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Math 280C homeworks: Spring 2019

1.1 Homework 1. Due Wednesday, April 10, 2019

• Look at Lecture note Exercise 2.2, 2.3(done in class), 2.4, 2.5
• Hand in Lecture note Exercise 2.1, 2.6, 2.7, 2.8, 2.9, 2.10

1.2 Homework 2. Due Wednesday, April 17, 2019

• Look at Lecture note Exercise 2.12, 2.14
• Look at Resnick Chapter 10: #14
• Hand in Lecture note Exercise 2.11, 2.13, 2.15, 2.16
• Resnick Chapter 10: Hand in 15, 16, 17, 33.

1.3 Homework 3. Due Wednesday, April 24, 2019

• Look at Lecture note Exercise 2.19, 23.27, 2.25, 2.26
• Hand in Lecture note Exercise 2.20, 2.21, 2.22, 2.23, 2.24
• Hand in Resnick Chapter 10: 10.17 and 10.19*

*For Resnick 10.19, please define Xn+1/Xn = Zn+1 where

Zn+1 =

Xn+1/Xn if Xn 6= 0
1 if Xn = 0 = Xn+1

∞ ·Xn+1 if Xn = 0 and Xn+1 6= 0.

1.4 Homework 4. Due Wednesday, May 1, 2019

• Look at Lecture note Exercise: 2.17, 2.18
• Hand in Lecture note Exercise: 2.27, 2.28, 2.29, 2.30, 2.31, 2.32

1.5 Homework 5. Due Wednesday, May 8, 2019

• Look at Lecture note Exercise: 2.39.
• Hand in Lecture note Exercise: 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.40.

1.6 Homework 6. Due Wednesday, May 15, 2019

• Look at Lecture note Exercise: 2.43, 2.46, 29.2
• Hand in Resnick Chapter 9: #5, #6, #9 a-e., #11 (Exercise 2.40 may

be useful here.)
• Hand in Lecture note Exercise: 2.41, 2.42, 2.44, 2.45, 2.47

1.7 Homework 7. Due Wednesday, May 29, 2019 (was
May 22)

• Look at Resnick Chapter 9: 28, 34 (assume
∑
n σ

2
n > 0), 35 (hint: show

P [ξn 6= 0 i.o. ] = 0.)
• Hand in Resnick Chapter 9: #10, 22, 38 (Hint: make use {Xk} in Propo-

sition 15.88 after appropriate translation and scalings.)
• Hand in Lecture note Exercise: 2.48, 2.51, 2.49, 2.50

The last two problems were added to what was given originally.

1.8 Homework 8. Due Wednesday, June 5, 2019

• Look at Lecture note Exercise: 2.58, 2.52 – 2.56, 32.2
• Hand in Lecture note Exercise: 2.53, 2.54, 2.57, 2.59, 2.60





2

Lecture Note Problems

Exercise 2.1 (Jump - Hold Description I). Let S be a countable
set (Ω,B, {Bn}∞n=0 , P, {Yn}

∞
n=0) be a Markov chain with transition kernel,

{q (x, y)}x,y∈S and let ν (x) := P (Y0 = x) for all x ∈ S. For simplicity let

us assume there are no absorbing states,1 (i.e. q (x, x) < 1 for all x ∈ S) and
then define,

q̃ (x, y) :=

{
q(x,y)

1−q(x,x) if x 6= y

0 if x = y
.

Let jk denote the time of the kth – jump of the chain {Yn}∞n=0 so that

j1 := inf {n > 0 : Yn 6= Y0} and

jk+1 := inf {n > jk : Yn 6= Yjk}

with the convention that j0 = 0. Further let σk := jk − jk−1 denote the time
spent between the (k − 1)

st
and kth jump of the chain {Yn}∞n=0 . Show;

1. For {xk}nk=0 ⊂ S with xk 6= xk−1 for k = 1, . . . , n and m1, . . . ,mk ∈ N,
show

P ([∩nk=0 {Yjk = xk}] ∩ [∩nk=1 {σk = mk}])

= ν (x0)

n∏
k=1

q (xk−1, xk−1)
mk−1 (1− q (xk−1, xk−1)) · q̃ (xk−1, xk) .

(2.1)

2. Summing the previous formula on m1, . . . ,mk ∈ N, conclude

P ([∩nk=0 {Yjk = xk}]) = ν (x0) ·
n∏
k=1

q̃ (xk−1, xk) ,

i.e. this shows {Yjk}
∞
k=0 is a Markov chain with transition kernel, q̃.

3. Conclude, relative to the conditional probability measure,
P (·| [∩nk=0 {Yjk = xk}]) , that {σk}nk=1 are independent geometric

σk
d
= Geo (1− q (xk−1, xk−1)) for 1 ≤ k ≤ n, see Exercises 10.14

and 2.2.
1 A state x is absorbing if q (x, x) = 1 since in this case there is no chance for the
chain to leave x once it hits x.

Exercise 2.2. Let σ be a geometric random variable with parameter p ∈ (0, 1],

i.e. P (σ = n) = (1− p)n−1 p for all n ∈ N. Show, for all n ∈ N that

P (σ > n) = (1− p)n for all n ∈ N

and then use this to conclude that

P (σ > m+ n|σ > n) = P (σ > m) ∀ m,n ∈ N.

[This shows that the geometric distributions are the discrete analogue of the
exponential distributions.]

Exercise 2.3. Suppose that S = {1, 2, . . . , n} and A is a matrix such that
Aij ≥ 0 for i 6= j and

∑n
j=1Aij = 0 for all i. Show

Qt = etA :=

∞∑
n=0

tn

n!
An (2.2)

is a time homogeneous Markov kernel.
Hints: 1. To show Qt (i, j) ≥ 0 for all t ≥ 0 and i, j ∈ S, write Qt =

e−tλet(λI+A) where λ > 0 is chosen so that λI + A has only non-negative
entries. 2. To show

∑
j∈S Qt (i, j) = 1, compute d

dtQt1.

Exercise 2.4. Let {Tk}∞k=1 be i.i.d. exponential random variables with intensity
λ and {σ`}n`=1 be independent geometric random variables with σ` = Geo (b`)
for some b` ∈ (0, 1]. Further assume that {σ`}n`=1 ∪ {Tk}

∞
k=1 are independent.

We also let

W0 = 0, Wn := T1 + . . .+ Tn,

j0 = 0, j` := σ1 + · · ·+ σ`,

S` := Wj` −Wj`−1
for 1 ≤ ` ≤ n.

Show {S`}n`=1 are independent exponential random variables with S`
d
=

exp (b`λ) for all 1 ≤ ` ≤ n.

Exercise 2.5. Keeping the notation of Example 22.52 and 22.53. Use Corollary
22.57 to show again that Px (TB <∞) = (q/p)

x
for all x > 0 and ExT0 =

x/ (q − p) for x < 0. You should do so without making use of the extraneous
hitting times, Tn for n 6= 0.
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Exercise 2.6. Let x ∈ X. Show;

1. for all n ∈ N0,

Px (τx > n+ 1) =
∑
y 6=x

p (x, y)Py (Tx > n) . (2.3)

2. Use Eq. (2.5) to conclude that if Py (Tx =∞) = 0 for all y 6= x then
Px (τx =∞) = 0, i.e. {Xn} will return to x when started at x.

3. Sum Eq. (2.5) on n ∈ N0 to show

Ex [τx] = Px (τx > 0) +
∑
y 6=x

p (x, y)Ey [Tx] . (2.4)

4. Now suppose that S is a finite set and Py (Tx =∞) < 1 for all y 6= x, i.e.
there is a positive chance of hitting x from any y 6= x in S. Explain how
Eq. (2.6) combined with Lemma 22.42 (or see Corollary 22.59) shows that
Ex [τx] <∞.

Exercise 2.7 (2nd order recurrence relations). Let a, b, c be real num-
bers with a 6= 0 6= c, α, β ∈ Z∪{±∞} with α < β, and suppose
{u (x) : x ∈ [α, β] ∩ Z} solves the second order homogeneous recurrence rela-
tion:

au (x+ 1) + bu (x) + cu (x− 1) = 0 (2.5)

for α < x < β. Show:

1. for any λ ∈ C,
aλx+1 + bλx + cλx−1 = λx−1p (λ) (2.6)

where p (λ) = aλ2 + bλ + c is the characteristic polynomial associated
to Eq. (2.7).

Let λ± = −b±
√
b2−4ac
2a be the roots of p (λ) and suppose for the moment

that b2 − 4ac 6= 0. From Eq. (2.7) it follows that for any choice of A± ∈ R,
the function,

w (x) := A+λ
x
+ +A−λ

x
−,

solves Eq. (2.7) for all x ∈ Z.
2. Show there is a unique choice of constants, A± ∈ R, such that the function
u (x) is given by

u (x) := A+λ
x
+ +A−λ

x
− for all α ≤ x ≤ β.

3. Now suppose that b2 = 4ac and λ0 := −b/ (2a) is the double root of p (λ) .
Show for any choice of A0 and A1 in R that

w (x) := (A0 +A1x)λx0

solves Eq. (2.7) for all x ∈ Z. Hint: Differentiate Eq. (2.8) with respect to
λ and then set λ = λ0.

4. Again show that any function u solving Eq. (2.7) is of the form u (x) =
(A0 +A1x)λx0 for α ≤ x ≤ β for some unique choice of constants A0, A1 ∈
R.

Exercise 2.8. Let wx := Px
(
XTa,b = b

)
:= P

(
XTa,b = b|X0 = x

)
.

1. Use first step analysis to show for a < x < b that

wx =
1

2
(wx+1 + wx−1) (2.7)

provided we define wa = 0 and wb = 1.
2. Use the results of Exercise 2.7 to show

Px
(
XTa,b = b

)
= wx =

1

b− a
(x− a) . (2.8)

3. Let

Tb :=

{
min {n : Xn = b} if {Xn} hits b

∞ otherwise

be the first time {Xn} hits b. Explain why,
{
XTa,b = b

}
⊂ {Tb <∞} and

use this along with Eq. (2.10) to conclude2 that Px (Tb <∞) = 1 for all
x < b. (By symmetry this result holds true for all x ∈ Z.)

Exercise 2.9. The goal of this exercise is to give a second proof of the fact that
Px (Tb <∞) = 1. Here is the outline:

1. Let wx := Px (Tb <∞) . Again use first step analysis to show that wx
satisfies Eq. (2.9) for all x with wb = 1.

2. Use Exercise 2.7 to show that there is a constant, c, such that

wx = c (x− b) + 1 for all x ∈ Z.

3. Explain why c must be zero to again show that Px (Tb <∞) = 1 for all
x ∈ Z.

Exercise 2.10. Let T = Ta,b and ux := ExT := E [T |X0 = x] .

1. Use first step analysis to show for a < x < b that

ux =
1

2
(ux+1 + ux−1) + 1 (2.9)

with the convention that ua = 0 = ub.

2 The fact that Pj (Tb < ∞) = 1 is also follows from Example 15.82 above.
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2. Show that
ux = A0 +A1x− x2 (2.10)

solves Eq. (2.11) for any choice of constants A0 and A1.
3. Choose A0 and A1 so that ux satisfies the boundary conditions, ua = 0 = ub.

Use this to conclude that

ExTa,b = −ab+ (b+ a)x− x2 = −a (b− x) + bx− x2. (2.11)

Exercise 2.11. For θ ∈ R let

fθ (n, x) := Q−neθx =
(
peθ + qe−θ

)−n
eθx

so that Qfθ (n+ 1, ·) = fθ (n, ·) for all θ ∈ R. Compute;

1. f
(k)
θ (n, x) :=

(
d
dθ

)k
fθ (n, x) for k = 1, 2.

2. Use your results to show,

M (1)
n := Sn − n (p− q)

and

M (2)
n := (Sn − n (p− q))2 − 4npq

are martingales.

(If you are ambitious you might also find M
(3)
n .)

Exercise 2.12 (Very similar to above example?). Suppose {Mn}∞n=0 is a
square integrable martingale. Show;

1. E
[
M2
n+1 −M2

n|Bn
]

= E
[
(Mn+1 −Mn)

2 |Bn
]
. Conclude from this that the

Doob decomposition of M2
n is of the form,

M2
n = Nn +An

where
An :=

∑
1≤k≤n

E
[
(Mk −Mk−1)

2 |Bk−1
]
.

2. If we further assume that Mk −Mk−1 is independent of Bk−1 for all k =
1, 2, . . . , explain why,

An =
∑

1≤k≤n

E (Mk −Mk−1)
2
.

Exercise 2.13 (Martingale problem I). Suppose that {Xn}∞n=0 is an (S,S)
– valued adapted process on some filtered probability space

(
Ω,B, {Bn}n∈N0

, P
)

and Q is a probability kernel on S. To each f : S → R which is bounded and
measurable, let

Mf
n := f (Xn)−

∑
k<n

(Qf (Xk)− f (Xk)) = f (Xn)−
∑
k<n

((Q− I) f) (Xk) .

Show;

1. If {Xn}n≥0 is a time homogeneous Markov chain with transition kernel, Q,

then
{
Mf
n

}
n≥0 is a martingale for each f ∈ Sb.

2. Conversely if
{
Mf
n

}
n≥0 is a martingale for each f ∈ Sb, then {Xn}n≥0 is a

time homogeneous Markov chain with transition kernel, Q.

Exercise 2.14. Suppose τ is a stopping time, (S,S) is a measurable space,
and Z : Ω → S is a function. Show that Z is Bτ/S measurable iff Z|{τ=n} is
(Bn){τ=n} /S – measurable for all n ∈ N̄0.

Exercise 2.15. Suppose σ and τ are two stopping times. Show;

1. {σ < τ} , {σ = τ} , and {σ ≤ τ}∗ are all in Bσ ∩ Bτ ,
2. Bσ∧τ = Bσ ∩ Bτ ,
3. Bσ∨τ = Bσ ∨ Bτ := σ (Bσ ∪ Bτ ) ,3 and
4. Bσ = Bσ∧τ on C where C is any one of the following three sets; {σ ≤ τ} ,
{σ < τ} , or {σ = τ} .

*As an example, since

{σ ≤ τ} ∩ {σ ∧ τ = n} = {σ ≤ τ} ∩ {σ = n} = {n ≤ τ} ∩ {σ = n} ∈ Bn

for all n ∈ N̄0, it follows that

Exercise 2.16. Show, by example, that it is not necessarily true that

EG1EG2 = EG1∧G2

for arbitrary G1 and G2 – sub-sigma algebras of B.
Hint: it suffices to take (Ω,B, P ) with Ω = {1, 2, 3} , B = 2Ω , and P ({j}) =

1
3 for j = 1, 2, 3.

Exercise 2.17 (Rademacher’s theorem). Let Ω := (0, 1], B := B(0,1],
P = m be Lebesgue measure, and f ∈ L1 (P ) . To each parti-
tion Π := {0 = x0 < x1 < x2 < · · · < xn = 1} of (0, 1] we let BΠ :=
σ (Ji := (xi−1, xi] : 1 ≤ i ≤ n) .

3 In fact, you will likely show in your proof that every set in Bσ ∨Bτ may be written
as a disjoint union of a set from Bσ with a set from Bτ .
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1. Show E [f |BΠ ] (x) =
∑n
i=1

1
xi−xi−1

[∫ xi
xi−1

f (s) ds
]
· 1(xi−1,xi] (x) for a.e. x ∈

Ω.
2. For f ∈ C ([0, 1] ,R) , let

fΠ (x) :=

n∑
i=1

∆if

∆i
1Ji (x) (2.12)

where ∆if := f (xi)− f (xi−1) and ∆i := xi − xi−1. Show if Π ′ is another
partition of Ω which refines Π, i.e. Π ⊂ Π ′, then

fΠ = E [fΠ′ |BΠ ] a.s.

3. Show for any a, b ∈ Π with a < b that

f (b)− f (a)

b− a
=

1

b− a

∫ b

a

fΠ (x) dx. (2.13)

Hint: consider the partition Π0 := {0 < a < b < 1} .
Now let Bn := BΠn and where Πn :=

{
k
2n

}2n
k=0

an observe your have now
shown gn := fΠn is a martingale.

4. Let us now further suppose that |f (y)− f (x)| ≤ K |y − x| for all x, y ∈
[0, 1] , i.e. f is Lipschitz. From Eq. (2.16) it follows that |gn| := |fΠn | ≤ K
so that {gn}∞n=1 is a bounded martingale. Use this along with Eq. (2.17)
and Theorem 23.70 to conclude there exists g ∈ L∞ (P ) such that

f (b)− f (a) =

∫ b

a

g (x) dx for all 0 ≤ a < b ≤ 1.

[You may be interested to know that under these hypothesis, f ′ (x) exists
a.e. and g (x) = f ′ (x) a.e.. Thus this a version of the fundamental theorem
of calculus.]

Exercise 2.18. Suppose that {Mn}∞n=1 is a decreasing sequence of closed sub-
spaces of a Hilbert space, H. Let M∞ := ∩∞n=1Mn. Show limn→∞ PMn

x =
PM∞x for all x ∈ H. [Hint: you might make use of Exercise 18.5.]

Exercise 2.19. Let (Mn)∞n=0 be a martingale with M0 = 0 and E[M2
n] < ∞

for all n. Show that for all λ > 0,

P

(
max

1≤m≤n
Mm ≥ λ

)
≤ E[M2

n]

E[M2
n] + λ2

.

Hints: First show that for any c > 0 that
{
Xn := (Mn + c)2

}∞
n=0

is a
submartingale and then observe,

{
max

1≤m≤n
Mm ≥ λ

}
⊂
{

max
1≤m≤n

Xn ≥ (λ+ c)2
}
.

Now use Doob’ Maximal inequality (Proposition 23.46) to estimate the proba-
bility of the last set and then choose c so as to optimize the resulting estimate
you get for P (max1≤m≤nMm ≥ λ) . (Notice that this result applies to −Mn as
well so it also holds that;

P

(
min

1≤m≤n
Mm ≤ −λ

)
≤ E[M2

n]

E[M2
n] + λ2

for all λ > 0.

Exercise 2.20. Let {Zn}∞n=1 be independent random variables, S0 = 0 and

Sn := Z1 + · · · + Zn, and fn (λ) := E
[
eiλZn

]
. Suppose EeiλSn =

∏N
n=1 fn (λ)

converges to a continuous function, F (λ) , as N → ∞. Show for each λ ∈ R
that

P
(

lim
n→∞

eiλSn exists
)

= 1. (2.14)

Hints:

1. Show it is enough to find an ε > 0 such that Eq. (2.18) holds for |λ| ≤ ε.
2. Choose ε > 0 such that |F (λ)− 1| < 1/2 for |λ| ≤ ε. For |λ| ≤ ε, show

Mn (λ) := eiλSn

EeiλSn is a bounded complex4 martingale relative to the filtra-
tion, Bn = σ (Z1, . . . , Zn) .

Exercise 2.21. For a < 0 < b with a, b ∈ Z, let τ = σa ∧ σb. Explain why τ
is regular for S. Use this to show P (τ =∞) = 0. Hint: make use of Remark
23.76 and the fact that |Sn − Sn−1| = |Zn| = 1 for all n.

Exercise 2.22. In this exercise, you are asked to use the central limit Theorem
15.50 to prove again that P (τ =∞) = 0, Exercise 2.21. Hints: Use the central
limit theorem to show

1√
2π

∫
R
f (x) e−x

2/2dx ≥ f (0)P (τ =∞) (2.15)

for all f ∈ C3 (R→ [0,∞)) with M := supx∈R
∣∣f (3) (x)

∣∣ <∞. Use this inequal-

ity to conclude that P (τ =∞) = 0. Hint: consider E
[
f
(
Sn√
n

)]
.

Exercise 2.23. Show

P (σb < σa) =
|a|

b+ |a|
(2.16)

4 Please use the obvious generalization of a martingale for complex valued processes.
It will be useful to observe that the real and imaginary parts of a complex martin-
gales are real martingales.
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and use this to conclude P (σb <∞) = 1, i.e. every b ∈ N is almost surely visited
by Sn. (This last result also follows by the Hewitt-Savage Zero-One Law, see
Example 15.82 where it is shown b is visited infinitely often.)

Hint: Using properties of martingales and Exercise 2.21, compute
limn→∞ E [Sσa∧σbn ] in two different ways.

Exercise 2.24. Let τ := σa∧σb. In this problem you are asked to show E [τ ] =
|a| b with the aid of the following outline.

1. Use Exercise 2.12 above to conclude Nn := S2
n − n is a martingale.

2. Now show
0 = EN0 = ENτ∧n = ES2

τ∧n − E [τ ∧ n] . (2.17)

3. Now use DCT and MCT along with Exercise 2.23 to compute the limit as
n→∞ in Eq. (2.22) to find

E [σa ∧ σb] = E [τ ] = b |a| . (2.18)

4. By considering the limit, a→ −∞ in Eq. (2.23), show E [σb] =∞.

Exercise 2.25. Verify,
Mn := Sn − n (p− q)

and
Nn := M2

n − σ2n

are martingales, where σ2 = 1 − (p− q)2 . (This should be simple; see either
Exercise 2.12 or Exercise 2.11.)

Exercise 2.26. Using exercise 2.25, show

E (σa ∧ σb) =

b [1− (q/p)
a
] + a

[
(q/p)

b − 1
]

(q/p)
b − (q/p)

a

 (p− q)−1 . (2.19)

By considering the limit of this equation as a→ −∞, show

E [σb] =
b

p− q

and by considering the limit as b→∞, show E [σa] =∞.

Exercise 2.27. Let Sn be the total assets of an insurance company in year
n ∈ N0. Assume S0 > 0 is a constant and that for all n ≥ 1 that Sn =
Sn−1 + ξn, where ξn = c− Zn and {Zn}∞n=1 are i.i.d. random variables having
the normal distribution with mean µ < c and variance σ2. (The number c is
to be interpreted as the yearly premium.) Let R = {Sn ≤ 0 for some n} be the
event that the company eventually becomes bankrupt, i.e. is Ruined. Show

P (Ruin) = P (R) ≤ e−2(c−µ)S0/σ
2

.

Outline:

1. Show that λ = −2 (c− µ) /σ2 < 0 satisfies, E
[
eλξn

]
= 1.

2. With this λ show

Yn := exp (λSn) = eλS0

n∏
j=1

eλξj (2.20)

is a non-negative Bn = σ(Z1, . . . , Zn) – martingale.
3. Use a martingale convergence theorem to argue that limn→∞ Yn = Y∞

exists a.s. and then use Fatou’s lemma to show EYτ ≤ eλS0 , where

τ = inf{n : Sn ≤ 0}

is the time of the companies ruin.
4. Finally conclude that

P (R) ≤ E [Yτ : τ <∞] ≤ EYτ ≤ eλS0 = e−2(c−µ)S0/σ
2

.

Exercise 2.28. Suppose that Z is exponentially integrable and ψ (θ) :=
lnM (θ) = lnE

[
eθZ
]
. Show

ψ′ (θ) = EθZ and ψ′′ (θ) = Varθ (Z) .

[Use Proposition 10.59 in order to give a short solution to this problem.]

Exercise 2.29. Let Z
d
= N

(
0, σ2

)
and t > 0. By Lemma 10.47, we know that

P (Z ≥ t) = P (σN ≥ t) = P (N ≥ t/σ) ≤ ce−
t2

2σ2 (2.21)

where c = 1/2. The goal of this exercise is to use Proposition 25.4 to prove this
same bound above but with c = 1. In more detail show;

1. Recall that Gaussian integration formulas implies,

M (θ) = EeθZ = e
1
2 θ

2σ2

and so ψ (θ) =
1

2
θ2σ2.

2. Show

θ → θt− ψ (θ) = θt− 1

2
θ2σ2

is maximized at θt = t/σ2 and that

ψ∗ (t) = sup
θ∈R

(
θt− 1

2
θ2σ2

)
=

t2

2σ2
.

This assertion along with Proposition 25.4 verifies the tail bound in Eq.
(2.26) with c = 1.
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3. Show LawPθ (Z)
d
= N

(
σ2, θσ2

)
– a normal random variable with variance

σ2 and mean θσ2. Hence when θ = θt = t/σ2,

LawPθt
(Z)

d
= N

(
σ2, t

)
. (2.22)

4. Conclude that

1

2
= Pθt (Z ≥ t) =

1

M (θt)
E
[
1Z≥te

θtZ
]

and explain (using Eq. (25.3)) that this inequality then implies Eq. (2.26)
with c = 1/2.

Exercise 2.30. Suppose −∞ < a < b < ∞ and Z is a random variable such
that a ≤ Z ≤ b. Let µ = EZ and ψ (θ) = lnE

[
eθZ
]
.

1. Use Taylor’s theorem along with Exercise 2.28 to show for any θ ∈ R, there
exists θ∗ between 0 and θ such that

ψ (θ) = θµ+
1

2
θ2 Varθ∗ (Z) .

2. Use item 1. to show

ψ (θ) ≤ θµ+
(b− a)

2

8
θ2

by showing Varθ∗ (Z) ≤ (b− a)
2
/4. Hint: this variance inequality holds no

matter the distribution of Z as long as a ≤ Z ≤ b a.s.
3. Use items 1. and 2. to prove Hoeffding’s inequality, i.e.

E
[
eθ(Z−µ)

]
≤ exp

(
(b− a)

2

8
θ2

)
∀ θ ∈ R. (2.23)

4. Then use this and Lemma 25.7 to prove the Chernoff type bound,

P (Z − µ ≥ t) ≤ e−2
t2

(b−a)2 ∀ t > 0

5. Show, by applying the previous inequality with Z replaced by −Z, that

P (Z − µ ≤ −t) ≤ e−2
t2

(b−a)2 ∀ t > 0

By adding the two previous bounds it follows that

P (|Z − µ| ≥ t) ≤ 2e
−2 t2

(b−a)2 ∀ t > 0.

Exercise 2.31. Suppose that −∞ < aj < bj < ∞ and {Zj}nj=1 are indepen-

dent random variables with aj ≤ Zj ≤ bj for 1 ≤ j ≤ n. If S =
∑n
j=1 Zj ,

µ = ES, and v =
∑n
j=1 (bj − aj)2 , show

E
[
eθ(Sn−µ)

]
≤ e v8 θ

2

and (2.24)

and
P (Sn − µ ≥ t) ≤ e−

2
v t

2

for all t ≥ 0.

Use this result to conclude, if L = maxj (bj − aj) , then v ≤ nL2 and

P

(
Sn − µ
n

≥ t
)
≤ e−2nt

2/L2

∀ t ≥ 0.

Exercise 2.32. Prove Theorem 26.1.

Exercise 2.33 (Resnik 7.1). Does
∑
n 1/n converge? Does

∑
n(−1)n/n con-

verge? Let {Xn} be iid with P [Xn = ±1] = 1/2 Does
∑
nXn/n converge? [See

Example 26.42 below for a more thorough investigation of this sort.]

Exercise 2.34 (Two Series Theorem – Resnik 7.15). Prove that the three
series theorem reduces to a two series theorem when the random variables are
positive. That is, if Xn ≥ 0 are independent, then

∑
nXn < ∞ a.s. iff for any

c > 0 we have ∑
n

P (Xn > c) <∞ and (2.25)∑
n

E[Xn1Xn≤c] <∞, (2.26)

that is it is unnecessary to verify the convergence of the second series in Theorem
26.43 involving the variances.

Exercise 2.35. Let P denote the set of probability measures on (Ω,B) . Show
dTV is a complete metric on P.

Exercise 2.36. Suppose that µ, ν, and γ are probability measures on
(Rn,BRn) . Show dTV (µ ∗ ν, µ ∗ γ) ≤ dTV (ν, γ) . Use this fact along with
Exercise 2.35 to show,

dTV (µ1 ∗ µ2 ∗ · · · ∗ µn, ν1 ∗ ν2 ∗ · · · ∗ νn) ≤
n∑
i=1

dTV (µi, νi)

for all choices probability measures, µi and νi on (Rn,BRn) .
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2 Lecture Note Problems 9

Exercise 2.37. Suppose that Ω is a (at most) countable set, B := 2Ω , and
{µn}∞n=0 are probability measures on (Ω,B) . Show

dTV (µn, µ0) =
1

2

∑
ω∈Ω
|µn ({ω})− µ0 ({ω})|

and limn→∞ dTV (µn, µ0) = 0 iff limn→∞ µn ({ω}) = µ0 ({ω}) for all ω ∈ Ω.

Exercise 2.38. Let µp ({1}) = p and µp ({0}) = 1 − p and νλ ({n}) := e−λ λ
n

n!
for all n ∈ N0.

1. Find dTV (µp, µq) for all 0 ≤ p, q ≤ 1.
2. Show dTV (µp, νp) = p (1− e−p) for all 0 ≤ p ≤ 1. From this estimate and

the estimate,

1− e−p =

∫ p

0

e−xdx ≤
∫ p

0

1dx = p, (2.27)

it follows that dTV (µp, νp) ≤ p2 for all 0 ≤ p ≤ 1.
3. Show

dTV (νλ, νγ) ≤ |λ− γ| for all λ, γ ∈ R+. (2.28)

Hints: (Andy Parrish’s method – a former 280 student.)

a) Observe that for any n ∈ N we have νλ and νγ are equal to the n – fold
convolutions of νλ/n and νγ/n and use this to conclude

dTV (νλ, νγ) ≤ ndTV
(
νλ/n, νγ/n

)
. (2.29)

b) Using item 2. of this exercise, show∣∣dTV (νλ/n, νγ/n)− dTV (µλ/n, µγ/n)∣∣ ≤ Cn−2.
c) Finally make use of your results in item 1. part b. in order to let n→∞

in Eq. (2.35).

Exercise 2.39. Let (S1, ρ1) and (S2, ρ2) be separable metric spaces and BS1

and BS2
be the Borel σ – algebras on S1 and S2 respectively. Prove the analogue

of Lemma 9.29, namely show BS1×S2
= BS1

⊗BS2
. Hint: you may find Exercise

9.10 helpful.

Exercise 2.40. Let (S1, ρ1) and (S2, ρ2) be separable metric spaces and BS1

and BS2
be the Borel σ – algebras on S1 and S2 respectively. Further suppose

that {µn} ∪ {µ} ⊂ P (S1) and {νn} ∪ {ν} ⊂ P (S2) . Show; if µn =⇒ µ and
νn =⇒ ν, then µn ⊗ νn =⇒ µ ⊗ ν. Hint: You may find it useful to use
Skorohod’s Theorem 28.8.

Exercise 2.41. To each finite and compactly supported measure, ν, on (R,BR)
show there exists a sequence {νn}∞n=1 of finitely supported finite measures on
(R,BR) such that νn =⇒ ν. Here we say ν is compactly supported if there
exists M <∞ such that ν ({x : |x| ≥M}) = 0 and we say ν is finitely supported
if there exists a finite subset, Λ ⊂ R such that ν (R \ Λ) = 0.

Exercise 2.42. Use Theorem 28.20 to give a proof of half of Theorem 28.16
when S = Rd and Λ ⊂ P (S) , i.e. show; if Λ is weakly sequentially compact
then Λ is tight. Hint: start by showing that if Λ were not tight, then there
would exist an ε > 0 and µn ∈ Λ so that µn (Cn) < 1− ε for all n ∈ N.

Exercise 2.43. Let (S, ρ) be a separable metric space, S0 ⊂ S be a count-
able dense set, and {xn}∞n=1 ∪ {x} ⊂ S. Show limn→∞ ρ (xn, x) = 0 iff
limn→∞ ρ (xn, y) = ρ (x, y) for all y ∈ S0.

Exercise 2.44 (Continuous Mapping Theorem II). Let (S1, ρ1) and
(S2, ρ2) be separable metric spaces and BS1

and BS2
be the Borel σ – algebras

on S1 and S2 respectively. Let Further suppose that {µn}∪ {µ} are probability
measures on (S1,BS1

) such that µn =⇒ µ. If f : S1 → S2 is a Borel measur-
able function such that µ (D (f)) = 0 (see Notation 28.22), then f∗µn =⇒ f∗µ
where f∗µ := µ ◦ f−1.

Exercise 2.45. Let {Xn}∞n=1 be an i.i.d. sequence of random variables with

zero mean and Var (Xn) = 1 and E |Xn|3 <∞ (so that Corollary 15.43 applies).
For t ≥ 0, let Wn (t) := 1√

n
S[nt] where [nt] is the nearest integer to nt less than

or equal to nt and Sm :=
∑
k≤mXk where S0 = 0 by definition. Show that

Wn
f.d.
=⇒ B where {B (t) : t ≥ 0} is a Brownian motion as defined in Definition

22.26. You might use the following outline.

1. For any 0 ≤ s < t < ∞, explain why Wn (t) −Wn (s) =⇒ N (0, (t− s)) .
(You may find Slutzky’s Theorem 28.25 useful here.)

2. Given Λ := {0 = t0 < t1 < t2 < · · · < tK} ⊂ R+ argue that

{Wn (ti)−Wn (ti−1)}Ki=1 are independent and then show

{Wn (ti)−Wn (ti−1)}Ki=1 =⇒ {B (ti)−B (ti−1)}Ki=1 as n→∞.

3. Now show that {Wn (ti)}Ki=1 =⇒ {B (ti)}Ki=1 as n→∞. Hint; use Exercise
2.44.

Exercise 2.46 (Lemma 29.22 generalization). Suppose now
X : (Ω,B, P ) → Rd is a random vector and fX (λ) := E

[
eiλ·X

]
is its

characteristic function. Show for a > 0,
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P (|X|∞ ≥ a) ≤2
(a

4

)d ∫
[−2/a,2/a]d

(1− fX (λ)) dλ

= 2
(a

4

)d ∫
[−2/a,2/a]d

(1− Re fX (λ)) dλ (2.30)

where |X|∞ = maxi |Xi| and dλ = dλ1, . . . , dλd.

Exercise 2.47. For x, λ ∈ R, let (also see Eq. (2.41))

ϕ (λ, x) :=


eiλx−1−iλx

x2 if x 6= 0

− 1
2λ

2 if x = 0.

(2.31)

Let {xk}nk=1 ⊂ R \ {0} , {Zk}nk=1 ∪ {N} be independent random variables with

N
d
= N (0, 1) and Zk being Poisson random variables with mean ak > 0, i.e.

P (Zk = n) = e−ak
ank
n! for n = 0, 1, 2 . . . . With Y :=

∑n
k=1 xk (Zk − ak) + αN,

show

fY (λ) := E
[
eiλY

]
= exp

(∫
R
ϕ (λ, x) dν (x)

)
where ν is the discrete measure on (R,BR) given by

ν = α2δ0 +

n∑
k=1

akx
2
kδxk . (2.32)

[Remark: It is easy to see that ϕ (λ, 0) = limx→0 ϕ (λ, x) . In fact by Taylor’s
theorem with integral remainder we have

ϕ (λ, x) = −λ2
∫ 1

0

eitλx (1− t) dt. (2.33)

From this formula it is clear that ϕ is a smooth function of (λ, x) .]

Exercise 2.48. Show that if ν is a finite measure on (R,BR) , then

f (λ) := exp

(∫
R
ϕ (λ, x) dν (x)

)
(2.34)

is the characteristic function of a probability measure on (R,BR) . Here is an
outline to follow. (You may find the calculus estimates in Section 29.8 to be of
help.)

1. Show f (λ) is continuous.
2. Now suppose that ν is compactly supported. Show, using Exercises 2.47,

2.41, and the continuity Theorem 29.25 that exp
(∫

R ϕ (λ, x) dν (x)
)

is the
characteristic function of a probability measure on (R,BR) .

3. For the general case, approximate ν by a sequence of finite measures with
compact support as in item 2.

Exercise 2.49. Suppose X and Y are independent random variables such that
Z = X + Y is discrete, i.e. there exists an at most countable set, Λ ⊂ R, such
that P (Z ∈ Λ) = 1. Show that X and Y must also be discrete.

*Hint: let µ = LawX, ν = Law Y, and ρ (y) :=
∑
z∈Λ µ ({z − y}) ,

then show ρ (y) < 1 for all y if µ is not a discrete measure and also show∫
R ρ (y) dν (y) = 1.

Exercise 2.50. Suppose n ∈ N, {Xj}nj=1 are i.i.d. random variables, and Z =

X1 + · · ·+Xn. If Λ ⊂ [0,∞) is a countable or finite set such that P (Z ∈ Λ) = 1
and P (Z = 0) > 0 (this implies 0 ∈ Λ), show P (X1 ∈ Λ) = 1.

Exercise 2.51. This problem uses the same notation and assumptions as
in Theorem 30.26 and in particular {Yn,k}nk=1 be independent Bernoulli random
variables with P (Yn,k = 1) = pn,k and P (Yn,k = 0) = qn,k := 1 − pn,k. Let
Xn,k := Yn,k − pn,k.

1. Explain why S̄n =
∑n
k=1Xn,k =⇒ L := Z − a where a =

limn→∞
∑n
k=1 pn,k and Z is a is a Poisson random variable with mean a as

in Theorem 30.26
2. Show directly that {Xn,k}nk=1 does not satisfy the Lindeberg condition

(LC) .
3. Show {Xn,k}nk=1 satisfy condition (M) , i.e. that sup1≤k≤n EX2

n,k = 0.

4. Show Var
(
S̄n
)

=
∑n
k=1 σ

2
n,k =

∑n
k=1 pn,k (1− pn,k) → a as n → ∞ which

suffices to show condition (BV ) holds.
5. Find a finite measure ν on R such that

fL (λ) = EeiλL = exp

(∫
R

eiλx − 1− iλx
x2

dν (x)

)
.

Exercise 2.52. Suppose T = [0,∞) and {Xt : t ∈ T} is a mean zero Gaussian

random field (process). Show that B[0,σ]
Xσ
⊥⊥ B[σ,∞) for all 0 ≤ σ <∞ iff

Q (s, σ)Q (σ, t) = Q (σ, σ)Q (s, t) ∀ 0 ≤ s ≤ σ ≤ t <∞. (2.35)

Hint: see use Exercises 19.12 and 19.11.

Exercise 2.53 (Independent increments). Let

P := {0 = t0 < t1 < · · · < tn = T}

be a partition of [0, T ] , ∆iB := Bti−Bti−1
and ∆it := ti−ti−1. Show {∆iB}ni=1

are independent mean zero normal random variables with Var (∆iB) = ∆it.
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Exercise 2.54 (Increments independent of the past). Let
Bt := σ (Bs : s ≤ t) . For each s ∈ (0,∞) and t > s, show;

1. Bt −Bs is independent of Bs and
2. more generally show, Bt −Bs is independent of Bs+ := ∩σ>sBσ.

Exercise 2.55 (The simple Markov property). Show Bt −Bs is indepen-
dent of Bs for all t ≥ s. Use this to show, for any bounded measurable function,
f : R→ R that

E [f (Bt) |Bs+] = E [f (Bt) |Bs] = E [f (Bt) |Bs]

= (pt−s ∗ f) (Bs) =:
(
e(t−s)∆/2f

)
(Bs) a.s.,

where

pt (x) :=
1√
2πt

e−
1
2tx

2

so that pt ∗ f = Qt (·, f) . This problem verifies that {Bt}t≥0 is a “Markov

process” with transition kernels {Qt}t≥0 which have 1
2∆ = 1

2
d2

dx2 as there
“infinitesimal generator.”

Exercise 2.56. Let

P := {0 = t0 < t1 < · · · < tn = T}

and f : Rn → R be a bounded measurable function. Show

E [f (Bt1 , . . . , Btn)] =

∫
Rn
f (x1, . . . , xn) qP (x) dx

where

qP (x) := pt1 (x1) pt2−t1 (x2 − x1) . . . ptn−tn−1
(xn − xn−1) .

Hint: Either use Exercise 2.53 by writing

f (x1, . . . , xn) = g (x1, x2 − x1, x3 − x2, . . . , xn − xn−1)

for some function, g or use Exercise 2.55 first for functions, f of the form,

f (x1, . . . , xn) =

n∏
j=1

ϕj (xj) .

Better yet, do it by both methods!

Exercise 2.57. Suppose {Yt}t≥0 is a version of a process, {Xt}t≥0 . Further
suppose that t→ Yt (ω) and t→ Xt (ω) are both right continuous everywhere.
Show E := {Y· 6= X·} is a measurable set such that P (E) = 0 and hence X and
Y are indistinguishable. Hint: replace the union in Eq. (32.1) by an appropriate
countable union.

Exercise 2.58. Show (C ([0, 1] , S) , ρ∞) is separable. Hints:

1. Choose a countable dense subset, Λ, of S and then choose finite subset
Λn ⊂ Λ such that Λn ↑ Λ.

2. Let Dn :=
{
k
2n : 0 ≤ k ≤ 2n

}
and D = ∪∞n=0Dn. Further let Fn :=

{x : [0, 1]→ Λn} such that x|( k−1
2n , k2n ] is constant for all 1 ≤ k ≤ 2n and

further suppose that x|[0,2−n] is constant.
3. Given y ∈ C ([0, 1] , S) and ε > 0, show there exists n ∈ N and an x ∈ Fn

such that ρ∞ (y, x) ≤ ε.
4. For k, n ∈ N let

Fkn :=

{
y ∈ C ([0, 1] , S) : min

x∈Fn
ρ∞ (y, x) ≤ 1

k

}
and let Γ :=

{
(k, n) ∈ N2 : Fkn 6= ∅

}
. For each (k, n) ∈ Γ, choose a function,

yk,n ∈ Fkn .
5. Now show that {yk,n : (k, n) ∈ Γ} is a countable dense subset of

(C ([0, 1] , S) , ρ∞) .

Exercise 2.59. Provide a proof of Proposition 33.6. Hints: Use the results of
Exercise 15.7, namely that

E |Sl|4 = lγ + 3l(l − 1), (2.36)

to verify that Eq. (33.4) holds for s, t ∈ Dn := 1
nN0. Take care of the case where

s, t ≥ 0 with |t− s| < 1/n by hand and finish up using these results along with
Minkowski’s inequality.

Exercise 2.60 (Quadratic Variation). Let

Pm :=
{

0 = tm0 < tm1 < · · · < tmnm = T
}

be a sequence of partitions such that mesh (Pm)→ 0 as m→∞. Further let

Qm :=

nm∑
i=1

(∆m
i B)

2
:=

nm∑
i=1

(
Btm

i
−Btm

i−1

)2
. (2.37)

Show
lim
m→∞

E
[
(Qm − T )

2
]

= 0
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and limm→∞Qm = T a.s. if
∑∞
m=1 mesh (Pm) <∞. This result is often abbre-

viated by the writing, dB2
t = dt. Hint: it is useful to observe; 1)

Qm − T =

nm∑
i=1

[
(∆m

i B)
2 −∆it

]
and 2) using Eq. (33.2) there is a constant, c <∞ such that

E
[
(∆m

i B)
2 −∆it

]2
= c (∆it)

2
.
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