Math 280C homeworks: Spring 2019

1.1 Homework 1. Due Wednesday, April 10, 2019

- Look at Lecture note Exercise 2.2, 2.3(done in class), $2.4,2.5$
- Hand in Lecture note Exercise 2.1, 2.6, 2.7, 2.8, 2.9, 2.10
1.2 Homework 2. Due Wednesday, April 17, 2019
- Look at Lecture note Exercise 2.12, 2.14
- Look at Resnick Chapter 10: \#14
- Hand in Lecture note Exercise 2.11, 2.13, 2.15, 2.16
- Resnick Chapter 10: Hand in 15, 16, 17, 33.

1.3 Homework 3. Due Wednesday, April 24, 2019

- Look at Lecture note Exercise 2.19, 23.27, 2.25, 2.26
- Hand in Lecture note Exercise 2.20, 2.21, 2.22, 2.23, 2.24
- Hand in Resnick Chapter 10: 10.17 and 10.19*
*For Resnick 10.19, please define $X_{n+1} / X_{n}=Z_{n+1}$ where

$$
Z_{n+1}=\left\{\begin{array}{ccc}
X_{n+1} / X_{n} & \text { if } & X_{n} \neq 0 \\
1 & \text { if } \quad X_{n}=0=X_{n+1} \\
\infty \cdot X_{n+1} & \text { if } X_{n}=0 \text { and } X_{n+1} \neq 0
\end{array}\right.
$$

1.4 Homework 4. Due Wednesday, May 1, 2019

- Look at Lecture note Exercise: 2.17, 2.18
- Hand in Lecture note Exercise: 2.27, 2.28, 2.29, 2.30, 2.31, 2.32

1.5 Homework 5. Due Wednesday, May 8, 2019

- Look at Lecture note Exercise: 2.39 .
- Hand in Lecture note Exercise: 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.40,
1.6 Homework 6. Due Wednesday, May 15, 2019
- Look at Lecture note Exercise: 2.43, 2.46, 29.2
- Hand in Resnick Chapter 9: \#5, \#6, \#9 a-e., \#11 (Exercise 2.40 may be useful here.)
- Hand in Lecture note Exercise: 2.41, 2.42, 2.44, 2.45, 2.47
1.7 Homework 7. Due Wednesday, May 29, 2019 (was May 22)
- Look at Resnick Chapter 9: 28, 34 (assume $\sum_{n} \sigma_{n}^{2}>0$), 35 (hint: show $P\left[\xi_{n} \neq 0\right.$ i.o. $]=0$.)
- Hand in Resnick Chapter 9: \#10, 22, 38 (Hint: make use $\left\{X_{k}\right\}$ in Proposition 15.88 after appropriate translation and scalings.)
- Hand in Lecture note Exercise: 2.48, 2.51, 2.49, 2.50

The last two problems were added to what was given originally.
1.8 Homework 8. Due Wednesday, June 5, 2019

- Look at Lecture note Exercise: $2.58,2.52-2.56,32.2$
- Hand in Lecture note Exercise: $2.53,2.54,2.57,2.59,2.60$

Lecture Note Problems

Exercise 2.1 (Jump - Hold Description I). Let S be a countable set $\left(\Omega, \mathcal{B},\left\{\mathcal{B}_{n}\right\}_{n=0}^{\infty}, P,\left\{Y_{n}\right\}_{n=0}^{\infty}\right)$ be a Markov chain with transition kernel, $\{q(x, y)\}_{x, y \in S}$ and let $\nu(x):=P\left(Y_{0}=x\right)$ for all $x \in S$. For simplicity let us assume there are no absorbing states 1 (i.e. $q(x, x)<1$ for all $x \in S$) and then define,

$$
\tilde{q}(x, y):=\left\{\begin{array}{cl}
\frac{q(x, y)}{1-q(x, x)} & \text { if } x \neq y \\
0 & \text { if } x=y
\end{array} .\right.
$$

Let \mathbf{j}_{k} denote the time of the $k^{\text {th }}-$ jump of the chain $\left\{Y_{n}\right\}_{n=0}^{\infty}$ so that

$$
\begin{aligned}
\mathbf{j}_{1} & :=\inf \left\{n>0: Y_{n} \neq Y_{0}\right\} \text { and } \\
\mathbf{j}_{k+1} & :=\inf \left\{n>\mathbf{j}_{k}: Y_{n} \neq Y_{\mathbf{j}_{k}}\right\}
\end{aligned}
$$

with the convention that $\mathbf{j}_{0}=0$. Further let $\sigma_{k}:=\mathbf{j}_{k}-\mathbf{j}_{k-1}$ denote the time spent between the $(k-1)^{\text {st }}$ and $k^{\text {th }}$ jump of the chain $\left\{Y_{n}\right\}_{n=0}^{\infty}$. Show;

1. For $\left\{x_{k}\right\}_{k=0}^{n} \subset S$ with $x_{k} \neq x_{k-1}$ for $k=1, \ldots, n$ and $m_{1}, \ldots, m_{k} \in \mathbb{N}$, show

$$
\begin{align*}
& P\left(\left[\cap_{k=0}^{n}\left\{Y_{\mathbf{j}_{k}}=x_{k}\right\}\right] \cap\left[\cap_{k=1}^{n}\left\{\sigma_{k}=m_{k}\right\}\right]\right) \\
& \quad=\nu\left(x_{0}\right) \prod_{k=1}^{n} q\left(x_{k-1}, x_{k-1}\right)^{m_{k}-1}\left(1-q\left(x_{k-1}, x_{k-1}\right)\right) \cdot \tilde{q}\left(x_{k-1}, x_{k}\right) \tag{2.1}
\end{align*}
$$

2. Summing the previous formula on $m_{1}, \ldots, m_{k} \in \mathbb{N}$, conclude

$$
P\left(\left[\bigcap_{k=0}^{n}\left\{Y_{\mathbf{j}_{k}}=x_{k}\right\}\right]\right)=\nu\left(x_{0}\right) \cdot \prod_{k=1}^{n} \tilde{q}\left(x_{k-1}, x_{k}\right)
$$

i.e. this shows $\left\{Y_{\mathbf{j}_{k}}\right\}_{k=0}^{\infty}$ is a Markov chain with transition kernel, \tilde{q}.
3. Conclude, relative to the conditional probability measure, $P\left(\cdot \mid\left[\cap_{k=0}^{n}\left\{Y_{\mathbf{j}_{k}}=x_{k}\right\}\right]\right)$, that $\left\{\sigma_{k}\right\}_{k=1}^{n}$ are independent geometric $\sigma_{k} \stackrel{d}{=} \operatorname{Geo}\left(1-q\left(x_{k-1}, x_{k-1}\right)\right)$ for $1 \leq k \leq n$, see Exercises 10.14 and 2.2.

[^0]Exercise 2.2. Let σ be a geometric random variable with parameter $p \in(0,1]$, i.e. $P(\sigma=n)=(1-p)^{n-1} p$ for all $n \in \mathbb{N}$. Show, for all $n \in \mathbb{N}$ that

$$
P(\sigma>n)=(1-p)^{n} \text { for all } n \in \mathbb{N}
$$

and then use this to conclude that

$$
P(\sigma>m+n \mid \sigma>n)=P(\sigma>m) \forall m, n \in \mathbb{N}
$$

[This shows that the geometric distributions are the discrete analogue of the exponential distributions.]
Exercise 2.3. Suppose that $S=\{1,2, \ldots, n\}$ and A is a matrix such that $A_{i j} \geq 0$ for $i \neq j$ and $\sum_{j=1}^{n} A_{i j}=0$ for all i. Show

$$
\begin{equation*}
Q_{t}=e^{t A}:=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} A^{n} \tag{2.2}
\end{equation*}
$$

is a time homogeneous Markov kernel.
Hints: 1. To show $Q_{t}(i, j) \geq 0$ for all $t \geq 0$ and $i, j \in S$, write $Q_{t}=$ $e^{-t \lambda} e^{t(\lambda I+A)}$ where $\lambda>0$ is chosen so that $\lambda I+A$ has only non-negative entries. 2. To show $\sum_{j \in S} Q_{t}(i, j)=1$, compute $\frac{d}{d t} Q_{t} \mathbf{1}$.
Exercise 2.4. Let $\left\{T_{k}\right\}_{k=1}^{\infty}$ be i.i.d. exponential random variables with intensity λ and $\left\{\sigma_{\ell}\right\}_{\ell=1}^{n}$ be independent geometric random variables with $\sigma_{\ell}=G e o\left(b_{\ell}\right)$ for some $b_{\ell} \in(0,1]$. Further assume that $\left\{\sigma_{\ell}\right\}_{\ell=1}^{n} \cup\left\{T_{k}\right\}_{k=1}^{\infty}$ are independent. We also let

$$
\begin{aligned}
W_{0} & =0, \quad W_{n}:=T_{1}+\ldots+T_{n} \\
\mathbf{j}_{0} & =0, \mathbf{j}_{\ell}:=\sigma_{1}+\cdots+\sigma_{\ell} \\
S_{\ell} & :=W_{\mathbf{j}_{\ell}}-W_{\mathbf{j}_{\ell-1}} \text { for } 1 \leq \ell \leq n
\end{aligned}
$$

Show $\left\{S_{\ell}\right\}_{\ell=1}^{n}$ are independent exponential random variables with $S_{\ell} \stackrel{d}{=}$ $\exp \left(b_{\ell} \lambda\right)$ for all $1 \leq \ell \leq n$.
Exercise 2.5. Keeping the notation of Example 22.52 and 22.53 . Use Corollary 22.57 to show again that $P_{x}\left(T_{B}<\infty\right)=(q / p)^{x}$ for all $x>0$ and $\mathbb{E}_{x} T_{0}=$ $x /(q-p)$ for $x<0$. You should do so without making use of the extraneous hitting times, T_{n} for $n \neq 0$.

Exercise 2.6. Let $x \in X$. Show;

1. for all $n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
P_{x}\left(\tau_{x}>n+1\right)=\sum_{y \neq x} p(x, y) P_{y}\left(T_{x}>n\right) \tag{2.3}
\end{equation*}
$$

2. Use Eq. 2.5 to conclude that if $P_{y}\left(T_{x}=\infty\right)=0$ for all $y \neq x$ then $P_{x}\left(\tau_{x}=\infty\right)=0$, i.e. $\left\{X_{n}\right\}$ will return to x when started at x.
3. Sum Eq. 2.5) on $n \in \mathbb{N}_{0}$ to show

$$
\begin{equation*}
\mathbb{E}_{x}\left[\tau_{x}\right]=P_{x}\left(\tau_{x}>0\right)+\sum_{y \neq x} p(x, y) \mathbb{E}_{y}\left[T_{x}\right] \tag{2.4}
\end{equation*}
$$

4. Now suppose that S is a finite set and $P_{y}\left(T_{x}=\infty\right)<1$ for all $y \neq x$, i.e. there is a positive chance of hitting x from any $y \neq x$ in S. Explain how Eq. (2.6) combined with Lemma 22.42 (or see Corollary 22.59) shows that $\mathbb{E}_{x}\left[\tau_{x}\right]<\infty$.
Exercise 2.7 (2nd order recurrence relations). Let a, b, c be real numbers with $a \neq 0 \neq c, \alpha, \beta \in \mathbb{Z} \cup\{ \pm \infty\}$ with $\alpha<\beta$, and suppose $\{u(x): x \in[\alpha, \beta] \cap \mathbb{Z}\}$ solves the second order homogeneous recurrence relation:

$$
\begin{equation*}
a u(x+1)+b u(x)+c u(x-1)=0 \tag{2.5}
\end{equation*}
$$

for $\alpha<x<\beta$. Show:

1. for any $\lambda \in \mathbb{C}$,

$$
\begin{equation*}
a \lambda^{x+1}+b \lambda^{x}+c \lambda^{x-1}=\lambda^{x-1} p(\lambda) \tag{2.6}
\end{equation*}
$$

where $p(\lambda)=a \lambda^{2}+b \lambda+c$ is the characteristic polynomial associated to Eq. 2.7.
Let $\lambda_{ \pm}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ be the roots of $p(\lambda)$ and suppose for the moment that $b^{2}-4 a c \neq 0$. From Eq. 2.7) it follows that for any choice of $A_{ \pm} \in \mathbb{R}$, the function,

$$
w(x):=A_{+} \lambda_{+}^{x}+A_{-} \lambda_{-}^{x}
$$

solves Eq. 2.7) for all $x \in \mathbb{Z}$.
2. Show there is a unique choice of constants, $A_{ \pm} \in \mathbb{R}$, such that the function $u(x)$ is given by

$$
u(x):=A_{+} \lambda_{+}^{x}+A_{-} \lambda_{-}^{x} \text { for all } \alpha \leq x \leq \beta
$$

3. Now suppose that $b^{2}=4 a c$ and $\lambda_{0}:=-b /(2 a)$ is the double root of $p(\lambda)$. Show for any choice of A_{0} and A_{1} in \mathbb{R} that

$$
w(x):=\left(A_{0}+A_{1} x\right) \lambda_{0}^{x}
$$

solves Eq. 2.7) for all $x \in \mathbb{Z}$. Hint: Differentiate Eq. 2.8) with respect to λ and then set $\lambda=\lambda_{0}$.
4. Again show that any function u solving Eq. 2.7) is of the form $u(x)=$ $\left(A_{0}+A_{1} x\right) \lambda_{0}^{x}$ for $\alpha \leq x \leq \beta$ for some unique choice of constants $A_{0}, A_{1} \in$ \mathbb{R}.

Exercise 2.8. Let $w_{x}:=P_{x}\left(X_{T_{a, b}}=b\right):=P\left(X_{T_{a, b}}=b \mid X_{0}=x\right)$.

1. Use first step analysis to show for $a<x<b$ that

$$
\begin{equation*}
w_{x}=\frac{1}{2}\left(w_{x+1}+w_{x-1}\right) \tag{2.7}
\end{equation*}
$$

provided we define $w_{a}=0$ and $w_{b}=1$.
2. Use the results of Exercise 2.7 to show

$$
\begin{equation*}
P_{x}\left(X_{T_{a, b}}=b\right)=w_{x}=\frac{1}{b-a}(x-a) \tag{2.8}
\end{equation*}
$$

3. Let

$$
T_{b}:=\left\{\begin{array}{cc}
\min \left\{n: X_{n}=b\right\} & \text { if } \\
\infty & \text { otherwise }
\end{array}\right.
$$

be the first time $\left\{X_{n}\right\}$ hits b. Explain why, $\left\{X_{T_{a, b}}=b\right\} \subset\left\{T_{b}<\infty\right\}$ and use this along with Eq. 2.10 to conclude ${ }^{2}$ that $P_{x}\left(T_{b}<\infty\right)=1$ for all $x<b$. (By symmetry this result holds true for all $x \in \mathbb{Z}$.)

Exercise 2.9. The goal of this exercise is to give a second proof of the fact that $P_{x}\left(T_{b}<\infty\right)=1$. Here is the outline:

1. Let $w_{x}:=P_{x}\left(T_{b}<\infty\right)$. Again use first step analysis to show that w_{x} satisfies Eq. 2.9) for all x with $w_{b}=1$.
2. Use Exercise 2.7 to show that there is a constant, c, such that

$$
w_{x}=c(x-b)+1 \text { for all } x \in \mathbb{Z}
$$

3. Explain why c must be zero to again show that $P_{x}\left(T_{b}<\infty\right)=1$ for all $x \in \mathbb{Z}$.

Exercise 2.10. Let $T=T_{a, b}$ and $u_{x}:=\mathbb{E}_{x} T:=\mathbb{E}\left[T \mid X_{0}=x\right]$.

1. Use first step analysis to show for $a<x<b$ that

$$
\begin{equation*}
u_{x}=\frac{1}{2}\left(u_{x+1}+u_{x-1}\right)+1 \tag{2.9}
\end{equation*}
$$

with the convention that $u_{a}=0=u_{b}$.

[^1]2. Show that
\[

$$
\begin{equation*}
u_{x}=A_{0}+A_{1} x-x^{2} \tag{2.10}
\end{equation*}
$$

\]

solves Eq. 2.11 for any choice of constants A_{0} and A_{1}.
3. Choose A_{0} and A_{1} so that u_{x} satisfies the boundary conditions, $u_{a}=0=u_{b}$. Use this to conclude that

$$
\begin{equation*}
\mathbb{E}_{x} T_{a, b}=-a b+(b+a) x-x^{2}=-a(b-x)+b x-x^{2} \tag{2.11}
\end{equation*}
$$

Exercise 2.11. For $\theta \in \mathbb{R}$ let

$$
f_{\theta}(n, x):=Q^{-n} e^{\theta x}=\left(p e^{\theta}+q e^{-\theta}\right)^{-n} e^{\theta x}
$$

so that $Q f_{\theta}(n+1, \cdot)=f_{\theta}(n, \cdot)$ for all $\theta \in \mathbb{R}$. Compute;

1. $f_{\theta}^{(k)}(n, x):=\left(\frac{d}{d \theta}\right)^{k} f_{\theta}(n, x)$ for $k=1,2$.
2. Use your results to show,

$$
\begin{aligned}
& M_{n}^{(1)}:=S_{n}-n(p-q) \\
& \quad \text { and } \\
& M_{n}^{(2)}:=\left(S_{n}-n(p-q)\right)^{2}-4 n p q
\end{aligned}
$$

are martingales.
(If you are ambitious you might also find $M_{n}^{(3)}$.)
Exercise 2.12 (Very similar to above example?). Suppose $\left\{M_{n}\right\}_{n=0}^{\infty}$ is a square integrable martingale. Show;

1. $\mathbb{E}\left[M_{n+1}^{2}-M_{n}^{2} \mid \mathcal{B}_{n}\right]=\mathbb{E}\left[\left(M_{n+1}-M_{n}\right)^{2} \mid \mathcal{B}_{n}\right]$. Conclude from this that the Doob decomposition of M_{n}^{2} is of the form,

$$
M_{n}^{2}=N_{n}+A_{n}
$$

where

$$
A_{n}:=\sum_{1 \leq k \leq n} \mathbb{E}\left[\left(M_{k}-M_{k-1}\right)^{2} \mid \mathcal{B}_{k-1}\right]
$$

2. If we further assume that $M_{k}-M_{k-1}$ is independent of \mathcal{B}_{k-1} for all $k=$ $1,2, \ldots$, explain why,

$$
A_{n}=\sum_{1 \leq k \leq n} \mathbb{E}\left(M_{k}-M_{k-1}\right)^{2}
$$

Exercise 2.13 (Martingale problem I). Suppose that $\left\{X_{n}\right\}_{n=0}^{\infty}$ is an (S, \mathcal{S}) - valued adapted process on some filtered probability space $\left(\Omega, \mathcal{B},\left\{\mathcal{B}_{n}\right\}_{n \in \mathbb{N}_{0}}, P\right)$ and Q is a probability kernel on S. To each $f: S \rightarrow \mathbb{R}$ which is bounded and measurable, let

$$
M_{n}^{f}:=f\left(X_{n}\right)-\sum_{k<n}\left(Q f\left(X_{k}\right)-f\left(X_{k}\right)\right)=f\left(X_{n}\right)-\sum_{k<n}((Q-I) f)\left(X_{k}\right)
$$

Show;

1. If $\left\{X_{n}\right\}_{n>0}$ is a time homogeneous Markov chain with transition kernel, Q, then $\left\{M_{n}^{f}\right\}_{n>0}$ is a martingale for each $f \in \mathcal{S}_{b}$.
2. Conversely if $\left\{M_{n}^{f}\right\}_{n \geq 0}$ is a martingale for each $f \in \mathcal{S}_{b}$, then $\left\{X_{n}\right\}_{n \geq 0}$ is a time homogeneous Markov chain with transition kernel, Q.

Exercise 2.14. Suppose τ is a stopping time, (S, \mathcal{S}) is a measurable space, and $Z: \Omega \rightarrow S$ is a function. Show that Z is $\mathcal{B}_{\tau} / \mathcal{S}$ measurable iff $\left.Z\right|_{\{\tau=n\}}$ is $\left(\mathcal{B}_{n}\right)_{\{\tau=n\}} / \mathcal{S}$ - measurable for all $n \in \overline{\mathbb{N}}_{0}$.
Exercise 2.15. Suppose σ and τ are two stopping times. Show;

1. $\{\sigma<\tau\},\{\sigma=\tau\}$, and $\{\sigma \leq \tau\}^{*}$ are all in $\mathcal{B}_{\sigma} \cap \mathcal{B}_{\tau}$,
2. $\mathcal{B}_{\sigma \wedge \tau}=\mathcal{B}_{\sigma} \cap \mathcal{B}_{\tau}$,
3. $\left.\mathcal{B}_{\sigma \vee \tau}=\mathcal{B}_{\sigma} \vee \mathcal{B}_{\tau}:=\sigma\left(\mathcal{B}_{\sigma} \cup \mathcal{B}_{\tau}\right)\right\}^{3}$ and
4. $\mathcal{B}_{\sigma}=\mathcal{B}_{\sigma \wedge \tau}$ on C where C is any one of the following three sets; $\{\sigma \leq \tau\}$, $\{\sigma<\tau\}$, or $\{\sigma=\tau\}$.
*As an example, since

$$
\{\sigma \leq \tau\} \cap\{\sigma \wedge \tau=n\}=\{\sigma \leq \tau\} \cap\{\sigma=n\}=\{n \leq \tau\} \cap\{\sigma=n\} \in \mathcal{B}_{n}
$$

for all $n \in \overline{\mathbb{N}}_{0}$, it follows that
Exercise 2.16. Show, by example, that it is not necessarily true that

$$
\mathbb{E}_{\mathcal{G}_{1}} \mathbb{E}_{\mathcal{G}_{2}}=\mathbb{E}_{\mathcal{G}_{1} \wedge \mathcal{G}_{2}}
$$

for arbitrary \mathcal{G}_{1} and \mathcal{G}_{2} - sub-sigma algebras of \mathcal{B}.
Hint: it suffices to take (Ω, \mathcal{B}, P) with $\Omega=\{1,2,3\}, \mathcal{B}=2^{\Omega}$, and $P(\{j\})=$ $\frac{1}{3}$ for $j=1,2,3$.
Exercise 2.17 (Rademacher's theorem). Let $\Omega:=(0,1], \mathcal{B}:=\mathcal{B}_{(0,1]}$, $P=m$ be Lebesgue measure, and $f \in L^{1}(P)$. To each partition $\Pi:=\left\{0=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=1\right\}$ of $(0,1]$ we let $\mathcal{B}_{\Pi}:=$ $\sigma\left(J_{i}:=\left(x_{i-1}, x_{i}\right]: 1 \leq i \leq n\right)$.
${ }^{3}$ In fact, you will likely show in your proof that every set in $\mathcal{B}_{\sigma} \vee \mathcal{B}_{\tau}$ may be written
as a disjoint union of a set from \mathcal{B}_{σ} with a set from \mathcal{B}_{τ}.

1. Show $\mathbb{E}\left[f \mid \mathcal{B}_{\Pi}\right](x)=\sum_{i=1}^{n} \frac{1}{x_{i}-x_{i-1}}\left[\int_{x_{i-1}}^{x_{i}} f(s) d s\right] \cdot 1_{\left(x_{i-1}, x_{i}\right]}(x)$ for a.e. $x \in$ Ω.
2. For $f \in C([0,1], \mathbb{R})$, let

$$
\begin{equation*}
f_{\Pi}(x):=\sum_{i=1}^{n} \frac{\Delta_{i} f}{\Delta_{i}} 1_{J_{i}}(x) \tag{2.12}
\end{equation*}
$$

where $\Delta_{i} f:=f\left(x_{i}\right)-f\left(x_{i-1}\right)$ and $\Delta_{i}:=x_{i}-x_{i-1}$. Show if Π^{\prime} is another partition of Ω which refines Π, i.e. $\Pi \subset \Pi^{\prime}$, then

$$
f_{\Pi}=\mathbb{E}\left[f_{\Pi^{\prime}} \mid \mathcal{B}_{\Pi}\right] \text { a.s. }
$$

3. Show for any $a, b \in \Pi$ with $a<b$ that

$$
\begin{equation*}
\frac{f(b)-f(a)}{b-a}=\frac{1}{b-a} \int_{a}^{b} f_{\Pi}(x) d x \tag{2.13}
\end{equation*}
$$

Hint: consider the partition $\Pi_{0}:=\{0<a<b<1\}$.
Now let $\mathcal{B}_{n}:=\mathcal{B}_{\Pi_{n}}$ and where $\Pi_{n}:=\left\{\frac{k}{2^{n}}\right\}_{k=0}^{2^{n}}$ an observe your have now shown $g_{n}:=f_{\Pi_{n}}$ is a martingale.
4. Let us now further suppose that $|f(y)-f(x)| \leq K|y-x|$ for all $x, y \in$ $[0,1]$, i.e. f is Lipschitz. From Eq. 2.16 it follows that $\left|g_{n}\right|:=\left|f_{\Pi_{n}}\right| \leq K$ so that $\left\{g_{n}\right\}_{n=1}^{\infty}$ is a bounded martingale. Use this along with Eq. 2.17. and Theorem 23.70 to conclude there exists $g \in L^{\infty}(P)$ such that

$$
f(b)-f(a)=\int_{a}^{b} g(x) d x \text { for all } 0 \leq a<b \leq 1
$$

[You may be interested to know that under these hypothesis, $f^{\prime}(x)$ exists a.e. and $g(x)=f^{\prime}(x)$ a.e.. Thus this a version of the fundamental theorem of calculus.]

Exercise 2.18. Suppose that $\left\{M_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence of closed subspaces of a Hilbert space, H. Let $M_{\infty}:=\cap_{n=1}^{\infty} M_{n}$. Show $\lim _{n \rightarrow \infty} P_{M_{n}} x=$ $P_{M_{\infty}} x$ for all $x \in H$. [Hint: you might make use of Exercise 18.5.]
Exercise 2.19. Let $\left(M_{n}\right)_{n=0}^{\infty}$ be a martingale with $M_{0}=0$ and $E\left[M_{n}^{2}\right]<\infty$ for all n. Show that for all $\lambda>0$,

$$
P\left(\max _{1 \leq m \leq n} M_{m} \geq \lambda\right) \leq \frac{E\left[M_{n}^{2}\right]}{E\left[M_{n}^{2}\right]+\lambda^{2}}
$$

Hints: First show that for any $c>0$ that $\left\{X_{n}:=\left(M_{n}+c\right)^{2}\right\}_{n=0}^{\infty}$ is a submartingale and then observe,

$$
\left\{\max _{1 \leq m \leq n} M_{m} \geq \lambda\right\} \subset\left\{\max _{1 \leq m \leq n} X_{n} \geq(\lambda+c)^{2}\right\}
$$

Now use Doob' Maximal inequality (Proposition 23.46) to estimate the probability of the last set and then choose c so as to optimize the resulting estimate you get for $P\left(\max _{1 \leq m \leq n} M_{m} \geq \lambda\right)$. (Notice that this result applies to $-M_{n}$ as well so it also holds that;

$$
P\left(\min _{1 \leq m \leq n} M_{m} \leq-\lambda\right) \leq \frac{E\left[M_{n}^{2}\right]}{E\left[M_{n}^{2}\right]+\lambda^{2}} \text { for all } \lambda>0
$$

Exercise 2.20. Let $\left\{Z_{n}\right\}_{n=1}^{\infty}$ be independent random variables, $S_{0}=0$ and $S_{n}:=Z_{1}+\cdots+Z_{n}$, and $f_{n}(\lambda):=\mathbb{E}\left[e^{i \lambda Z_{n}}\right]$. Suppose $\mathbb{E} e^{i \lambda S_{n}}=\prod_{n=1}^{N} f_{n}(\lambda)$ converges to a continuous function, $F(\lambda)$, as $N \rightarrow \infty$. Show for each $\lambda \in \mathbb{R}$ that

$$
\begin{equation*}
P\left(\lim _{n \rightarrow \infty} e^{i \lambda S_{n}} \text { exists }\right)=1 \tag{2.14}
\end{equation*}
$$

Hints:

1. Show it is enough to find an $\varepsilon>0$ such that Eq. 2.18 holds for $|\lambda| \leq \varepsilon$.
2. Choose $\varepsilon>0$ such that $|F(\lambda)-1|<1 / 2$ for $|\lambda| \leq \varepsilon$. For $|\lambda| \leq \varepsilon$, show $M_{n}(\lambda):=\frac{e^{i \lambda S_{n}}}{\mathbb{E} e^{i \lambda S_{n}}}$ is a bounded complex ${ }^{4}$ martingale relative to the filtration, $\mathcal{B}_{n}=\sigma\left(Z_{1}, \ldots, Z_{n}\right)$.

Exercise 2.21. For $a<0<b$ with $a, b \in \mathbb{Z}$, let $\tau=\sigma_{a} \wedge \sigma_{b}$. Explain why τ is regular for S. Use this to show $P(\tau=\infty)=0$. Hint: make use of Remark 23.76 and the fact that $\left|S_{n}-S_{n-1}\right|=\left|Z_{n}\right|=1$ for all n.

Exercise 2.22. In this exercise, you are asked to use the central limit Theorem 15.50 to prove again that $P(\tau=\infty)=0$, Exercise 2.21 Hints: Use the central limit theorem to show

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) e^{-x^{2} / 2} d x \geq f(0) P(\tau=\infty) \tag{2.15}
\end{equation*}
$$

for all $f \in C^{3}(\mathbb{R} \rightarrow[0, \infty))$ with $M:=\sup _{x \in \mathbb{R}}\left|f^{(3)}(x)\right|<\infty$. Use this inequality to conclude that $P(\tau=\infty)=0$. Hint: consider $\mathbb{E}\left[f\left(\frac{S_{n}}{\sqrt{n}}\right)\right]$.
Exercise 2.23. Show

$$
\begin{equation*}
P\left(\sigma_{b}<\sigma_{a}\right)=\frac{|a|}{b+|a|} \tag{2.16}
\end{equation*}
$$

[^2]and use this to conclude $P\left(\sigma_{b}<\infty\right)=1$, i.e. every $b \in \mathbb{N}$ is almost surely visited by S_{n}. (This last result also follows by the Hewitt-Savage Zero-One Law, see Example 15.82 where it is shown b is visited infinitely often.)

Hint: Using properties of martingales and Exercise 2.21 compute $\lim _{n \rightarrow \infty} \mathbb{E}\left[S_{n}^{\sigma_{a} \wedge \sigma_{b}}\right]$ in two different ways.

Exercise 2.24. Let $\tau:=\sigma_{a} \wedge \sigma_{b}$. In this problem you are asked to show $\mathbb{E}[\tau]=$ $|a| b$ with the aid of the following outline.

1. Use Exercise 2.12 above to conclude $N_{n}:=S_{n}^{2}-n$ is a martingale.
2. Now show

$$
\begin{equation*}
0=\mathbb{E} N_{0}=\mathbb{E} N_{\tau \wedge n}=\mathbb{E} S_{\tau \wedge n}^{2}-\mathbb{E}[\tau \wedge n] \tag{2.17}
\end{equation*}
$$

3. Now use DCT and MCT along with Exercise 2.23 to compute the limit as $n \rightarrow \infty$ in Eq. 2.22) to find

$$
\begin{equation*}
\mathbb{E}\left[\sigma_{a} \wedge \sigma_{b}\right]=\mathbb{E}[\tau]=b|a| \tag{2.18}
\end{equation*}
$$

4. By considering the limit, $a \rightarrow-\infty$ in Eq. 2.23), show $\mathbb{E}\left[\sigma_{b}\right]=\infty$.

Exercise 2.25. Verify,

$$
M_{n}:=S_{n}-n(p-q)
$$

and

$$
N_{n}:=M_{n}^{2}-\sigma^{2} n
$$

are martingales, where $\sigma^{2}=1-(p-q)^{2}$. (This should be simple; see either Exercise 2.12 or Exercise 2.11.)

Exercise 2.26. Using exercise 2.25, show

$$
\begin{equation*}
\mathbb{E}\left(\sigma_{a} \wedge \sigma_{b}\right)=\left(\frac{b\left[1-(q / p)^{a}\right]+a\left[(q / p)^{b}-1\right]}{(q / p)^{b}-(q / p)^{a}}\right)(p-q)^{-1} \tag{2.19}
\end{equation*}
$$

By considering the limit of this equation as $a \rightarrow-\infty$, show

$$
\mathbb{E}\left[\sigma_{b}\right]=\frac{b}{p-q}
$$

and by considering the limit as $b \rightarrow \infty$, show $\mathbb{E}\left[\sigma_{a}\right]=\infty$.
Exercise 2.27. Let S_{n} be the total assets of an insurance company in year $n \in \mathbb{N}_{0}$. Assume $S_{0}>0$ is a constant and that for all $n \geq 1$ that $S_{n}=$ $S_{n-1}+\xi_{n}$, where $\xi_{n}=c-Z_{n}$ and $\left\{Z_{n}\right\}_{n=1}^{\infty}$ are i.i.d. random variables having the normal distribution with mean $\mu<c$ and variance σ^{2}. (The number c is to be interpreted as the yearly premium.) Let $R=\left\{S_{n} \leq 0\right.$ for some $\left.n\right\}$ be the event that the company eventually becomes bankrupt, i.e. is Ruined. Show

$$
P(\text { Ruin })=P(R) \leq e^{-2(c-\mu) S_{0} / \sigma^{2}}
$$

Outline:

1. Show that $\lambda=-2(c-\mu) / \sigma^{2}<0$ satisfies, $\mathbb{E}\left[e^{\lambda \xi_{n}}\right]=1$.
2. With this λ show

$$
\begin{equation*}
Y_{n}:=\exp \left(\lambda S_{n}\right)=e^{\lambda S_{0}} \prod_{j=1}^{n} e^{\lambda \xi_{j}} \tag{2.20}
\end{equation*}
$$

is a non-negative $\mathcal{B}_{n}=\sigma\left(Z_{1}, \ldots, Z_{n}\right)$ - martingale.
3. Use a martingale convergence theorem to argue that $\lim _{n \rightarrow \infty} Y_{n}=Y_{\infty}$ exists a.s. and then use Fatou's lemma to show $\mathbb{E} Y_{\tau} \leq e^{\lambda S_{0}}$, where

$$
\tau=\inf \left\{n: S_{n} \leq 0\right\}
$$

is the time of the companies ruin.
4. Finally conclude that

$$
P(R) \leq \mathbb{E}\left[Y_{\tau}: \tau<\infty\right] \leq \mathbb{E} Y_{\tau} \leq e^{\lambda S_{0}}=e^{-2(c-\mu) S_{0} / \sigma^{2}}
$$

Exercise 2.28. Suppose that Z is exponentially integrable and $\psi(\theta):=$ $\ln M(\theta)=\ln \mathbb{E}\left[e^{\theta Z}\right]$. Show

$$
\psi^{\prime}(\theta)=\mathbb{E}_{\theta} Z \text { and } \psi^{\prime \prime}(\theta)=\operatorname{Var}_{\theta}(Z)
$$

[Use Proposition 10.59 in order to give a short solution to this problem.]
Exercise 2.29. Let $Z \stackrel{d}{=} N\left(0, \sigma^{2}\right)$ and $t>0$. By Lemma 10.47. we know that

$$
\begin{equation*}
P(Z \geq t)=P(\sigma N \geq t)=P(N \geq t / \sigma) \leq c e^{-\frac{t^{2}}{2 \sigma^{2}}} \tag{2.21}
\end{equation*}
$$

where $c=1 / 2$. The goal of this exercise is to use Proposition 25.4 to prove this same bound above but with $c=1$. In more detail show;

1. Recall that Gaussian integration formulas implies,

$$
M(\theta)=\mathbb{E} e^{\theta Z}=e^{\frac{1}{2} \theta^{2} \sigma^{2}} \text { and so } \psi(\theta)=\frac{1}{2} \theta^{2} \sigma^{2}
$$

2. Show

$$
\theta \rightarrow \theta t-\psi(\theta)=\theta t-\frac{1}{2} \theta^{2} \sigma^{2}
$$

is maximized at $\theta_{t}=t / \sigma^{2}$ and that

$$
\psi^{*}(t)=\sup _{\theta \in \mathbb{R}}\left(\theta t-\frac{1}{2} \theta^{2} \sigma^{2}\right)=\frac{t^{2}}{2 \sigma^{2}}
$$

This assertion along with Proposition 25.4 verifies the tail bound in Eq. (2.26) with $c=1$.
3. Show $\operatorname{Law}_{P_{\theta}}(Z) \stackrel{d}{=} N\left(\sigma^{2}, \theta \sigma^{2}\right)$ - a normal random variable with variance σ^{2} and mean $\theta \sigma^{2}$. Hence when $\theta=\theta_{t}=t / \sigma^{2}$,

$$
\begin{equation*}
\operatorname{Law}_{P_{\theta_{t}}}(Z) \stackrel{d}{=} N\left(\sigma^{2}, t\right) \tag{2.22}
\end{equation*}
$$

4. Conclude that

$$
\frac{1}{2}=P_{\theta_{t}}(Z \geq t)=\frac{1}{M\left(\theta_{t}\right)} \mathbb{E}\left[1_{Z \geq t} e^{\theta_{t} Z}\right]
$$

and explain (using Eq. 25.3) that this inequality then implies Eq. 2.26 with $c=1 / 2$.

Exercise 2.30. Suppose $-\infty<a<b<\infty$ and Z is a random variable such that $a \leq Z \leq b$. Let $\mu=\mathbb{E} Z$ and $\psi(\theta)=\ln \mathbb{E}\left[e^{\theta Z}\right]$.

1. Use Taylor's theorem along with Exercise 2.28 to show for any $\theta \in \mathbb{R}$, there exists θ^{*} between 0 and θ such that

$$
\psi(\theta)=\theta \mu+\frac{1}{2} \theta^{2} \operatorname{Var}_{\theta^{*}}(Z)
$$

2. Use item 1. to show

$$
\psi(\theta) \leq \theta \mu+\frac{(b-a)^{2}}{8} \theta^{2}
$$

by showing $\operatorname{Var}_{\theta^{*}}(Z) \leq(b-a)^{2} / 4$. Hint: this variance inequality holds no matter the distribution of Z as long as $a \leq Z \leq b$ a.s.
3. Use items 1. and 2. to prove Hoeffding's inequality, i.e.

$$
\begin{equation*}
\mathbb{E}\left[e^{\theta(Z-\mu)}\right] \leq \exp \left(\frac{(b-a)^{2}}{8} \theta^{2}\right) \forall \theta \in \mathbb{R} \tag{2.23}
\end{equation*}
$$

4. Then use this and Lemma 25.7 to prove the Chernoff type bound,

$$
P(Z-\mu \geq t) \leq e^{-2 \frac{t^{2}}{(b-a)^{2}}} \quad \forall t>0
$$

5. Show, by applying the previous inequality with Z replaced by $-Z$, that

$$
P(Z-\mu \leq-t) \leq e^{-2 \frac{t^{2}}{(b-a)^{2}}} \quad \forall t>0
$$

By adding the two previous bounds it follows that

$$
P(|Z-\mu| \geq t) \leq 2 e^{-2 \frac{t^{2}}{(b-a)^{2}}} \quad \forall t>0
$$

Exercise 2.31. Suppose that $-\infty<a_{j}<b_{j}<\infty$ and $\left\{Z_{j}\right\}_{j=1}^{n}$ are independent random variables with $a_{j} \leq Z_{j} \leq b_{j}$ for $1 \leq j \leq n$. If $S=\sum_{j=1}^{n} Z_{j}$, $\mu=\mathbb{E} S$, and $v=\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)^{2}$, show

$$
\begin{equation*}
\mathbb{E}\left[e^{\theta\left(S_{n}-\mu\right)}\right] \leq e^{\frac{v}{8} \theta^{2}} \text { and } \tag{2.24}
\end{equation*}
$$

and

$$
P\left(S_{n}-\mu \geq t\right) \leq e^{-\frac{2}{v} t^{2}} \text { for all } t \geq 0
$$

Use this result to conclude, if $L=\max _{j}\left(b_{j}-a_{j}\right)$, then $v \leq n L^{2}$ and

$$
P\left(\frac{S_{n}-\mu}{n} \geq t\right) \leq e^{-2 n t^{2} / L^{2}} \forall t \geq 0
$$

Exercise 2.32. Prove Theorem 26.1.
Exercise 2.33 (Resnik 7.1). Does $\sum_{n} 1 / n$ converge? Does $\sum_{n}(-1)^{n} / n$ converge? Let $\left\{X_{n}\right\}$ be iid with $P\left[X_{n}= \pm 1\right]=1 / 2$ Does $\sum_{n} X_{n} / n$ converge? [See Example 26.42 below for a more thorough investigation of this sort.]

Exercise 2.34 (Two Series Theorem - Resnik 7.15). Prove that the three series theorem reduces to a two series theorem when the random variables are positive. That is, if $X_{n} \geq 0$ are independent, then $\sum_{n} X_{n}<\infty$ a.s. iff for any $c>0$ we have

$$
\begin{align*}
\sum_{n} P\left(X_{n}>c\right)<\infty \text { and } \tag{2.25}\\
\sum_{n} \mathbb{E}\left[X_{n} 1_{X_{n} \leq c}\right]<\infty \tag{2.26}
\end{align*}
$$

that is it is unnecessary to verify the convergence of the second series in Theorem 26.43 involving the variances.

Exercise 2.35. Let \mathcal{P} denote the set of probability measures on (Ω, \mathcal{B}). Show $d_{T V}$ is a complete metric on \mathcal{P}.

Exercise 2.36. Suppose that μ, ν, and γ are probability measures on $\left(\mathbb{R}^{n}, \mathcal{B}_{\mathbb{R}^{n}}\right)$. Show $d_{T V}(\mu * \nu, \mu * \gamma) \leq d_{T V}(\nu, \gamma)$. Use this fact along with Exercise 2.35 to show,

$$
d_{T V}\left(\mu_{1} * \mu_{2} * \cdots * \mu_{n}, \nu_{1} * \nu_{2} * \cdots * \nu_{n}\right) \leq \sum_{i=1}^{n} d_{T V}\left(\mu_{i}, \nu_{i}\right)
$$

for all choices probability measures, μ_{i} and ν_{i} on $\left(\mathbb{R}^{n}, \mathcal{B}_{\mathbb{R}^{n}}\right)$.

Exercise 2.37. Suppose that Ω is a (at most) countable set, $\mathcal{B}:=2^{\Omega}$, and $\left\{\mu_{n}\right\}_{n=0}^{\infty}$ are probability measures on (Ω, \mathcal{B}). Show

$$
d_{T V}\left(\mu_{n}, \mu_{0}\right)=\frac{1}{2} \sum_{\omega \in \Omega}\left|\mu_{n}(\{\omega\})-\mu_{0}(\{\omega\})\right|
$$

and $\lim _{n \rightarrow \infty} d_{T V}\left(\mu_{n}, \mu_{0}\right)=0$ iff $\lim _{n \rightarrow \infty} \mu_{n}(\{\omega\})=\mu_{0}(\{\omega\})$ for all $\omega \in \Omega$.
Exercise 2.38. Let $\mu_{p}(\{1\})=p$ and $\mu_{p}(\{0\})=1-p$ and $\nu_{\lambda}(\{n\}):=e^{-\lambda} \frac{\lambda^{n}}{n!}$ for all $n \in \mathbb{N}_{0}$.

1. Find $d_{T V}\left(\mu_{p}, \mu_{q}\right)$ for all $0 \leq p, q \leq 1$.
2. Show $d_{T V}\left(\mu_{p}, \nu_{p}\right)=p\left(1-e^{-p}\right)$ for all $0 \leq p \leq 1$. From this estimate and the estimate,

$$
\begin{equation*}
1-e^{-p}=\int_{0}^{p} e^{-x} d x \leq \int_{0}^{p} 1 d x=p \tag{2.27}
\end{equation*}
$$

it follows that $d_{T V}\left(\mu_{p}, \nu_{p}\right) \leq p^{2}$ for all $0 \leq p \leq 1$.
3. Show

$$
\begin{equation*}
d_{T V}\left(\nu_{\lambda}, \nu_{\gamma}\right) \leq|\lambda-\gamma| \text { for all } \lambda, \gamma \in \mathbb{R}_{+} . \tag{2.28}
\end{equation*}
$$

Hints: (Andy Parrish's method - a former 280 student.)
a) Observe that for any $n \in \mathbb{N}$ we have ν_{λ} and ν_{γ} are equal to the n - fold convolutions of $\nu_{\lambda / n}$ and $\nu_{\gamma / n}$ and use this to conclude

$$
\begin{equation*}
d_{T V}\left(\nu_{\lambda}, \nu_{\gamma}\right) \leq n d_{T V}\left(\nu_{\lambda / n}, \nu_{\gamma / n}\right) . \tag{2.29}
\end{equation*}
$$

b) Using item 2. of this exercise, show

$$
\left|d_{T V}\left(\nu_{\lambda / n}, \nu_{\gamma / n}\right)-d_{T V}\left(\mu_{\lambda / n}, \mu_{\gamma / n}\right)\right| \leq C n^{-2}
$$

c) Finally make use of your results in item 1. part b. in order to let $n \rightarrow \infty$ in Eq. 2.35).

Exercise 2.39. Let $\left(S_{1}, \rho_{1}\right)$ and $\left(S_{2}, \rho_{2}\right)$ be separable metric spaces and $\mathcal{B}_{S_{1}}$ and $\mathcal{B}_{S_{2}}$ be the Borel σ - algebras on S_{1} and S_{2} respectively. Prove the analogue of Lemma 9.29 , namely show $\mathcal{B}_{S_{1} \times S_{2}}=\mathcal{B}_{S_{1}} \otimes \mathcal{B}_{S_{2}}$. Hint: you may find Exercise 9.10 helpful.

Exercise 2.40. Let $\left(S_{1}, \rho_{1}\right)$ and $\left(S_{2}, \rho_{2}\right)$ be separable metric spaces and $\mathcal{B}_{S_{1}}$ and $\mathcal{B}_{S_{2}}$ be the Borel σ - algebras on S_{1} and S_{2} respectively. Further suppose that $\left\{\mu_{n}\right\} \cup\{\mu\} \subset \mathcal{P}\left(S_{1}\right)$ and $\left\{\nu_{n}\right\} \cup\{\nu\} \subset \mathcal{P}\left(S_{2}\right)$. Show; if $\mu_{n} \Longrightarrow \mu$ and $\nu_{n} \Longrightarrow \nu$, then $\mu_{n} \otimes \nu_{n} \Longrightarrow \mu \otimes \nu$. Hint: You may find it useful to use Skorohod's Theorem 28.8.

Exercise 2.41. To each finite and compactly supported measure, ν, on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ show there exists a sequence $\left\{\nu_{n}\right\}_{n=1}^{\infty}$ of finitely supported finite measures on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ such that $\nu_{n} \Longrightarrow \nu$. Here we say ν is compactly supported if there exists $M<\infty$ such that $\nu(\{x:|x| \geq M\})=0$ and we say ν is finitely supported if there exists a finite subset, $\Lambda \subset \mathbb{R}$ such that $\nu(\mathbb{R} \backslash \Lambda)=0$.

Exercise 2.42. Use Theorem 28.20 to give a proof of half of Theorem 28.16 when $S=\mathbb{R}^{d}$ and $\Lambda \subset \mathcal{P}(S)$, i.e. show; if Λ is weakly sequentially compact then Λ is tight. Hint: start by showing that if Λ were not tight, then there would exist an $\varepsilon>0$ and $\mu_{n} \in \Lambda$ so that $\mu_{n}\left(C_{n}\right)<1-\varepsilon$ for all $n \in \mathbb{N}$.

Exercise 2.43. Let (S, ρ) be a separable metric space, $S_{0} \subset S$ be a countable dense set, and $\left\{x_{n}\right\}_{n=1}^{\infty} \cup\{x\} \subset S$. Show $\lim _{n \rightarrow \infty} \rho\left(x_{n}, x\right)=0$ iff $\lim _{n \rightarrow \infty} \rho\left(x_{n}, y\right)=\rho(x, y)$ for all $y \in S_{0}$.
Exercise 2.44 (Continuous Mapping Theorem II). Let (S_{1}, ρ_{1}) and $\left(S_{2}, \rho_{2}\right)$ be separable metric spaces and $\mathcal{B}_{S_{1}}$ and $\mathcal{B}_{S_{2}}$ be the Borel σ - algebras on S_{1} and S_{2} respectively. Let Further suppose that $\left\{\mu_{n}\right\} \cup\{\mu\}$ are probability measures on $\left(S_{1}, \mathcal{B}_{S_{1}}\right)$ such that $\mu_{n} \Longrightarrow \mu$. If $f: S_{1} \rightarrow S_{2}$ is a Borel measurable function such that $\mu(\mathcal{D}(f))=0$ (see Notation 28.22), then $f_{*} \mu_{n} \Longrightarrow f_{*} \mu$ where $f_{*} \mu:=\mu \circ f^{-1}$.

Exercise 2.45. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be an i.i.d. sequence of random variables with zero mean and $\operatorname{Var}\left(X_{n}\right)=1$ and $\mathbb{E}\left|X_{n}\right|^{3}<\infty$ (so that Corollary 15.43 applies). For $t \geq 0$, let $W_{n}(t):=\frac{1}{\sqrt{n}} S_{[n t]}$ where $[n t]$ is the nearest integer to $n t$ less than or equal to $n t$ and $S_{m}:=\sum_{k \leq m} X_{k}$ where $S_{0}=0$ by definition. Show that $W_{n} \xrightarrow{\text { f.d. }} B$ where $\{B(t): t \geq 0\}$ is a Brownian motion as defined in Definition 22.26. You might use the following outline.

1. For any $0 \leq s<t<\infty$, explain why $W_{n}(t)-W_{n}(s) \Longrightarrow N(0,(t-s))$.
(You may find Slutzky's Theorem 28.25 useful here.)
2. Given $\Lambda:=\quad\left\{0=t_{0}<t_{1}<t_{2}<\cdots<t_{K}\right\} \quad \subset \quad \mathbb{R}_{+}$argue that $\left\{W_{n}\left(t_{i}\right)-W_{n}\left(t_{i-1}\right)\right\}_{i=1}^{K}$ are independent and then show

$$
\left\{W_{n}\left(t_{i}\right)-W_{n}\left(t_{i-1}\right)\right\}_{i=1}^{K} \Longrightarrow\left\{B\left(t_{i}\right)-B\left(t_{i-1}\right)\right\}_{i=1}^{K} \text { as } n \rightarrow \infty
$$

3. Now show that $\left\{W_{n}\left(t_{i}\right)\right\}_{i=1}^{K} \Longrightarrow\left\{B\left(t_{i}\right)\right\}_{i=1}^{K}$ as $n \rightarrow \infty$. Hint; use Exercise 2.44.

Exercise 2.46 (Lemma 29.22 generalization). Suppose now $X:(\Omega, \mathcal{B}, P) \rightarrow \mathbb{R}^{d}$ is a random vector and $f_{X}(\lambda):=\mathbb{E}\left[e^{i \lambda \cdot X}\right]$ is its characteristic function. Show for $a>0$,

2 Lecture Note Problems

$$
\begin{align*}
P\left(|X|_{\infty} \geq a\right) \leq & \left(\frac{a}{4}\right)^{d} \int_{[-2 / a, 2 / a]^{d}}\left(1-f_{X}(\lambda)\right) d \lambda \\
& =2\left(\frac{a}{4}\right)^{d} \int_{[-2 / a, 2 / a]^{d}}\left(1-\operatorname{Re} f_{X}(\lambda)\right) d \lambda \tag{2.30}
\end{align*}
$$

where $|X|_{\infty}=\max _{i}\left|X_{i}\right|$ and $d \lambda=d \lambda_{1}, \ldots, d \lambda_{d}$.
Exercise 2.47. For $x, \lambda \in \mathbb{R}$, let (also see Eq. 2.41))

$$
\varphi(\lambda, x):=\left\{\begin{array}{cc}
\frac{e^{i \lambda x}-1-i \lambda x}{x^{2}} & \text { if } \quad x \neq 0 \tag{2.31}\\
-\frac{1}{2} \lambda^{2} & \text { if } x=0
\end{array}\right.
$$

Let $\left\{x_{k}\right\}_{k=1}^{n} \subset \mathbb{R} \backslash\{0\},\left\{Z_{k}\right\}_{k=1}^{n} \cup\{N\}$ be independent random variables with $N \stackrel{d}{=} N(0,1)$ and Z_{k} being Poisson random variables with mean $a_{k}>0$, i.e. $P\left(Z_{k}=n\right)=e^{-a_{k} \frac{a_{k}^{n}}{n!}}$ for $n=0,1,2 \ldots$ With $Y:=\sum_{k=1}^{n} x_{k}\left(Z_{k}-a_{k}\right)+\alpha N$, show

$$
f_{Y}(\lambda):=\mathbb{E}\left[e^{i \lambda Y}\right]=\exp \left(\int_{\mathbb{R}} \varphi(\lambda, x) d \nu(x)\right)
$$

where ν is the discrete measure on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ given by

$$
\begin{equation*}
\nu=\alpha^{2} \delta_{0}+\sum_{k=1}^{n} a_{k} x_{k}^{2} \delta_{x_{k}} \tag{2.32}
\end{equation*}
$$

[Remark: It is easy to see that $\varphi(\lambda, 0)=\lim _{x \rightarrow 0} \varphi(\lambda, x)$. In fact by Taylor's theorem with integral remainder we have

$$
\begin{equation*}
\varphi(\lambda, x)=-\lambda^{2} \int_{0}^{1} e^{i t \lambda x}(1-t) d t \tag{2.33}
\end{equation*}
$$

From this formula it is clear that φ is a smooth function of (λ, x).]
Exercise 2.48. Show that if ν is a finite measure on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$, then

$$
\begin{equation*}
f(\lambda):=\exp \left(\int_{\mathbb{R}} \varphi(\lambda, x) d \nu(x)\right) \tag{2.34}
\end{equation*}
$$

is the characteristic function of a probability measure on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$. Here is an outline to follow. (You may find the calculus estimates in Section 29.8 to be of help.)

1. Show $f(\lambda)$ is continuous.
2. Now suppose that ν is compactly supported. Show, using Exercises 2.47, 2.41 and the continuity Theorem 29.25 that $\exp \left(\int_{\mathbb{R}} \varphi(\lambda, x) d \nu(x)\right)$ is the characteristic function of a probability measure on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$.
3. For the general case, approximate ν by a sequence of finite measures with compact support as in item 2.

Exercise 2.49. Suppose X and Y are independent random variables such that $Z=X+Y$ is discrete, i.e. there exists an at most countable set, $\Lambda \subset \mathbb{R}$, such that $P(Z \in \Lambda)=1$. Show that X and Y must also be discrete.
${ }^{*}$ Hint: let $\mu=\operatorname{Law} X, \nu=\operatorname{Law} Y$, and $\rho(y):=\sum_{z \in \Lambda} \mu(\{z-y\})$, then show $\rho(y)<1$ for all y if μ is not a discrete measure and also show $\int_{\mathbb{R}} \rho(y) d \nu(y)=1$.
Exercise 2.50. Suppose $n \in \mathbb{N},\left\{X_{j}\right\}_{j=1}^{n}$ are i.i.d. random variables, and $Z=$ $X_{1}+\cdots+X_{n}$. If $\Lambda \subset[0, \infty)$ is a countable or finite set such that $P(Z \in \Lambda)=1$ and $P(Z=0)>0$ (this implies $0 \in \Lambda$), show $P\left(X_{1} \in \Lambda\right)=1$.

Exercise 2.51. This problem uses the same notation and assumptions as in Theorem 30.26 and in particular $\left\{Y_{n, k}\right\}_{k=1}^{n}$ be independent Bernoulli random variables with $P\left(Y_{n, k}=1\right)=p_{n, k}$ and $P\left(Y_{n, k}=0\right)=q_{n, k}:=1-p_{n, k}$. Let $X_{n, k}:=Y_{n, k}-p_{n, k}$.

1. Explain why $\bar{S}_{n}=\sum_{k=1}^{n} X_{n, k} \Longrightarrow \quad L:=Z-a$ where $a=$ $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} p_{n, k}$ and Z is a is a Poisson random variable with mean a as in Theorem 30.26
2. Show directly that $\left\{X_{n, k}\right\}_{k=1}^{n}$ does not satisfy the Lindeberg condition (LC).
3. Show $\left\{X_{n, k}\right\}_{k=1}^{n}$ satisfy condition (M), i.e. that $\sup _{1 \leq k \leq n} \mathbb{E} X_{n, k}^{2}=0$.
4. Show $\operatorname{Var}\left(\bar{S}_{n}\right)=\sum_{k=1}^{n} \sigma_{n, k}^{2}=\sum_{k=1}^{n} p_{n, k}\left(1-p_{n, k}\right) \rightarrow a$ as $n \rightarrow \infty$ which suffices to show condition ($B V$) holds.
5. Find a finite measure ν on \mathbb{R} such that

$$
f_{L}(\lambda)=\mathbb{E} e^{i \lambda L}=\exp \left(\int_{\mathbb{R}} \frac{e^{i \lambda x}-1-i \lambda x}{x^{2}} d \nu(x)\right) .
$$

Exercise 2.52. Suppose $T=[0, \infty)$ and $\left\{X_{t}: t \in T\right\}$ is a mean zero Gaussian random field (process). Show that $\mathcal{B}_{[0, \sigma]} \stackrel{X_{\sigma}}{\perp} \mathcal{B}_{[\sigma, \infty)}$ for all $0 \leq \sigma<\infty$ iff

$$
\begin{equation*}
Q(s, \sigma) Q(\sigma, t)=Q(\sigma, \sigma) Q(s, t) \forall 0 \leq s \leq \sigma \leq t<\infty \tag{2.35}
\end{equation*}
$$

Hint: see use Exercises 19.12 and 19.11
Exercise 2.53 (Independent increments). Let

$$
\mathcal{P}:=\left\{0=t_{0}<t_{1}<\cdots<t_{n}=T\right\}
$$

be a partition of $[0, T], \Delta_{i} B:=B_{t_{i}}-B_{t_{i-1}}$ and $\Delta_{i} t:=t_{i}-t_{i-1}$. Show $\left\{\Delta_{i} B\right\}_{i=1}^{n}$ are independent mean zero normal random variables with $\operatorname{Var}\left(\Delta_{i} B\right)=\Delta_{i} t$.

Exercise 2.54 (Increments independent of the past). Let $\mathcal{B}_{t}:=\sigma\left(B_{s}: s \leq t\right)$. For each $s \in(0, \infty)$ and $t>s$, show;

1. $B_{t}-B_{s}$ is independent of \mathcal{B}_{s} and
2. more generally show, $B_{t}-B_{s}$ is independent of $\mathcal{B}_{s+}:=\cap_{\sigma>s} \mathcal{B}_{\sigma}$.

Exercise 2.55 (The simple Markov property). Show $B_{t}-B_{s}$ is independent of \mathcal{B}_{s} for all $t \geq s$. Use this to show, for any bounded measurable function, $f: \mathbb{R} \rightarrow \mathbb{R}$ that

$$
\begin{aligned}
\mathbb{E}\left[f\left(B_{t}\right) \mid \mathcal{B}_{s+}\right] & =\mathbb{E}\left[f\left(B_{t}\right) \mid \mathcal{B}_{s}\right]=\mathbb{E}\left[f\left(B_{t}\right) \mid B_{s}\right] \\
& =\left(p_{t-s} * f\right)\left(B_{s}\right)=:\left(e^{(t-s) \Delta / 2} f\right)\left(B_{s}\right) \text { a.s. }
\end{aligned}
$$

where

$$
p_{t}(x):=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t} x^{2}}
$$

so that $p_{t} * f=Q_{t}(\cdot, f)$. This problem verifies that $\left\{B_{t}\right\}_{t \geq 0}$ is a "Markov process" with transition kernels $\left\{Q_{t}\right\}_{t \geq 0}$ which have $\frac{1}{2} \Delta=\frac{1}{2} \frac{d^{2}}{d x^{2}}$ as there "infinitesimal generator."

Exercise 2.56. Let

$$
\mathcal{P}:=\left\{0=t_{0}<t_{1}<\cdots<t_{n}=T\right\}
$$

and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bounded measurable function. Show

$$
\mathbb{E}\left[f\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)\right]=\int_{\mathbb{R}^{n}} f\left(x_{1}, \ldots, x_{n}\right) q_{\mathcal{P}}(x) d x
$$

where

$$
q_{\mathcal{P}}(x):=p_{t_{1}}\left(x_{1}\right) p_{t_{2}-t_{1}}\left(x_{2}-x_{1}\right) \ldots p_{t_{n}-t_{n-1}}\left(x_{n}-x_{n-1}\right) .
$$

Hint: Either use Exercise 2.53 by writing

$$
f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}, \ldots, x_{n}-x_{n-1}\right)
$$

for some function, g or use Exercise 2.55 first for functions, f of the form,

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{j=1}^{n} \varphi_{j}\left(x_{j}\right)
$$

Better yet, do it by both methods!

Exercise 2.57. Suppose $\left\{Y_{t}\right\}_{t \geq 0}$ is a version of a process, $\left\{X_{t}\right\}_{t \geq 0}$. Further suppose that $t \rightarrow Y_{t}(\omega)$ and $t \rightarrow X_{t}(\omega)$ are both right continuous everywhere. Show $E:=\{Y . \neq X$. $\}$ is a measurable set such that $P(E)=0$ and hence X and Y are indistinguishable. Hint: replace the union in Eq. 32.1) by an appropriate countable union.

Exercise 2.58. Show $\left(C([0,1], S), \rho_{\infty}\right)$ is separable. Hints:

1. Choose a countable dense subset, Λ, of S and then choose finite subset $\Lambda_{n} \subset \Lambda$ such that $\Lambda_{n} \uparrow \Lambda$.
2. Let $\mathbb{D}_{n}:=\left\{\frac{k}{2^{n}}: 0 \leq k \leq 2^{n}\right\}$ and $\mathbb{D}=\cup_{n=0}^{\infty} \mathbb{D}_{n}$. Further let $\mathbb{F}_{n}:=$ $\left\{x:[0,1] \rightarrow \Lambda_{n}\right\}$ such that $\left.x\right|_{\left(\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right]}$ is constant for all $1 \leq k \leq 2^{n}$ and further suppose that $\left.x\right|_{\left[0,2^{-n}\right]}$ is constant.
3. Given $y \in C([0,1], S)$ and $\varepsilon>0$, show there exists $n \in \mathbb{N}$ and an $x \in \mathbb{F}_{n}$ such that $\rho_{\infty}(y, x) \leq \varepsilon$.
4. For $k, n \in \mathbb{N}$ let

$$
\mathcal{F}_{n}^{k}:=\left\{y \in C([0,1], S): \min _{x \in \mathbb{F}_{n}} \rho_{\infty}(y, x) \leq \frac{1}{k}\right\}
$$

and let $\Gamma:=\left\{(k, n) \in \mathbb{N}^{2}: \mathcal{F}_{n}^{k} \neq \emptyset\right\}$. For each $(k, n) \in \Gamma$, choose a function, $y_{k, n} \in \mathcal{F}_{n}^{k}$.
5. Now show that $\left\{y_{k, n}:(k, n) \in \Gamma\right\}$ is a countable dense subset of $\left(C([0,1], S), \rho_{\infty}\right)$.

Exercise 2.59. Provide a proof of Proposition 33.6. Hints: Use the results of Exercise 15.7, namely that

$$
\begin{equation*}
\mathbb{E}\left|S_{l}\right|^{4}=l \gamma+3 l(l-1) \tag{2.36}
\end{equation*}
$$

to verify that Eq. 33.4 holds for $s, t \in D_{n}:=\frac{1}{n} \mathbb{N}_{0}$. Take care of the case where $s, t \geq 0$ with $|t-s|<1 / n$ by hand and finish up using these results along with Minkowski's inequality.

Exercise 2.60 (Quadratic Variation). Let

$$
\mathcal{P}_{m}:=\left\{0=t_{0}^{m}<t_{1}^{m}<\cdots<t_{n_{m}}^{m}=T\right\}
$$

be a sequence of partitions such that $\operatorname{mesh}\left(\mathcal{P}_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$. Further let

$$
\begin{equation*}
Q_{m}:=\sum_{i=1}^{n_{m}}\left(\Delta_{i}^{m} B\right)^{2}:=\sum_{i=1}^{n_{m}}\left(B_{t_{i}^{m}}-B_{t_{i-1}^{m}}\right)^{2} \tag{2.37}
\end{equation*}
$$

Show

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\left(Q_{m}-T\right)^{2}\right]=0
$$

and $\lim _{m \rightarrow \infty} Q_{m}=T$ a.s. if $\sum_{m=1}^{\infty} \operatorname{mesh}\left(\mathcal{P}_{m}\right)<\infty$. This result is often abbreviated by the writing, $d B_{t}^{2}=d t$. Hint: it is useful to observe; 1)

$$
Q_{m}-T=\sum_{i=1}^{n_{m}}\left[\left(\Delta_{i}^{m} B\right)^{2}-\Delta_{i} t\right]
$$

and 2) using Eq. (33.2) there is a constant, $c<\infty$ such that

$$
\mathbb{E}\left[\left(\Delta_{i}^{m} B\right)^{2}-\Delta_{i} t\right]^{2}=c\left(\Delta_{i} t\right)^{2}
$$

Solutions for selected problems from Resnick

[^0]: ${ }^{1}$ A state x is absorbing if $q(x, x)=1$ since in this case there is no chance for the chain to leave x once it hits x.

[^1]: ${ }^{2}$ The fact that $P_{j}\left(T_{b}<\infty\right)=1$ is also follows from Example 15.82 above.

[^2]: ${ }^{4}$ Please use the obvious generalization of a martingale for complex valued processes. It will be useful to observe that the real and imaginary parts of a complex martingales are real martingales.

