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Part I

Rough Path Analysis





Here are a few suggested references for this course, [12,15,1]. The latter two
references are downloadable if you are logging into MathSci net through your
UCSD account. For a proof that all p – variation paths have some extension
to a rough path see, [14] and also see [6, Theorem 9.12 and Remark 9.13]. For
other perspectives on the the theory, see [3] and also see Gubinelli [7, 8] Also
see, [9, 4, 7] look interesting. A recent paper which deals with global existence
issues for non-bounded vector fields is Lejay [11].





1

From Feynman Heuristics to Brownian Motion

In the physics literature one often finds the following informal expression,

dµT (ω) = “
1

Z (T )
e−

1
2

∫ T
0 |ω′(τ)|

2
dτDTω” for ω ∈WT , (1.1)

where WT is the set of continuous paths, ω : [0, T ] → R (or Rd), such that
ω (0) = 0,

DTω = “
∏

0<t≤T

m (dω (t)) ” (m is Lebesgue measure here)

and Z (T ) is a normalization constant such that µT (WT ) = 1.
We begin by giving meaning to this expression. For 0 ≤ s ≤ t ≤ T, let

E[s,t] (ω) :=
∫ t

s

|ω′ (τ)|2 dτ.

If we decompose ω (τ) as σ (τ) + γ (τ) where

σ (τ) := ω (s) +
τ − s
t− s

(ω (t)− ω (s)) and γ (τ) := ω (τ)− σ (τ) ,

then we have, σ′ (τ) = ω(t)−ω(s)
t−s , γ (s) = γ (t) = 0, and hence∫ t

s

σ′ (τ) · γ′ (τ) dτ =
∫ t

s

σ′ (τ) · γ′ (τ) dτ

=
ω (t)− ω (s)

t− s
· (γ (t)− γ (s)) = 0.

Thus it follows that

E[s,t] (ω) = E[s,t] (σ) + E[s,t] (γ) =
∣∣∣∣ω (t)− ω (s)

t− s

∣∣∣∣2 (t− s) + E[s,t] (γ)

=
|ω (t)− ω (s)|2

t− s
+ E[s,t] (γ) . (1.2)

Thus if f (ω) = F
(
ω|[0,s], ω (t)

)
, we will have,

1
Zt

∫
Wt

F
(
ω|[0,s], ω (t)

)
e−

1
2Et(ω)Dtω

=
1
Zt

∫
Wt

F
(
ω|[0,s], ω (t)

)
e−

1
2 [Es(ω)+E[s,t](ω)]Dtω

and now fixing ω|[0,s] and ω (t) and then doing the integral over ω|(s,t) implies,∫
F
(
ω|[0,s], ω (t)

)
e−

1
2 [Es(ω)+E[s,t](ω)]D(s,t)ω

=
∫
F
(
ω|[0,s], ω (t)

)
e
− 1

2

[
Es(ω)+

|ω(t)−ω(s)|2
t−s +E[s,t](γ)

]
D(s,t)γ

= C (s, t)
∫
F
(
ω|[0,s], ω (t)

) e− 1
2Es(ω)

Z (s)
e−

1
2
|ω(t)−ω(s)|2

t−s .

Multiplying this equation by 1
Zt
Dω[0,s] · dω (t) and integrating the result then

implies,∫
Wt

F
(
ω|[0,s], ω (t)

)
dµt (ω)

=
C (s, t)
Zt

∫ [∫
Rd
F
(
ω|[0,s], y

)
e−

1
2
|y−ω(s)|2

t−s dy

]
e−

1
2Es(ω)

Z (s)
Dω[0,s]

=
C (s, t)
Zt

∫
Ws

[∫
Rd
F (ω, y) e−

1
2
|y−ω(s)|2

t−s dy

]
dµs (ω) .

Taking F ≡ 1 in this equation then implies,

1 =
C (s, t)
Zt

∫
Ws

[∫
Rd
e−

1
2
|y−ω(s)|2

t−s dy

]
dµs (ω)

=
C (s, t)
Zt

∫
Ws

[
(2π (t− s))d/2

]
dµs (ω) =

C (s, t)
Zt

(2π (t− s))d/2 .

Thus the heuristic expression in Eq. (1.1) leads to the following Markov prop-
erty for µt, namely.

Proposition 1.1 (Heuristic). Suppose that F : Ws ×Rd → R is a reasonable
function, then for any t ≥ s we have
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Wt

F
(
ω|[0,s], ω (t)

)
dµt (ω)

=
∫
Ws

[∫
Rd
F (ω, y) pt−s (ω (s) , y) dy

]
dµs (ω) ,

where

ps (x, y) :=
(

1
2π (t− s)

)d/2
e−

1
2
|y−x|2
t−s . (1.3)

Corollary 1.2 (Heuristic). If 0 = s0 < s1 < s2 < · · · < sn = T and f :(
Rd
)n → R is a reasonable function, then∫

WT

f (ω (s1) , . . . , ω (sn)) dµT (ω) =
∫

(Rd)n
f (y1, . . . , yn)

n∏
i=1

(
psi−si−1 (yi−1, yi) dyi

)
(1.4)

where by convention, y0 = 0.

Theorem 1.3 (Wiener 1923). For all t > 0 there exists a unique probabil-
ity measure, µt, on Wt, such that Eq. (1.4) holds for all n and all bounded
measurable f :

(
Rd
)n → R.

Definition 1.4. Let Bt (ω) := ω (t) . Then {Bt}0≤t≤T as a process on (WT , µT )
is called Brownian motion. We further write Ef for

∫
WT

f (ω) dµT (ω) .

The following lemma is useful for computational purposes involving Brow-
nian motion and follows readily form from Eq. (1.4).

Lemma 1.5. Suppose that 0 = s0 < s1 < s2 < · · · < sn = t and fi : Rd → R
are reasonable functions, then

E

[
n∏
i=1

fi
(
Bsi −Bsi−1

)]
=

n∏
i=1

E
[
fi
(
Bsi −Bsi−1

)]
, (1.5)

E [f (Bt −Bs)] = E [f (Bt−s)] , (1.6)

and
E [f (Bt)] = Ef

(√
tB1

)
. (1.7)

As an example let us observe that

EBt =
∫
ypt (y) dy = 0,

EB2
t = tEB2

1 = t

∫
y2p1 (y) dy = t · 1,

and for s < t,

E [BtBs] = E [(Bt −Bs)Bs] + EB2
s = E (Bt −Bs) · EBs + s = s

and
E [|Bt −Bs|p] = |t− s|p/2 E [|B1|p] = Cp |t− s|p/2 . (1.8)

1.1 Construction and basic properties of Brownian motion

In this section we sketch one method of constructing Wiener measure ore equiv-
alently Brownian motion. We begin with the existence of a measure νT on the
W̃T :=

∏
0≤s≤T R̄ which satisfies Eq. (1.4) where R̄ is a compactification of R

– for example either one point compactificatoin so that R̄ ∼= S1.

Theorem 1.6 (Kolmogorov’s Existence Theorem). There exists a proba-
bility measure, νT , on W̃T such that Eq. (1.4) holds.

Proof. For a function F (ω) := f (ω (s1) , . . . , ω (sn)) where f ∈ C
(
R̄n,R

)
,

define

I (F ) :=
∫

Rn
f (y1, . . . , yn)

n∏
i=1

(
psi−si−1 (yi−1, yi) dyi

)
.

Using the semi-group property;∫
Rd
pt (x, y) ps (y, z) dy = ps+t (x, z)

along with the fact that
∫

Rd pt (x, y) dy = 1 for all t > 0, one shows that
I (F ) is well defined independently of how we represent F as a “finitely based”
continuous function.

By Tychonoff’s Theorem W̃T is a compact Hausdorff space. By the Stone
Weierstrass Theorem, the finitely based continuous functions are dense inside
of C

(
W̃T

)
. Since |I(F )| ≤ ‖F‖∞ for all finitely based continuous functions, we

may extend I uniquely to a positive continuous linear functional on C
(
W̃T

)
.

An application of the Riesz Markov theorem now gives the existence of the
desired measure, νT .

Theorem 1.7 (Kolmogorov’s Continuity Criteria). Suppose that
(Ω,F , P ) is a probability space and X̃t : Ω → S is a process for t ∈ [0, T ] where
(S, ρ) is a complete metric space. Assume there exists positive constants, ε, β,
and C, such that

E[ρ(X̃t, X̃s)ε] ≤ C |t− s|1+β (1.9)
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for all s, t ∈ [0, T ] . Then for any α ∈ (0, β/ε) there is a modification, X, of X̃
(i.e. P

(
Xt = X̃t

)
= 1 for all t) which is α–Hölder continuous. Moreover, there

is a random variable Kα such that,

ρ(Xt, Xs) ≤ Kα |t− s|α for all s, t ∈ [0, T ] (1.10)

and EKp
α <∞ for all p < β−αε

1−α .

Corollary 1.8. Let B̃t : W̃T → R be the projection map, B̃t (ω) = ω (t) . Then
there is a modifications, {Bt} of

{
B̃t

}
for which t→ Bt is α – Hölder contin-

uous νT – almost surely for any α ∈ (0, 1/2) .

Proof. Applying Theorem 1.7 with ε := p and β := p/2 − 1 for any p ∈
(2,∞) shows there is a modification {Bt}t≥0 of

{
B̃t

}
which is almost surely α

– Hölder continuous for any

α ∈ (0, β/ε) =
(

0,
p/2− 1

p

)
= (0, 1/2− 1/p) .

Letting p→∞ shows that {Bt}t≥0 is almost surely α – Hölder continuous for
all α < 1/2.

We will see shortly that these Brownian paths are very rough. Before we
do this we will pause to develop a quantitative measurement of roughness of a
continuous path.





2

p – Variations and Controls

Let (E, d) be a metric space which will usually be assumed to be complete.

Definition 2.1. Let 0 ≤ a < b < ∞. Given a partition Π :=
{a = t0 < t1 < · · · < tn = b} of [a, b] and a function Z ∈ C ([a, b] , E) , let
(ti)− := ti−1, (ti)+ := ti+1, with the convention that t−1 := t0 = a and
tn+1 := tn = T. Furthermore for 1 ≤ p <∞ let

Vp (Z : Π) :=

 n∑
j=1

dp
(
Ztj , Ztj−1

)1/p

=

(∑
t∈Π

dp
(
Zt, Zt−

))1/p

. (2.1)

Furthermore, let P (a, b) denote the collection of partitions of [a, b] . Also let
mesh (Π) := maxt∈Π |t− t−| be the mesh of the partition, Π.

Definition 2.2. and Z ∈ C ([a, b] , E) . For 1 ≤ p < ∞, the p - variation of
Z is;

Vp (Z) := sup
Π∈P(a,b)

Vp (Z : Π) = sup
Π∈P(a,b)

 n∑
j=1

dp
(
Ztj , Ztj−1

)1/p

. (2.2)

Moreover if Z ∈ C ([0, T ] , E) and 0 ≤ a ≤ b ≤ T, we let

ωZ,p (a, b) :=
[
νp
(
Z|[a,b]

)]p = sup
Π∈P(a,b)

n∑
j=1

dp
(
Ztj , Ztj−1

)
. (2.3)

Remark 2.3. We can define Vp (Z) for p ∈ (0, 1) as well but this is not so inter-
esting. Indeed if 0 ≤ s ≤ T and Π ∈ P (0, T ) is a partition such that s ∈ Π,
then

d (Z (s) , Z (0)) ≤
∑
t∈Π

d (Z (t) , Z (t−)) =
∑
t∈Π

d1−p (Z (t) , Z (t−)) dp (Z (t) , Z (t−))

≤ max
t∈Π

d1−p (Z (t) , Z (t−)) · V pp (Z : Π)

≤ max
t∈Π

d1−p (Z (t) , Z (t−)) · V pp (Z) .

Using the uniform continuity of Z (or d (Z (s) , Z (t)) if you wish) we know that
lim|Π|→0 maxt∈Π d1−p (Z (t) , Z (t−)) = 0 and hence that,

d (Z (s) , Z (0)) ≤ lim
|Π|→0

max
t∈Π

d1−p (Z (t) , Z (t−)) · V pp (Z) = 0.

Thus we may conclude Z (s) = Z (0) , i.e. Z must be constant.

Lemma 2.4. Let {ai > 0}ni=1 , then(
n∑
i=1

api

)1/p

is decreasing in p and

ϕ (p) := ln

(
n∑
i=1

api

)
is convex in p.

Proof. Let f (i) = ai and µ ({i}) = 1 be counting measure so that

n∑
i=1

api = µ (fp) and ϕ (p) = lnµ (fp) .

Using d
dpf

p = fp ln f, it follows that and

ϕ′ (p) =
µ (fp ln f)
µ (fp)

and

ϕ′′ (p) =
µ
(
fp ln2 f

)
µ (fp)

−
[
µ (fp ln f)
µ (fp)

]2
.

Thus if we let EX := µ (fpX) /µ (fp) , we have shown, ϕ′ (p) = E [ln f ] and

ϕ′′ (p) = E
[
ln2 f

]
− (E [ln f ])2 = Var (ln f) ≥ 0

which shows that ϕ is convex in p.
Now let us shows that ‖f‖p is decreasing in in p. To this end we compute,
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d

dp

[
ln ‖f‖p

]
=

d

dp

[
1
p
ϕ (p)

]
=

1
p
ϕ′ (p)− 1

p2
ϕ (p)

=
1

p2µ (fp)
[pµ (fp ln f)− µ (fp) lnµ (fp)]

=
1

p2µ (fp)
[µ (fp ln fp)− µ (fp) lnµ (fp)]

=
1

p2µ (fp)

[
µ

(
fp ln

fp

µ (fp)

)]
.

Up to now our computation has been fairly general. The point where µ being
counting measure comes in is that in this case µ (fp) ≥ fp everywhere and
therefore ln fp

µ(fp) ≤ 0 and therefore, d
dp

[
ln ‖f‖p

]
≤ 0 as desired.

Alternative proof that ‖f‖p is decreasing in p. If we let q = p+ r, then

‖a‖qq =
n∑
j=1

ap+rj ≤
(

max
j
aj

)r
·
n∑
j=1

apj ≤ ‖a‖
r
p · ‖a‖

p
p = ‖a‖qp ,

wherein we have used,

max
j
aj =

(
max
j
apj

)1/p

≤

 n∑
j=1

apj

1/p

= ‖a‖p .

Remark 2.5. It is not too hard to see that the convexity of ϕ is equivalent to
the interpolation inequality,

‖f‖ps ≤ ‖f‖
1−s
p0
· ‖f‖sp1 ,

where 0 ≤ s ≤ 1, 1 ≤ p0, p1, and

1
ps

:= (1− s) 1
p0

+ s
1
p1
.

This interpolation inequality may be proved via Hölder’s inequality.

Corollary 2.6. The function Vp (Z) is a decreasing function of p and lnV pp (Z)
is a convex function of p where they are finite. Moreover, for all p0 > 1,

lim
p↓p0

Vp (Z) = Vp0 (Z) . (2.4)

and p→ Vp (Z) is continuous on the set of p’s where Vp (Z) is finite.

Proof. Given Lemma 2.4, it suffices to prove Eq. (2.4) and the conti-
nuity assertion on p → Vp (Z) . Since p → Vp (Z) is a decreasing function,
we know that limp↑p0 Vp (Z) and limp↓p0 Vp (Z) always exists and also that
limp↓p0 Vp (Z) = supp>p0 supΠ Vp (Z : Π) . Therefore,

lim
p↓p0

Vp (Z) = sup
p>p0

sup
Π
Vp (Z : Π) = sup

Π
sup
p>p0

Vp (Z : Π) = sup
Π
Vp0 (Z : Π) = Vp0 (Z)

which proves Eq. (2.4). The continuity of Vp (Z) = exp
(

1
p lnVp (Z)p

)
follows

directly from the fact that lnVp (Z)p is convex in p and that convex functions
are continuous (where finite).

Here is a proof for this case. Let ϕ (p) := lnVp (Z)p , 1 ≤ p0 < p1 such that
Vp0 (Z) <∞, and ps := (1− s) p0 + sp1, then

ϕ (ps) ≤ (1− s)ϕ (p0) + sϕ (p1) .

Letting s ↑ 1 then implies ps ↑ p1 and ϕ (p1−) ≤ ϕ (p1) , i.e. Vp1− ≤ Vp1 ≤
Vp1−. Therefore Vp1− = Vp1 and along with Eq. (2.4) proves the continuity of
p→ Vp (Z) .

2.1 Computing Vp (x)

How do we actually compute Vp (x) := Vp (x; 0, T ) for a given path x ∈
C ([0, T ] ,R), even a very simple one? Suppose x is piecewise linear, with cor-
ners at the points 0 = s0, s1, . . . , sm = T. Intuitively it would seem that the
p-variation should be given by choosing the corners to be the partition points.
That is, if S = {s0, . . . , sn} is the partition of corner points, we might think
that Vp (x) = Vp(x;S). Well, first we would have to leave out any corner which
is not a local extremum (because of Lemma 2.8 below). But even then, this is
not generally true as is seen in Example 2.9 below.

Lemma 2.7. For all a, b ≥ 0 and p ≥ 1,

(a+ b)p ≥ ap + bp (2.5)

and the inequality is strict if a, b > 0 and p > 1.

Proof. Observe that (a+ b)p ≥ ap + bp happens iff

1 ≥
(

a

a+ b

)p
+
(

b

a+ b

)p
which obviously holds since(

a

a+ b

)p
+
(

b

a+ b

)p
≤ a

a+ b
+

b

a+ b
= 1.

Moreover the latter inequality is strict if if a, b > 0 and p > 1.
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2.1 Computing Vp (x) 11

Lemma 2.8. Let x be a path, and D = {t0, . . . , tn} be a partition. Suppose
x is monotone increasing (decreasing) on [ti−1, ti+1]. Then if D′ = D\{ti},
Vp (x : D′) ≥ Vp (x : D). If x is strictly increasing and p > 1, the inequality is
strict.

Proof. From Eq. (2.5) it follows

Vp (x : D′)p − Vp (x : D)p = (x(ti+1)− x(ti−1))p − (x(ti+1)− x(ti))p − (x(ti)− x(ti−1))p

=
(
∆tix+∆ti+1x

)p − (∆tix)p −
(
∆ti+1x

)p ≥ 0

and the inequality is strict if ∆tix > 0, ∆ti+1x > 0 and p > 1.
In other words, on any monotone increasing segment, we should not include

any intermediate points, because they can only hurt us.

Example 2.9. Consider a path like the following: If we partition [0, T ] at the

corner points, then

Vp (x : S)p = (
1
2

+ ε)p + (2ε)p + (
1
2

+ ε)p ≈ 2(
1
2

)p < 1

by taking ε small. On the other hand, taking the trivial partition D = {0, T},
Vp (x : D) = 1, so Vp (x : S) < 1 ≤ Vp(x) and in this case using all of local
minimum and maximum does not maximize the p – variation.

The clean proof of the following theorem is due to Thomas Laetsch.

Theorem 2.10. If x : [0, T ] → R having only finitely many local extremum in
(0, T ) located at {s1 < · · · < sn−1} . Then

Vp (x) = sup {Vp (x : D) : {0, T} ⊂ D ⊂ S} ,

where S = {0 = s0 < s1 < · · · < sn = T}.

Proof. Let D = {0 = t0 < t1 < · · · < tr = T} ∈ P (0, T ) be an arbitrary
partition of [0, T ] . We are going to prove by induction that there is a partition
Π ⊂ S such that Vp (x : D) ≤ Vp (x : Π) . The proof will be by induction on
n := # (D \ S) . If n = 0 there is nothing to prove. So let us now suppose that
the theorem holds at some level n ≥ 0 and suppose that # (D \ S) = n+ 1. Let
1 ≤ k < r be chosen so that tk ∈ D\S. If x (tk) is between x (tk−1) and x (tk+1)
(i.e. (x (tk−1) , x (tk) , x (tk+1)) is a monotonic triple), then according Lemma
2.8 we will have Vp (x : D) ≤ Vp (x : D \ {tk}) and since # [(D \ {tk}) \ S] = n,
the induction hypothesis implies there exists a partition, Π ⊂ S such that

Vp (x : D) ≤ Vp (x : D \ {tk}) ≤ Vp (x : Π) .

Hence we may now assume that either x (tk) < min (x (tk−1) , x (tk+1)) or
x (tk) > max (x (tk−1) , x (tk+1)) . In the first case we let t∗k ∈ (tk−1, tk+1) be a
point where x|[tk−1,tk+1] has a minimum and in the second let t∗k ∈ (tk−1, tk+1)
be a point where x|[tk−1,tk+1] has a maximum. In either case ifD∗ := (D \ {tk})∪
{t∗k} we will have Vp (x : D) ≤ Vp (x : D∗) and # (D∗ \ S) = n. So again the
induction hypothesis implies there exists a partition Π ⊂ S such that

Vp (x : D) ≤ Vp (x : D∗) ≤ Vp (x : Π) .

From these considerations it follows that

Vp (x : D) ≤ sup {Vp (x : Π) : Π ∈ P (0, T ) s.t. Π ⊂ S}

and therefore

Vp (x) = sup {Vp (x : D) : D ∈ P (0, T )}
≤ sup {Vp (x : Π) : Π ∈ P (0, T ) s.t. Π ⊂ S} ≤ Vp (x) .

Let us now suppose that x is (say) monotone increasing (not strictly) on
[s0, s1], monotone decreasing on [s1, s2], and so on. Thus s0, s2, . . . are local
minima, and s1, s3, . . . are local maxima. (If you want the reverse, just replace
x with −x, which of course has the same p-variation.)

Definition 2.11. Say that s ∈ [0, T ] is a forward maximum for x if x(s) ≥
x(t) for all t ≥ s. Similarly, s is a forward minimum if x(s) ≤ x(t) for all
t ≥ s.

Definition 2.12. Suppose x is piecewise monotone, as above, with extrema
{s0, s1, . . . }. Suppose further that s2, s4, . . . are not only local minima but also
forward minima, and that s1, s3, . . . are both local and forward maxima. Then
we will say that x is jog-free.

Note that s0 = 0 does not have to be a forward extremum. This is in order
to admit a path with x(0) = 0 which can change signs.
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Here is an example.

Remark 2.13. Here is another way to state the jog-free condition. Let x be
piecewise monotone with extrema s0, s1, . . . . Let ξi = |x(si+1)− x(si)| . Then
x is jog-free iff ξ1 ≥ ξ2 ≥ . . . . The idea is that the oscillations are shrinking.
(Notice that we don’t need ξ0 ≥ ξ1; this is because s0 = 0 is not required to be
a forward extremum.)

Remark 2.14. It is also okay if s1, s2, . . . are backwards extrema; this corre-
sponds to the oscillations getting larger. Just reverse time, replacing x(t) by
x(T − t), which again doesn’t change the p-variation. Note that if ξi are as
above, this corresponds to having ξ0 ≤ ξ1 ≤ ξ2 ≤ . . . (note that ξ0 is included
now, but ξm−1 would not be). This case seems less useful, however.

Lemma 2.15. Let x be jog-free with extrema s0, . . . , sm. Let D = {t0, . . . , tn}
be any partition not containing all the sj. Then there is some sj /∈ D such that
if D′ = D ∪ {sj}, Vp (x : D′) ≥ Vp (x : D).

Proof. Let sj be the first extremum not contained in D (note s0 = 0 ∈ D
already, so j is at least 1 and sj is also a forward extremum). Let ti be the last
element of D less than sj . Note that sj−1 ≤ ti < sj < ti+1.

Now x is monotone on [sj−1, sj ]; say WLOG it’s monotone increasing, so
that sj is a local maximum and also a forward maximum. Since ti ∈ [sj−1, sj ],
where x is monotone increasing, x(sj) ≥ x(ti). And since sj is a forward maxi-
mum, x(sj) ≥ x(ti+1).

Therefore we have

x(sj)− x(ti) ≥ x(ti+1)− x(ti)
x(sj)− x(ti+1) ≥ x(ti)− x(ti+1).

One of the quantities on the right is equal to |x(ti+1)− x(ti)|, and so it follows
that

|x(sj)− x(ti)|p + |x(sj)− x(ti+1)|p ≥ |x(ti+1)− x(ti)|p

since one of the terms on the left is already ≥ the term on the right. This shows
that Vp (x : D′)p ≥ Vp (x : D)p.

In other words, we should definitely include the extreme points, because
they can only help.

Putting these together yields the desired result.

Proposition 2.16. If x is jog-free with extrema S = {s0, . . . , sm}, then Vp(x) =
Vp (x : S) = (

∑
ξpi )1/p.

Proof. Fix ε > 0, and let D be a partition such that Vp (x : D) ≥ Vp(x)− ε.
By repeatedly applying Lemma 2.15, we can add the points of S to D one
by one (in some order), and only increase the p-variation. So Vp (x : D ∪ S) ≥
Vp (x : D). Now, if t ∈ D\S, it is inside some interval [sj , sj+1] on which x is
monotone, and so by Lemma 2.8 t can be removed from D ∪ S to increase the
p-variation. Removing all such points one by one (in any order), we find that
Vp (x : S) ≥ Vp (x : D ∪ S). Thus we have Vp (x : S) ≥ Vp (x : D) ≥ Vp(x) − ε;
since ε was arbitrary we are done.

Notice that we only considered the case of jog-free paths with only finitely
many extrema. Of course, in order to get infinite p-variation for any p we would
need infinitely many extrema. Let’s just check that the analogous result holds
there.

Proposition 2.17. Suppose we have a sequence s0, s1, . . . increasing to T ,
where x is alternately monotone increasing and decreasing on the intervals
[sj , sj+1]. Suppose also that the sj are forward extrema for x. Letting ξj =
|x(sj+1)− x(sj)| as before, we have

Vp(x) =

 ∞∑
j=0

ξpj

1/p

.
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2.2 Brownian Motion in the Rough 13

Actually, the extreme points sj can converge to some earlier time than T ,
but x will have to be constant after that time.

Proof. For any m, we have
∑m
j=0 ξ

p
j = Vp (x : D)p for D = {s0, . . . , sm+1},

so Vp(x)p ≥
∑m
j=0 ξ

p
j . Passing to the limit, Vp(x)p ≥

∑∞
j=0 ξ

p
j .

For the reverse inequality, let D = {0 = t0, t1, . . . , tn = T} be a partition
with Vp (x : D) ≥ Vp(x) − ε. Choose m so large that sm > tn−1. Let S =
{s0, . . . , sm, T}, then by the same argument as in Proposition 2.16 we find that
Vp (x : S) ≥ Vp (x : D). (Previously, the only way we used the assumption that S
contained all extrema sjwas in order to have every ti ∈ D\S contained in some
monotone interval [sj , sj+1]. That is still the case here; we just take enough sj ’s
to ensure that we can surround each ti. We do not need to surround tn = T ,
since it is already in S.)

But Vp (x : S)p =
∑m−1
j=0 ξpj ≤

∑∞
j=0 ξ

p
j , and so we have that ∞∑

j=0

ξpj

1/p

≥ Vp (x : D) ≥ Vp(x)− ε.

ε was arbitrary and we are done.

2.2 Brownian Motion in the Rough

Corollary 2.18. For all p > 2 and T <∞, Vp
(
B|[0,T ]

)
<∞ a.s. (We will see

later that Vp
(
B|[0,T ]

)
=∞ a.s. for all p < 2.)

Proof. By Corollary 1.8, there exists Kp <∞ a.s. such that

|Bt −Bs| ≤ Kp |t− s|1/p for all 0 ≤ s, t ≤ T. (2.6)

Thus we have∑
i

|∆iB|p ≤
∑
i

(
Kp |ti − ti−1|1/p

)p
≤
∑
i

Kp
p |ti − ti−1| = Kp

pT

and therefore, Vp
(
B|[0,T ]

)
≤ Kp

pT <∞ a.s.

Proposition 2.19 (Quadratic Variation). Let {Πm}∞m=1 be a sequence of
partition of [0, T ] such that limm→∞ |Πm| = 0 and define Qm := V 2

2 (B : Πm) .
Then

lim
m→∞

E
[
(Qm − T )2

]
= 0 (2.7)

and if
∑∞
m=1 mesh (Πm) < ∞ then limm→∞Qm = T a.s. This result is often

abbreviated by the writing, dB2
t = dt.

Proof. Let N be an N(0, 1) random variable, ∆t := t−t−, ∆tB := Bt−Bt−
and observe that ∆tB ∼

√
∆tN. Thus we have,

EQm =
∑
t∈Πm

E (∆tB)2 =
∑
t∈Πm

∆t = T.

Let us define

Cov (A,B) := E [AB]− EA · EB and

Var (A) := Cov (A,A) = EA2 − (EA)2 = E
[
(A− EA)2

]
.

and observe that

Var

(
n∑
i=1

Ai

)
=

n∑
i=1

Var (Ai) +
∑
i6=j

Cov (Ai, Aj) .

As Cov (∆tB,∆sB) = 0 if s 6= t, we may use the above computation to con-
clude,

Var(Qm) =
∑
t∈Π

Var((∆tB)2) =
∑
t∈Π

Var(∆t ·N2)

= Var(N2)
∑
t∈Π

(∆t)2 ≤ Var(N2) |Πm|
∑
t∈Π

∆t

= T ·Var(N2) |Πm| → 0 as m→∞.

(By explicit Gaussian integral computations,

Var(N2) = EN4 −
(
EN2

)2
= 3− 1 = 2 <∞.)

Thus we have shown

lim
m→∞

E
[
(Qm − T )2

]
= lim
m→∞

E
[
(Qm − EQ)2

]
= lim
m→∞

Var(Qm) = 0.

If
∑∞
m=1 |Πm| <∞, then

E

[ ∞∑
m=1

(Qm − T )2
]

=
∞∑
m=1

E (Qm − T )2 =
∞∑
m=1

Var(Qm)

≤ Var(N2) · T ·
∞∑
m=1

mesh(Πm) <∞

from which it follows that
∑∞
m=1 (Qm − T )2 <∞ a.s. In particular (Qm−T )→

0 almost surely.
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Proposition 2.20. If p > q ≥ 1 and Vq (Z) < ∞, then lim|Π|→0 Vp (Z : Π) =
0.

Proof. Let Π ∈ P (0, T ) , then

V pp (Z : Π) =
∑
t∈Π

dp (Z (t) , Z (t−)) =
∑
t∈Π

dp−q (Z (t) , Z (t−)) dq (Z (t) , Z (t−))

≤ max
t∈Π

dp−q (Z (t) , Z (t−)) ·
∑
t∈Π

dq (Z (t) , Z (t−))

≤ max
t∈Π

dp−q (Z (t) , Z (t−)) · V qq (Z : Π)

≤ max
t∈Π

dp−q (Z (t) , Z (t−)) · V qq (Z) .

Thus, by the uniform continuity of Z|[0,T ] we have

lim sup
|Π|→0

Vp (Z : Π) ≤ lim sup
|Π|→0

max
t∈Π

dp−q (Z (t) , Z (t−)) · V qq (Z) = 0.

Corollary 2.21. If p < 2, then Vp
(
B|[0,T ]

)
=∞ a.s.

Proof. Choose partitions, {Πm} , of [0, T ] such that limm→∞Qm = T a.s.
where Qm := V 2

2 (B : Πm) and let Ω0 := {limm→∞Qm = T} so that P (Ω0) =
1. If Vp

(
B|[0,T ] (ω)

)
<∞ for then by Proposition 2.20,

lim
m→∞

Qm (ω) = lim
m→∞

V 2
2 (B (ω) : Πm) = 0

and hence ω /∈ Ω0, i.e.
{
Vp
(
B|[0,T ] (·)

)
<∞

}
⊂ Ωc0. Therefore Ω0 ⊂{

Vp
(
B|[0,T ] (·)

)
=∞

}
and hence

P
({
Vp
(
B|[0,T ] (·)

)
=∞

})
≥ P (Ω) = 1.

Fact 2.22 If {Bt}t≥0 is a Brownian motion, then

P (Vp (B) <∞) =
{

1 if p > 2
0 if p ≤ 2 .

See for example [17, Exercise 1.14 on p. 36].

Corollary 2.23 (Roughness of Brownian Paths). A Brownian motion,
{Bt}t≥0 , is not almost surely α – Hölder continuous for any α > 1/2.

Proof. According to Proposition 2.19 we may choose partition, Πm, such
that mesh (Πm) → 0 and Qm → T a.s. If B were α – Hölder continuous for
some α > 1/2, then

Qm =
∑
t∈Πm

(∆tB)2 ≤ C
∑
t∈Πm

(∆t)2α ≤ C max
(

[∆t]2α−1
) ∑
t∈Πm

∆t

≤ C [|Πm|]2α−1
T → 0 as m→∞

which contradicts the fact that Qm → T as m→∞.

2.3 The Bounded Variation Obstruction

Proposition 2.24. Suppose that Z (t) is a real continuous function such that
Z0 = 0 for simplicity. Define∫ T

0

f (τ) dZ (τ) := −
∫ T

0

ḟ (τ)Z (t) dτ + f (t)Z (t) |T0

whenever f is a C1 – function. If there exists, C <∞ such that∣∣∣∣∣
∫ T

0

f (τ) dZ (τ)

∣∣∣∣∣ ≤ C · max
0≤τ≤T

|f (τ)| , (2.8)

then V1 (Z) < ∞ (See Definition 2.2 above) and the best possible choice for C
in Eq. (2.8) is V1 (Z) .

Proof. Given a partition, Π := {0 = t0 < t1 < · · · < tn = T} be a partition
of [0, T ] , {αk}nk=1 ⊂ R, and f (t) := α11{0} +

∑n
k=1 αk1(tk−1,tk]. Choose fm (t)

in C1 ([0, T ] ,R) “well approximating” f (t) as in Figure 2.3. It then is fairly

easy to show,
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2.4 Controls 15∫ T

0

ḟm (τ)Z (t) dτ →
n−1∑
k=1

(αk+1 − αk)Z (tk)

and therefore,

lim
m→∞

∫ T

0

fm (t) dZ (t) = −
n−1∑
k=1

(αk+1 − αk)Z (tk) + αnZ (tn)− α1Z (t0)

=
n∑
k=1

αk (Z (tk)− Z (tk−1)) .

Therefore we have,∣∣∣∣∣
n∑
k=1

αk (Z (tk)− Z (tk−1))

∣∣∣∣∣ = lim
m→∞

∣∣∣∣∣
∫ T

0

fm (τ) dZ (τ)

∣∣∣∣∣
≤ C · lim sup

m→∞
max

0≤τ≤T
|fm (τ)| = C max

k
|αk| .

Taking αk = sgn(Z (tk) − Z (tk−1)) for each k, then shows∑n
k=1 |Z (tk)− Z (tk−1)| ≤ C. Since this holds for any partition Π, it

follows that V1 (Z) ≤ C.
If V1 (Z) <∞, then∫ T

0

ḟ (τ)Z (t) dτ = −
∫ T

0

f (t) dλZ (t) + f (t)Z (t) |T0

where λZ is the Lebesgue Stieltjes measure associated to Z. From this identity
and integration by parts for such finite variation functions, it follows that∫ T

0

f (t) dZ (t) =
∫ T

0

f (t) dλZ (t)

and ∣∣∣∣∣
∫ T

0

f (t) dZ (t)

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

f (t) dλZ (t)

∣∣∣∣∣ ≤
∫ T

0

|f (t)| d ‖λZ‖ (t)

≤ max
0≤τ≤T

|f (τ)| · ‖λZ‖ ([0, T ]) = V1 (Z) · max
0≤τ≤T

|f (τ)|

Therefore C can be taken to be V1 (Z) in Eq. (2.8) and hence V1 (Z) is the best
possible constant to use in this equation.

Combining Fact 2.22 with Proposition 2.24 explains why we are going to
have trouble defining

∫ t
0
fsdBs when B is a Brownian motion. However, one

might hope to use Young’s integral in this setting.

Theorem 2.25 (L. C. Young 1936). Suppose that p, q > 0 with 1
p + 1

q =: θ >
1. Then there exists a constant, C (θ) <∞ such that∣∣∣∣∣

∫ T

0

f (t) dZ (t)

∣∣∣∣∣ ≤ C (θ) (‖f‖∞ + Vq (f)) · Vp (Z)

for all f ∈ C1. Thus if Vp (Z) < ∞ the integral extends to those f ∈ C ([0, T ])
such that Vq (f) <∞.

Unfortunately, Young’s integral is still not sufficiently general to allow us to
solve the typical SDE that we would like to consider. For example, consider the
“simple” SDE,

ẏ (t) = B (t) Ḃ (t) with y (0) = 0.

The solution to this equation should be,

y (T ) =
∫ T

0

B (t) dB (t)

which still does not make sense as a Young’s integral when B is a Brownian
motion because for any p > 2, 1

p + 1
p =: θ < 1. For more on this point view see

the very interesting work of Terry Lyons on “rough path analysis,” [13].

2.4 Controls

Notation 2.26 (Controls) Let

∆ = {(s, t) : 0 ≤ s ≤ t ≤ T}.

A control, is a continuous function ω : ∆→ [0,∞) such that

1. ω(t, t) = 0 for all t ∈ [0, T ],
2. ω is super-additive, i.e., for all s ≤ t ≤ v we have

ω(s, t) + ω(t, v) ≤ ω(s, v). (2.9)

Remark 2.27. If ω is a control then and ω (s, t) is increasing in t and decreasing
in s for (s, t) ∈ ∆. For example if s ≤ σ ≤ t, then ω (s, σ) + ω (σ, t) ≤ ω (s, t)
and therefore, ω (σ, t) ≤ ω (s, t) . Similarly if s ≤ t ≤ τ, then ω (s, t) +ω (t, τ) ≤
ω (s, τ) and therefore ω (s, t) ≤ ω (s, τ) .

Lemma 2.28. If ω is a control and ϕ ∈ C ([0,∞)→ [0,∞)) such that ϕ (0) = 0
and ϕ is convex and increasing1, then ϕ ◦ ω is also a control.
1 The assumption that ϕ is increasing is redundant here since we are assuming ϕ′′ ≥ 0

and we may deduce that ϕ′ (0) ≥ 0, it follows that ϕ′ (x) ≥ 0 for all x. This assertion
also follows from Eq. (2.11).
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16 2 p – Variations and Controls

Proof. We must show ϕ ◦ ω is still superadditive. and this boils down to
showing if 0 ≤ a, b, c with a+ b ≤ c, then

ϕ (a) + ϕ (b) ≤ ϕ (c) .

As ϕ is increasing, it suffices to show,

ϕ (a) + ϕ (b) ≤ ϕ (a+ b) . (2.10)

Making use of the convexity of ϕ, we have,

ϕ (b) = ϕ

(
a

a+ b
· 0 +

b

a+ b
(a+ b)

)
≤ a

a+ b
ϕ (0) +

b

a+ b
ϕ (a+ b) =

b

a+ b
ϕ (a+ b)

and interchanging the roles of a and b gives,

ϕ (a) ≤ a

a+ b
ϕ (a+ b) . (2.11)

.

Adding these last two inequalities then proves Eq. (2.10).

Example 2.29. Suppose that u (t) is any increasing continuous function of t,
then ω (s, t) := u (t)− u (s) is a control which is in fact additive, i.e.

ω(s, t) + ω(t, v) = ω(s, v) for all s ≤ t ≤ v.

So for example ω (s, t) = t−s is an additive control and for any p > 1, ω (s, t) =
(t− s)p or more generally, ω (s, t) = (u (t)− u (s))p is a control.

Lemma 2.30. Suppose that ω is a control, p ∈ [1,∞), and Z ∈ C ([0, T ] , E) is
a function satisfying,

d (Zs, Zt) ≤ ω (s, t)1/p for all (s, t) ∈ ∆,

then V pp (Z) ≤ ω (0, T ) <∞. More generally,

ωp,Z (s, t) := V pp
(
Z|[s,t]

)
≤ ω (s, t) for all (s, t) ∈ ∆.

Proof. Let (s, t) ∈ ∆ and Π ∈ P ([s, t]) , then using the superadditivity of
ω we find

V pp
(
Z|[s,t] : Π

)
=
∑
t∈Π

dp
(
Zt, Zt−

)
≤
∑
t∈Π

ω
(
Zt, Zt−

)
≤ ω (s, t) .

Therefore,

ωp,Z (s, t) := V pp
(
Z|[s,t]

)
= sup
Π∈P([s,t])

V pp
(
Z|[s,t] : Π

)
≤ ω (s, t) .

Notation 2.31 Given o ∈ E and p ∈ [1,∞), let

Cp([0, T ] , E) := {Z ∈ C ([0, T ] , E) : Vp (Z) <∞} and

C0,p([0, T ] , E) := {Z ∈ Cp([0, T ] , E) : Z (0) = o} .

Theorem 2.32. Let ρ : ∆→ [0,∞) be a function and define,

ω (s, t) := ωρ (s, t) := sup
Π∈P(s,t)

V1 (ρ : Π) , (2.12)

where for any Π ∈ P (s, t) ,

V1 (ρ : Π) =
∑
t∈Π

ρ (t−, t) . (2.13)

We now assume:

1. ρ is continuous,
2. ρ (t, t) = 0 for all t ∈ [0, T ] (This condition is redundant since next condition

would fail if it were violated.), and
3. V1 (ρ) := ω (0, T ) := supΠ∈P(0,T ) V1 (ρ : Π) <∞.

Under these assumptions, ω : ∆→ [0,∞) is a control.

We will give the proof of Theorem 2.32 after a Lemma 2.37 below.

Corollary 2.33 (The variation control). Let p ∈ [1,∞) and suppose that
Z ∈ Cp([0, T ] , E). Then ωZ,p : ∆ → [0,∞) defined in Eq. (2.3) is a control
satisfying, d (Z (s) , Z (t)) ≤ ωZ,p (s, t)1/p for all (s, t) ∈ ∆.

Proof. Apply Theorem 2.32 with ρ (s, t) := dp (Z (s) , Z (t)) and observe
that with this definition, ωZ,p = ωρ.

Lemma 2.34. Let ρ : ∆→ [0,∞) satisfy the hypothesis in Theorem 2.32, then
ω = ωρ (defined in Eq. (2.12)) is superadditive.

Proof. If 0 ≤ u ≤ s ≤ v ≤ T and Π1 ∈ P (u, s) , Π2 ∈ P (s, v) , then
Π1 ∪Π2 ∈ P (u, v) . Thus we have,

V1 (ρ : Π1) + V1 (ρ : Π2) = V1 (ρ : Π1 ∪Π2) ≤ ω (u, v) .

Taking the supremum over all Π1 and Π2 then implies,

ω (u, s) + ω (s, v) ≤ ω (u, v) for all u ≤ s ≤ v,

i.e. ω is superadditive.
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2.4 Controls 17

Lemma 2.35. Let Z ∈ Cp([0, T ] , E) for some p ∈ [1,∞) and let ω := ωZ,p :
∆→ [0,∞) defined in Eq. (2.3). Then ω is superadditive. Furthermore if p = 1,
ω is additive, i.e. Equality holds in Eq. (2.9).

Proof. The superadditivity of ωZ,p follows from Lemma 2.34 and since
ωZ,p (s, t) = ωρ (s, t) where ρ (s, t) := dp (Z (s) , Z (t)) . In the case p = 1, it is
easily seen using the triangle inequality that if Π1, Π2 ∈ P (s, t) and Π1 ⊂ Π2,
then V1 (X : Π1) ≤ V1 (X,Π2) . Thus in computing the supremum of V1 (X : Π)
over all partition in P (s, t) it never hurts to add more points to a partition.
Using this remark it is easy to show,

ω (u, s) + ω (s, v) = sup
Π1∈P(u,s),Π2∈P(s,v)

[V1 (X : Π1) + V1 (X : Π2)]

= sup
Π1∈P(u,s),Π2∈P(s,v)

V1 (X : Π1 ∪Π2)

= sup
Π∈P(u,v)

V1 (X : Π) = ω (u, v)

as desired.

Lemma 2.36. Let ρ : ∆→ [0,∞) and ω = ωρ be as in Theorem 2.32. Further
suppose (a, b) ∈ ∆, Π ∈ P (a, b) , and let

ε := ω(a, b)− V1(ρ : Π) ≥ 0.

Then for any Π ′ ∈ P (a, b) with Π ′ ⊂ Π, we have∑
t∈Π′

[ω (t−, t)− V1 (ρ : Π ∩ [t , t])] ≤ ε. (2.14)

In particular, if (α, β) ∈ ∆ ∩Π2 then

ω(α, β) ≤ V1 (ρ : Π ∩ [α, β]) + ε. (2.15)

Proof. Equation (2.14) is a simple consequence of the superadditivity of ω
(Lemma 2.34) and the identity,∑

t∈Π′
V1 (ρ : Π ∩ [t−, t]) = V1(ρ : Π)

where t− := t− (Π ′) . Indeed, using these properties we find,∑
t∈Π′

[ω (t−, t)− V1 (ρ : Π ∩ [t , t])] =
∑
t∈Π′

ω (t−, t)− V1(ρ : Π)

≤ ω (a, b)− V1(ρ : Π) = ε.

Lemma 2.37. Suppose that ρ : ∆→ [0,∞) is a continuous function such that
ρ (t, t) = 0 for all t ∈ [0, T ] and ε > 0 is given. Then there exists δ > 0 such
that, for every Π ⊂⊂ [0, T ] and u ∈ [0, T ] such that dist (u,Π) < δ we have,

|V1 (ρ : Π)− V1 (ρ : Π ∪ {u})| < ε.

Proof. By the uniform continuity of ρ, there exists δ > 0 such that
|ρ (s, t)− ρ (u, v)| < ε/2 provided |(s, t)− (u, v)| < δ. Suppose that Π =
{t0 < t1 < · · · < tn} ⊂ [0, T ] and u ∈ [0, T ] such that dist (u,Π) < δ. There
are now three case to consider, u ∈ (t0, tn) , u < t0 and u > t1. In the first
case, suppose that ti−1 < u < ti and that (for the sake of definiteness) that
|ti − u| < δ, then

|V1 (ρ : Π)− V1 (ρ : Π ∪ {u})| = |ρ (ti−1, ti)− ρ (ti−1, u)− ρ (u, ti)|
≤ |ρ (ti−1, ti)− ρ (ti−1, u)|+ |ρ (u, ti)− ρ (ti, ti)| < ε.

The second and third case are similar. For example if u < t0, we will have,

|V1 (ρ : Π ∪ {u})− V1 (ρ : Π)| = ρ (u, t0) = ρ (u, t0)− ρ (t0, t0) < ε/2.

With these lemmas as preparation we are now ready to complete the proof
of Theorem 2.32.

Proof. Proof of Theorem 2.32. Let ω (s, t) := ωρ (s, t) be as in Theorem
2.32. It is clear by the definition of ω, the ω (t, t) = 0 for all t and we have
already seen in Lemma 2.34 that ω is superadditive. So to finish the proof we
must show ω is continuous.

Using Remark 2.27, we know that ω (s, t) is increasing in t and decreas-
ing in s and therefore ω (u+, v−) = lims↓u,t↑v ω (s, t) and ω (u−, v+) =
lims ↑u,,t↓v ω (s, t) exists and satisfies,

ω (u+, v−) ≤ ω (u, v) ≤ ω (u−, v+) . (2.16)

The main crux of the continuity proof is to show that the inequalities in Eq.
(2.16) are all equalities.

1. Suppose that ε > 0 is given and δ > 0 is chosen as in Lemma 2.37 and
suppose that u < s < t < v with |s− u| < δ and |v − t| < δ. Further let
Π ∈ P (u, v) be a partition of [u, v] , then according to Lemma 2.37,

V1 (ρ : Π) ≤ V1 (ρ : Π ∪ {s, t}) + 2ε
= ρ (u, s) + ρ (t, v) + V1 (ρ : Π ∩ [s, t] ∪ {s, t}) + 2ε
≤ ρ (u, s) + ρ (t, v) + ω (s, t) + 2ε.

Letting s ↓ u and t ↑ v in this inequality shows,
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18 2 p – Variations and Controls

V1 (ρ : Π) ≤ ω (u+, v−) + 2ε

and then taking the supremum over Π ∈ P (u, v) and then letting ε ↓ 0 shows
ω (u, v) ≤ ω (u+, v−) . Combined this with the first inequality in Eq. (2.16)
shows, ω (u+, v−) = ω (u, v) .

2. We will now show ω (u, v) = ω (u−, v+) by showing ω (u−, v+) ≤ ω (u, v) .
Let ε > 0 and δ > 0 be as in Lemma 2.37 and suppose that s < u and t > v
with |u− s| < δ and |t− v| < δ. Let us now choose a partition Π ∈ P (s, t) such
that

ω (s, t) ≤ V1 (ρ : Π) + ε.

Then applying Lemma 2.37 gives,

ω (s, t) ≤ V1 (ρ : Π1) + 3ε

where Π1 = Π ∪ {u, v} . As above, let u− and v+ be the elements in Π1 just
before u and just after v respectively. An application of Lemma 2.36 then shows,

ω (u−, v+) ≤ ω (u−, v+) ≤ V1 (ρ : Π1 ∩ [u−, v+]) + 3ε
= V1 (ρ : Π1 ∩ [u, v]) + ρ (u−, u) + ρ (v, v+) + 3ε
≤ ω (u, v) + 5ε.

As ε > 0 was arbitrary we may conclude ω (u−, v+) ≤ ω (u, v) which completes
the proof that ω (u−, v+) = ω (u, v) .

I now claim all the other limiting directions follow easily from what we have
proved. For example,

ω (u, v) ≤ ω (u, v+) ≤ ω (u−, v+) = ω (u, v) =⇒ ω (u, v+) = ω (u, v) ,
ω (u, v) = ω (u+, v−) ≤ ω (u, v−) ≤ ω (u, v) =⇒ ω (u, v−) = ω (u, v) ,

and similarly, ω (u±, v) = ω (u, v) . We also have,

ω (u, v) = ω (u+, v−) ≤ lim inf
s ↓u, t ↓v

ω (s, t) ≤ lim sup
s ↓u, t ↓v

ω (s, t) ≤ ω (u−, v+) = ω (u, v)

which shows ω (u+, v+) = ω (u, v) and

ω (u, v) = ω (u+, v−) ≤ lim inf
s ↑u, t ↑v

ω (s, t) ≤ lim inf
s ↑u, t ↑v

ω (s, t) ≤ ω (u−, v+) = ω (u, v)

so that ω (u−, v−) = ω (u, v) .

Proposition 2.38 (See [6, Proposition 5.15 from p. 83.]). Let (E, d) be
a metric space, and let x : [0, T ] → E be a continuous path. Then x is of
finite p-variation if and only if there exists a continuous increasing (i.e. non
– decreasing) function h : [0, T ] →

[
0, V pp (Z)

]
and a 1/p – Hölder path g :[

0, V pp (Z)
]
→ E such that such that x = g ◦ h. More explicitly we have,

d (g (v) , g (u)) ≤ |v − u|1/p for all u, v ∈
[
0, V pp (Z)

]
. (2.17)

Proof. Let ω (s, t) := ωp,x (s, t) = V pp
(
x|[s,t]

)
be the control associated to x

and define h (t) := ω (0, t) . Observe that h is increasing and for 0 ≤ s ≤ t ≤ T
that h (s) + ω (s, t) ≤ h (t) , i.e.

ω (s, t) ≤ h (t)− h (s) for all 0 ≤ s ≤ t ≤ T.

Let g : [0, h (T )] → E be defined by g (h (t)) := x (t) . This is well defined
since if s ≤ t and h (s) = h (t) , then ω (s, t) = 0 and hence x|[s,t] is constant
and in particular x (s) = x (t) . Moreover it now follows for s < t such that
u := h (s) < h (t) =: v, that

dp (g (v) , g (u)) = dp (g (h (t)) , g (h (s))) = dp (x (t) , x (s))
≤ ω (s, t) ≤ h (t)− h (s) = v − u

from which Eq. (2.17) easily follows.

2.5 Banach Space Structures

This section needs more work and may be moved later.
To put a metric on Hölder spaces seems to require some extra structure on

the metric space, E. What is of interest here is the case E = G is a group
with a left (right) invariant metric, d. In this case suppose that we consider p -
variation paths, x and y starting at e ∈ G in which case we define,

dp−var (x, y) := sup
Π∈P(0,T )

(∑
t∈Π

dp (∆tx,∆ty)

)1/p

where ∆tx := x−1
t− xt for all t ∈ Π. The claim is that this should now be a

complete metric space.

Lemma 2.39. (C0,p(∆,T (n) (V )), dp) is a metric space.

Proof. For each fixed partition D and each 1 ≤ i ≤ bpc, we have

viD(X) =

(
r∑
`=1

∣∣∣Xi
t`−1t`

∣∣∣p/i)i/p

is a semi-norm on C0,p(∆,T (n) (V )) and in particular satisfies the triangle in-
equality. Moreover,

viD(X + Y ) ≤ sup
D′

[viD(X) + viD′(Y )] ≤ sup
D′

viD′(X) + sup
D′

viD′(Y )
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and therefore
sup
D
viD(X + Y ) ≤ sup

D
viD(X) + sup

D
viD(Y )

which shows sup
D
viD(X) still satisfies the triangle inequality. (i.e., the supremum

of a family of semi-norms is a semi-norm). Thus we have

dp(X) := max
1≤i≤bpc

sup
D
viD(X)

is also a semi-norm on C0,p(∆,T (n) (V )). Thus dp(X,Y ) = dp(X − Y ) satisfies
the triangle inequality. Moreover we have dp(X,Y ) = 0 implies that∣∣Xi

st − Y ist
∣∣p/i = 0 ∀ 1 ≤ i ≤ bpc

and (s, t) ∈ ∆, i.e., Xi = Y i for all 1 ≤ i ≤ bpc and we have verified dp(X,Y )
is a metric.





3

The Bounded Variation Theory

3.1 Integration Theory

Let T ∈ (0,∞) be fixed,

S := {(a, b] : 0 ≤ a ≤ b ≤ T} ∪ {[0, b] ∩ R : 0 ≤ b ≤ T} . (3.1)

Further let A be the algebra generated by S. Since S is an elementary set,
A may be described as the collection of sets which are finite disjoint unions of
subsets from S. Given any function, Z : [0, T ]→ V with V being a vector define
µZ : S → V via,

µZ ((a, b]) := Zb − Za and µZ ([0, b]) = Zb − Z0 ∀ 0 ≤ a ≤ b ≤ T.

With this definition we are asserting that µZ ({0}) = 0. Another common choice
is to take µZ ({0}) = Z0 which would be implemented by taking µZ ([0, b]) = Zb
instead of Zb − Z0.

Lemma 3.1. µZ is finitely additive on S and hence extends to a finitely additive
measure on A.

Proof. See Chapter ?? and in particular make the minor necessary modifi-
cations to Examples ??, ??, and Proposition ??.

Let W be another vector space and f : [0, T ] → End (V,W ) be an A –
simple function, i.e. f ([0, T ]) is a finite set and f−1 (λ) ∈ A for all λ ∈
End (V,W ) . For such functions we define,∫

[0,T ]

f (t) dZ (t) :=
∫

[0,T ]

fdµZ =
∑

λ∈End(V,W )×

λµZ (f = λ) ∈W. (3.2)

The basic linearity properties of this integral are explained in Proposition ??.
For later purposes, it will be useful to have the following substitution formula
at our disposal.

Theorem 3.2 (Substitution formula). Suppose that f and Z are as above
and Yt =

∫
[0,t]

fdµZ ∈W. Further suppose that g : R+ → End (W,U) is another
A – simple function with finite support. Then∫

[0,T ]

gdµY =
∫

[0,T ]

gfdµZ .

Proof. By definition of these finitely additive integrals,

µY ((a, b]) = Yb − Ya =
∫

[0,b]

fdµZ −
∫

[0,a]

fdµZ

=
∫

[0,T ]

(
1[0,b] − 1[0,a]

)
fdµZ =

∫
[0,T ]

1(a,b]fdµZ .

Therefore, it follows by the finite additivity of µY and linearity
∫
[0,T ]

(·) dµZ ,
that

µY (A) =
∫
A

fdµZ =
∫

[0,T ]

1AfdµZ for all A ∈ A.

Therefore,∫
[0,T ]

gdµY =
∑

λ∈End(W,U)×

λµY (g = λ) =
∑

λ∈End(W,U)×

λ

∫
[0,T ]

1{g=λ}fdµZ

=
∫

[0,T ]

∑
λ∈End(W,U)×

1{g=λ}λfdµZ =
∫

[0,T ]

gfdµZ

as desired.
Let us observe that∥∥∥∥∥

∫
[0,T ]

f (t) dZt

∥∥∥∥∥ ≤ ∑
λ∈End(V,W )

‖λ‖ ‖µZ (f = λ)‖ .

Let us now define,

‖µZ‖ ((a, b]) := V1

(
Z|[a,b]

)
= sup


n∑
j=1

∥∥Ztj − Ztj−1

∥∥ : a = t0 < t1 < · · · < tn = b and n ∈ N


be the variation measure associated to µZ .

Lemma 3.3. If ‖µZ‖ ((0, T ]) < ∞, then ‖µZ‖ is a finitely additive measure
on S and hence extends to a finitely additive measure on A. Moreover for all
A ∈ A we have,

‖µZ (A)‖ ≤ ‖µZ‖ (A) . (3.3)
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Proof. The additivity on S was already verified in Lemma 2.34. Here is the
proof again for sake of convenience.

Suppose that Π = {a = t0 < t1 < · · · < tn = b} , s ∈ (tl−1, tl) for some l,
and Π ′ := Π ∪ {s} . Then

‖µZ‖Π ((a, b]) :=
n∑
j=1

∥∥Ztj − Ztj−1

∥∥
=

n∑
j=1:j 6=l

∥∥Ztj − Ztj−1

∥∥+
∥∥Ztl − Zs + Zs − Ztl−1

∥∥
≤

n∑
j=1:j 6=l

∥∥Ztj − Ztj−1

∥∥+ ‖Ztl − Zs‖+
∥∥Zs − Ztl−1

∥∥
= ‖µZ‖Π

′
((a, b]) ≤ ‖µZ‖ ((a, s]) + ‖µZ‖ ((s, b]) .

Hence it follows that

‖µZ‖ ((a, b]) = sup
Π
‖µZ‖Π ((a, b]) ≤ ‖µZ‖ ((a, s]) + ‖µZ‖ ((s, b]) .

Conversely if Π1 is a partition of (a, s] and Π2 is a partition of (s, b], then
Π := Π1 ∪Π2 is a partition of (a, b]. Therefore,

‖µZ‖Π1 ((a, s]) + ‖µZ‖Π2 ((s, b]) = ‖µZ‖Π ((a, b]) ≤ ‖µZ‖ ((a, b])

and therefore,

‖µZ‖ ((a, s]) + ‖µZ‖ ((s, b]) ≤ ‖µZ‖ ((a, b]) .

Lastly if A ∈ A, then A is the disjoint union of intervals, Ji from S and we
have,

‖µZ (A)‖ =

∥∥∥∥∥∑
i

µZ (Ji)

∥∥∥∥∥ ≤∑
i

‖µZ (Ji)‖ ≤
∑
i

‖µZ‖ (Ji) = ‖µZ‖ (A) .

Corollary 3.4. If Z has finite variation on [0, T ] , then we have∥∥∥∥∥
∫

[0,T ]

f (t) dZt

∥∥∥∥∥ ≤
∫

[0,T ]

‖f (λ)‖ ‖µZ‖ (dλ) ≤ ‖f‖∞ · ‖µZ‖ ([0, T ]) .

Proof. Simply observe that ‖µZ (A)‖ ≤ ‖µZ‖ (A) for all A ∈ AT and hence
from Eq. (3.2) and the bound in Eq. (3.3) we have

∥∥∥∥∥
∫

[0,T ]

f (t) dZt

∥∥∥∥∥ ≤ ∑
λ∈End(V,W )

‖λ‖ ‖µZ (f = λ)‖

≤
∑

λ∈End(V,W )

‖λ‖ ‖µZ‖ (f = λ) =
∫

[0,T ]

‖f (λ)‖ ‖µZ‖ (dλ)

≤ ‖f‖∞ · ‖µZ‖ ([0, T ]) .

Notation 3.5 In the future we will often write ‖dZ‖ for d ‖µZ‖ .

Theorem 3.6. If V and W are Banach spaces and V1 (Z) = ‖µZ‖ ([0, T ]) <∞,
we may extend the integral,

∫
[0,T ]

f (t) dZt, by continuity to all functions which
are in the uniform closure of the A – simple functions. In fact we may extend
the integral to L1 (‖µZ‖) – closure of the A – simple functions. In particular,
if f : [0, T ]→ Hom (V,W ) is a continuous function,∫

[0,T ]

f (t) dZ (t) = lim
|Π|→0

∑
t∈Π

f (t−) (Z (t)− Z (t−)) . (3.4)

Proof. These results are elementary soft analysis except possibly for the
last assertion for the statement in Eq. (3.4). To prove this, to any partition,
Π ∈ P (0, T ) , let

fΠ :=
∑
τ∈Π

f (t−) 1(t−,t] + f (0) 1{0}

in which case, ∑
t∈Π

f (t−) (Z (t)− Z (t−)) =
∫

[0,T ]

fΠ (t) dZ (t) .

This completes the proof since fΠ → f uniformly on [0, T ] as |Π| → 0 by the
uninform continuity of f.

Theorem 3.7 (Substitution formula II). Let Z : [0, T ] → V be a finite
variation process, f : [0, T ] → End (V,W ) and g : [0, T ] → End (W,U) be
continuous maps and define,

Yt =
∫

[0,t]

fdZ ∈W.

Then Y is a continuous finite variation process and the following substitution
formula holds, ∫

[0,T ]

gdY =
∫

[0,T ]

gfdZ. (3.5)

In short, dY = fdZ.
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3.2 The Fundamental Theorem of Calculus 23

Proof. First off observe that

‖Yt − Ys‖ ≤
∫ t

s

‖f‖ ‖dZ‖ =: ω (s, t)

where the right side is a continuous control. This follows from the fact that
‖dZ‖ is a continuous measure. Therefore

V1 (Y ) ≤
∫ T

0

‖f‖ ‖dZ‖ <∞.

If g = λ1(a,b] with λ ∈ End (W,U) , then∫
[0,T ]

gdY = λ (Yb − Ya) = λ

∫ b

a

fdZ =
∫ b

a

λfdZ =
∫ T

0

gfdZ.

Thus Eq. (3.5) holds for all A – simple functions and hence also for all uniform
limits of simple functions. In particular this includes all continuous g : [0, T ]→
End (W,U) .

Remark 3.8. If we keep the same hypothesis as in Theorem 3.7 but now take
Yt :=

∫ T
t
fdZ instead. In this case we have,∫

[0,T ]

gdY = −
∫

[0,T ]

gfdZ.

To prove this just observe that Yt = WT −Wt where Wt :=
∫ t
0
fdZ. It is now

easy to see that
dYt = d (−Wt) = −dWt = −fdZ

and the claim follows.

3.2 The Fundamental Theorem of Calculus

As above, let V and W be Banach spaces and 0 ≤ a < b ≤ T.

Proposition 3.9. Suppose that f : [a, b] → V is a continuous function such
that ḟ(t) exists and is equal to zero for t ∈ (a, b). Then f is constant.

Proof. First Proof. For ` ∈ V ∗, we have f` := ` ◦ f : [a, b] → R with
ḟ` (t) = 0 for all t ∈ (a, b) . Therefore by the mean value theory, it follows that
f` (t) is constant, i.e. ` (f (t)− f (a)) = 0 for all t ∈ [a, b] . Since ` ∈ V ∗ is
arbitrary, it follows from the Hahn – Banach theorem that f (t)−f (a) = 0, i.e.
f (t) = f (a) independent of t.

Second Proof (with out Hahn – Banach). Let ε > 0 and α ∈ (a, b)
be given. (We will later let ε ↓ 0.) By the definition of the derivative, for all
τ ∈ (a, b) there exists δτ > 0 such that

‖f(t)− f(τ)‖ =
∥∥∥f(t)− f(τ)− ḟ(τ)(t− τ)

∥∥∥ ≤ ε |t− τ | if |t− τ | < δτ . (3.6)

Let
A = {t ∈ [α, b] : ‖f(t)− f(α)‖ ≤ ε(t− α)} (3.7)

and t0 be the least upper bound for A. We will now use a standard argument
which is sometimes referred to as continuous induction to show t0 = b. Eq.
(3.6) with τ = α shows t0 > α and a simple continuity argument shows t0 ∈ A,
i.e.

‖f(t0)− f(α)‖ ≤ ε(t0 − α). (3.8)

For the sake of contradiction, suppose that t0 < b. By Eqs. (3.6) and (3.8),

‖f(t)− f(α)‖ ≤ ‖f(t)− f(t0)‖+ ‖f(t0)− f(α)‖
≤ ε(t0 − α) + ε(t− t0) = ε(t− α)

for 0 ≤ t − t0 < δt0 which violates the definition of t0 being an upper bound.
Thus we have shown b ∈ A and hence

‖f(b)− f(α)‖ ≤ ε(b− α).

Since ε > 0 was arbitrary we may let ε ↓ 0 in the last equation to conclude
f(b) = f (α) . Since α ∈ (a, b) was arbitrary it follows that f(b) = f (α) for all
α ∈ (a, b] and then by continuity for all α ∈ [a, b], i.e. f is constant.

Theorem 3.10 (Fundamental Theorem of Calculus). Suppose that f ∈
C([a, b], V ), Then

1. d
dt

∫ t
a
f(τ) dτ = f(t) for all t ∈ (a, b).

2. Now assume that F ∈ C([a, b], V ), F is continuously differentiable on (a, b)
(i.e. Ḟ (t) exists and is continuous for t ∈ (a, b)) and Ḟ extends to a con-
tinuous function on [a, b] which is still denoted by Ḟ . Then∫ b

a

Ḟ (t) dt = F (b)− F (a). (3.9)

Proof. Let h > 0 be a small number and consider∥∥∥∥∥
∫ t+h

a

f(τ)dτ −
∫ t

a

f(τ)dτ − f(t)h

∥∥∥∥∥ =

∥∥∥∥∥
∫ t+h

t

(f(τ)− f(t)) dτ

∥∥∥∥∥
≤
∫ t+h

t

‖(f(τ)− f(t))‖ dτ ≤ hε(h),
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24 3 The Bounded Variation Theory

where ε(h) := maxτ∈[t,t+h] ‖(f(τ)− f(t))‖. Combining this with a similar com-
putation when h < 0 shows, for all h ∈ R sufficiently small, that∥∥∥∥∥

∫ t+h

a

f(τ)dτ −
∫ t

a

f(τ)dτ − f(t)h

∥∥∥∥∥ ≤ |h|ε(h),

where now ε(h) := maxτ∈[t−|h|,t+|h|] ‖(f(τ) − f(t))‖. By continuity of f at t,
ε(h)→ 0 and hence d

dt

∫ t
a
f(τ) dτ exists and is equal to f(t).

For the second item, set G(t) :=
∫ t
a
Ḟ (τ) dτ − F (t). Then G is continuous

and Ġ(t) = 0 for all t ∈ (a, b) by item 1. An application of Proposition 3.9 shows
G is a constant and in particular G(b) = G(a), i.e.

∫ b
a
Ḟ (τ) dτ −F (b) = −F (a).

Alternative proof of Eq. (3.9). It is easy to show

`

(∫ b

a

Ḟ (t) dt

)
=
∫ b

a

` ◦ Ḟ (t) dt =
∫ b

a

d

dt
(` ◦ F ) (t) dt for all ` ∈ V ∗.

Moreover by the real variable fundamental theorem of calculus we have,∫ b

a

d

dt
(` ◦ F ) (t) dt = ` ◦ F (b)− ` ◦ F (a) for all ` ∈ V ∗.

Combining the last two equations implies,

`

(∫ b

a

Ḟ (t) dt− F (b) + F (a)

)
= 0 for all ` ∈ V ∗.

Equation (3.9) now follows from these identities after an application of the Hahn
– Banach theorem.

Corollary 3.11 (Mean Value Inequality). Suppose that f : [a, b] → V is
a continuous function such that ḟ(t) exists for t ∈ (a, b) and ḟ extends to a
continuous function on [a, b]. Then

‖f(b)− f(a)‖ ≤
∫ b

a

‖ḟ(t)‖dt ≤ (b− a) ·
∥∥∥ḟ∥∥∥

∞
. (3.10)

Proof. By the fundamental theorem of calculus, f(b) − f(a) =
∫ b
a
ḟ(t)dt

and then (by the triangle inequality for integrals)

‖f(b)− f(a)‖ =

∥∥∥∥∥
∫ b

a

ḟ(t)dt

∥∥∥∥∥ ≤
∫ b

a

‖ḟ(t)‖dt

≤
∫ b

a

∥∥∥ḟ∥∥∥
∞
dt = (b− a) ·

∥∥∥ḟ∥∥∥
∞
.

Corollary 3.12 (Change of Variable Formula). Suppose that
f ∈ C([a, b], V ) and T : [c, d] → (a, b) is a continuous function such that
T (s) is continuously differentiable for s ∈ (c, d) and T ′ (s) extends to a
continuous function on [c, d]. Then∫ d

c

f (T (s))T ′ (s) ds =
∫ T (d)

T (c)

f (t) dt.

Proof. For t ∈ (a, b) define F (t) :=
∫ t
T (c)

f (τ) dτ. Then F ∈ C1 ((a, b) , V )
and by the fundamental theorem of calculus and the chain rule,

d

ds
F (T (s)) = F ′ (T (s))T ′ (s) = f (T (s))T ′ (s) .

Integrating this equation on s ∈ [c, d] and using the chain rule again gives∫ d

c

f (T (s))T ′ (s) ds = F (T (d))− F (T (c)) =
∫ T (d)

T (c)

f (t) dt.

Exercise 3.1 (Fundamental Theorem of Calculus II). Prove the funda-
mental theorem of calculus in this context. That is; if f : V → W be a C1

– function and {Zt}t≥0 is a V – valued function of locally bounded variation,
then for all 0 ≤ a < b ≤ T,

f (Zb)− f (Za) =
∫ b

a

f ′ (Zτ ) dZτ :=
∫

[a,b]

f ′ (Zτ ) dZτ ,

where f ′ (z) ∈ End (V,W ) is defined by, f ′ (z) v := d
dt |0f (z + tv) . In particular

it follows that f (Z (t)) has finite variation and

df (Z (t)) = f ′ (Z (t)) dZ (t) .

Solution to Exercise (3.1). Let Π ∈ P (0, T ) . Then by a telescoping series
argument,

f (Zb)− f (Za) =
∑
t∈Π

∆tf (Z·)

where

∆tf (Z·) = f (Zt)− f
(
Zt−

)
= f

(
Zt− +∆tZ

)
− f

(
Zt−

)
=
∫ 1

0

f ′
(
Zt− + s∆tZ

)
∆tZ ds = f ′

(
Zt−

)
∆tZ + εΠt ∆tZ
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3.3 Calculus Bounds 25

and

εΠt :=
∫ 1

0

[
f ′
(
Zt− + s∆tZ

)
− f ′

(
Zt−

)]
ds.

Thus we have,

f (Zb)− f (Za) =
∑
t∈Π

f ′
(
Zt−

)
∆tZ + δΠ =

∫
[a,b]

f ′
(
Zt−

)
dZ (t) + δΠ (3.11)

where δΠ :=
∑
t∈Π ε

Π
t ∆tZ. Since,

‖δΠ‖ ≤
∑
t∈Π

∥∥εΠt ∆tZ
∥∥ ≤∑

t∈Π

∥∥εΠt ∥∥ ‖∆tZ‖ ≤ max
t∈Π

∥∥εΠt ∥∥ ·∑
t∈Π
‖∆tZ‖

≤ max
t∈Π

∥∥εΠt ∥∥ · V1 (Z) ,

and ∥∥εΠt ∥∥ :=
∫ 1

0

∥∥[f ′ (Zt− + s∆tZ
)
− f ′

(
Zt−

)]∥∥ ds.
Since g (s, τ, t) := ‖[f ′ (Zτ + s (Zt − Zτ ))− f ′ (Zτ )]‖ is a continuous function
in s ∈ [0, 1] and τ, t ∈ [0, T ] with g (s, t, t) = 0 for all s and t, it follows by
uniform continuity arguments that g (s, τ, t) is small whenever |t− τ | is small.
Therefore, lim|Π|→0

∥∥εΠt ∥∥ = 0. Moreover, again by a uniform continuity argu-
ment, f ′

(
Zt−

)
→ f ′ (Zt) uniformly as |Π| → 0. Thus we may pass to the limit

as |Π| → 0 in Eq. (3.11) to complete the proof.

3.3 Calculus Bounds

For the exercises to follow we suppose that µ is a positive σ – finite measure
on
(
[0,∞),B[0,∞)

)
such that µ is continuous, i.e. µ ({s}) = 0 for all s ∈ [0,∞).

We will further write,∫ t

0

f (s) dµ (s) :=
∫

[0,t]

f (s) dµ (s) =
∫

(0,t)

f (s) dµ (s) ,

wherein the second equality holds since µ is continuous. Although it is not
necessary, you may use Exercise 3.1 with Zt := µ ([0, t]) to solve the following
problems.

Exercise 3.2. Show for all 0 ≤ a < b <∞ and n ∈ N that

hn (b) :=
∫
a≤s1≤s2≤···≤sn≤b

dµ (s1) . . . dµ (sn) =
µ ([a, b])n

n!
. (3.12)

Solution to Exercise (3.2). First solution. Let us observe that h (t) :=
h1 (t) = µ ([a, t]) and hn (t) satisfies the recursive relation,

hn+1 (t) :=
∫ t

a

hn (s) dµ (s) =
∫ t

a

hn (s) dh (s) for all t ≥ a.

Now let Hn (t) := 1
n!h

n (t) , by an application of Exercise 3.1 with f (x) =
xn+1/ (n+ 1)! implies,

Hn+1 (t) = Hn+1 (t)−Hn+1 (a) =
∫ t

a

f ′ (h (τ)) dh (τ) =
∫ t

a

Hn (τ) dh (τ)

and therefore it follows that Hn (t) = hn (t) for all t ≥ a and n ∈ N.
Second solution. If i 6= j, it follows by Fubini’s theorem that

µ⊗n ({(s1, . . . , sn) ∈ [a, b]n : si = sj})

= µ ([a, b])n−2 ·
∫

[a,b]2
1si=sjdµ (si) dµ (sj)

= µ ([a, b])n−2 ·
∫

[a,b]

µ ({sj}) dµ (sj) = 0.

From this observation it follows that

1[a,b]n (s1, . . . , sn) =
∑
σ∈Sn

1a≤sσ1≤sσ2≤···≤sσn≤b – µ⊗n – a.e.,

where σ ranges over the permutations, Sn, of {1, 2, . . . , n} . Integrating this
equation relative with respect to µ⊗n and then using Fubini’s theorem gives,

µ ([a, b])n = µ⊗n ([a, b]n) =
∑
σ∈Sn

∫
1a≤sσ1≤sσ2≤···≤sσn≤bdµ

⊗n (s)

=
∑
σ∈Sn

∫
1a≤sσ1≤sσ2≤···≤sσn≤bdµ (s1) . . . dµ (sn)

=
∑
σ∈Sn

∫
a≤s1≤s2≤···≤sn≤b

dµ (s1) . . . dµ (sn)

= n!
∫
a≤s1≤s2≤···≤sn≤b

dµ (s1) . . . dµ (sn) .

Exercise 3.3 (Gronwall’s Lemma). If ε (t) and f (t) are continuous non-
negative functions such that

f (t) ≤ ε (t) +
∫ t

0

f (τ) dµ (τ) , (3.13)
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26 3 The Bounded Variation Theory

then

f (t) ≤ ε (t) +
∫ t

0

eµ([τ,t])ε (τ) dµ (τ) . (3.14)

If we further assume that ε is increasing, then

f (t) ≤ ε (t) eµ([0,t]). (3.15)

Solution to Exercise (3.3). Feeding Eq. (3.13) back into itself implies

f (t) ≤ ε (t) +
∫ t

0

[
ε (τ) +

∫ τ

0

f (s) dµ (s)
]
dµ (τ)

= ε (t) +
∫ t

0

ε (s1) dµ (s1) +
∫

0≤s2≤s1≤t
f (s2) dµ (s1) dµ (s2)

≤ ε (t) +
∫ t

0

ε (s1) dµ (s1) +
∫

0≤s2≤s1≤t

[
ε (s2) +

∫ s2

0

f (s3) dµ (s3)
]
dµ (s1) dµ (s2)

= ε (t) +
∫ t

0

ε (s1) dµ (s1) +
∫

0≤s2≤s1≤t
ε (s2) dµ (s1) dµ (s2)

+
∫

0≤s3≤s2≤s1≤t
f (s3) dµ (s1) dµ (s2) dµ (s3) .

Continuing in this manner inductively shows,

f (t) ≤ ε (t) +
N∑
k=1

∫
0≤sk≤···≤s2≤s1≤t

ε (sk) dµ (s1) . . . dµ (sk) +RN (t) (3.16)

where, using Exercise 3.2,

RN (t) :=
∫

0≤sk+1≤···≤s2≤s1≤t
f (sk+1) dµ (s1) . . . dµ (sk) dµ (sk+1)

≤ max
0≤s≤t

f (t) · µ ([0, t])N+1

(N + 1)!
→ 0 as N →∞.

So passing to the limit in Eq. (3.16) and again making use of Exercise 3.2 shows,

f (t) ≤ ε (t) +
∞∑
k=1

∫
0≤sk≤···≤s2≤s1≤t

ε (sk) dµ (s1) . . . dµ (sk) (3.17)

= ε (t) +
∞∑
k=1

∫ t

0

ε (sk)
µ ([sk, t])

k−1

(k − 1)!
dµ (sk)

= ε (t) +
∫ t

0

ε (τ) ·
∞∑
k=1

µ ([τ, t])k−1

(k − 1)!
dµ (τ)

= ε (t) +
∫ t

0

eµ([τ,t])ε (τ) dµ (τ) .

If we further assume that ε is increasing, then from Eq. (3.17) and Exercise 3.2
we have

f (t) ≤ ε (t) + ε (t)
∞∑
k=1

∫
0≤sk≤···≤s2≤s1≤t

dµ (s1) . . . dµ (sk)

= ε (t) + ε (t)
∞∑
k=1

µ ([0, t])k

k!
= ε (t) eµ([0,t]).

Alternatively if we let Zt := µ ([0, t]) , then∫ t

0

eµ([τ,t])dµ (τ) =
∫ t

0

eZt−Zτ dZτ =
∫ t

0

dτ
(
−eZt−Zτ

)
=
(
−eZt−Zτ

)t
0

= eZt − 1.

Therefore,
f (t) ≤ ε (t) + ε (t)

(
eZt − 1

)
= ε (t) eZt .

Exercise 3.4. Suppose that {εn (t)}∞n=0 is a sequence of non-negative continu-
ous functions such that

εn+1 (t) ≤
∫ t

0

εn (τ) dµ (τ) for all n ≥ 0 (3.18)

and δ (t) = max0≤τ≤t ε0 (τ) . Show

εn (t) ≤ δ (t)
µ ([0, t])n

n!
for all n ≥ 0.

Solution to Exercise (3.4). By iteration of Eq. (3.18) we find,

ε1 (t) ≤
∫ t

0

ε0 (τ) dµ (τ) ≤ δ (t)
∫

0≤s1≤t
dµ (s1) ,

ε2 (t) ≤
∫ t

0

ε1 (s2) dµ (s2) ≤ δ (t)
∫ t

0

[∫
0≤s1≤t

dµ (s1)
]
dµ (s2)

= δ (t)
∫

0≤s2≤s1≤t
dµ (s1) dµ (s2) ,

...

εn (t) ≤ δ (t)
∫

0≤sn≤···≤s1≤t
dµ (s1) . . . dµ (sn) .

The result now follows directly from Exercise 3.2.
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3.4 Bounded Variation Ordinary Differential Equations

In this section we begin by reviewing some of the basic theory of ordinary
differential equations – O.D.E.s for short. Throughout this chapter we will let
X and Y be Banach spaces, U ⊂o Y an open subset of Y, and y0 ∈ U, x : [0, T ]→
X is a continuous process of bounded variation, and F : [0, T ]×U → End (X,Y )
is a continuous function. (We will make further assumptions on F as we need
them.) Our goal here is to investigate the “ordinary differential equation,”

ẏ (t) = F (t, y (t)) ẋ (t) with y (0) = y0 ∈ U. (3.19)

Since x is only of bounded variation, to make sense of this equation we will
interpret it in its integrated form,

y (t) = y0 +
∫ t

0

F (τ, y (τ)) dx (τ) . (3.20)

Proposition 3.13 (Continuous dependence on the data). Suppose that
G : [0, T ] × U → End (X,Y ) is another continuous function, z : [0, T ] → X
is another continuous function with bounded variation, and w : [0, T ] → U
satisfies the differential equation,

w (t) = w0 +
∫ t

0

G (τ, w (τ)) dz (τ) (3.21)

for some w0 ∈ U. Further assume there exists a continuous function, K (t) ≥ 0
such that F satisfies the Lipschitz condition,

‖F (t, y)− F (t, w)‖ ≤ K (t) ‖y − w‖ for all 0 ≤ t ≤ T and y, w ∈ U. (3.22)

Then

‖y (t)− w (t)‖ ≤ ε (t) exp
(∫ t

0

K (τ) ‖dx (τ)‖
)
. (3.23)

where

ε (t) := ‖y0 − w0‖+
∫ t

0

‖F (τ, w (τ))−G (τ, w (τ))‖ ‖dx (τ)‖

+
∫ t

0

‖G (τ, w (τ))‖ ‖d (x− z) (τ)‖ (3.24)

Proof. Let δ (t) := y (t)− w (t) , so that y = w + δ. We then have,

δ (t) = y0 − w0 +
∫ t

0

F (τ, y (τ)) dx (τ)−
∫ t

0

G (τ, w (τ)) dz (τ)

= y0 − w0 +
∫ t

0

F (τ, w (τ) + δ (τ)) dx (τ)−
∫ t

0

G (τ, w (τ)) dz (τ)

= y0 − w0 +
∫ t

0

[F (τ, w (τ))−G (τ, w (τ))] dx (τ) +
∫ t

0

G (τ, w (τ)) d (x− z) (τ)

+
∫ t

0

[F (τ, w (τ) + δ (τ))− F (τ, w (τ))] dx (τ) .

Crashing through this identity with norms shows,

‖δ (t)‖ ≤ ε (t) +
∫ t

0

K (τ) ‖δ (τ)‖ ‖dx (τ)‖

where ε (t) is given in Eq. (3.24). The estimate in Eq. (3.23) is now a consequence
of this inequality and Exercise 3.3 with dµ (τ) := K (τ) ‖dx (τ)‖ .

Corollary 3.14 (Uniquness of solutions). If F satisfies the Lipschitz hy-
pothesis in Eq. (3.22), then there is at most one solution to the ODE in Eq.
(3.20).

Proof. Simply apply Proposition 3.13 with F = G, y0 = w0, and x = z. In
this case ε ≡ 0 and the result follows.

Proposition 3.15 (An apriori growth bound). Suppose that U = Y, T =
∞, and there are continuous functions, a (t) ≥ 0 and b (t) ≥ 0 such that

‖F (t, y)‖ ≤ a (t) + b (t) ‖y‖ for all t ≥ 0 and y ∈ Y.

Then

‖y (t)‖ ≤
(
‖y0‖+

∫ t

0

a (τ) dν (τ)
)

exp
(∫ t

0

b (τ) dν (τ)
)
, where (3.25)

ν (t) := ωx,1 (0, t) = ‖s‖1-Var (t) . (3.26)

Proof. From Eq. (3.20) we have,

‖y (t)‖ ≤ ‖y0‖+
∫ t

0

‖F (τ, y (τ))‖ dν (τ)

≤ ‖y0‖+
∫ t

0

(a (τ) + b (τ) ‖y (τ)‖) dν (τ)

= ε (t) +
∫ t

0

‖y (τ)‖ dµ (τ)
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where

ε (t) := ‖y0‖+
∫ t

0

a (τ) dν (τ) and dµ (τ) := b (τ) dν (τ) .

Hence we may apply Exercise 3.3 to learn ‖y (t)‖ ≤ ε (t) eµ([0,t]) which is the
same as Eq. (3.25).

Theorem 3.16 (Global Existence). Let us now suppose U = X and F sat-
isfies the Lipschitz hypothesis in Eq. (3.22). Then there is a unique solution,
y (t) to the ODE in Eq. (3.20).

Proof. We will use the standard method of Picard iterates. Namely let
y0 (t) ∈W be any continuous function and then define yn (t) inductively by,

yn+1 (t) := y0 +
∫ t

0

F (τ, yn (τ)) dx (τ) . (3.27)

Then from our assumptions and the definition of yn (t) , we find for n ≥ 1 that

‖yn+1 (t)− yn (t)‖ =
∥∥∥∥∫ t

0

F (τ, yn (τ)) dx (τ)−
∫ t

0

F (τ, yn−1 (τ)) dx (τ)
∥∥∥∥

≤
∫ t

0

‖F (τ, yn (τ))− F (τ, yn−1 (τ))‖ ‖dx (τ)‖

≤
∫ t

0

K (τ) ‖yn (τ)− yn−1 (τ)‖ ‖dx (τ)‖ .

Since,

‖y1 (t)− y0 (t)‖ =
∥∥∥∥y0 +

∫ t

0

F (τ, y0 (τ)) dx (τ)− y0 (t)
∥∥∥∥

≤ max
0≤τ≤t

‖y0 (τ)− y0‖+
∫ t

0

‖F (τ, y0)‖ ‖dx (τ)‖ =: δ (t) ,

it follows by an application of Exercise 3.4 with

εn (t) := ‖yn+1 (t)− yn (t)‖

that

‖yn+1 (t)− yn (t)‖ ≤ δ (t) ·
(∫ t

0

K (τ) ‖dx (τ)‖
)n

/n!. (3.28)

Since the right side of this equation is increasing in t, we may conclude by
summing Eq. (3.28) that

∞∑
n=0

sup
0≤t≤T

‖yn+1 (t)− yn (t)‖ ≤ δ (T ) e
∫ T
0 K(τ)‖dx(τ)‖ <∞.

Therefore, it follows that yn (t) is uniformly convergent on compact subsets of
[0,∞) and therefore y (t) := limn→∞ yn (t) exists and is a continuous function.
Moreover, we may now pass to the limit in Eq. (3.27) to learn this function y
satisfies Eq. (3.20). Indeed,∥∥∥∥∫ t

0

F (τ, yn (τ)) dx (τ)−
∫ t

0

F (τ, y (τ)) dx (τ)
∥∥∥∥

≤
∫ t

0

‖F (τ, yn (τ))− F (τ, y (τ))‖ ‖dx (τ)‖

≤
∫ t

0

K (τ) ‖yn (τ)− y (τ)‖ ‖dx (τ)‖

≤ sup
0≤τ≤t

‖yn (τ)− y (τ)‖ ·
∫ t

0

K (τ) ‖dx (τ)‖ → 0 as n→∞.

Remark 3.17 (Independence of initial guess). In the above proof, we were al-
lowed to choose y0 (t) as we pleased. In all cases we ended up with a solution to
the ODE which we already knew to be unique if it existed. Therefore all initial
guesses give rise to the same solution. This can also be see directly. Indeed, if
z0 (t) is another continuous path in W and zn (t) is defined inductively by,

zn+1 (t) := y0 +
∫ t

0

F (τ, zn (τ)) dx (τ) for n ≥ 0.

Then

zn+1 (t)− yn+1 (t) =
∫ t

0

[F (τ, zn (τ))− F (τ, yn (τ))] dx (τ)

and therefore,

‖zn+1 (t)− yn+1 (t)‖ ≤
∫ t

0

‖F (τ, zn (τ))− F (τ, yn (τ))‖ ‖dx (τ)‖

≤
∫ t

0

K (τ) ‖zn (τ)− yn (τ)‖ ‖dx (τ)‖ .

Thus it follows from Exercise 3.4 that

‖zn (t)− yn (t)‖ ≤ 1
n!

(∫ t

0

K (τ) ‖dx (τ)‖
)n
· max
0≤τ≤t

‖z0 (τ)− y0 (τ)‖ → 0 as n→∞.

3.5 Some Linear ODE Results

In this section we wish to consider linear ODE of the form,
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y (t) =
∫ t

0

dx (τ) y (τ) + f (t) (3.29)

where x (t) ∈ End (W ) and f (t) ∈ W are finite variation paths. To put this
in the form considered above, let V := End (W ) and define, for y ∈ W, F (y) :
V ×W →W by,

F (y) (x, f) := xy + f for all (x, f) ∈ V ×W = End (W )×W.

Then the above equation may be written as,

y (t) = f (0) +
∫ t

0

F (y (τ)) d (x, f) (τ) .

Notice that

‖[F (y)− F (y′)] (x, f)‖ = ‖x (y − y′)‖ ≤ ‖x‖ · ‖y − y′‖

and therefore,
‖F (y)− F (y′)‖ ≤ ‖y − y′‖

where we use any reasonable norm on V ×W, for example ‖(x,w)‖ := ‖x‖ +
‖w‖ or ‖(x,w)‖ := max (‖x‖ , ‖w‖) . Thus the theory we have developed above
guarantees that Eq. (3.29) has a unique solution which we can construct via
the method of Picard iterates.

Theorem 3.18. The unique solution to Eq. (3.29) is given by

y (t) = f (t) +
∞∑
n=1

∫
0≤τ1≤···≤τn≤t

dx (τn) dx (τn−1) dx (τn−2) . . . dx (τ1) f (τ1) .

More generally if 0 ≤ s ≤ t ≤ T, then the unique solution to

y (t) =
∫ t

s

dx (τ) y (τ) + f (t) for s ≤ t ≤ T (3.30)

is given by

y (t) = f (t) +
∞∑
n=1

∫
s≤τ1≤···≤τn≤t

dx (τn) dx (τn−1) dx (τn−2) . . . dx (τ1) f (τ1) .

(3.31)

Proof. Let us first find the formula for y (t) . To this end, let

(Ay) (t) :=
∫ t

s

dx (τ) y (τ) .

Then Eq. (3.29) may be written as y −Ay = f or equivalently as,

(I −A) y = f.

Thus the solution to this equation should be given by,

y = (I −A)−1
f =

∞∑
n=0

Anf. (3.32)

But

(Anf) (t) =
∫ t

s

dx (τn)
(
An−1f

)
(τn) =

∫ t

s

dx (τn)
∫ τn

s

dx (τn−1)
(
An−2f

)
(τn−1)

...

=
∫ t

s

dx (τn)
∫ τn

s

dx (τn−1)
∫ τn−1

s

dx (τn−2) . . .
∫ τ1

s

dx (τ1) f (τ1)

=
∫
s≤τ1≤···≤τn≤t

dx (τn) dx (τn−1) dx (τn−2) . . . dx (τ1) f (τ1) (3.33)

and therefore, Eq. (3.31) now follows from Eq. (3.32) and (3.33).
For those not happy with this argument one may use Picard iterates instead.

So we begin by setting y0 (t) = f (t) and then define yn (t) inductively by,

yn+1 (t) = f (s) +
∫ t

s

F (yn (τ)) d (x, f) (τ)

= f (s) +
∫ t

s

[dx (τ) yn (τ) + df (τ)]

=
∫ t

s

dx (τ) yn (τ) + f (t) .

Therefore,

y1 (t) =
∫ t

s

dx (τ) f (τ) + f (t)

y2 (t) =
∫ t

s

dx (τ2) y1 (τ2) + f (t)

=
∫ t

s

dx (τ2)
[∫ τ2

s

dx (τ1) f (τ1) + f (τ2)
]

+ f (t)

=
∫
s≤τ1≤τ2≤t

dx (τ2) dx (τ1) f (τ1) +
∫ t

s

dx (τ2) f (τ2) + f (t)
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and likewise,

y3 (t) =
∫
s≤τ1≤τ2≤τ3≤t

dx (τ3) dx (τ2) dx (τ1) f (τ1)

+
∫
s≤τ1≤τ2≤t

dx (τ2) dx (τ1) f (τ1) +
∫ t

s

dx (τ2) f (τ2) + f (t) .

So by induction it follows that

yn (t) =
n∑
k=1

∫
s≤τ1≤···≤τk≤t

dx (τk) . . . dx (τ1) f (τ1) + f (t) .

Letting n→∞ making use of the fact that∥∥∥∥∫
s≤τ1≤···≤τn≤t

dx (τn) . . . dx (τ1)
∥∥∥∥ ≤ ∫

s≤τ1≤···≤τn≤t
‖dx (τn)‖ . . . ‖dx (τ1)‖

=
1
n!

(∫ t

s

‖dx‖
)n

, (3.34)

we find as before, that

y (t) = lim
n→∞

yn (t) = f (t) +
∞∑
k=1

∫
s≤τ1≤···≤τk≤t

dx (τk) . . . dx (τ1) f (τ1) .

Definition 3.19. For 0 ≤ s ≤ t ≤ T, let T0 (t, s) := I,

T xn (t, s) =
∫
s≤τ1≤···≤τn≤t

dx (τn) dx (τn−1) dx (τn−2) . . . dx (τ1) , and (3.35)

T x (t, s) =
∞∑
n=0

Tn (t, s) = I+
∞∑
n=1

∫
s≤τ1≤···≤τn≤t

dx (τn) dx (τn−1) dx (τn−2) . . . dx (τ1) .

(3.36)

Example 3.20. Suppose that x (t) = tA where A ∈ End (V ) , then∫
s≤τ1≤···≤τn≤t

dx (τn) dx (τn−1) dx (τn−2) . . . dx (τ1)

=An
∫
s≤τ1≤···≤τn≤t

dτndτn−1dτn−2 . . . dτ1

=
(t− s)n

n!
An

and therefore we may conclude in this case that T x (t, s) = e(t−s)A where

etA :=
∞∑
n=0

tn

n!
An.

Theorem 3.21 (Duhamel’s principle I). As a function of t ∈ [s, T ] or
s ∈ [0, t] , T (t, s) is of bounded variation and T (t, s) := T x (t, s) satisfies the
ordinary differential equations,

T (dt, s) = dx (t)T (t, s) with T (s, s) = I (in t ≥ s), (3.37)
and

T (t, s) = −T (t, s) dx (s) with T (t, t) = I (in 0 ≤ s ≤ t). (3.38)

Moreover, T, obeys the semi-group property1,

T (t, s)T (s, u) = T (t, u) for all 0 ≤ u ≤ s ≤ t ≤ T,

and the solution to Eq. (3.30) is given by

y (t) = f (t)−
∫ t

s

T (t, dτ) f (τ) . (3.39)

In particular when f (t) = y0 is a constant we have,

y (t) = y0 − T (t, τ) y0|τ=tτ=s = T (t, s) y0. (3.40)

Proof. 1. One may directly conclude that T (t, s) solves Eq. (3.37) by ap-
plying Theorem 3.18 with y (t) and f (t) now taking values in End (V ) with
f (t) ≡ I. Then Theorem 3.18 asserts the solution to dy (t) = dx (t) y (t) with
y (0) = I is given by T x (t, s) with T x (t, s) as in Eq. (3.36). Alternatively it is
possible to use the definition of T x (t, s) in Eq. (3.36) to give a direct proof the
Eq. (3.37) holds. We will carry out this style of proof for Eq. (3.38) and leave
the similar proof of Eq. (3.37) to the reader if they so desire to do it.

2. Proof of the semi-group property. Simply observe that both t →
T (t, s)T (s, u) and t→ T (t, u) solve the same differential equation, namely,

dy (t) = dx (t) y (t) with y (s) = T (s, u) ∈ End (V ) ,

hence by our uniqueness results we know that T (t, s)T (s, u) = T (t, u) .
3. Proof of Eq. (3.38). Let Tn (t, s) := T xn (t, s) and observe that

1 This is a key algebraic idenitity that we must demand in the rough path theory to
come later.

Page: 30 job: rpaths macro: svmonob.cls date/time: 11-Mar-2009/12:03



3.5 Some Linear ODE Results 31

Tn (t, s) =
∫ t

s

Tn−1 (t, σ) dx (σ) for n ≥ 1. (3.41)

Thus if let

T (N) (t, s) :=
N∑
n=0

Tn (t, s) = I +
N∑
n=1

Tn (t, s) ,

it follows that

T (N) (t, s) = I +
N∑
n=1

∫ t

s

Tn−1 (t, σ) dx (σ)

= I +
∫ t

s

N−1∑
n=0

Tn (t, σ) dx (σ) = I +
∫ t

s

T (N−1) (t, σ) dx (σ) . (3.42)

We already now that T (N) (t, s)→ T (t, s) uniformly in (t, s) which also follows
from the estimate in Eq. (3.34) as well. Passing to the limit in Eq. (3.42) as
N →∞ then implies,

T (t, s) = I +
∫ t

s

T (t, σ) dx (σ)

which is the integrated form of Eq. (3.38) owing to the fundamental theorem
of calculus which asserts that

ds

∫ t

s

T (t, σ) dx (σ) = −T (t, s) dx (s) .

4. Proof of Eq. (3.39). From Eq. (3.31) and Eq. (3.41) which reads in
differential form as, Tn (t, dσ) = −Tn−1 (t, σ) dx (σ) , we have,

y (t) = f (t)−
∞∑
n=1

∫ t

s

Tn (t, dσ) f (σ)

= f (t)−
∞∑
n=1

∫ t

s

Tn−1 (t, σ) dx (σ) f (σ)

= f (t)−
∫ t

s

∞∑
n=1

Tn−1 (t, σ) dx (σ) f (σ)

= f (t)−
∫ t

s

T (t, dσ) f (σ) .

Corollary 3.22 (Duhamel’s principle II). Equation (3.39) may also be ex-
pressed as,

y (t) = T x (t, s) f (s) +
∫ t

s

T x (t, τ) df (τ) (3.43)

which is one of the standard forms of Duhamel’s principle. In words it says,

y (t) =
(

solution to the homogeneous eq.
dy (t) = dx (t) y (t) with y (s) = f (s)

)
+
∫ t

s

(
solution to the homogeneous eq.

dy (t) = dx (t) y (t) with y (τ) = df (τ)

)
.

Proof. This follows from Eq. (3.39) by integration by parts (you should
modify Exercise 3.5 below as necessary);

y (t) = f (t)− T x (t, τ) f (τ) |τ=tτ=s +
∫ t

s

T x (t, τ) df (τ)

= T x (t, s) f (s) +
∫ t

s

T x (t, τ) df (τ) . (3.44)

Exercise 3.5 (Product Rule). Suppose that V is a Banach space and x :
[0, T ] → End (V ) and y : [0, T ] → End (V ) are continuous finite 1 – variation
paths. Show for all 0 ≤ s < t ≤ T that,

x (t) y (t)− x (s) y (s) =
∫ t

s

dx (τ) y (τ) +
∫ t

s

x (τ) dy (τ) . (3.45)

Alternatively, one may interpret this an an integration by parts formula;∫ t

s

x (τ) dy (τ) = x (τ) y (τ) |τ=tτ=s −
∫ t

s

dx (τ) y (τ)

Solution to Exercise (3.5). For Π ∈ P (s, t) we have,

x (t) y (t)− x (s) y (s) =
∑
τ∈Π

∆τ (x (·) y (·))

=
∑
τ∈Π

[(x (τ−) +∆τx) (y (τ−) +∆τy)− x (τ−) y (τ−)]

=
∑
τ∈Π

[x (τ−)∆τy + (∆τx) y (τ−) + (∆τx)∆τy] . (3.46)

The last term is easy to estimate as,
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τ∈Π

(∆τx)∆τy

∥∥∥∥∥ ≤∑
τ∈Π
‖∆τx‖ ‖∆τy‖ ≤ max

τ∈Π
‖∆τx‖ ·

∑
τ∈Π
‖∆τy‖

≤ max
τ∈Π
‖∆τx‖ · V1 (y)→ 0 as |Π| → 0.

So passing to the limit as |Π| → 0 in Eq. (3.46) gives Eq. (3.45).

Exercise 3.6 (Inverses). Let V be a Banach space and x : [0, T ] → End (V )
be a continuous finite 1 – variation paths. Further suppose that S (t, s) ∈
End (V ) is the unique solution to,

S (dt, s) = −S (t, s) dx (t) with S (s, s) = I ∈ End (V ) .

Show

S (t, s)T x (t, s) = I = T x (t, s)S (t, s) for all 0 ≤ s ≤ t ≤ T,

that is to say T x (t, s) is invertible and T x (t, s)−1 may be described as the
unique solution to the ODE,

T x (dt, s)−1 = −T x (dt, s)−1
dx (t) with T x (s, s)−1 = I. (3.47)

Solution to Exercise (3.6). Using the product rule we find,

dt [S (t, s)T x (t, s)] = −S (t, s) dx (t)T x (t, s) + S (t, s) dx (t)T x (t, s) = 0.

Since S (s, s)T x (s, s) = I, it follows that S (t, s)T x (t, s) = I for all 0 ≤ s ≤
t ≤ T.

For opposite product, let g (t) := T x (t, s)S (t, s) ∈ End (V ) so that

dt [g (t)] = dt [T x (t, s)S (t, s)] = −T x (t, s)S (t, s) dx (t) + dx (t)T x (t, s)S (t, s)
= dx (t) g (t)− g (t) dx (t) with g (s) = I.

Observe that g (t) ≡ I solves this ODE and therefore by uniqueness of solu-
tions to such linear ODE we may conclude that g (t) must be equal to I, i.e.
T x (t, s)S (t, s) = I.

As usual we say that A,B ∈ End (V ) commute if

0 = [A,B] := AB −BA. (3.48)

Exercise 3.7 (Commute). Suppose that V is a Banach space and x : [0, T ]→
End (V ) is a continuous finite 1 – variation paths and f : [0, T ] → End (V )
is continuous. If A ∈ End (V ) commutes with {x (t) , f (t) : 0 ≤ t ≤ T} , then
A commutes with

∫ t
s
f (τ) dx (τ) for all 0 ≤ s ≤ t ≤ T. Also show that

[A, T x (s, t)] = 0 for all 0 ≤ s ≤ t ≤ T.

Exercise 3.8 (Abelian Case). Suppose that [x (s) , x (t)] = 0 for all 0 ≤ s, t ≤
T, show

T x (t, s) = e(x(t)−x(s)). (3.49)

Solution to Exercise (3.8). By replacing x (t) by x (t) − x (s) if necessary,
we may assume that x (s) = 0. Then by the product rule and the assumed
commutativity,

d
xn (t)
n!

= dx (t)
x (t)n−1

(n− 1)!

or in integral form,
xn (t)
n!

=
∫ t

s

dx (τ)
x (τ)n−1

(n− 1)!

which shows that 1
n!x

n (t) satisfies the same recursion relations as T xn (t, s) .
Thus we may conclude that T xn (t, s) = (x (t)− x (s))n /n! and thus,

T (t, s) =
∞∑
n=0

1
n!

(x (t)− x (s))n = e(x(t)−x(s))

as desired.

Exercise 3.9 (Abelian Factorization Property). Suppose that V is a Ba-
nach space and x : [0, T ] → End (V ) and y : [0, T ] → End (V ) are continuous
finite 1 – variation paths such that [x (s) , y (t)] = 0 for all 0 ≤ s, t ≤ T, then

T x+y (s, t) = T x (s, t)T y (s, t) for all 0 ≤ s ≤ t ≤ T. (3.50)

Hint: show both sides satisfy the same ordinary differential equations – see the
next problem.

Exercise 3.10 (General Factorization Property). Suppose that V is a Ba-
nach space and x : [0, T ] → End (V ) and y : [0, T ] → End (V ) are continuous
finite 1 – variation paths. Show

T x+y (s, t) = T x (s, t)T z (s, t) ,

where

z (t) :=
∫ t

s

T x (s, τ)−1
dy (τ)T x (s, τ)

Hint: see the hint for Exercise 3.9.

Solution to Exercise (3.10). Let g (t) := T x (s, t)−1
T x+y (s, t) . Then mak-

ing use of Exercise 3.6 we have,
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dg (t) = T x (s, t)−1 (dx (t) + dy (t))T x+y (s, t)− T x (s, t)−1
dx (t)T x+y (s, t)

= T x (s, t)−1
dy (t)T x+y (s, t)

=
(
T x (s, t)−1

dy (t)T x (s, t)
)
T x (s, t)−1

T x+y (s, t)

= dz (t) g (t) with g (s) = I.

Remark 3.23. If g (t) ∈ End (V ) is a C1 – path such that g (t)−1 is invertible
for all t, then t→ g (t)−1 is invertible and

d

dt
g (t)−1 = −g (t)−1

ġ (t) g (t)−1
.

Exercise 3.11. Suppose that g (t) ∈ Aut (V ) is a continuous finite variation
path. Show g (t)−1 ∈ Aut (V ) is again a continuous path with finite variation
and that

dg (t)−1 = −g (t)−1
dg (t) g (t)−1

. (3.51)

Hint: recall that the invertible elements, Aut (V ) ⊂ End (V ) , is an open set
and that Aut (V ) 3 g → g−1 ∈ Aut (V ) is a smooth map.

Solution to Exercise (3.11). Let V (t) := g (t)−1 which is again a finite
variation path by the fundamental theorem of calculus and the fact that
Aut (V ) 3 g → g−1 ∈ Aut (V ) is a smooth map. Moreover we know that
V (t) g (t) = I for all t and therefore by the product rule (dV ) g+V dg = dI = 0.
Making use of the substitution formula we then find,

V (t) = V (0)+
∫ t

0

dV (τ) =
∫ t

0

dV (τ) g (τ) g (τ)−1 = −
∫ t

0

V (τ) dg (τ) g (τ)−1
.

Replacing V (t) by g (t)−1 in this equation then shows,

g (t)−1 − g (0)−1 = −
∫ t

0

g (τ) dg (τ) g (τ)−1

which is the integrated form of Eq. (3.51).

Exercise 3.12. Suppose now that B is a Banach algebra and x (t) ∈ B is a
continuous finite variation path. Let

X (s, t) := Xx (s, t) := 1 +
∞∑
n=1

Xx
n (s, t) ,

where
Xx
n (s, t) :=

∫
s≤τ1≤···≤τn≤t

dx (τ1) . . . dx (τn)

Show t→ X (s, t) is the unique solution to the ODE,

X (s, dt) = X (s, t) dx (t) with X (s, s) = 1

and that

X (s, t)X (t, u) = X (s, u) for all 0 ≤ s ≤ t ≤ u ≤ T.

Solution to Exercise (3.12). This can be deduced from what we have al-
ready done. In order to do this, let y (t) := Rx(t) ∈ End (B) so that for a ∈ B,

T y (t, s) a = a+
∞∑
n=1

∫
s≤τ1≤···≤τn≤t

dy (τn) . . . dy (τ1) a

= a+
∞∑
n=1

∫
s≤τ1≤···≤τn≤t

adx (τ1) . . . dx (τn)

= aX (s, t) .

Therefore, taking a = 1, we find,

X (s, dt) = T y (dt, s) 1 = dy (t)T y (t, s) 1 = dy (t)X (s, t) = X (s, t) dx (t)

with X (s, s) = T (s, s) 1 = 1. Moreover we also have,

X (s, t)X (t, u) = T y (u, t)X (s, t) = T y (u, t)T y (t, s) 1 = T y (u, s) 1 = X (s, u) .

Alternatively: one can just check all the statements as we did for T (t, s) .
The main point is that if g (t) solves dg (t) = g (t) dx (t) , then ag (t) also solves
the same equation.

Remark 3.24. Let λ ∈ R or C as the case may be and define,

Xλ (s, t) := Xλx (s, t) and Xλ
n (s, t) := Xλx

n (s, t) = λnXn (s, t) . (3.52)

Then the identity in Eq. (3.52) becomes,

∞∑
n=0

λnXn (s, u) = Xλ (s, u) = Xλ (s, t)Xλ (t, u)

=
∞∑

k,l=0

λkλlXk (s, t)Xl (t, u)

=
∞∑
n=0

λn
∑
k+l=n

Xk (s, t)Xl (t, u)
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from which we conclude,

Xn (s, u) =
n∑
k=0

Xk (s, t)Xn−k (t, u) for n = 0, 1, 2, . . . (3.53)

Terry. Lyons refers the identities in Eq. (3.53) as Chen’s identities. These iden-
tities may be also be deduced directly by looking at the multiple integral ex-
pressions defining Xk (s, t) .

3.5.1 Bone Yard

Proof. but we can check this easily directly as well. From Eq. (3.41) we con-
clude,

‖Tn (t, s)‖ ≤
∫ t

s

‖Tn−1 (t, σ)‖ ‖dx (σ)‖

By the fundamental theorem of calculus we have, which we write symbolically
as,

Tn+1 (t, s) = −
∫ t

s

Tn (t, σ) dx (σ)

Summing this equation upon n shows,

N∑
n=0

and hence one learn inductively that Tn (t, s) is a finite variation process in t,

‖Tn (t, s)‖ ≤
∫
s≤τ1≤···≤τn≤t

‖dx (τn)‖ ‖dx (τn−1)‖ ‖dx (τn−2)‖ . . . ‖dx (τ1)‖

=
1
n!

(∫ t

s

‖dx‖
)n

.

and

V1

(
Tn (·, s) |[s,T ]

)
≤
∫ T

s

‖dx (τ)‖ ‖Tn−1 (τ, s)‖

≤
∫ T

s

1
(n− 1)!

(∫ τ

s

‖dx‖
)n−1

‖dx (τ)‖ =
1
n!

(∫ T

s

‖dx‖

)n
.

In particular it follows that

∞∑
n=1

V1

(
Tn (·, s) |[s,T ]

)
≤ exp

(∫ T

s

‖dx‖

)
− 1.

Hence we learn that
∑∞
n=0 Tn (t, s) converges uniformly to T (t, s) so that T (t, s)

is continuous. Moreover, if Π ∈ P (s, T ) , then

∑
t∈Π
‖T (t, s)− T (t−, s)‖ ≤

∞∑
n=1

∑
t∈Π
‖Tn (t, s)− Tn (t−, s)‖

≤
∞∑
n=1

V1

(
Tn (·, s) |[s,T ]

)
<∞.
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Hence it follows from this that

V1

(
T (·, s) |[s,T ]

)
≤ exp

(∫ T

s

‖dx‖

)
− 1 <∞.

Similarly we have,

∑
t∈Π

∥∥∥∥∥T (t, s)−
N∑
n=0

Tn (t−, s)

∥∥∥∥∥ ≤
∞∑

n=N+1

V1

(
Tn (·, s) |[s,T ]

)
and therefore,

V1

([
T (·, s)−

N∑
n=0

Tn (·, s)

]
|[s,T ]

)
→ 0 as N →∞.

It is now a simple matter to see that for any continuous f,∫ t

s

f (τ)T (dτ, s) = lim
N→∞

N∑
n=0

∫ t

s

f (τ)Tn (dτ, s) =
∞∑
n=0

∫ t

s

f (τ)Tn (dτ, s) .

In particular,

T (t, s)− T (s, s) =
∞∑
n=0

[Tn (t, s)− Tn (s, s)]

=
∞∑
n=1

[∫ t

s

dx (τ)Tn−1 (t, s)
]

=

[∫ t

s

dx (τ)
∞∑
n=1

Tn−1 (τ, s)

]

=
∫ t

s

dx (τ)T (τ, s) .

which is the precise version of Eq. (3.37).





4

Banach Space p – variation results

In this chapter, suppose that V is a Banach space and assume x ∈
C ([0, T ]→ V ) with x (0) = 0 for simplicity. We continue the notation used
in Chapter 2. In particular we have,

Vp (x : Π) :=

(∑
t∈Π

∥∥xt − xt−∥∥p
)1/p

=

(∑
t∈Π
‖∆tx‖p

)1/p

and

Vp (x) := sup
Π∈P(0,T )

Vp (x : Π) .

Lemma 4.1. Suppose that Π ∈ P (s, t) and a ∈ Π ∩ (s, t) , then

V pp (x,Π \ {a}) ≤ 2p−1V pp (x,Π) . (4.1)

Proof. Since

‖x (a+)− x (a−)‖p ≤ [‖x (a+)− x (a)‖+ ‖x (a)− x (a−)‖]p

≤ 2p−1 (‖x (a+)− x (a)‖p + ‖x (a)− x (a−)‖p)
= 2p−1V pp (x : Π ∩ [a−, a+])

and

V pp (x,Π \ {a}) = V pp (x : Π ∩ [0, a−])+‖x (a+)− x (a−)‖p+V pp (x : Π ∩ [a+, T ])

we have,

V pp (x,Π \ {a}) ≤ V pp (x : Π ∩ [0, a−]) + 2p−1V pp (x : Π ∩ [a−, a+]) + V pp (x : Π ∩ [a+, T ])

≤ 2p−1V pp (x,Π) .

Corollary 4.2. As above, let ω (s, t) := ωx,p (s, t) := V pp
(
x|[s,t]

)
be the control

associated to x. Then for all 0 ≤ s < u < t ≤ T, we have

ω (s, u) + ω (u, t) ≤ ω (s, t) ≤ 2p−1 [ω (s, u) + ω (u, t)] . (4.2)

The second inequality shows that if x|[s,u] and x|[s,t] both have finite p – varia-
tion, then x|[s,t] has finite p – variation.

Proof. The first inequality is the superadditivity property of the control
ω that we have already proved in Lemma 2.35. For the second inequality, let
Π ∈ P (s, t) . If u ∈ Π we have ,

V pp (x,Π) = V pp (x,Π ∩ [s, u]) + V pp (x,Π ∩ [u, t])

≤ ω (s, u) + ω (u, t) . (4.3)

On the other hand if u /∈ Π we have, using Eq. (4.3) with Π replaced by Π∪{u}
and Lemma 4.1,

V pp (x,Π) ≤ 2p−1V pp (x,Π ∪ {u}) ≤ 2p−1 [ω (s, u) + ω (u, t)] .

Thus for any Π ∈ P (s, t) we may conclude that

V pp (x,Π) ≤ 2p−1 [ω (s, u) + ω (u, t)] .

Taking the supremum of this inequality over Π ∈ P (s, t) then gives the desired
result.

These results may be significantly improve upon. For example, we have the
following proposition whose proof we leave to the interested reader who may
wish to consult Lemma (4.13) below.

Proposition 4.3. If Π,Π ′ ∈ P (s, t) with

Π = {s := τ0 < τ1 < · · · < τn = t} ⊂ Π ′,

then

V pp (x,Π) ≤
∑
τ∈Π

# (Π ′ ∩ (τ−, τ ])p−1
V pp (Π ′ ∩ (τ−, τ ]) (4.4)

≤ kp−1V pp (x,Π ′) , (4.5)

where
k := max {#(τi−1, τi] ∩Π ′ : i = 1, 2, . . . , n} . (4.6)

Proof. This follows by the same methods used in the proof of Lemma 4.1
or Lemma (4.13) below. The point is that,
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V pp (x,Π) =
∑
τ∈Π
‖∆τx‖p =

∑
τ∈Π

∥∥∥∥∥∥
∑

s∈Π′∩(τ−,τ ]

∆sx

∥∥∥∥∥∥
p

≤
∑
τ∈Π

# (Π ′ ∩ (τ−, τ ])p−1
∑

s∈Π′∩(τ−,τ ]

‖∆sx‖p

≤
∑
τ∈Π

kp−1V pp (x;Π ′ ∩ (τ−, τ ]) = kp−1V pp (x;Π ′) .

Corollary 4.4. Suppose that Γ ∈ P (s, t) , then

V pp (x : [s, t]) ≤ # (Γ ∩ (s, t])p−1
∑
τ∈Γ

V pp (x : [τ−, τ ]) . (4.7)

and in particular this show that if Vp (x : [τ−, τ ]) < ∞ for all τ ∈ Γ, then
Vp (x : [s, t]) <∞.

Proof. Let Π ∈ P (s, t) and Π ′ := Π ∪ Γ, then k defined in Eq. (4.6) is no
greater than # (Γ ∩ (s, t]) and therefore,

V pp (x,Π) ≤ # (Γ ∩ (s, t])p−1
V pp (x,Π ′) (4.8)

while
V pp (x,Π ′) =

∑
τ∈Γ

V pp (x,Π ′ ∩ [τ−, τ ]) ≤
∑
τ∈Γ

V pp (x : [τ−, τ ]) . (4.9)

So combining these two inequalities and then taking the supremum over Π ∈
P (s, t) gives Eq. (4.7).

Definition 4.5. The normalized space of p – variation is

C0,p ([0, T ] , V ) := {x ∈ C ([0, T ]→ V ) : x (0) = 0 and Vp (x) <∞} .

Proposition 4.6. The space C0,p ([0, T ] , V ) is a linear space and Vp (·) is a
Banach norm on this space.

Proof. 1. If t ∈ [0, T ] we may take Π := {0, t, T} to learn that

‖x (t)‖ = ‖x (t)− x (0)‖ ≤ (‖x (t)− x (0)‖p + ‖X (T )− x (t)‖p)1/p ≤ Vp (x) .

As t ∈ [0, T ] was arbitrary it follows that

‖x‖u := max
0≤t≤T

‖x (t)‖ ≤ Vp (x) . (4.10)

In particular if Vp (x) = 0 then x = 0.

2. For λ ∈ C, Vp (λx : Π) = |λ|Vp (λx : Π) and therefore Vp (λx) =
|λ|Vp (x) .

3. For x, y ∈ C ([0, T ]→ V ) ,

Vp (x+ y : Π) =

(∑
t∈Π
‖∆tx+∆ty‖p

)1/p

≤

(∑
t∈Π

(‖∆tx‖+ ‖∆ty‖)p
)1/p

≤

(∑
t∈Π
‖∆tx‖p

)1/p

+

(∑
t∈Π
‖∆ty‖p

)1/p

= Vp (x : Π) + Vp (y : Π)

≤ Vp (x) + Vp (y) ,

and therefore,
Vp (x+ y) ≤ Vp (x) + Vp (y) .

Hence it follows from this triangle inequality and items 1. and 2. that
C0,p ([0, T ] , V ) is a linear space and that Vp (·) is a norm on C0,p ([0, T ] , V ) .

4. To finish the proof we must now show (C0,p ([0, T ] , V ) , Vp (·)) is a
complete space. So suppose that {xn}∞n=1 ⊂ C0,p ([0, T ] , V ) is a Cauchy se-
quence. Then by Eq. (4.10) we know that xn converges uniformly to some
x ∈ C ([0, T ]→ V ) . Moreover, for any partition, Π ∈ P (0, T ) we have

Vp (x− xn : Π) ≤ Vp (x− xm : Π) + Vp (xm − xn : Π)
≤ Vp (x− xm : Π) + Vp (xm − xn) .

Taking the limit of this equation as m→∞ the shows,

Vp (x− xn : Π) ≤ lim inf
m→∞

(Vp (x− xm : Π) + Vp (xm − xn))

= lim inf
m→∞

Vp (xm − xn) .

We may now take the supremum over Π ∈ P (0, T ) to learn,

Vp (x− xn) ≤ lim inf
m→∞

Vp (xm − xn)→ 0 as n→∞.

So by the triangle inequality, Vp (x) ≤ Vp (x− xn)+Vp (xn) <∞ for sufficiently
large n so that x ∈ C0,p ([0, T ] , V ) and Vp (x− xn)→ 0 as n→∞.

Proposition 4.7 (Interpolation). Suppose that x ∈ C0,p ([0, T ]→ V ) and
q > p, then

Vq (x) ≤ 21−p/q ‖x‖1−p/qu V p/qp (x) . (4.11)

Proof. Let Π ∈ P (0, T ) , then
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V qq (x : Π) =
∑
t∈Π
‖∆tx‖q =

∑
t∈Π
‖∆tx‖q−p ‖∆tx‖p

≤ max
t∈Π
‖∆tx‖q−p ·

∑
t∈Π
‖∆tx‖p ≤ 2 ‖x‖q−pu V pp (x) .

Taking the supremum over Π ∈ P (0, T ) and then taking the qth – roots of both
sides gives the result.

Notation 4.8 For x ∈ C ([0, T ]→ V ) and Π ∈ P (0, T ) , let xΠ (t) be the
piecwise linear path defined by

xΠ (t) := x (t−) +
(t− t−)
t+ − t−

∆tx for all t ∈ [0, T ] ,

see Figures 4.1 and 4.2.

Fig. 4.1. Here Π = {0 = s0 < s1 < · · · < s7 = T} and ω should be x. The red lines
indicate the image of xΠ .

Proposition 4.9. For each x ∈ C ([0, T ]→ V ) , xΠ → x uniformly in t as
|Π| → 0.

Proof. This is an easy consequence of the uniform continuity of x on the
compact interval, [0, T ] .

Theorem 4.10. If x ∈ C0,p ([0, T ]→ V ) and Π ∈ P (0, T ) , then

Vp
(
xΠ
)
≤ 31−1/pVp (x) . (4.12)

Fig. 4.2. Here Π = {0 = t0 < t1 < · · · < t6 = T} and xΠ is indicated by the red
piecewise linear path.

We will give the proof of this theorem at the end of this section.

Corollary 4.11. Suppose x ∈ C0,p ([0, T ]→ V ) and q ∈ (p,∞) . Then
lim|Π|→0 Vq

(
x− xΠ

)
= 0, i.e. xΠ → x as |Π| → 0 in C0,q for any q > p.

Proof. According to Proposition 4.7 and Theorem 4.10,

V qq
(
x− xΠ

)
≤
(
2
∥∥x− xΠ∥∥

u

)q−p
V pp
(
x− xΠ

)
≤
(
2
∥∥x− xΠ∥∥

u

)q−p [
Vp (x) + Vp

(
xΠ
)]p

≤
(
2
∥∥x− xΠ∥∥

u

)q−p
2p−1

[
V pp (x) + V pp

(
xΠ
)]

≤
(
2
∥∥x− xΠ∥∥

u

)q−p
2p−1

[
1 + 3p−1

]
V pp (x) .

The latter expression goes to zero because of Proposition 4.9.
We refer the reader to in [5] for more results in this vain. In particular, as a

corollary of Theorem 23 and 24 one sees that the finite variation paths are not
dense in C0,p ([0, T ]→ V ) .

Notation 4.12 Suppose that Π,Π ′ ∈ P (0, T ) the we let

Λ = Λ (Π,Π ′) = {t ∈ Π ∩ (0, T ] : Π ∩ (t−, t) 6= ∅}

S := S (Π,Π ′) = ∪t∈Λ {t−, t} ,

see Figure 4.3 below for an example.
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Fig. 4.3. In this figure the red x’s correspond to Π ′ and the vertical hash marks
correspond to Π. The green circles indicate the points which make up S.

Lemma 4.13. If x ∈ C ([0, T ]→ V ) , Π,Π ′ ∈ P (0, T ) , and S = S (Π,Π ′) as
in Notation 4.12, then

V pp (x : Π ′) ≤ 3p−1V pp (x : Π ′ ∪ S) . (4.13)

(This is a special case of Proposition 4.3 above.)

Proof. For concreteness, let us consider the scenario in Figure 4.3. The
difference between Vp (x : Π ′) and Vp (x : Π ′ ∪ S) comes from the terms indi-
cated by the orange brackets above the line. For example consider the u2 –
u3 contribution to V pp (x : Π ′) versus the terms in V pp (x : Π ′ ∪ S) involving
u2 < t2 < t6 < u3. We have,

‖x (u3)− x (u2)‖p ≤ (‖x (u3)− x (t2)‖+ ‖x (t6)− x (t2)‖+ ‖x (u3)− x (t6)‖)p

≤ 3p−1 (‖x (u3)− x (t2)‖p + ‖x (t6)− x (t2)‖p + ‖x (u3)− x (t6)‖p) .

Similar results hold for the other terms. In some case we only get two terms
with 3p−1 being replaced by 2p−1 and where no points are squeezed between
the neighbors of Π ′, the corresponding terms are the same in both Vp (x : Π ′)
and Vp (x : Π ′ ∪ S) . Nevertheless, if we use the crude factor of 3p−1 in all cases
we arrive at the inequality in Eq. (4.13).

Lemma 4.14. Suppose that x (t) = a + tb for some a, b ∈ Π, then for Π ∈
P (u, v) we have

Vp (x : Π) ≤ Vp (x : {u, v}) . (4.14)

with the inequality being strict if p > 1 and Π is a strict refinement of {u, v} .

Proof. Here we have,

V pp (x : Π) =
∑
t∈Π
‖x (t)− x (t−)‖p =

∑
t∈Π
‖(t− t−) b‖p

= ‖b‖p
∑
t∈Π

(t− t−)p ≤ ‖b‖p (v − u)p = Vp (x : {u, v})

wherein the last equality we have used,

n∑
i=1

api ≤

(
n∑
i=1

ai

)p
.

Lemma 4.15. Let x ∈ C ([0, T ]→ V ) , Π,Π ′ ∈ P (0, T ) , and S = S (Π,Π ′)
be as in Lemma 4.13. Then as in Notation 4.12, then

Vp
(
xΠ : Π ′ ∪ S

)
≤ Vp

(
xΠ : S ∪ {0, T}

)
= Vp (x : S ∪ {0, T}) ≤ Vp (x) .

(4.15)

Proof. Again let us consider the scenario in Figure 4.3. Let Γ := Π ′ ∪ S,
then

V pp
(
xΠ : Π ′ ∪ S

)
= V pp

(
xΠ : Γ ∩ [0, t1]

)
+ V pp

(
xΠ : Γ ∩ [t1, t2]

)
+ V pp

(
xΠ : Γ ∩ [t2, t6]

)
+ V pp

(
xΠ : Γ ∩ [t6, t7]

)
+ V pp

(
xΠ : Γ ∩ [t7, t9]

)
+ V pp

(
xΠ : Γ ∩ [t9, t10]

)
+ V pp

(
xΠ : Γ ∩ [t10, T ]

)
.

Since xΠ is linear on each of the intervals [ti, ti+1] , we may apply Lemma 4.14
to find,

V pp
(
xΠ : Γ ∩ [t1, t2]

)
+V pp

(
xΠ : Γ ∩ [t6, t7]

)
+ V pp

(
xΠ : Γ ∩ [t9, t10]

)
≤V pp

(
xΠ : {t1, t2}

)
+ V pp

(
xΠ : {t6, t7}

)
+ V pp

(
xΠ : {t9, t10}

)
and for the remaining terms we have,(

V pp
(
xΠ : Γ ∩ [0, t1]

)
+ V pp

(
xΠ : Γ ∩ [t2, t6]

)
+V pp

(
xΠ : Γ ∩ [t7, t9]

)
+ V pp

(
xΠ : Γ ∩ [t10, T ]

))
=
(

V pp
(
xΠ : {0, t1}

)
+ V pp

(
xΠ : {t2, t6}

)
+V pp

(
xΠ : {t7, t9}

)
+ V pp

(
xΠ : {t10, T}

))
which gives the inequality in Eq. (4.15).

4.0.2 Proof of Theorem 4.10

We are now in a position to prove Theorem 4.10.
Proof. Let Π,Π ′ ∈ P (0, T ) . Then by Lemmas 4.13 and Lemma 4.15,

Vp
(
xΠ : Π ′

)
≤ 31−1/pVp

(
xΠ : Π ′ ∪ S

)
≤ Vp (x) .
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Taking the supremum over all Π ′ ∈ P (0, T ) then gives the estimate in Eq.
(4.12).

For an alternative proof of Theorem 4.10 the reader is referred to [5] and [6,
Chapter 5] where controls are used to prove these results. Most of these results
go over to the case where V is replaced by a complete metric space (E, d) which
is also geodesic. That is if a, b ∈ E there should be a path σ : [0, 1] → E such
that σ (0) = a, σ (t) = b and d (σ (t) , σ (s)) = |t− s| d (a, b) for all s, t ∈ [0, 1] .
More invariantly put, there should be a path σ : [0, 1]→ E such that if ` (t) :=
d (a, σ (t)) , then d (σ (t) , σ (s)) = |` (t)− ` (s)| d (a, b) for all s, t ∈ [0, 1] .





5

Young’s Integration Theory

Theorem 2.24 above shows that if we insist upon integrating all continuous
functions, f : [0, T ]→ R, then then the integrator, x, must be of finite variation.
This suggests that if we want to allow for rougher integrators, x, then we must
in turn require the integrand to be smoother. Young’s integral, see [18] is a
result along these lines. Our fist goal is to prove some integral bounds.

In this section we will assume that V and W are Banach spaces and g :
[0, T ]→ V and f : [0, T ]→ End (V,W ) are continuous functions. Later we will
assume that Vp (f) + Vq (g) <∞ where p, q ≥ 1 with θ := 1/p+ 1/q > 1.

Notation 5.1 Given a partition Π ∈ P (s, t) , let

SΠ (f, g) :=
∑
τ∈Π

f (τ−)∆τg.

So in more detail,

Π = {s = τ0 < τ1 < · · · < τr = t}

then

SΠ (f, g) :=
r∑
l=1

f (τl−1)∆τlg = f (τ0)∆τ1g + · · ·+ f (τr−1)∆τrg. (5.1)

Lemma 5.2 (A key identity). Suppose that Π ∈ P (s, t) and u ∈ Π ∩ (s, t) .
Then

SΠ (f, g)− SΠ\{u} (f, g) = ∆uf∆u+g (5.2)

where
∆uf∆u+g = [f (u)− f (u−)] (g (u+)− g (u)) .

Proof. All terms in SΠ (f, g) and SΠ\{u} (f, g) are the same except for those
involving the intervals between u− and u+. Therefore we have,

SΠ\{u} (f, g)− SΠ (f, g) = f (u−) [g (u+)− g (u−)]−
[
f (u−)∆ug + f (u)∆u+g

]
= f (u−)

[
∆ug +∆u+g

]
− f (u−)∆ug − f (u)∆u+g

= [f (u−)− f (u)]∆u+g

Suppose that Π ∈ P (s, t) with # (Π) := r where # (Π) denotes the number
of elements in Π minus one. Let us further suppose that we have chosen Πi ∈
P (s, t) such that Π1 ⊂ Π2 ⊂ · · · ⊂ Πr−1 ⊂ Πr := Π and # (Πi) = i for each
i. Then

SΠ (f, g)− f (s) (g (t)− g (s)) =
r∑
i=2

SΠi (f, g)− SΠi−1 (f, g)

and thus we find the estimate,

‖SΠ (f, g)− f (s) (g (t)− g (s))‖ ≤
r∑
i=2

∥∥SΠi (f, g)− SΠi−1 (f, g)
∥∥ .

To get the best result from this procedure we should choose the sequence, {Πi} ,
so as to minimize our estimate for

∥∥SΠi (f, g)− SΠi−1 (f, g)
∥∥ at each step along

the way. The next lemma is key ingredient in this procedure.

Lemma 5.3. Suppose that p, q ∈ (0,∞) , θ := 1
p + 1

q , and ai, bi ≥ 0 for i =
1, 2, . . . , n, then

min
1≤i≤n

aibi ≤
(

1
n

)θ
‖a‖p ‖b‖q (5.3)

where ‖a‖p := (
∑n
i=1 a

p
i )

1/p
.

Proof. Let r := 1/θ, s := p/r, and t := q/r, then 1/s+1/t = 1 and therefore
by Hölder’s inequality,

‖fg‖rr = 〈frgr〉 ≤ 〈frs〉1/s
〈
grt
〉1/t = 〈fp〉1/s 〈gq〉1/t

which is to say,
‖fg‖r ≤ ‖f‖p ‖g‖q . (5.4)

We also have

min
1≤i≤n

xi =
(

min
i
xri

)1/r

≤

(
1
n

n∑
i=1

xri

)1/r

=
(

1
n

)1/r

‖x‖r .

Taking xi = aibi in this inequality and then using Eq. (5.4) implies,
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min
1≤i≤n

aibi ≤
(

1
n

)1/r

‖a·b·‖r ≤
(

1
n

)1/r

‖a‖p ‖b‖q .

Recalling that 1/r = θ completes the proof of Eq. (5.3).
Alternatively we could use the following form of the geometric – arithmetic

mean inequality.

Proposition 5.4 (Geometric-Arithmetic Mean Type Inequalities). If
{al}nl=1 is a sequence of non-negative numbers, {αl}nl=1 is a sequence of positive
numbers such that

∑n
l=1 αl = 1, and p > 0 is given, then

aα1
1 . . . aαnn ≤

(
n∑
i=1

αia
p
i

)1/p

(5.5)

and in particular by taking αi = 1/n for all i we have,

[a1 . . . an]1/n ≤

(
1
n

n∑
i=1

api

)1/p

. (5.6)

Moreover, Eq. (5.3) is valid.

Proof. Without loss of generality we may assume that ai > 0 for all i. By
Jensen’s inequality

aα1
1 . . . aαnn = exp

(
n∑
i=1

αi ln ai

)
≤

n∑
i=1

αi exp (ln ai) =
n∑
i=1

αiai. (5.7)

Replacing ai by api in this inequality and then taking the pth – root gives the
inequality in Eq. (5.5). (Remark: if p ≥ 1, Eq. (5.5) follows from Eq. (5.7) by
an application of Hölder’s inequality.) Making use of Eq. (5.6), we find again
that

min
1≤i≤n

aibi ≤ [a1b1 . . . anbn]1/n = [a1 . . . an]1/n [b1 . . . bn]1/n

≤

(
1
n

n∑
i=1

api

)1/p(
1
n

n∑
i=1

bqi

)1/q

=
(

1
n

)θ
‖a‖p ‖b‖q .

Proposition 5.5 (Young-Love Inequality). Let Π ∈ P (s, t) and r =
# (Π)− 1. Then r :=If p, q ∈ (0,∞) and θ := p−1 + q−1, then

‖SΠ (f, g)− f (s) (g (t)− g (s))‖ ≤ ζr (θ)Vp
(
f |[s,t]

)
· Vq

(
g|[s,t]

)
(5.8)

≤ ζ (θ)Vp
(
f |[s,t]

)
· Vq

(
g|[s,t]

)
, (5.9)

where

ζr (θ) :=
r−1∑
l=1

1
lθ

and ζ (θ) = ζ∞ (θ) :=
∞∑
l=1

1
lθ
. (5.10)

Consequently,

‖SΠ (f, g)‖ ≤ ‖f (s)‖ ‖g (t)− g (s)‖+ ζr (θ)Vp
(
f |[s,t]

)
· Vq

(
g|[s,t]

)
(5.11)

≤
[
‖f (s)‖+ ζr (θ)Vp

(
f |[s,t]

)]
· Vq

(
g|[s,t]

)
. (5.12)

Proof. Let Πr := Π and choose u ∈ Πr ∩ (s, t) such that

‖∆uf‖
∥∥∆u+g

∥∥ = min
τ∈Π∩(s,t)

‖∆τf‖
∥∥∆τ+g

∥∥
≤
(

1
r − 1

)θ ∑
τ∈Π∩(s,t)

‖∆τf‖p
1/p ∑

τ∈Π∩(s,t)

∥∥∆τ+g
∥∥q1/q

≤
(

1
r − 1

)θ
Vp
(
f |[s,t]

)
· Vq

(
g|[s,t]

)
.

Thus letting Πr−1 := Π \ {u} , we have∥∥SΠ (f, g)− SΠr−1 (f, g)
∥∥ =

∥∥∆uf∆u+g
∥∥ ≤ ‖∆uf‖

∥∥∆u+g
∥∥

≤
(

1
r − 1

)θ
Vp
(
f |[s,t]

)
· Vq

(
g|[s,t]

)
.

Continuing this way inductively, we find Πi ∈ P (s, t) such that Π1 ⊂ Π2 ⊂
· · · ⊂ Πr−1 ⊂ Πr := Π and # (Πi) = i for each i and∥∥SΠi (f, g)− SΠi−1 (f, g)

∥∥ ≤ ( 1
i− 1

)θ
Vp
(
f |[s,t]

)
· Vq

(
g|[s,t]

)
.

Thus using

SΠ (f, g)− f (s) (g (t)− g (s)) =
r∑
i=2

[
SΠi (f, g)− SΠi−1 (f, g)

]
and the triangle inequality we learn that

‖SΠ (f, g)− f (s) (g (t)− g (s))‖ ≤
r∑
i=2

∥∥SΠi (f, g)− SΠi−1 (f, g)
∥∥

≤
r∑
i=2

(
1

i− 1

)θ
Vp
(
f |[s,t]

)
· Vq

(
g|[s,t]

)
=

r−1∑
i=1

(
1
i

)θ
Vp
(
f |[s,t]

)
· Vq

(
g|[s,t]

)
= ζr (θ)Vp

(
f |[s,t]

)
· Vq

(
g|[s,t]

)
.
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Young gives examples showing that Eq. (5.9) fails if one only assume that
p−1+q−1 = 1. See Theorem 4.26 on p. 33 of Dudley 98 [2] and Young (1936) [18]
– Young constant is not as good as the one in [2].

Definition 5.6. Given a function, X : ∆ → V and a partition, Π ∈ P (s, t)
with (s, t) ∈ ∆, let

Vp (X : Π) :=

(∑
τ∈Π

∥∥Xτ−,τ

∥∥p)1/p

.

As usual we also let

Vp
(
X|[s,t]

)
:= sup

Π∈P(s,t)

Vp (X : Π) .

If Xs,t = x (t)− x (s) for some x : [0, T ]→ V, then Vp (X : Π) = Vp (x : Π)
and Vp

(
X|[s,t]

)
= Vp

(
x|[s,t]

)
.

Lemma 5.7. If 0 ≤ u < v ≤ T and

Yst := f (s) (g (t)− g (s)) for all (s, t) ∈ ∆, (5.13)

then
Vq
(
Y |[u,v]

)
≤
∥∥f |[u,v]∥∥u Vq (g|[u,v]) . (5.14)

Proof. If Π ∈ P (u, v) , we have,

V qq (Y : Π) =
∑
τ∈Π
‖f (τ−) (g (τ)− g (τ−))‖q

≤
∑
τ∈Π
‖f (τ−)‖q ‖(g (τ)− g (τ−))‖q

≤
∥∥f |[u,v]∥∥qu ∑

τ∈Π
‖(g (τ)− g (τ−))‖q =

∥∥f |[u,v]∥∥qu V qq (g : Π) .

The result follows by taking the supremum over Π ∈ P (u, v) .

Corollary 5.8. Suppose that Vp (f) < ∞ and g has finite variation, then for
any q ∈ [1,∞) with θ := 1/p+ 1/q > 1 we have,∥∥∥∥∫ t

s

fdg − f (s) (g (t)− g (s))
∥∥∥∥ ≤ ζ (θ)Vp

(
f |[s,t]

)
· Vq

(
g|[s,t]

)
. (5.15)

and

Vq

(∫ ·
0

fdg

)
≤ [‖f‖u + ζ (θ)Vp (f)] · Vq (g) (5.16)

≤ [‖f (0)‖+ [1 + ζ (θ)]Vp (f)] · Vq (g) . (5.17)

More generally,

Vq

([∫ ·
0

fdg

]
|[s,t]

)
≤
[∥∥f |[s,t]∥∥u + ζ (θ)Vp

(
f |[s,t]

)]
· Vq

(
g|[s,t]

)
(5.18)

≤
[
‖f (s)‖+ [1 + ζ (θ)]Vp

(
f |[s,t]

)]
· Vq

(
g|[s,t]

)
. (5.19)

Proof. Inequality (5.15) follows from Eq. (5.9) upon letting |Π| → 0. For
the remaining inequalities let Yst be as in Eq. (5.13) and define,

Xs,t :=
∫ t

s

fdg − f (s) (g (t)− g (s)) =
∫ t

s

fdg − Ys,t.

Then according to Proposition 5.12 for any partition, Π ∈ P (0, T ) ,

V qq (X : Π) =
∑
τ∈Π

∥∥Xτ−,τ

∥∥q =
∑
τ∈Π

∥∥∥∥∥
∫ τ

τ−

fdg − f (τ−) (g (τ)− g (τ−))

∥∥∥∥∥
q

≤
∑
τ∈Π

ζq (θ)V qp
(
f |[τ−,τ ]

)
· V qq

(
g|[τ−,τ ]

)
≤ ζq (θ)V qp (f) ·

∑
τ∈Π

V qq
(
g|[τ−,τ ]

)
≤ ζq (θ)V qp (f) · V qq (g) ,

wherein we have used ω (s, t) := V qq
(
g|[s,t]

)
is a control for the last inequality.

Taking the supremum over Π ∈ P (0, T ) then implies,

Vq (X) ≤ ζ (θ)Vp (f) · Vq (g) . (5.20)

Using the identity, ∫ t

s

fdg = Xst + Yst,

the triangle inequality, Eq. (5.20), and Lemma 5.7, gives

Vq

(∫ ·
0

fdg

)
= Vq (X + Y ) ≤ Vq (X) + Vq (Y )

≤ [‖f‖u + ζ (θ)Vp (f)] · Vq (g) ,

which is Eq. (5.16). Equation (5.17) is an easy consequence of Eq. (5.16) and
the simple estimate,

‖f (t)‖ ≤ ‖f (t)− f (0)‖+ ‖f (0)‖ ≤ Vp (f) + ‖f (0)‖ . (5.21)

The estimates in Eqs. (5.18) and (5.19) follow by the same techniques or a
simple reparameterization argument.

Page: 45 job: rpaths macro: svmonob.cls date/time: 11-Mar-2009/12:03



46 5 Young’s Integration Theory

Theorem 5.9. If Vp (g) <∞ and Vq (f) <∞ with θ := 1/p+ 1/q > 1, then∫ t

s

fdg := lim
n→∞

∫ t

s

fdgn exists (5.22)

where {gn} is any sequence of finite variation paths1 such that Vp̃ (g − gn)→ 0
for all q̃ > q with θ̃ := 1/p+ 1/q̃ > 1. This limit satisfies;∥∥∥∥∫ t

s

fdg − f (s) (g (t)− g (s))
∥∥∥∥ ≤ ζ (θ)Vp

(
f |[s,t]

)
·Vq

(
g|[s,t]

)
for all (s, t) ∈ ∆,

(5.23)∫ t
s
fdg is a bilinear form in f and g, the estimates in Eqs. (5.18) and (5.19)

continue to hold, and∫ t

s

fdg := lim
Π∈P(s,t) with |Π|→0

SΠ (f, g) . (5.24)

Proof. From Eq. (5.19),

Vq̃

([∫ ·
0

fdgn −
∫ ·

0

fdgm

]
|[s,t]

)
= Vq̃

([∫ ·
0

fd (gn − gm)
]
|[s,t]

)
≤
[
‖f (s)‖+ [1 + ζ (θ)]Vp

(
f |[s,t]

)]
· Vq̃

(
(gn − gm) |[s,t]

)
which tends to 0 as n→∞. Therefore the limit in Eq. (5.22). Moreover, passing
to the limit in Eq. (5.15) shows,∥∥∥∥∫ t

s

fdg − f (s) (g (t)− g (s))
∥∥∥∥ ≤ ζ (θ)Vp

(
f |[s,t]

)
· Vq̃

(
g|[s,t]

)
.

We may now let q̃ ↓ q to get the estimate in Eq. (5.23). This estimate gives those
in Eqs. (5.18) and (5.19). The independence of the limit on the approximating
sequence and the resulting bilinearity statement is left to the reader.

If Π ∈ P (s, t) it follows from the estimates in Eq. (5.23) and Eq. (5.12) that∥∥∥∥∫ t

s

fdg − SΠ (f, g)
∥∥∥∥ ≤ ∥∥∥∥∫ t

s

fdg −
∫ t

s

fdgn

∥∥∥∥+
∥∥∥∥∫ t

s

fdgn − SΠ (f, gn)
∥∥∥∥

+ ‖SΠ (f, gn)− SΠ (f, g)‖

≤ 2
[
‖f (s)‖+

[
1 + ζ

(
θ̃
)]
Vp
(
f |[s,t]

)]
Vq̃
(
(g − gn) |[s,t]

)
+
∥∥∥∥∫ t

s

fdgn − SΠ (f, gn)
∥∥∥∥ .

1 For exmaple, according to Corollary 4.11 , we can take gn := gΠn where Πn ∈
P (s, t) with |Πn| → 0.

Therefore letting |Π| → 0 in this inequality implies,

lim sup
|Π|→0

∥∥∥∥∫ t

s

fdg − SΠ (f, g)
∥∥∥∥ ≤ 2

[
‖f (s)‖+

[
1 + ζ

(
θ̃
)]
Vp
(
f |[s,t]

)]
Vq̃
(
(g − gn) |[s,t]

)
which proves Eq. (5.24).

Lemma 5.10. Suppose Vp (g) < ∞, Vq (f) < ∞ with θ := 1/p + 1/q > 1. Let
{Πn} ⊂ P (s, t) and suppose that for each t ∈ Πn we are given cn (t) ∈ [t−, t] .
Then∫ t

s

fdg = lim
n→∞

∑
t∈Πn

f (cn (t))∆tg = lim
n→∞

∑
t∈Πn

f (cn (t)) (g (t)− g (t−)) .

Proof. Let
ω (s, t) := V pp

(
g|[s,t]

)
+ V qq

(
f |[s,t]

)
,

so that ω is a control. We then have,∥∥∥∥∥∑
t∈Πn

f (cn (t))∆tg − SΠn (f, g)

∥∥∥∥∥ =

∥∥∥∥∥∑
t∈Πn

[f (cn (t))− f (t−)]∆tg

∥∥∥∥∥
≤
∑
t∈Πn

‖[f (cn (t))− f (t−)]∆tg‖

≤
∑
t∈Πn

‖f (cn (t))− f (t−)‖ ‖∆tg‖

≤
∑
t∈Πn

ω (t−, cn (t))1/p ω (t−, t)
1/q

≤
∑
t∈Πn

ω (t−, t)
1/p

ω (t−, t)
1/q =

∑
t∈Πn

ω (t−, t)
θ

≤ sup
t∈Πn

ω (t−, t)
θ−1

∑
t∈Πn

ω (t−, t)

≤ sup
t∈Πn

ω (t−, t)
θ−1 · ω (0, T ) . (5.25)

Since ω (t, t) = 0 for all 0 ≤ t ≤ T and ω : ∆→ [0,∞) is uniformly continuous
on ∆, the last expression tends to zero as n→∞.

Alternate Proof. We can avoid the use the control, ω, here by making use
of Hölder’s inequality instead. To see this, let q′ := q/ (q − 1) be the conjugate
exponent to q. Letting,

δn := max
|t−s|≤|Πn|

‖f (t)− f (s)‖
q′−p
p → 0 as n→∞,
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we find, ∑
t∈Πn

‖f (cn (t))− f (t−)‖ ‖∆tg‖

≤

(∑
t∈Πn

‖f (cn (t))− f (t−)‖q
′

)1/q′

·

(∑
t∈Πn

‖∆tg‖q
)1/q

≤ δn

(∑
t∈Πn

‖f (cn (t))− f (t−)‖p
)1/q′

· Vq (g : Π)

≤ δn · V p/q
′

q (f) · Vq (g)→ 0 as n→∞.

Remark 5.11. The same methods used to prove the estimate in Eq. (5.25) allows
to give another proof of Eq. (5.24). Observe that∫ t

s

fdgΠ =
∑
τ∈Π

∫ τ

τ−

fdgΠ =
∑
τ∈Π

∫ τ

τ−

f (σ)∆τg
dσ

∆τ

and therefore,∫ t

s

fdgΠ − SΠ (f, g) =
∑
τ∈Π

∫ τ

τ−

[f (σ)− f (τ−)]∆τg
dσ

∆τ
.

Taking norms of this equation and using the obvious inequalities implies,∥∥∥∥∫ t

s

fdgΠ − SΠ (f, g)
∥∥∥∥ ≤∑

τ∈Π

∫ τ

τ−

‖f (σ)− f (τ−)‖ ‖∆τg‖
dσ

∆τ

≤
∑
τ∈Π

∫ τ

τ−

ω (τ−, τ)1/p ω (τ−, τ)1/q
dσ

∆τ

=
∑
τ∈Π

ω (τ−, τ)θ

≤ sup
t∈Π

ω (τ−, τ)θ−1 · ω (s, t)→ 0 as |Π| → 0.

This observation proves Eq. (5.24) since, by definition,∫ t

s

fdg = lim
Π∈P(s,t), |Π|→0

∫ t

s

fdgΠ .

Exercise 5.1 (Product Rule). Suppose that V is a Banach space and p, q > 0
such that θ := 1

p + 1
q > 1, x ∈ C ([0, T ]→ End (V )) with Vq (x) < ∞ and

y ∈ C ([0, T ]→ End (V )) with Vp (y) <∞. Show for all 0 ≤ s < t ≤ T that,

x (t) y (t)− x (s) y (s) =
∫ t

s

dx (τ) y (τ) +
∫ t

s

x (τ) dy (τ) , (5.26)

wherein the integrals are to be interpreted as Young’s integrals.

Solution to Exercise (5.1). For Π ∈ P (s, t) ,

x (t) y (t)− x (s) y (s) =
∑
τ∈Π

∆τ (xy)

=
∑
τ∈Π

[(x (τ−) +∆τx) (y (τ−) +∆τy)− x (τ−) y (τ−)]

=
∑
τ∈Π

[x (τ−)∆τy + (∆τx) y (τ−) + (∆τx)∆τy] .

Taking the limit at |Π| → 0, the terms corresponding to the first two summands
converge to

∫ t
s
x (τ) dy (τ) and

∫ t
s
dx (τ) y (τ) respectively. So it suffices to show,

lim|Π|→0

∑
τ∈Π (∆τx)∆τy = 0. However for every ε > 0 we have,∑

τ∈Π
‖∆τx‖ ‖∆τy‖ ≤ max

τ∈Π
‖∆τx‖ε

∑
τ∈Π
‖∆τx‖1−ε ‖∆τy‖

≤ max
τ∈Π
‖∆τx‖ε

(∑
τ∈Π
‖∆τx‖p

′(1−ε)

)1/p′ (∑
τ∈Π
‖∆τy‖p

)1/p

= max
τ∈Π
‖∆τx‖ε · V (1−ε)

p′(1−ε)
(
x|[s,t]

)
Vp
(
y|[s,t]

)
,

where p′ = p
p−1 or equivalently, 1

p′ + 1
p = 1. As 1

p + 1
q = θ > 1 it follows that

q < p′ and therefore we may choose ε > 0 such that p′ (1− ε) = q. For this ε
we then have,∑
τ∈Π
‖∆τx‖ ‖∆τy‖ ≤ max

τ∈Π
‖∆τx‖ε · V (1−ε)

q

(
x|[s,t]

)
Vp
(
y|[s,t]

)
→ 0 as |Π| → 0.

Alternatively: let ω (s, t) := V qq
(
x|[s,t]

)
+V pp

(
y|[s,t]

)
which is a control on

[0, T ] . We then have,∑
τ∈Π
‖∆τx‖ ‖∆τy‖ ≤

∑
τ∈Π

ω (τ−, τ)1/q ω (τ−, τ)1/p =
∑
τ∈Π

ω (τ−, τ)θ

≤ max
τ∈Π

ω (τ−, τ)θ−1
∑
τ∈Π

ω (τ−, τ)

≤ max
τ∈Π

ω (τ−, τ)θ−1 · ω (s, t)→ 0 as |Π| → 0. (5.27)
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Exercise 5.2. Find conditions on {xi}ni=1 so as to be able to prove a product
rule for x1 (t) . . . xn (t) .

Lemma 5.12. If F : V → W is a Lipschitz function with Lip – constant K,
then

Vp (F (Z·)) ≤ KVp (Z) . (5.28)

Proof. For Π ∈ P (0, T ) , we have∑
τ∈Π
‖F (Z (τ))− F (Z (τ−))‖p ≤ Kp

∑
τ∈Π
‖Z (τ)− Z (τ−)‖p

= KpV pp (Z : Π) ≤ KpV pp (Z) .

Therefore taking the supremum over all Π ∈ P (0, T ) gives Eq. (5.28).

Exercise 5.3 (Fundamental Theorem of Calculus II). Prove the funda-
mental theorem of calculus in this context. That is; if f : V → W be a C1

– function such that f ′ is Lipschitz and {Zt}t≥0 is a continuous V – valued
function such that Vp (Z) < ∞ for some p ∈ (1, 2). Then Vp (f ′ (Z·)) < ∞ and
for all 0 ≤ a < b ≤ T,

f (Zb)− f (Za) =
∫ b

a

f ′ (Zτ ) dZτ :=
∫

[a,b]

f ′ (Zτ ) dZτ , (5.29)

where f ′ (z) ∈ End (V,W ) is defined by, f ′ (z) v := d
dt |0f (z + tv) . In particular

it follows that f (Z (t)) has finite p – variation and

df (Z (t)) = f ′ (Z (t)) dZ (t) .

The integrals in Eq. (5.29) are to be interpreted as Young’s integrals.

Solution to Exercise (5.3). Let Π ∈ P (0, T ) . Because of Lemma 5.12 and
the assumption that p ∈ (1, 2) (so that 1/p+ 1/p = 2/p =: θ > 1), we see that
the integral in Eq. (5.29) is well defined as a Young’s integral. By a telescoping
series argument,

f (Zb)− f (Za) =
∑
t∈Π

∆tf (Z·)

where

∆tf (Z·) = f (Zt)− f
(
Zt−

)
= f

(
Zt− +∆tZ

)
− f

(
Zt−

)
=
∫ 1

0

f ′
(
Zt− + s∆tZ

)
∆tZ ds = f ′

(
Zt−

)
∆tZ + εΠt ∆tZ

and

εΠt :=
∫ 1

0

[
f ′
(
Zt− + s∆tZ

)
− f ′

(
Zt−

)]
ds.

Thus we have,
f (Zb)− f (Za) =

∑
t∈Π

f ′
(
Zt−

)
∆tZ + δΠ (5.30)

where
δΠ :=

∑
t∈Π

εΠt ∆tZ.

Letting ω (s, t) := V pp
(
Z|[s,t]

)
, we have,

∥∥εΠt ∥∥ ≤ ∫ 1

0

∥∥f ′ (Zt− + s∆tZ
)
− f ′

(
Zt−

)∥∥ ds

≤ K
∫ 1

0

s ‖∆tZ‖ ds ≤ K
1
2
ω (t−, t)

1/p

and hence

‖δΠ‖ ≤
∑
t∈Π

∥∥εΠt ∥∥ ‖∆tZ‖ ≤
K

2

∑
t∈Π

ω (t−, t)
1/p · ω (t−, t)

1/p

≤ K

2

∑
t∈Π

ω (t−, t)
θ → 0 as |Π| → 0

as we saw in Eq. (5.27). Thus letting |Π| → 0 in Eq. (5.30) completes the proof.

Exercise 5.4. See what you can say about a substitution formula in this case.
Namely, suppose that

y (t) =
∫ t

0

f (s) dx (s)

as a Young’s integral. Find conditions so that∫ t

0

g (t) dy (t) =
∫ t

0

g (s) f (s) dx (s) .

5.1 Additive (Almost) Rough Paths

Remark 5.13. For an alternate approach to this section, see [3].

Notation 5.14 Suppose that Π is a partition of [u, v] , i.e. a finite subset of
[u, v] which contains both u and v. For u ≤ s < t ≤ v, let

Π[s,t] = {s, t} ∪Π ∩ [s, t] .
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Typically we will write

Π[s,t] = {s = t0 < t1 < · · · < tr = t}

where
Π ∩ (s, t) =: {t1 < t2 < · · · < tr−1}.

Notation 5.15 Given a function, X : ∆→ V and a partition,

Π = {s = t0 < t1 < · · · < tr = t} ,

of [s, t] , let

X(Π) :=
∑
τ∈Π

Xτ−,τ =
r∑
i=1

Xti−1,ti .

Furthermore, given a partition, Π, of [0, T ] and (s, t) ∈ ∆ let

X(Π)st := X(Π[s,t]) =
∑

τ∈Π[s,t]

Xτ−,τ .

Definition 5.16. As usual, let ∆ := {(s, t) : 0 ≤ s ≤ t ≤ T} and p ≥ 1. We
say that a function, X : ∆ → V has finite p - variation if X is continuous,
Xt,t = 02 for all t ∈ [0, T ] , and

Vp (X) :=

(
sup

Π∈P(0,T )

∑
t∈Π

∥∥Xt−,t

∥∥p
V

)1/p

<∞.

Definition 5.17. Let θ > 1. A θ – almost additive functional (A.A.F.) is
a function X : ∆→ V of finite p -variation such that there exists a control, ω,
C <∞ such that

‖Xst −Xsu −Xut‖ ≤ Cω(s, t)θ for all 0 ≤ s ≤ u ≤ t ≤ T. (5.31)

If Eq. (5.31) holds for some θ > 1 and control ω, we say X is an (ω, p) –
almost additive functional.

Example 5.18. Suppose that Vp (f) + Vq (g) <∞ with θ := 1/p+ 1/q > 1,

Xst := f (s) (g (t)− g (s)) ,

and ω (s, t) be the control defined by

ω (s, t) := V pp
(
f |[s,t]

)
+ V qq

(
g|[s,t]

)
.

2 This is redundant since Vp (X) <∞ can only happen if Xt,t = 0 for all t.

Then

‖Xst −Xsu −Xut‖ =
∥∥∥∥ f (s) (g (t)− g (s))− f (s) (g (u)− g (s))

−f (u) (g (t)− g (u))

∥∥∥∥
≤ ‖(f (s)− f (u)) (g (t)− g (u))‖
≤ ‖f (s)− f (u)‖ ‖g (t)− g (u)‖

≤ Vp
(
f |[s,t]

)
Vq
(
g|[s,t]

)
≤ ω (s, t)1/p ω (s, t)1/q = ω (s, t)θ .

Thus Xst is a θ – A.A.F.

Notation 5.19 Suppose that X : ∆ → V is a any function and Π ⊂ [0, T ] is
a finite set and (s, t) ∈ ∆. Then define,

X (Π)s,t :=
∑

τ∈Π∩[s,t]∪{s,t}

Xτ−,τ .

The following lemma explains the reason for introducing this notation.

Lemma 5.20. Suppose that X : ∆ → V is a continuous function such
that Xt,t = 0 for all t ∈ [0, T ] and there exists Πn ∈ P (0, T ) such that
limn→∞ |Πn| = 0 and

Yst := lim
n→∞

X (Πn)s,t exists for (s, t) ∈ ∆.

Then Yst is an additive functional.

Proof. Suppose that 0 ≤ s < u < t ≤ T, then

Ysu + Yut = lim
n→∞

[
X (Πn)s,u +X (Πn)u,t

]
= lim
n→∞

X (Πn ∪ {u})s,t . (5.32)

If u ∈ Πn we have X (Πn ∪ {u})s,t = X (Πn)s,t while if u /∈ Πn, then∥∥∥X (Πn ∪ {u})s,t −X (Πn)s,t
∥∥∥ =

∥∥Xu−,u +Xu,u+ −Xu−,u

∥∥
≤
∥∥Xu−,u

∥∥+
∥∥Xu,u+

∥∥+
∥∥Xu−,u

∥∥ ≤ 3 · δn

where
δn := max {‖Xs,t‖ : (s, t) ∈ ∆ 3 |t− s| ≤ |Πn|} .

As δn → 0 by the uniform continuity of Xs,t, we see that

lim
n→∞

X (Πn ∪ {u})s,t = lim
n→∞

X (Πn)s,t = Yst

which combined with Eq. (5.32) shows Yst is additive.
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Lemma 5.21. If X : ∆→ V is a (θ, ω) – almost additive functional, then there
is at most one additive functional, Y : ∆→ V, such that

‖Yst −Xst‖ ≤ Cω (s, t)θ for all (s, t) ∈ ∆

for some C <∞.

Proof. If Z : ∆ → V is another such additive functional. Then Ust :=
Yst − Zst is an additive functional such that

‖Ust‖ = ‖Yst − Zst‖ ≤ ‖Yst −Xst‖+ ‖Xst − Zst‖ ≤ 2Cω (s, t)θ .

Therefore if Π ∈ P (s, t) , we have

‖Ust‖ =

∥∥∥∥∥∑
τ∈Π

Uτ−,τ

∥∥∥∥∥ ≤∑
τ∈Π

∥∥Uτ−,τ∥∥ ≤ 2C
∑
τ∈Π

ω (τ−, τ)θ → 0 as |Π| → 0.

Lemma 5.22. Suppose Π = {s = t0 < · · · < tr = t} with r ≥ 2 and ω is a
control. Then there exists j ∈ {1, 2, . . . , r − 1} such that

ω(tj−1, tj+1) ≤ min
(

2
r − 1

, 1
)
ω(s, t) (5.33)

Proof. If r = 2, we take j = 1 in which case ω(tj−1, tj) = ω (s, t) and Eq.
(5.33) clearly holds. Now suppose r ≥ 3. Considering these intervals two at a
time, by super-additivity, we have,

∞∑
k=0

ω (t2k, t2k+2) 12k+2≤r = ω(t0, t2) + ω(t2, t4) + ω(t4, t6) + · · · ≤ ω(s, t)

and
∞∑
k=0

ω (t2k−1, t2k+1) 12k+1≤r = ω(t1, t3) + ω(t3, t5) + ω(t5, t7) + · · · ≤ ω(s, t).

Adding these two equations then dividing by r − 1 shows

1
r − 1

r−1∑
j=1

ω(tj−1, tj+1) ≤ 2
r − 1

ω(s, t)

from which it follows that (5.33) holds for some j.

Proposition 5.23. Suppose that X : ∆ → V is an (ω, θ) – almost additive
functional. Then for any partition, Π ∈ P (s, t) , we have

‖X (Π)−Xs,t‖ ≤ ζ (θ)ωθ (s, t) .

Proof. For any τ ∈ Π ∩ (s, t) , let Π (τ) := Π \ {τ} and observe that

‖X (Π)−X (Π (τ))‖ =
∥∥Xτ−,τ+ −Xτ−,τ −Xτ,τ+

∥∥ ≤ ω (τ−, τ+)θ . (5.34)

Thus making use of Lemma 5.22 implies,

min
τ∈Π∩(s,t)

‖X (Π)−X (Π (τ))‖ ≤ min
τ∈Π∩(s,t)

ω (τ−, τ+)θ ≤ min
(

2
|Π| − 2

, 1
)θ

ωθ(s, t).

Thus we remove points τ from Π∩(s, t) so as to minimize the error to eventually
learn,

‖X (Π)−Xs,t‖ ≤

|Π|−2∑
k=1

1
kθ

ωθ (s, t) ≤ ζ (θ)ωθ (s, t) .

Theorem 5.24. Let X : ∆→ V be a continuous (ω, θ) – almost additive func-
tional and Π denote a partition of [0, T ] . Then

Yst := lim
|Π|→0

X (Π)st exists uniformly in (s, t) ∈ ∆. (5.35)

Moreover, Y : ∆→ V is a continuous additive functional and Yst is the (unique)
additive functional such that

‖Yst −Xst‖ ≤ Cω (s, t)θ for all (s, t) ∈ ∆ (5.36)

for some C <∞. In fact according to Proposition 5.23 we know that C may be
chosen to be ζ (θ) .

Proof. Suppose that Π,Π ′ ∈ P (s, t) with Π ⊂ Π ′ and for ε > 0 let

δ (ε) := max
|τ−σ|≤ε

ωθ−1 (σ, τ) .

(Observe that δ (ε) ↓ 0 as ε ↓ 0.) Then making use of Proposition 5.23 we find,
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‖X (Π ′)−X (Π)‖ =

∥∥∥∥∥∑
τ∈Π

(
X (Π ′)τ−,τ −Xτ−,τ

)∥∥∥∥∥
≤
∑
τ∈Π

∥∥∥X (Π ′)τ−,τ −Xτ−,τ

∥∥∥
≤ ζ (θ)

∑
τ∈Π

ωθ (τ−, τ)

≤ ζ (θ) max
|τ−σ|≤|Π|

ω (τ, σ)θ−1
∑
τ∈Π

ω (τ−, τ)

= ζ (θ) δ (|Π|) max
|τ−σ|≤|Π|

ω (τ, σ)θ−1 · ω (s, t) .

Now let Π1, Π2 ∈ P (0, T ) be arbitrary and apply the previous inequality with
Π ′ = [Π1 ∪Π2][s,t] and Π being either [Π1][s,t] or [Π2][s,t] to find,

‖[X (Π1)−X (Π2)]st‖ ≤ ‖[X (Π1)−X (Π1 ∪Π2)]st‖
+ ‖[X (Π1 ∪Π2)−X (Π2)]st‖
≤ ζ (θ)ω (s, t) · [δ (|Π1|) + δ (|Π2|)]
≤ ζ (θ)ω (0, T ) · [δ (|Π1|) + δ (|Π2|)] .

Therefore,

max
(s,t)∈∆

‖[X (Π1)−X (Π2)]st‖ ≤ ζ (θ)ω (0, T ) · [δ (|Π1|) + δ (|Π2|)]

which tends to zero as |Π1| , |Π2| → 0. This proves Eq. (5.35). The remaining
assertions of the theorem were already proved in Lemma 5.20 and Lemma 5.21.

Corollary 5.25. Let X : ∆ → V be a continuous (ω, θ) – almost additive
functional of finite p – variation, then the unique associated additive functional,
Y, of Theorem 5.24 is also of finite p – variation and

Vp (Y ) ≤ Vp (X) + Cω (0, T )θ . (5.37)

Proof. By the triangle inequality,

Vp (Y ) ≤ Vp (Y −X) + Vp (X)

and using Eq. (5.36), for any Π ∈ P (0, T ) ,

V pp (Y −X : Π) ≤ Cp
∑
τ∈Π

ω (τ−, τ)θp ≤ Cpω (0, T )θp−1
∑
τ∈Π

ω (τ−, τ)

≤ Cpω (0, T )θp−1
ω (0, T ) = Cpω (0, T )θp .

Hence it follows that Vp (Y −X) ≤ Cω (0, T )θ .

5.2 Young’s ODE

Now suppose that 1 < p < 2, so that θ := 1
p+ 1

p = 2/p > 1. Also let V and W be
Banach spaces, f : W → End (V,W ) be a Lipschitz function, x ∈ Cp ([0, T ] , V )
and consider the ODE,

ẏ (t) = f (y (t)) ẋ (t) with y (0) = y0. (5.38)

Definition 5.26. We say that a function, y : [0, T ] → V, solves Eq. (5.38) if
y ∈ Cp ([0, T ] ,W ) and y satisfies the integral equation,

y (t) = y0 +
∫ t

0

f (y (τ)) dx (τ) , (5.39)

where the latter integral is a the Young integral.

Recall from Lemma 5.12 that

Vp (f (y)) ≤ kVp (y) , (5.40)

where k is the Lipschitz constant for f and hence the integral in Eq. (5.39) is
well defined. In order to consider existence, uniqueness, and continuity in the
driving path x of Eq. (5.46) we will need a few more facts about p – variations.

5.3 An a priori – Bound

Before going on to existence, uniqueness and the continuous dependence of
initial condition and the driving noise for Eq. (5.39), we will pause to prove an
a priori bound on the solution to Eq. (5.39) which is valid under less restrictive
conditions on f.

Proposition 5.27 (Discrete Gronwall’s Inequalities). Suppose that
ui, αi, βi ≥ 0 satisfy

ui+1 ≤ αiui + βi,

then

un ≤ αn−1 . . . α1α0u0 +
n−1∑
k=0

n−1−k∏
j=1

αj

βk. (5.41)

Moreover if αi = α is constant (so that ui+1 ≤ αui + βi, then this reduces to

un ≤ αnu0 +
n−1∑
i=0

αn−1−iβi (5.42)

≤ αnu0 + αn−1
n−1∑
i=0

βi if α ≥ 1. (5.43)
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If we further assume βi = β is constant (so that ui+1 ≤ αui + β), then

un ≤ αn
(
u0 +

1− α−n

α− 1
β

)
. (5.44)

If we further assume that α > 1 , then

un ≤ αn
(
u0 +

β

α− 1

)
. (5.45)

Proof. The inequality in Eq. (5.41) is proved inductively as

u1 ≤ α0u0 + β0

u2 ≤ α1u1 + β1 ≤ α1 (α0u0 + β0) + β1 = α1α0u0 + α1β0 + β1

u3 ≤ α2u2 + β2 ≤ α2 (α1α0u0 + α1β0 + β1) + β2 = α2α1α0u0 + α2α1β0 + α2β1 + β2,

etc.
Since the special case where αi = α is the most important case to us, let us

give another proof for this case. If we let vi := α−iui, then

vi+1 = α−(i+1)ui+1 ≤ α−(i+1) (αui + βi) = vi + α−(i+1)βi

which is to say,
vi+1 − vi ≤ α−(i+1)βi.

Summing this expression on i implies,

α−nun − u0 = vn − v0 =
n−1∑
i=0

(vi+1 − vi) ≤
n−1∑
i=0

α−(i+1)βi

which upon solving for un gives Eq. (5.42). When βi = β is constant, we use

n−1∑
i=0

αn−1−i =
n−1∑
i=0

αi =
αn − 1
α− 1

in Eq. (5.42) to learn,

un ≤ αnu0 +
αn − 1
α− 1

β = αn
(
u0 +

1− α−n

α− 1
β

)
which is Eq. (5.44).

Theorem 5.28 (A priori Bound). Let 1 < p < 2, f (y) be a Lipschitz func-
tion, and x ∈ C ([0, T ]→ V ) be a path such that Vp (x) <∞. Then there exists
C (p) <∞ such that for all solutions to Eq. (5.39),

V pp (y) ≤ C (p) eC(p)kpV pp (x)
(
‖y0‖p + ‖f (0)‖p V pp (x)

)
(5.46)

where k is the Lipschitz constant for f.

Proof. Let ω (s, t) := V pp (x : [s, t]) be the control associated to x and define

κ = κ (p) := 1 + ζ (2/p) .

If y solves Eq. (5.39), then

y (t) = y (s) +
∫ t

s

f (y (τ)) dx (τ) for all 0 ≤ s ≤ t ≤ T.

So by By Corollary 5.8 (with p = q) along with Eq. (5.40), we learn that

Vp (y : [s, t]) = Vp

(∫ ·
s

f (y) dx : [s, t]
)

≤ [‖f (y (s))‖+ κVp (f (y) : [s, t])]Vp (x : [s, t])

≤ [‖f (y (s))‖+ κkVp (y : [s, t])]ω (s, t)1/p

or equivalently, with c := κk,(
1− cω (s, t)1/p

)
Vp (y : [s, t]) ≤ ‖f (y (s))‖ω (s, t)1/p .

Therefore it follows that

Vp (y : [s, t]) ≤ 2ω (s, t)1/p ‖f (y (s))‖ if ω (s, t)1/p ≤ 1/2c. (5.47)

Since
‖f (y)‖ ≤ ‖f (y)− f (0)‖+ ‖f (0)‖ ≤ k ‖y‖+ ‖f (0)‖

and
‖y (t)‖ ≤ ‖y (s)‖+ Vp (y : [s, t]) ,

it follows from Eq. (5.47) that

Vp (y : [s, t]) ≤ 2ω (s, t)1/p [k ‖y (s)‖+ ‖f (0)‖] (5.48)

≤ 1
κ
‖y (s)‖+ 2ω (s, t)1/p ‖f (0)‖ if ω (s, t)1/p ≤ 1/2c (5.49)

and

‖y (t)‖ ≤
(

1 +
1
κ

)
‖y (s)‖+ 2ω (s, t)1/p ‖f (0)‖ if ω (s, t)1/p ≤ 1/2c. (5.50)

In order to make use of this result, let h (t) := ω (0, t) . Write h (T ) =
n
(

1
2c

)p + r where 0 ≤ r <
(

1
2c

)p and then choose 0 = t0 < t1 < t2 < · · · < tn ≤
tn+1 := T such that h (ti) = i

(
1
2c

)p for 0 ≤ i ≤ n. We then have

ω (ti, ti+1) ≤ h (ti+1)− h (ti) =
(

1
2c

)p
for 0 ≤ i ≤ n.
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Therefore we may conclude from Eq. (5.50) that

‖y (ti+1)‖ ≤
(

1 +
1
κ

)
‖y (ti)‖+ 2ω (ti, ti+1)1/p ‖f (0)‖ for i = 0, 1, 2 . . . , n

and hence that,

‖y (ti+1)‖p ≤ 2p−1

(
1 +

1
κ

)p
‖y (ti)‖p + 22p−1ω (ti, ti+1) ‖f (0)‖p

≤ (2e)p ‖y (ti)‖p + 22p−1ω (ti, ti+1) ‖f (0)‖p

≤ 4p (‖y (ti)‖p + ω (ti, ti+1) ‖f (0)‖p) .

Therefore by an application of the discrete Gronwall inequality in Eq. (5.43) we
have,

‖y (ti)‖p ≤ 4ip ‖y0‖p + 4(i−1)p ‖f (0)‖p
i−1∑
l=0

ω (tl, tl+1)

≤ 4ip ‖y0‖p + 4(i−1)p ‖f (0)‖p ω (0, ti)

and in particular it follows that

‖y (T )‖p ≤ 4(n+1)p ‖y0‖p + 4np ‖f (0)‖p ω (0, T ) .

Going back to Eq. (5.49) we have,

V pp (y : [s, t]) ≤ 2p−1

(
1
κ

)p
‖y (s)‖p + 22p−1ω (s, t) ‖f (0)‖p if ω (s, t)1/p ≤ 1/2c

and therefore,

V pp (y : [ti, ti+1]) ≤2p−1

(
1
κ

)p
‖y (ti)‖p + 22p−1ω (ti, ti+1) ‖f (0)‖p

≤2p−1

(
1
κ

)p [
4ip ‖y0‖p + 4(i−1)p ‖f (0)‖p ω (0, ti)

]
+ 22p−1ω (ti, ti+1) ‖f (0)‖p

≤C (p) (‖y0‖p + ‖f (0)‖p ω (0, T )) 4ip.

Summing this result on i and making use of Corollary 4.4 then implies,

V pp (y : [0, T ]) ≤ (n+ 1)p−1
n∑
i=0

V pp (y : [ti, ti+1])

≤ (n+ 1)p−1
C (p) (‖y0‖p + ‖f (0)‖p ω (0, T ))

4(n+1)p − 1
4− 1

≤ C (p) (‖y0‖p + ‖f (0)‖p ω (0, T )) 4(n+1)p (n+ 1)p−1
.

Finally, observing that n
(

1
2c

)p ≤ h (T ) = ω (0, T ) so that n ≤ (2c)p ω (0, T ) we
have,

V pp (y : [0, T ]) ≤ C (p) (‖y0‖p + ‖f (0)‖p ω (0, T )) 4((2c)pω(0,T )+1)p ((2c)p ω (0, T ) + 1)p−1

≤ C (p) eC(p)kpω(0,T ) (‖y0‖p + ‖f (0)‖p ω (0, T )) ,

which is Eq. (5.46).

5.4 Some p – Variation Estimates

Lemma 5.29. Suppose that f ∈ Cp ([0, T ] ,End (V,W )) and x ∈ Cp ([0, T ] , V ) ,
then (fx) (t) = f (t)x (t) is in Cp ([0, T ] ,W ) and

Vp (fx) ≤ 2 [‖f‖u Vp (x) + ‖x‖u Vp (f)] . (5.51)

Proof. Let Π ∈ P (0, T ) , t ∈ Π and f− := f (t−) and x− := x (t−) , then

‖∆t (fx)‖ = ‖(f− +∆tf) (x− +∆tx)− f−x−‖
= ‖f−∆tx+∆tfx− +∆tf∆tx‖

≤ ‖f‖u ‖∆tx‖+ ‖x‖u ‖∆tf‖+
1
2

(‖∆tf∆tx‖+ ‖∆tf∆tx‖)

≤ ‖f‖u ‖∆tx‖+ ‖x‖u ‖∆tf‖+
1
2

(2 ‖f‖u ‖∆tx‖+ 2 ‖x‖u ‖∆tf‖)

≤ 2 (‖f‖u ‖∆tx‖+ ‖x‖u ‖∆tf‖) .

Therefore it follows that

Vp (fx : Π) ≤ 2 ‖f‖u Vp (x : Π) + 2 ‖x‖u Vp (f : Π)

from which the result follows.

Theorem 5.30. Suppose that W and Z are Banach spaces and
f ∈ C2 (W → Z) with f ′ ∈ C1 (W → End (W,Z)) and f ′′ ∈
C (W → End (W,End (W,Z))) both being bounded functions. If y0, y1 ∈
Cp ([0, T ]→W ) , then

Vp (f (y1)− f (y0)) ≤ 2 ‖f ′‖u Vp (y1 − y0)+‖f ′′‖u [Vp (y0) + Vp (y1)] ‖y1 − y0‖u .
(5.52)

Proof. Let
k := ‖f ′‖u , M := ‖f ′′‖u ,

and for the moment suppose that y0, y1 are elements of W. Letting
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ys := y0 + s (y1 − y0) = (1− s) y0 + sy1,

we have, by the fundamental theorem of calculus,

f (y1)−f (y0) =
∫ 1

0

d

ds
f (ys) ds =

∫ 1

0

f ′ (ys) (y1 − y0) ds. =: F (y0, y1) (y1 − y0)

Thus if we define,

F (y0, y1) :=
∫ 1

0

f ′ (ys) ds, (5.53)

then
f (y1)− f (y0) = F (y0, y1) (y1 − y0) . (5.54)

Let us observe that if ỹ0 and ỹ1 are two more such points in W, then

‖F (y0, y1)− F (ỹ0, ỹ1)‖ =
∥∥∥∥∫ 1

0

f ′ (ys) ds−
∫ 1

0

f ′ (ỹs) ds
∥∥∥∥

=
∥∥∥∥∫ 1

0

[f ′ (ys)− f ′ (ỹs)] ds
∥∥∥∥

≤
∫ 1

0

‖f ′ (ys)− f ′ (ỹs)‖ ds ≤M
∫ 1

0

‖ys − ỹs‖ ds

≤M
∫ 1

0

((1− s) ‖y0 − ỹ0‖+ s ‖y1 − ỹ1‖) ds

=
1
2
M [‖y0 − ỹ0‖+ ‖y1 − ỹ1‖] .

So in summary we have,

f (y1)− f (y0) = F (y0, y1) (y1 − y0)

where F : W ×W → Z is bounded Lipschitz function satisfying,

‖F‖u ≤ k and

‖F (y0, y1)− F (ỹ0, ỹ1)‖ ≤ 1
2
M [‖y0 − ỹ0‖+ ‖y1 − ỹ1‖] .

Therefore

Vp (f (y1)− f (y0)) = Vp (F (y0, y1) (y1 − y0))
≤ 2 [kVp (y1 − y0) + ‖y1 − y0‖u Vp (F (y0, y1))] .

Since,

‖∆tF (y0, y1)‖ = ‖F (y0 (t) , y1 (t))− F (y0 (t−) , y1 (t−))‖

≤ 1
2
M [‖∆ty0‖+ ‖∆ty1‖] ,

we learn that
Vp (F (y0, y1)) ≤ 1

2
M [Vp (y0) + Vp (y1)] .

Putting this all together gives the result in Eq. (5.52).

5.5 An Existence Theorem

We are now prepared to prove our basic existence, uniqueness, and continuous
dependence on data theorem for Eq. (5.39).

Theorem 5.31 (Local Existence of Solutions). Let p ∈ (1, 2) and κ :=
1 + ζ (2/p) < ∞. Suppose that f : W → End (V,W ) is a C2 – func-
tion such that f ′ and f ′′ are both bounded functions. Then there exists
ε0 = ε0 (‖f ′‖u , ‖f ′′‖u , p, ‖f (y0)‖) such that for all x ∈ Cp ([0, T ]→ V ) with
Vp (x) ≤ ε0, there exists a solution to Eq. (5.39).

Proof. Let

WT := {y ∈ Cp ([0, T ] ,W ) : y (0) = y0} .

Then by Proposition 4.6, we know (WT , ρ) is a complete metric space where
ρ (y, z) := Vp (y − z) for all For y, z ∈WT .

We now define S : WT →WT via,

S (y) (t) := y0 +
∫ t

0

f (y) dx.

Our goal is to show that S is a contraction and then apply the contraction
mapping principle to deduce the result. For this to work we are going to have
to restrict our attention to some ball, Cδ, about the constant path y0 and at the
same time shrink T in such a way that S (Cδ) ⊂ Cδ and S|Cδ is a contraction.
We now carry out the details.

First off if y ∈ Cδ ⊂WT , then

Vp (S (y)) ≤ [‖f (y0)‖+ κVp (f (y))]Vp (x) ≤ [‖f (y0)‖+ κ ‖f ′‖u Vp (y)]Vp (x)
≤ ‖f (y0)‖Vp (x) + κ ‖f ′‖u Vp (x) δ. (5.55)

Secondly, if y, z ∈ Cδ ⊂WT , then

[S (y)− S (z)] (t) :=
∫ t

0

(f (y)− f (z)) dx
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Therefore, making use of the fact that f (y) = f (z) at t = 0, we find that

Vp (S (y)− S (z)) ≤ κVp (f (y)− f (z))Vp (x)
≤ κ {2 ‖f ′‖u Vp (y − z) + ‖f ′′‖u [Vp (z) + Vp (y)] ‖y − z‖u}Vp (x)
≤ κVp (x) {2 ‖f ′‖u + ‖f ′′‖u [Vp (z) + Vp (y)]}Vp (y − z)
≤ 2κVp (x) {‖f ′‖u + δ ‖f ′′‖u}Vp (y − z) . (5.56)

So in order for this scheme to work we must require, for some α ∈ (0, 1) , that

(‖f (y0)‖+ κ ‖f ′‖u δ)Vp (x) ≤ δ and (5.57)
2κVp (x) {‖f ′‖u + δ ‖f ′′‖u} ≤ α. (5.58)

But according to Lemma 5.32 with ε := Vp (x) , a = ‖f (y0)‖ , A := κ ‖f ′‖u
and B := κ ‖f ′′‖u , all of this can be achieved if Vp (x) = ε ≤ ε0 (α, a,A,B) .
So under this assumption on Vp (x) and with the choice of δ in Lemma 5.32,
S : Cδ → Cδ is a contraction and hence the result follows by the contraction
mapping principle.

Lemma 5.32. Let a, A, and B be positive constants and α ∈ (0, 1) . Then there
exists ε0 (α, a,A,B) > 0 such that for ε ≤ ε0, there exists δ ∈ (0,∞) such that

(a+As) ε ≤ δ and 2Aε+ 2Bεs ≤ α for 0 ≤ s ≤ δ. (5.59)

Proof. Our goal is to satisfy Eq. (5.59) while allowing for ε to be essentially
as large as possible. The worst case scenarios in these inequalities is when s = δ
and in this case the inequalities state,

aε

1−Aε
≤ δ ≤ α− 2Aε

2Bε

provided Aε < 1.
Letting M := 1/ε we may rewrite the condition on ε as M > A and

a

M −A
≤ αM − 2A

2B

which gives,
2aB ≤ (M −A) (αM − 2A) ,

i.e.
αM2 − (2 + α)AM + 2

(
A2 − aB

)
≥ 0

or equivalently,

0 ≤M2 − 2 + α

α
AM + 2

A2 − aB
α

=
(
M − 2 + α

2α
A

)2

+ 2
A2 − aB

α
−
(

2 + α

2α
A

)2

.

Thus we must choose (if 2A
2−aB
α −

(
2+α
2α A

)2 ≤ 0),

1
ε

= M ≥ 2 + α

2α
A+

√(
2 + α

2α
A

)2

+ 2
aB −A2

α
.

Thus we need to take

ε0 := min

αA−1,

2 + α

2α
A+

√(
2 + α

2α
A

)2

+ 2
aB −A2

α


−1
 .

Corollary 5.33 (Global Existence). Suppose that f : W → End (V,W ) is
a C2 – function such that f ′ and f ′′ are both bounded functions. Then for all
x ∈ Cp ([0, T ]→ V ) , there exists a solution to Eq. (5.39).

Proof. Let ε := ε0
(
‖f ′‖u , ‖f ′′‖u , p, ‖f (y0)‖+KN1/p

)
where N denotes

the right side of the a priori bound in Eq. (5.46) and ε0 is the function appearing
in Theorem 5.31. Further let ω (s, t) := V pp (x : [s, t]) and h (t) := ω (0, T ) . If
Vp (x) ≤ ε we are done by Theorem 5.31. If Vp (x) > ε, then write h (T ) = nεp+r
with n ∈ Z+ and 0 ≤ r < εp. Then use the intermediate value theorem to find,
0 = T0 < T1 < T2 < · · · < Tn ≤ Tn+1 = T such that h (Ti) = iεp. With this
choice we have ω (Ti−1, Ti) ≤ h (Ti)− h (Ti−1) ≤ εp for 1 ≤ i ≤ n + 1. So by a
simple induction argument, there exists y ∈ C ([0, T ]→W ) such that, for each
1 ≤ i ≤ n+ 1, y ∈ Cp ([Ti−1, Ti]→W ) and

y (t) = y (Ti−1) +
∫ t

Ti−1

f (y) dx for t ∈ [Ti−1, Ti] . (5.60)

It now follows from Corollary 4.4 that y ∈ Cp ([0, T ]→W ) . Summing the
identity,

y (Tk)− y (Tk−1) =
∫ Tk−1

Tk−1

f (y) dx,

on k implies,

y (Ti−1)− y0 =
∑

1≤k<i

∫ Tk−1

Tk−1

f (y) dx =
∫ Ti−1

0

f (y) dx

which combined with Eq. (5.60) implies,

y (t) = y0 +
∫ t

0

f (y) dx. (5.61)
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Theorem 5.34 (Uniqueness of Solutions). Keeping the same assumptions
as in Corollary 5.33, then the solution to Eq. (5.39) is unique.

Proof. Suppose that z ∈ Cp ([0, T ]→ V ) also solves Eq. (5.39), i.e.

z (t) = y0 +
∫ t

0

f (z (τ)) dx (τ) .

Then, with w (t) := z (t)− y (t) , we have

w (t) =
∫ t

0

[f (z (τ))− f (y (τ))] dx (τ)

and therefore,

Vp (w : [0, t]) ≤ κVp (f ◦ z − f ◦ y : [0, t])Vp (x : [0, t])
≤ C (f, Vp (w) , Vp (z))Vp (x : [0, t])Vp (w : [0, t]) ,

wherein we have used Eq. (5.52) for the second inequality. Thus if T1 is chosen
so that

C (f, Vp (w) , Vp (z))Vp (x : [0, T1]) < 1

it follows that Vp (w : [0, T1]) = 0 and hence that w|[0,T1] = 0. Similarly we may
now show that w|[T1,T2] = 0 provided

C (f, Vp (w) , Vp (z))Vp (x : [T1, T2]) < 1.

Working as in the proof of Corollary 5.33, it is now easy to conclude that w ≡ 0.

5.6 Continuous dependence on the Data

Let us now consider the issue of continuous dependence on the driving path, x.
Recall the estimate,

Vp (f (y1)− f (y0)) ≤ 2 ‖f ′‖u Vp (y1 − y0) + ‖f ′′‖u [Vp (y0) + Vp (y1)] ‖y1 − y0‖u
≤ C (f, Vp (y0) + Vp (y1)) (‖y1 − y0‖u + Vp (y1 − y0))
≤ C (f, Vp (y0) + Vp (y1)) (‖y1 (0)− y0 (0)‖+ Vp (y1 − y0))

where C (f, ξ) is a constant depending on ‖f ′‖u , ‖f ′′‖u , and ξ ≥ 0.

Theorem 5.35. Let Yt (y0 : x) := y (t) where y solves Eq. (5.39). Then assum-
ing the f ′ and f ′′ are bounded, then Y

Y : W × Cp ([0, T ] , V )→ Cp ([0, T ] ,W )

is uniformly continuous on bounded subsets of W × Cp ([0, T ] , V ) .

Proof. Let that u ∈ Cp ([0, T ] , V ) and v0 ∈W and suppose that v solves,

v (t) = v0 +
∫ t

0

f (v (τ)) du (τ) .

Let w (t) := y (t)− v (t) so that

w (t) =
∫ t

0

f (y (τ)) dx (τ)−
∫ t

0

f (v (τ)) du (τ)

=
∫ t

0

f (y (τ)) d (x− u) (τ) +
∫ t

0

[f (y (τ))− f (v (τ))] du (τ)

and therefore,

w (t) = w (s) +
∫ t

s

f (y (τ)) d (x− u) (τ) +
∫ t

s

[f (y (τ))− f (v (τ))] du (τ)

and hence
Vp (w : [s, t]) ≤ A (s, t) +B (s, t)

where

A (s, t) = Vp

(∫ ·
s

f (y (τ)) d (x− u) (τ) : [s, t]
)

and

B (s, t) = Vp

(∫ ·
s

[f (y (τ))− f (v (τ))] du (τ) : [s, t]
)
.

We now estimate each of these expressions as;

A (s, t) ≤ (‖f (y (s))‖+ κVp (f ◦ y : [s, t]))Vp (x− u : [s, t])
≤ (‖f (y (s))‖+ κKVp (y : [s, t]))Vp (x− u : [s, t])
≤ C (p, f, ‖y0‖ , Vp (x))Vp (x− u : [s, t])

and

B (s, t) = Vp

(∫ ·
s

[f (y (τ))− f (v (τ))] du (τ) : [s, t]
)

≤ ‖f (y (s))− f (v (s))‖+ κVp (f ◦ y − f ◦ v : [s, t])Vp (u : [s, t])
≤ C (f, Vp (y) + Vp (v))Vp (u : [s, t]) (‖y (s)− v (s)‖+ Vp (y − v : [s, t]))
= C (p, f, ‖y0‖ , Vp (x) , Vp (u))Vp (u : [s, t]) (‖w (s)‖+ Vp (w : [s, t])) ,

wherein we have used the a priori bounds that we know of y and v. Thus we
have,

Vp (w : [s, t]) ≤ C1Vp (x− u : [s, t]) + C2Vp (u : [s, t]) (‖w (s)‖+ Vp (w : [s, t])) .
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The result follows from this estimate via the usual iteration procedure based
on keeping C2Vp (u : [s, t]) ≤ 1/2 so that

Vp (w : [s, t]) ≤ 2C1Vp (x− u : [s, t]) + ‖w (s)‖ .

say. For example choose T1 so that C2Vp (u : [0, T1]) = 1/2, then

Vp (w : [0, T1]) ≤ 2C1Vp (x− u : [0, T1]) + ‖y0 − v0‖ .

Then choose T2 such that C2Vp (u : [T1, T2]) = 1/2 to learn,

Vp (w : [T1, T2]) ≤ 2C1Vp (x− u : [T1, T2]) + ‖w (T1)‖
≤ 2C1Vp (x− u : [T1, T2]) + ‖y0 − v0‖+ Vp (w : [0, T1])
≤ 2C1 (Vp (x− u : [0, T1]) + Vp (x− u : [T1, T2])) + 2 ‖y0 − v0‖ .

Continuing on in this vain and them making use of Corollary 4.4 gives the
claimed results.

Remark 5.36. This result could be used to give another proof of existence of
solutions, namely, we just extend

Y : W × C1 ([0, T ] , V )→ Cp ([0, T ] ,W )

by continuity to W × Cp ([0, T ] , V ) .

5.7 Towards Rougher Paths

Let us now begin to address the question of solving the O.D.E.,

dyt = f(yt)dxt with y0 = ξ, (5.62)

when Vp (x) =∞ for p < 2.

Lemma 5.37. If a : R→ R is a Lipschitz vector field on R, f (y) = a (y) , and
x ∈ C1 ([0, T ] ,R) , then Eq. (5.62) has solution given by

yt = e(xt−x0)a
∂
∂x (ξ).

In particular, yt (x, ξ) depends continuously on x in the sup-norm topology and
hence easily extends to rough paths.

Proof. Let z solve,

ż(τ) = a(z(τ)) with z(0) = ξ.

Then
d

dt
z(xt − x0) = a(z(xt − x0))ẋt with z(xt − x0)|t=0 = ξ.

The same type of argument works more generally. We state with out proof
the following theorem.

Theorem 5.38. If {Ai}mi=1 are commuting Lipschitz vector fields on Rd,
f (y)x :=

∑m
i=1 xiAi (y) for x ∈ Rm and y ∈ Rd, and x ∈ C1 ([0, T ] ,Rm)

then Eq. (5.62) becomes,

ẏt =
m∑
i=1

Ai(yt)ẋit with y0 = ξ.

This equation has a unique solution has a unique solution given by

yt = e
∑

(xit−x
i
0)Ai(ξ) = e(x

1
t−x

1
0)A1 ◦ · · · ◦ e(x

m
t −x

m
t )Am(ξ).

The next example shows however that life is more complicated when the
vector fields do not commute.

Example 5.39. Let A1 and A2 be the vector fields on R defined by A1 (r) = r
and A2 (r) = 1 or in differential operator form,

A1 := r
∂

∂r
and A2 :=

∂

∂r
.

Further let x = (x1, x2) ∈ C1
(
[0, T ] ,R2

)
so that the corresponding ODE be-

comes,

ẏt = A1 (yt) ẋ1
t +A2 (yt) ẋ2

t

= yt ẋ
1
t + ẋ2

t with y0 = ξ.

The solution to this equation is given by Duhamel’s principle as

yt = ex
1
t−x

1
0ξ +

∫ t

0

ex
1
t−x

1
sdx2

s.

To simplify life even further let us now suppose that ξ = 0 so that

yt (x) := ex
1
t

∫ t

0

e−x
1
sdx2

s.

This last expression is not continuous in x in the Vp – norm for any p > 2
which follows from Lemma 5.40 with x = (u (n) , v (n)) .
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Lemma 5.40. For simplicity suppose that T = 2π. Suppose ut (n) = 1
n cosn2t

and vt(n) = 1
n sin n2t, then∫ t

0

e−us(n)dvs (n) = o (1)− 1
2
t 9 0 as n→∞ (5.63)

while
Vp (u (n) , v (n)) = O

(
n2/p−1

)
(5.64)

which tends to 0 for p > 2 as n→∞.

Proof. For notational simplicity we will suppress the n from our notation.
By an integration by parts we have,∫ t

0

e−usdvs = e−usvs
∣∣t
0

+
∫ t

0

e−us u̇svsds

= o(1)−
∫ t

0

e−
1
n cos(n2s) sin2

(
n2s
)
ds

= o(1)−
∫ t

0

(
e−

1
n cos(n2s) − 1

)
sin2

(
n2s
)
ds−

∫ t

0

sin2
(
n2s
)
ds

= o(1)−
∫ t

0

O

(
1
n

)
· sin2

(
n2s
)
ds−

∫ t

0

sin2
(
n2s
)
ds

= o(1)−O
(

1
n

)
− 1

2

∫ t

0

(
1− cos

(
2n2s

))
ds

= o (1)− 1
2
t,

which proves Eq. (5.63).
By Theorem 2.10,

Vp (v (n)) � Vp (u (n)) �
[(

2
n

)p
· n2

]1/p
= O

(
1
n
n2/p

)
= O

(
n2/p−1

)
.

Equation (5.64) now follows from this estimate and the fact that

Vp (u, 0) ≤ Vp (u, v) ≤ Vp (u, 0) + Vp (0, v) .

Example 5.41. Let x (t) := (u (t) , v (t)) be a smooth path such that x (0) = 0
and consider the area process,

At :=
1
2

∫ t

0

(udv − vdu) .

By Green’s theorem, At, is the signed area swept out by x|[0,t] then followed by
the straight line path from x (t) back to the origin. Taking

xn (t) := (ut (n) , vt (n)) =
(

1
n

(
cosn2t− 1

)
,

1
n

sin n2t

)
we find,

At (n) =
1

2n2
n2

∫ t

0

[(
cosn2s− 1

)
cosn2s+ sin n2s

(
sin n2s

)]
ds

=
1
2

∫ t

0

[
1− cosn2s

]
ds =

1
2
t− 1

2n2
sin
(
n2t
)
→ 1

2
t as n→∞.

Whereas we have seen from above, that Vp (xn) ∼= O
(
n2/p−1

)
. This shows that

the area process is not continuous in the Vp - norm when p > 2 since Vp (xn)→ 0
but At (n)→ 1

2 t 6= 0.
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6

Rough Paths with 2 ≤ p < 3

We now are going to consider paths with finite p – variation for some p ∈
[2, 3). As we have seen above we have to add some additional information to get
a reasonable theory going. We first need to introduce the appropriate algebra.
As usual V with be a Banach space – which we will sometimes assume is finite
dimensional in order to avoid technical details.

6.1 Tensor Norms

Throughout the rest of this class, we will assume that V ⊗V has been equipped
with a tensor norm satisfying,

‖w ⊗ v‖ = ‖v ⊗ w‖ ≤ ‖v‖ ‖w‖ for all v, w ∈ V.

For example, if V is an inner product space, then there is a unique inner product
on V ⊗ V determined by

(v ⊗ w, v′ ⊗ w′) = (v, v′) (w,w′) for all v, w, v′, w′ ∈ V.

The norm associated to this inner product will satisfy the desired assumptions.
Here is another example of such a norm.

Example 6.1 (Projective Norm). Suppose again that V and W are Banach
spaces. The projective norm of ξ ∈ V ⊗W is defined by

‖ξ‖ := inf

{∑
i

‖vi‖ ‖wi‖ : ξ =
∑
i

vi ⊗ wi

}
.

It is easy to check that this satisfies the properties of norm modulo showing
‖ξ‖ = 0 implies ξ = 0.

Before checking ‖·‖ is a norm (see Corollary 6.3), let us observe the following
property.

Lemma 6.2. Suppose that E is another Banach space and Q : V ×W → E is
a bilinear form and let Q̃ : V ⊗W → E be corresponding linear map on V ⊗W
to E. Then

∥∥∥Q̃∥∥∥
op

= ‖Q‖ . Because of this property, in the future we will no

longer distinguish between Q and Q̃.

Proof. Then for ξ =
∑
i

vi ⊗ wi, we have

∣∣∣Q̃ (ξ)
∣∣∣
E

=

∣∣∣∣∣∑
i

Q (vi, wi)

∣∣∣∣∣ ≤∑
i

|Q (vi, wi)| ≤ ‖Q‖
∑
i

‖vi‖ ‖wi‖ ,

where ‖Q‖ is the best constant for which the last inequality holds. Taking the
infimum over all such decomposition of ξ shows∣∣∣Q̃ (ξ)

∣∣∣
E
≤ ‖Q‖ ‖ξ‖

and therefore
∥∥∥Q̃∥∥∥

op
≤ ‖Q‖ . Let α ∈ (0, ‖Q‖) and choose v ∈ V and w ∈ W

such that |Q (v, w)| ≥ α |v| |w| . Then∣∣∣Q̃ (v ⊗ w)
∣∣∣
E

= |Q (v, w)| ≥ α |v| |w| ≥ α |v ⊗ w|

from which it follows that
∥∥∥Q̃∥∥∥

op
≥ α. Since α ∈ (0, ‖Q‖) was arbitrary, it

follows that
∥∥∥Q̃∥∥∥

op
≥ ‖Q‖ .

Corollary 6.3. Assume that ‖ξ‖ is defined as in Example 6.1. If ‖ξ‖ = 0 then
ξ = 0.

Proof. If ξ 6= 0 we may write

ξ :=
n∑
i=1

vi ⊗ wi

with {vi}ni=1 being a linearly independent set and each wi 6= 0. Choose α ∈ V ∗
such that α (vi) = δi1 and β ∈ W ∗ such that β (w1) = 1. Then Q (v, w) :=
α (v)β (w) is a continuous bilinear form on V ×W with ‖Q‖ = ‖α‖ ‖β‖ > 0.
Thus we have

1 = |Q (ξ)| ≤ ‖Q‖ ‖ξ‖

from which it follows that ‖ξ‖ > 0.
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6.2 Algebraic Preliminaries

Notation 6.4 let σ : V ⊗ V → V ⊗ V be the map determined by, σ (v ⊗ w) =
w ⊗ v and define,

Λ2 (V ) := {ξ ∈ V ⊗ V : σξ = −ξ} and

S2 (V ) := {ξ ∈ V ⊗ V : σξ = ξ} .

Furthermore, for a, b ∈ V, let

[a, b] := ab− ba ∈ Λ (V ) and

a ∨ b := ab+ ba ∈ S2 (V ) .

Observe that if ξ ∈ V ⊗ V, then

ξ =
1
2

(ξ + σξ) +
1
2

(ξ − σξ) ∈ S2 (V )⊕ Λ2 (V )

and in particular,

a⊗ b =
1
2

(a ∨ b+ [a, b]) ,

so that
V ⊗ V = S2 (V )⊕ Λ2 (V ) .

Definition 6.5. Let A (V ) := T (2) (V ) := R⊕ V ⊕ V ⊗ V which we make into
an algebra via the multiplication rule,

(a+ v + ξ) (b+ w + η) = ab+ (aw + vb) + (bξ + aη + v ⊗ w) .

We are now going to drop the tensor symbol from the notation.

Lemma 6.6. The subset,

G (V ) := {g ∈ A (V ) : g = 1 + v + ξ with v ∈ V and ξ ∈ V ⊗ V } ,

is a group under the multiplication coming from A (V ) . The identity element is
1 and the inverse to g is given by

g−1 = 1− v − ξ + v2.

Proof. If h := 1 + w + η then

gh = (1 + v + ξ) (1 + w + η) = 1 + (v + w) + (ξ + η + vw) ∈ G (V )

and we see that gh = 1 iff

w = −v and η = −ξ − vw = −ξ + v2.

Definition 6.7. A function, X : ∆ → G (V ) is an algebraic multiplicative
functional if

Xsu = XstXtu for all 0 ≤ s ≤ u ≤ t ≤ T. (6.1)

Equation 6.1 is referred to as Chen’s identity.

We will write the components of X as X1 ∈ V and X2 ∈ V ⊗ V, so that

Xst = 1 +X1
st +X2

st.

Let us observe by the multiplicative property that for all t ∈ [0, T ] , Xt,t =
Xt,tXt,t, i.e. Xt,t = 1 for all t ∈ [0, T ] .

Lemma 6.8. Chen’s identity (6.1) is equivalent to

X1
su = X1

st +X1
tu and (6.2)

X2
su = X2

st +X2
tu +X1

stX
1
tu (6.3)

for all 0 ≤ s ≤ t ≤ u ≤ T.

Proof. Chen’s identity states,

1 +X1
su +X2

su =
(
1 +X1

st +X2
st

) (
1 +X1

tu +X2
tu

)
= 1 +

[
X1
st +X1

tu

]
+
[
X2
st +X2

tu +X1
stX

1
tu

]
which suffices to complete the proof.

Example 6.9. If x ∈ Cp ([0, T ] , V ) with p < 2, then we let

Xst = 1 + x (t)− x (s) +
∫
s≤u≤v≤t

dx (u) dx (v)

:= 1 + x (t)− x (s) +
∫ t

s

(x (v)− x (s)) dx (v) ∈ G (V ) (6.4)

where the latter integral is the Young integral. An alternative way to look at
this function is to observe that

Xst = 1 +
∫ t

s

Xsτdx (τ) (6.5)

and this differential equation uniquely determines Xst. Let us also check directly
that Eqs. (6.3) holds. Equation (6.2) holds trivially.

We have in this case X1
st = x (t)− x (s) and X2

st =
∫ t
s

(x (v)− x (s)) dx (v) ,
therefore,
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X2
su −X2

st −X2
tu =

∫ u

s

(x (v)− x (s)) dx (v)

−
∫ t

s

(x (v)− x (s)) dx (v)−
∫ u

t

(x (v)− x (t)) dx (v)

=
∫ u

t

(x (v)− x (s)) dx (v)−
∫ u

t

(x (v)− x (t)) dx (v)

=
∫ u

t

(x (t)− x (s)) dx (v) = X1
stX

1
tu

as desired.

Example 6.10. Suppose again that p < 2 and W := x+A with x ∈ Cp ([0, T ] , V )
and A ∈ Cp ([0, T ] , V ⊗ V ) . Then

Xst = 1 +W (t)−W (s) +
∫
s≤u≤v≤t

dW (u) dW (v)

:= 1 + x (t)− x (s) +A (t)−A (s) +
∫ t

s

(x (v)− x (s)) dx (v) ∈ G (V )

(6.6)

is the unique solution to

Xst = 1 +
∫ t

s

XsτdW (τ) (6.7)

and therefore still satisfies Chen’s identity and X1
st = x (t) − x (s) . Thus it is

not reasonable to try to define∫ t

s

(x (v)− x (s)) dx (v) := X2
st

where X2
st is chosen so that Xst := 1+x (t)−x (s)+X2

st satisfies Chen’s identity.

Proposition 6.11. Let x ∈ Cp ([0, T ] , V ) with p < 2 and then we let X : ∆→
G (V ) be as in Eq. (6.4). Then

X2
st + σX2

st =
(
X1
st

)2
and

X2
st − σX2

st =
∫ t

s

[x (v)− x (s) , dx (v)]

so that

Xst = 1 +X1
st +

1
2

((
X1
st

)2
+
∫ t

s

[x (v)− x (s) , dx (v)]
)
. (6.8)

This shows that it is only the anti-symmetric part of X2
s,t which does not depend

continuously on x in the sup-norm topology.

Proof. We have,

X2
st + σX2

st =
∫ t

s

(x (v)− x (s)) ∨ dx (v)

=
∫ t

s

[(x (v)− x (s)) dx (v) + dx (v) (x (v)− x (s))]

=
∫ t

s

dv [x (v)− x (s)]2 = [x (t)− x (s)]2 =
(
X1
st

)2
and

X2
st − σX2

st =
∫ t

s

(x (v)− x (s)) dx (v)−
∫ t

s

dx (v) (x (v)− x (s))

=
∫ t

s

[x (v)− x (s) , dx (v)] .

6.3 The Geometric Subgroup

Definition 6.12. Let

Ggeo (V ) :=
{
g = 1 + a+A ∈ G (V ) : A+ σA = a2

}
,

i.e. the symmetric part of A is 1
2a

2. Alternatively put, the general element of
Ggeo (V ) is of the form,

g = 1 + a+
1
2
a2 +A with A ∈ Λ2 (V ) . (6.9)

Lemma 6.13. Ggeo (V ) is a subgroup of G (V ) .

Proof. Let g, h ∈ Ggeo (V ) with g as in Eq. (6.9) and

h = 1 + b+
1
2
b2 +B with B ∈ Λ2 (V ) .

Then

g−1 = 1− a− 1
2
a2 −A+ a2 = 1− a+

1
2
a2 −A

= 1− a+
1
2

(−a)2 −A ∈ Ggeo (V )

and
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gh =
(

1 + a+
1
2
a2 +A

)(
1 + b+

1
2
b2 +B

)
= 1 + a+ b+

1
2
a2 +

1
2
b2 + ab+A+B

= 1 + a+ b+
1
2

(a+ b)2 − 1
2

(ab+ ba) + ab+A+B

= 1 + a+ b+
1
2

(a+ b)2 +
1
2

(ab− ba) +A+B

= 1 + a+ b+
1
2

(a+ b)2 +
1
2

[a, b] +A+B ∈ Ggeo (V ) .

As with any Lie group, H, we may associate a Lie algebra, Lie (H) = TeH.

Lemma 6.14. For G = G (V ) and Ggeo = Ggeo (V ) we have

LieG = V ⊕ V ⊗ V and LieGgeo = V ⊗ Λ2 (V ) . (6.10)

Proof. Let g (t) = 1+x (t)+A (t) be a smooth path in G such that g (0) = 1,
then

ġ (0) = ẋ (0) + Ȧ (0) ∈ V ⊕ V ⊗ V.

Conversely if a + A ∈ V ⊕ V ⊗ V then g (t) = 1 + t (a+A) ∈ G is a smooth
path such that g (0) = 0 and ġ (0) = a+A. Therefore Lie (G) = V ⊕ V ⊗ V.

A smooth path g (t) ∈ Ggeo may be written as

g (t) = 1 + x (t) +
1
2
x2 (t) +A (t) with A (t) ∈ Λ2 (V ) .

Assuming that g (0) = 0 so that x (0) = 0, it follows that

ġ (0) = ẋ (0) + Ȧ (0) ∈ V ⊗ Λ2 (V ) .

Conversely if a + A ∈ V ⊕ Λ2 (V ) then g (t) = 1 + ta + 1
2 t

2a2 + tA ∈ Ggeo is
a smooth path such that g (0) = 0 and ġ (0) = a+ A and therefore LieGgeo =
V ⊗ Λ2 (V ) .

We now continue on with the Lie group mantra. To this end we associate
to element of ξ ∈ LieG, a left invariant vector field, ξ̃ (g) via,

ξ̃ (g) :=
d

dt
|0g · h (t)

where h (t) is any smooth curve in G such that h (0) = 0 and ḣ (0) = ξ – for
example take h (t) = 1 + tξ. Writing g = 1 + η, we find,

ξ̃ (g) =
d

dt
|0 (1 + η) · (1 + tξ) = g · ξ.

The Lie bracket is then determined by the formula, [̃ξ, η] =
[
ξ̃, η̃
]

which we now
work out. Let f : G→ R be a smooth function, then(

ξ̃η̃f
)

(g) = ξ̃ (g → f ′ (g) (gη)) = f ′′ (g) (gξ, gη) + f ′ (g) ξη.

Since f ′′ (g) is symmetric (mixed partial derivative commute) we find,([
ξ̃, η̃
]
f
)

(g) = f ′ (g) (ξη − ηξ) = ˜(ξη − ηξ)f (g) .

We summarize these results in the following proposition.

Proposition 6.15. The Lie bracket on Lie (G) is given by [ξ, η] = ξη − ηξ.
Moreover, Lie (Ggeo) is the Lie sub-algebra (at least when dimV <∞) of Lie (G)
generated by V ⊂ Lie (G) = V ⊕ V ⊗ V. We will denote Lie (Ggeo) by L (V ) .

Proof. It only remains to prove the second assertion. So suppose that ξ =
a+A and η = b+B with a, b ∈ V and A,B ∈ Λ2 (V ) , then

[ξ, η] = [a+A, b+B] = [a, b] = ab− ba ∈ Λ2 (V ) ⊂ Lie (Ggeo) .

Although these are non-trivial Lie algebras they are only slightly non-trivial
in the sense that [[ξ, η] , γ] = 0 for all ξ, η, γ ∈ Lie (G) , i.e. Lie (G) is nilpotent.
The next thing item to compute for these Lie algebras and Lie groups is the
group exponential map defined by

eξ = eξ̃ (1) for all ξ ∈ Lie (G) .

Let g (t) = etξ̃ (1) , so that

ġ (t) = ξ̃ (g (t)) = g (t) ξ with g (0) = 1.

Writing ξ = a+A and g (t) = 1 + x (t) +B (t) , we learn that

ẋ+ Ḃ = (1 + x+B) (a+A) = a+ xa+A

so that ẋ = a and Ḃ = xa + A with x (0) = 0 and B (0) = 0. The solution
to the first equation is x (t) = at and then Ḃ (t) = ta2 + A and therefore
B (t) = 1

2a
2t2 +At. Therefore,

etξ̃ (1) = g (t) = 1 + at+
t2

2
a2 +At.

Thus we have proved

Page: 62 job: rpaths macro: svmonob.cls date/time: 11-Mar-2009/12:03



6.3 The Geometric Subgroup 63

eξ = 1 + a+
1
2
a2 +A = 1 + ξ +

1
2
ξ2 = exp (ξ) .

It is not so surprising that eξ is given by the Taylor’s theorem expansion. Indeed
if we had defined eξ by its Taylor’s expansion, then

d

dt
etξ =

d

ds
|0e(t+s)ξ =

d

ds
|0etξesξ = etξξ with e0ξ = 1.

The other point to notice is that if ξ = a + A ∈ Lie (Ggeo) , then eξ = 1 + a +
1
2a

2 + A ∈ Ggeo as it should be. Let us summarize what we have done in the
following theorem.

Theorem 6.16. We have, exp (ξ) = eξ, exp : Lie (G) → G and exp :
Lie (Ggeo)→ Ggeo are diffeomorphism with inverse given by

log (1 + η) = η − 1
2
η2.

Moreover, g ∈ G is in Ggeo iff log (g) ∈ L (V ) = Lie (Ggeo) .

Proof. To prove the last assertion, observe that if

1 + η = eξ = 1 + ξ +
1
2
ξ2

then η = ξ + 1
2ξ

2 and therefore,

ξ = η − 1
2
ξ2 = η − 1

2

(
η − 1

2
ξ

)2

= η − 1
2
η2.

If g = 1 + η = 1 + a+A, then g ∈ Ggeo iff A− 1
2a

2 ∈ Λ2 (V ) while

log (g) = a+A− 1
2
a2 ∈ L (V ) ⇐⇒ A− 1

2
a2 ∈ Λ2 (V ) .

Proposition 6.17. If ξ, η ∈ Lie (G) , then

eξeη = eξ+η+
1
2 [ξ,η].

In particular if we define

ξ · η = ξ + η +
1
2

[ξ, η] for all ξ, η ∈ Lie (G) ,

then Lie (G) becomes a group such that exp : Lie (G) → G and exp : L (V ) →
Ggeo are Lie group isomorphisms.

Proof. We have

eξeη =
(

1 + ξ +
1
2
ξ2
)(

1 + η +
1
2
η2

)
= 1 + ξ + η +

1
2
ξ2 +

1
2
η2 + ξη

= 1 + ξ + η +
1
2

(ξ + η)2 − 1
2

(ξη + ηξ) + ξη

= 1 + ξ + η +
1
2

(ξ + η)2 +
1
2

[ξ, η]

= eξ+η+
1
2 [ξ,η].

Alternatively; compute

log (exp (ξ) · exp (η)) = log
(

1 + ξ + η +
1
2
ξ2 +

1
2
η2 + ξη

)
= ξ + η +

1
2
ξ2 +

1
2
η2 + ξη − 1

2
(ξ + η)2

= ξ + η +
1
2

[ξ, η] .

Corollary 6.18. Suppose that U (t) ∈ Lie (G) is a finite variation curve with
U (0) = 0 and g (t) solves,

ġ (t) = g (t)U (t) with g (0) = 1,

then

g (t) = exp
(
U (t) +

1
2

∫ t

0

[U (τ) , dU (τ)]
)
.

If U (t) = u (t) +A (t) with u (t) ∈ V and A (t) ∈ V ⊗ V, we may write g (t) as,

g (t) = exp
(
u (t) +

1
2

∫ t

0

[u (τ) , du (τ)] +A (t)
)
.

Proof. We know that the solution to the ODE is given by

g (t) = 1 +
∫ t

0

dU (τ) +
∫

0≤σ≤τ≤t
dU (σ) dU (τ)

= 1 + U (t) +
∫ t

0

U (τ) dU (τ)

= 1 + U (t) +
1
2
U2 (t) +

1
2

∫ t

0

[U (τ) , dU (τ)]

= exp
(
U (t) +

1
2

∫ t

0

[U (τ) , dU (τ)]
)
.
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Corollary 6.19. If u, v ∈ V, then

e[u,v] = e−ue−veuev.

Proof. By repeated use of Proposition 6.17,

e−ue−veuev = e−ue−veu+v+ 1
2 [u,v]

= e−ueu+v+ 1
2 [u,v]−v− 1

2 [v,u+v+ 1
2 [u,v]]

= e−ueu+[u,v] = eu+[u,v]−u+ 1
2 [u,u+[u,v]] = e[u,v].

Theorem 6.20 (Chow’s Theorem). To each y ∈ Ggeo there exists a (smooth)
finite variation path, x (t) ∈ V such that x (0) = 0 and gx (1) = y, where
gx (t) = g (t) is the solution to,

ġ (t) = g (t) ẋ (t) with g (0) = 1. (6.11)

Proof. First Proof. If A ∈ Λ2 (V ) is written as A =
∑m
i=1 [ui, vi] for some

ui, vi ∈ V, then by Corollary 6.19,

eA = e
∑m
i=1[ui,vi] =

m∏
i=1

e[ui,vi] =
m∏
i=1

(
e−uie−vieuievi

)
.

If in addition, a ∈ V, then

ea+A = eaeA = ea
m∏
i=1

(
e−uie−vieuievi

)
.

It is now easy to see how to construct the desired path x (t) . We determine
x (t) so that it is continuous and satisfies, ẋ (t) = a for 0 ≤ t ≤ 1, ẋ (t) = −ui
for t ∈ 4 (i− 1) + (1, 2) , ẋ (t) = −vi for t ∈ 4 (i− 1) + (2, 3) , ẋ (t) = ui for
t ∈ 4 (i− 1) + (3, 4) , and ẋ (t) = vi for t ∈ 4 (i− 1) + (4, 5) for i = 1, 2, . . . ,m.
With this definition it follows that

g (4 (m− 1) + 5) = ea+A

as desired.
Second Proof. We know the solution to Eq. (6.11) is given by

gx (t) = exp
(
x (t) +

1
2

∫ t

0

[x (τ) , dx (τ)]
)
.

Let xa (t) = ta for 0 ≤ t ≤ 1, then

∫ t

0

[xa (τ) , dxa (τ)] =
∫ t

0

[τa, a] dτ = 0.

Now let

xi (t) =
1

2π
(ui (cos 2πt− 1) + vi sin 2πt) for 0 ≤ t ≤ 1.

Then∫ 1

0

[xi (t) , dxi (t)] =
∫ 1

0

[ui (cos 2πt− 1) + vi sin 2πt, vi cos 2πt− ui sin 2πt] dt

= [ui, vi]
∫ 1

0

[
(cos 2πt− 1) cos 2πt+ sin2 2πt

]
dt

= [ui, vi]

Let x := x1 ∗ · · · ∗ xm ∗ xa by which we mean follows x1, then x2, . . . , then xm,
and then xa. Then

x (1) +
1
2

∫ 1

0

[x (τ) , dx (τ)]

= a+
1
2

∫ 1

0

[xa (τ) , dxa (τ)] +
1
2

m∑
i=1

∫ 1

0

[xi (τ) , dxi (τ)]

= a+
1
2

m∑
i=1

[ui, vi]

which again represents an arbitrary element in L (V ) .

6.4 Characterizations of Algebraic Multiplicative
Functionals

Definition 6.21. A multiplicative functional, X : ∆ → G such that X (∆) ⊂
Ggeo is said to be an algebraic geometric multiplicative functional.

Example 6.22. To every x ∈ Cp ([0, T ] , V ) with 1 ≤ p < 2, the function,

Xst = 1 + (x (t)− x (s)) +
∫ t

s

(x (v)− x (s)) dx (v)

= exp
(

(x (t)− x (s)) +
1
2

∫ t

s

[x (v)− x (s) , dx (v)]
)
.
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Lemma 6.23 (Characterization of MF’s). The space of (algebraic geomet-
ric) multiplicative functionals are in one to one correspondence with functions
(Y : [0, T ]→ Ggeo (V )) Y : [0, T ] → G (V ) such that Y (0) = 1. (The latter
conditions is an arbitrary normalization.) The correspondence is given by

Y → Xst := Y −1
s Yt and Xst → Yt := X0t.

Proof. Given a multiplicative function,X, let Yt := X0,t. Then for (s, t) ∈ ∆
we have

Yt = X0t = X0sXst = YsXst =⇒ Xst = Y −1
s Yt.

Conversely if Y : [0, T ]→ G (V ) and Xst := Y −1
s Yt, then

XstXtu = Y −1
s Yt

(
Y −1
t Yu

)
= Y −1

s Yu = Xsu

as desired.

Proposition 6.24. If Yt = 1 + xt +At ∈ G (V ) then

Xst = 1 + (xt − xs) +
(
At −As + x2

s − xsxt
)

(6.12)

= exp
(

(xt − xs) +
(
At −

1
2
x2
t

)
−
(
As −

1
2
x2
s

)
− 1

2
[xs, xt]

)
(6.13)

and if Yt = 1 + xt + 1
2x

2
t + αt ∈ Ggeo (V ) , then

Xst = 1 + (xt − xs) +
1
2

(xt − xs)2 + αt − αs −
1
2

[xs, xt] (6.14)

= exp
(

1 + (xt − xs) + αt − αs −
1
2

[xs, xt]
)
. (6.15)

Proof.

Xst = Y −1
s Yt = (1 + xs +As)

−1 (1 + xt +At)

=
(
1− xs −As + x2

s

)
(1 + xt +At)

= 1 + (xt − xs) +
(
At −As + x2

s − xsxt
)

= 1 + (xt − xs) +
1
2

(xt − xs)2

− 1
2
(
x2
t + x2

s − xsxt − xtxs
)

+
(
At −As + x2

s − xsxt
)

= 1 + (xt − xs) +
1
2

(xt − xs)2 +
(
At −

1
2
x2
t

)
−
(
As −

1
2
x2
s

)
− 1

2
[xs, xt]

For the second assertion, apply Eq. (6.13) with At = 1
2x

2
t + αt.

Corollary 6.25. Suppose that X, X̃ : ∆→ G (V ) are multiplicative functionals
such that X1 = X̃1, then ψst := X2

st − X̃2
st is an additive functional.

Proof. By Proposition 6.24, X and X̃ may be written as in Eq. (6.12) with
A replaced by Ã for X̃. Therefore,

ψst = X2
st − X̃2

st = At −As −
(
Ãt − Ãs

)
= At − Ãt −

(
As − Ãs

)
which is an additive functional.

Alternatively, we make use of Chen’s identity to find,(
X2 − X̃2

)
su

= X2
su − X̃2

su = X2
st +X2

tu +X1
stX

1
tu −

(
X̃2
st + X̃2

tu + X̃1
stX̃

1
tu

)
= X2

st − X̃2
st +X2

tu − X̃2
tu

=
(
X2 − X̃2

)
st

+
(
X2 − X̃2

)
tu
.

Definition 6.26. Given a path x : [0, T ] → V we say that X : ∆ → G is
a (geometric) lift of x if X is a (geometric) multiplicative functional and
X1
st = x (t)− x (s) for all (s, t) ∈ ∆.

Corollary 6.27. If X is a (geometric) lift of x : [0, T ] → V then every (geo-
metric) lift, X̃, of x is of the form,

X̃st = Xst + ψst

where
(
ψst ∈ Λ2 (V )

)
ψst ∈ V ⊗ V is an arbitrary additive functional.

Example 6.28. Suppose dim(V ) = 1, i.e. V = R, and x : [0, T ]→ R is a contin-
uous path. Then

Yt = ext =
(

1, xt,
x⊗2
t

2!
,
x⊗3
t

3!
, . . . ,

)
=
(

1, xt,
x2
t

2!
1⊗2,

x3
t

3!
1⊗3, . . . ,

)
∈ T (R),

Y −1
t = e−xt because

(eaeb)k =
k∑
i=0

(ea)i(eb)k−i =
k∑
i=0

ai

i!
bk−i

(k − i)!

=
(a+ b)k

k!
= (ea+b)k,
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where we have used

(a+ b)⊗k = (a+ b)⊗ · · · ⊗ (a+ b)

= (a+ b)k 1⊗k =
k∑
i=0

ai

i!
bk−i

(k − i)!
1⊗k

=
k∑
i=0

a⊗i

i!
b⊗(k−i)

(k − i)!
.

Therefore
Xst = Y −1

s Yt = e−xs ext = e(xt−xs)

is a multiplicative functional. Indeed if s < u < t then

k∑
i=0

Xi
suX

k−i
ut =

k∑
i=0

(xs − xu)j

i!
(xt − xu)k−i

(k − i)!

=
1
k!

(xt − xu + xs − xu)k = Xk
s,t

as desired.

Example 6.29. Suppose dim(V ) = 1, i.e. V = R, and x : [0, T ]→ R is a contin-

uous path and now let Yt = 1− xt. Then Y −1
t = 1 +

∞∑
k=1

xkt so that

Xst := Y −1
s Yt = (1 + xs + x2

s + x3
s + . . . )(1− xt)

= 1 + (xs − xt) + (x2
s − xtxs) + (x3

s − x2
sxt) + . . .

= 1 + (x2 − xt) + xs(xs − xt) + x2
s(x2 − xt) + . . .

is a multiplicative functional. Let me check this explicitly at level 2, namely

2∑
i=0

Xi
suX

2−i
ut = X0

suX
2
ut +X1

suX
1
ut +X2

suX
0
ut

= xu(xu − xt) + (xs − xu)(xu − xt) + xs(xs − xu)
= xs(xu − xt) + xs(xs − xu) = xs(xs − xt)
= X2

st

as desired.

Let us now consider (at level 2) the difference, ψ, between the two multi-
plicative functionals in Examples 6.28 and 6.29,

ψst :=
(xt − xs)2

2
− xs(xs − xt) = (xs − xt)

(
−xs +

xs − xt
2

)
= (xs − xt)

(
−xs + xt

2

)
= −1

2
(x2
s − x2

t )

=
1
2

(x2
t − x2

s).

Definition 6.30. Let p ∈ [1,∞). A p – (geometric) rough path is a multi-
plicative functional, (X : ∆→ Ggeo) X : ∆→ G such that;

1. X is continuous,
2. Vp

(
X1
)

+ Vp/2
(
X2
)
<∞.

Definition 6.31. If x ∈ Cp ([0, T ]→ V ) is given. We say that X is a (geomet-
ric) p - lift if X is a p – (geometric) rough path such that X1

st = x (t)− x (s)
for all (s, t) ∈ ∆.

Theorem 6.32. Let x ∈ Cp ([0, T ] , V ) with p < 2. Then x has precisely one p
– lift which is given by

X2
st =

∫ t

s

(x (τ)− x (s)) dx (τ) (6.16)

=
1
2

(x (t)− x (s))2 +
1
2

∫ t

s

[x (τ)− x (s) , dx (τ)] , (6.17)

where all integrals are Young’s integrals. Alternatively we may write, X, as

Xst = exp
(
x (t)− x (s) +

1
2

∫ t

s

[x (τ)− x (s) , dx (τ)]
)
. (6.18)

Moreover, this p – lift is a geometric p – rough path.

Proof. To prove the existence assertion, define X2
st by Eq. (6.16) and recall

that Eq. (6.17) follows as in Proposition 6.11. Moreover we have seen in Example
6.9 that X is a lift of x which takes values in Ggeo. Moreover if we let ω (s, t) :=
V pp (x : [s, t]) , then∥∥X2

st

∥∥ ≤ ζ (2/p)Vp (x (·)− x (s) : [s, t])Vp (x : [s, t]) = ζ (2/p)ω (s, t)2/p .

Hence it follows that Vp/2
(
X2
)
≤ ζ (2/p)ω (0, T )2/p < ∞ and the existence

assertion is proved.
For uniqueness, suppose that Y is another lift. Then we know ψst := Y 2

st −
X2
st ∈ V ⊗ V is an additive functional with Vp/2 (ψ) < ∞. As p/2 < 1, this

implies that ψst = 0 for all (s, t) ∈ ∆ which gives the uniqueness assertion of
the theorem.
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Proposition 6.33. Let p ≥ 1. A multiplicative functional, X : ∆ → G, is a p
– rough path iff there exists a control, ω, such that∣∣Xi

st

∣∣ ≤ ω(s, t)i/p for all (s, t) ∈ ∆, 1 ≤ i ≤ 2. (6.19)

Moreover if X is a p – rough path, we may always take,

ω (s, t) := V pp
(
X1 : [s, t]

)
+ V

p/2
p/2

(
X2 : [s, t]

)
. (6.20)

Proof. (⇐) This is the easy direction because∑
`

∣∣∣Xi
t`−1t`

∣∣∣p/i ≤∑ω(t`−1, t`) ≤ ω(0, T )

and hence vi(X) ≤ ω(0, T ) <∞ for all i. This implies that X ∈ Ωp (V ) .
For the converse, an application of Theorem 2.32 shows that both

V pp
(
X1 : [s, t]

)
and V

p/2
p/2

(
X2 : [s, t]

)
are controls. It is now easy to verify that

Eq. (6.19) holds for this control.
The following theorem due to Lyons and Victoir [14] shows that there are

plenty of p – rough paths.

Theorem 6.34 (Extension Theorem). Let 1 ≤ p < ∞ and x ∈
Cp ([0, T ] , V ) , then there always exists a geometric p – lift, X : ∆ → Ggeo,
of x.

Proposition 6.35 (Non-Uniqueness of Lifts). If 2 ≤ p < ∞ and x ∈
Cp ([0, T ] , V ) , there exists an infinite number of (geometric) p – lifts of x.

Proof. If X and Y are any two p – lifts of x, then ψst := (Y −X)2st is an
additive functional with finite p/2 – variation. Conversely if ψ : ∆ → V ⊗ V
is any continuous additive functional with finite p – variation and X is a fixed
p - lift of x, then Yst := Xst + ψst is another p – lift of X. We we assume X
and Y are geometric, then we must require ψ takes values in Λ2 (V ) – otherwise
nothing else changes.

The following theorem makes use of result from Section 7.3 below.

Theorem 6.36 (A Geometric Rough Path Approximation Theorem).
Suppose dimV < ∞ and X : ∆ → Ggeo is a geometric p – rough path for
some 1 ≤ p < ∞. Then there exists smooth (or finite variation) paths, xn ∈
C∞ ([0, T ]→ V ) such that for all q > p, ρq (Xn, X)→ 0 as n→∞, where

Xn (s, t) := 1 + (xn (t)− xn (s)) +
1
2

∫ t

s

(xn (τ)− xn (s)) dxn (τ) .

Proof. The proof is similar to the proof of Corollary 4.11. One needs to now
replace the piece xΠ by the horizontal projections of the piecewise geodesics con-
structed in Theorem 7.15 below. One should also use the Carnot-Caratheodory
metric on Ggeo in the proof. For the details the reader is referred to [6] and [5].





7

Homogeneous Metrics

In this chapter we are going to introduce some metrics on G and Ggeo which
will allow us to relate p – rough paths to the more familiar paths of finite p
– variation relative to one of these metrics. We begin with some generalities
about left invariant metrics and the associated p – variation spaces.

7.1 Lie group p – variation results

We begin with some generalities about p – variations for group valued functions.
In this section, suppose (G, d) is a group equipped with a left invariant metric
in which (G, d) is complete. The left invariance assumption on d states that for
all a, b, c ∈ G, d (ca, cb) = d (a, b) . Equivalently we are assuming that

d (a, b) = d
(
e, a−1b

)
= d

(
b−1a, e

)
= d

(
e, b−1a

)
,

and in particular it follows that d (e, a) = d
(
e, a−1

)
. We will write ‖a‖ for

d (e, a) .
Suppose that x ∈ C ([0, T ]→ G) . Given a partition, Π ∈ P (s, t) and τ ∈ Π,

let, ∆τx := x−1
τ−xτ . We continue the notation used in Chapter 2. In particular

we have,

Vp (x : Π) :=

(∑
t∈Π

dp
(
xt− , xt

))1/p

=

(∑
t∈Π
‖∆tx‖p

)1/p

and

Vp (x) := sup
Π∈P(0,T )

Vp (x : Π) .

We also define

ρ (x, y : Π) :=

(∑
t∈Π

dp (∆tx,∆ty)

)1/p

=

(∑
t∈Π

∥∥∥(∆tx)−1
∆ty

∥∥∥p)1/p

and set,
ρ (x, y) := sup

Π∈P(0,T )

ρ (x, y : Π) . (7.1)

Observe that ρ (x, e) = Vp (x) <∞ and

ρ (x, y : Π) =

(∑
t∈Π

dp (∆tx,∆ty)

)1/p

≤

(∑
t∈Π

[d (∆tx, e) + d (e,∆ty)]p
)1/p

≤ Vp (x : Π) + Vp (y : Π) ≤ Vp (x) + Vp (y)

and hence,
ρ (x, y) ≤ Vp (x) + Vp (y) <∞.

Definition 7.1. Let C0,p ([0, T ] , G) := {x ∈ C ([0, T ]→ G) : x (0) = e and Vp (x) <∞} .

Proposition 7.2. The function, ρ, defined in Eq. (7.1) is a complete metric
on C0,p ([0, T ] , G) .

Proof. Let x, y, z ∈ C0 ([0, T ] , G) .
1. If t ∈ [0, T ] we may take Π := {0, t, T} to learn that

d (x (t) , y (t)) = d (∆tx,∆ty)

≤ (dp (∆tx,∆ty) + dp (∆Tx,∆T y))1/p ≤ ρ (x, y) .

As t ∈ [0, T ] was arbitrary it follows that

du (x, y) := max
0≤t≤T

d (x (t) , y (t)) ≤ ρ (x, y) . (7.2)

2. Let Π ∈ P (0, T ) and observe that

ρ (x, z : Π) =

(∑
t∈Π

dp (∆tx,∆tz)

)1/p

≤

(∑
t∈Π

[d (∆tx,∆ty) + d (∆ty,∆tz)]
p

)1/p

≤

(∑
t∈Π

dp (∆tx,∆ty)

)1/p

+

(∑
t∈Π

dp (∆ty,∆tz)

)1/p

= ρ (x, y : Π) + ρ (y, z : Π)
≤ ρ (x, y) + ρ (y, z) .
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Hence it follows that
ρ (x, z) ≤ ρ (x, y) + ρ (y, z)

which shows that ρ satisfies the triangle inequality. It is clear from the definition
of ρ that ρ (x, y) = ρ (y, x) and from Eq. (7.2) that ρ (x, y) = 0 implies x = y.
Moreover we now see that if x, y ∈ C0,p ([0, T ]→ V ) , then ρ (x, y) ≤ ρ (x, e) +
ρ (e, z) <∞ so that ρ is finite on C0,p ([0, T ]→ V ) .

3. To finish the proof we must now show ρ is complete. So suppose that
{xn}∞n=1 ⊂ C0,p ([0, T ] , G) is a Cauchy sequence. Then by Eq. (7.2) we know
that xn converges uniformly to some x ∈ C ([0, T ]→ G) . Moreover, for any
partition, Π ∈ P (0, T ) we have

ρ (x, xn : Π) ≤ ρ (x, xm : Π) + ρ (xm, xn : Π)
≤ ρ (x, xm : Π) + ρ (xm, xn) .

Taking the limit of this equation as m→∞ the shows,

ρ (x, xn : Π) ≤ lim inf
m→∞

(ρ (x, xm : Π) + ρ (xm, xn)) = lim inf
m→∞

ρ (xm, xn) .

We may now take the supremum over Π ∈ P (0, T ) to learn,

ρ (x, xn) ≤ lim inf
m→∞

ρ (xm, xn)→ 0 as n→∞.

So by the triangle inequality, ρ (e, x) ≤ ρ (e, xn) + ρ (xn, x) <∞ for sufficiently
large n so that x ∈ C0,p ([0, T ] , G) and ρ (x, xn)→ 0 as n→∞.

Remark 7.3 (Group Structure Comment). In order to get C0,p ([0, T ] , G) to be
a group under pointwise multiplication I think we will need to assume that d
satisfies something like,

d (y, xy) = d
(
e, y−1xy

)
≤ C (y) d (e, x) .

Assuming this to be the case, we then would have,

∆t (xy) = (xy)−1
t−

(xy)t = y−1
t− xt−xtyt = y−1

t− ∆txyt

= y−1
t− yty

−1
t ∆txyt = ∆ty · y−1

t ∆txyt

and therefore,

d (e,∆t (xy)) = d
(
e,∆ty · y−1

t ∆txyt
)

= d
(
∆ty

−1, y−1
t ∆txyt

)
≤ d

(
∆ty

−1, e
)

+ d
(
e, y−1

t ∆txyt
)

= d (e,∆ty) + d
(
e, y−1

t ∆txyt
)

≤ d (e,∆ty) + C (yt) d (e,∆tx) .

Therefore it would follows that

ρ (e, xy : Π) =

(∑
t∈Π

dp (e,∆t (xy))

)1/p

≤ max
t
C (yt) [ρ (e, x : Π) + ρ (e, y : Π)]

and hence that

ρ (e, xy) ≤ max
t
C (yt) [ρ (e, x) + ρ (e, y)] <∞.

7.2 Homogeneous Metrics on G (V ) and Ggeo (V )

We now go back to the specific case at hand. In our case the groups G and Ggeo
are equipped with a “dilation” structure.

Definition 7.4. For λ ∈ R× let δλ : A (V ) → A (V ) be defined by
δλ (α+ a+A) := α + λa + λ2A where α ∈ R, a ∈ V, and A ∈ V ⊗ V. We
call δλ the dilation isomorphism.

Proposition 7.5. For each λ ∈ R×, δλ : A (V )→ A (V ) is an isomorphism of
algebras. Moreover δλ restricts to a group isomorphism of G (V ) and Ggeo (V )
and to a Lie algebra isomorphism of LieG and LieGgeo.

Proof. Notice that δλ is an algebra homomorphism. Indeed, if β+b+B ∈ A,
then

(α+ a+A) (β + b+B) = αβ + αb+ βa+ αB + βA+ ab

and therefore,

δλ ((α+ a+A) (β + b+B)) = αβ + λ (αb+ βa) + λ2 [αB + βA+ ab]

= αβ + (α (λb) + β (λa)) +
[
αλ2B + βλ2A+ (λa) (λb)

]
= δλ (α+ a+A) δλ (β + b+B)

as desired. The remaining assertions are easy to prove and our left to the reader.

Definition 7.6 (Homogeneous Norm). A homogeneous norm on G (or
Ggeo) is a continuous function, ‖·‖ : G→ [0,∞) such that:

1. ‖g‖G = 0 iff g = 1,
2. ‖δλ (g)‖ = |λ| ‖g‖ (homogeneous) for all λ ∈ R×,
3.
∥∥g−1

∥∥ = ‖g‖ (symmetric), and
4. ‖gh‖ ≤ ‖g‖+ ‖h‖ (subadditive).
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We will give one example of such a norm in Corollary 7.8 below. We will
give another example on Ggeo in Section 7.3 below.

Lemma 7.7. For g = 1 + g1 + g2 ∈ G = G (V ) , let

γ (g) := max
(
‖g1‖ ,

√
2 ‖g2‖

)
.

Then γ is subadditive and homogeneous, i.e.

γ (gh) ≤ γ (g) + γ (h) for all g, h ∈ G

and
γ (δλ (g)) = |λ| γ (g) for all g ∈ G (V ) and λ ∈ R×.

Proof. Only the subadditivity requires any proof here. Let α := γ (g) and
β := γ (h) where h = 1+h1+h2. Observe that ‖g1‖ ≤ α, ‖h1‖ ≤ β, 2 ‖g2‖ ≤ α2,
and 2 ‖h2‖ ≤ β. With this notation we have,

gh = 1 + g1 + h1 + (g2 + h2 + g1h1) ,

and

γ (gh) = max
(
‖g1 + h1‖ ,

√
2 ‖g2 + h2 + g1h1‖

)
≤ max

(
‖g1‖+ ‖h1‖ ,

√
2 ‖g2‖+ 2 ‖h2‖+ 2 ‖g1‖ ‖h1‖

)
≤ max

(
α+ β,

√
α2 + β2 + 2αβ

)
= max (α+ β, α+ β)

= α+ β = γ (g) + γ (h) .

Corollary 7.8. If we define

‖g‖G := γ (g) + γ
(
g−1

)
,

then ‖·‖G is a homogeneous norm on G and by restriction on Ggeo. Furthermore
we have,

γ (g) ≤ ‖g‖G ≤
√

3γ (g) for all g ∈ G. (7.3)

Proof. It only remains to prove the upper bound in Eq. (7.3). Since g−1 =
1− g1 − g2 + g2

1 , we find,

γ
(
g−1

)
= max

(
‖g1‖ ,

√
2 ‖g2

1 − g2‖
)

≤ max
(
‖g1‖ ,

√
2 ‖g1‖2 + 2 ‖g2‖

)
≤ max

(
γ (g) ,

√
2γ2 (g) + γ2 (g)

)
=
√

3γ (g) .

Proposition 7.9. If dimV < ∞ then any two homogeneous norms on G =
G (V ) are equivalent.

Proof. Suppose that |·| is another homogeneous norm on G and then define

c := min
‖g‖=1

|g| and C := max
‖g‖=1

|g| .

By compactness, 0 < c < C < ∞. For general g ∈ G \ {1} , choose λ > 0 such
that ‖δλ (g)‖G = 1, i.e. take λ := 1/ ‖g‖G . Then we know that

c ≤ |δλ (g)| = |g|
‖g‖G

≤ C

and therefore,
c ‖g‖G ≤ |g| ≤ C ‖g‖G for all g ∈ G.

Proposition 7.10. If ‖·‖G is a homogeneous norm on G then

d (g, h) :=
∥∥g−1h

∥∥
G

for g, h ∈ G (7.4)

defines a left invariant homogeneous (i.e. d (δλ (g) , δλ (h)) = |λ| d (g, h)) metric
on G.

Proof. The proof of this proposition is easy. For example, d (g, h) = 0 iff∥∥g−1h
∥∥
G

= 0 iff g−1h = 1 iff g = h;

d (h, g) =
∥∥h−1g

∥∥
G

=
∥∥g−1h

∥∥
G

= d (g, h) , and

d (g, k) =
∥∥g−1k

∥∥
G

=
∥∥g−1h h−1k

∥∥
G

≤
∥∥g−1h

∥∥
G

+
∥∥h−1k

∥∥
G

= d (g, h) + d (h, k) .

For the rest of this section we will assume that γ (·) and ‖·‖G are as defined
in Lemma 7.7 and 7.8 above.

Theorem 7.11. Let X : ∆→ G (or Ggeo) be a continuous multiplicative func-
tional and Y ∈ C ([0, T ]→ G) be associated to X via, Y (t) := X0,t or equiva-
lently by, Xst = Y (s)−1

Y (t) for all (s, t) ∈ ∆. Then X is a p – rough path iff
Y has finite p – variation.

Proof. The point is that
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V pp (Y : Π) =
∑
t∈Π

dp (Y (t−) , Y (t)) =
∑
t∈Π

∥∥∥Y (t−)−1
Y (t)

∥∥∥p
G

=
∑
t∈Π

∥∥Xt−,t

∥∥p
G
�
∑
t∈Π

(∥∥∥X1
t−,t

∥∥∥p +

(√∥∥∥X2
t−,t

∥∥∥)p)
= V pp

(
X1 : Π

)
+ V

p/2
p/2

(
X2 : Π

)
.

Therefore it follows that

V pp (Y ) ≤ C
(
V pp
(
X1
)

+ V
p/2
p/2

(
X2
))
,

V pp
(
X1
)
≤ CV pp (Y ) , and V

p/2
p/2

(
X2
)
≤ CV pp (Y )

which certainly implies,

V pp (Y ) � V pp
(
X1
)

+ V
p/2
p/2

(
X2
)
.

Using this theorem we can see fairly easily that finite dimensional Brownian
motions have geometric p - lifts for all p > 2. This is the content of the next
theorem.

Theorem 7.12 (Enhance Brownian Motion). Let {Bt}t≥0 be a Rd – valued
Brownian motion. Then for all α ∈ (0, 1/2) , there exists a Xst = 1 +Bt−Bs+
X2
st ∈ Ggeo

(
Rd
)

such that

|Bt −Bs|+
∣∣X2

st

∣∣1/2 ≤ Cα |t− s|α a.s.,

where Cα is a random finite (a.s.) constant.

Proof. Let

Yt := 1 +Bt +
∫ t

0

Bτ ⊗ ◦dBτ = Yt := 1 +Bt +
∫ t

0

Bτ ⊗ dBτ + tC

where C :=
∑d
i=1 ei ⊗ ei which we assume to be chosen to be continuous. We

then define Xst := Y −1
s Yt. Since

Y −1
s = 1−Bs −

∫ s

0

Bτ ◦ dBτ +B2
s

we have,

Xst =
(

1−Bs −
∫ s

0

Bτ ◦ dBτ +B2
s

)(
1 +Bt +

∫ t

0

Bτ ⊗ ◦dBτ
)

= 1 +Bt −Bs +
∫ t

0

Bτ ⊗ ◦dBτ −
∫ s

0

Bτ ◦ dBτ +B2
s −BsBt

= 1 +Bt −Bs +
∫ t

s

Bτ ⊗ ◦dBτ −Bs (Bt −Bs)

= 1 +Bt −Bs +
∫ t

s

(Bτ −Bs) ◦ dBτ a.s.

Therefore,

E [dp (Ys, Yt)] = E
[
dp
(
1, Y −1

s Yt
)]

= E [dp (1, Xst)]

≤ CE

[(
|Bt −Bs|+

∣∣∣∣∫ t

s

(Bτ −Bs) ◦ dBτ
∣∣∣∣1/2

)p]
.

Let bσ := Bs+σ −Bs – a new Brownian motion and T := t− s, then the above
equation may be written as,

E [dp (Ys, Yt)] ≤ CE

|bT |+
∣∣∣∣∣
∫ T

0

bσ ◦ dbσ

∣∣∣∣∣
1/2
p

= CE

[(
√
T |b1|+

∣∣∣∣T ∫ 1

0

bσ ◦ dbσ
∣∣∣∣1/2

)p]
= C (p, n)T p/2 = C (p, n) |t− s|p/2 .

For the second line we have used the Brownian scaling, b·
d=
√
TbT−1(·), to

conclude that(
bσ + bσ+

) (
bσ+ − bσ

) d= T
(
bT−1σ + bT−1σ+

) (
bT−1σ+ − bT−1σ

)
and therefore, ∫ T

0

bσ ◦ dbσ
d= T

∫ 1

0

bσ ◦ dbσ.

As p is arbitrary, it now follows by an application of Kolmogorov’s continuity
criteria Theorem 1.7 as in the proof of Corollary 1.8, that almost surely,

d (Ys, Yt) ≤ Cα |t− s|α

where α can be chosen to be any point in (0, 1/2) .
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7.3 Carnot Caratheodory Distance

Definition 7.13. We say a smooth path, g : [0, T ] → Ggeo is horizontal if
g−1 (t) ġ (t) ∈ V for all t. We define the length of a horizontal path to be
given by,

` (g) :=
∫ T

0

∥∥g−1 (t) ġ (t)
∥∥ dt.

Moreover for x, y ∈ Ggeo, let

d (x, y) := inf {` (g) : g (0) = x, g (T ) = y & g is horizontal} .

By Chow’s theorem, we know that the set of horizontal paths joining x to y is
not empty.

Lemma 7.14. Suppose that g : [0, T ]→ Ggeo is a smooth horizontal path, then
there exists a unique path, σ : [0, ` (g)] → Ggeo, such that g (t) = σ (S (t)) for
all 0 ≤ t ≤ T where S (t) :=

∫ t
0

∥∥g−1 (τ) ġ (τ)
∥∥ dτ – arc-length g|[0,t]. Moreover,

σ is absolutely continuous, horizontal, and
∥∥σ−1 (s)σ′ (s)

∥∥ = 1 for a.e. s.

Proof. Notice that S is a continuously differentiable function such that
Ṡ (t) =

∥∥g−1 (t) ġ (t)
∥∥ . Moreover if S (t0) = S (t1) for some 0 ≤ t0 < t1 ≤ T,

then g−1 (τ) ġ (τ) = 0 for τ ∈ [t0, t1] and therefore g (τ) is constants on [t0, t1] .
Thus it makes sense to define, σ : [0, ` (g)]→ Ggeo by the equation,

σ (S (t)) := g (t) for all 0 ≤ t ≤ T.

Now suppose that 0 ≤ s0 < s1 ≤ ` (g) . Using the intermediate value the-
orem, there exists 0 ≤ t0 < t1 ≤ T such that S (t0) = t0 and S (t1) = s1.
Therefore,

d (σ (S (t1)) , σ (S (t0))) ≤ `
(
g|[t0,t1]

)
=
∫ t1

t0

∥∥g−1 (τ) ġ (τ)
∥∥ dτ = S (t1)−S (t0) .

From this it follows that σ is d – Lipschitz. As d dominated the metric associated
to a certain Riemannian metric (see the proof of Theorem 7.15 below) we may
conclude that σ is absolutely continuous. So on one hand we have, by making
use of the change of variables theorem,

g (t1)− g (t0) = σ (S (t1))− σ (S (t0))

=
∫ S(t1)

S(t0)

σ′ (s) ds =
∫ t1

t0

σ′ (S (τ)) Ṡ (τ) dτ

while on the other,

g (t1)− g (t0) =
∫ t1

t0

ġ (τ) dτ.

Since 0 ≤ t0 ≤ t1 ≤ T are arbitrary, it follows that (after choosing a particular
version of σ′)

ġ (τ) = σ′ (S (τ)) Ṡ (τ) for a.e. τ.

Hence, using the change of variables theorem one more time, we find,

S (t1)− S (t0) =
∫ t1

t0

∥∥∥g (τ)−1
ġ (τ)

∥∥∥ dτ
=
∫ t1

t0

∥∥∥σ (S (τ))−1
σ′ (S (τ))

∥∥∥ Ṡ (τ) dτ =
∫ S(t1)

S(t0)

∥∥∥σ (s)−1
σ′ (s)

∥∥∥ ds
from which we may conclude,∫ s1

s0

∥∥∥σ (s)−1
σ′ (s)

∥∥∥ ds = s1 − s0 for all 0 ≤ s0 < s1 ≤ ` (g) .

This then implies that
∥∥∥σ (s)−1

σ′ (s)
∥∥∥ = 1 for a.e. s showing that σ is

parametrized by arc-length as desired.

Theorem 7.15. Assuming dim (V ) <∞, we have:

1. d is a metric on Ggeo compatible with the natural induced topology.
2. d is left invariant, i.e. d (uw, u y) = d (w, y) for all u,w, y ∈ Ggeo.
3. d is homogeneous, i.e. for all λ ∈ R and w, y ∈ Ggeo,

d (δλ (w) , δλ (y)) = |λ| d (w, y) . (7.5)

4. Let ρ (w) := d (e, w) . Then there are constants, 0 < c < C <∞ such that,

c
(
‖a‖+

√
‖A‖

)
≤ ρ

(
ea+A

)
≤ C

(
‖a‖+

√
‖A‖

)
. (7.6)

5. (Ggeo, d) is a complete metric space.
6. For all w, y ∈ Ggeo there is an absolutely continuous path, g : [0, 1]→ Ggeo

such that
∣∣g−1 (t) ġ (t)

∣∣ = d (w, y) a.e. t, g (0) = w, and g (1) = y. Since
` (g) = d (w, y) , this path is a length minimizing geodesic joining w to y.

Proof. Since ug (t) is a horizontal path joining uw to uy and ` (ug) = ` (g) ,
it follows fairly easily that d is left invariant. Let w (t) := g (t)−1

ġ (t) and
gλ (t) := δλ (g (t)) . Then

gλ (t)−1
ġλ (t) =

d

ds
|0gλ (t)−1

gλ (t+ s) =
d

ds
|0δλ

(
g (t)−1

g (t+ s)
)

= λw (t)
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which shows that gλ is a horizontal path joining δλ (w) to δλ (y) and moreover
` (gλ) = |λ| ` (g) . Equation (7.5) follows easily from this observation.

We now check that d is a metric. Since g (T − t) is a path taking y to w with
` (g (T − ·)) = ` (g) , it follows that d (w, y) = d (y, w) . If g is a horizontal path
from w to y and k is a horizontal path from y to z, then g ∗ k is a horizontal
path from w to z such that

d (w, z) ≤ ` (g ∗ k) = ` (g) + ` (k) .

Taking the infimum over g and k joining w to y and y to z respectively shows
that d satisfies the triangle inequality.

We now must still show that d (w, y) = 0 implies w = y. To prove this let
us consider another metric,

d0 (w, y) := inf {`0 (g) : g (0) = w, and g (T ) = y}

where now; g is not assumed to be horizontal and

`0 (g) :=
∫ T

0

∥∥g−1 (t) ġ (t)
∥∥
V⊕V⊗V dt.

Let g (t) = 1 + x (t) +A (t) , then

g (t)−1
ġ (t) =

(
1− x−A+

1
2
x2

)(
ẋ+ Ȧ

)
= ẋ+ Ȧ− x ẋ

so that, for any α ∈ (0, 1) ,∥∥g−1ġ
∥∥2

= ‖ẋ‖2 +
∥∥∥Ȧ− x ẋ∥∥∥2

= ‖ẋ‖2 +
∥∥∥Ȧ∥∥∥2

+ ‖x ẋ‖2 − 2
(
Ȧ, x ẋ

)
≥ ‖ẋ‖2 +

∥∥∥Ȧ∥∥∥2

+ ‖x ẋ‖2 − α
∥∥∥Ȧ∥∥∥2

− 1
α
‖x ẋ‖2

= ‖ẋ‖2 −
(
α−1 − 1

)
‖x ẋ‖2 + (1− α)

∥∥∥Ȧ∥∥∥2

= ‖ẋ‖2
{

1−
(
α−1 − 1

)
‖x‖2

}
+ (1− α)

∥∥∥Ȧ∥∥∥2

.

So if g (0) = w = 1 + x0 + A0 let t1 be the first time that
‖x (t)− x0‖ ≥ 1 Then for t ≤ t1, we can choose α so close to one such
that inft≤t1

[
1−

(
α−1 − 1

)
‖x (t)‖2

]
= γ > 0, then

∥∥g−1ġ
∥∥2 ≥ γ ‖ẋ‖2 + (1− α)

∥∥∥Ȧ∥∥∥2

and therefore,

` (g) =
∫ T

0

∥∥g−1ġ
∥∥ dt ≥ ∫ t1

0

∥∥g−1ġ
∥∥ dt ≥ C (γ, α)

∫ t1

0

(
‖ẋ‖2 +

∥∥∥Ȧ∥∥∥) dt
≥ C (γ, α) (‖x (t1)− x (0)‖+ ‖A (t1)−A (0)‖)
≥ C (γ, α) min (1, ‖x (T )− x (0)‖+ ‖A (T )−A (0)‖)

where the second bound comes when t1 = T. Thus it follows that

d (w, z) ≥ d0 (w, z) ≥ C (w) min (1, ‖x (T )− x (0)‖+ ‖A (T )−A (0)‖) .

From this it follows that d (w, z) = 0 iff w = z. Hence we have shown that d is
a metric.

Let {u, v} be an orthonormal subset of V and A ∈ R. Letting
x (t) := 1

2π

[
(cos 2πt− 1)

√
|A|u+ sgn(A) sin 2πt ·

√
|A|v

]
, we then have

gx (1) = exp
(

1
2A [u, v]

)
and therefore,

ρ

(
exp

(
1
2
A [u, v]

))
≤ ` (gx) =

∫ 1

0

‖ẋ (t)‖ dt ≤ 1
π

√
|A|.

Similarly if a ∈ V, then let xa (t) := ta so that

ρ (ea) ≤ ` (gxa) = ‖a‖ .

Therefore if A =
∑
i<j Aij [ei, ej ] , then

ρ
(
ea+A

)
= ρ

(
eaeA

)
≤ ρ (ea) + ρ

(
eA
)

≤ ‖a‖+ ρ

∏
i<j

eAij [ei,ej ]


≤ ‖a‖+

∑
i<j

ρ
(
eAij [ei,ej ]

)
≤ ‖a‖+

1
π

∑
i<j

√
2 |Aij | ≤ Cγ

(
ea+A

)
≤ C

(
‖a‖+

√
‖A‖

)
= Cγ

(
ea+A

)
where

γ
(
ea+A

)
= ‖a‖+

√
‖A‖.

This gives the upper bound in Eq. (7.6). This bound also shows ρ is continuous.
Indeed,
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|ρ (w)− ρ (z)| = |d (1, w)− d (1, z)| ≤ d (w, z) = ρ
(
w−1z

)
.

So if we write w = ea+A and z = eb+B , then

w−1z = exp
(
b− a+B −A− 1

2
[a, b]

)
= exp

(
b− a+B −A− 1

2
[a, b− a]

)
and hence,

|ρ (w)− ρ (z)| ≤ C

(
‖b− a‖+

√∥∥∥∥B −A− 1
2

[a, b− a]
∥∥∥∥
)
→ 0 as z → w.

We are now ready to use the dilation invariance to prove the lower bound.
By compactness, we have,

inf {ρ (w) : w s.t. γ (w) = 1} = c > 0.

Thus we know that ρ (w) ≥ c whenever γ (w) = 1. For general w ∈ Ggeo, let
λ > 0 be chosen so that γ (δλ (w)) = 1. Since γ (δλ (w)) = λγ (w) , this means
that λ = 1/γ (w) . Then

c ≤ ρ (δλ (w)) = λρ (w) =
ρ (w)
γ (w)

which gives the lower bound in Eq. (7.6). The bounds in Eq. (7.6) shows that
the metric topology associated to d is the same as the vector space topology.

Now suppose that {wn}∞n=1 is a d – Cauchy sequence, i.e.

ρ
(
w−1
n wm

)
= d (wn, wm)→ 0 as m,n→∞.

In particular, from Eq. (7.6), we know that {wn}∞n=1 is a bounded sequence
and therefore has a convergent subsequence in the usual topology and therefore
in the d – topology. It is now easy to conclude that {wn} is d – convergent.
Therefore (Ggeo, d) is a complete metric space.

We now prove the last assertion about geodesics we will follow Mont-
gomery [16]. Using Lemma 7.14, we may choose σn : [0, `n] → Ggeo which are
absolutely continuous horizontal paths with unit speed a.e. such that σ (0) = x
and σ (`n) = y and `n ↓ d (x, y) as n→∞. By letting gn (t) := σn (t`n/d (x, y)) ,
we then have gn (0) = x and gn (`) = y with gn (t)−1

ġn (t) = `n/d (x, y) for a.e.
t. It now follows by the Ascolli–Arzela and Banach Anolouge theorem, that after
passing to a subsequence if necessary, we may assume that gn → g uniformly
on [0, `n] and ġn (t) → u (t) weakly in L2 ([0, `]) . For any λ ∈ A∗, we have for
any bounded measurable ϕ, that

∫ `

0

ϕ (t)λ
(
g (t)−1

u (t)
)
dt = lim

n→∞

∫ `

0

ϕ (t)λ
(
g (t)−1

ġn (t)
)
dt

= lim
n→∞

∫ `

0

ϕ (t)λ
(
gn (t)−1

ġn (t)
)
dt

where in the we have used the fact that gn → g uniformly and supn ‖ġn‖∞ <∞.
Now if λ (V ) = 0, we find that∫ `

0

ϕ (t)λ
(
g (t)−1

u (t)
)
dt = 0

allowing us to conclude that λ
(
g (t)−1

u (t)
)

= 0 a.e. t and therefore

g (t)−1
u (t) ∈ V for a.e. t. Now taking λ ∈ V ∗ and ϕ (t) ≥ 0, it follows that∫ `

0

ϕ (t)λ
(
g (t)−1

u (t)
)
dt ≤

∫ `

0

ϕ (t) ‖λ‖ dt

and hence that
λ
(
g (t)−1

u (t)
)
≤ ‖λ‖ a.e. t.

Since λ ∈ V ∗ was arbitrary we may conclude that
∥∥∥g (t)−1

u (t)
∥∥∥
V
≤ 1 for a.e.

t. Moreover we have,

g (t1)− g (t0) = lim
n→∞

[gn (t1)− gn (t0)]

= lim
n→∞

∫ `

0

1(t0,t1] (τ) ġn (τ) dτ =
∫ `

0

1(t0,t1] (τ)u (τ) dτ

from which it follows that g is absolutely continuous and ġ (t) = u (t) a.e. t.
Thus g is a horizontal absolutely continuous path such that

∥∥∥g (t)−1
ġ (t)

∥∥∥ ≤ 1
for a.e. t. Therefore we may conclude that

d (x, y) ≤ ` (g) =
∫ `

0

∥∥∥g (t)−1
ġ (t)

∥∥∥ dt ≤ ` = d (x, y) .

Thus we must in fact d (x, y) = ` (g) and
∥∥∥g (t)−1

ġ (t)
∥∥∥ = 1 for a.e. t as desired.
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8

Rough Path Integrals

Throughout this chapter we will be assuming that 2 ≤ p < 3. Our first goal
is to show how to make p – rough paths out of almost p – rough paths.

8.1 Almost Multiplicative Functionals

The results of this section will be a fairly straight forward generalization of the
results in Section 5.1.

Definition 8.1. Let θ > 1. A θ – almost multiplicative functional
(A.M.F.) is a function X : ∆ → G of finite p -variation such that there exists
a control, ω and C <∞ such that∣∣∣Xi

st − [XsuXut]
i
∣∣∣ ≤ Cω(s, t)θ for all 0 ≤ s ≤ u ≤ t ≤ T and 1 ≤ i ≤ 2. (8.1)

If Eq. (8.1) holds for some θ > 1 and control ω, we say X is an (ω, p) – almost
multiplicative functional or sometimes an (ω, p) – almost rough path.

We will see plenty of example of almost rough paths later.

Notation 8.2 Given a function, X : ∆→ G and a partition,

Π = {s = t0 < t1 < · · · < tr = t} ,

of [s, t] , let
X(Π) :=

∏
τ∈Π

Xτ−,τ = Xt0,t1Xt1,t2 . . . Xtr−1,tr .

Furthermore, given a partition, Π, of [0, T ] and (s, t) ∈ ∆ let

X(Π)st := X(Π[s,t]) =
∏

τ∈Π[s,t]

Xτ−,τ .

Theorem 8.3. If X : ∆ → G is a an (ω, p) – almost rough path then there
exists a unique p – rough path, X̃ : ∆→ G such that∥∥∥Xi

st − X̃i
st

∥∥∥ ≤ CKi
θ (ω (0, T ))ω(s, t)θ for all (s, t) ∈ ∆ and i = 1, 2, (8.2)

where K1
θ is independnent of ω.

Proof. (Uniqueness.) Suppose Zst is another such rough path so that Eq.
(8.2) holds with X̃ replaced by Z. . Then by the triangle inequality we have∥∥∥∥[Zst − X̃st

]i∥∥∥∥ ≤ 2Ciω(s, t)θ. (8.3)

As Z1
st−X̃1

st is an additive functional, it follows from Lemma 5.21 and Eq. (8.3)
that Z1 = X̃1. Now that X̃1 = Z1 we further know that X̃2 − Z2 is also an
additive functional. So another application of Lemma 5.21 along with Eq. (8.3)
implies that X̃2 = Z2. Thus we have shown X̃ = Z as desired.

(Existence.) 1. Notice that the condition in Eq. (8.1) for i = 1 is the
statement that X1

st is an almost (ω, p) – additive functional. Therefore we may
apply Theorem 5.24 to find a finite p – variation additive functional, X̃1

st, such
that Eq. (8.2) holds for i = 1, with Kθ (ω) = ζ (θ) in this case.

2. Let Zst := 1 + X̃1
st + X2

st. I now claim that Z is still an (ω, p) – almost
rough path. Indeed,∥∥∥[Zsu − ZstZtu]2

∥∥∥ =
∥∥∥X2

su −X2
st −X2

tu − X̃1
stX̃

1
tu

∥∥∥
≤
∥∥X2

su −X2
st −X2

tu −X1
stX

1
tu

∥∥+
∥∥∥X1

stX
1
tu − X̃1

stX̃
1
tu

∥∥∥
≤ Cω (s, u)θ +

∥∥∥X1
stX

1
tu −X1

stX̃
1
tu

∥∥∥+
∥∥∥X1

stX̃
1
tu − X̃1

stX̃
1
tu

∥∥∥
≤ Cω (s, u)θ +

∥∥X1
st

∥∥∥∥∥X1
tu − X̃1

tu

∥∥∥+
∥∥∥X1

st − X̃1
st

∥∥∥∥∥∥X̃1
tu

∥∥∥
≤ Cω (s, u)θ +

(∥∥X1
st

∥∥+
∥∥∥X̃1

tu

∥∥∥)Cζ (θ)ω (s, u)θ

≤ C

[
1 +

(
Cω (s, t)1/p + Cω (t, u)1/p

+Cζ (θ)ω (t, u)θ

)
ζ (θ)

]
ω (s, u)θ

≤ K (θ, ω (0, T ))ω (s, t)θ .

3. Now suppose that Π ∈ P (s, t) and τ ∈ Π. Then

Z (Π \ {τ})− Z (Π) = Z
(
Π[s,τ−]

) [
Zτ−,τ+ − Zτ−,τZτ,τ+

]
Z
(
Π[τ+,t]

)
= Z

(
Π[s,τ−]

) [
Zτ−,τ+ − Zτ−,τZτ,τ+

]2
Z
(
Π[τ+,t]

)
=
[
Zτ−,τ+ − Zτ−,τZτ,τ+

]2
,
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wherein we have used,(
Zτ−,τ+ − Zτ−,τZτ,τ+

)i = 0 for i = 0, 1.

Therefore it follows that

‖Z (Π \ {τ})− Z (Π)‖ =
∥∥∥[Zτ−,τ+ − Zτ−,τZτ,τ+]2∥∥∥ ≤ Cω (τ−, τ+)θ .

Comparing this identity with that of Eq. (5.34), we now see that we may follow
the proof of Proposition 5.23 and Theorem 5.24 verbatim with X replaced by
Z2 = X2 in order to learn, lim|Π|→0X (Π)2st := X̃2

st exists and satisfies,∥∥∥X̃2
st −X2

st

∥∥∥ ≤ CK (θ, ω (0, T ))ω (s, t)θ for all (s, t) ∈ ∆.

It is straight forward to now show that X̃ : ∆ → G is the the desired multi-
plicative functional which completes the proof of existence.

Lemma 8.4. Suppose a1, . . . , ar and b1, . . . , br are elements of an associative
algebra, A, then

a1 . . . ar − b1 . . . br =
r∑
i=1

b1 . . . bi−1 (ai − bi) ai+1 . . . ar (8.4)

where b1 . . . bi−1 := 1 when i = 1 and ai+1 . . . ar = 1 when i = r. If A is a
normed algebra with the property that |ab| ≤ |a||b| for all a, b ∈ A, then

|a1 . . . ar − b1 . . . br| ≤
r∑
i=1

|b1| . . . |bi−1| |ai+1| . . . |ar| |ai − bi| .

In particular if |ai| ≤ δ, |bi| ≤ δ and |ai − bi| ≤ εδ for all i, then

|a1 . . . ar − b1 . . . br| ≤ rεδr. (8.5)

Proof. This is easily proved by induction. Indeed, for i = 1, the right side
of Eq. (8.4) is a1 − b1 and by induction,

a1 . . . ar+1 − b1 . . . br+1

= (a1 . . . ar − b1 . . . br) ar+1 + b1 . . . br (ar+1 − br+1)

=
r∑
i=1

b1 . . . bi−1 (ai − bi) ai+1 . . . arar+1 + b1 . . . br (ar+1 − br+1)

=
r+1∑
i=1

b1 . . . bi−1 (ai − bi) ai+1 . . . arar+1.

Lemma 8.5. Let a, b be elements of a Banach algebra, i.e., |ab| ≤ |a||b|, then∣∣a2 − b2
∣∣ ≤ |a+ b| |a− b|.

Proof. This is a consequence of the simple algebraic relation,

a2 − b2 =
1
2

[(a+ b)(a− b) + (a− b)(a+ b)]

from which it follows that

|a2 − b2| = 1
2
|(a+ b)(a− b) + (a− b)(a+ b)|

≤ 1
2

[|a+ b| |a− b|+ |a− b| |a+ b|] = |a+ b| |a− b|.

Remark 8.6. Suppose that gi = 1 + ai +Ai ∈ G, then

g1 . . . gn = (1 + a1 +A1) . . . (1 + an +An)

= 1 +
n∑
i=1

ai +

 n∑
i=1

Ai +
∑
i<j

aiaj

 .

Therefore if Π ∈ P (s, t) , it follows that

X (Π)1 =
∑
τ∈Π

X1
τ−,τ and (8.6)

X (Π)2 =
∑
τ∈Π

X2
τ−,τ +

∑
σ,τ∈Π: σ<τ

X1
σ−,σX

1
τ−,τ . (8.7)

Theorem 8.7. Suppose X : ∆ → G is a θ – A.M.F with finite p – variation
and X̃ : ∆→ G is the unique M.F. such that∥∥∥Xst − X̃st

∥∥∥ ≤ Cω(s, t)θ ∀ (s, t) ∈ ∆.

Then X̃st = lim|Π|→0X (Π)st which in components reads,

X̃1
st = lim

|Π|→0

∑
τ∈Π

X1
τ−,τ and (8.8)

X̃2
st = lim

|Π|→0

∑
τ∈Π

X2
τ−,τ +

∑
σ,τ∈Π: σ<τ

X1
σ−,σX

1
τ−,τ

 . (8.9)
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8.2 Path Integration along Rough Paths 79

Proof. Let Zst = 1+ X̃1
st+X2

st, then as was shown in the proof of Theorem
8.3,

X̃1
st = lim

|Π|→0
X (Π)1st and X̃2

st = lim
|Π|→0

Z (Π)2st .

So to finish the proof of this theorem, it suffices to prove

lim
|Π|→0

[X (Π)− Z (Π)]2st = 0.

If Π := {s = t0 < t1 < · · · < tr = t} , then

X (Π)− Z (Π) = Xt0t1 . . . Xtr−1tr − Zt0t1 . . . Ztr−1tr .

An application of Eq. (8.4) of Lemma 8.4 using X2
ti−1ti = Z2

ti−1ti , then gives,

X (Π)− Z (Π) =
r∑
i=1

Zt0t1 . . . Zti−2ti−1

(
Xti−1ti − Zti−1ti

)
Xtiti+1 . . . Xtr−1tr

=
∑
τ∈Π

Z (Π ∩ [s, τ−])
(
Xτ−,τ − Zτ−,τ

)
X (Π ∩ [τ, t])

=
∑
τ∈Π

Z (Π ∩ [s, τ−])
(
X1
τ−,τ − Z

1
τ−,τ

)
X (Π ∩ [τ, t]) .

Taking the V ⊗ V component of this identity then shows,

X2 (Π)− Z2 (Π)

=
∑
τ∈Π

{
Z (Π ∩ [s, τ−])1

(
X1
τ−,τ − Z

1
τ−,τ

)
+
(
X1
τ−,τ − Z

1
τ−,τ

)
X (Π ∩ [τ, t])1

}
=
∑
τ∈Π

{
Z1
s,τ−

(
X1
τ−,τ − Z

1
τ−,τ

)
+
(
X1
τ−,τ − Z

1
τ−,τ

)
X1 (Π ∩ [τ, t])

}
.

Crude estimates then imply,∥∥X2 (Π)− Z2 (Π)
∥∥ ≤∑

τ∈Π

(∥∥∥Z1
s,τ−

∥∥∥+
∥∥X1 (Π ∩ [τ, t])

∥∥)∥∥∥X1
τ−,τ − Z

1
τ−,τ

∥∥∥
≤
∑
τ∈Π

(∥∥∥Z1
s,τ−

∥∥∥+
∥∥X1

τ,t

∥∥+ ζ (θ)ω (τ, t)θ
)
Kθω (τ−, τ)θ

≤ K (θ, ω,X)
∑
τ∈Π

ω (τ−, τ)θ → 0 as |Π| → 0.

8.2 Path Integration along Rough Paths

Our next goal is to define integrals with integrators being a p – rough path. To
get an idea of what sort of definitions we should be using, let us go back to the
smooth case briefly. So suppose that x : [0, T ] → V is a smooth function and
f : V → End (V,U) is also a smooth function and let

X1
st := x (t)− x (s) , X2

st :=
∫ t

s

(x (τ)− x (s)) dx (τ)

z (t) :=
∫ t

0

f (x (τ)) dx (τ) ,

Z1
st := z (t)− z (s) =

∫ t

s

f (x (τ)) dx (τ) , and

Z2
st :=

∫ t

s

(z (τ)− z (s)) dz (τ) =
∫ t

s

(z (τ)− z (s)) f (x (τ)) dx (τ) .

If (s, t) ∈ ∆ with |t− s| small, then using Taylor’s theorem,

Z1
st := z (t)− z (s) =

∫ t

s

f (x (τ)) dx (τ)

∼=
∫ t

s

[f (x (s)) + f ′ (x (s)) (x (τ)− x (s))] dx (τ)

= f (x (s))X1
st + f ′ (x (s))X2

st (8.10)

and

Z2
st =

∫
s≤σ≤τ≤t

dz (σ) dz (τ) =
∫
s≤σ≤τ≤t

f (x (σ)) dx (σ) f (x (τ)) dx (τ)

=
∫
s≤σ≤τ≤t

f (x (σ))⊗ f (x (τ)) dx (σ)⊗ dx (τ)

∼=
∫
s≤σ≤τ≤t

f (x (s))⊗ f (x (s)) dx (σ)⊗ dx (τ) = f (x (s))⊗2
X2
st. (8.11)

Proposition 8.8. Let x ∈ Cp ([0, T ] , V ) and Xst = 1 + (x (t)− x (s)) +X2
st is

a p – lift of x to a p – rough path. Further suppose that ω is a control such that∥∥Xi
st

∥∥ ≤ ω (s, t)i/p for all (s, t) ∈ ∆. (8.12)

Then the functions fs = f (Xs) ∈ L (V,U) and αs = f ′ (Xs) ∈ L (V ⊗ V,U)
have finite p – variation and satisfy estimates of the form,
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80 8 Rough Path Integrals∣∣ft − fs − αsX1
st

∣∣ ≤ Cω (s, t)p/2

and
|αt − αs| ≤ Cω (s, t)1/p .

Proof. By Taylor’s Theorem 8.21,∣∣ft − fs − αsX1
st

∣∣ =
∣∣f (x (s) +Xst)− f (x (s))− f ′ (x (s))X1

st

∣∣
=
∣∣∣∣∫ 1

0

(1− τ) f ′′
(
Xs + τX1

st

)
X1
st ⊗X1

stdτ

∣∣∣∣
≤ C (f ′′)ω (s, t)2/p

and

|αt − αs| =
∣∣f ′ (x (s) +X1

st

)
− f ′ (x (s))

∣∣
=
∣∣∣∣∫ 1

0

f ′′
(
Xs + τX1

st

)
X1
st ⊗ (·) dτ

∣∣∣∣ ≤ C (f ′′)ω (s, t)1/p .

Definition 8.9 (Differentiable Pairs). Let U be another Banach space, x ∈
Cp ([0, T ] , V ) , and ω be a control such that xst := xt−xs = O

(
ω (s, t)1/p

)
. We

way that (y, α) ∈ Cp ([0, T ]→ U × End (V,U)) is an (x, ω) – differentiable
pair if;

1. αst := αt − αs = O
(
ω (s, t)1/p

)
and

2. εst := yst − αsxst = O
(
ω (s, t)2/p

)
. (The reader may wish to view αs as a

derivative of y relative to x.

Let D (U) = D (U, x, ω) denote the space of U – valued (x, ω) – differentiable
pairs.

We now wish to introduce a number of norms and semi-norms.

Notation 8.10 For (y, α) ∈ D (U) let N1 (α) and N2 (Y, α) denote the best
constants such that

|αst| ≤ N1 (α)ω (s, t)1/p and

|yst − αsxst| ≤ N2 (y, α)ω (s, t)2/p .

We further define,

‖α‖1 = |α0|+N1 (α) ,
‖y‖1 = |y0|+N1 (y) , and

‖(y, α)‖2 = |α0|+ |y0|+N1 (α) +N2 (y, α)
= ‖α‖1 + |y0|+N2 (y, α) .

Similarly, if X is a p – rough path controlled by ω, we define N1

(
X1
)

and
N2

(
X2
)

to be the best constants such that∣∣X1
st

∣∣ ≤ N1

(
X1
)
ω (s, t)1/p and

∣∣X2
st

∣∣ ≤ N2

(
X2
)
ω (s, t)2/p .

We also let
‖X‖ := N1

(
X1
)

+N2 (X) .

For later purposes let us observe that

|αs| ≤ |α0|+N (α)ω (0, s)1/p

|yst| ≤ |αs| |xst|+N2 (y, α)ω (s, t)2/p

≤
[
|α0|+N (α)ω (0, s)1/p

]
N (x)ω (s, t)1/p +N2 (y, α)ω (s, t)2/p

≤
(
|α0|N (x) + [N (α)N (x) +N2 (y, α)]ω (0, T )1/p

)
ω (s, t)1/p .

Proposition 8.11. If (f, α) ∈ D (End (V,U)) and

Z1
st := fsX

1
st + αsX

2
st and Z2

st = [fs ⊗ fs]X2
st, (8.13)

then Zst := 1 + Z1
st + Z2

st is an (3/p, ω) – A.M.F. satisfying,∣∣Z1
su + Z1

ut − Z1
st

∣∣ ≤ [N2 (f, α)N1 (X) +N2

(
X2
)
N1 (α)

]
ω (s, t)3/p . (8.14)∣∣∣[ZsuZut]2 − Z2

st

∣∣∣ ≤ C (ω, f,X)ω (s, t)3/p

such that∥∥Z1
st

∥∥ =
∥∥fsX1

st + αsX
2
st

∥∥ ≤ |fs|N (X1
)
ω (s, t)1/p + |αs|N

(
X2
)
ω (s, t)2/p

and ∥∥Z2
st

∥∥ =
∥∥[fs ⊗ fs]X2

st

∥∥ ≤ |fs|2N (X2
)
ω (s, t)2/p .

Proof. Let 0 ≤ s ≤ u ≤ t ≤ T, then

Z1
su + Z1

ut = fsX
1
su + αsX

2
su + fuX

1
ut + αuX

2
ut

= fsX
1
su + αsX

2
su +

[
fs + αsX

1
su + εsu

]
X1
ut + [αs + αsu]X2

ut

= fs
[
X1
su +X1

ut

]
+ αs

[
X2
su +X1

suX
1
ut +X2

ut

]
+ εsuX

1
ut + αsuX

2
ut

= Z1
st + εsuX

1
ut + αsuX

2
ut
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and therefore,∣∣Z1
su + Z1

ut − Z1
st

∣∣ ≤ |εsu| ∣∣X1
ut

∣∣+ |αsu|
∣∣X2

ut

∣∣
≤N2 (f, α)ω (s, u)2/pN1 (X)ω (u, t)1/p

+N1 (α)ω (s, u)1/pN2

(
X2
)
ω (u, t)2/p

≤
[
N2 (f, α)N1 (X) +N2

(
X2
)
N1 (α)

]
ω (s, t)3/p .

Similarly,

[ZsuZut]
2 = Z2

su + Z2
ut + Z1

suZ
1
ut

= [fs ⊗ fs]X2
su + [fu ⊗ fu]X2

ut +
(
fsX

1
su + αsX

2
su

) (
fuX

1
ut + αuX

2
ut

)
= [fs ⊗ fs]X2

su + [(fs + fsu)⊗ (fs + fsu)]X2
ut + fs ⊗ (fs + fsu)X1

su ⊗X1
ut

= [fs ⊗ fs]
(
X2
su +X2

ut +X1
su ⊗X1

ut

)
+ [fs ⊗ fsu + fsu ⊗ fs + fsu ⊗ fsu]X2

ut

+ fs ⊗ fsuX1
su ⊗X1

ut

= Z2
su + [fs ⊗ fsu + fsu ⊗ fs + fsu ⊗ fsu]X2

ut + fs ⊗ fsuX1
su ⊗X1

ut.

Thus it follows that∣∣∣[ZsuZut]2 − Z2
st

∣∣∣ ≤ ∣∣[fs ⊗ fsu + fsu ⊗ fs + fsu ⊗ fsu]X2
ut + fs ⊗ fsuX1

su ⊗X1
ut

∣∣
≤ C (ω, f,X)ω (s, t)3/p .

The exact form of the constant is a bit of a mess.

Definition 8.12 (Integration). For X : ∆ → G and f and α as in Proposi-
tion 8.11, we let[∫ t

s

(
fdX1 + αdX2

)]1
:= lim
|Π|→0

∑
τ∈Π

[
fτ−X

1
τ−,τ + ατ−X

2
τ−τ

]
and (8.15)

[∫ t

s

(
fdX1 + αdX2

)]2
:= lim
|Π|→0

{ ∑
τ∈Π

[
fτ− ⊗ fτ−

]
X2
τ−,τ

+
∑
σ,τ∈Π: σ<τ

(
fσ−X

1
σ−,σ + ασ−X

2
σ−,σ

)(
fτ−X

1
τ−,τ + ατ−X

2
τ−,τ

)}
(8.16)

so that

Zst := 1 +
∫ t

s

(
fdX1 + αdX2

)
is the unique p – rough path close to that (3/p, ω) – A.M.F., Z, defined of
Proposition 8.11. We will use the notation,

∫ t

s

(f, α) · dX =
∫ t

s

(
fdX1 + αdX2

)
= 1 +

[∫ t

s

(
fdX1 + αdX2

)]1
+
[∫ t

s

(
fdX1 + αdX2

)]2
.

(See Remark 8.6 for the formulas stated in Eqs. (8.15) and (8.16).)

Proposition 8.13. Continuing the notation used above we have

|αt| ≤ |α0|+N1 (α)ω (0, t)1/p ≤ |α0|+N1 (α)ω (0, T )1/p , (8.17)

|fst| ≤
[
|α0|+N1 (α)ω (0, T )1/p

]
N1 (X)ω (s, t)1/p +N (f, α)ω (s, t)2/p

(8.18)

≤
[
max

(
1, ω (0, T )1/p

)
N1 (X) ‖α‖1 +N (f, α)ω (0, T )1/p

]
ω (s, t)1/p

(8.19)

N1 (f) ≤ max
(

1, ω (0, T )1/p
)

[N1 (X) ‖α‖1 +N (f, α)] , (8.20)

N1 (f) ≤ |α0|N1 (X) + [N1 (α)N1 (X) +N (f, α)]ω (0, T )1/p , (8.21)

‖f‖1 ≤ max (1, N1 (X)) max
(

1, ω (0, T )1/p
)
‖(f, α)‖2 (8.22)

|ft| ≤ |f0|+|α0|N1 (X)ω (s, t)1/p+
[
N1 (α)N1 (X)ω (0, T )1/p +N (f, α)

]
ω (s, t)2/p ,
(8.23)

and

‖f‖∞ ≤ |f0|+ |α0|N1 (X)ω (0, T )1/p + [N1 (α)N1 (X) +N (f, α)]ω (0, T )2/p .
(8.24)

Proof. The proofs of these estimate are all fairly straight forward. The
first estimate is a trivial consequence of the definition of N1 and the fact that
αt = α0 + α0,t. For the estimate in Eq. (8.18) we have

|fst| ≤ |αs|
∣∣X1

s,t

∣∣+ |εst|

≤
[
|α0|+N1 (α)ω (0, T )1/p

] ∣∣X1
s,t

∣∣+ |εst|

≤
[
|α0|+N1 (α)ω (0, T )1/p

]
N1 (X)ω (s, t)1/p +N (f, α)ω (s, t)2/p .

Eq. (8.21) is a simple consequence of Eq. (8.18) and Eq. (8.23) is a consequence
of Eqs. (8.17) and (8.21) and Eq. (8.24) follows directly from Eq. (8.23). For
Eq. (8.22) we have
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‖f‖1 = |f0|+N1 (f) ≤ |f0|+ ω (0, T )1/pN (f, α) +N1 (X)
[
|α0|+ ω (0, T )1/pN1 (α)

]
≤ max (1, N1 (X)) max

(
1, ω (0, T )1/p

)
‖(f, α)‖2 .

Theorem 8.14. Let F := (f, α) ∈ D (End (V,U)) , then∥∥∥∥(∫ F · dX, f
)∥∥∥∥

2

≤ |f0|+ ‖X‖ |α0|+
[(

1 +K3/p

)
‖X‖+ 1 ∨N1 (X)

]
ω (0, T )1/p ‖F‖2

(8.25)

≤ |f0|+ ‖X‖ |α0|+ Cp (‖X‖)ω (0, T )1/p ‖F‖2 (8.26)

where
Cp (‖X‖) := 1 +

(
2 +K3/p

)
‖X‖ . (8.27)

Furthermore, ∣∣∣∣∣
(∫ t

s

F · dX
)1
∣∣∣∣∣ ≤ K (X, f)ω (s, t)1/p (8.28)

where

K (X, f) := ‖f‖∞N1

(
X1
)

+ ‖α‖∞N2 (X)ω (0, T )1/p

+K3/p

[
N (F )N1

(
X1
)

+N1 (α)N2 (X)
]
ω (0, T )2/p . (8.29)

Proof. Combining Eq. (8.14) with Theorem 8.3 shows∣∣∣∣∣
(∫ t

s

F · dX
)1

−W 1
st

∣∣∣∣∣ ≤ K3/p

[
N (F )N1

(
X1
)

+N1 (α)N2 (X)
]
ω (s, t)3/p

≤ K3/p ‖X‖ ‖F‖2 ω (s, t)3/p .

Therefore,∣∣∣∣∣
(∫ t

s

F · dX
)1

− fsX1
st

∣∣∣∣∣
≤

∣∣∣∣∣
(∫ t

s

F · dX
)1

−W 1
st

∣∣∣∣∣+
∣∣αsX2

st

∣∣
≤ K3/p

[
N (F )N1

(
X1
)

+N1 (α)N2 (X)
]
ω (s, t)3/p + |αs|

∣∣X2
st

∣∣
≤ K3/p

[
N (F )N1

(
X1
)

+N1 (α)N2 (X)
]
ω (s, t)3/p + |αs|N2 (X)ω (s, t)2/p

≤ K3/p ‖X‖ ‖F‖2 ω (s, t)3/p + |αs|N2 (X)ω (s, t)2/p

≤ K3/p ‖X‖ ‖F‖2 ω (s, t)3/p +
[
|α0|+N1 (α)ω (0, t)1/p

]
N2 (X)ω (s, t)2/p

it follows that

N

(∫
F · dX, f

)
≤ K3/p

[
N (F )N1

(
X1
)

+N1 (α)N2 (X)
]
ω (0, T )1/p + ‖α‖∞N2 (X)

≤ K3/p

[
N (F )N1

(
X1
)

+N1 (α)N2 (X)
]
ω (0, T )1/p

+
[
|α0|+N1 (α)ω (0, T )1/p

]
N2 (X)

=
(
K3/p

[
N (F )N1

(
X1
)

+N1 (α)N2 (X)
]

+N1 (α)N2 (X)
)
ω (0, T )1/p

+ |α0|N2 (X)

≤ K3/p ‖X‖ ‖F‖2 ω (0, T )1/p +
[
|α0|+N1 (α)ω (0, T )1/p

]
N2 (X)

≤
(
1 +K3/p

)
‖X‖ ‖F‖2 ω (0, T )1/p + |α0|N2 (X)

and thus that

N

(∫
F · dX, f

)
≤ |α0|N2 (X) (8.30)

+
(
K3/pN (F )N1 (X) +

(
K3/p + 1

)
N1 (α)N2 (X)

)
ω (0, T )1/p

≤
(
1 +K3/p

)
‖X‖ ‖F‖2 ω (0, T )1/p + |α0|N2 (X) (8.31)

Moreover from Eq. (8.17) we find

N1 (f) ≤ |α0|N1 (X) + [N1 (α)N1 (X) +N (F )]ω (0, T )1/p (8.32)

≤ |α0|N1 (X) + 1 ∨N1 (X) · ω (0, T )1/p ‖F‖2 . (8.33)

Combining these two estimate shows

N1 (f) +N

(∫
F · dX, f

)
≤ ‖X‖ |α0|+ Cp (N1 (X) , N2 (X))ω (0, T )1/p

[
N1 (α0) +N

(
F f
)]

(8.34)

≤ ‖X‖ |α0|+
[(

1 +K3/p

)
‖X‖+ 1 ∨N1 (X)

]
ω (0, T )1/p ‖F‖2 (8.35)

from which it follow that
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8.3 Spaces of Integrands 83∥∥∥∥(∫ F · dX, f
)∥∥∥∥

2

= |f0|+N1 (f) +
∣∣∣∣∫ 0

0

F · dX
∣∣∣∣+N

(∫
F · dX, f

)
≤ |f0|+N1 (f) +N

(∫
F · dX, f

)
≤ |f0|+ ‖X‖ |α0|+

[(
1 +K3/p

)
‖X‖+ 1 ∨N1 (X)

]
ω (0, T )1/p ‖F‖2 (8.36)

≤ |f0|+ ‖X‖ |α0|+
[
1 +

(
2 +K3/p

)
‖X‖

]
ω (0, T )1/p ‖F‖2

8.3 Spaces of Integrands

Warning !!Rough Notes Ahead!!
Remark 8.15 (Co-Cycle Condition). If s < u < t, then

εst = εsu + εut + αsuX
1
ut

because

εst = yst − αsX1
s,t = ysu + yut − αsX1

s,t

= αsX
1
su + εsu + αuX

1
ut + εut − αsX1

s,t

= αsX
1
su + εsu + [αs + αsu]X1

ut + εut − αsX1
s,t

= εsu + εut + αs
[
X1
su +X1

ut −X1
s,t

]
+ αsuX

1
ut

= εsu + εut + αsuX
1
ut.

Theorem 8.16 (Completeness I). Let Ω1 (U, ω) = Ω1 (U, ω, p) denote those
α : ∆→ U such that N1 (α) <∞ and let

‖α‖1 := |α0|+N1 (α) .

Then (Ω1 (U, ω) , ‖·‖1) is a Banach space.

Proof. From Eq. (8.17) it follows that

‖α‖∞ ≤ max
(

1, ω (0, T )1/p
)
‖α‖1

and hence if {α (n)}∞n=1 is a Cauchy sequence in Ω1 (U, ω) then it is also uni-
formly Cauchy. Therefore there exist a continuous function α : ∆ → U such
that α (n)→ α uniformly in t. Since

|α (n)st − α (m)st| ≤ N1 (α (n)− α (m))1 ω (s, t)1/p

we may let m→∞ in this inequality to learn that

|α (n)st − αst| ≤ lim sup
m→∞

N1 (α (n)− α (m))ω (s, t)1/p

and hence that

N1 (α (n)− α) ≤ lim sup
m→∞

N1 (α (n)− α (m))→ 0 as n→∞.

Hence it follows that α (n)→ α in (Ω1 (U, ω) , ‖·‖1) and the proof is complete.

Theorem 8.17 (Completeness II). (D (U, ω) , ‖(·, ·)‖2) is a Banach space.
Recall that

‖(y, α)‖2 := ‖α‖1 + |y0|+N (y, α) . (8.37)

Proof. From Eqs. (8.23) and (8.17), it follows that there is a constant
C <∞ such that

‖(y, α)‖∞ ≤ C ‖(y, α)‖2
for all (y, α) ∈ D (U, ω) . Hence if {(y (n) , α (n))}∞n=1 is a Cauchy sequence
in D (U, ω) it is also uniformly Cauchy as well. Moreover {α (n)}∞n=1 is
Cauchy in Ω1 (End (V,U) , ω) and hence convergent in Ω1 (End (V,U) , ω)
by Theorem 8.16. Let (y, α) denote the uniform limit of the sequence
{(y (n) , α (n))}∞n=1 . Then we have∣∣y (n)st − α (n)sX

1
st −

[
y (m)st − α (m)sX

1
st

]∣∣ =
∣∣∣εy(n)
st − εy(m)

st

∣∣∣
≤ N (y (n)− y (m) , α (n)− α (m))ω (s, t)2/p

and by letting m→∞ this implies∣∣y (n)st − α (n)sX
1
st −

[
yst − αsX1

st

]∣∣
≤ lim sup

m→∞
N (y (n)− y (m) , α (n)− α (m))ω (s, t)2/p .

Hence it follows that

N (y (n)− y, α (n)− α) ≤ lim sup
m→∞

N (y (n)− y (m) , α (n)− α (m)) .

Since the right side of this equation goes to zero as n → ∞, it follows that
limn→∞N (y (n)− y, α (n)− α) = 0 and we have shown (y (n) , α (n))→ (y, α)
as n→∞ in (D (U, ω) , ‖(·, ·)‖2) .

We now wish to consider the mapping properties of the spaces Ω1 and D.
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Proposition 8.18. Let a and b two finite (ω, p) – variation paths valued in
appropriate spaces so that ab is well defined. Then

N1 (ab) ≤ ‖b‖∞N1 (a) + ‖a‖∞N1 (b) , (8.38)

‖ab‖1 ≤ |a0| |b0|+ ‖b‖∞N1 (a) + ‖a‖∞N1 (b) (8.39)
‖ab‖1 ≤ ‖b‖∞N1 (a) + ‖a‖∞ ‖b‖1 , and (8.40)

‖ab‖1 ≤ max
(

2ω (0, T )1/p , ω (0, T )1/p + 1
)
‖a‖1 ‖b‖1 (8.41)

≤
(

1 + 2ω (0, T )1/p
)
‖a‖1 ‖b‖1 (8.42)

and if (u, v) is another pair of such paths, then

N1 (ab− uv) ≤ ‖a− u‖∞N1 (b)+N1 (a− u) ‖b‖∞+‖u‖∞N1 (b− v)+N1 (u) ‖b− v‖∞
(8.43)

and there exists C = C
(
p, ω (0, T )1/p

)
such that

‖ab− uv‖1 ≤ C [‖a− u‖1 ‖b‖1 + ‖u‖1 ‖b− v‖1] . (8.44)

Proof. The simple estimate,

|(ab)st| = |atbt − asbs| = |(at − as) bt + as (bt − bs)|
≤ |at − as| |bt|+ |as| |bt − bs|

≤ ‖b‖∞N1 (a)ω (s, t)1/p + ‖a‖∞N1 (b)ω (s, t)1/p ,

implies Eq. (8.38). Moreover,

‖ab‖1 ≤ |a0| |b0|+N1 (ab) ≤ |a0| |b0|+ ‖b‖∞N1 (a) + ‖a‖∞N1 (b)
≤ ‖b‖∞N1 (a) + ‖a‖∞ [|b0|+N1 (b)] = ‖b‖∞N1 (a) + ‖a‖∞ ‖b‖1 ,

‖ab‖1 ≤ |a0| |b0|+ ‖b‖∞N1 (a) + ‖a‖∞N1 (b)
≤ ‖b‖∞ [|a0|+N1 (a)] + ‖a‖∞N1 (b) = ‖b‖∞ ‖a‖1 + ‖a‖∞N1 (b) ,

and

‖ab‖1 ≤
[
|b0|+N1 (b)ω (0, T )1/p

]
‖a‖1 +

[
|a0|+N1 (a)ω (0, T )1/p

]
N1 (b)

≤
[
|b0|+N1 (b)ω (0, T )1/p

]
‖a‖1 +

(
1 ∨ ω (0, T )1/p

)
‖a‖1N1 (b)

= ‖a‖1
[
|b0|+N1 (b)

{
ω (0, T )1/p +

(
1 ∨ ω (0, T )1/p

)}]
≤ max

(
2ω (0, T )1/p , ω (0, T )1/p + 1

)
‖a‖1 ‖b‖1 .

Using Eq. (8.38), it follows that

N1 (ab− uv) = N1 ((a− u) b+ u (b− v)) ≤ N1 ((a− u) b) +N1 (u (b− v))
≤ ‖a− u‖∞N1 (b) +N1 (a− u) ‖b‖∞ + ‖u‖∞N1 (b− v) +N1 (u) ‖b− v‖∞

which is Eq. (8.43). Using

|(ab− uv)0| = |(a− u)0 b0 + u0 (b− v)0|
≤ |(a− u)0| |b0|+ |u0| |(b− v)0|
≤ ‖a− u‖∞ ‖b‖∞ + ‖u‖∞ ‖b− v‖∞

and working as above one easily proves Eq. (8.44) as well. Alternatively,

‖ab− uv‖1 = ‖(a− u) b+ u (b− v)‖1 ≤ ‖(a− u) b‖1 + ‖u (b− v)‖1
≤ max

(
2ω (0, T )1/p , ω (0, T )1/p + 1

)
[‖(a− u)‖1 ‖b‖1 + ‖u‖1 ‖b− v‖1] .

Theorem 8.19. Suppose that f : U → S is a smooth map of Banach spaces
and for a ∈ Ω1 (U, ω) , let f∗ (a) := f ◦ a. Then f (a) := f∗ (a) ∈ Ω1 (S, ω) and
the map f∗ : Ω1 (U, ω)→ Ω1 (S, ω) satisfies the following estimates,

N1 (f (a)) ≤ ‖f ′‖∞,a ·N1 (a) (8.45)

‖f (a)‖1 ≤ ‖f
′‖∞,a · ‖a‖1 (8.46)

where

‖f ′‖∞,a = sup {|f ′ (as + τast)| : (s, t) ∈ ∆ and τ ∈ [0, 1]}
≤ sup {|f ′ (u)| : |u| ≤ ‖a‖∞} . (8.47)

Now suppose that a and b are two paths of finite (ω, p) – variation and that f
is a smooth function, then

N1 (f (a)− f (b)) ≤ ‖f ′‖∞,bN1 (a− b)

+ ‖f ′′‖∞,a,b
[
|a0 − b0|+N1 (a− b)ω (0, T )1/p

]
N1 (a)

(8.48)

and

‖f (a)− f (b)‖1 ≤
[
‖f ′‖∞,a,b + ‖f ′′‖∞,a,bN1 (a) max

(
1, ω (0, T )1/p

)]
‖a− b‖1

(8.49)
where

‖f ′′‖∞,a,b = sup
{
|f ′′ (bs + τbst + r [as + τast − (bs + τbst)])| :

s, t ∈ [0, T ] & r, τ ∈ [0, 1]

}
≤ sup {|f ′′ (ξ)| : |ξ| ≤ ‖a‖∞ ∨ ‖b‖∞} .
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Proof. By Taylor’s Theorem,

f (a)st = f (at)− f (as) = f̃ (as, at) ast (8.50)

where

f̃ (as, at) =
∫ 1

0

f ′ (as + τast) dτ (8.51)

and ∣∣∣f̃ (as, at)
∣∣∣ ≤ ∫ 1

0

|f ′ (as + τast)| dτ ≤ ‖f ′‖∞,a .

The second inequality in Eq. (8.47) follows from the fact that

|as + τast| = |as + τ (at − as)| = |as (1− τ) + τat|
≤ (1− τ) |as|+ τ |at| ≤ |as| ∨ |at| ≤ ‖a‖∞ .

Hence it follows that

|f (a)st| ≤ ‖f
′‖∞,a |ast| ≤ ‖f

′‖∞,aN1 (a)ω (s, t)1/p

from which Eqs. (8.45) and (8.46) easily follow.
From Eq. (8.50) we have

f (a)st − f (b)st = f̃ (as, at) ast − f̃ (bs, bt) bst

=
[
f̃ (as, at)− f̃ (bs, bt)

]
ast + f̃ (bs, bt) [ast − bst] . (8.52)

Now∣∣∣f̃ (as, at)− f̃ (bs, bt)
∣∣∣

≤
∫ 1

0

|f ′ (as + τast)− f ′ (bs + τbst)| dτ

≤
∫ 1

0

dτ

∫ 1

0

dr

∣∣∣∣f ′′( bs + τbst
+r [as + τast − (bs + τbst)]

)∣∣∣∣ |as − bs + τ [ast − bst]|

≤ ‖f ′′‖∞,a,b |as − bs + τ [ast − bst]| (8.53)

where

‖f ′′‖∞,a,b = sup
{
|f ′′ (bs + τbst + r [as + τast − (bs + τbst)])| :

s, t ∈ [0, T ] & r, τ ∈ [0, 1]

}
.

As above, we have

|as − bs + τ [ast − bst]| ≤ |as − bs| ∨ |at − bt|
|bs + τbst + r [as + τast − (bs + τbst)]| ≤ |bs + τbst| ∨ |as + τast|

≤ max (|bs| , |bt| , |as| , |at|) ≤ ‖a‖∞ ∨ ‖b‖∞

and thus we have∣∣∣f̃ (as, at)− f̃ (bs, bt)
∣∣∣ ≤ ‖f ′′‖∞,a,b [|as − bs| ∨ |at − bt|] ≤ ‖f ′′‖∞,a,b ‖a− b‖∞

where
‖f ′′‖∞,a,b ≤ sup {|f ′′ (ξ)| : |ξ| ≤ ‖a‖∞ ∨ ‖b‖∞} .

Using these estimates in Eq. (8.52),

|f (a)st − f (b)st| ≤ ‖f
′′‖∞,a,b ‖a− b‖∞ |ast|+ ‖f

′‖∞,b |ast − bst|

≤ ‖f ′′‖∞,a,b
[
|a0 − b0|+N1 (a− b)ω (0, T )1/p

]
N1 (a)ω (s, t)1/p

+ ‖f ′‖∞,bN1 (a− b)ω (s, t)1/p

and therefore we have

N1 (f (a)− f (b)) ≤‖f ′‖∞,bN1 (a− b)

+ ‖f ′′‖∞,a,b
[
|a0 − b0|+N1 (a− b)ω (0, T )1/p

]
N1 (a) .

Moreover,

‖f (a)− f (b)‖1 = |f (a0)− f (b0)|+N1 (f (a)− f (b))
≤ ‖f ′‖∞,a,b [|a0 − b0|+N1 (a− b)]

+ ‖f ′′‖∞,a,b
[
|a0 − b0|+N1 (a− b)ω (0, T )1/p

]
N1 (a)

≤ ‖f ′‖∞,a,b ‖a− b‖1 + ‖f ′′‖∞,a,bN1 (a) max
(

1, ω (0, T )1/p
)
‖a− b‖1

≤
[
‖f ′‖∞,a,b + ‖f ′′‖∞,a,bN1 (a) max

(
1, ω (0, T )1/p

)]
‖a− b‖1 .

We will now see how f acts on the space D.

Theorem 8.20. Suppose that f : U → S is a smooth map of Banach spaces and
for (y, α) ∈ D (U, ω) , let f∗ (y, α) := (f (y) , f ′ (y)α) . Then f∗ (y, α) ∈ D (S, ω)
and the map f∗ : D (U, ω)→ D (S, ω) satisfies the following estimates,

‖f∗ (y, α)‖ ≤ |f (y0)|+ ‖f ′‖∞,y ‖(y, α)‖2 (8.54)

+ 2C
(
ω (0, T )1/p

)
max

(
1, N1 (X)2

)
‖f ′′‖∞,y ‖(y, α)‖22

where

C
(
ω (0, T )1/p

)
= max

(
1, ω (0, T )1/p

)
max

(
2ω (0, T )1/p , ω (0, T )1/p + 1

)
(8.55)

≤
[
1 + 2ω (0, T )1/p

]2
(8.56)
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and

‖f∗ (y, αy)− f∗ (z, αz)‖2 ≤ |f (y0)− f (z0)|+ C ‖(y, αy)− (z, αz)‖2 (8.57)

where

C = C
(
ω (0, T )1/p , N1 (X) , ‖f ′‖∞,y,z , ‖f

′′‖∞,y,z , ‖f
′′′‖∞,y,z , ‖(y, α

y)‖2 , ‖(z, α
z)‖2

)
(8.58)

depends on (‖(y, αy)‖2 , ‖(z, αz)‖2) quadratically and on
(
‖f ′‖∞,y,z , ‖f ′′‖∞,y,z , ‖f ′′′‖∞,y,z

)
linearly.

Proof. Let f : W → S be a smooth map of Banach space, εst = εyst :=
yst − αsX1

st, and

ε
f(y)
st := f (yt)− f (ys)− f ′ (ys)αsX1

st = f (y)st − f
′ (ys)αsX1

st, (8.59)

then

f (yt)− f (ys) = f ′ (ys) yst +R (ys, yt) y⊗2
st (8.60)

= f ′ (ys)
[
αsX

1
st + εst

]
+R (ys, yt) y⊗2

st (8.61)

where

R (ys, yt) =
∫ 1

0

f ′′ (ys + τyst) (1− τ) dτ.

Thus we have
df (y) = f ′ (y)αdX1 + dεf(y)

where

ε
f(y)
st = f ′ (ys) ε

y
st +R (ys, yt) y⊗2

st (8.62)

= f ′ (ys) ε
y
st +R (ys, yt)

[
αysX

1
st + εyst

]⊗2

= f ′ (ys) ε
y
st +R (ys, yt)

[
(αys)2

(
X1
st

)2
+ αysX

1
st ∨ ε

y
st + (εyst)

2
]
.

We now estimate εf(y) as∣∣∣εf(y)
st

∣∣∣ =
∣∣f (y)st − f

′ (ys)αsX1
st

∣∣ ≤ |f ′ (ys) εst|+ ∣∣R (ys, yt) y⊗2
st

∣∣
≤ ‖f ′‖∞,y |εst|+ ‖f

′′‖∞,y |yst|
2

≤ ‖f ′‖∞,y N (y, α)ω (s, t)2/p +
1
2
‖f ′′‖∞,y N1 (y)2 ω (s, t)2/p , (8.63)

and so

N (f (y) , f ′ (y)α) ≤ ‖f ′‖∞,y N (y, α) + ‖f ′′‖∞,y N1 (y)2

≤ ‖f ′‖∞,y N (y, α)

+ ‖f ′′‖∞,y
[
|α0|N1 (X) + [N1 (α)N1 (X) +N (y, α)]ω (0, T )1/p

]2
(8.64)

≤ ‖f ′‖∞,y N (y, α)

+ ‖f ′′‖∞,y ·max
(

1, N1 (X)2
)

max
(

1, ω (0, T )2/p
)
‖(y, α)‖22

(8.65)

wherein the last two inequalities we have made use of Eqs. (8.21) and (8.22).
Moreover by Eqs. (8.41) and (8.46)

‖f ′ (y)α‖1 ≤max
(

2ω (0, T )1/p , ω (0, T )1/p + 1
)
‖f ′ (y)‖1 ‖α‖1

≤max
(

2ω (0, T )1/p , ω (0, T )1/p + 1
)
‖f ′′‖∞,y ‖y‖1 ‖α‖1

≤max
(

2ω (0, T )1/p , ω (0, T )1/p + 1
)
× (8.66)

×max
(

1, ω (0, T )1/p
)

max
(

1, N1 (X)2
)
‖f ′′‖∞,y ‖(y, α)‖2 ‖α‖1

= C
(
ω (0, T )1/p

)
max

(
1, N1 (X)2

)
‖f ′′‖∞,y ‖(y, α)‖2 ‖α‖1

where C
(
ω (0, T )1/p

)
is as in Eq. (8.55). Combining Eqs. (8.65) and (8.66) then

shows

‖f∗ (y, α)‖

≤ |f (y0)|+ ‖f ′‖∞,y N (y, α) + ‖f ′′‖∞,y ·max
(

1, ω (0, T )2/p
)

max
(

1, N1 (X)2
)
‖(y, α)‖22

+ C
(
ω (0, T )1/p

)
max

(
1, N1 (X)2

)
‖f ′′‖∞,y ‖(y, α)‖2 ‖α‖1

≤ |f (y0)|+ ‖f ′‖∞,y N (y, α) + 2C
(
ω (0, T )1/p

)
max

(
1, N1 (X)2

)
‖f ′′‖∞,y ‖(y, α)‖22

≤ |f (y0)|+ ‖f ′‖∞,y ‖(y, α)‖2 + 2C
(
ω (0, T )1/p

)
max

(
1, N1 (X)2

)
‖f ′′‖∞,y ‖(y, α)‖22

This proves Eq. (8.54).
Now suppose that Y and z are two X – differentiable paths so that

dY = αY dX1 + dεY and dz = αzdX1 + dεz

where ∣∣dεY ∣∣ ≤ N (z, αY )ω (s, s+ ds)2/p and

|dεz| ≤ N (z, αz)ω (s, s+ ds)2/p .
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From Eq. (8.59) it follows that

f (Y )st − f (z)st = f ′ (Ys)αYs X
1
st + ε

f(Y )
st −

[
f ′ (zs)αzsX

1
st + ε

f(z)
st

]
=
(
f ′ (Ys)αYs − f ′ (zs)αzs

)
X1
st + ε

f(Y )
st − εf(z)

st

= f ′ (Ys)αYs X
1
st + f ′ (Ys) εYst +R (Ys, Yt)Y ⊗2

st

−
[
f ′ (zs)αzsX

1
st + f ′ (zs) εzst +R (zs, zt) z⊗2

st

]
and hence from Eq. (8.62)

ε
f(Y )−f(z)
st = ε

f(Y )
st − εf(z)

st

= f ′ (Ys) εYst − f ′ (zs) εzst +R (Ys, Yt)Y ⊗2
st −R (zs, zt) z⊗2

st

= [f ′ (Ys)− f ′ (zs)] εYst + f ′ (zs)
[
εYst − εzst

]
+ [R (Ys, Yt)−R (zs, zt)]Y ⊗2

st +R (zs, zt)
[
Y ⊗2
st − z⊗2

st

]
.

Let us observe

R (x, y) =
∫ 1

0

f ′′ (x+ τ (y − x)) (1− τ) dτ

so that

∂(v,w)R (x, y) =
∫ 1

0

∂(v,w) [f ′′ (x+ τ (y − x))] (1− τ) dτ

=
∫ 1

0

d

dt
|0 [f ′′ (x+ tv + τ (y − x+ t (w − v)))] (1− τ) dτ

=
∫ 1

0

[(
∂v+τ(w−v)f

′′) (x+ τ (y − x))
]

(1− τ) dτ

=
∫ 1

0

[f ′′′ (x+ τ (y − x)) (v + τ (w − v) , ·, ·)] (1− τ) dτ.

From this it follows that∣∣∂(v,w)R (x, y)
∣∣ ≤ ∫ 1

0

|f ′′′ (x+ τ (y − x))| |v + τ (w − v)| (1− τ) dτ

≤ ‖f ′′′‖∞,x,y
∫ 1

0

[|v|+ τ |w − v|] (1− τ) dτ

= ‖f ′′′‖∞,x,y

{
1
2
|v|+

(
1
2
− 1

3

)
|w − v|

}
= ‖f ′′′‖∞,x,y

{
1
2
|v|+ 1

6
|w − v|

}
≤ ‖f ′′′‖∞,x,y

{
1
2
|v|+ 1

6
|v|+ 1

6
|w|
}

≤ ‖f ′′′‖∞,x,y

{
2
3
|v|+ 1

6
|w|
}
≤ 2

3
‖f ′′′‖∞,x,y (|v|+ |w|)

and hence we have shown

|R′ (x, y)| ≤ 2
3
‖f ′′′‖∞,x,y .

It now follows that∣∣∣εf(y)−f(z)
st

∣∣∣ = |f ′ (ys)− f ′ (zs)| |εyst|+ |f ′ (zs)| |ε
y
st − εzst|

+ |R (ys, yt)−R (zs, zt)|
∣∣y⊗2
st

∣∣+ |R (zs, zt)|
∣∣y⊗2
st − z⊗2

st

∣∣
≤ ‖f ′′‖∞,y,z |ys − zs| |ε

y
st|+ ‖f ′‖∞,z |ε

y
st − εzst|

+
2
3
‖f ′′′‖∞,y,z |(ys − zs, yt − zt)|

∣∣y⊗2
st

∣∣+
1
2
‖f ′′‖∞,z

∣∣y⊗2
st − z⊗2

st

∣∣ .
(8.67)

From Eq. (8.21)

N1 (y − z) ≤ |αy0 − αz0|N1 (X)

+
[
N1 (αy − αz)N1 (X)ω (0, T )1/p +N (y − z, αy − αz)

]
ω (0, T )1/p

(8.68)

and from this it also follows that

|yt − zt| ≤ |y0 − z0|+N1 (y − z)ω (0, t)1/p

≤ |y0 − z0|+ |αy0 − αz0|N1 (X)ω (0, t)1/p

+
[
N1 (αy − αz)N1 (X)ω (0, T )1/p +N (y − z, αy − αz)

]
ω (0, t)2/p .

(8.69)

Combining Eqs. (8.67 – 8.69) shows∣∣∣εf(y)−f(z)
st

∣∣∣ ≤‖f ′′‖∞,y,z N (y, αy) |ys − zs|ω (s, t)2/p

+ ‖f ′‖∞,z N (y − z, αy − αz)ω (s, t)2/p

+
2
3
‖f ′′′‖∞,y,z |(ys − zs, yt − zt)|

∣∣y⊗2
st

∣∣
+

1
2
‖f ′′‖∞,z

∣∣y⊗2
st − z⊗2

st

∣∣ .
Moreover∣∣y⊗2

st − z⊗2
st

∣∣ ≤ |yst + zst| |yst − zst| ≤ [|yst|+ |zst|] |yst − zst|

≤ [N1 (y) +N1 (z)]ω (s, t)1/pN1 (y − z)ω (s, t)1/p

= [N1 (y) +N1 (z)]N1 (y − z)ω (s, t)2/p
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and
|yt − zt| ≤ |y0 − z0|+N1 (y − z)ω (0, t)1/p .

Putting this all together shows∣∣∣εf(y)−f(z)
st

∣∣∣ ≤ ‖f ′′‖∞,y,z N (y, αy)
[
|y0 − z0|+N1 (y − z)ω (s, t)1/p

]
ω (s, t)2/p

+ ‖f ′‖∞,z N (y − z, αy − αz)ω (s, t)2/p

+
4
3
‖f ′′′‖∞,y,z

[
|y0 − z0|+N1 (y − z)ω (0, T )1/p

]
N1 (y)2 ω (s, t)2/p

+
1
2
‖f ′′‖∞,z [N1 (y) +N1 (z)]N1 (y − z)ω (s, t)2/p

from which it follows that

N (f (y)− f (z) , f ′ (y)αy − f ′ (z)αz)

≤ ‖f ′′‖∞,y,z N (y, αy)
[
|y0 − z0|+N1 (y − z)ω (0, T )1/p

]
+ ‖f ′‖∞,z N (y − z, αy − αz)

+
4
3
‖f ′′′‖∞,y,z

[
|y0 − z0|+N1 (y − z)ω (0, T )1/p

]
N1 (y)2

+ ‖f ′′‖∞,z [N1 (y) +N1 (z)]N1 (y − z)

or after some rearranging that

N (f (y)− f (z) , f ′ (y)αy − f ′ (z)αz)
≤ ‖f ′‖∞,z N (y − z, αy − αz)

+ ‖f ′′‖∞,y,z

[
|y0 − z0|N (y, αy) +(

1
2 [N1 (y) +N1 (z)] +N (y, αy)ω (0, T )1/p

)
N1 (y − z)

]

+
4
3
‖f ′′′‖∞,y,z

[
|y0 − z0|+N1 (y − z)ω (0, T )1/p

]
N1 (y)2 .

Moreover, by Eq. (8.44) with C = C
(
p, ω (0, T )1/p

)
, we have

‖f ′ (y)αy − f ′ (z)αz‖1 ≤ C (p, ω) [‖f ′ (y)− f ′ (z)‖1 ‖α
y‖1 + ‖f ′ (z)‖1 ‖α

y − αz‖1]

and by Theorem 8.19 we have

‖f ′ (y)− f ′ (z)‖1 ≤
[
‖f ′′‖∞,y,z + ‖f ′′′‖∞,y,z N1 (y) max

(
1, ω (0, T )1/p

)]
‖y − z‖1

and
‖f ′ (z)‖1 ≤ ‖f

′′‖∞,z · ‖z‖1 .

Combining the last three equations and using Proposition 8.13 shows

‖f ′ (y)αy − f ′ (z)αz‖1
≤ C (p, ω)

[
‖f ′′‖∞,y,z + ‖f ′′′‖∞,y,z N1 (y) max

(
1, ω (0, T )1/p

)]
‖y − z‖1 ‖α

y‖1
+ C (p, ω) ‖f ′′‖∞,z · ‖z‖1 ‖α

y − αz‖1

≤ C (p, ω,N1 (X))
[

‖f ′′‖∞,y,z
+ ‖f ′′′‖∞,y,z ‖(y, αy)‖2

]
‖(y − z, αy − αz)‖2 ‖(y, α

y)‖2

+ C (p, ω) ‖f ′′‖∞,z · ‖(z, α
z)‖2 ‖(y − z, α

y − αz)‖2

≤ C (p, ω,N1 (X))

[
‖f ′′‖∞,y,z (‖(y, αy)‖2 + ‖(z, αz)‖2)

+ ‖f ′′′‖∞,y,z ‖(y, αy)‖22

]
‖(y − z, αy − αz)‖2 .

Assembling all of these estimates shows Eq. (8.57) with a constant as de-
scribed in Eq. (8.58).

8.4 Appendix on Taylor’s Theorem

Theorem 8.21 (Taylor’s Theorem). If f : V → E is a Cn+1-smooth map
between Banach space, then

f(v + h) =
n∑
k=0

1
k!

Dkf(v)(h, . . . , h) +Rn+1(v, h)

where

Rn+1(v, h) =
1

(n+ 1)!

∫ 1

0

Dn+1f(v + rh)(

n+1 times︷ ︸︸ ︷
h, . . . , h )dνn (r)

and
dνn (r) = (n+ 1) (1− r)ndr.

Notice that νn is a probability measure on [0, 1] for each n = 0, 1, 2, . . . In
particular we have

f (v + h) = f (v) +
∫ 1

0

f ′ (v + rh) dr

f (v + h) = f (v) + f ′ (v)h+
∫ 1

0

f ′′ (v + rh) (h, h) (1− r) dr

and

f (v + h) = f (v)+f ′ (v)h+
1
2
f ′′ (v) (h, h)+

1
2!

∫ 1

0

D3f (v + rh) (h, h, h) (1− r)2 dr.
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Corollary 8.22. Keeping the same notation as in Taylor’s Theorem 8.21, we
have ∣∣∣∣∣f(v + h)−

n∑
k=0

1
k!

Dkf(v)(h, . . . , h)

∣∣∣∣∣ ≤ Mn+1

(n+ 1)!
|h|n+1

where M := sup0≤r≤1

∣∣Dn+1f(v + rh)
∣∣ .

Notation 8.23 Let B = B (0, R) be a ball in V which contains Xs := X1
0,s for

s ∈ [0, T ] and let M be a bound on α, α′ and α′′ on this ball.

Example 8.24. Suppose α ∈ C2 (V → L (V,W )) . Then we have the following
factorization results:

1. For ξ, η ∈ V we have, with h = η − ξ

α (η) = α (ξ) + α′ (ξ) (η − ξ) +R1 (ξ, η)

where

R1(ξ, η) =
∫ 1

0

(1− r) D2α(ξ + r(η − ξ))(η − ξ, η − ξ)dr

and in particular it follows that

α (Xt) = α (Xs) + α′ (Xs)X1
st +R1(Xs, Xt)

where

R1(Xs, Xt) =
∫ 1

0

(1− r) D2α(Xs + rX1
st)(X

1
st, X

1
st)dr.

2. For ξ, η ∈ V we have, with h = η − ξ

α′ (η) = α′ (ξ) +R2 (ξ, η)

where

R2(ξ, η) =
∫ 1

0

D2α(ξ + r(η − ξ))(η − ξ, ·, ·)dr

and in particular
α′ (Xt) = α′ (Xs) +R2(Xs, Xt)

where

R2 (Xs, Xt) =
∫ 1

0

D2α(Xs + rX1
st)(X

1
st, ·, ·)dr.

3. For ξ, η ∈ B,
|R1(ξ, η)| ≤ M

2
|η − ξ|2

and
|R2(ξ, η)| = M |η − ξ| .

and in particular we have

|R1(Xs, Xt)| =
M

2

∣∣X1
st

∣∣2 ≤ M

2
C2ω (s, t)2/p

and
|R2 (Xs, Xt)| ≤MCω (s, t)1/p .
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9

Rough ODE

Let us not go on to understanding the meaning of the differential equation,

y (t) = y0 +
∫ t

0

f (y (τ)) dx (τ) , (9.1)

where x ∈ Cp ([0, T ]→ V ) and y ∈ Cp ([0, T ] ,W ) . As we do not know how to
do this integral we work heuristically for the moment. As before, let

Yst = y (t)− y (s) =
∫ t

s

f (y (τ)) dx (τ)

∼=
∫ t

s

[f (y (s)) + f ′ (y (s)) (y (τ)− y (s))] dx (τ)

∼=
∫ t

s

[f (y (s)) + f ′ (y (s)) f (y (s)) (x (τ)− x (s))] dx (τ)

= f (y (s))X1
st + f ′ (y (s)) f (y (s))X2

st.

This suggests that if X is a p – lift of x, we should reinterpret Eq. (9.1) as

y (t) = y0 +
∫ t

0

[
f (y) dX1 + f ′ (y) f (y) dX2

]
. (9.2)

Notice that if y is such a solution we would have,

yst =
∫ t

s

[
f (y) dX1 + f ′ (y) f (y) dX2

] ∼= f (y (s))X1
st + f ′ (y (s)) f (y (s))X2

st

and in particular, ∥∥yst − f (y (s))X1
st

∥∥ ≤ Cω (s, t)2/p . (9.3)

The following lemmas shows the right side of Eq. (9.2) makes sense provided y
satisfies the constraint in Eq. (9.3).

Lemma 9.1. Suppose that p ∈ [1, 3), y ∈ Cp ([0, T ]→W ) , and X : ∆ → G is
a p – rough path. Further suppose that

y (t)− y (s)− f (y (s))X1
st = O

(
ω (s, t)2/p

)
.

Then (α (t) , β (t)) = (f (y (t)) , f ′ (y (t)) f (y (t))) is an X – integrable function.

Proof. We have,

αst = f (y (t))− f (y (s)) =
∫ 1

0

f ′ (τy (t) + (1− τ) y (s)) ystdτ

= f ′ (y (s)) yst + δst = f ′ (y (s)) f (y (s))X1
st +O

(
ω (s, t)2/p

)
+ δst

= β (s)X1
st +O

(
ω (s, t)2/p

)
+ δst

where

δst :=
∫ 1

0

[f ′ (τy (t) + (1− τ) y (s))− f ′ (y (s))] ystdτ.

Letting M2 be a bound on |f ′′| over {(τy (t) + (1− τ) y (s)) : s, τ ∈ [0, 1]} , we
find

|δst| :=
∫ 1

0

|f ′ (τy (t) + (1− τ) y (s))− f ′ (y (s))| |yst| dτ ≤
M2

2
|yst|2 = O

(
ω (s, t)2/p

)
so that αst = β (s)X1

st + O
(
ω (s, t)2/p

)
. Since β (t) = g (y (t)) where g (y) =

f ′ (y) f (y) is smooth, it follows that βst = O (|yst|) = O
(
ω (s, t)1/p

)
as re-

quired.

9.1 Local Existence and Uniqueness

Let f : U → L(V,U) be a smooth function. We wish to consider the rough path
ODE,

dy = f(y)dX with y0 = y0. (9.4)

As usual we should interpret this as an integral equation,

yt = y0 +
∫ t

0

f(y)dX, (9.5)

by which we really mean;



92 9 Rough ODE

yt = y0 +
∫ t

0

f∗(y, αy) · dX

= y0 +
∫ t

0

[f(y)dX1 + f ′(y)αydX2] where (9.6)

αy = f(y) (9.7)

Notation 9.2 In what follows, Y := (y, α) and Ỹ := (ỹ, α̃) will denote ele-
ments of D (U) . Moreover, we may write α as αy and α̃ as αỹ.

Theorem 9.3 (Global Uniqueness). Assuming that f is C3, there is at most
one solution to Eq. (9.6).

Proof. Suppose Y = (y, α) and Ỹ = (ỹ, α̃) are two solutions to Eq. (9.6).
By Eq. (8.57) of Theorem 8.20,∥∥∥f∗(Y )− f∗(Ỹ )

∥∥∥
2
≤ C

∥∥∥Y − Ỹ ∥∥∥
2

where

C = C(ω(0, T )1/p, ‖f‖C3(B(0,‖Y ‖∞∨‖Ỹ ‖∞)), ‖Y ‖2,
∥∥∥Ỹ ∥∥∥

2
, ‖X‖).

Using this estimate along with Theorem 8.14 we find,∥∥∥Y − Ỹ ∥∥∥
2

=
∥∥∥∥∫ [f(Y )− f(Ỹ )

]
dX

∥∥∥∥
2

≤ Cp(‖X‖)ω(0, T )1/p
∥∥∥f(Y )− f(Ỹ )

∥∥∥
2

≤ C · Cp(‖X‖)ω(0, T )1/p
∥∥∥Y − Ỹ ∥∥∥

2
.

Hence on the interval [0, t] such that C · Cp(‖X‖)ω(0, t)1/p < 1, it follows that
Y = Ỹ .

Let τ := inf
{
t > 0 : Yt 6= Ỹt

}
. By continuity of Y and Ỹ it follows that

Yτ = Ỹτ . If τ < T , it follows from the above argument with the time interval
shifted to [τ, τ+t], then in fact Ys = Ỹs for all τ ≤ s ≤ τ+t. But this contradicts
the definition of τ unless τ = T .

When f = Λ ∈ L(V,U) is constant, it follows that the solution to Eq. (9.4)
or more precisely Eq. (9.6) is

yt = y0 + ΛXt := y0 + ΛX1
0,t.

We will solve the general case as a perturbation of the solution of the constant
case with Λ := f(y0). So let

yt = y0 + ΛXt + zt

where Z = (z, αz) ∈ Ω2(U, ω) with Z0 = 0 and αZ0 = 0 and let

g(y) := f(y0 + y)− f(y0).

Putting this expression into Eq. (9.5) shows Z must satisfy,

y0 + ΛXt + zt = y0 +
∫ t

0

f(Y )dX = y0 +
∫ t

0

f(y0 + ΛX + Z)dX

= y0 + ΛXt +
∫ t

0

g(ΛX + Z)dX

or equivalently that

Zt =
∫ t

0

f(y0 + ΛX + Z)dX − ΛXt =
∫ t

0

[f(y0 + ΛX + Z)− Λ]dX

=
∫ t

0

g(ΛX + Z)dX

=
∫ t

0

[
g(ΛX + Z)dX1 + g′(ΛX + Z)

d(ΛX + Z)
dX

dX2

]
=
∫ t

0

[
g(ΛX + Z)dX1 + g′(ΛX + Z)(Λ+ αZ)dX2

]
.

More precisely, using Eq. (9.6), Z must satisfy

y0 + ΛXt + Zt = y0 +
∫ t

0

[f(y)dX1 + f ′(y)αydX2]

or equivalently that

Zt =
∫ t

0

[f(y)dX1 + f ′[(y)αydX2]− ΛXt

=
∫ t

0

([f(y0 + ΛX + Z)− f(y0)]dX1 + f ′(y0 + ΛX + Z)(Λ+ αZ)dX2)

=
∫ t

0

(g(ΛX + Z)dX1 + g′(ΛX + Z)(Λ+ αZ)dX2)

=
∫ t

0

g∗(ΛX + Z,Λ+ αZ) · dX.

Theorem 9.4 (Local Existence and Uniqueness). Assuming that f is C3,
and T is sufficiently small, then Eq. (9.6) has a unique solution. If we further
assume that f and its derivatives to order three are bounded, then Eq. (9.6) has
a solution defined for 0 ≤ t ≤ T. (BRUCE: Ideally, the assumption that f is
bounded should be dropped from the hypothesis.)
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Proof. Let Z := (z, αz) and then define,

Γ (Z) =
∫
g(ΛX + z)dX :=

∫
g∗(ΛX + Z,Λ+ αZ) · dX

or more precisely,

Γ (Z) :=
(∫

g∗(ΛX + z, Λ+ αZ) · dX, g(ΛX + z)
)

where as usual,

g∗(ΛX + z, Λ+ αZ) =
(
g(ΛX + z), g′ (ΛX + z)

(
Λ+ αZ

))
which at t = 0 is given by

g∗(ΛX + z, Λ+ αz)|t=0 = (g(0), g′ (0)Λ) = (0, g′ (0)Λ) .

From Eq. (8.26) we have, with Cp(‖X‖) = 1 +Kp‖X‖ that

‖Γ (Z)‖2 ≤ |g(0) + ‖X‖ ‖g′(0)Λ|+ Cp(‖X‖)ω(0, T )1/p‖g(ΛX + Z)‖2
= ‖X‖ |f ′(y0)f(y0)|+ Cp(‖X‖)ω(0, T )1/p‖g(ΛX + Z)‖2. (9.8)

Moreover, from Theorem 8.20 (using g([ΛX + Z]0) = g(0) = 0) we have

‖g(ΛX + Z)‖2 ≤‖g′‖∞,ΛZ+Z‖ΛX + Z‖2
+ (ω(0, T )1/p)(1 + ‖X‖2)‖g′′‖2∞,ΛX+Z‖ΛX + Z‖22. (9.9)

Let us now assume that

‖f ′‖∞ + ‖f ′′‖∞ + ‖f ′′′‖∞ ≤M <∞,

then upon noting that

‖ΛX + Z‖2 ≤ ‖ΛX‖2 + ‖Z‖2 = |Λ|+ ‖Z‖2

it follows from Eq. (9.9) that

‖g(ΛX+Z)‖2 ≤M [|f(y0)|+‖Z‖2]+2C
(
ω(0, T )1/p

) (
1 + ‖X‖2

)
M2[|f(y0)|+‖Z‖2]2.

(9.10)
Combining this with Eq. (9.8) shows

‖Γ (Z) ‖2 ≤ ‖X‖|f ′(y0)f(y0)|

+ Cp(‖X‖)ω(0, T )1/p
[

M [|f(y0)|+ ‖Z‖2]+
+2C

(
ω(0, T )1/p

) (
1 + ‖X‖2

)
M2[|f(y0)|+ ‖Z‖2]2

]
.

Letting N := 2‖X‖|f ′(y0)f(y0)| and making the assumption that ‖Z‖2 ≤ N,
we find

‖Γ (Z)‖2 ≤
1
2
N+Cp(‖X‖)ω(0, T )1/p

[
M [|f(y0)|+N ]+

+2C
(
ω(0, T )1/p

) (
1 + ‖X‖2

)
M2[|f(y0)|+N ]2

]
(9.11)

from which it follows that ‖Γ (Z)‖2 ≤ N provided we choose T sufficiently small
so that

Cp‖X‖ω(0, T )1/p
[

M [|f(y0)|+N ]+
+2C

(
ω(0, T )1/p

) (
1 + ‖X‖2

)
M2[|f(y0)|+N ]2

]
≤ 1

2
N.

(One should keep in mind that by scaling ω, if it is desirable we may assume
that N = 2‖X‖ |f ′(y0)f(y0)| = 1.) In summary, if

F := {Z ∈ Ω1(U, ω) : Z0 = 0, αZ0 = 0, and ‖Z‖2 ≤ N}

and T is sufficiently small, then Γ (F ) ⊂ F.
Suppose Z, Z̃ ∈ F ⊂ Ω1(U, ω), then∥∥∥Γ (Z)− Γ (Z̃)

∥∥∥
2

=
∥∥∥Γ (Z − Z̃)

∥∥∥
2

=
∥∥∥∥∫ [g(ΛX + Z)− g(ΛX + Z̃)

]
dX

∥∥∥∥
2

≤|g(0)− g(0)|+ ‖X‖|g′(0)Λ− g′(0)Λ|

+ Cp(‖X‖)ω(0, T )1/p
∥∥∥g(ΛX + Z)− g(ΛX + Z̃)

∥∥∥
2

=Cp(‖X‖)ω(0, T )1/p
∥∥∥g(ΛX + Z)− g(ΛX + Z̃)

∥∥∥
2
.

It then follows by an application of Eq. (8.57) of Theorem 8.20 that∥∥∥g(ΛX + Z)− g(ΛX + Z̃)
∥∥∥

2
≤ |g(0)− g(0)|

+ C
(
M,N,ω(0, T )1/p, ‖X‖

)∥∥∥ΛX + Z − (ΛX + Z̃)
∥∥∥

2

=C
(
M,N,ω(0, T )1/p, ‖X‖

)∥∥∥Z − Z̃∥∥∥
2
.

Combining the last two displayed equations then shows,∥∥∥Γ (Z)− Γ (Z̃)
∥∥∥

2
≤ Cp(‖X‖)C

(
M,N,ω(0, T )1/p, ‖X‖

)
ω(0, T )1/p

∥∥∥Z − Z̃∥∥∥
2
.

By shrinking T some more if necessary, we may assume

Cp(‖X‖)C
(
M,N,ω(0, T )1/p, ‖X‖

)
ω(0, T )1/p < 1. (9.12)

With this choice of T it then follows that Γ |F : F → F is a contraction. Since F
is a closed subset of a Banach space, an application of the contraction mapping
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principle implies there exists a unique Z ∈ F such that Γ (Z) = Z. The desired
solution to Eq. (9.4) is then

yt := y0 + f(y0)Xt + Zt.

For the last assertion, notice that when f and its derivatives are assumed
to be bounded, then for Eqs. (9.11) and (9.12) to be valid, we need only
choose T such that ω (0, T ) ≤ ε with ε > 0 being a constant independent
of y0. Thus if we want to solve the equation, we may choose a partition
π = {0 = t0 < t1 < · · · < tr = T} such that ω (tl−1, tl) ≤ ε for all l. Thus we
may inductively construct the solution on [0, tl] for l = 1, 2, . . . , r.

9.2 A priori-Bounds

Theorem 9.5 (A priori Bounds). Assuming that f is C2, f is bounded with
bounded derivatives to order two and suppose y (t) solves Eq. (9.6), then there
exists a constant C and δ depending only on Mi :=

∥∥f (i)
∥∥
∞ for i = 0, 1, 2; such

that
|yt| ≤ |y0|+ C (ω (0, T ) /δp + 1) for all 0 ≤ t ≤ T.

Proof. Let
Wst := f (ys)X1

st + f ′ (ys)αsX2
st

where
Yst = αsX

1
st + εst.

Then for s < u < t, we have

Wst −Wsu −Wut = f (ys)
[
X1
st −X1

su

]
− f (yu)X1

ut

+ f ′ (ys)αs
[
X2
st −X2

su

]
− f ′ (yu)αuX2

ut

= f (ys)
[
X1
st −X1

su −X1
ut

]
+ [f (ys)− f (yu)]X1

ut

+ f ′ (ys)αs
[
X2
st −X2

su −X2
ut

]
+ [f ′ (ys)αs − f ′ (yu)αu]X2

ut

= [f (ys)− f (yu)]X1
ut + f ′ (ys)αs

[
X1
suX

1
ut

]
+ f ′ (ys)αs

[
X2
st −X2

su −X2
ut −X1

suX
1
ut

]
+ [f ′ (ys)αs − f ′ (yu)αu]X2

ut

=
(
[f (ys)− f (yu)]X1

ut + f ′ (ys)αs
[
X1
suX

1
ut

])
+ [f ′ (ys)αs − f ′ (yu)αu]X2

ut

=: A+B.

Since

f (yu)− f (ys) =
[∫ 1

0

f ′ (ys + τYsu) dτ
]
Ysu

=
[∫ 1

0

f ′ (ys + τYsu) dτ
] (
αsX

1
su + εsu

)
we see that

A = f ′ (ys)αs
[
X1
suX

1
ut

]
−
[∫ 1

0

f ′ (ys + τYsu) dτ
] (
αsX

1
su + εsu

)
X1
ut

=
(∫ 1

0

[f ′ (ys)− f ′ (ys + τYsu)] dτ
)
αs
[
X1
suX

1
ut

]
−
[∫ 1

0

f ′ (ys + τYsu) dτ
]
εsuX

1
ut

and hence that

|A| ≤M2 |Ysu| |αs|
∣∣X1

su

∣∣ ∣∣X1
ut

∣∣+M1 |εsu|
∣∣X1

ut

∣∣
≤ [M2 |αs|N (Y ) +M1N (ε)]ω (s, t)3/p .

Furthermore,

B = (f ′ (ys)αs − f ′ (yu)αu)X2
ut

= ([f ′ (ys)− f ′ (yu)]αs + f ′ (yu) [αs − αu])X2
ut,

and thus

|B| ≤ (M2 |Ysu| |αs|+M1 |αsu|)
∣∣X2

ut

∣∣ ≤ (M2 |αs|N (Y ) +M1N (α))ω (s, t)3/p .

Assembling these estimates gives

|Wst −Wsu −Wut| ≤ |A|+ |B|

≤ [M2 |αs|N (Y ) +M1N (ε)]ω (s, t)3/p

+ (M2 |αs|N (Y ) +M1N (α))ω (s, t)3/p

= [2M2 |αs|N (Y ) +M1 (N (ε) +N (α))]ω (s, t)3/p

which allows us to conclude that

|Yst −Wst| ≤ K (3/p) [2M2 ‖α‖∞N (Y ) +M1 (N (ε) +N (α))]ω (s, t)3/p .

Since αs = f (ys) , we have ‖α‖∞ ≤M0,

|αst| = |f (yt)− f (ys)| ≤M1 |Yst| ≤M1N (Y )ω (s, t)1/p ,

and hence
N (α) ≤M1N (Y ) .
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Therefore,

|Yst −Wst| ≤ K (3/p) [2M2M0N (Y ) +M1 (N (ε) +M1N (Y ))]ω (s, t)3/p

and this then implies that

|Yst| ≤ |Wst|+ |Yst −Wst| ≤
∣∣f (ys)X1

st

∣∣+
∣∣f ′ (ys)αsX2

st

∣∣+ |Yst −Wst|

≤M0ω (s, t) +M1M0ω (s, t)2/p

+K (3/p) [2M2M0N (Y ) +M1 (N (ε) +M1N (Y ))]ω (s, t)3/p

and therefore that

N (Y ) ≤M0 +M1M0ω (0, T )1/p

+K (3/p)
[(

2M2M0 +M2
1

)
N (Y ) +M1N (ε)

]
ω (0, T )2/p .

Moreover we also have

|εst| =
∣∣Yst − f (ys)X1

st

∣∣ ≤ |Yst −Wst|+
∣∣Wst − f (ys)X1

st

∣∣
≤ |Yst −Wst|+

∣∣f ′ (ys)αsX2
st

∣∣
≤ |Yst −Wst|+M1M0ω (s, t)2/p

so that

N (ε) ≤M0M1 +K (3/p)
[(

2M2M0 +M2
1

)
N (Y ) +M1N (ε)

]
ω (0, T )1/p .

Hence if we choose 1 > δ > 0 such that

δ ·max
(
K (3/p)

(
2M2M0 +M2

1

)
,M1

)
=:

α

2
<

1
2

and then choose T such that

max
(
ω (0, T )1/p , ω (0, T )2/p

)
≤ δ,

(since δ < 1, the condition is really ω (0, T ) ≤ δp) then we have

N (Y ) ≤M0 +M1M0δ +
α

2
(N (Y ) +N (ε)) and

N (ε) ≤M0M1 +
α

2
(N (Y ) +N (ε)) .

Adding these two equations gives the estimate,

N (Y ) +N (ε) ≤M0 +M1M0δ +M0M1 + α (N (Y ) +N (ε))

from which it follows that

N (Y ) +N (ε) ≤ M0

1− α
(1 +M1δ +M1) .

In particular, this gives a bound of the form that

|yt| ≤ |y0|+ C if ω (0, t) ≤ δp.

To be precise, suppose that we take α = 1
2 in which case (by assuming M0

is sufficiently large) we have

δ =
1

4K (3/p) (2M2M0 +M2
1 )

and so for ω (0, T ) ≤ δp, we have

N (Y ) +N (ε) ≤ 2M0 (1 +M1δ +M1)

≤ 2M0

(
1 +

M1

4K (3/p) (2M2M0 +M2
1 )

+M1

)
.

In summary, if we define

κ := 2M0

(
1 +

M1

4K (3/p) (2M2M0 +M2
1 )

+M1

)
(9.13)

and assume

ω (0, t) ≤ δp =
[

1
4K (3/p) (2M2M0 +M2

1 )

]p
,

then we have shown

|yt| ≤ |y0|+N (Y )ω (0, t)1/p ≤ |y0|+ κω (0, t)1/p ≤ |y0|+ κδ.

Choosing 0 = t0 < t1 < t2 < · · · < tn < tn+1 = T such that ω (tl−1, tl) = δp for
l = 1, 2, . . . , n and ω (tn, T ) ≤ δp. It then follows that

|yt| ≤ |y0|+ κδ for t ∈ [t0, t1] ,
|yt| ≤ |y0|+ κδ + κδ = |y0|+ 2κδ for t ∈ [t1, t2]

. . .

|yt| ≤ |y0|+ nκδ for t ∈ [tn−1, tn] and

|yt| ≤ |y0|+ nκδ + κω (tn, T )1/p for t ∈ [tn, T ] .

Since

nδp + ω (tn, T ) =
n+1∑
l=1

ω (tl−1, tl) ≤ ω (0, T )
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we have n ≤ [ω (0, T )− ω (tn, T )] δ−p and therefore we have proven

|yt| ≤ |y0|+ κ [ω (0, T )− ω (tn, T )] δ−pδ + κω (tn, T )1/p (9.14)

where

C := κδ1−p = κ
[
4K (3/p)

(
2M2M0 +M2

1

)]p−1

= 2M0

(
1 +

M1

4K (3/p) (2M2M0 +M2
1 )

+M1

)[
4K (3/p)

(
2M2M0 +M2

1

)]p−1

(9.15)

Since

ω (tn, T )1/p − ω (tn, T ) δ−pδ = ω (tn, T )
[
ω (tn, T )1/p−1 − δ−pδ

]
= ω (tn, T )

[
ω (tn, T )

1−p
p − δ−pδ

]
≤ ω (tn, T )

[
δ1−p − δ1−p

]
≤ 0,

we may conclude that

|yt| ≤ |y0|+ Cω (0, T ) for all 0 ≤ t ≤ T. (9.16)

For M0 large we have the approximate estimate,

|yt| ≤ |y0|+ 2 (1 +M1) [8K (3/p)M2]p−1
Mp

0ω (0, T ) .

Remark 9.6. From Eqs. (9.16) and (9.15), in the case that f is linear, so that
f ′′ ≡ 0, we then have M2 = 0 and in this case we learn that

C = 2M0

(
1 +

M1

4K (3/p)M2
1

+M1

)[
4K (3/p)M2

1

]p−1
= K̃ (M1, p)M0.

To make use of this sort of nonsensical statement (nonsensical, since M0 =∞ if
f is linear) we must restrict our attention to solutions in a big open ball. STOP

In more detail, let T be the first exit time of y (t) from B (y0, Λ) for some
cutoff Λ. In this case we will have for y ∈ B (y0, Λ) that

|f (y)| ≤M1 (|y0|+ Λ)

so that
M0 ≤M1 (|y0|+ Λ) .

Using this estimate back in Eq. (9.16) implies that

|yt| ≤ |y0|+ 2 [M1 (|y0|+ Λ)]
(

1 +
M1

4K (3/p)M2
1

+M1

)[
4K (3/p)M2

1

]p−1
ω (0, T )

+ 2 [M1 (|y0|+ Λ)]
(

1 +
M1

4K (3/p)M2
1

+M1

)
1

4K (3/p)M2
1

(9.17)

≤ C1 (p,M1) [|y0|+ Λ] + C2 (p,M1, ) (9.18)

and hence we get the bound,

|yt| ≤ |y0|+K ′ (M1, p, k) (1 + Λ)ω (0, T ) for all 0 ≤ t ≤ T

M0 ≤ k(1 +Λ) where k is a bound on for some constant k and thus we get the
bound

|yt| ≤ |y0|+K ′ (M1, p, k) (1 + Λ)ω (0, T ) for all 0 ≤ t ≤ T
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Some Open Problems

Problem 10.1 (Measure theoretic approach). Is there are more measure
theoretic approach to the rough path theory? I would guess this would require
are reasonable notion of simple functions. Also, can one get rid of the conti-
nuity assumptions? (I have not done a literature search on this point, so there
probably is some work in this direction already.)

Problem 10.2 (Non explosion criteria). It is shown in Fritz and Victoir [6,
Exercise 10.61 on p. 259] that if dy = f (y) dx, x is a geomentric p – variation
rough path on Rd and f has bounded derivatives to sufficiently high order,
then the equation has solutions for all time. It is reasonable to ask the following
questions;

1. What happens for non-geometric rough paths?
2. What happens in infinite dimensions, i.e. when d→∞?
3. What are other sufficient conditions for non-explosion?
4. Can one find necessary condititions as well?

Theorem 10.3. Let p ∈ [1,∞) and n ∈ Z+ such that n − 1 ≤ p < n. Suppose
that X : ∆ → G(n) (V ) is a p – rough path. Then for any m ≥ n there is a
unique extension of X to a p – rough path, X̃ : ∆ → G(m) (V ) . In particular,
we may extend X to a p – rough path,

X̃ =
∞∑
k=0

X̃(k) : ∆→ G(∞) (V ) := lim
m↑∞

G(m) (V ) .

Definition 10.4. Let p ∈ [1,∞) and n ∈ Z+ such that n− 1 ≤ p < n. Suppose
that X : ∆→ G(n) (V ) is a p – rough path. The signature of X is defined by

sgn(X) = X̃0,T ∈ G(∞) (V ) .

Problem 10.5. How much of X can be recovered from sgn(X)? When X is
finite variation, Hambly and Lyon’s [10] give a detailed answer to this question.
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