ⊂ B (0, R) . Similarly, |x| ≤ r, we have

sup
|x|≤r

|f (x− y)| 1

|y|n−2 ≤M1{|y|≤R+r}
1

|y|n−2 ∈ L
1 (dy) ,

from which it follows that G ∗ f is a continuous function. Similar arguments
show if f ∈ C2

c (Rn) , then G∗f ∈ C2 (Rn) and ∆ (G ∗ f) = G∗∆f. So to finish
the proof it suffices to show G ∗∆u = u.

For this we now write, making use of Fubini-Tonelli, integration by parts,
the fact that ∂tρt (y) = 1

2∆ρt (y) and the dominated convergence theorem,

G ∗∆u (x) =
1

2

∫
Rn
∆u (x− y)

(∫ ∞
0

ρt (y) dt

)
dy

=
1

2

∫ ∞
0

dt

∫
Rn
∆u (x− y) ρt (y) dy

=
1

2

∫ ∞
0

dt

∫
Rn
∆yu (x− y) ρt (y) dy

=
1

2

∫ ∞
0

dt

∫
Rn
u (x− y)∆yρt (y) dy

=

∫ ∞
0

dt

∫
Rn
u (x− y)

d

dt
ρt (y) dy

= lim
ε↓0

∫ ∞
ε

dt

∫
Rn
u (x− y)

d

dt
ρt (y) dy

= lim
ε↓0

∫
Rn
u (x− y)

(∫ ∞
ε

d

dt
ρt (y) dt

)
dy

= − lim
ε↓0

∫
Rn
u (x− y) ρε (y) dy = u (x) ,

where in the last equality we have used the fact that ρt is an approximate δ –
sequence.

44.4 Wave Equation on Rn

Let us now consider the wave equation on Rn,

0 =
(
∂2
t −∆

)
u(t, x) with

u(0, x) = f(x) and ut(0, x) = g(x). (44.16)

Taking the Fourier transform in the x variables gives the following equation

0 = ût t(t, ξ) + |ξ|2 û(t, ξ) with

û(0, ξ) = f̂(ξ) and ût(0, ξ) = ĝ(ξ). (44.17)
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500 44 Constant Coefficient partial differential equations

The solution to these equations is

û(t, ξ) = f̂(ξ) cos (t |ξ|) + ĝ(ξ)
sin t |ξ|
|ξ|

and hence we should have

u(t, x) = F−1

(
f̂(ξ) cos (t |ξ|) + ĝ(ξ)

sin t |ξ|
|ξ|

)
(x)

= F−1 cos (t |ξ|)Ff(x) + F−1 sin t |ξ|
|ξ|

Fg (x)

=
d

dt
F−1

[
sin t |ξ|
|ξ|

]
Ff(x) + F−1

[
sin t |ξ|
|ξ|

]
Fg (x) . (44.18)

The question now is how interpret this equation. In particular what are

the inverse Fourier transforms of F−1 cos (t |ξ|) and F−1 sin t|ξ|
|ξ| . Since

d
dtF

−1 sin t|ξ|
|ξ| Ff(x) = F−1 cos (t |ξ|)Ff(x), it really suffices to under-

stand F−1
[

sin t|ξ|
|ξ|

]
. The problem we immediately run into here is that

sin t|ξ|
|ξ| ∈ L

2(Rn) iff n = 1 so that is the case we should start with.

Again by complex contour integration methods one can show(
F−1ξ−1 sin tξ

)
(x) =

π√
2π

(
1x+t>0 − 1(x−t)>0

)
=

π√
2π

(1x>−t − 1x>t) =
π√
2π

1[−t,t](x)

where in writing the last line we have assume that t ≥ 0. Again this easily seen
to be correct because

F
[

π√
2π

1[−t,t](x)

]
(ξ) =

1

2

∫
R

1[−t,t](x)e−iξ·xdx =
1

−2iξ
e−iξ·x|t−t

=
1

2iξ

[
eiξt − e−iξt

]
= ξ−1 sin tξ.

Therefore, (
F−1ξ−1 sin tξ

)
Ff(x) =

1

2

∫ t

−t
f(x− y)dy

and the solution to the one dimensional wave equation is

u(t, x) =
d

dt

1

2

∫ t

−t
f(x− y)dy +

1

2

∫ t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

∫ t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

∫ x+t

x−t
g(y)dy.

We can arrive at this same solution by more elementary means as follows.
We first note in the one dimensional case that wave operator factors, namely

0 =
(
∂2
t − ∂2

x

)
u(t, x) = (∂t − ∂x) (∂t + ∂x)u(t, x).

Let U(t, x) := (∂t + ∂x)u(t, x), then the wave equation states (∂t − ∂x)U = 0
and hence by the chain rule d

dtU(t, x− t) = 0. So

U(t, x− t) = U(0, x) = g(x) + f ′(x)

and replacing x by x+ t in this equation shows

(∂t + ∂x)u(t, x) = U(t, x) = g(x+ t) + f ′(x+ t).

Working similarly, we learn that

d

dt
u(t, x+ t) = g(x+ 2t) + f ′(x+ 2t)

which upon integration implies

u(t, x+ t) = u(0, x) +

∫ t

0

{g(x+ 2τ) + f ′(x+ 2τ)} dτ

= f(x) +

∫ t

0

g(x+ 2τ)dτ +
1

2
f(x+ 2τ)|t0

=
1

2
(f(x) + f(x+ 2t)) +

∫ t

0

g(x+ 2τ)dτ.

Replacing x→ x− t in this equation gives

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

∫ t

0

g(x− t+ 2τ)dτ

and then letting y = x− t+ 2τ in the last integral shows again that

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

1

2

∫ x+t

x−t
g(y)dy.

When n > 3 it is necessary to treat F−1
[

sin t|ξ|
|ξ|

]
as a “distribution” or

“generalized function,” see Section 45 below. So for now let us take n = 3, in
which case from Example 43.19 it follows that

F−1

[
sin t |ξ|
|ξ|

]
=

t

4πt2
σt = tσ̄t (44.19)
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44.4 Wave Equation on Rn 501

where σ̄t is 1
4πt2σt, the surface measure on St normalized to have total measure

one. Hence from Eq. (44.18) the solution to the three dimensional wave equation
should be given by

u(t, x) =
d

dt
(tσ̄tFf(x)) + tσ̄tFg (x) . (44.20)

Using this definition in Eq. (44.20) gives

u(t, x) =
d

dt

{
t

∫
St

f(x− y)dσ̄t(y)

}
+ t

∫
St

g(x− y)dσ̄t(y)

=
d

dt

{
t

∫
S1

f(x− tω)dσ̄1(ω)

}
+ t

∫
S1

g(x− tω)dσ̄1(ω)

=
d

dt

{
t

∫
S1

f(x+ tω)dσ̄1(ω)

}
+ t

∫
S1

g(x+ tω)dσ̄1(ω). (44.21)

Proposition 44.5. Suppose f ∈ C3(R3) and g ∈ C2(R3), then u(t, x) defined
by Eq. (44.21) is in C2

(
R× R3

)
and is a classical solution of the wave equation

in Eq. (44.16).

Proof. The fact that u ∈ C2
(
R× R3

)
follows by the usual differentiation

under the integral arguments. Suppose we can prove the proposition in the
special case that f ≡ 0. Then for f ∈ C3(R3), the function v(t, x) = +t

∫
S1
g(x+

tω)dσ̄1(ω) solves the wave equation 0 =
(
∂2
t −∆

)
v(t, x) with v(0, x) = 0 and

vt(0, x) = g(x). Differentiating the wave equation in t shows u = vt also solves
the wave equation with u(0, x) = g(x) and ut(0, x) = vtt(0, x) = −∆xv(0, x) =
0. These remarks reduced the problems to showing u in Eq. (44.21) with f ≡ 0
solves the wave equation. So let

u(t, x) := t

∫
S1

g(x+ tω)dσ̄1(ω). (44.22)

We now give two proofs the u solves the wave equation.
Proof 1. Since solving the wave equation is a local statement and u(t, x)

only depends on the values of g in B(x, t) we it suffices to consider the case
where g ∈ C2

c

(
R3
)
. Taking the Fourier transform of Eq. (44.22) in the x variable

shows

û(t, ξ) = t

∫
S1

dσ̄1(ω)

∫
R3

g(x+ tω)e−iξ·xdx

= t

∫
S1

dσ̄1(ω)

∫
R3

g(x)e−iξ·xeitω·ξdx = ĝ(ξ)t

∫
S1

eitω·ξdσ̄1(ω)

= ĝ(ξ)t
sin |tk|
|tk|

= ĝ(ξ)
sin (t |ξ|)
|ξ|

wherein we have made use of Example 43.19. This completes the proof since
û(t, ξ) solves Eq. (44.17) as desired.

Proof 2. Differentiating

S(t, x) :=

∫
S1

g(x+ tω)dσ̄1(ω)

in t gives

St(t, x) =
1

4π

∫
S1

∇g(x+ tω) · ωdσ(ω)

=
1

4π

∫
B(0,1)

∇ω · ∇g(x+ tω)dm(ω)

=
t

4π

∫
B(0,1)

∆g(x+ tω)dm(ω)

=
1

4πt2

∫
B(0,t)

∆g(x+ y)dm(y)

=
1

4πt2

∫ t

0

dr r2

∫
|y|=r

∆g(x+ y)dσ(y)

where we have used the divergence theorem, made the change of variables y = tω
and used the disintegration formula in Eq. (??),∫

Rd

f(x)dm(x) =

∫
[0,∞)×Sn−1

f(r ω) dσ(ω)rn−1dr =

∫ ∞
0

dr

∫
|y|=r

f(y)dσ(y).

Since u(t, x) = tS(t, x) if follows that

utt(t, x) =
∂

∂t
[S(t, x) + tSt(t, x)]

= St(t, x) +
∂

∂t

[
1

4πt

∫ t

0

dr r2

∫
|y|=r

∆g(x+ y)dσ(y)

]

= St(t, x)− 1

4πt2

∫ t

0

dr

∫
|y|=r

∆g(x+ y)dσ(y)

+
1

4πt

∫
|y|=t

∆g(x+ y)dσ(y)

= St(t, x)− St(t, x) +
t

4πt2

∫
|y|=1

∆g(x+ tω)dσ(ω)

= t∆u(t, x)

as required.
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502 44 Constant Coefficient partial differential equations

Fig. 44.1. The geometry of the solution to the wave equation in three dimensions.
The observer sees a flash at t = 0 and x = 0 only at time t = |x| . The wave progates
sharply with speed 1.

The solution in Eq. (44.21) exhibits a basic property of wave equations,
namely finite propagation speed. To exhibit the finite propagation speed, sup-
pose that f = 0 (for simplicity) and g has compact support near the origin, for
example think of g = δ0(x). Then x+ tw = 0 for some w iff |x| = t. Hence the
“wave front” propagates at unit speed and the wave front is sharp. See Figure
44.1 below.

The solution of the two dimensional wave equation may be found using
“Hadamard’s method of decent” which we now describe. Suppose now that f
and g are functions on R2 which we may view as functions on R3 which happen
not to depend on the third coordinate. We now go ahead and solve the three
dimensional wave equation using Eq. (44.21) and f and g as initial conditions.
It is easily seen that the solution u(t, x, y, z) is again independent of z and hence
is a solution to the two dimensional wave equation. See figure 44.2 below.

Notice that we still have finite speed of propagation but no longer sharp
propagation. The explicit formula for u is given in the next proposition.

Proposition 44.6. Suppose f ∈ C3(R2) and g ∈ C2(R2), then

u(t, x) :=
∂

∂t

[
t

2π

∫∫
D1

f(x+ tw)√
1− |w|2

dm(w)

]

+
t

2π

∫∫
D1

g(x+ tw)√
1− |w|2

dm(w)

is in C2
(
R× R2

)
and solves the wave equation in Eq. (44.16).

Fig. 44.2. The geometry of the solution to the wave equation in two dimensions. A
flash at 0 ∈ R2 looks like a line of flashes to the fictitious 3 – d observer and hence she
sees the effect of the flash for t ≥ |x| . The wave still propagates with speed 1. However
there is no longer sharp propagation of the wave front, similar to water waves.

Proof. As usual it suffices to consider the case where f ≡ 0. By symmetry
u may be written as

u(t, x) = 2t

∫
S+
t

g(x− y)dσ̄t(y) = 2t

∫
S+
t

g(x+ y)dσ̄t(y)

where S+
t is the portion of St with z ≥ 0. The surface S+

t may be parametrized
by R(u, v) = (u, v,

√
t2 − u2 − v2) with (u, v) ∈ Dt :=

{
(u, v) : u2 + v2 ≤ t2

}
.

In these coordinates we have

4πt2dσ̄t =
∣∣∣(−∂u√t2 − u2 − v2,−∂v

√
t2 − u2 − v2, 1

)∣∣∣ dudv
=

∣∣∣∣( u√
t2 − u2 − v2

,
v√

t2 − u2 − v2
, 1

)∣∣∣∣ dudv
=

√
u2 + v2

t2 − u2 − v2
+ 1dudv =

|t|√
t2 − u2 − v2

dudv
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and therefore,

u(t, x) =
2t

4πt2

∫
Dt

g(x+ (u, v,
√
t2 − u2 − v2))

|t|√
t2 − u2 − v2

dudv

=
1

2π
sgn(t)

∫
Dt

g(x+ (u, v))√
t2 − u2 − v2

dudv.

This may be written as

u(t, x) =
1

2π
sgn(t)

∫∫
Dt

g(x+ w)√
t2 − |w|2

dm(w)

=
1

2π
sgn(t)

t2

|t|

∫∫
D1

g(x+ tw)√
1− |w|2

dm(w)

=
1

2π
t

∫∫
D1

g(x+ tw)√
1− |w|2

dm(w)

44.5 Elliptic Regularity

The following theorem is a special case of the main theorem (Theorem 44.11)
of this section.

Theorem 44.7. Suppose that M ⊂o Rn, v ∈ C∞(M) and u ∈ L1
loc(M) satisfies

∆u = v weakly, then u has a (necessarily unique) version ũ ∈ C∞(M).

Proof. We may always assume n ≥ 3, by embedding the n = 1 and n = 2
cases in the n = 3 cases. For notational simplicity, assume 0 ∈ M and we will
show u is smooth near 0. To this end let θ ∈ C∞c (M) such that θ = 1 in a
neighborhood of 0 and α ∈ C∞c (M) such that supp(α) ⊂ {θ = 1} and α = 1
in a neighborhood of 0 as well, see Figure 44.3 Then formally, we have with
β := 1− α,

G ∗ (θv) = G ∗ (θ∆u) = G ∗ (θ∆(αu+ βu))

= G ∗ (∆(αu) + θ∆(βu)) = αu+G ∗ (θ∆(βu))

so that
u(x) = G ∗ (θv) (x)−G ∗ (θ∆(βu))(x)

for x ∈ supp(α). The last term is formally given by

G ∗ (θ∆(βu))(x) =

∫
Rn
G(x− y)θ(y)∆(β(y)u(y))dy

=

∫
Rn
β(y)∆y [G(x− y)θ(y)] · u(y)dy

Fig. 44.3. The region M and the cutoff functions, θ and α.

which makes sense for x near 0. Therefore we find

u(x) = G ∗ (θv) (x)−
∫
Rn
β(y)∆y [G(x− y)θ(y)] · u(y)dy.

Clearly all of the above manipulations were correct if we know u were C2 to
begin with. So for the general case, let un = u ∗ δn with {δn}∞n=1 – the usual
sort of δ – sequence approximation. Then ∆un = v ∗ δn =: vn away from ∂M
and

un(x) = G ∗ (θvn) (x)−
∫
Rn
β(y)∆y [G(x− y)θ(y)] · un(y)dy. (44.23)

Since un → u in L1
loc(O) where O is a sufficiently small neighborhood of 0, we

may pass to the limit in Eq. (44.23) to find u(x) = ũ(x) for a.e. x ∈ O where

ũ(x) := G ∗ (θv) (x)−
∫
Rn
β(y)∆y [G(x− y)θ(y)] · u(y)dy.

This concluded the proof since ũ is smooth for x near 0.

Definition 44.8. We say L = p(Dx) as defined in Eq. (44.1) is elliptic if
pk(ξ) :=

∑
|α|=k aαξ

α is zero iff ξ = 0. We will also say the polynomial p(ξ) :=∑
|α|≤k aαξ

α is elliptic if this condition holds.

Remark 44.9. If p(ξ) :=
∑
|α|≤k aαξ

α is an elliptic polynomial, then there exists

A < ∞ such that inf |ξ|≥A |p(ξ)| > 0. Since pk(ξ) is everywhere non-zero for
ξ ∈ Sn−1 and Sn−1 ⊂ Rn is compact, ε := inf |ξ|=1 |pk(ξ)| > 0. By homogeneity
this implies

|pk(ξ)| ≥ ε |ξ|k for all ξ ∈ An.
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Since

|p(ξ)| =

∣∣∣∣∣∣pk(ξ) +
∑
|α|<k

aαξ
α

∣∣∣∣∣∣ ≥ |pk(ξ)| −

∣∣∣∣∣∣
∑
|α|<k

aαξ
α

∣∣∣∣∣∣
≥ ε |ξ|k − C

(
1 + |ξ|k−1

)
for some constant C < ∞ from which it is easily seen that for A sufficiently
large,

|p(ξ)| ≥ ε

2
|ξ|k for all |ξ| ≥ A.

For the rest of this section, let L = p(Dx) be an elliptic operator and M ⊂0

Rn. As mentioned at the beginning of this section, the formal solution to Lu = v
for v ∈ L2 (Rn) is given by

u = L−1v = G ∗ v

where

G(x) :=

∫
Rn

1

p(ξ)
eix·ξdξ.

Of course this integral may not be convergent because of the possible zeros of
p and the fact 1

p(ξ) may not decay fast enough at infinity. We we will introduce

a smooth cut off function χ(ξ) which is 1 on C0(A) := {x ∈ Rn : |x| ≤ A} and
supp(χ) ⊂ C0(2A) where A is as in Remark 44.9. Then for M > 0 let

GM (x) =

∫
Rn

(1− χ(ξ))χ(ξ/M)

p(ξ)
eix·ξdξ, (44.24)

δ(x) := χ∨(x) =

∫
Rn
χ(ξ)eix·ξdξ, and δM (x) = Mnδ(Mx). (44.25)

Notice
∫
Rn δ(x)dx = Fδ(0) = χ(0) = 1, δ ∈ S since χ ∈ S and

LGM (x) =

∫
Rn

(1− χ(ξ))χ(ξ/M)eix·ξdξ =

∫
Rn

[χ(ξ/M)− χ(ξ)] eix·ξdξ

= δM (x)− δ(x)

provided M > 2.

Proposition 44.10. Let p be an elliptic polynomial of degree m. The function
GM defined in Eq. (44.24) satisfies the following properties,

1. GM ∈ S for all M > 0.
2. LGM (x) = Mnδ(Mx)− δ(x).

3. There exists G ∈ C∞c (Rn \ {0}) such that for all multi-indices α,
limM→∞ ∂αGM (x) = ∂αG(x) uniformly on compact subsets in Rn \ {0} .

Proof. We have already proved the first two items. For item 3., we notice
that

(−x)
β
DαGM (x) =

∫
Rn

(1− χ(ξ))χ(ξ/M)ξα

p(ξ)
(−D)

β
ξ e

ix·ξdξ

=

∫
Rn
Dβ
ξ

[
(1− χ(ξ)) ξα

p(ξ)
χ(ξ/M)

]
eix·ξdξ

=

∫
Rn
Dβ
ξ

(1− χ(ξ)) ξα

p(ξ)
· χ(ξ/M)eix·ξdξ +RM (x)

where

RM (x) =
∑
γ<β

(
β

γ

)
M |γ|−|β|

∫
Rn
Dγ
ξ

(1− χ(ξ)) ξα

p(ξ)
·
(
Dβ−γχ

)
(ξ/M)eix·ξdξ.

Using ∣∣∣∣Dγ
ξ

[
ξα

p(ξ)
(1− χ(ξ))

]∣∣∣∣ ≤ C |ξ||α|−m−|γ|
and the fact that

supp(
(
Dβ−γχ

)
(ξ/M)) ⊂ {ξ ∈ Rn : A ≤ |ξ| /M ≤ 2A}

= {ξ ∈ Rn : AM ≤ |ξ| ≤ 2AM}

we easily estimate

|RM (x)| ≤ C
∑
γ<β

(
β

γ

)
M |γ|−|β|

∫
{ξ∈Rn:AM≤|ξ|≤2AM}

|ξ||α|−m−|γ| dξ

≤ C
∑
γ<β

(
β

γ

)
M |γ|−|β|M |α|−m−|γ|+n = CM |α|−|β|−m+n.

Therefore, RM → 0 uniformly in x as M → ∞ provided |β| > |α| −m + n. It
follows easily now that GM → G in C∞c (Rn \ {0}) and furthermore that

(−x)
β
DαG(x) =

∫
Rn
Dβ
ξ

(1− χ(ξ)) ξα

p(ξ)
· eix·ξdξ

provided β is sufficiently large. In particular we have shown,

DαG(x) =
1

|x|2k

∫
Rn

(−∆ξ)
k (1− χ(ξ)) ξα

p(ξ)
· eix·ξdξ

provided m− |α|+ 2k > n, i.e. k > (n−m+ |α|) /2. We are now ready to use
this result to prove elliptic regularity for the constant coefficient case.
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Theorem 44.11. Suppose L = p(Dξ) is an elliptic differential operator on Rn,
M ⊂o Rn, v ∈ C∞(M) and u ∈ L1

loc(M) satisfies Lu = v weakly, then u has a
(necessarily unique) version ũ ∈ C∞(M).

Proof. For notational simplicity, assume 0 ∈ M and we will show u is
smooth near 0. To this end let θ ∈ C∞c (M) such that θ = 1 in a neighborhood of
0 and α ∈ C∞c (M) such that supp(α) ⊂ {θ = 1} , and α = 1 in a neighborhood
of 0 as well. Then formally, we have with β := 1− α,

GM ∗ (θv) = GM ∗ (θLu) = GM ∗ (θL(αu+ βu))

= GM ∗ (L(αu) + θL(βu))

= δM ∗ (αu)− δ ∗ (αu) +GM ∗ (θL(βu))

so that

δM ∗ (αu) (x) = GM ∗ (θv) (x)−GM ∗ (θL(βu))(x) + δ ∗ (αu) . (44.26)

Since

F [GM ∗ (θv)] (ξ) = ĜM (ξ) (θv)
ˆ

(ξ) =
(1− χ(ξ))χ(ξ/M)

p(ξ)
(θv)

ˆ
(ξ)

→ (1− χ(ξ))

p(ξ)
(θv)

ˆ
(ξ) as M →∞

with the convergence taking place in L2 (actually in S), it follows that

GM ∗ (θv)→ “G ∗ (θv) ”(x) :=

∫
Rn

(1− χ(ξ))

p(ξ)
(θv)

ˆ
(ξ)eix·ξdξ

= F−1

[
(1− χ(ξ))

p(ξ)
(θv)

ˆ
(ξ)

]
(x) ∈ S.

So passing the the limit, M → ∞, in Eq. (44.26) we learn for almost every
x ∈ Rn,

u(x) = G ∗ (θv) (x)− lim
M→∞

GM ∗ (θL(βu))(x) + δ ∗ (αu) (x)

for a.e. x ∈ supp(α). Using the support properties of θ and β we see for x near
0 that (θL(βu))(y) = 0 unless y ∈ supp(θ) and y /∈ {α = 1} , i.e. unless y is in
an annulus centered at 0. So taking x sufficiently close to 0, we find x− y stays
away from 0 as y varies through the above mentioned annulus, and therefore

GM ∗ (θL(βu))(x) =

∫
Rn
GM (x− y)(θL(βu))(y)dy

=

∫
Rn
L∗y {θ(y)GM (x− y)} · (βu) (y)dy

→
∫
Rn
L∗y {θ(y)G(x− y)} · (βu) (y)dy as M →∞.

Therefore we have shown,

u(x) = G ∗ (θv) (x)−
∫
Rn
L∗y {θ(y)G(x− y)} · (βu) (y)dy + δ ∗ (αu) (x)

for almost every x in a neighborhood of 0. (Again it suffices to prove this
equation and in particular Eq. (44.26) assuming u ∈ C2(M) because of the
same convolution argument we have use above.) Since the right side of this
equation is the linear combination of smooth functions we have shown u has a
smooth version in a neighborhood of 0.

Remarks 44.12 We could avoid introducing GM (x) if deg(p) > n, in which

case (1−χ(ξ))
p(ξ) ∈ L1 and so

G(x) :=

∫
Rn

(1− χ(ξ))

p(ξ)
eix·ξdξ

is already well defined function with G ∈ C∞(Rn\{0})∩BC(Rn). If deg(p) < n,

we may consider the operator Lk = [p(Dx)]
k

= pk(Dx) where k is chosen so
that k · deg(p) > n. Since Lu = v implies Lku = Lk−1v weakly, we see to prove
the hypoellipticity of L it suffices to prove the hypoellipticity of Lk.
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45

Elementary Generalized Functions / Distribution Theory

This chapter has been highly influenced by Friedlander’s book [6].

45.1 Distributions on U ⊂o Rn

Let U be an open subset of Rn and

C∞c (U) = ∪K@@UC
∞(K) (45.1)

denote the set of smooth functions on U with compact support in U.

Definition 45.1. A sequence {ϕk}∞k=1 ⊂ D(U) converges to ϕ ∈ D(U), iff there
is a compact set K @@ U such that supp(ϕk) ⊂ K for all k and ϕk → ϕ in
C∞(K).

Definition 45.2 (Distributions on U ⊂o Rn). A generalized function T on
U ⊂o Rn is a continuous linear functional on D(U), i.e. T : D(U)→ C is linear
and limn→∞〈T, ϕk〉 = 0 for all {ϕk} ⊂ D(U) such that ϕk → 0 in D(U). We
denote the space of generalized functions by D′(U).

Proposition 45.3. Let T : D(U)→ C be a linear functional. Then T ∈ D′(U)
iff for all K @@ U, there exist n ∈ N and C <∞ such that

|T (ϕ)| ≤ Cpn(ϕ) for all ϕ ∈ C∞(K). (45.2)

Proof. Suppose that {ϕk} ⊂ D(U) such that ϕk → 0 in D(U). Let K be
a compact set such that supp(ϕk) ⊂ K for all k. Since limk→∞ pn(ϕk) = 0, it
follows that if Eq. (45.2) holds that limn→∞〈T, ϕk〉 = 0. Conversely, suppose
that there is a compact set K @@ U such that for no choice of n ∈ N and
C < ∞, Eq. (45.2) holds. Then we may choose non-zero ϕn ∈ C∞(K) such
that

|T (ϕn)| ≥ npn(ϕn) for all n.

Let ψn = 1
npn(ϕn)ϕn ∈ C∞(K), then pn(ψn) = 1/n → 0 as n → ∞ which

shows that ψn → 0 in D(U). On the other hence |T (ψn)| ≥ 1 so that
limn→∞〈T, ψn〉 6= 0. Alternate Proof:The definition of T being continuous
is equivalent to T |C∞(K) being sequentially continuous for all K @@ U. Since
C∞(K) is a metric space, sequential continuity and continuity are the same
thing. Hence T is continuous iff T |C∞(K) is continuous for all K @@ U. Now
T |C∞(K) is continuous iff a bound like Eq. (45.2) holds.

Definition 45.4. Let Y be a topological space and Ty ∈ D′(U) for all y ∈ Y.
We say that Ty → T ∈ D′(U) as y → y0 iff

lim
y→y0

〈Ty, ϕ〉 = 〈T, ϕ〉 for all ϕ ∈ D(U).

45.2 Examples of distributions and related computations

Example 45.5. Let µ be a positive Radon measure on U and f ∈ L1
loc(U). Define

T ∈ D′(U) by 〈Tf , ϕ〉 =
∫
U
ϕfdµ for all ϕ ∈ D(U). Notice that if ϕ ∈ C∞(K)

then

|〈Tf , ϕ〉| ≤
∫
U

|ϕf | dµ =

∫
K

|ϕf | dµ ≤ CK ‖ϕ‖∞

where CK :=
∫
K
|f | dµ <∞. Hence Tf ∈ D′(U). Furthermore, the map

f ∈ L1
loc(U)→ Tf ∈ D′(U)

is injective. Indeed, Tf = 0 is equivalent to∫
U

ϕfdµ = 0 for all ϕ ∈ D(U). (45.3)

for all ϕ ∈ C∞(K). By the dominated convergence theorem and the usual
convolution argument, this is equivalent to∫

U

ϕfdµ = 0 for all ϕ ∈ Cc(U). (45.4)

Now fix a compact set K @@ U and ϕn ∈ Cc(U) such that ϕn → sgn(f)1K in
L1(µ). By replacing ϕn by χ(ϕn) if necessary, where

χ(z) =

{
z if |z| ≤ 1
z
|z| if |z| ≥ 1,

we may assume that |ϕn| ≤ 1. By passing to a further subsequence, we may
assume that ϕn → sgn(f)1K a.e.. Thus we have
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0 = lim
n→∞

∫
U

ϕnfdµ =

∫
U

sgn(f)1Kfdµ =

∫
K

|f | dµ.

This shows that |f(x)| = 0 for µ -a.e. x ∈ K. Since K is arbitrary and U is
the countable union of such compact sets K, it follows that f(x) = 0 for µ -a.e.
x ∈ U.

The injectivity may also be proved slightly more directly as follows. As
before, it suffices to prove Eq. (45.4) implies that f(x) = 0 for µ – a.e. x.
We may further assume that f is real by considering real and imaginary parts
separately. Let K @@ U and ε > 0 be given. Set A = {f > 0} ∩ K, then
µ(A) < ∞ and hence since all σ finite measure on U are Radon, there exists
F ⊂ A ⊂ V with F compact and V ⊂o U such that µ(V \F ) < δ. By Uryshon’s
lemma, there exists ϕ ∈ Cc(V ) such that 0 ≤ ϕ ≤ 1 and ϕ = 1 on F. Then by
Eq. (45.4)

0 =

∫
U

ϕfdµ =

∫
F

ϕfdµ+

∫
V \F

ϕfdµ =

∫
F

ϕfdµ+

∫
V \F

ϕfdµ

so that ∫
F

fdµ =

∣∣∣∣∣
∫
V \F

ϕfdµ

∣∣∣∣∣ ≤
∫
V \F
|f | dµ < ε

provided that δ is chosen sufficiently small by the ε – δ definition of absolute
continuity. Similarly, it follows that

0 ≤
∫
A

fdµ ≤
∫
F

fdµ+ ε ≤ 2ε.

Since ε > 0 is arbitrary, it follows that
∫
A
fdµ = 0. Since K was arbitrary, we

learn that ∫
{f>0}

fdµ = 0

which shows that f ≤ 0 µ – a.e. Similarly, one shows that f ≥ 0 µ – a.e. and
hence f = 0 µ – a.e.

Example 45.6. Let us now assume that µ = m and write 〈Tf , ϕ〉 =
∫
U
ϕfdm.

For the moment let us also assume that U = R. Then we have

1. limM→∞ TsinMx = 0
2. limM→∞ TM−1 sinMx = πδ0 where δ0 is the point measure at 0.
3. If f ∈ L1(Rn, dm) with

∫
Rn fdm = 1 and fε(x) = ε−nf(x/ε), then

limε↓0 Tfε = δ0. As a special case,
consider limε↓0

ε
π(x2+ε2) = δ0.

Definition 45.7 (Multiplication by smooth functions). Suppose that g ∈
C∞(U) and T ∈ D′(U) then we define gT ∈ D′(U) by

〈gT, ϕ〉 = 〈T, gϕ〉 for all ϕ ∈ D(U).

It is easily checked that gT is continuous.

Definition 45.8 (Differentiation). For T ∈ D′(U) and i ∈ {1, 2, . . . , n} let
∂iT ∈ D′(U) be the distribution defined by

〈∂iT, ϕ〉 = −〈T, ∂iϕ〉 for all ϕ ∈ D(U).

Again it is easy to check that ∂iT is a distribution.

More generally if L =
∑
|α|≤m aα∂

α with aα ∈ C∞(U) for all α, then LT is
the distribution defined by

〈LT, ϕ〉 = 〈T,
∑
|α|≤m

(−1)|α|∂α (aαϕ)〉 for all ϕ ∈ D(U).

Hence we can talk about distributional solutions to differential equations of the
form LT = S.

Example 45.9. Suppose that f ∈ L1
loc and g ∈ C∞(U), then gTf = Tgf . If

further f ∈ C1(U), then ∂iTf = T∂if . If f ∈ Cm(U), then LTf = TLf .

Example 45.10. Suppose that a ∈ U, then

〈∂iδa, ϕ〉 = −∂iϕ(a)

and more generally we have

〈Lδa, ϕ〉 =
∑
|α|≤m

(−1)|α|∂α (aαϕ) (a).

Example 45.11. Consider the distribution T := T|x| for x ∈ R, i.e. take U = R.
Then

d

dx
T = Tsgn(x) and

d2

d2x
T = 2δ0.

More generally, suppose that f is piecewise C1, the

d

dx
Tf = Tf ′ +

∑
(f(x+)− f(x−)) δx.
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Example 45.12. Consider T = Tln|x| on D(R). Then

〈T ′, ϕ〉 = −
∫
R

ln |x|ϕ′(x)dx = − lim
ε↓0

∫
|x|>ε

ln |x|ϕ′(x)dx

= − lim
ε↓0

∫
|x|>ε

ln |x|ϕ′(x)dx

= lim
ε↓0

∫
|x|>ε

1

x
ϕ(x)dx− lim

ε↓0
[ln ε(ϕ(ε)− ϕ(−ε))]

= lim
ε↓0

∫
|x|>ε

1

x
ϕ(x)dx.

We will write T ′ = PV 1
x in the future. Here is another formula for T ′,

〈T ′, ϕ〉 = lim
ε↓0

∫
1≥|x|>ε

1

x
ϕ(x)dx+

∫
|x|>1

1

x
ϕ(x)dx

= lim
ε↓0

∫
1≥|x|>ε

1

x
[ϕ(x)− ϕ(0)]dx+

∫
|x|>1

1

x
ϕ(x)dx

=

∫
1≥|x|

1

x
[ϕ(x)− ϕ(0)]dx+

∫
|x|>1

1

x
ϕ(x)dx.

Please notice in the last example that 1
x /∈ L1

loc (R) so that T1/x is not well
defined. This is an example of the so called division problem of distributions.
Here is another possible interpretation of 1

x as a distribution.

Example 45.13. Here we try to define 1/x as limy↓0
1

x±iy , that is we want to
define a distribution T± by

〈T±, ϕ〉 := lim
y↓0

∫
1

x± iy
ϕ(x)dx.

Let us compute T+ explicitly,

lim
y↓0

∫
R

1

x+ iy
ϕ(x)dx

= lim
y↓0

∫
|x|≤1

1

x+ iy
ϕ(x)dx+ lim

y↓0

∫
|x|>1

1

x+ iy
ϕ(x)dx

= lim
y↓0

∫
|x|≤1

1

x+ iy
[ϕ(x)− ϕ(0)] dx+ ϕ(0) lim

y↓0

∫
|x|≤1

1

x+ iy
dx

+

∫
|x|>1

1

x
ϕ(x)dx

= PV

∫
R

1

x
ϕ(x)dx+ ϕ(0) lim

y↓0

∫
|x|≤1

1

x+ iy
dx.

Now by deforming the contour we have∫
|x|≤1

1

x+ iy
dx =

∫
ε<|x|≤1

1

x+ iy
dx+

∫
Cε

1

z + iy
dz

where Cε : z = εeiθ with θ : π → 0. Therefore,

lim
y↓0

∫
|x|≤1

1

x+ iy
dx = lim

y↓0

∫
ε<|x|≤1

1

x+ iy
dx+ lim

y↓0

∫
Cε

1

z + iy
dz

=

∫
ε<|x|≤1

1

x
dx+

∫
Cε

1

z
dz = 0− π.

Hence we have shown that T+ = PV 1
x − iπδ0. Similarly, one shows that T− =

PV 1
x + iπδ0. Notice that it follows from these computations that T− − T+ =

i2πδ0. Notice that
1

x− iy
− 1

x+ iy
=

2iy

x2 + y2

and hence we conclude that limy↓0
y

x2+y2 = πδ0 – a result that we saw in
Example 45.6, item 3.

Example 45.14. Suppose that µ is a complex measure on R and F (x) =
µ((−∞, x]), then T ′F = µ. Moreover, if f ∈ L1

loc(R) and T ′f = µ, then f = F +C
a.e. for some constant C.

Proof. Let ϕ ∈ D := D(R), then

〈T ′F , ϕ〉 = −〈TF , ϕ′〉 = −
∫
R
F (x)ϕ′(x)dx = −

∫
R
dx

∫
R
dµ(y)ϕ′(x)1y≤x

= −
∫
R
dµ(y)

∫
R
dxϕ′(x)1y≤x =

∫
R
dµ(y)ϕ(y) = 〈µ, ϕ〉

by Fubini’s theorem and the fundamental theorem of calculus. If T ′f = µ, then
T ′f−F = 0 and the result follows from Corollary 45.16 below.

Lemma 45.15. Suppose that T ∈ D′(Rn) is a distribution such that ∂iT = 0 for
some i, then there exists a distribution S ∈ D′(Rn−1) such that 〈T, ϕ〉 = 〈S, ϕ̄i〉
for all ϕ ∈ D(Rn) where

ϕ̄i =

∫
R
τteiϕdt ∈ D(Rn−1).

Proof. To simplify notation, assume that i = n and write x ∈ Rn as x =
(y, z) with y ∈ Rn−1 and z ∈ R. Let θ ∈ C∞c (R) such that

∫
R θ(z)dz = 1 and

for ψ ∈ D(Rn−1), let ψ ⊗ θ(x) = ψ(y)θ(z). The mapping
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ψ ∈ D(Rn−1) ∈ ψ ⊗ θ ∈ D(Rn)

is easily seen to be sequentially continuous and therefore 〈S, ψ〉 := 〈T, ψ ⊗ θ〉
defined a distribution in D′(Rn). Now suppose that ϕ ∈ D(Rn). If ϕ = ∂nf for
some f ∈ D(Rn) we would have to have

∫
ϕ(y, z)dz = 0. This is not generally

true, however the function ϕ− ϕ̄⊗ θ does have this property. Define

f(y, z) :=

∫ z

−∞
[ϕ(y, z′)− ϕ̄(y)θ(z′)] dz′,

then f ∈ D(Rn) and ∂nf = ϕ− ϕ̄⊗ θ. Therefore,

0 = −〈∂nT, f〉 = 〈T, ∂nf〉 = 〈T, ϕ〉 − 〈T, ϕ̄⊗ θ〉 = 〈T, ϕ〉 − 〈S, ϕ̄〉.

Corollary 45.16. Suppose that T ∈ D′(Rn) is a distribution such that there
exists m ≥ 0 such that

∂αT = 0 for all |α| = m,

then T = Tp where p(x) is a polynomial on Rn of degree less than or equal to
m− 1, where by convention if deg(p) = −1 then p := 0.

Proof. The proof will be by induction on n and m. The corollary is trivially
true when m = 0 and n is arbitrary. Let n = 1 and assume the corollary holds
for m = k − 1 with k ≥ 1. Let T ∈ D′(R) such that 0 = ∂kT = ∂k−1∂T. By
the induction hypothesis, there exists a polynomial, q, of degree k−2 such that
T ′ = Tq. Let p(x) =

∫ x
0
q(z)dz, then p is a polynomial of degree at most k − 1

such that p′ = q and hence T ′p = Tq = T ′. So (T − Tp)
′ = 0 and hence by

Lemma 45.15, T − Tp = TC where C = 〈T − Tp, θ〉 and θ is as in the proof of
Lemma 45.15. This proves the he result for n = 1. For the general induction,
suppose there exists (m,n) ∈ N2 with m ≥ 0 and n ≥ 1 such that assertion
in the corollary holds for pairs (m′, n′) such that either n′ < n of n′ = n and
m′ ≤ m. Suppose that T ∈ D′(Rn) is a distribution such that

∂αT = 0 for all |α| = m+ 1.

In particular this implies that ∂α∂nT = 0 for all |α| = m − 1 and hence by
induction ∂nT = Tqn where qn is a polynomial of degree at most m − 1 on
Rn. Let pn(x) =

∫ z
0
qn(y, z′)dz′ a polynomial of degree at most m on Rn. The

polynomial pn satisfies, 1) ∂αpn = 0 if |α| = m and αn = 0 and 2) ∂npn = qn.
Hence ∂n(T − Tpn) = 0 and so by Lemma 45.15,

〈T − Tpn , ϕ〉 = 〈S, ϕ̄n〉

for some distribution S ∈ D′(Rn−1). If α is a multi-index such that αn = 0 and
|α| = m, then

0 = 〈∂αT − ∂αTpn , ϕ〉 = 〈T − Tpn , ∂αϕ〉 = 〈S, (∂αϕ)n〉
= 〈S, ∂αϕ̄n〉 = (−1)|α|〈∂αS, ϕ̄n〉.

and in particular by taking ϕ = ψ ⊗ θ, we learn that 〈∂αS, ψ〉 = 0 for all
ψ ∈ D(Rn−1). Thus by the induction hypothesis, S = Tr for some polynomial
(r) of degree at most m on Rn−1. Letting p(y, z) = pn(y, z)+r(y) – a polynomial
of degree at most m on Rn, it is easily checked that T = Tp.

Example 45.17. Consider the wave equation

(∂t − ∂x) (∂t + ∂x)u(t, x) =
(
∂2
t − ∂2

x

)
u(t, x) = 0.

From this equation one learns that u(t, x) = f(x+ t) + g(x− t) solves the wave
equation for f, g ∈ C2. Suppose that f is a bounded Borel measurable function
on R and consider the function f(x+ t) as a distribution on R. We compute

〈(∂t − ∂x) f(x+ t), ϕ(x, t)〉 =

∫
R2

f(x+ t) (∂x − ∂t)ϕ(x, t)dxdt

=

∫
R2

f(x) [(∂x − ∂t)ϕ] (x− t, t)dxdt

= −
∫
R2

f(x)
d

dt
[ϕ(x− t, t)] dxdt

= −
∫
R
f(x) [ϕ(x− t, t)] |t=∞t=−∞dx = 0.

This shows that (∂t − ∂x) f(x + t) = 0 in the distributional sense. Similarly,
(∂t + ∂x) g(x − t) = 0 in the distributional sense. Hence u(t, x) = f(x + t) +
g(x− t) solves the wave equation in the distributional sense whenever f and g
are bounded Borel measurable functions on R.

Example 45.18. Consider f(x) = ln |x| for x ∈ R2 and let T = Tf . Then, point-
wise we have

∇ ln |x| = x

|x|2
and ∆ ln |x| = 2

|x|2
− 2x · x

|x|4
= 0.

Hence ∆f(x) = 0 for all x ∈ R2 except at x = 0 where it is not defined. Does
this imply that ∆T = 0? No, in fact ∆T = 2πδ as we shall now prove. By
definition of ∆T and the dominated convergence theorem,

〈∆T,ϕ〉 = 〈T,∆ϕ〉 =

∫
R2

ln |x|∆ϕ(x)dx = lim
ε↓0

∫
|x|>ε

ln |x|∆ϕ(x)dx.
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Using the divergence theorem,∫
|x|>ε

ln |x|∆ϕ(x)dx

= −
∫
|x|>ε

∇ ln |x| · ∇ϕ(x)dx+

∫
∂{|x|>ε}

ln |x| ∇ϕ(x) · n(x)dS(x)

=

∫
|x|>ε

∆ ln |x|ϕ(x)dx−
∫
∂{|x|>ε}

∇ ln |x| · n(x)ϕ(x)dS(x)

+

∫
∂{|x|>ε}

ln |x| (∇ϕ(x) · n(x)) dS(x)

=

∫
∂{|x|>ε}

ln |x| (∇ϕ(x) · n(x)) dS(x)

−
∫
∂{|x|>ε}

∇ ln |x| · n(x)ϕ(x)dS(x),

where n(x) is the outward pointing normal, i.e. n(x) = −x̂ := x/ |x| . Now∣∣∣∣∣
∫
∂{|x|>ε}

ln |x| (∇ϕ(x) · n(x)) dS(x)

∣∣∣∣∣ ≤ C (ln ε−1
)

2πε→ 0 as ε ↓ 0

where C is a bound on (∇ϕ(x) · n(x)) . While∫
∂{|x|>ε}

∇ ln |x| · n(x)ϕ(x)dS(x) =

∫
∂{|x|>ε}

x̂

|x|
· (−x̂)ϕ(x)dS(x)

= −1

ε

∫
∂{|x|>ε}

ϕ(x)dS(x)

→ −2πϕ(0) as ε ↓ 0.

Combining these results shows

〈∆T,ϕ〉 = 2πϕ(0).

Exercise 45.1. Carry out a similar computation to that in Example 45.18 to
show

∆T1/|x| = −4πδ

where now x ∈ R3.

Example 45.19. Let z = x+ iy, and ∂̄ = 1
2 (∂x + i∂y). Let T = T1/z, then

∂̄T = πδ0 or imprecisely ∂̄
1

z
= πδ(z).

Proof. Pointwise we have ∂̄ 1
z = 0 so we shall work as above. We then have

〈∂̄T, ϕ〉 = −〈T, ∂̄ϕ〉 = −
∫
R2

1

z
∂̄ϕ(z)dm(z)

= − lim
ε↓0

∫
|z|>ε

1

z
∂̄ϕ(z)dm(z)

= lim
ε↓0

∫
|z|>ε

∂̄
1

z
ϕ(z)dm(z)

− lim
ε↓0

∫
∂{|z|>ε}

1

z
ϕ(z)

1

2
(n1(z) + in2(z)) dσ(z)

= 0− lim
ε↓0

∫
∂{|z|>ε}

1

z
ϕ(z)

1

2

(
−z
|z|

)
dσ(z)

=
1

2
lim
ε↓0

∫
∂{|z|>ε}

1

|z|
ϕ(z)dσ(z)

= π lim
ε↓0

1

2πε

∫
∂{|z|>ε}

ϕ(z)dσ(z) = πϕ(0).

45.3 Other classes of test functions

(For what follows, see Exercises 35.34 and 35.35 of Chapter ??.

Notation 45.20 Suppose that X is a vector space and {pn}∞n=0 is a family of
semi-norms on X such that pn ≤ pn+1 for all n and with the property that
pn(x) = 0 for all n implies that x = 0. (We allow for pn = p0 for all n in which
case X is a normed vector space.) Let τ be the smallest topology on X such
that pn(x− ·) : X → [0,∞) is continuous for all n ∈ N and x ∈ X. For n ∈ N,
x ∈ X and ε > 0 let Bn(x, ε) := {y ∈ X : pn(x− y) < ε} .

Proposition 45.21. The balls B := {Bn(x, ε) : n ∈ N, x ∈ X and ε > 0} for a
basis for the topology τ. This topology is the same as the topology induced by the
metric d on X defined by

d(x, y) =

∞∑
n=0

2−n
pn(x− y)

1 + pn(x− y)
.

Moreover, a sequence {xk} ⊂ X is convergent to x ∈ X iff limk→∞ d(x, xk) = 0
iff limn→∞ pn(x, xk) = 0 for all n ∈ N and {xk} ⊂ X is Cauchy in X iff
limk,l→∞ d(xl, xk) = 0 iff limk,l→∞ pn(xl, xk) = 0 for all n ∈ N.
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Proof. Suppose that z ∈ Bn(x, ε) ∩ Bm(y, δ) and assume with out loss of
generality that m ≥ n. Then if pm(w − z) < α, we have

pm(w − y) ≤ pm(w − z) + pm(z − y) < α+ pm(z − y) < δ

provided that α ∈ (0, δ − pm(z − y)) and similarly

pn(w − x) ≤ pm(w − x) ≤ pm(w − z) + pm(z − x) < α+ pm(z − x) < ε

provided that α ∈ (0, ε− pm(z − x)). So choosing

δ =
1

2
min (δ − pm(z − y), ε− pm(z − x)) ,

we have shown that Bm(z, α) ⊂ Bn(x, ε) ∩ Bm(y, δ). This shows that B forms
a basis for a topology. In detail, V ⊂o X iff for all x ∈ V there exists n ∈ N
and ε > 0 such that Bn(x, ε) := {y ∈ X : pn(x− y) < ε} ⊂ V. Let τ(B) be the
topology generated by B. Since|pn(x− y)− pn(x− z)| ≤ pn(y− z), we see that
pn(x−·) is continuous on relative to τ(B) for each x ∈ X and n ∈ N. This shows
that τ ⊂ τ(B). On the other hand, since pn(x− ·) is τ – continuous, it follows
that Bn(x, ε) = {y ∈ X : pn(x− y) < ε} ∈ τ for all x ∈ X, ε > 0 and n ∈ N.
This shows that B ⊂ τ and therefore that τ(B) ⊂ τ. Thus τ = τ(B). Given
x ∈ X and ε > 0, let Bd(x, ε) = {y ∈ X : d(x, y) < ε} be a d – ball. Choose N
large so that

∑∞
n=N+1 2−n < ε/2. Then y ∈ BN (x, ε/4) we have

d(x, y) = pN (x− y)

N∑
n=0

2−n + ε/2 < 2
ε

4
+ ε/2 < ε

which shows that BN (x, ε/4) ⊂ Bd(x, ε). Conversely, if d(x, y) < ε, then

2−n
pn(x− y)

1 + pn(x− y)
< ε

which implies that

pn(x− y) <
2−nε

1− 2−nε
=: δ

when 2−nε < 1 which shows that Bn(x, δ) contains Bd(x, ε) with ε and δ as
above. This shows that τ and the topology generated by d are the same. The
moreover statements are now easily proved and are left to the reader.

Exercise 45.2. Keeping the same notation as Proposition 45.21 and further
assume that {p′n}n∈N is another family of semi-norms as in Notation 45.20.
Then the topology τ ′ determined by {p′n}n∈N is weaker then the topology τ
determined by {pn}n∈N (i.e. τ ′ ⊂ τ) iff for every n ∈ N there is an m ∈ N and
C <∞ such that p′n ≤ Cpm.

Lemma 45.22. Suppose that X and Y are vector spaces equipped with se-
quences of norms {pn} and {qn} as in Notation 45.20. Then a linear map
T : X → Y is continuous if for all n ∈ N there exists Cn < ∞ and mn ∈ N
such that qn(Tx) ≤ Cnpmn(x) for all x ∈ X. In particular, f ∈ X∗ iff
|f(x)| ≤ Cpm(x) for some C < ∞ and m ∈ N. (We may also characterize
continuity by sequential convergence since both X and Y are metric spaces.)

Proof. Suppose that T is continuous, then {x : qn(Tx) < 1} is an open
neighborhood of 0 in X. Therefore, there exists m ∈ N and ε > 0 such that
Bm(0, ε) ⊂ {x : qn(Tx) < 1} . So for x ∈ X and α < 1, αεx/pm(x) ∈ Bm(0, ε)
and thus

qn

(
αε

pm(x)
Tx

)
< 1 =⇒ qn(Tx) <

1

αε
pm(x)

for all x. Letting α ↑ 1 shows that qn(Tx) ≤ 1
εpm(x) for all x ∈ X. Conversely,

if T satisfies
qn(Tx) ≤ Cnpmn(x) for all x ∈ X,

then

qn(Tx− Tx′) = qn(T (x− x′)) ≤ Cnpmn(x− x′) for all x, y ∈ X.

This shows Tx′ → Tx as x′ → x, i.e. that T is continuous.

Definition 45.23. A Frechét space is a vector space X equipped with a family
{pn} of semi-norms such that X is complete in the associated metric d.

Example 45.24. Let K @@ Rn and C∞(K) := {f ∈ C∞c (Rn) : supp(f) ⊂ K} .
For m ∈ N, let

pm(f) :=
∑
|α|≤m

‖∂αf‖∞ .

Then (C∞(K), {pm}∞m=1) is a Frechét space. Moreover the derivative operators
{∂k} and multiplication by smooth functions are continuous linear maps from
C∞(K) to C∞(K). If µ is a finite measure on K, then T (f) :=

∫
K
∂αfdµ is an

element of C∞(K)∗ for any multi index α.

Example 45.25. Let U ⊂o Rn and for m ∈ N, and a compact set K @@ U let

pKm(f) :=
∑
|α|≤m

‖∂αf‖∞,K :=
∑
|α|≤m

max
x∈K
|∂αf(x)| .

Choose a sequence Km @@ U such that Km ⊂ Ko
m+1 ⊂ Km+1 @@ U for

all m and set qm(f) = pKmm (f). Then (C∞(K), {pm}∞m=1) is a Frechét space
and the topology in independent of the choice of sequence of compact sets K
exhausting U. Moreover the derivative operators {∂k} and multiplication by
smooth functions are continuous linear maps from C∞(U) to C∞(U). If µ is a
finite measure with compact support in U, then T (f) :=

∫
K
∂αfdµ is an element

of C∞(U)∗ for any multi index α.
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Proposition 45.26. A linear functional T on C∞(U) is continuous, i.e. T ∈
C∞(U)∗ iff there exists a compact set K @@ U, m ∈ N and C <∞ such that

|〈T, ϕ〉| ≤ CpKm(ϕ) for all ϕ ∈ C∞(U).

Notation 45.27 Let νs(x) := (1 + |x|)s (or change to νs(x) = (1 + |x|2)s/2 =
〈x〉s?) for x ∈ Rn and s ∈ R.

Example 45.28. Let S denote the space of functions f ∈ C∞(Rn) such that f
and all of its partial derivatives decay faster that (1 + |x|)−m for all m > 0 as
in Definition 43.6. Define

pm(f) =
∑
|α|≤m

‖(1 + | · |)m∂αf(·)‖∞ =
∑
|α|≤m

‖(µm∂αf(·)‖∞ ,

then (S, {pm}) is a Frechét space. Again the derivative operators {∂k} and
multiplication by function f ∈ P are examples of continuous linear operators
on S. For an example of an element T ∈ S∗, let µ be a measure on Rn such
that ∫

(1 + |x|)−Nd|µ|(x) <∞

for some N ∈ N. Then T (f) :=
∫
K
∂αfdµ defines and element of S∗.

Proposition 45.29. The Fourier transform F : S → S is a continuous linear
transformation.

Proof. For the purposes of this proof, it will be convenient to use the semi-
norms

p′m(f) =
∑
|α|≤m

∥∥(1 + | · |2)m∂αf(·)
∥∥
∞ .

This is permissible, since by Exercise 45.2 they give rise to the same topology
on S. Let f ∈ S and m ∈ N, then

(1 + |ξ|2)m∂αf̂(ξ) = (1 + |ξ|2)mF ((−ix)αf) (ξ)

= F [(1−∆)m ((−ix)αf)] (ξ)

and therefore if we let g = (1−∆)m ((−ix)αf) ∈ S,∣∣∣(1 + |ξ|2)m∂αf̂(ξ)
∣∣∣ ≤ ‖g‖1 =

∫
Rn
|g(x)| dx

=

∫
Rn
|g(x)| (1 + |x|2)n

1

(1 + |x|2)n
dξ

≤ C
∥∥∥|g(·)| (1 + |·|2)n

∥∥∥
∞

where C =
∫
Rn

1
(1+|x|2)n

dξ < ∞. Using the product rule repeatedly, it is not

hard to show∥∥∥|g(·)| (1 + |·|2)n
∥∥∥
∞

=
∥∥∥(1 + |·|2)n(1−∆)m ((−ix)αf)

∥∥∥
∞

≤ k
∑
|β|≤2m

∥∥∥(1 + |·|2)n+|α|/2∂βf
∥∥∥
∞

≤ kp′2m+n(f)

for some constant k < ∞. Combining the last two displayed equations implies
that p′m(f̂) ≤ Ckp′2m+n(f) for all f ∈ S, and thus F is continuous.

Proposition 45.30. The subspace C∞c (Rn) is dense in S(Rn).

Proof. Let θ ∈ C∞c (Rn) such that θ = 1 in a neighborhood of 0 and set
θm(x) = θ(x/m) for all m ∈ N. We will now show for all f ∈ S that θmf
converges to f in S. The main point is by the product rule,

∂α (θmf − f) (x) =
∑
β≤α

(
α

β

)
∂α−βθm(x)∂βf(x)− f

=
∑

β≤α:β 6=α

(
α

β

)
1

m|α−β|
∂α−βθ(x/m)∂βf(x).

Since max
{∥∥∂βθ∥∥∞ : β ≤ α

}
is bounded it then follows from the last equation

that ‖µt∂α (θmf − f)‖∞ = O(1/m) for all t > 0 and α. That is to say θmf → f
in S.

Lemma 45.31 (Peetre’s Inequality). For all x, y ∈ Rn and s ∈ R,

(1 + |x+ y|)s ≤ min
{

(1 + |y|)|s|(1 + |x|)s, (1 + |y|)s(1 + |x|)|s|
}

(45.5)

that is to say νs(x+y) ≤ ν|s|(x)νs(y) and νs(x+y) ≤ νs(x)ν|s|(y) for all s ∈ R,
where νs(x) = (1 + |x|)s as in Notation 45.27. We also have the same results
for 〈x〉, namely

〈x+ y〉s ≤ 2|s|/2 min
{
〈x〉|s|〈y〉s, 〈x〉s〈y〉|s|

}
. (45.6)

Proof. By elementary estimates,

(1 + |x+ y|) ≤ 1 + |x|+ |y| ≤ (1 + |x|)(1 + |y|)

and so for Eq. (45.5) holds if s ≥ 0. Now suppose that s < 0, then

(1 + |x+ y|)s ≥ (1 + |x|)s(1 + |y|)s
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and letting x→ x− y and y → −y in this inequality implies

(1 + |x|)s ≥ (1 + |x+ y|)s(1 + |y|)s.

This inequality is equivalent to

(1 + |x+ y|)s ≤ (1 + |x|)s(1 + |y|)−s = (1 + |x|)s(1 + |y|)|s|.

By symmetry we also have

(1 + |x+ y|)s ≤ (1 + |x|)|s|(1 + |y|)s.

For the proof of Eq. (45.6

〈x+ y〉2 = 1 + |x+ y|2 ≤ 1 + (|x|+ |y|)2
= 1 + |x|2 + |y|2 + 2 |x| |y|

≤ 1 + 2 |x|2 + 2 |y|2 ≤ 2(1 + |x|2)(1 + |y|2) = 2〈x〉2〈y〉2.

From this it follows that 〈x〉−2 ≤ 2〈x+ y〉−2〈y〉2 and hence

〈x+ y〉−2 ≤ 2〈x〉−2〈y〉2.

So if s ≥ 0, then
〈x+ y〉s ≤ 2s/2〈x〉s〈y〉s

and
〈x+ y〉−s ≤ 2s/2〈x〉−s〈y〉s.

Proposition 45.32. Suppose that f, g ∈ S then f ∗ g ∈ S.

Proof. First proof. Since F(f∗g) = f̂ ĝ ∈ S it follows that f∗g = F−1(f̂ ĝ) ∈
S as well. For the second proof we will make use of Peetre’s inequality. We have
for any k, l ∈ N that

νt(x) |∂α(f ∗ g)(x)| = νt(x) |∂αf ∗ g(x)| ≤ νt(x)

∫
|∂αf(x− y)| |g(y)| dy

≤ Cνt(x)

∫
ν−k(x− y)ν−l(y)dy ≤ Cνt(x)

∫
ν−k(x)νk(y)ν−l(y)dy

= Cνt−k(x)

∫
νk−l(y)dy.

Choosing k = t and l > t+ n we learn that

νt(x) |∂α(f ∗ g)(x)| ≤ C
∫
νk−l(y)dy <∞

showing ‖νt∂α(f ∗ g)‖∞ <∞ for all t ≥ 0 and α ∈ Nn.

45.4 Compactly supported distributions

Definition 45.33. For a distribution T ∈ D′(U) and V ⊂o U, we say T |V = 0
if 〈T, ϕ〉 = 0 for all ϕ ∈ D(V ).

Proposition 45.34. Suppose that V := {Vα}α∈A is a collection of open subset
of U such that T |Vα = 0 for all α, then T |W = 0 where W = ∪α∈AVα.

Proof. Let {ψα}α∈A be a smooth partition of unity subordinate to V, i.e.
supp(ψα) ⊂ Vα for all α ∈ A, for each point x ∈W there exists a neighborhood
Nx ⊂o W such that #{α ∈ A : supp(ψα) ∩Nx 6= ∅} <∞ and 1W =

∑
α∈A ψα.

Then for ϕ ∈ D(W ), we have ϕ =
∑
α∈A ϕψα and there are only a finite number

of nonzero terms in the sum since supp(ϕ) is compact. Since ϕψα ∈ D(Vα) for
all α,

〈T, ϕ〉 = 〈T,
∑
α∈A

ϕψα〉 =
∑
α∈A
〈T, ϕψα〉 = 0.

Definition 45.35. The support, supp(T ), of a distribution T ∈ D′(U) is the
relatively closed subset of U determined by

U \ supp(T ) = ∪{V ⊂o U : T |V = 0} .

By Proposition 45.26, supp(T ) may described as the smallest (relatively) closed
set F such that T |U\F = 0.

Proposition 45.36. If f ∈ L1
loc(U), then supp(Tf ) = ess sup(f), where

ess sup(f) := {x ∈ U : m({y ∈ V : f(y) 6= 0}}) > 0 for all neighborhoods V of x}

as in Definition 31.26.

Proof. The key point is that Tf |V = 0 iff f = 0 a.e. on V and therefore

U \ supp(Tf ) = ∪{V ⊂o U : f1V = 0 a.e.} .

On the other hand,

U \ ess sup(f) = {x ∈ U : m({y ∈ V : f(y) 6= 0}}) = 0 for some neighborhood V of x}
= ∪{x ∈ U : f1V = 0 a.e. for some neighborhood V of x}
= ∪{V ⊂o U : f1V = 0 a.e.}

Definition 45.37. Let E ′(U) := {T ∈ D′(U) : supp(T ) ⊂ U is compact} – the
compactly supported distributions in D′(U).
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Lemma 45.38. Suppose that T ∈ D′(U) and f ∈ C∞(U) is a function such
that K := supp(T ) ∩ supp(f) is a compact subset of U. Then we may define
〈T, f〉 := 〈T, θf〉, where θ ∈ D(U) is any function such that θ = 1 on a neigh-
borhood of K. Moreover, if K @@ U is a given compact set and F @@ U is a
compact set such that K ⊂ F o, then there exists m ∈ N and C <∞ such that

|〈T, f〉| ≤ C
∑
|β|≤m

∥∥∂βf∥∥∞,F (45.7)

for all f ∈ C∞(U) such that supp(T )∩ supp(f) ⊂ K. In particular if T ∈ E ′(U)
then T extends uniquely to a linear functional on C∞(U) and there is a compact
subset F @@ U such that the estimate in Eq. (45.7) holds for all f ∈ C∞(U).

Proof. Suppose that θ̃ is another such cutoff function and let V be an open

neighborhood of K such that θ = θ̃ = 1 on V. Setting g :=
(
θ − θ̃

)
f ∈ D(U)

we see that

supp(g) ⊂ supp(f) \ V ⊂ supp(f) \K = supp(f) \ supp(T ) ⊂ U \ supp(T ),

see Figure 45.1 below. Therefore,

0 = 〈T, g〉 = 〈T,
(
θ − θ̃

)
f〉 = 〈T, θf〉 − 〈T, θ̃f〉

which shows that 〈T, f〉 is well defined. Moreover, if F @@ U is a compact set

Fig. 45.1. Intersecting the supports.

such that K ⊂ F o and θ ∈ C∞c (F 0) is a function which is 1 on a neighborhood
of K, we have

|〈T, f〉| = |〈T, θf〉| = C
∑
|α|≤m

‖∂α (θf)‖∞ ≤ C
∑
|β|≤m

∥∥∂βf∥∥∞,F
and this estimate holds for all f ∈ C∞(U) such that supp(T )∩ supp(f) ⊂ K.

Theorem 45.39. The restriction of T ∈ C∞(U)∗ to C∞c (U) defines an element
in E ′(U). Moreover the map

T ∈ C∞(U)∗
i→ T |D(U) ∈ E ′(U)

is a linear isomorphism of vector spaces. The inverse map is defined as follows.
Given S ∈ E ′(U) and θ ∈ C∞c (U) such that θ = 1 on K = supp(S) then
i−1(S) = θS, where θS ∈ C∞(U)∗ defined by

〈θS, ϕ〉 = 〈S, θϕ〉 for all ϕ ∈ C∞(U).

Proof. Suppose that T ∈ C∞(U)∗ then there exists a compact set K @@ U,
m ∈ N and C <∞ such that

|〈T, ϕ〉| ≤ CpKm(ϕ) for all ϕ ∈ C∞(U)

where pKm is defined in Example 45.25. It is clear using the sequential notion of
continuity that T |D(U) is continuous on D(U), i.e. T |D(U) ∈ D′(U). Moreover,
if θ ∈ C∞c (U) such that θ = 1 on a neighborhood of K then

|〈T, θϕ〉 − 〈T, ϕ〉| = |〈T, (θ − 1)ϕ〉| ≤ CpKm((θ − 1)ϕ) = 0,

which shows θT = T. Hence supp(T ) = supp(θT ) ⊂ supp(θ) @@ U showing
that T |D(U) ∈ E ′(U). Therefore the map i is well defined and is clearly linear.
I also claim that i is injective because if T ∈ C∞(U)∗ and i(T ) = T |D(U) ≡ 0,
then 〈T, ϕ〉 = 〈θT, ϕ〉 = 〈T |D(U), θϕ〉 = 0 for all ϕ ∈ C∞(U). To show i is
surjective suppose that S ∈ E ′(U). By Lemma 45.38 we know that S extends
uniquely to an element S̃ of C∞(U)∗ such that S̃|D(U) = S, i.e. i(S̃) = S. and
K = supp(S).

Lemma 45.40. The space E ′(U) is a sequentially dense subset of D′(U).

Proof. Choose Kn @@ U such that Kn ⊂ Ko
n+1 ⊂ Kn+1 ↑ U as n → ∞.

Let θn ∈ C∞c (K0
n+1) such that θn = 1 on K. Then for T ∈ D′(U), θnT ∈ E ′(U)

and θnT → T as n→∞.

45.5 Tempered Distributions and the Fourier Transform

The space of tempered distributions S ′ (Rn) is the continuous dual to S =
S(Rn). A linear functional T on S is continuous iff there exists k ∈ N and
C <∞ such that
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|〈T, ϕ〉| ≤ Cpk(ϕ) := C
∑
|α|≤k

‖νk∂αϕ‖∞ (45.8)

for all ϕ ∈ S. Since D = D (Rn) is a dense subspace of S any element T ∈ S ′
is determined by its restriction to D. Moreover, if T ∈ S ′ it is easy to see that
T |D ∈ D′. Conversely and element T ∈ D′ satisfying an estimate of the form in
Eq. (45.8) for all ϕ ∈ D extend uniquely to an element of S ′. In this way we
may view S ′ as a subspace of D′.

Example 45.41. Any compactly supported distribution is tempered, i.e. E ′(U) ⊂
S ′(Rn) for any U ⊂o Rn.

One of the virtues of S ′ is that we may extend the Fourier transform to S ′.
Recall that for L1 functions f and g we have the identity,

〈f̂ , g〉 = 〈f, ĝ〉.

This suggests the following definition.

Definition 45.42. The Fourier and inverse Fourier transform of a tempered
distribution T ∈ S ′ are the distributions T̂ = FT ∈ S ′ and T∨ = F−1T ∈
S ′defined by

〈T̂ , ϕ〉 = 〈T, ϕ̂〉 and 〈T∨, ϕ〉 = 〈T, ϕ∨〉 for all ϕ ∈ S.

Since F : S → S is a continuous isomorphism with inverse F−1, one easily
checks that T̂ and T∨ are well defined elements of S and that F−1 is the inverse
of F on S ′.

Example 45.43. Suppose that µ is a complex measure on Rn. Then we may view
µ as an element of S ′ via 〈µ, ϕ〉 =

∫
ϕdµ for all ϕ ∈ S ′. Then by Fubini-Tonelli,

〈µ̂, ϕ〉 = 〈µ, ϕ̂〉 =

∫
ϕ̂(x)dµ(x) =

∫ [∫
ϕ(ξ)e−ix·ξdξ

]
dµ(x)

=

∫ [∫
ϕ(ξ)e−ix·ξdµ(x)

]
dξ

which shows that µ̂ is the distribution associated to the continuous function
ξ →

∫
e−ix·ξdµ(x).

∫
e−ix·ξdµ(x)We will somewhat abuse notation and identify

the distribution µ̂ with the function ξ →
∫
e−ix·ξdµ(x). When dµ(x) = f(x)dx

with f ∈ L1, we have µ̂ = f̂ , so the definitions are all consistent.

Corollary 45.44. Suppose that µ is a complex measure such that µ̂ = 0, then
µ = 0. So complex measures on Rn are uniquely determined by their Fourier
transform.

Proof. If µ̂ = 0, then µ = 0 as a distribution, i.e.
∫
ϕdµ = 0 for all ϕ ∈ S

and in particular for all ϕ ∈ D. By Example 45.5 this implies that µ is the zero
measure.

More generally we have the following analogous theorem for compactly sup-
ported distributions.

Theorem 45.45. Let S ∈ E ′(Rn), then Ŝ is an analytic function and Ŝ(z) =
〈S(x), e−ix·z〉. Also if supp(S) @@ B(0,M), then Ŝ(z) satisfies a bound of the
form ∣∣∣Ŝ(z)

∣∣∣ ≤ C(1 + |z|)meM |Im z|

for some m ∈ N and C < ∞. If S ∈ D(Rn), i.e. if S is assumed to be smooth,
then for all m ∈ N there exists Cm <∞ such that∣∣∣Ŝ(z)

∣∣∣ ≤ Cm(1 + |z|)−meM |Im z|.

Proof. The function h(z) = 〈S(ξ), e−iz·ξ〉 for z ∈ Cn is analytic since the
map z ∈ Cn → e−iz·ξ ∈ C∞(ξ ∈ Rn) is analytic and S is complex linear.
Moreover, we have the bound

|h(z)| =
∣∣〈S(ξ), e−iz·ξ〉

∣∣ ≤ C ∑
|α|≤m

∥∥∂αξ e−iz·ξ∥∥∞,B(0,M)

= C
∑
|α|≤m

∥∥zαe−iz·ξ∥∥∞,B(0,M)

≤ C
∑
|α|≤m

|z||α|
∥∥e−iz·ξ∥∥∞,B(0,M)

≤ C(1 + |z|)meM |Im z|.

If we now assume that S ∈ D(Rn), then∣∣∣zαŜ(z)
∣∣∣ =

∣∣∣∣∫
Rn
S(ξ)zαe−iz·ξdξ

∣∣∣∣ =

∣∣∣∣∫
Rn
S(ξ)(i∂ξ)

αe−iz·ξdξ

∣∣∣∣
=

∣∣∣∣∫
Rn

(−i∂ξ)αS(ξ)e−iz·ξdξ

∣∣∣∣ ≤ eM |Im z|
∫
Rn
|∂ξαS(ξ)| dξ

showing

|zα|
∣∣∣Ŝ(z)

∣∣∣ ≤ eM |Im z| ‖∂αS‖1

and therefore

(1 + |z|)m
∣∣∣Ŝ(z)

∣∣∣ ≤ CeM |Im z|
∑
|α|≤m

‖∂αS‖1 ≤ Ce
M |Im z|.
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So to finish the proof it suffices to show h = Ŝ in the sense of distributions1.
For this let ϕ ∈ D, K @@ Rn be a compact set for ε > 0 let

ϕ̂ε(ξ) = (2π)−n/2εn
∑
x∈εZn

ϕ(x)e−ix·ξ.

This is a finite sum and

sup
ξ∈K
|∂α (ϕ̂ε(ξ)− ϕ̂(ξ))|

= sup
ξ∈K

∣∣∣∣∣∣
∑
y∈εZn

∫
y+ε(0,1]n

(
(−iy)

α
ϕ(y)e−iy·ξ − (−ix)

α
ϕ(x)e−ix·ξ

)
dx

∣∣∣∣∣∣
≤
∑
y∈εZn

∫
y+ε(0,1]n

sup
ξ∈K

∣∣yαϕ(y)e−iy·ξ − xαϕ(x)e−ix·ξ
∣∣ dx

By uniform continuity of xαϕ(x)e−ix·ξ for (ξ, x) ∈ K × Rn (ϕ has compact
support),

δ(ε) = sup
ξ∈K

sup
y∈εZn

sup
x∈y+ε(0,1]n

∣∣yαϕ(y)e−iy·ξ − xαϕ(x)e−ix·ξ
∣∣→ 0 as ε ↓ 0

which shows
sup
ξ∈K
|∂α (ϕ̂ε(ξ)− ϕ̂(ξ))| ≤ Cδ(ε)

where C is the volume of a cube in Rn which contains the support of ϕ. This
shows that ϕ̂ε → ϕ̂ in C∞(Rn). Therefore,

〈Ŝ, ϕ〉 = 〈S, ϕ̂〉 = lim
ε↓0
〈S, ϕ̂ε〉 = lim

ε↓0
(2π)−n/2εn

∑
x∈εZn

ϕ(x)〈S(ξ), e−ix·ξ〉

= lim
ε↓0

(2π)−n/2εn
∑
x∈εZn

ϕ(x)h(x) =

∫
Rn
ϕ(x)h(x)dx = 〈h, ϕ〉.

1 This is most easily done using Fubini’s Theorem 46.2 for distributions proved below.
This proof goes as follows. Let θ, η ∈ D(Rn) such that θ = 1 on a neighborhood of
supp(S) and η = 1 on a neighborhood of supp(φ) then

〈h, φ〉 = 〈φ(x), 〈S(ξ), e−ix·ξ〉〉 = 〈η(x)φ(x), 〈S(ξ), θ(ξ)e−ix·ξ〉〉

= 〈φ(x), 〈S(ξ), η(x)θ(ξ)e−ix·ξ〉〉.

We may now apply Theorem 46.2 to conclude,

〈h, φ〉 = 〈S(ξ), 〈φ(x), η(x)θ(ξ)e−ix·ξ〉〉 = 〈S(ξ), θ(ξ)〈φ(x), e−ix·ξ〉〉 = 〈S(ξ), 〈φ(x), e−ix·ξ〉〉

= 〈S(ξ), φ̂(ξ)〉.

Remark 45.46. Notice that

∂αŜ(z) = 〈S(x), ∂αz e
−ix·z〉 = 〈S(x), (−ix)αe−ix·z〉 = 〈(−ix)αS(x), e−ix·z〉

and (−ix)αS(x) ∈ E ′(Rn). Therefore, we find a bound of the form∣∣∣∂αŜ(z)
∣∣∣ ≤ C(1 + |z|)m

′
eM |Im z|

where C and m′ depend on α. In particular, this shows that Ŝ ∈ P, i.e. S ′ is
preserved under multiplication by Ŝ.

The converse of this theorem holds as well. For the moment we only have
the tools to prove the smooth converse. The general case will follow by using
the notion of convolution to regularize a distribution to reduce the question to
the smooth case.

Theorem 45.47. Let S ∈ S(Rn) and assume that Ŝ is an analytic function
and there exists an M <∞ such that for all m ∈ N there exists Cm <∞ such
that ∣∣∣Ŝ(z)

∣∣∣ ≤ Cm(1 + |z|)−meM |Im z|.

Then supp(S) ⊂ B(0,M).

Proof. By the Fourier inversion formula,

S(x) =

∫
Rn
Ŝ(ξ)eiξ·xdξ

and by deforming the contour, we may express this integral as

S(x) =

∫
Rn+iη

Ŝ(ξ)eiξ·xdξ =

∫
Rn
Ŝ(ξ + iη)ei(ξ+iη)·xdξ

for any η ∈ Rn. From this last equation it follows that

|S(x)| ≤ e−η·x
∫
Rn

∣∣∣Ŝ(ξ + iη)
∣∣∣ dξ ≤ Cme−η·xeM |η| ∫

Rn
(1 + |ξ + iη|)−mdξ

≤ Cme−η·xeM |η|
∫
Rn

(1 + |ξ|)−mdξ ≤ C̃me−η·xeM |η|

where C̃m <∞ if m > n. Letting η = λx with λ > 0 we learn

|S(x)| ≤ C̃m exp
(
−λ |x|2 +M |x|

)
= C̃me

λ|x|(M−|x|). (45.9)

Hence if |x| > M, we may let λ → ∞ in Eq. (45.9) to show S(x) = 0. That is
to say supp(S) ⊂ B(0,M).

Let us now pause to work out some specific examples of Fourier transform
of measures.
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Example 45.48 (Delta Functions). Let a ∈ Rn and δa be the point mass measure
at a, then

δ̂a(ξ) = e−ia·ξ.

In particular it follows that

F−1e−ia·ξ = δa.

To see the content of this formula, let ϕ ∈ S. Then∫
e−ia·ξϕ∨(ξ)dξ = 〈e−ia·ξ,F−1ϕ〉 = 〈F−1e−ia·ξ, ϕ〉 = 〈δa, ϕ〉 = ϕ(a)

which is precisely the Fourier inversion formula.

Example 45.49. Suppose that p(x) is a polynomial. Then

〈p̂, ϕ〉 = 〈p, ϕ̂〉 =

∫
p(ξ)ϕ̂(ξ)dξ.

Now

p(ξ)ϕ̂(ξ) =

∫
ϕ(x)p(ξ)e−iξ·xdx =

∫
ϕ(x)p(i∂x)e−iξ·xdx

=

∫
p(−i∂x)ϕ(x)e−iξ·xdx = F (p(−i∂)ϕ) (ξ)

which combined with the previous equation implies

〈p̂, ϕ〉 =

∫
F (p(−i∂)ϕ) (ξ)dξ =

(
F−1F (p(−i∂)ϕ)

)
(0) = p(−i∂)ϕ(0)

= 〈δ0, p(−i∂)ϕ〉 = 〈p(i∂)δ0, ϕ〉.

Thus we have shown that p̂ = p(i∂)δ0.

Lemma 45.50. Let p(ξ) be a polynomial in ξ ∈ Rn, L = p(−i∂) (a constant
coefficient partial differential operator) and T ∈ S ′, then

Fp(−i∂)T = pT̂ .

In particular if T = δ0, we have

Fp(−i∂)δ0 = p · δ̂0 = p.

Proof. By definition,

〈FLT, ϕ〉 = 〈LT, ϕ̂〉 = 〈p(−i∂)T, ϕ̂〉 = 〈T, p(i∂)ϕ̂〉

and

p(i∂ξ)ϕ̂(ξ) = p(i∂ξ)

∫
ϕ(x)e−ix·ξdx =

∫
p(x)ϕ(x)e−ix·ξdx = (pϕ) ˆ.

Thus
〈FLT, ϕ〉 = 〈T, p(i∂)ϕ̂〉 = 〈T, (pϕ) ˆ〉 = 〈T̂ , pϕ〉 = 〈pT̂ , ϕ〉

which proves the lemma.

Example 45.51. Let n = 1, −∞ < a < b <∞, and dµ(x) = 1[a,b](x)dx. Then

µ̂(ξ) =

∫ b

a

e−ix·ξdx =
1√
2π

e−ix·ξ

−iξ
|ba =

1√
2π

e−ib·ξ − e−ia·ξ

−iξ

=
1√
2π

e−ia·ξ − e−ib·ξ

iξ
.

So by the inversion formula we may conclude that

F−1

(
1√
2π

e−ia·ξ − e−ib·ξ

iξ

)
(x) = 1[a,b](x) (45.10)

in the sense of distributions. This also true at the Level of L2 – functions. When
a = −b and b > 0 these formula reduce to

F1[−b,b] =
1√
2π

eib·ξ − e−ib·ξ

iξ
=

2√
2π

sin bξ

ξ

and

F−1 2√
2π

sin bξ

ξ
= 1[−b,b].

Let us pause to work out Eq. (45.10) by first principles. For M ∈ (0,∞) let
νN be the complex measure on Rn defined by

dνM (ξ) =
1√
2π

1|ξ|≤M
e−ia·ξ − e−ib·ξ

iξ
dξ,

then
1√
2π

e−ia·ξ − e−ib·ξ

iξ
= lim
M→∞

νM in the S ′ topology.

Hence

F−1

(
1√
2π

e−ia·ξ − e−ib·ξ

iξ

)
(x) = lim

M→∞
F−1νM

and
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F−1νM (ξ) =

∫ M

−M

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ.

Since is ξ → 1√
2π

e−ia·ξ−e−ib·ξ
iξ eiξx is a holomorphic function on C we may deform

the contour to any contour in C starting at −M and ending at M. Let ΓM
denote the straight line path from −M to −1 along the real axis followed by
the contour eiθ for θ going from π to 2π and then followed by the straight line
path from 1 to M. Then∫

|ξ|≤M

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ =

∫
ΓM

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ

=

∫
ΓM

1√
2π

ei(x−a)·ξ − ei(x−b)·ξ

iξ
dξ

=
1

2πi

∫
ΓM

ei(x−a)·ξ − ei(x−b)·ξ

iξ
dm(ξ).

By the usual contour methods we find

lim
M→∞

1

2πi

∫
ΓM

eiyξ

ξ
dm(ξ) =

{
1 if y > 0
0 if y < 0

and therefore we have

F−1

(
1√
2π

e−ia·ξ − e−ib·ξ

iξ

)
(x) = lim

M→∞
F−1νM (x) = 1x>a − 1x>b = 1[a,b](x).

Example 45.52. Let σt be the surface measure on the sphere St of radius t
centered at zero in R3. Then

σ̂t(ξ) = 4πt
sin t |ξ|
|ξ|

.

Indeed,

σ̂t(ξ) =

∫
tS2

e−ix·ξdσ(x) = t2
∫
S2

e−itx·ξdσ(x)

= t2
∫
S2

e−itx3|ξ|dσ(x) = t2
∫ 2π

0

dθ

∫ π

0

dϕ sinϕe−it cosϕ|ξ|

= 2πt2
∫ 1

−1

e−itu|ξ|du = 2πt2
1

−it |ξ|
e−itu|ξ||u=1

u=−1 = 4πt2
sin t |ξ|
t |ξ|

.

By the inversion formula, it follows that

F−1 sin t |ξ|
|ξ|

=
t

4πt2
σt = tσ̄t

where σ̄t is 1
4πt2σt, the surface measure on St normalized to have total measure

one.

Let us again pause to try to compute this inverse Fourier transform directly.

To this end, let fM (ξ) := sin t|ξ|
t|ξ| 1|ξ|≤M . By the dominated convergence theorem,

it follows that fM → sin t|ξ|
t|ξ| in S ′, i.e. pointwise on S. Therefore,

〈F−1 sin t |ξ|
t |ξ|

, ϕ〉 = 〈 sin t |ξ|
t |ξ|

,F−1ϕ〉 = lim
M→∞

〈fM ,F−1ϕ〉 = lim
M→∞

〈F−1fM , ϕ〉

and

(2π)3/2F−1fM (x) = (2π)3/2

∫
R3

sin t |ξ|
t |ξ|

1|ξ|≤Me
iξ·xdξ

=

∫ M

r=0

∫ 2π

θ=0

∫ π

ϕ=0

sin tr

tr
eir|x| cosϕr2 sinϕdrdϕdθ

=

∫ M

r=0

∫ 2π

θ=0

∫ 1

u=−1

sin tr

tr
eir|x|ur2drdudθ

= 2π

∫ M

r=0

sin tr

t

eir|x| − e−ir|x|

ir |x|
rdr

=
4π

t |x|

∫ M

r=0

sin tr sin r |x| dr

=
4π

t |x|

∫ M

r=0

1

2
(cos(r(t+ |x|)− cos(r(t− |x|)) dr

=
4π

t |x|
1

2(t+ |x|)
(sin(r(t+ |x|)− sin(r(t− |x|)) |Mr=0

=
4π

t |x|
1

2

(
sin(M(t+ |x|)

t+ |x|
− sin(M(t− |x|)

t− |x|

)
Now make use of the fact that sinMx

x → πδ(x) in one dimension to finish the
proof.

45.6 Wave Equation

Given a distribution T and a test function ϕ, we wish to define T ∗ϕ ∈ C∞ by
the formula

T ∗ ϕ(x) = “

∫
T (y)ϕ(x− y)dy” = 〈T, ϕ(x− ·)〉.

As motivation for wanting to understand convolutions of distributions let us
reconsider the wave equation in Rn,
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0 =
(
∂2
t −∆

)
u(t, x) with

u(0, x) = f(x) and ut(0, x) = g(x).

Taking the Fourier transform in the x variables gives the following equation

0 = ût t(t, ξ) + |ξ|2 û(t, ξ)with

û(0, ξ) = f̂(ξ) and ût(0, ξ) = ĝ(ξ).

The solution to these equations is

û(t, ξ) = f̂(ξ) cos (t |ξ|) + ĝ(ξ)
sin t |ξ|
|ξ|

and hence we should have

u(t, x) = F−1

(
f̂(ξ) cos (t |ξ|) + ĝ(ξ)

sin t |ξ|
|ξ|

)
(x)

= F−1 cos (t |ξ|) ∗ f(x) + F−1 sin t |ξ|
|ξ|

∗ g (x)

=
d

dt
F−1 sin t |ξ|

|ξ|
∗ f(x) + F−1 sin t |ξ|

|ξ|
∗ g (x) .

The question now is how interpret this equation. In particular what are the

inverse Fourier transforms of F−1 cos (t |ξ|) and F−1 sin t|ξ|
|ξ| . Since d

dtF
−1 sin t|ξ|

|ξ| ∗
f(x) = F−1 cos (t |ξ|) ∗ f(x), it really suffices to understand F−1 sin t|ξ|

|ξ| . This

was worked out in Example 45.51 when n = 1 where we found(
F−1ξ−1 sin tξ

)
(x) =

π√
2π

(
1x+t>0 − 1(x−t)>0

)
=

π√
2π

(1x>−t − 1x>t) =
π√
2π

1[−t,t](x)

where in writing the last line we have assume that t ≥ 0. Therefore,(
F−1ξ−1 sin tξ

)
∗ f(x) =

1

2

∫ t

−t
f(x− y)dy

Therefore the solution to the one dimensional wave equation is

u(t, x) =
d

dt

1

2

∫ t

−t
f(x− y)dy +

1

2

∫ t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

∫ t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

∫ x+t

x−t
g(y)dy.

We can arrive at this same solution by more elementary means as follows.
We first note in the one dimensional case that wave operator factors, namely

0 =
(
∂2
t − ∂2

x

)
u(t, x) = (∂t − ∂x) (∂t + ∂x)u(t, x).

Let U(t, x) := (∂t + ∂x)u(t, x), then the wave equation states (∂t − ∂x)U = 0
and hence by the chain rule d

dtU(t, x− t) = 0. So

U(t, x− t) = U(0, x) = g(x) + f ′(x)

and replacing x by x+ t in this equation shows

(∂t + ∂x)u(t, x) = U(t, x) = g(x+ t) + f ′(x+ t).

Working similarly, we learn that

d

dt
u(t, x+ t) = g(x+ 2t) + f ′(x+ 2t)

which upon integration implies

u(t, x+ t) = u(0, x) +

∫ t

0

{g(x+ 2τ) + f ′(x+ 2τ)} dτ.

= f(x) +

∫ t

0

g(x+ 2τ)dτ +
1

2
f(x+ 2τ)|t0

=
1

2
(f(x) + f(x+ 2t)) +

∫ t

0

g(x+ 2τ)dτ.

Replacing x→ x− t in this equation then implies

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

∫ t

0

g(x− t+ 2τ)dτ.

Finally, letting y = x− t+ 2τ in the last integral gives

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

1

2

∫ x+t

x−t
g(y)dy

as derived using the Fourier transform.
For the three dimensional case we have

u(t, x) =
d

dt
F−1 sin t |ξ|

|ξ|
∗ f(x) + F−1 sin t |ξ|

|ξ|
∗ g (x)

=
d

dt
(tσ̄t ∗ f(x)) + tσ̄t ∗ g (x) .
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45.6 Wave Equation 521

The question is what is µ ∗ g(x) where µ is a measure. To understand the
definition, suppose first that dµ(x) = ρ(x)dx, then we should have

µ ∗ g(x) = ρ ∗ g(x) =

∫
Rn
g(x− y)ρ(x)dx =

∫
Rn
g(x− y)dµ(y).

Thus we expect our solution to the wave equation should be given by

u(t, x) =
d

dt

{
t

∫
St

f(x− y)dσ̄t(y)

}
+ t

∫
St

g(x− y)dσ̄t(y)

=
d

dt

{
t

∫
S1

f(x− tω)dω

}
+ t

∫
S1

g(x− tω)dω

=
d

dt

{
t

∫
S1

f(x+ tω)dω

}
+ t

∫
S1

g(x+ tω)dω (45.11)

where dω := dσ̄1(ω). Notice the sharp propagation of speed. To understand this
suppose that f = 0 for simplicity and g has compact support near the origin,
for example think of g = δ0(x), the x+ tw = 0 for some w iff |x| = t. Hence the
wave front propagates at unit speed in a sharp way. See figure below.

Fig. 45.2. The geometry of the solution to the wave equation in three dimensions.

We may also use this solution to solve the two dimensional wave equation
using Hadamard’s method of decent. Indeed, suppose now that f and g are
function on R2 which we may view as functions on R3 which do not depend on
the third coordinate say. We now go ahead and solve the three dimensional wave
equation using Eq. (45.11) and f and g as initial conditions. It is easily seen

Fig. 45.3. The geometry of the solution to the wave equation in two dimensions.

that the solution u(t, x, y, z) is again independent of z and hence is a solution
to the two dimensional wave equation. See figure below.

Notice that we still have finite speed of propagation but no longer sharp
propagation. In fact we can work out the solution analytically as follows. Again
for simplicity assume that f ≡ 0. Then

u(t, x, y) =
t

4π

∫ 2π

0

dθ

∫ π

0

dϕ sinϕg((x, y) + t(sinϕ cos θ, sinϕ sin θ))

=
t

2π

∫ 2π

0

dθ

∫ π/2

0

dϕ sinϕg((x, y) + t(sinϕ cos θ, sinϕ sin θ))

and letting u = sinϕ, so that du = cosϕdϕ =
√

1− u2dϕ we find

u(t, x, y) =
t

2π

∫ 2π

0

dθ

∫ 1

0

du√
1− u2

ug((x, y) + ut(cos θ, sin θ))

and then letting r = ut we learn,

u(t, x, y) =
1

2π

∫ 2π

0

dθ

∫ t

0

dr√
1− r2/t2

r

t
g((x, y) + r(cos θ, sin θ))

=
1

2π

∫ 2π

0

dθ

∫ t

0

dr√
t2 − r2

rg((x, y) + r(cos θ, sin θ))

=
1

2π

∫∫
Dt

g((x, y) + w))√
t2 − |w|2

dm(w).
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Here is a better alternative derivation of this result. We begin by using
symmetry to find

u(t, x) = 2t

∫
S+
t

g(x− y)dσ̄t(y) = 2t

∫
S+
t

g(x+ y)dσ̄t(y)

where S+
t is the portion of St with z ≥ 0. This sphere is parametrized by

R(u, v) = (u, v,
√
t2 − u2 − v2) with (u, v) ∈ Dt :=

{
(u, v) : u2 + v2 ≤ t2

}
. In

these coordinates we have

4πt2dσ̄t =
∣∣∣(−∂u√t2 − u2 − v2,−∂v

√
t2 − u2 − v2, 1

)∣∣∣ dudv
=

∣∣∣∣( u√
t2 − u2 − v2

,
v√

t2 − u2 − v2
, 1

)∣∣∣∣ dudv
=

√
u2 + v2

t2 − u2 − v2
+ 1dudv =

|t|√
t2 − u2 − v2

dudv

and therefore,

u(t, x) =
2t

4πt2

∫
S+
t

g(x+ (u, v,
√
t2 − u2 − v2))

|t|√
t2 − u2 − v2

dudv

=
1

2π
sgn(t)

∫
S+
t

g(x+ (u, v))√
t2 − u2 − v2

dudv.

This may be written as

u(t, x) =
1

2π
sgn(t)

∫∫
Dt

g((x, y) + w))√
t2 − |w|2

dm(w)

as before. (I should check on the sgn(t) term.)

45.7 Appendix: Topology on C∞c (U)

Let U be an open subset of Rn and

C∞c (U) = ∪K@@UC
∞(K) (45.12)

denote the set of smooth functions on U with compact support in U. Our goal
is to topologize C∞c (U) in a way which is compatible with he topologies defined
in Example 45.24 above. This leads us to the inductive limit topology which we
now pause to introduce.

Definition 45.53 (Indcutive Limit Topology). Let X be a set, Xα ⊂ X
for α ∈ A (A is an index set) and assume that τα ⊂ 2Xα is a topology on Xα

for each α. Let iα : Xα → X denote the inclusion maps. The inductive limit
topology on X is the largest topology τ on X such that iα is continuous for all
α ∈ A. That is to say, τ = ∩α∈Aiα∗(τα), i.e. a set U ⊂ X is open (U ∈ τ) iff
i−1
α (A) = A ∩Xα ∈ τα for all α ∈ A.

Notice that C ⊂ X is closed iff C ∩ Xα is closed in Xα for all α. Indeed,
C ⊂ X is closed iff Cc = X \ C ⊂ X is open, iff Cc ∩Xα = Xα \ C is open in
Xα iff Xα ∩ C = Xα \ (Xα \ C) is closed in Xα for all α ∈ A.

Definition 45.54. Let D(U) denote C∞c (U) equipped with the inductive limit
topology arising from writing C∞c (U) as in Eq. (45.12) and using the Frechét
topologies on C∞(K) as defined in Example 45.24.

For each K @@ U, C∞(K) is a closed subset of D(U). Indeed if F is another
compact subset of U, then C∞(K) ∩ C∞(F ) = C∞(K ∩ F ), which is a closed
subset of C∞(F ). The set U ⊂ D(U) defined by

U =

ψ ∈ D(U) :
∑
|α|≤m

‖∂α(ψ − ϕ)‖∞ < ε

 (45.13)

for some ϕ ∈ D(U) and ε > 0 is an open subset of D(U). Indeed, if K @@ U,
then

U ∩ C∞(K) =

ψ ∈ C∞(K) :
∑
|α|≤m

‖∂α(ψ − ϕ)‖∞ < ε


is easily seen to be open in C∞(K).

Proposition 45.55. Let (X, τ) be as described in Definition 45.53 and f : X →
Y be a function where Y is another topological space. Then f is continuous iff
f ◦ iα : Xα → Y is continuous for all α ∈ A.

Proof. Since the composition of continuous maps is continuous, it follows
that f ◦ iα : Xα → Y is continuous for all α ∈ A if f : X → Y is continuous.
Conversely, if f ◦ iα is continuous for all α ∈ A, then for all V ⊂o Y we have

τα 3 (f ◦ iα)
−1

(V ) = i−1
α (f−1(V )) = f−1(V ) ∩Xα for all α ∈ A

showing that f−1(V ) ∈ τ.

Lemma 45.56. Let us continue the notation introduced in Definition 45.53.
Suppose further that there exists αk ∈ A such that X ′k := Xαk ↑ X as k → ∞
and for each α ∈ A there exists an k ∈ N such that Xα ⊂ X ′k and the inclusion
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45.7 Appendix: Topology on C∞c (U) 523

map is continuous. Then τ = {A ⊂ X : A ∩X ′k ⊂o X ′k for all k} and a function
f : X → Y is continuous iff f |X′

k
: X ′k → Y is continuous for all k. In short

the inductive limit topology on X arising from the two collections of subsets
{Xα}α∈A and {X ′k}k∈N are the same.

Proof. Suppose that A ⊂ X, if A ∈ τ then A ∩ X ′k = A ∩ Xαk ⊂o X ′k by
definition. Now suppose that A ∩X ′k ⊂o X ′k for all k. For α ∈ A choose k such
that Xα ⊂ X ′k, then A∩Xα = (A ∩X ′k)∩Xα ⊂o Xα since A∩X ′k is open in X ′k
and by assumption that Xα is continuously embedded in X ′k, V ∩Xα ⊂o Xα for
all V ⊂o X ′k. The characterization of continuous functions is prove similarly.

Let Kk @@ U for k ∈ N such that Ko
k ⊂ Kk ⊂ Ko

k+1 ⊂ Kk+1 for all k and
Kk ↑ U as k →∞. Then it follows for any K @@ U, there exists an k such that
K ⊂ Ko

k ⊂ Kk. One now checks that the map C∞(K) embeds continuously
into C∞(Kk) and moreover, C∞(K) is a closed subset of C∞(Kk+1). Therefore
we may describe D(U) as C∞c (U) with the inductively limit topology coming
from ∪k∈NC∞(Kk).

Lemma 45.57. Suppose that {ϕk}∞k=1 ⊂ D(U), then ϕk → ϕ ∈ D(U) iff ϕk −
ϕ→ 0 ∈ D(U).

Proof. Let ϕ ∈ D(U) and U ⊂ D(U) be a set. We will begin by showing that
U is open in D(U) iff U −ϕ is open in D(U). To this end let Kk be the compact
sets described above and choose k0 sufficiently large so that ϕ ∈ C∞(Kk) for all
k ≥ k0. Now U−ϕ ⊂ D(U) is open iff (U − ϕ)∩C∞(Kk) is open in C∞(Kk) for
all k ≥ k0. Because ϕ ∈ C∞(Kk), we have (U − ϕ)∩C∞(Kk) = U∩C∞(Kk)−ϕ
which is open in C∞(Kk) iff U ∩ C∞(Kk) is open C∞(Kk). Since this is true
for all k ≥ k0 we conclude that U − ϕ is an open subset of D(U) iff U is open
in D(U). Now ϕk → ϕ in D(U) iff for all ϕ ∈ U ⊂o D(U), ϕk ∈ U for almost all
k which happens iff ϕk − ϕ ∈ U − ϕ for almost all k. Since U − ϕ ranges over
all open neighborhoods of 0 when U ranges over the open neighborhoods of ϕ,
the result follows.

Lemma 45.58. A sequence {ϕk}∞k=1 ⊂ D(U) converges to ϕ ∈ D(U), iff there
is a compact set K @@ U such that supp(ϕk) ⊂ K for all k and ϕk → ϕ in
C∞(K).

Proof. If ϕk → ϕ in C∞(K), then for any open set V ⊂ D(U) with ϕ ∈ V
we have V ∩ C∞(K) is open in C∞(K) and hence ϕk ∈ V ∩ C∞(K) ⊂ V for
almost all k. This shows that ϕk → ϕ ∈ D(U). For the converse, suppose that
there exists {ϕk}∞k=1 ⊂ D(U) which converges to ϕ ∈ D(U) yet there is no
compact set K such that supp(ϕk) ⊂ K for all k. Using Lemma45.57, we may
replace ϕk by ϕk − ϕ if necessary so that we may assume ϕk → 0 in D(U). By
passing to a subsequences of {ϕk} and {Kk} if necessary, we may also assume
there xk ∈ Kk+1\Kk such that ϕk(xk) 6= 0 for all k. Let p denote the semi-norm
on C∞c (U) defined by

p(ϕ) =

∞∑
k=0

sup

{
|ϕ(x)|
|ϕk(xk)|

: x ∈ Kk+1 \Ko
k

}
.

One then checks that

p(ϕ) ≤

(
N∑
k=0

1

|ϕk(xk)|

)
‖ϕ‖∞

for ϕ ∈ C∞(KN+1). This shows that p|C∞(KN+1) is continuous for all N and
hence p is continuous on D(U). Since p is continuous on D(U) and ϕk → 0
in D(U), it follows that limk→∞ p(ϕk) = p(limk→∞ ϕk) = p(0) = 0. While on
the other hand, p(ϕk) ≥ 1 by construction and hence we have arrived at a
contradiction. Thus for any convergent sequence {ϕk}∞k=1 ⊂ D(U) there is a
compact set K @@ U such that supp(ϕk) ⊂ K for all k. We will now show that
{ϕk}∞k=1 is convergent to ϕ in C∞(K). To this end let U ⊂ D(U) be the open
set described in Eq. (45.13), then ϕk ∈ U for almost all k and in particular,
ϕk ∈ U ∩ C∞(K) for almost all k. (Letting ε > 0 tend to zero shows that
supp(ϕ) ⊂ K, i.e. ϕ ∈ C∞(K).) Since sets of the form U ∩C∞(K) with U as in
Eq. (45.13) form a neighborhood base for the C∞(K) at ϕ, we concluded that
ϕk → ϕ in C∞(K).

Definition 45.59 (Distributions on U ⊂o Rn). A generalized function on
U ⊂o Rn is a continuous linear functional on D(U). We denote the space of
generalized functions by D′(U).

Proposition 45.60. Let f : D(U) → C be a linear functional. Then the fol-
lowing are equivalent.

1. f is continuous, i.e. f ∈ D′(U).
2. For all K @@ U, there exist n ∈ N and C <∞ such that

|f(ϕ)| ≤ Cpn(ϕ) for all ϕ ∈ C∞(K). (45.14)

3. For all sequences {ϕk} ⊂ D(U) such that ϕk → 0 in D(U), limk→∞ f(ϕk) =
0.

Proof. 1) ⇐⇒ 2). If f is continuous, then by definition of the inductive
limit topology f |C∞(K) is continuous. Hence an estimate of the type in Eq.
(45.14) must hold. Conversely if estimates of the type in Eq. (45.14) hold for all
compact sets K, then f |C∞(K) is continuous for all K @@ U and again by the
definition of the inductive limit topologies, f is continuous on D′(U). 1)⇐⇒ 3)
By Lemma 45.58, the assertion in item 3. is equivalent to saying that f |C∞(K)

is sequentially continuous for all K @@ U. Since the topology on C∞(K) is
first countable (being a metric topology), sequential continuity and continuity
are the same think. Hence item 3. is equivalent to the assertion that f |C∞(K)

is continuous for all K @@ U which is equivalent to the assertion that f is
continuous on D′(U).
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Proposition 45.61. The maps (λ, ϕ) ∈ C×D(U)→ λϕ ∈ D(U) and (ϕ,ψ) ∈
D(U) × D(U) → ϕ + ψ ∈ D(U) are continuous. (Actually, I will have to look
up how to decide to this.) What is obvious is that all of these operations are
sequentially continuous, which is enough for our purposes.



46

Convolutions involving distributions

46.1 Tensor Product of Distributions

Let X ⊂o Rn and Y ⊂o Rm and S ∈ D′(X) and T ∈ D′(Y ). We wish to define
S ⊗ T ∈ D′(X × Y ). Informally, we should have

〈S ⊗ T, ϕ〉 =

∫
X×Y

S(x)T (y)ϕ(x, y)dxdy

=

∫
X

dxS(x)

∫
Y

dyT (y)ϕ(x, y) =

∫
Y

dyT (y)

∫
X

dxS(x)ϕ(x, y).

Of course we should interpret this last equation as follows,

〈S ⊗ T, ϕ〉 = 〈S(x), 〈T (y), ϕ(x, y)〉〉 = 〈T (y), 〈S(x), ϕ(x, y)〉〉. (46.1)

This formula takes on particularly simple form when ϕ = u⊗ v with u ∈ D(X)
and v ∈ D(Y ) in which case

〈S ⊗ T, u⊗ v〉 = 〈S, u〉〈T, v〉. (46.2)

We begin with the following smooth version of the Weierstrass approximation
theorem which will be used to show Eq. (46.2) uniquely determines S ⊗ T.

Theorem 46.1 (Density Theorem). Suppose that X ⊂o Rn and Y ⊂o Rm,
then D(X)⊗D(Y ) is dense in D(X × Y ).

Proof. First let us consider the special case where X = (0, 1)n and Y =
(0, 1)m so that X × Y = (0, 1)m+n. To simplify notation, let m + n = k and
Ω = (0, 1)k and πi : Ω → (0, 1) be projection onto the ith factor of Ω. Suppose
that ϕ ∈ C∞c (Ω) and K = supp(ϕ). We will view ϕ ∈ C∞c (Rk) by setting ϕ = 0
outside of Ω. Since K is compact πi(K) ⊂ [ai, bi] for some 0 < ai < bi < 1.
Let a = min {ai : i = 1, . . . , k} and b = max {bi : i = 1, . . . , k} . Then supp(ϕ) =
K ⊂ [a, b]k ⊂ Ω. As in the proof of the Weierstrass approximation theorem,
let qn(t) = cn(1− t2)n1|t|≤1 where cn is chosen so that

∫
R qn(t)dt = 1. Also set

Qn = qn ⊗ · · · ⊗ qn, i.e. Qn(x) =
∏k
i=1 qn(xi) for x ∈ Rk. Let

fn(x) := Qn ∗ ϕ(x) = ckn

∫
Rk
ϕ(y)

k∏
i=1

(1− (xi − yi)2)n1|xi−yi|≤1dyi. (46.3)

By standard arguments, we know that ∂αfn → ∂αϕ uniformly on Rk as n→∞.
Moreover for x ∈ Ω, it follows from Eq. (46.3) that

fn(x) := ckn

∫
Ω

ϕ(y)

k∏
i=1

(1− (xi − yi)2)ndyi = pn(x)

where pn(x) is a polynomial in x. Notice that pn ∈ C∞((0, 1))⊗· · ·⊗C∞((0, 1))
so that we are almost there.1 We need only cutoff these functions so that they
have compact support. To this end, let θ ∈ C∞c ((0, 1)) be a function such that
θ = 1 on a neighborhood of [a, b] and define

ϕn = (θ ⊗ · · · ⊗ θ) fn
= (θ ⊗ · · · ⊗ θ) pn ∈ C∞c ((0, 1))⊗ · · · ⊗ C∞c ((0, 1)).

I claim now that ϕn → ϕ in D(Ω). Certainly by construction supp(ϕn) ⊂
[a, b]k @@ Ω for all n. Also

∂α(ϕ− ϕn) = ∂α(ϕ− (θ ⊗ · · · ⊗ θ) fn)

= (θ ⊗ · · · ⊗ θ) (∂αϕ− ∂αfn) +Rn (46.4)

where Rn is a sum of terms of the form ∂β (θ ⊗ · · · ⊗ θ) · ∂γfn with β 6= 0.
Since ∂β (θ ⊗ · · · ⊗ θ) = 0 on [a, b]k and ∂γfn converges uniformly to zero on
Rk \ [a, b]k, it follows that Rn → 0 uniformly as n → ∞. Combining this with
Eq. (46.4) and the fact that ∂αfn → ∂αϕ uniformly on Rk as n → ∞, we
see that ϕn → ϕ in D(Ω). This finishes the proof in the case X = (0, 1)n

and Y = (0, 1)m. For the general case, let K = supp(ϕ) @@ X × Y and

1 One could also construct fn ∈ C∞(R)⊗k such that ∂αfn → ∂αf uniformlly as
n → ∞ using Fourier series. To this end, let φ̃ be the 1 – periodic extension of φ
to Rk. Then φ̃ ∈ C∞periodic(Rk) and hence it may be written as

φ̃(x) =
∑
m∈Zk

cme
i2πm·x

where the
{
cm : m ∈ Zk

}
are the Fourier coefficients of φ̃ which decay faster that

(1 + |m|)−l for any l > 0. Thus fn(x) :=
∑
m∈Zk:|m|≤n cme

i2πm·x ∈ C∞(R)⊗k and
∂αfn → ∂αφ unifromly on Ω as n→∞.
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K1 = π1(K) @@ X and K2 = π2(K) @@ Y where π1 and π2 are projections
from X × Y to X and Y respectively. Then K @ K1 × K2 @@ X × Y. Let
{Vi}ai=1 and {Uj}bj=1 be finite covers of K1 and K2 respectively by open sets

Vi = (ai, bi) and Uj = (cj , dj) with ai, bi ∈ X and cj , dj ∈ Y. Also let αi ∈
C∞c (Vi) for i = 1, . . . , a and βj ∈ C∞c (Uj) for j = 1, . . . , b be functions such

that
∑a
i=1 αi = 1 on a neighborhood of K1 and

∑b
j=1 βj = 1 on a neighborhood

of K2. Then ϕ =
∑a
i=1

∑b
j=1 (αi ⊗ βj)ϕ and by what we have just proved (after

scaling and translating) each term in this sum, (αi ⊗ βj)ϕ, may be written as
a limit of elements in D(X)⊗D(Y ) in the D(X × Y ) topology.

Theorem 46.2 (Distribution-Fubini-Theorem). Let S ∈ D′(X), T ∈
D′(Y ), h(x) := 〈T (y), ϕ(x, y)〉 and g(y) := 〈S(x), ϕ(x, y)〉. Then h =
hϕ ∈ D(X), g = gϕ ∈ D(Y ), ∂αh(x) = 〈T (y), ∂αxϕ(x, y)〉 and ∂βg(y) =
〈S(x), ∂βyϕ(x, y)〉 for all multi-indices α and β. Moreover

〈S(x), 〈T (y), ϕ(x, y)〉〉 = 〈S, h〉 = 〈T, g〉 = 〈T (y), 〈S(x), ϕ(x, y)〉〉. (46.5)

We denote this common value by 〈S⊗T, ϕ〉 and call S⊗T the tensor product of
S and T. This distribution is uniquely determined by its values on D(X)⊗D(Y )
and for u ∈ D(X) and v ∈ D(Y ) we have

〈S ⊗ T, u⊗ v〉 = 〈S, u〉〈T, v〉.

Proof. Let K = supp(ϕ) @@ X × Y and K1 = π1(K) and K2 = π2(K).
Then K1 @@ X and K2 @@ Y and K ⊂ K1×K2 ⊂ X×Y. If x ∈ X and y /∈ K2,
then ϕ(x, y) = 0 and more generally ∂αxϕ(x, y) = 0 so that {y : ∂αxϕ(x, y) 6= 0} ⊂
K2. Thus for all x ∈ X, supp(∂αϕ(x, ·)) ⊂ K2 ⊂ Y. By the fundamental theorem
of calculus,

∂βyϕ(x+ v, y)− ∂βyϕ(x, y) =

∫ 1

0

∂xv∂
β
yϕ(x+ τv, y)dτ (46.6)

and therefore∥∥∂βyϕ(x+ v, ·)− ∂βyϕ(x, ·)
∥∥
∞ ≤ |v|

∫ 1

0

∥∥∇x∂βyϕ(x+ τv, ·)
∥∥
∞ dτ

≤ |v|
∥∥∇x∂βyϕ∥∥∞ → 0 as ν → 0.

This shows that x ∈ X → ϕ(x, ·) ∈ D(Y ) is continuous. Thus h is continuous
being the composition of continuous functions. Letting v = tei in Eq. (46.6) we
find

∂βyϕ(x+ tei, y)− ∂βyϕ(x, y)

t
− ∂

∂xi
∂βyϕ(x, y)

=

∫ 1

0

[
∂

∂xi
∂βyϕ(x+ τtei, y)− ∂

∂xi
∂βyϕ(x, y)

]
dτ

and hence ∥∥∥∥∥∂βyϕ(x+ tei, ·)− ∂βyϕ(x, ·)
t

− ∂

∂xi
∂βyϕ(x, ·)

∥∥∥∥∥
∞

≤
∫ 1

0

∥∥∥∥ ∂

∂xi
∂βyϕ(x+ τtei, ·)−

∂

∂xi
∂βyϕ(x, ·)

∥∥∥∥
∞
dτ

which tends to zero as t→ 0. Thus we have checked that

∂

∂xi
ϕ(x, ·) = D′(Y )– lim

t→0

ϕ(x+ tei, ·)− ϕ(x, ·)
t

and therefore,

h(x+ tei)− h(x)

t
= 〈T, ϕ(x+ tei, ·)− ϕ(x, ·)

t
〉 → 〈T, ∂

∂xi
ϕ(x, ·)〉

as t → 0 showing ∂ih(x) exists and is given by 〈T, ∂
∂xi

ϕ(x, ·)〉. By what we

have proved above, it follows that ∂ih(x) = 〈T, ∂
∂xi

ϕ(x, ·)〉 is continuous in
x. By induction on |α| , it follows that ∂αh(x) exists and is continuous and
∂αh(x) = 〈T (y), ∂αxϕ(x, y)〉 for all α. Now if x /∈ K1, then ϕ(x, ·) ≡ 0
showing that {x ∈ X : h(x) 6= 0} ⊂ K1 and hence supp(h) ⊂ K1 @@ X.
Thus h has compact support. This proves all of the assertions made about
h. The assertions pertaining to the function g are prove analogously. Let
〈Γ, ϕ〉 = 〈S(x), 〈T (y), ϕ(x, y)〉〉 = 〈S, hϕ〉 for ϕ ∈ D(X × Y ). Then Γ is clearly
linear and we have

|〈Γ, ϕ〉| = |〈S, hϕ〉|

≤ C
∑
|α|≤m

‖∂αxhϕ‖∞,K1
= C

∑
|α|≤m

‖〈T (y), ∂αxϕ(·, y)〉‖∞,K1

which combined with the estimate

|〈T (y), ∂αxϕ(x, y)〉| ≤ C
∑
|β|≤p

∥∥∂βy ∂αxϕ(x, y)〉
∥∥
∞,K2

shows
|〈Γ, ϕ〉| ≤ C

∑
|α|≤m

∑
|β|≤p

∥∥∂βy ∂αxϕ(x, y)〉
∥∥
∞,K1×K2

.

So Γ is continuous, i.e. Γ ∈ D′(X × Y ), i.e.

ϕ ∈ D(X × Y )→ 〈S(x), 〈T (y), ϕ(x, y)〉〉

defines a distribution. Similarly,
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46.1 Tensor Product of Distributions 527

ϕ ∈ D(X × Y )→ 〈T (y), 〈S(x), ϕ(x, y)〉〉

also defines a distribution and since both of these distributions agree on the
dense subspace D(X)⊗D(Y ), it follows they are equal.

Theorem 46.3. If (T, ϕ) is a distribution test function pair satisfying one of
the following three conditions

1. T ∈ E ′(Rn) and ϕ ∈ C∞(Rn)
2. T ∈ D′(Rn) and ϕ ∈ D(Rn) or
3. T ∈ S ′(Rn) and ϕ ∈ S(Rn),

let

T ∗ ϕ(x) = “

∫
T (y)ϕ(x− y)dy” = 〈T, ϕ(x− ·)〉. (46.7)

Then T ∗ ϕ ∈ C∞(Rn), ∂α(T ∗ ϕ) = (∂αT ∗ ϕ) = (T ∗ ∂αϕ) for all α and
supp(T ∗ ϕ) ⊂ supp(T ) + supp(ϕ). Moreover if (3) holds then T ∗ ϕ ∈ P – the
space of smooth functions with slow decrease.

Proof. I will supply the proof for case (3) since the other cases are similar
and easier. Let h(x) := T ∗ ϕ(x). Since T ∈ S ′(Rn), there exists m ∈ N and
C < ∞ such that |〈T, ϕ〉| ≤ Cpm(ϕ) for all ϕ ∈ S, where pm is defined in
Example 45.28. Therefore,

|h(x)− h(y)| = |〈T, ϕ(x− ·)− ϕ(y − ·)〉| ≤ Cpm(ϕ(x− ·)− ϕ(y − ·))

= C
∑
|α|≤m

‖µm(∂αϕ(x− ·)− ∂αϕ(y − ·))‖∞ .

Let ψ := ∂αϕ, then

ψ(x− z)− ψ(y − z) =

∫ 1

0

∇ψ(y + τ(x− y)− z) · (x− y)dτ (46.8)

and hence

|ψ(x− z)− ψ(y − z)| ≤ |x− y| ·
∫ 1

0

|∇ψ(y + τ(x− y)− z)| dτ

≤ C |x− y|
∫ 1

0

µ−M (y + τ(x− y)− z)dτ

for any M <∞. By Peetre’s inequality,

µ−M (y + τ(x− y)− z) ≤ µ−M (z)µM (y + τ(x− y))

so that

|∂αϕ(x− z)− ∂αϕ(y − z)| ≤ C |x− y|µ−M (z)

∫ 1

0

µM (y + τ(x− y))dτ

≤ C(x, y) |x− y|µ−M (z) (46.9)

where C(x, y) is a continuous function of (x, y). Putting all of this together we
see that

|h(x)− h(y)| ≤ C̃(x, y) |x− y| → 0 as x→ y,

showing h is continuous. Let us now compute a partial derivative of h. Suppose
that v ∈ Rn is a fixed vector, then by Eq. (46.8),

ϕ(x+ tv − z)− ϕ(x− z)
t

− ∂vϕ(x− z)

=

∫ 1

0

∇ϕ(x+ τtv − z) · vdτ − ∂vϕ(x− z)

=

∫ 1

0

[∂vϕ(x+ τtv − z)− ∂vϕ(x− z)] dτ.

This then implies∣∣∣∣∂αz {ϕ(x+ tv − z)− ϕ(x− z)
t

− ∂vϕ(x− z)
}∣∣∣∣

=

∣∣∣∣∫ 1

0

∂αz [∂vϕ(x+ τtv − z)− ∂vϕ(x− z)] dτ
∣∣∣∣

≤
∫ 1

0

|∂αz [∂vϕ(x+ τtv − z)− ∂vϕ(x− z)]| dτ.

But by the same argument as above, it follows that

|∂αz [∂vϕ(x+ τtv − z)− ∂vϕ(x− z)]| ≤ C(x+ τtv, x) |τtv|µ−M (z)

and thus ∣∣∣∣∂αz {ϕ(x+ tv − z)− ϕ(x− z)
t

− ∂vϕ(x− z)
}∣∣∣∣

≤ tµ−M (z)

∫ 1

0

C(x+ τtv, x)τdτ |v|µ−M (z).

Putting this all together shows∥∥∥∥µM∂αz {ϕ(x+ tv − z)− ϕ(x− z)
t

− ∂vϕ(x− z)
}∥∥∥∥
∞

= O(t)

→ 0 as t→ 0.
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528 46 Convolutions involving distributions

That is to say ϕ(x+tv−·)−ϕ(x−·)
t → ∂vϕ(x − ·) in S as t → 0. Hence since T is

continuous on S, we learn

∂v (T ∗ ϕ) (x) = ∂v〈T, ϕ(x− ·)〉 = lim
t→0
〈T, ϕ(x+ tv − ·)− ϕ(x− ·)

t
〉

= 〈T, ∂vϕ(x− ·)〉 = T ∗ ∂vϕ(x).

By the first part of the proof, we know that ∂v(T ∗ ϕ) is continuous and hence
by induction it now follows that T ∗ ϕ is C∞ and ∂αT ∗ ϕ = T ∗ ∂αϕ. Since

T ∗ ∂αϕ(x) = 〈T (z), (∂αϕ) (x− z)〉 = (−1)α〈T (z), ∂αz ϕ(x− z)〉
= 〈∂αz T (z), ϕ(x− z)〉 = ∂αT ∗ ϕ(x)

the proof is complete except for showing T ∗ ϕ ∈ P. For the last statement, it
suffices to prove |T ∗ ϕ(x)| ≤ CµM (x) for some C <∞ and M <∞. This goes
as follows

|h(x)| = |〈T, ϕ(x− ·)〉| ≤ Cpm(ϕ(x− ·)) = C
∑
|α|≤m

‖µm(∂αϕ(x− ·)‖∞

and using Peetre’s inequality, |∂αϕ(x− z)| ≤ Cµ−m(x − z) ≤ Cµ−m(z)µm(x)
so that

‖µm(∂αϕ(x− ·)‖∞ ≤ Cµm(x).

Thus it follows that |T ∗ ϕ(x)| ≤ Cµm(x) for some C < ∞. If x ∈ Rn \
(supp(T ) + supp(ϕ)) and y ∈ supp(ϕ) then x − y /∈ supp(T ) for otherwise
x = x− y + y ∈ supp(T ) + supp(ϕ). Thus

supp(ϕ(x− ·)) = x− supp(ϕ) ⊂ Rn \ supp(T )

and hence h(x) = 〈T, ϕ(x− ·)〉 = 0 for all x ∈ Rn \ (supp(T ) + supp(ϕ)) . This
implies that {h 6= 0} ⊂ supp(T ) + supp(ϕ) and hence

supp(h) = {h 6= 0} ⊂ supp(T ) + supp(ϕ).

As we have seen in the previous theorem, T ∗ ϕ is a smooth function and
hence may be used to define a distribution in D′(Rn) by

〈T ∗ ϕ,ψ〉 =

∫
T ∗ ϕ(x)ψ(x)dx =

∫
〈T, ϕ(x− ·)〉ψ(x)dx.

Using the linearity of T we might expect that∫
〈T, ϕ(x− ·)〉ψ(x)dx = 〈T,

∫
ϕ(x− ·)ψ(x)dx〉

or equivalently that
〈T ∗ ϕ,ψ〉 = 〈T, ϕ ∗ ψ〉 (46.10)

where ϕ(x) := ϕ(−x).

Theorem 46.4. Suppose that if (T, ϕ) is a distribution test function pair sat-
isfying one the three condition in Theorem 46.3, then T ∗ ϕ as a distribution
may be characterized by

〈T ∗ ϕ,ψ〉 = 〈T, ϕ ∗ ψ〉 (46.11)

for all ψ ∈ D(Rn). Moreover, if T ∈ S ′ and ϕ ∈ S then Eq. (46.11) holds for
all ψ ∈ S.

Proof. Let us first assume that T ∈ D′ and ϕ,ψ ∈ D and θ ∈ D be a
function such that θ = 1 on a neighborhood of the support of ψ. Then

〈T ∗ ϕ,ψ〉 =

∫
Rn
〈T, ϕ(x− ·)〉ψ(x)dx = 〈ψ(x), 〈T (y), ϕ(x− y)〉〉

= 〈θ(x)ψ(x), 〈T (y), ϕ(x− y)〉〉
= 〈ψ(x), θ(x)〈T (y), ϕ(x− y)〉〉
= 〈ψ(x), 〈T (y), θ(x)ϕ(x− y)〉〉.

Now the function, θ(x)ϕ(x−y) ∈ D(Rn×Rn), so we may apply Fubini’s theorem
for distributions to conclude that

〈T ∗ ϕ,ψ〉 = 〈ψ(x), 〈T (y), θ(x)ϕ(x− y)〉〉
= 〈T (y), 〈ψ(x), θ(x)ϕ(x− y)〉〉
= 〈T (y), 〈θ(x)ψ(x), ϕ(x− y)〉〉
= 〈T (y), 〈ψ(x), ϕ(x− y)〉〉
= 〈T (y), ψ ∗ ϕ(y)〉 = 〈T, ψ ∗ ϕ〉

as claimed. If T ∈ E ′, let α ∈ D(Rn) be a function such that α = 1 on a
neighborhood of supp(T ), then working as above,

〈T ∗ ϕ,ψ〉 = 〈ψ(x), 〈T (y), θ(x)ϕ(x− y)〉〉
= 〈ψ(x), 〈T (y), α(y)θ(x)ϕ(x− y)〉〉

and since α(y)θ(x)ϕ(x− y) ∈ D(Rn × Rn) we may apply Fubini’s theorem for
distributions to conclude again that

〈T ∗ ϕ,ψ〉 = 〈T (y), 〈ψ(x), α(y)θ(x)ϕ(x− y)〉〉
= 〈α(y)T (y), 〈θ(x)ψ(x), ϕ(x− y)〉〉
= 〈T (y), 〈ψ(x), ϕ(x− y)〉〉 = 〈T, ψ ∗ ϕ〉.

Now suppose that T ∈ S ′ and ϕ,ψ ∈ S. Let ϕn, ψn ∈ D be a sequences such
that ϕn → ϕ and ψn → ψ in S, then using arguments similar to those in the
proof of Theorem 46.3, one shows

〈T ∗ ϕ,ψ〉 = lim
n→∞

〈T ∗ ϕn, ψn〉 = lim
n→∞

〈T, ψn ∗ ϕn〉 = 〈T, ψ ∗ ϕ〉.
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Theorem 46.5. Let U ⊂o Rn, then D(U) is sequentially dense in E ′(U). When
U = Rn we have E ′(Rn) is a dense subspace of S ′(Rn) ⊂ D′(Rn). Hence we
have the following inclusions,

D(U) ⊂ E ′(U) ⊂ D′(U),

D(Rn) ⊂ E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn) and

D(Rn) ⊂ S(Rn) ⊂ S ′(Rn) ⊂ D′(Rn)

with all inclusions being dense in the next space up.

Proof. The key point is to showD(U) is dense in E ′(U). Choose θ ∈ C∞c (Rn)
such that supp(θ) ⊂ B(0, 1), θ = θ and

∫
θ(x)dx = 1. Let θm(x) = m−nθ(mx)

so that supp(θm) ⊂ B(0, 1/m). An element in T ∈ E ′(U) may be viewed as an
element in E ′(Rn) in a natural way. Namely if χ ∈ C∞c (U) such that χ = 1
on a neighborhood of supp(T ), and ϕ ∈ C∞(Rn), let 〈T, ϕ〉 = 〈T, χϕ〉. Define
Tm = T ∗ θm. It is easily seen that supp(Tn) ⊂ supp(T ) + B(0, 1/m) ⊂ U for
all m sufficiently large. Hence Tm ∈ D(U) for large enough m. Moreover, if
ψ ∈ D(U), then

〈Tm, ψ〉 = 〈T ∗ θm, ψ〉 = 〈T, θm ∗ ψ〉 = 〈T, θm ∗ ψ〉 → 〈T, ψ〉

since θm ∗ ψ → ψ in D(U) by standard arguments. If U = Rn, T ∈ E ′(Rn) ⊂
S ′(Rn) and ψ ∈ S, the same argument goes through to show 〈Tm, ψ〉 → 〈T, ψ〉
provided we show θm ∗ ψ → ψ in S(Rn) as m → ∞. This latter is proved by
showing for all α and t > 0, I

‖µt (∂αθm ∗ ψ − ∂αψ)‖∞ → 0 as m→∞,

which is a consequence of the estimates:

|∂αθm ∗ ψ(x)− ∂αψ(x)| = |θm ∗ ∂αψ(x)− ∂αψ(x)|

=

∣∣∣∣∫ θm(y) [∂αψ(x− y)− ∂αψ(x)] dy

∣∣∣∣
≤ sup
|y|≤1/m

|∂αψ(x− y)− ∂αψ(x)|

≤ 1

m
sup
|y|≤1/m

|∇∂αψ(x− y)|

≤ 1

m
C sup
|y|≤1/m

µ−t(x− y)

≤ 1

m
Cµ−t(x− y) sup

|y|≤1/m

µt(y)

≤ 1

m
C
(
1 +m−1

)t
µ−t(x).

Definition 46.6 (Convolution of Distributions). Suppose that T ∈ D′ and
S ∈ E ′, then define T ∗ S ∈ D′ by

〈T ∗ S, ϕ〉 = 〈T ⊗ S, ϕ+〉

where ϕ+(x, y) = ϕ(x+y) for all x, y ∈ Rn. More generally we may define T ∗S
for any two distributions having the property that supp(T ⊗ S) ∩ supp(ϕ+) =
[supp(T )× supp(S)] ∩ supp(ϕ+) is compact for all ϕ ∈ D.

Proposition 46.7. Suppose that T ∈ D′ and S ∈ E ′ then T ∗ S is well defined
and

〈T ∗ S, ϕ〉 = 〈T (x), 〈S(y), ϕ(x+ y)〉〉 = 〈S(y), 〈T (x), ϕ(x+ y)〉〉. (46.12)

Moreover, if T ∈ S ′ then T ∗ S ∈ S ′ and F(T ∗ S) = ŜT̂ . Recall from Remark
45.46 that Ŝ ∈ P so that ŜT̂ ∈ S ′.

Proof. Let θ ∈ D be a function such that θ = 1 on a neighborhood of
supp(S), then by Fubini’s theorem for distributions,

〈T ⊗ S, ϕ+〉 = 〈T ⊗ S(x, y), θ(y)ϕ(x+ y)〉 = 〈T (x)S(y), θ(y)ϕ(x+ y)〉
= 〈T (x), 〈S(y), θ(y)ϕ(x+ y)〉〉 = 〈T (x), 〈S(y), ϕ(x+ y)〉〉

and

〈T ⊗ S, ϕ+〉 = 〈T (x)S(y), θ(y)ϕ(x+ y)〉 = 〈S(y), 〈T (x), θ(y)ϕ(x+ y)〉〉
= 〈S(y), θ(y)〈T (x), ϕ(x+ y)〉〉 = 〈S(y), 〈T (x), ϕ(x+ y)〉〉

proving Eq. (46.12). Suppose that T ∈ S ′, then

|〈T ∗ S, ϕ〉| = |〈T (x), 〈S(y), ϕ(x+ y)〉〉| ≤ C
∑
|α|≤m

‖µm∂αx 〈S(y), ϕ(·+ y)〉‖∞

= C
∑
|α|≤m

‖µm〈S(y), ∂αϕ(·+ y)〉‖∞

and

|〈S(y), ∂αϕ(x+ y)〉| ≤ C
∑
|β|≤p

sup
y∈K

∣∣∂β∂αϕ(x+ y)
∣∣

≤ Cpm+p(ϕ) sup
y∈K

µ−m−p(x+ y)

≤ Cpm+p(ϕ)µ−m−p(x) sup
y∈K

µm+p(y)

= C̃µ−m−p(x)pm+p(ϕ).

Page: 529 job: newanal macro: svmonob.cls date/time: 7-May-2012/12:12



530 46 Convolutions involving distributions

Combining the last two displayed equations shows

|〈T ∗ S, ϕ〉| ≤ Cpm+p(ϕ)

which shows that T ∗ S ∈ S ′. We still should check that

〈T ∗ S, ϕ〉 = 〈T (x), 〈S(y), ϕ(x+ y)〉〉 = 〈S(y), 〈T (x), ϕ(x+ y)〉〉

still holds for all ϕ ∈ S. This is a matter of showing that all of the expressions
are continuous in S when restricted to D. Explicitly, let ϕm ∈ D be a sequence
of functions such that ϕm → ϕ in S, then

〈T ∗ S, ϕ〉 = lim
n→∞

〈T ∗ S, ϕn〉 = lim
n→∞

〈T (x), 〈S(y), ϕn(x+ y)〉〉 (46.13)

and

〈T ∗ S, ϕ〉 = lim
n→∞

〈T ∗ S, ϕn〉 = lim
n→∞

〈S(y), 〈T (x), ϕn(x+ y)〉〉. (46.14)

So it suffices to show the map ϕ ∈ S → 〈S(y), ϕ(·+ y)〉 ∈ S is continuous and
ϕ ∈ S → 〈T (x), ϕ(x + ·)〉 ∈ C∞(Rn) are continuous maps. These may verified
by methods similar to what we have been doing, so I will leave the details to
the reader. Given these continuity assertions, we may pass to the limits in Eq.
(46.13d (46.14) to learn

〈T ∗ S, ϕ〉 = 〈T (x), 〈S(y), ϕ(x+ y)〉〉 = 〈S(y), 〈T (x), ϕ(x+ y)〉〉

still holds for all ϕ ∈ S. The last and most important point is to show F(T ∗S) =
ŜT̂ . Using

ϕ̂(x+ y) =

∫
Rn
ϕ(ξ)e−iξ·(x+y)dξ =

∫
Rn
ϕ(ξ)e−iξ·ye−iξ·xdξ

= F
(
ϕ(ξ)e−iξ·y

)
(x)

and the definition of F on S ′ we learn

〈F(T ∗ S), ϕ〉 = 〈T ∗ S, ϕ̂〉 = 〈S(y), 〈T (x), ϕ̂(x+ y)〉〉
= 〈S(y), 〈T (x),F

(
ϕ(ξ)e−iξ·y

)
(x)〉〉

= 〈S(y), 〈T̂ (ξ), ϕ(ξ)e−iξ·y〉〉. (46.15)

Let θ ∈ D be a function such that θ = 1 on a neighborhood of supp(S) and
assume ϕ ∈ D for the moment. Then from Eq. (46.15) and Fubini’s theorem for
distributions we find

〈F(T ∗ S), ϕ〉 = 〈S(y), θ(y)〈T̂ (ξ), ϕ(ξ)e−iξ·y〉〉
= 〈S(y), 〈T̂ (ξ), ϕ(ξ)θ(y)e−iξ·y〉〉
= 〈T̂ (ξ), 〈S(y), ϕ(ξ)θ(y)e−iξ·y〉〉
= 〈T̂ (ξ), ϕ(ξ)〈S(y), e−iξ·y〉〉
= 〈T̂ (ξ), ϕ(ξ)Ŝ(ξ)〉 = 〈Ŝ(ξ)T̂ (ξ), ϕ(ξ)〉. (46.16)

Since F(T ∗ S) ∈ S ′ and ŜT̂ ∈ S ′, we conclude that Eq. (46.16) holds for all
ϕ ∈ S and hence F(T ∗ S) = ŜT̂ as was to be proved.

46.2 Elliptic Regularity

Theorem 46.8 (Hypoellipticity). Suppose that p(x) =
∑
|α|≤m aαξ

α is a
polynomial on Rn and L is the constant coefficient differential operator

L = p(
1

i
∂) =

∑
|α|≤m

aα(
1

i
∂)α =

∑
|α|≤m

aα(−i∂)α.

Also assume there exists a distribution T ∈ D′(Rn) such that R := δ − LT ∈
C∞(Rn) and T |Rn\{0} ∈ C∞(Rn \ {0}). Then if v ∈ C∞(U) and u ∈ D′(U)
solves Lu = v then u ∈ C∞(U). In particular, all solutions u to the equation
Lu = 0 are smooth.

Proof. We must show for each x0 ∈ U that u is smooth on a neighborhood of
x0. So let x0 ∈ U and θ ∈ D(U) such that 0 ≤ θ ≤ 1 and θ = 1 on neighborhood
V of x0. Also pick α ∈ D(V ) such that 0 ≤ α ≤ 1 and α = 1 on a neighborhood
of x0. Then

θu = δ ∗ (θu) = (LT +R) ∗ (θu) = (LT ) ∗ (θu) +R ∗ (θu)

= T ∗ L (θu) +R ∗ (θu)

= T ∗ {αL (θu) + (1− α)L (θu)}+R ∗ (θu)

= T ∗ {αLu+ (1− α)L (θu)}+R ∗ (θu)

= T ∗ (αv) +R ∗ (θu) + T ∗ [(1− α)L (θu)] .

Since αv ∈ D(U) and T ∈ D′(Rn) it follows that R ∗ (θu) ∈ C∞(Rn). Also
since R ∈ C∞(Rn) and θu ∈ E ′(U), R ∗ (θu) ∈ C∞(Rn). So to show θu, and
hence u, is smooth near x0 it suffices to show T ∗ g is smooth near x0 where
g := (1− α)L (θu) . Working formally for the moment,

T ∗ g(x) =

∫
Rn
T (x− y)g(y)dy =

∫
Rn\{α=1}

T (x− y)g(y)dy
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which should be smooth for x near x0 since in this case x−y 6= 0 when g(y) 6= 0.
To make this precise, let δ > 0 be chosen so that α = 1 on a neighborhood of
B(x0, δ) so that supp(g) ⊂ B(x0, δ)

c
. For ϕ ∈ D(B(x0, δ/2),

〈T ∗ g, ϕ〉 = 〈T (x), 〈g(y), ϕ(x+ y)〉〉 = 〈T, h〉

where h(x) := 〈g(y), ϕ(x+ y)〉. If |x| ≤ δ/2

supp(ϕ(x+ ·)) = supp(ϕ)− x ⊂ B(x0, δ/2)− x ⊂ B(x0, δ)

so that h(x) = 0 and hence supp(h) ⊂ B(x0, δ/2)
c
. Hence if we let γ ∈

D(B(0, δ/2)) be a function such that γ = 1 near 0, we have γh ≡ 0, and
thus

〈T ∗ g, ϕ〉 = 〈T, h〉 = 〈T, h− γh〉 = 〈(1− γ)T, h〉 = 〈[(1− γ)T ] ∗ g, ϕ〉.

Since this last equation is true for all ϕ ∈ D(B(x0, δ/2)), T ∗ g = [(1− γ)T ] ∗ g
on B(x0, δ/2) and this finishes the proof since [(1− γ)T ]∗g ∈ C∞(Rn) because
(1− γ)T ∈ C∞(Rn).

Definition 46.9. Suppose that p(x) =
∑
|α|≤m aαξ

α is a polynomial on Rn and
L is the constant coefficient differential operator

L = p(
1

i
∂) =

∑
|α|≤m

aα(
1

i
∂)α =

∑
|α|≤m

aα(−i∂)α.

Let σp(L)(ξ) :=
∑
|α|=m aαξ

α and call σp(L) the principle symbol of L. The

operator L is said to be elliptic provided that σp(L)(ξ) 6= 0 if ξ 6= 0.

Theorem 46.10 (Existence of Parametrix). Suppose that L = p( 1
i ∂) is an

elliptic constant coefficient differential operator, then there exists a distribution
T ∈ D′(Rn) such that R := δ − LT ∈ C∞(Rn) and T |Rn\{0} ∈ C∞(Rn \ {0}).

Proof. The idea is to try to find T such that LT = δ. Taking the Fourier
transform of this equation implies that p(ξ)T̂ (ξ) = 1 and hence we should try
to define T̂ (ξ) = 1/p(ξ). The main problem with this definition is that p(ξ)
may have zeros. However, these zeros can not occur for large ξ by the ellipticity
assumption. Indeed, let q(ξ) := σp(L)(ξ) =

∑
|α|=m aαξ

α, r(ξ) = p(ξ)− q(ξ) =∑
|α|<m aαξ

α and let c = min {|q(ξ)| : |ξ| = 1} ≤ max {|q(ξ)| : |ξ| = 1} =: C.

Then because |q(·)| is a nowhere vanishing continuous function on the compact

set S := {ξ ∈ Rn : |ξ| = 1|} , 0 < c ≤ C < ∞. For ξ ∈ Rn, let ξ̂ = ξ/ |ξ| and
notice

|p(ξ)| = |q(ξ)| − |r(ξ)| ≥ c |ξ|m − |r(ξ)| = |ξ|m (c− |r(ξ)|
|ξ|m

) > 0

for all |ξ| ≥ M with M sufficiently large since limξ→∞
|r(ξ)|
|ξ|m = 0. Choose θ ∈

D(Rn) such that θ = 1 on a neighborhood of B(0,M) and let

h(ξ) =
1− θ(ξ)
p(ξ)

=
β(ξ)

p(ξ)
∈ C∞(Rn)

where β = 1− θ. Since h(ξ) is bounded (in fact limξ→∞ h(ξ) = 0), h ∈ S ′(Rn)
so there exists T := F−1h ∈ S ′(Rn) is well defined. Moreover,

F (δ − LT ) = 1− p(ξ)h(ξ) = 1− β(ξ) = θ(ξ) ∈ D(Rn)

which shows that
R := δ − LT ∈ S(Rn) ⊂ C∞(Rn).

So to finish the proof it suffices to show

T |Rn\{0} ∈ C∞(Rn \ {0}).

To prove this recall that

F (xαT ) = (i∂)αT̂ = (i∂)αh.

By the chain rule and the fact that any derivative of β is has compact support
in B(0,M)

c
and any derivative of 1

p is non-zero on this set,

∂αh = β∂α
1

p
+ rα

where rα ∈ D(Rn). Moreover,

∂i
1

p
= −∂ip

p2
and ∂j∂i

1

p
= −∂j

∂ip

p2
= −∂j∂ip

p2
+ 2

∂ip

p3

from which it follows that∣∣∣∣β(ξ)∂i
1

p
(ξ)

∣∣∣∣ ≤ C |ξ|−(m+1)
and

∣∣∣∣β(ξ)∂j∂i
1

p

∣∣∣∣ ≤ C |ξ|−(m+2)
.

More generally, one shows by inductively that∣∣∣∣β(ξ)∂α
1

p

∣∣∣∣ ≤ C |ξ|−(m+|α|)
. (46.17)

In particular, if k ∈ N is given and α is chosen so that |α| + m > n + k, then

|ξ|k ∂αh(ξ) ∈ L1(ξ) and therefore

xαT = F−1 [(i∂)αh] ∈ Ck(Rn).
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532 46 Convolutions involving distributions

Hence we learn for any k ∈ N, we may choose p sufficiently large so that

|x|2p T ∈ Ck(Rn).

This shows that T |Rn\{0} ∈ C∞(Rn \ {0}).
Here is the induction argument that proves Eq. (46.17). Let qα :=

p|α|+1∂αp−1 with q0 = 1, then

∂i∂
αp−1 = ∂i

(
p−|α|−1qα

)
= (− |α| − 1) p−|α|−2qα∂ip+ p−|α|−1∂iqα

so that
qα+ei = p|α|+2∂i∂

αp−1 = (− |α| − 1) qα∂ip+ p∂iqα.

It follows by induction that qα is a polynomial in ξ and letting dα := deg(qα),
we have dα+ei ≤ dα + m − 1 with d0 = 1. Again by induction this implies
dα ≤ |α| (m− 1). Therefore

∂αp−1 =
qα

p|α|+1
∼ |ξ|dα−m(|α|+1)

= |ξ||α|(m−1)−m(|α|+1)
= |ξ|−(m+|α|)

as claimed in Eq. (46.17).
*** Beginning of WORK material. ***

46.3 Appendix: Old Proof of Theorem 46.4

This indeed turns out to be the case but is a bit painful to prove. The next
theorem is the key ingredient to proving Eq. (46.10).

Theorem 46.11. Let ψ ∈ D (ψ ∈ S) dλ(y) = ψ(y)dy, and ϕ ∈ C∞(Rn)
(ϕ ∈ S). For ε > 0 we may write Rn =

∐
m∈Zn(mε + εQ) where Q = (0, 1]n.

For y ∈ (mε+εQ), let yε ∈ mε+εQ̄ be the point closest to the origin in mε+εQ̄.
(This will be one of the corners of the translated cube.) In this way we define a
function y ∈ Rn → yε ∈ εZn which is constant on each cube ε(m+Q). Let

Fε(x) :=

∫
ϕ(x− yε)dλ(y) =

∑
m∈Zn

ϕ(x− (mε)ε)λ(ε(m+Q)), (46.18)

then the above sum converges in C∞(Rn) (S) and Fε → ϕ ∗ ψ in C∞(Rn) (S)
as ε ↓ 0. (In particular if ϕ,ψ ∈ S then ϕ ∗ ψ ∈ S.)

Proof. First suppose that ψ ∈ D the measure λ has compact support and
hence the sum in Eq. (46.18) is finite and so is certainly convergent in C∞(Rn).
To shows Fε → ϕ ∗ψ in C∞(Rn), let K be a compact set and m ∈ N. Then for
|α| ≤ m,

|∂αFε(x)− ∂αϕ ∗ ψ(x)| =
∣∣∣∣∫ [∂αϕ(x− yε)− ∂αϕ(x− y)] dλ(y)

∣∣∣∣
≤
∫
|∂αϕ(x− yε)− ∂αϕ(x− y)| |ψ(y)| dy (46.19)

and therefore,

‖∂αFε − ∂αϕ ∗ ψ‖∞,K ≤
∫
‖∂αϕ(· − yε)− ∂αϕ(· − y)‖∞,K |ψ(y)| dy

≤ sup
y∈supp(ψ)

‖∂αϕ(· − yε)− ∂αϕ(· − y)‖∞,K
∫
|ψ(y)| dy.

Since ψ(y) has compact support, we may us the uniform continuity of ∂αϕ on
compact sets to conclude

sup
y∈supp(ψ)

‖∂αϕ(· − yε)− ∂αϕ(· − y)‖∞,K → 0 as ε ↓ 0.

This finishes the proof for ψ ∈ D and ϕ ∈ C∞(Rn). Now suppose that both
ψ and ϕ are in S in which case the sum in Eq. (46.18) is now an infinite sum
in general so we need to check that it converges to an element in S. For this
we estimate each term in the sum. Given s, t > 0 and a multi-index α, using
Peetre’s inequality and simple estimates,

|∂αϕ(x− (mε)ε)λ(ε(m+Q))| ≤ Cν−t(x− (mε)ε)

∫
ε(m+Q)

|ψ(y)| dy

≤ Cν−t(x)νt((mε)ε)K

∫
ε(m+Q)

ν−s(y)dy

for some finite constants K and C. Making the change of variables y = mε+εz,
we find ∫

ε(m+Q)

ν−s(y)dy = εn
∫
Q

ν−s(mε+ εz)dz

≤ εnν−s(mε)
∫
Q

νs(εz)dy

= εnν−s(mε)

∫
Q

1

(1 + ε|z|)s
dy

≤ εnν−s(mε).

Combining these two estimates shows

‖νt∂αϕ(· − (mε)ε)λ(ε(m+Q))‖∞ ≤ Cνt((mε)ε)ε
nν−s(mε)

≤ Cνt(mε)ν−s(mε)εn

= Cνt−s((mε)ε
n
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and therefore for some (different constant C)∑
m∈Zn

pk (ϕ(· − (mε)ε)λ(ε(m+Q))) ≤
∑
m∈Zn

Cνk−s(mε)ε
n

=
∑
m∈Zn

C
1

(1 + ε |m|)k−s
εn

which can be made finite by taking s > k + n as can be seen by an compari-
son with the integral

∫
1

(1+ε|x|)k−s dx. Therefore the sum is convergent in S as

claimed. To finish the proof, we must show that Fε → ϕ ∗ ψ in S. From Eq.
(46.19) we still have

|∂αFε(x)− ∂αϕ ∗ ψ(x)| ≤
∫
|∂αϕ(x− yε)− ∂αϕ(x− y)| |ψ(y)| dy.

The estimate in Eq. (46.9) gives

|∂αϕ(x− yε)− ∂αϕ(x− y)| ≤ C
∫ 1

0

νM (yε + τ(y − yε))dτ |y − yε| ν−M (x)

≤ Cεν−M (x)

∫ 1

0

νM (yε + τ(y − yε))dτ

≤ Cεν−M (x)

∫ 1

0

νM (y)dτ = Cεν−M (x)νM (y)

where in the last inequality we have used the fact that |yε + τ(y − yε)| ≤ |y| .
Therefore,

‖νM (∂αFε(x)− ∂αϕ ∗ ψ)‖∞ ≤ Cε
∫
Rn
νM (y) |ψ(y)| dy → 0 as ε→∞

because
∫
Rn νM (y) |ψ(y)| dy <∞ for all M <∞ since ψ ∈ S.

We are now in a position to prove Eq. (46.10). Let us state this in the form
of a theorem.

Theorem 46.12. Suppose that if (T, ϕ) is a distribution test function pair sat-
isfying one the three condition in Theorem 46.3, then T ∗ ϕ as a distribution
may be characterized by

〈T ∗ ϕ,ψ〉 = 〈T, ϕ ∗ ψ〉 (46.20)

for all ψ ∈ D(Rn) and all ψ ∈ S when T ∈ S ′ and ϕ ∈ S.

Proof. Let

F̃ε =

∫
ϕ(x− yε)dλ(y) =

∑
m∈Zn

ϕ(x− (mε)ε)λ(ε(m+Q))

then making use of Theorem 46.12 in all cases we find

〈T, ϕ ∗ ψ〉 = lim
ε↓0
〈T, F̃ε〉

= lim
ε↓0
〈T (x),

∑
m∈Zn

ϕ(x− (mε)ε)λ(ε(m+Q))〉

= lim
ε↓0

∑
m∈Zn

〈T (x), ϕ((mε)ε − x)λ(ε(m+Q))〉

= lim
ε↓0

∑
m∈Zn

〈T ∗ ϕ((mε)ε〉λ(ε(m+Q)). (46.21)

To compute this last limit, let h(x) = T ∗ ϕ(x) and let us do the hard case
where T ∈ S ′. In this case we know that h ∈ P, and in particular there exists
k <∞ and C <∞ such that ‖νkh‖∞ <∞. So we have∣∣∣∣∣

∫
Rn
h(x)dλ(x)−

∑
m∈Zn

〈T ∗ ϕ((mε)ε〉λ(ε(m+Q))

∣∣∣∣∣
=

∣∣∣∣∫
Rn

[h(x)− h(xε)] dλ(x)

∣∣∣∣
≤
∫
Rn
|h(x)− h(xε)| |ψ(x)| dx.

Now
|h(x)− h(xε)| ≤ C (νk(x) + νk(xε)) ≤ 2Cνk(x)

and since νk |ψ| ∈ L1 we may use the dominated convergence theorem to con-
clude

lim
ε↓0

∣∣∣∣∣
∫
Rn
h(x)dλ(x)−

∑
m∈Zn

〈T ∗ ϕ((mε)ε〉λ(ε(m+Q))

∣∣∣∣∣ = 0

which combined with Eq. (46.21) proves the theorem.
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Absolute continuity, 316, 331

Banach space, 163
reflexive, 257
sums in, 171

Bounded variation, 316

Cauchy, 9
Cauchy sequence

in a metric space, 157
in a normed space, 163

Closed, see Sets
Coherent states, 566
Complete

Metric space, 157
Continuous function, 156, 453, 456
Contraction Mapping Principle, 448

Function
continuous, 155, 156, 453
continuous at a point, 155

Fundamental theorem of calculus, 321,
333

Hahn-Banach Theorem, 256
Helly’s selection principle, 521

Homeomorphism, 156, 454

Integration by parts, 321, 333
Isomorphic measure spaces, 521

Lusin Space, 521

Minikowski functional, 255

Neighborhood, 453
base, 453
open, 453

Open, see Sets
Open cover, 223, 456

Polish Spaces, 493
Product topology, 457

Radon Measure
Complex, 515
Signed, 515

Reflexive, see Banach space

Sets
closed, 453



Index

open, 453
Sub-base, see Topology
Summable, 19

Topological Space, 453
Topology, 453

base, 454
discrete, 453

generated by functions, 457
induced / relative, 455
relative / induced, 455
sub-base, 454
trivial, 453

Total variation, 316

version, 251
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