Math 280C homeworks: Spring 2019

1.1 Homework 1. Due Wednesday, April 10, 2019
- Look at Lecture note Exercise 2.2, 2.3 (done in class), 2.4, 2.5
- Hand in Lecture note Exercise 2.1, 2.6, 2.7, 2.8, 2.9, 2.10

1.2 Homework 2. Due Wednesday, April 17, 2019
- Look at Lecture note Exercise 2.12, 2.14
- Look at Resnick Chapter 10: #14
- Hand in Lecture note Exercise 2.11, 2.13, 2.15, 2.16

1.3 Homework 3. Due Wednesday, April 24, 2019
- Look at Lecture note Exercise 2.19, 2.27, 2.25, 2.26
- Hand in Lecture note Exercise 2.20, 2.21, 2.22, 2.23, 2.24
- Hand in Resnick Chapter 10: 10.17 and 10.19

*For Resnick 10.19, please define $X_{n+1}/X_n = Z_{n+1}$ where

$$Z_{n+1} = \begin{cases}
X_{n+1}/X_n & X_n \neq 0 \\
1 & X_n = 0 = X_{n+1} \\
\infty \cdot X_{n+1} & X_n = 0 \text{ and } X_{n+1} \neq 0.
\end{cases}$$

1.4 Homework 4. Due Wednesday, May 1, 2019
- Look at Lecture note Exercise 2.17, 2.18
- Hand in Lecture note Exercise 2.27, 2.28, 2.29, 2.30, 2.31, 2.32

1.5 Homework 5. Due Wednesday, May 8, 2019
- Look at Lecture note Exercise 2.39
- Hand in Lecture note Exercise 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.40

1.6 Homework 6. Due Wednesday, May 15, 2019
- Look at Lecture note Exercise 2.43, 2.52
- Hand in Resnick Chapter 9: #5, #6, #9 a-e., #11 (Exercise 2.40 may be useful here.)
- Hand in Lecture note Exercise 2.41, 2.42, 2.44, 2.45, 2.46, 2.47
Lecture Note Problems

Exercise 2.1 (Jump - Hold Description I). Let S be a countable set \(\{ \Omega, B, \{ B_n \}_{n=0}^\infty, P, \{ Y_n \}_{n=0}^\infty \} \) be a Markov chain with transition kernel, \(\{ q (x, y) \}_{x, y \in S} \) and let \(\nu (x) := P (Y_0 = x) \) for all \(x \in S \). For simplicity let us assume there are no absorbing states \(^1\) (i.e. \(q (x, x) < 1 \) for all \(x \in S \)) and then define,

\[
\tilde{q} (x, y) := \begin{cases}
q (x, y) & \text{if } x \neq y \\
0 & \text{if } x = y.
\end{cases}
\]

Let \(j_k \) denote the time of the \(k \)-th jump of the chain \(\{ Y_n \}_{n=0}^\infty \) so that

\[
\begin{align*}
\begin{cases}
\begin{aligned}
j_1 & := \inf \{ n > 0 : Y_n \neq Y_0 \} \\
j_{k+1} & := \inf \{ n > j_k : Y_n \neq Y_j \}
\end{aligned}
\end{cases}
\end{align*}
\]

with the convention that \(j_0 = 0 \). Further let \(\sigma_k := j_k - j_{k-1} \) denote the time spent between the \((k - 1)\)-th and \(k \)-th jump of the chain \(\{ Y_n \}_{n=0}^\infty \). Show;

1. For \(\{ x_k \}_{k=0}^n \subset S \) with \(x_k \neq x_{k-1} \) for \(k = 1, \ldots, n \) and \(m_1, \ldots, m_k \in \mathbb{N} \), show

\[
P (\bigcap_{k=0}^n \{ Y_{j_k} = x_k \}) \cap \bigcap_{k=1}^n \{ \sigma_k = m_k \} \\
= \nu (x_0) \prod_{k=1}^n q (x_{k-1}, x_k) \cdot \tilde{q} (x_{k-1}, x_k).
\]

(2.1)

2. Summing the previous formula on \(m_1, \ldots, m_k \in \mathbb{N} \), conclude

\[
P (\bigcap_{k=0}^n \{ Y_{j_k} = x_k \}) = \nu (x_0) \cdot \prod_{k=1}^n \tilde{q} (x_{k-1}, x_k),
\]

i.e. this shows \(\{ Y_{j_k} \}_{k=0}^\infty \) is a Markov chain with transition kernel, \(\tilde{q} \).

3. Conclude, relative to the conditional probability measure, \(P (\cdot | \bigcap_{k=0}^n \{ Y_{j_k} = x_k \})) \), that \(\{ \sigma_k \}_{k=1}^n \) are independent geometric

\[
\sigma_k \overset{\text{d}}{=} \text{Geo} (1 - q (x_{k-1}, x_k - 1)) \text{ for } 1 \leq k \leq n,
\]

see Exercises [10.14] and [2.2]

\(^1\) A state \(x \) is absorbing if \(q (x, x) = 1 \) since in this case there is no chance for the chain to leave \(x \) once it hits \(x \).

Exercise 2.2. Let \(\sigma \) be a geometric random variable with parameter \(p \in (0, 1] \), i.e. \(P (\sigma = n) = (1 - p)^{n-1} p \) for all \(n \in \mathbb{N} \). Show, for all \(n \in \mathbb{N} \) that

\[
P (\sigma > n) = (1 - p)^n \text{ for all } n \in \mathbb{N}
\]

and then use this to conclude that

\[
P (\sigma > m + n | \sigma > n) = P (\sigma > m) \text{ for all } m, n \in \mathbb{N}.
\]

[This shows that the geometric distributions are the discrete analogue of the exponential distributions.]

Exercise 2.3. Suppose that \(S = \{ 1, 2, \ldots, n \} \) and \(A \) is a matrix such that \(A_{ij} \geq 0 \) for \(i \neq j \) and \(\sum_j A_{ij} = 0 \) for all \(i \). Show

\[
Q_t = e^{tA} := \sum_{n=0}^\infty \frac{t^n}{n!} A^n
\]

is a time homogeneous Markov kernel.

Hints: 1. To show \(Q_t (i, j) \geq 0 \) for all \(t \geq 0 \) and \(i, j \in S \), write \(Q_t = e^{-t\lambda} e^{t(M + A)} \) where \(\lambda > 0 \) is chosen so that \(\lambda I + A \) has only non-negative entries. 2. To show \(\sum_{i \in S} Q_t (i, j) = 1 \), compute \(\frac{d}{dt} Q_t (1) \).

Exercise 2.4. Let \(\{ T_k \}_{k=1}^\infty \) be i.i.d. exponential random variables with intensity \(\lambda \) and \(\{ \sigma_k \}_{k=1}^n \) be independent geometric random variables with \(\sigma_k = \text{Geo} (b_k) \) for some \(b_k \in (0, 1] \). Further assume that \(\{ \sigma_k \}_{k=1}^n \cup \{ T_k \}_{k=1}^\infty \) are independent. We also let

\[
W_0 = 0, \quad W_n := T_1 + \ldots + T_n,
\]

\[
j_0 = 0, \quad j_k := \sigma_1 + \ldots + \sigma_k,
\]

\[
S_\ell := W_{j_\ell} - W_{j_{\ell-1}} \text{ for } 1 \leq \ell \leq n.
\]

Show \(\{ S_\ell \}_{\ell=1}^n \) are independent exponential random variables with \(S_\ell \overset{\text{d}}{=} \exp (b_\ell \lambda) \) for all \(1 \leq \ell \leq n \).

Exercise 2.5. Keeping the notation of Example [22.52] and [22.53]. Use Corollary [22.57] to show again that \(P_x (T_B < \infty) = (q/p) \) for all \(x > 0 \) and \(E_x T_0 = x/(q - p) \) for \(x < 0 \). You should do so without making use of the extraneous hitting times, \(T_n \) for \(n \neq 0 \).
Exercise 2.6. Let \(x \in X \). Show:

1. for all \(n \in \mathbb{N}_0 \),
 \[
 P_x (\tau_x > n + 1) = \sum_{y \neq x} p (x, y) P_y (T_x > n). \tag{2.3}
 \]

2. Use Eq. \(\text{(2.5)} \) to conclude that if \(P_y (T_x = \infty) = 0 \) for all \(y \neq x \) then
 \(P_x (\tau_x = \infty) = 0 \), i.e. \(\{X_n\} \) will return to \(x \) when started at \(x \).

3. Sum Eq. \(\text{(2.5)} \) on \(n \in \mathbb{N}_0 \) to show
 \[
 E_x [\tau_x] = P_x (\tau_x > 0) + \sum_{y \neq x} p (x, y) E_y [T_x]. \tag{2.4}
 \]

4. Now suppose that \(S \) is a finite set and \(P_y (T_x = \infty) < 1 \) for all \(y \neq x \), i.e. there is a positive chance of hitting \(x \) from any \(y \neq x \) in \(S \). Explain how Eq. \(\text{(2.6)} \) combined with Lemma \(\text{22.42} \) (or see Corollary \(\text{22.59} \)) shows that
 \(E_x [\tau_x] < \infty \).

Exercise 2.7 (2nd order recurrence relations). Let \(a, b, c \) be real numbers with \(a \neq b \neq c \), \(\alpha, \beta \in \mathbb{Z} \cup \{\pm \infty\} \) with \(\alpha < \beta \), and suppose \(\{u(x) : x \in [\alpha, \beta] \cap \mathbb{Z}\} \) solves the second order homogeneous recurrence relation:
 \[
 au (x + 1) + bu (x) + cu (x - 1) = 0 \tag{2.5}
 \]
 for \(\alpha < x < \beta \). Show:

1. for any \(\lambda \in \mathbb{C} \),
 \[
 a \lambda^{x+1} + b \lambda^x + c \lambda^{x-1} = \lambda^x \tag{2.6}
 \]
 where \(p (\lambda) = a \lambda^2 + b \lambda + c \) is the characteristic polynomial associated to Eq. \(\text{(2.7)} \).

Let \(\lambda_{\pm} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) be the roots of \(p (\lambda) \) and suppose for the moment
 \[
 b^2 - 4ac \neq 0. \tag{2.7}
 \]
 From Eq. \(\text{(2.7)} \) it follows that for any choice of \(A_{\pm} \in \mathbb{R} \), the function,
 \[
 w (x) := A_+ \lambda_+^x + A_- \lambda_-^x,
 \]
 solves Eq. \(\text{(2.7)} \) for all \(x \in \mathbb{Z} \).

2. Show there is a unique choice of constants, \(A_{\pm} \in \mathbb{R} \), such that the function \(u (x) \) is given by
 \[
 u (x) := A_+ \lambda_+^x + A_- \lambda_-^x \quad \text{for all} \quad \alpha \leq x \leq \beta. \tag{2.8}
 \]

3. Now suppose that \(b^2 = 4ac \) and \(A_0 := -b / (2a) \) is the double root of \(p (\lambda) \).

 Show for any choice of \(A_0 \) and \(A_1 \) in \(\mathbb{R} \) that
 \[
 w (x) := (A_0 + A_1 x) \lambda_0^x,
 \]
 solves Eq. \(\text{(2.7)} \) for all \(x \in \mathbb{Z} \). Hint: Differentiate Eq. \(\text{(2.8)} \) with respect to \(\lambda \) and then set \(\lambda = \lambda_0 \).

4. Again show that any function \(u \) solving Eq. \(\text{(2.7)} \) is of the form \(u (x) = (A_0 + A_1 x) \lambda_0^x \) for \(\alpha \leq x \leq \beta \) for some unique choice of constants \(A_0, A_1 \in \mathbb{R} \).

Exercise 2.8. Let \(w_x := P_x \left(X_{T_{a,b}} = b \right) := P \left(X_{T_{a,b}} = b | X_0 = x \right) \).

1. Use first step analysis to show for \(a < x < b \) that
 \[
 w_x = \frac{1}{2} (w_{x+1} + w_{x-1}) \tag{2.7}
 \]
 provided we define \(w_a = 0 \) and \(w_b = 1 \).

2. Use the results of Exercise 2.7 to show
 \[
 P_x \left(X_{T_{a,b}} = b \right) = w_x = \frac{1}{b-a} (x-a). \tag{2.8}
 \]

3. Let
 \[
 T_b := \begin{cases} \min \{ n : X_n = b \} & \text{if } \{X_n\} \text{ hits } b \\ \infty & \text{otherwise} \end{cases}
 \]
 be the first time \(\{X_n\} \) hits \(b \). Explain why \(\{X_{T_{a,b}} = b\} \subset \{T_b < \infty\} \) and use this along with Eq. \(\text{(2.10)} \) to conclude that \(P_x \left(T_b < \infty \right) = 1 \) for all \(x < b \). (By symmetry this result holds true for all \(x \in \mathbb{Z} \).)

Exercise 2.9. The goal of this exercise is to give a second proof of the fact that \(P_x \left(T_b < \infty \right) = 1 \). Here is the outline:

1. Let \(w_x := P_x \left(T_b < \infty \right) \). Again use first step analysis to show that \(w_x \) satisfies Eq. \(\text{(2.9)} \) for all \(x \) with \(w_0 = 1 \).

2. Use Exercise 2.7 to show that there is a constant, \(c \), such that
 \[
 w_x = c (x-b) + 1 \quad \text{for all } x \in \mathbb{Z}. \tag{2.9}
 \]

3. Explain why \(c \) must be zero to again show that \(P_x \left(T_b < \infty \right) = 1 \) for all \(x \in \mathbb{Z} \).

Exercise 2.10. Let \(T = T_{a,b} \) and \(u_x := E_x T := E \left[T | X_0 = x \right] \).

1. Use first step analysis to show for \(a < x < b \) that
 \[
 u_x = \frac{1}{2} (u_{x+1} + u_{x-1}) + 1 \tag{2.9}
 \]
 with the convention that \(u_a = 0 = u_b \).

\footnote{The fact that \(P_x \left(T_b < \infty \right) = 1 \) is also follows from Example \(\text{15.82} \) above.}
2. Show that
\[u_x = A_0 + A_1 x - x^2 \] (2.10)
solves Eq. (2.11) for any choice of constants A_0 and A_1.

3. Choose A_0 and A_1 so that u_x satisfies the boundary conditions, $u_a = 0 = u_b$.
Use this to conclude that
\[\mathbb{E}_x T_{a,b} = -ab + (b + a) x - x^2 = -a (b - x) + bx - x^2. \] (2.11)

Exercise 2.11. For $\theta \in \mathbb{R}$ let
\[f_\theta (n, x) := \bar{Q}^{-n} e^{\theta x} = (pe^\theta + qe^{-\theta})^{-n} e^{\theta x} \]
so that $Q f_\theta (n + 1, \cdot) = f_\theta (n, \cdot)$ for all $\theta \in \mathbb{R}$. Compute;

1. $f_\theta^{(k)} (n, x) := \left(\frac{d}{dx} \right)^k f_\theta (n, x)$ for $k = 1, 2$.
2. Use your results to show,
\[M_n^{(1)} := S_n - n (p - q) \]
and
\[M_n^{(2)} := (S_n - n (p - q))^2 - 4npq \]
are martingales.

(If you are ambitious you might also find $M_n^{(3)}$.)

Exercise 2.12 (Very similar to above example?). Suppose $\{M_n\}_{n=0}^\infty$ is a square integrable martingale. Show;

1. $\mathbb{E} \left[M_{n+1}^2 - M_n^2 | B_n \right] = \mathbb{E} \left[(M_{n+1} - M_n)^2 | B_n \right]$. Conclude from this that the Doob decomposition of M_n^2 is of the form,
\[M_n^2 = N_n + A_n \]
where
\[A_n := \sum_{1 \leq k \leq n} \mathbb{E} \left[(M_k - M_{k-1})^2 | B_{k-1} \right]. \]
2. If we further assume that $M_k - M_{k-1}$ is independent of B_{k-1} for all $k = 1, 2, \ldots$, explain why,
\[A_n = \sum_{1 \leq k \leq n} \mathbb{E} (M_k - M_{k-1})^2. \]

Exercise 2.13 (Martingale problem I). Suppose that $\{X_n\}_{n=0}^\infty$ is an (S, S)-valued adapted process on some filtered probability space $(\Omega, \mathcal{B}, \{B_n\}_{n=0}^\infty, P)$ and Q is a probability kernel on S. To each $f : S \to \mathbb{R}$ which is bounded and measurable, let
\[M_n^f := f (X_n) - \sum_{k<n} (Qf (X_k) - f (X_k)) = f (X_n) - \sum_{k<n} ((Q - I) f) (X_k). \]
Show;

1. If $\{X_n\}_{n=0}^\infty$ is a time homogeneous Markov chain with transition kernel, Q, then $\{M_n^f\}_{n=0}^\infty$ is a martingale for each $f \in S_n$.
2. Conversely if $\{M_n^f\}_{n=0}^\infty$ is a martingale for each $f \in S_n$, then $\{X_n\}_{n=0}^\infty$ is a time homogeneous Markov chain with transition kernel, Q.

Exercise 2.14. Suppose τ is a stopping time, (S, S) is a measurable space, and $Z : \Omega \to S$ is a function. Show that Z is \mathcal{B}_τ / S measurable iff $Z|_{\{\tau = n\}}$ is $(\mathcal{B}_n)_{\{\tau = n\}} / S$ measurable for all $n \in \mathbb{N}_0$.

Exercise 2.15. Suppose σ and τ are two stopping times. Show;

1. $\{\sigma < \tau\}, \{\sigma = \tau\}$, and $\{\sigma \leq \tau\}$ are all in $\mathcal{B}_\sigma \cap \mathcal{B}_\tau$.
2. $\mathcal{B}_{\sigma \wedge \tau} = \mathcal{B}_\sigma \cap \mathcal{B}_\tau$.
3. $\mathcal{B}_{\sigma \lor \tau} = \mathcal{B}_\sigma \lor \mathcal{B}_\tau := \sigma (\mathcal{B}_\sigma \cup \mathcal{B}_\tau)$ and
4. $\mathcal{B}_0 = \mathcal{B}_{\sigma \wedge \tau}$ on C where C is any one of the following three sets; $\{\sigma \leq \tau\}$, $\{\sigma < \tau\}$, or $\{\sigma = \tau\}$.

*As an example, since
\[\{\sigma \leq \tau\} \cap \{\sigma \wedge \tau = n\} = \{\sigma \leq \tau\} \cap \{\sigma = n\} = \{n \leq \tau\} \cap \{\sigma = n\} \in \mathcal{B}_n \]
for all $n \in \mathbb{N}_0$, it follows that

Exercise 2.16. Show, by example, that it is not necessarily true that
\[\mathbb{E}_{\mathcal{G}_1} \mathbb{E}_{\mathcal{G}_2} = \mathbb{E}_{\mathcal{G}_1 \wedge \mathcal{G}_2} \]
for arbitrary \mathcal{G}_1 and \mathcal{G}_2—sub-sigma algebras of \mathcal{B}.

Hint: it suffices to take (Ω, B, P) with $\Omega = \{1, 2, 3\}$, $B = 2^\Omega$, and $P (\{j\}) = \frac{1}{3}$ for $j = 1, 2, 3$.

Exercise 2.17 (Rademacher’s theorem). Let $\Omega := (0, 1)$, $B := B_{[0,1]}$, $P = m$ be Lebesgue measure, and $f \in L^1 (P)$. To each partition $\Pi := \{0 = x_0 < x_1 < x_2 < \cdots < x_n = 1\}$ of $(0, 1)$ we let $B_{\Pi} := \sigma (J_i := (x_{i-1}, x_i] : 1 \leq i \leq n)$.\footnote{In fact, you will likely show in your proof that every set in $B_{\sigma} \lor B_\tau$ may be written as a disjoint union of a set from B_{σ} with a set from B_τ.}
1. Show \(\mathbb{E} [f | B_H] (x) = \sum_{i=1}^{n} \frac{1}{x_i - x_{i-1}} \left[f \left(x_{i-1} \right) - f \left(x_i \right) \right] \) for a.e. \(x \in \Omega \).

2. For \(f \in C ([0, 1], \mathbb{R}) \), let

\[
I_n (x) := \sum_{i=1}^{n} \frac{\Delta_i f}{\Delta_i} \mathbf{1}_{x_i - x_{i-1}} (x)
\]

(2.12)

where \(\Delta_i f := f (x_i) - f (x_{i-1}) \) and \(\Delta_i := x_i - x_{i-1} \). Show if \(\Pi' \) is another partition of \(\Omega \) which refines \(\Pi \), i.e., \(\Pi \subset \Pi' \), then

\[
f = \mathbb{E} [f | B_H] \text{ a.s.}
\]

3. Show for any \(a, b \in \Pi \) with \(a < b \) that

\[
\frac{f (b) - f (a)}{b - a} = \frac{1}{b - a} \int_{a}^{b} I_n (x) \, dx.
\]

(2.13)

Hint: consider the partition \(\Pi_0 := \{ 0 < a < b < 1 \} \).

Now let \(B_n := B_{\Pi_n} \) and where \(\Pi_n := \left\{ \frac{k}{2^n} \right\}_{k=0}^{2^n} \) an observe your have now shown \(g_n := I_n \) is a martingale.

4. Let us now further suppose that \(|f (y) - f (x)| \leq K |y - x| \) for all \(x, y \in [0, 1] \), i.e. \(f \) is Lipschitz. From Eq. (2.10) it follows that \(|g_n| := |I_n| \leq K \) so that \(\{ g_n \}_{n=1}^{\infty} \) is a bounded martingale. Use this along with Eq. (2.12) and Theorem 23.70 to conclude there exists \(g \in L^\infty (\mathbb{P}) \) such that

\[
f (b) - f (a) = \int_{a}^{b} g (x) \, dx \text{ for all } 0 \leq a < b \leq 1.
\]

[You may be interested to know that under these hypothesis, \(f' (x) \) exists a.e. and \(g (x) = f' (x) \) a.e.. Thus this a version of the fundamental theorem of calculus.]

Exercise 2.18. Suppose that \(\{ M_n \}_{n=1}^{\infty} \) is a decreasing sequence of closed subspaces of a Hilbert space, \(H \). Let \(M_H := \cap_{n=1}^{\infty} M_n \). Show \(\lim_{n \to \infty} P_{M_n} x = P_{M_H} x \) for all \(x \in H \). [**Hint:** you might make use of Exercise 18.5.]

Exercise 2.19. Let \((M_n)_{n=0}^{\infty} \) be a martingale with \(M_0 = 0 \) and \(E[M_n^2] < \infty \) for all \(n \). Show that for all \(\lambda > 0 \),

\[
P \left(\max_{1 \leq m \leq n} M_m \geq \lambda \right) \leq \frac{E[M_n^2]}{E[M_n^2] + \lambda^2}.
\]

Hints: First show that for any \(c > 0 \) that \(\{ X_n := (M_n + c)^2 \}_{n=0}^{\infty} \) is a submartingale and then observe,

\[
\left\{ \max_{1 \leq m \leq n} M_m \geq \lambda \right\} \subset \left\{ \max_{1 \leq m \leq n} X_n \geq (\lambda + c)^2 \right\}.
\]

Now use Doob\'s Maximal inequality (Proposition 23.46) to estimate the probability of the last set and then choose \(c \) so as to optimize the resulting estimate you get for \(P \left(\max_{1 \leq m \leq n} M_m \geq \lambda \right) \). (Notice that this result applies to \(-M_n\) as well so it also holds that;

\[
P \left(\min_{1 \leq m \leq n} M_m \geq -\lambda \right) \leq \frac{E[M_n^2]}{E[M_n^2] + \lambda^2} \text{ for all } \lambda > 0.
\]

Exercise 2.20. Let \((Z_n)_{n=1}^{\infty} \) be independent random variables, \(S_0 = 0 \) and \(S_n := Z_1 + \cdots + Z_n \), and \(f_n (\lambda) := \mathbb{E} [e^{i \lambda Z_n}] \). Suppose \(\mathbb{E} e^{i \lambda S_n} = \prod_{n=1}^{N} f_n (\lambda) \) converges to a continuous function, \(F (\lambda) \), as \(N \to \infty \). Show for each \(\lambda \in \mathbb{R} \) that

\[
P \left(\lim_{n \to \infty} e^{i \lambda S_n} \text{ exists} \right) = 1.
\]

(2.14)

Hints:

1. Show it is enough to find an \(\varepsilon > 0 \) such that Eq. (2.18) holds for \(|\lambda| \leq \varepsilon \).

2. Choose \(\varepsilon > 0 \) such that \(|F (\lambda) - 1| < 1/2 \) for \(|\lambda| \leq \varepsilon \). For \(|\lambda| \leq \varepsilon \), show \(M_n (\lambda) := e^{i \lambda S_n} / \sqrt{n} \) is a bounded complex martingale relative to the filtration, \(\mathcal{B}_n = \sigma (Z_1, \ldots, Z_n) \).

Exercise 2.21. For \(a < 0 < b \) with \(a, b \in \mathbb{Z} \), let \(\tau = \sigma_a \wedge \sigma_b \). Explain why \(\tau \) is regular for \(S \). Use this to show \(P (\tau = \infty) = 0 \). [**Hint:** make use of Remark 23.76 and the fact that \(|S_n - S_{n-1}| = |Z_n| = 1 \) for all \(n \).

Exercise 2.22. In this exercise, you are asked to use the central limit Theorem 15.50 to prove again that \(P (\tau = \infty) = 0 \), Exercise 2.21. [**HINTS:** Use the central limit theorem to show

\[
\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f (x) e^{-x^2/2} \, dx \geq f (0) P (\tau = \infty)
\]

(2.15)

for all \(f \in C^3 (\mathbb{R} \to [0, \infty)) \) with \(M := \sup_{x \in \mathbb{R}} |f^{(3)} (x)| < \infty \). Use this inequality to conclude that \(P (\tau = \infty) = 0 \). [**Hint:** consider \(\mathbb{E} \left[f \left(\frac{S_n}{\sqrt{n}} \right) \right] \).

Exercise 2.23. Show

\[
P (\sigma_b < \sigma_a) = \frac{|a|}{b + |a|}
\]

(2.16)

Please use the obvious generalization of a martingale for complex valued processes.

It will be useful to observe that the real and imaginary parts of a complex martingales are real martingales.
and use this to conclude \(P(\sigma_b < \infty) = 1 \), i.e. every \(b \in \mathbb{N} \) is almost surely visited by \(S_n \). (This last result also follows by the Hewitt-Savage Zero-One Law, see Example 15.82 where it is shown \(b \) is visited infinitely often.)

Hint: Using properties of martingales and Exercise 2.21 compute \(\lim_{n \to \infty} E[S_n \wedge \sigma_b] \) in two different ways.

Exercise 2.24. Let \(\tau := \sigma_a \wedge \sigma_b \). In this problem you are asked to show \(E[\tau] = |a|b \) with the aid of the following outline.

1. Use Exercise 2.12 above to conclude \(N_n := S_n^2 - n \) is a martingale.
2. Now show
 \[
 0 = EN_0 = EN_{\tau \wedge n} = ES_n^2 \wedge n - E[\tau \wedge n].
 \]
3. Now use DCT and MCT along with Exercise 2.23 to compute the limit as \(n \to \infty \) in Eq. (2.22) to find
 \[
 E[\sigma_a \wedge \sigma_b] = E[\tau] = b|a|.
 \]
4. By considering the limit, \(a \to -\infty \) in Eq. (2.23), show \(E[\sigma_b] = \infty \).

Exercise 2.25. Verify,
\[
M_n := S_n - n(p - q)
\]
and
\[
N_n := N_n^2 - \sigma^2n
\]
are martingales, where \(\sigma^2 = 1 - (p - q)^2 \). (This should be simple; see either Exercise 2.12 or Exercise 2.11.)

Exercise 2.26. Using Exercise 2.25 show
\[
E(\sigma_a \wedge \sigma_b) = \left(b \left[1 - \left(\frac{q}{p} \right)^a \right] + a \left[\frac{q}{p} \right]^{b-1} \right) (p-q)^{-1}.
\]
By considering the limit of this equation as \(a \to -\infty \), show
\[
E[\sigma_b] = \frac{b}{p-q}
\]
and by considering the limit as \(b \to \infty \), show \(E[\sigma_a] = \infty \).

Exercise 2.27. Let \(S_n \) be the total assets of an insurance company in year \(n \in \mathbb{N} \). Assume \(S_0 > 0 \) is a constant and that for all \(n \geq 1 \) that \(S_n = S_{n-1} + \xi_n \), where \(\xi_n = c - Z_n \) and \(\{Z_n\}_{n=1}^{\infty} \) are i.i.d. random variables having the normal distribution with mean \(\mu < c \) and variance \(\sigma^2 \). (The number \(c \) is to be interpreted as the yearly premium.) Let \(R = \{S_n \leq 0 \text{ for some } n\} \) be the event that the company eventually becomes bankrupt, i.e. is Ruined. Show

\[
P(\text{Ruin}) = P(R) \leq e^{-2(c-\mu)S_0/\sigma^2}.
\]

Outline:

1. Show that \(\lambda = -2(c-\mu)/\sigma^2 < 0 \) satisfies, \(E[e^{\lambda \xi_n}] = 1 \).
2. With this \(\lambda \) show
 \[
 Y_n := \exp(\lambda S_n) = e^{\lambda S_0} \prod_{j=1}^{n} e^{\lambda \xi_j}
 \]
 is a non-negative \(\mathcal{F}_n = \sigma(Z_1, \ldots, Z_n) \) martingale.
3. Use a martingale convergence theorem to argue that \(\lim_{n \to \infty} Y_n = Y_\infty \) exists a.s. and then use Fatou’s lemma to show \(EY_\tau \leq e^{\lambda S_0} \), where
 \[
 \tau = \inf\{n : S_n \leq 0\}
 \]
is the time of the company’s ruin.
4. Finally conclude that
\[
P(R) \leq E[Y_\tau : \tau < \infty] \leq EY_\tau \leq e^{\lambda S_0} = e^{-2(c-\mu)S_0/\sigma^2}.
\]

Exercise 2.28. Suppose that \(Z \) is exponentially integrable and \(\psi(\theta) := \ln M(\theta) = \ln E[e^{\theta Z}] \). Show
\[
\psi'(\theta) = E_{\theta}Z \text{ and } \psi''(\theta) = \text{Var}_{\theta}(Z).
\]
[Use Proposition 10.59 in order to give a short solution to this problem.]

Exercise 2.29. Let \(Z \overset{d}{=} N(0, \sigma^2) \) and \(t > 0 \). By Lemma 10.47 we know that
\[
P(Z \geq t) = P(\sigma N \geq t) = P(N \geq t/\sigma) \leq ce^{-\frac{t^2}{2\sigma^2}}
\]
where \(c = 1/2 \). The goal of this exercise is to use Proposition 25.4 to prove this same bound above but with \(c = 1 \). In more detail show:

1. Recall that Gaussian integration formulas implies,
 \[
 M(\theta) = E_{\theta}e^{\theta Z} = e^{\frac{1}{2} \theta^2 \sigma^2}
 \]
 and so \(\psi(\theta) = \frac{1}{2} \theta^2 \sigma^2 \).
2. Show
 \[
 \theta \to \theta t - \psi(\theta) = \theta t - \frac{1}{2} \theta^2 \sigma^2
 \]
is maximized at \(\theta = t/\sigma^2 \) and that
 \[
 \psi^*(t) = \sup_{\theta \in \mathbb{R}} \left(\theta t - \frac{1}{2} \theta^2 \sigma^2 \right) = \frac{t^2}{2\sigma^2}.
 \]
This assertion along with Proposition 25.4 verifies the tail bound in Eq. (2.26) with \(c = 1 \).
3. Show Law $P_{\theta_i}(Z) \triangleq N(\sigma^2, \theta \sigma^2)$ – a normal random variable with variance σ^2 and mean $\theta \sigma^2$. Hence when $\theta = \theta_i = t/\sigma^2$,

$$\text{Law} P_{\theta_i}(Z) \triangleq N(\sigma^2, t). \quad (2.22)$$

4. Conclude that

$$\frac{1}{2} = P_{\theta_i}(Z \geq t) = \frac{1}{M(\theta_i)} E \left[1_{Z \geq \theta} e^{\theta Z} \right]$$

and explain (using Eq. (25.3)) that this inequality then implies Eq. (2.26) with $c = 1/2$.

Exercise 2.30. Suppose $-\infty < a < b < \infty$ and Z is a random variable such that $a \leq Z \leq b$. Let $\mu = E Z$ and $\psi(\theta) = \ln E[e^{\theta Z}]$.

1. Use Taylor’s theorem along with Exercise 2.28 to show for any $\theta \in \mathbb{R}$, there exists θ^* between 0 and θ such that

$$\psi(\theta) = \theta \mu + \frac{1}{2} \theta^2 \text{Var}_{\theta^*}(Z).$$

2. Use item 1. to show

$$\psi(\theta) \leq \theta \mu + \frac{(b - a)^2}{8} \theta^2$$

by showing $\text{Var}_{\theta^*}(Z) \leq (b - a)^2/4$. **Hint:** this variance inequality holds no matter the distribution of Z as long as $a \leq Z \leq b$ a.s.

3. Use items 1. and 2. to prove **Hoeffding’s inequality**, i.e.

$$E[\exp(\theta(Z - \mu))] \leq \exp \left(\frac{(b - a)^2 \theta^2}{8} \right) \quad \forall \theta \in \mathbb{R}. \quad (2.23)$$

4. Then use this and Lemma 25.7 to prove the Chernoff type bound,

$$P(Z - \mu \geq t) \leq e^{-\frac{t^2}{2(a - b)^2}} \quad \forall \ t > 0$$

5. Show, by applying the previous inequality with Z replaced by $-Z$, that

$$P(Z - \mu \leq -t) \leq e^{-\frac{t^2}{2(b - a)^2}} \quad \forall \ t > 0$$

By adding the two previous bounds it follows that

$$P(|Z - \mu| \geq t) \leq 2e^{-\frac{t^2}{2(a - b)^2}} \quad \forall \ t > 0.$$

Exercise 2.31. Suppose that $-\infty < a_j < b_j < \infty$ and $\{Z_j\}_{j=1}^n$ are independent random variables with $a_j \leq Z_j \leq b_j$ for $1 \leq j \leq n$. If $S = \sum_{j=1}^n Z_j$, $\mu = \mathbb{E} S$, and $v = \sum_{j=1}^n (b_j - a_j)^2$, show

$$E[\exp(\theta(S - \mu))] \leq e^{\frac{\theta^2 v}{2}} \quad (2.24)$$

and

$$P(S - \mu \geq t) \leq e^{-\frac{t^2}{8v}} \quad \forall \ t > 0$$

Use this result to conclude, if $L = \max_j (b_j - a_j)$, then $v \leq n L^2$ and

$$P\left(\frac{S_n - \mu}{n} \geq t\right) \leq e^{-\frac{t^2}{2nL^2}} \quad \forall \ t > 0.$$

Exercise 2.32. **Prove Theorem 26.1**

Exercise 2.33 (Resnik 7.1). Does $\sum_n 1/n$ converge? Does $\sum_n (-1)^n/n$ converge? Let $\{X_n\}$ be iid with $P[X_n = \pm 1] = 1/2$. Does $\sum_n X_n/n$ converge? [See Example 26.42 below for a more thorough investigation of this sort.]

Exercise 2.34 (Two Series Theorem – Resnik 7.15). Prove that the three series theorem reduces to a two series theorem when the random variables are positive. That is, if $X_n \geq 0$ are independent, then $\sum_n X_n < \infty$ a.s. iff for any $c > 0$ we have

$$\sum_n P(X_n > c) < \infty \quad (2.25)$$

and

$$\sum_n E[X_n 1_{X_n \leq c}] < \infty, \quad (2.26)$$

that is it is unnecessary to verify the convergence of the second series in Theorem 26.43 involving the variances.

Exercise 2.35. Let P denote the set of probability measures on (Ω, \mathcal{B}). Show d_{TV} is a complete metric on P.

Exercise 2.36. Suppose that μ, ν, and γ are probability measures on $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n})$. Show $d_{TV}(\mu * \nu, \mu * \gamma) \leq d_{TV}(\nu, \gamma)$. Use this fact along with Exercise 2.35 to show,

$$d_{TV}(\mu_1 * \mu_2 * \cdots * \mu_n, \nu_1 * \nu_2 * \cdots * \nu_n) \leq \sum_{i=1}^n d_{TV}(\mu_i, \nu_i)$$

for all choices probability measures, μ_i and ν_i on $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n})$.
Exercise 2.37. Suppose that Ω is a (at most) countable set, $B := 2^\Omega$, and \{ μ_n \}_{n=0}^\infty$ are probability measures on (Ω, B). Show

$$d_{TV} (\mu_n, \mu_0) = \frac{1}{2} \sum_{\omega \in \Omega} |\mu_n (\{ \omega \}) - \mu_0 (\{ \omega \})|$$

and $\lim_{n \to \infty} d_{TV} (\mu_n, \mu_0) = 0$ iff $\lim_{n \to \infty} \mu_n (\{ \omega \}) = \mu_0 (\{ \omega \})$ for all $\omega \in \Omega$.

Exercise 2.38. Let $\mu_p (\{ 1 \}) = p$ and $\mu_p (\{ 0 \}) = 1 - p$ and $\nu_\lambda (\{ 1 \}) := e^{-\lambda \frac{\nu}{n!}}$ for all $n \in \mathbb{N}_0$.

1. Find $d_{TV} (\mu_p, \mu_q)$ for all $0 \leq p, q \leq 1$.
2. Show $d_{TV} (\mu_p, \nu_p) = p (1 - e^{-p})$ for all $0 \leq p \leq 1$. From this estimate and the estimate,

$$1 - e^{-p} = \int_0^p e^{-x} dx \leq \int_0^p 1 dx = p,$$

(2.27)

it follows that $d_{TV} (\mu_p, \nu_p) \leq p^2$ for all $0 \leq p \leq 1$.

3. Show

$$d_{TV} (\nu_\lambda, \nu_\gamma) \leq |\lambda - \gamma|$$

for all $\lambda, \gamma \in \mathbb{R}_+$. (2.28)

Hints: (Andy Parrish’s method – a former 280 student.)

a) Observe that for any $n \in \mathbb{N}$ we have ν_λ and ν_γ are equal to the n – fold convolutions of ν_λ/n and ν_γ/n and use this to conclude

$$d_{TV} (\nu_\lambda, \nu_\gamma) \leq nd_{TV} (\nu_\lambda/n, \nu_\gamma/n).$$

(2.29)

b) Using item 2. of this exercise, show

$$|d_{TV} (\nu_\lambda/n, \nu_\gamma/n) - d_{TV} (\mu_\lambda/n, \mu_\gamma/n)| \leq C n^{-2}.$$

c) Finally make use of your results in item 1. part b. in order to let $n \to \infty$ in Eq. (2.35).

Exercise 2.39. Let (S_1, ρ_1) and (S_2, ρ_2) be separable metric spaces and B_{S_1} and B_{S_2} be the Borel σ – algebras on S_1 and S_2 respectively. Prove the analogue of Lemma 9.29 namely show $B_{S_1 \times S_2} = B_{S_1} \otimes B_{S_2}$. Hint: you may find Exercise 9.10 helpful.

Exercise 2.40. Let (S_1, ρ_1) and (S_2, ρ_2) be separable metric spaces and B_{S_1} and B_{S_2} be the Borel σ – algebras on S_1 and S_2 respectively. Further suppose that $\{ \mu_n \} \cup \{ \mu \} \subset \mathcal{P} (S_1)$ and $\{ \nu_n \} \cup \{ \nu \} \subset \mathcal{P} (S_2)$. Show; if $\mu_n \Rightarrow \mu$ and $\nu_n \Rightarrow \nu$, then $\mu_n \otimes \nu_n \Rightarrow \mu \otimes \nu$. Hint: You may find it useful to use Skorohod’s Theorem 28.8.

Exercise 2.41. To each finite and compactly supported measure, ν, on $(\mathbb{R}, \mathcal{B})$ show there exists a sequence $\{ \nu_n \}_{n=1}^\infty$ of finitely supported finite measures on $(\mathbb{R}, \mathcal{B}_k)$ such that $\nu_n \Rightarrow \nu$. Here we say ν is compactly supported if there exists $M < \infty$ such that $\nu (\{ x : |x| \geq M \}) = 0$ and we say ν is finitely supported if there exists a finite subset, $A \subset \mathbb{R}$ such that $\nu (\mathbb{R} \setminus A) = 0$.

Exercise 2.42. Use Theorem 28.20 to give a proof of half of Theorem 28.16 when $S = \mathbb{R}^d$ and $A \subset \mathcal{P} (S)$, i.e; show; if A is weakly sequentially compact then A is tight. Hint: start by showing that if A were not tight, then there would exist an $\varepsilon > 0$ and $\mu_n \in A$ so that $\mu_n (C_n) < 1 - \varepsilon$ for all $n \in \mathbb{N}$.

Exercise 2.43. Let (S, ρ) be a separable metric space, $S_0 \subset S$ be a countable dense set, and $\{ x_n \}_{n=1}^\infty \cup \{ x \} \subset S$. Show $\lim_{n \to \infty} \rho (x_n, x) = 0$ iff $\lim_{n \to \infty} \rho (x, y) = \rho (x, y)$ for all $y \in S_0$.

Exercise 2.44 (Continuous Mapping Theorem II). Let (S_1, ρ_1) and (S_2, ρ_2) be separable metric spaces and B_{S_1} and B_{S_2} be the Borel σ – algebras on S_1 and S_2 respectively. Let further suppose that $\{ \mu_n \} \cup \{ \mu \}$ are probability measures on (S_1, B_{S_1}) such that $\mu_n \Rightarrow \mu$. If $f : S_1 \to S_2$ is a Borel measurable function such that $\mu (D (f)) = 0$ (see Notation 28.22), then $f_n \mu_n \Rightarrow f \mu$ where $f_n \mu := f \circ f^{-1}$.

Exercise 2.45. Let $\{ X_n \}_{n=1}^\infty$ be an i.i.d. sequence of random variables with zero mean and $\text{Var} (X_n) = 1$ and $E [X_n^3] < \infty$ (so that Corollary 15.43 applies). For $t \geq 0$, let $W_n (t) := \frac{1}{\sqrt{n}} S_{\lfloor nt \rfloor}$ where $\lfloor nt \rfloor$ is the nearest integer to nt less than or equal to nt and $S_n := \sum_{k \leq m} X_k$ where $S_0 = 0$ by definition. Show that $W_n \overset{d}{\to} B$ where $\{ B (t) : t \geq 0 \}$ is a Brownian motion as defined in Definition 22.26. You might use the following outline.

1. For any $0 \leq s < t < \infty$, explain why $W_n (t) - W_n (s) \Rightarrow N (0, (t - s) \cdot)$.

(You may find Slutzky’s Theorem 28.25 useful here.)

2. Given $A := \{ 0 = t_0 < t_1 < t_2 < \cdots < t_K \} \subset \mathbb{R}_+$ argue that $\{ W_n (t_i) - W_n (t_{i-1}) \}_{i=1}^K$ are independent and then show

$$\{ W_n (t_i) - W_n (t_{i-1}) \}_{i=1}^K \Rightarrow \{ B (t_i) - B (t_{i-1}) \}_{i=1}^K \text{ as } n \to \infty.$$

3. Now show that $\{ W_n (t_i) \}_{i=1}^K \Rightarrow \{ B (t_i) \}_{i=1}^K \text{ as } n \to \infty$. Hint; use Exercise 2.44.

Exercise 2.46 (Lemma 29.17 generalization). Suppose now $X : (\Omega, \mathcal{B}, \mathbb{P}) \to \mathbb{R}^d$ is a random vector and $f_X (\lambda) := E [e^{i \lambda \cdot X}]$ is its characteristic function. Show for $a > 0$,
\[
P(|X|_\infty \geq a) \leq 2 \left(\frac{a}{4} \right)^d \int_{[-2/a,2/a]^d} (1 - f_X(\lambda)) d\lambda
\]
\[
= 2 \left(\frac{a}{4} \right)^d \int_{[-2/a,2/a]^d} (1 - \text{Re} f_X(\lambda)) d\lambda
\]
(2.30)

where \(|X|_\infty = \max_i |X_i|\) and \(d\lambda = d\lambda_1, \ldots, d\lambda_d\).

Exercise 2.47. For \(x, \lambda \in \mathbb{R}\), let (also see Eq. (2.41))
\[
\varphi(\lambda, x) := \begin{cases}
\frac{e^{i\lambda x} - 1 - i\lambda x}{x^2} & \text{if } x \neq 0 \\
-\frac{1}{2} \lambda^2 & \text{if } x = 0.
\end{cases}
\]
(2.31)

Let \(\{x_k\}_{k=1}^n \subset \mathbb{R} \setminus \{0\}\), \(\{Z_k\}_{k=1}^n \cup \{N\}\) be independent random variables with \(N \overset{d}{=} N(0, 1)\) and \(Z_k\) being Poisson random variables with mean \(a_k > 0\), i.e.
\[P(Z_k = n) = e^{-a_k} \frac{a_k^n}{n!}\] for \(n = 0, 1, 2, \ldots\). With \(Y := \sum_{k=1}^n x_k (Z_k - a_k) + \alpha N\), show
\[
f_Y(\lambda) := \mathbb{E}[e^{i\lambda Y}] = \exp \left(\int_{\mathbb{R}} \varphi(\lambda, x) d\nu(x) \right)
\]
where \(\nu\) is the discrete measure on \((\mathbb{R}, \mathcal{B}_{\mathbb{R}})\) given by
\[
\nu = \alpha^2 \delta_0 + \sum_{k=1}^n a_k x_k^2 \delta_{x_k}.
\]
(2.32)

Remark: It is easy to see that \(\varphi(\lambda, 0) = \lim_{x \to 0} \varphi(\lambda, x)\). In fact by Taylor's theorem with integral remainder we have
\[
\varphi(\lambda, x) = -\lambda^2 \int_0^1 e^{it\lambda x} (1 - t) dt.
\]
(2.33)

From this formula it is clear that \(\varphi\) is a smooth function of \((\lambda, x)\).
Solutions for selected problems from Resnick