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Part

Homework Problems





-3

Math 280A Homework Problems Fall 2018

Problems are from Resnick, S. A Probability Path, Birkhauser, or from the
lecture notes. The problems from the lecture notes are restated here. In the
lecture note problems listed in the assignments, you should look up the corre-
sponding problem in the lecture notes where more context is given including
extra standing assumptions for the problem. This context and standing assump-
tions are not always extracted out when I construct the homework sheets.

-3.1 Homework 1. Due Friday, October 5, 2018

• Read over Lecture notes Chapter 1.
• Lecture note Exercises: 1.1, 1.2, and 1.3.

-3.2 Homework 2. Due Friday, October 12, 2018

• Lecture note Exercises: 4.2, 4.3, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12.
• Look at Resnick, p. 20-27: 9, 12, 17, 23
• Hand in Resnick, p. 20-27: 5, 18, 40*

*Notes on Resnick’s #40: (i) B ((0, 1]) should be B ([0, 1)) in the statement of
this problem, (ii) k is an integer, (iii) r ≥ 2.

-3.3 Homework 3. Due Friday, October 19, 2018

• Look at Resnick, p. 20-27:and 19, 27, 30, 36
• Look at Lecture note Exercises: 5.1, 5.2
• Hand in Lecture note Exercises: 5.3, 5.4, 5.6, 5.7, 5.8, 5.9, 5.13 (Exercise

5.13 was postponed until Hm 4.)

-3.4 Homework 4. Due a, October 26, 2018

• Look at lecture note exercises: 5.10, 5.19
• Hand in lecture note exercises: 5.13, 5.14, 5.15, 5.16, 5.17, 5.18

• Hand in Resnick exercises: § 2.6, #7* and § 2.6, #13.

*Hint: For Resnick #7 you might label the coupons as {1, 2, . . . , N} and let Ai
be the event that the collector does not have the ith – coupon after buying n -
boxes of cereal.

-3.5 Homework 5. Due Friday, November 2, 2018

• Look at Resnick, § 2.6, p. 63–70; 3, 14
• Look at lecture note exercises: 6.1
• Hand in Resnick, § 2.6, p. 63–70; 6, 11
• Hand in lecture note exercises: 6.2, 6.3, 9.9

-3.6 Homework 6. Due Friday, November 9, 2018

• Hand in Lecture note Exercises: 6.5, 6.6, 9.1, 9.2, 9.6
• Look at Lecture note Exercises: 9.3, 9.4
• Look at Resnick, p. 85–90: 3, 7, 8, 12, 17, 21
• Hand in from Resnick, p. 85–90: 4, 6*, 9, 15, 18**. Notes. * In #6, the

random variable X is understood to take values in the extended real num-
bers.
** In #18, I would write the left side in terms of an expectation.

-3.7 Homework 7. Due Wednesday, November 21, 2018

• Hand in Lecture note Exercises: 9.7, 10.7, 10.29
• Look at Lecture note Exercises: 9.8, 9.10, 9.11, 10.9
• Hand in from Resnick, p. 155–166: 6b, 7, 38
• Look at Resnick, p. 155–166: 13, 26, 37



-3.8 Homework 8. Due Friday, November 30, 2018

• Hand in Lecture note Exercises: 10.3, 10.4, 10.8, 10.14, 15.6, 10.16
• Look at Lecture note Exercises: 10.5, 10.18, 10.19, 10.20
• Hand in from Resnick, § 5.10: 29, 36 [In # 36, please assume all random

variables are real valued.]

-3.9 Homework 9. Due Friday, December 7, 2018

• Look at Lecture note Exercise 12.2, 12.3, 12.5, 12.6
• Hand in Lecture note Exercises: 10.32, 12.4, 15.1.

For this last homework set you are to work alone and only use the text book
or the lecture notes as references. If you have questions about these problems,
please ask them in class so that everyone gets the same information.
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Math 280B Homework Problems Winter 2019

Problems are from Resnick, S. A Probability Path, Birkhauser, or from the
lecture notes. The problems from the lecture notes are restated here. In the
lecture note problems listed in the assignments, you should look up the corre-
sponding problem in the lecture notes where more context is given including
extra standing assumptions for the problem. This context and standing assump-
tions are not always extracted out when I construct the homework sheets.

-2.1 Homework 1. Due Monday, January 14, 2019

• Look at Lecture note Exercise. 12.9, 13.3 – 13.4.
• Look at from Resnik § 5.10: 8, 18, 19, 22
• Hand in Lecture note Exercises: 10.10, 10.11, 10.12, 13.17, 13.20
• Hand in from Resnick § 5.10: 9

-2.2 Homework 2. Due Wednesday, January 23, 2019

• Look at Lecture note Exercise 13.24, 14.3, 14.8, 15.2, 15.4
• Look at from Resnick § 4.6: 3, 5
• Hand in Lecture note Exercises: 14.5, 14.6, 14.7, 14.9, 15.3, 15.5, 15.8
• Hand in from Resnick § 4.6: 6, 19

-2.3 Homework 3. Due Monday, January 28, 2019

You should work alone on this homework set! Please ask questions about these
problems in class.

• Look at Lecture note Exercise: Read Proposition 12.30, 15.6*
• Look at from Resnick § 4.6: 28, 29.
• Hand in Lecture note Exercises: 26.1*, 15.7

* Exercise 15.6 has been replaced by Exercise 26.1 in the problems to be handed
in as Exercise 15.6 was already given last quarter. Sorry about that.

-2.4 Homework 4. Due Monday, February 4, 2019

• Look at Lecture note Exercise: 16.6, 16.7, 16.8
• Look at from Resnick § 5.10: #39
• Hand in Lecture note Exercise 10.15, 16.1, 16.2, 16.3, 16.4, 16.5.

-2.5 Homework 5. Due Monday, February 11, 2019

• Look at Lecture note Exercise: 17.1, 17.4, 17.10
• Hand in Lecture note Exercise 17.2, 17.3, 17.5, 17.14, 17.15

-2.6 Homework 6. Due Wednesday, February 20, 2019

• Look at Lecture note Exercise: 18.3, 18.4
• Hand in Lecture note Exercise 17.7, 17.16, 18.2, 18.5, 18.6

-2.7 Homework 7. Due Monday, February 25, 2019

• Look at Lecture note Exercise: 19.2, 19.3, 19.7
• Hand in Lecture note Exercise 17.6, 18.1, 19.1, 19.4, 19.8
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Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R̄ := R∪{±∞} , i.e. it
is R with two new points called ∞ and −∞. We use the following conventions,
±∞ · 0 = 0, ±∞ · a = ±∞ if a ∈ R with a > 0, ±∞ · a = ∓∞ if a ∈ R with
a < 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ =∞ and −∞−∞ = −∞ while
∞−∞ is not defined. A sequence an ∈ R̄ is said to converge to ∞ (−∞) if for
all M ∈ R there exists m ∈ N such that an ≥M (an ≤M) for all n ≥ m.

Lemma 1.2. Suppose {an}∞n=1 and {bn}∞n=1 are convergent sequences in R̄,
then:

1. If an ≤ bn for1 a.a. n, then limn→∞ an ≤ limn→∞ bn.
2. If c ∈ R, then limn→∞ (can) = c limn→∞ an.
3. {an + bn}∞n=1 is convergent and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn (1.1)

provided the right side is not of the form ∞−∞.
4. {anbn}∞n=1 is convergent and

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn (1.2)

provided the right hand side is not of the for ±∞ · 0 of 0 · (±∞) .

Before going to the proof consider the simple example where an = n and
bn = −αn with α > 0. Then

lim (an + bn) =

 ∞ if α < 1
0 if α = 1
−∞ if α > 1

while
lim
n→∞

an + lim
n→∞

bn“ = ”∞−∞.

This shows that the requirement that the right side of Eq. (1.1) is not of form
∞−∞ is necessary in Lemma 1.2. Similarly by considering the examples an = n

1 Here we use “a.a. n” as an abbreviation for almost all n. So an ≤ bn a.a. n iff there
exists N <∞ such that an ≤ bn for all n ≥ N.

and bn = n−α with α > 0 shows the necessity for assuming right hand side of
Eq. (1.2) is not of the form ∞ · 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (1.1). Let a := limn→∞ an and b = limn→∞ bn. Case 1., suppose
b = ∞ in which case we must assume a > −∞. In this case, for every M > 0,
there exists N such that bn ≥M and an ≥ a− 1 for all n ≥ N and this implies

an + bn ≥M + a− 1 for all n ≥ N.

Since M is arbitrary it follows that an + bn → ∞ as n → ∞. The cases where
b = −∞ or a = ±∞ are handled similarly. Case 2. If a, b ∈ R, then for every
ε > 0 there exists N ∈ N such that

|a− an| ≤ ε and |b− bn| ≤ ε for all n ≥ N.

Therefore,

|a+ b− (an + bn)| = |a− an + b− bn| ≤ |a− an|+ |b− bn| ≤ 2ε

for all n ≥ N. Since ε > 0 is arbitrary, it follows that limn→∞ (an + bn) = a+b.
Proof of Eq. (1.2). It will be left to the reader to prove the case where lim an

and lim bn exist in R. I will only consider the case where a = limn→∞ an 6= 0
and limn→∞ bn = ∞ here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let α := min

(
a
2 , 1
)
. Given any M < ∞, there exists

N ∈ N such that an ≥ α and bn ≥ M for all n ≥ N and for this choice of N,
anbn ≥ Mα for all n ≥ N. Since α > 0 is fixed and M is arbitrary it follows
that limn→∞ (anbn) =∞ as desired.

For any subset Λ ⊂ R̄, let supΛ and inf Λ denote the least upper bound and
greatest lower bound of Λ respectively. The convention being that supΛ = ∞
if ∞ ∈ Λ or Λ is not bounded from above and inf Λ = −∞ if −∞ ∈ Λ or Λ is
not bounded from below. We will also use the conventions that sup ∅ = −∞
and inf ∅ = +∞.

Notation 1.3 Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then

lim inf
n→∞

xn = lim
n→∞

inf{xk : k ≥ n} and (1.3)

lim sup
n→∞

xn = lim
n→∞

sup{xk : k ≥ n}. (1.4)



10 1 Limsups, Liminfs and Extended Limits

We will also write lim for lim infn→∞ and lim for lim sup
n→∞

.

Remark 1.4. Notice that if an := inf{xk : k ≥ n} and bn := sup{xk : k ≥
n}, then {an} is an increasing sequence while {bn} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R̄ and

lim inf
n→∞

xn = sup
n

inf{xk : k ≥ n} and

lim sup
n→∞

xn = inf
n

sup{xk : k ≥ n}.

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 1.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Then

1. lim infn→∞ an ≤ lim sup
n→∞

an and limn→∞ an exists in R̄ iff

lim inf
n→∞

an = lim sup
n→∞

an ∈ R̄.

2. There is a subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =
lim sup
n→∞

an. Similarly, there is a subsequence {ank}∞k=1 of {an}∞n=1 such that

limk→∞ ank = lim infn→∞ an.
3.

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn (1.5)

whenever the right side of this equation is not of the form ∞−∞.
4. If an ≥ 0 and bn ≥ 0 for all n ∈ N, then

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (1.6)

provided the right hand side of (1.6) is not of the form 0 · ∞ or ∞ · 0.

Proof. 1. Since

inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n,

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Now suppose that lim infn→∞ an = lim sup
n→∞

an = a ∈ R. Then for all ε > 0,

there is an integer N such that

a− ε ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a+ ε,

i.e.
a− ε ≤ ak ≤ a+ ε for all k ≥ N.

Hence by the definition of the limit, limk→∞ ak = a. If lim infn→∞ an = ∞,
then we know for all M ∈ (0,∞) there is an integer N such that

M ≤ inf{ak : k ≥ N}

and hence limn→∞ an =∞. The case where lim sup
n→∞

an = −∞ is handled simi-

larly.
Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then for

every ε > 0 there exists N(ε) ∈ N such that |A− an| ≤ ε for all n ≥ N(ε), i.e.

A− ε ≤ an ≤ A+ ε for all n ≥ N(ε).

From this we learn that

A− ε ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A+ ε.

Since ε > 0 is arbitrary, it follows that

A ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A,

i.e. that A = lim infn→∞ an = lim sup
n→∞

an. If A = ∞, then for all M > 0

there exists N = N(M) such that an ≥ M for all n ≥ N. This show that
lim infn→∞ an ≥M and since M is arbitrary it follows that

∞ ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an.

The proof for the case A = −∞ is analogous to the A =∞ case.
2. – 4. The remaining items are left as an exercise to the reader. It may

be useful to keep the following simple example in mind. Let an = (−1)
n

and

bn = −an = (−1)
n+1

. Then an + bn = 0 so that

0 = lim
n→∞

(an + bn) = lim inf
n→∞

(an + bn) = lim sup
n→∞

(an + bn)

while

lim inf
n→∞

an = lim inf
n→∞

bn = −1 and

lim sup
n→∞

an = lim sup
n→∞

bn = 1.

Thus in this case we have

lim sup
n→∞

(an + bn) < lim sup
n→∞

an + lim sup
n→∞

bn and

lim inf
n→∞

(an + bn) > lim inf
n→∞

an + lim inf
n→∞

bn.
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Remark 1.6. If an ≤ bn for a.a. n, (i.e. there exists N ∈ N such that an ≤ bn
for all n ≥ N), then it is easy to verify that

lim sup
n→∞

an ≤ lim sup
n→∞

bn and lim inf
n→∞

an ≤ lim inf
n→∞

bn.

In particular if an = bn for a.a. n, then

lim sup
n→∞

an = lim sup
n→∞

bn and lim inf
n→∞

an = lim inf
n→∞

bn.

It is also easy to verify that if b ∈ R, then

lim sup
n→∞

(an + b) = lim sup
n→∞

an + b and lim inf
n→∞

(an + b) = lim inf
n→∞

an + b.

Lemma 1.7. If {an}∞n=1 and {bn}∞n=1 are two sequences of real numbers and
b = limn→∞ bn exists in R, then

lim inf
n→∞

(an + bn) = lim inf
n→∞

an + b.

Proof. Let ε > 0 be given and choose N = N (ε) ∈ N so that |b− bn| ≤ ε
for all n ≥ N (ε) . Then

an + b− ε ≤ an + bn ≤ an + b+ ε for all n ≥ N

and hence taking the lim inf of this inequality using Remark 1.6 we find

lim inf
n→∞

an + b− ε ≤ lim inf
n→∞

(an + bn) ≤ lim inf
n→∞

an + b+ ε.

As this is valid for all ε > 0 we may let ε ↓ 0 in the previous inequality to find

lim inf
n→∞

an + b ≤ lim inf
n→∞

(an + bn) ≤ lim inf
n→∞

an + b.

1.1 Infinite sums

Definition 1.8. For an ∈ [0,∞] , let

∞∑
n=1

an := lim
N→∞

N∑
n=1

an = sup
N

N∑
n=1

an.

Remark 1.9. If an, bn ∈ [0,∞] and λ ≥ 0, then

∞∑
n=1

(an + λbn) =

∞∑
n=1

an + λ ·
∞∑
n=1

bn.

Indeed,

∞∑
n=1

(an + λbn) = lim
N→∞

N∑
n=1

(an + λbn) = lim
N→∞

[
N∑
n=1

an + λ

N∑
n=1

bn

]

= lim
N→∞

N∑
n=1

an + λ lim
N→∞

N∑
n=1

bn =

∞∑
n=1

an + λ ·
∞∑
n=1

bn.

We will refer to the following basic proposition as the monotone convergence
theorem for sums (MCT for short).

Proposition 1.10 (MCT for sums). Suppose that for each n ∈ N, {fn (i)}∞i=1

is a sequence in [0,∞] such that ↑ limn→∞ fn (i) = f (i) by which we mean
fn (i) ↑ f (i) as n→∞. Then

lim
n→∞

∞∑
i=1

fn (i) =

∞∑
i=1

f (i) , i.e.

lim
n→∞

∞∑
i=1

fn (i) =

∞∑
i=1

lim
n→∞

fn (i) .

We allow for the possibility that these expression may equal to +∞.

Proof. Let M :=↑ limn→∞
∑∞
i=1 fn (i) . As fn (i) ≤ f (i) for all n it follows

that
∑∞
i=1 fn (i) ≤

∑∞
i=1 f (i) for all n and therefore passing to the limit shows

M ≤
∑∞
i=1 f (i) . If N ∈ N we have,

N∑
i=1

f (i) =

N∑
i=1

lim
n→∞

fn (i) = lim
n→∞

N∑
i=1

fn (i) ≤ lim
n→∞

∞∑
i=1

fn (i) = M.

Letting N ↑ ∞ in this equation then shows
∑∞
i=1 f (i) ≤ M which completes

the proof.

Proposition 1.11 (Tonelli’s theorem for sums). If {akn}∞k,n=1 ⊂ [0,∞] ,
then

∞∑
k=1

∞∑
n=1

akn =

∞∑
n=1

∞∑
k=1

akn.

Here we allow for one and hence both sides to be infinite.

Proof. First Proof. Let SN (k) :=
∑N
n=1 akn, then by the MCT (Proposi-

tion 1.10),

lim
N→∞

∞∑
k=1

SN (k) =

∞∑
k=1

lim
N→∞

SN (k) =

∞∑
k=1

∞∑
n=1

akn.
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On the other hand,

∞∑
k=1

SN (k) =

∞∑
k=1

N∑
n=1

akn =

N∑
n=1

∞∑
k=1

akn

so that

lim
N→∞

∞∑
k=1

SN (k) = lim
N→∞

N∑
n=1

∞∑
k=1

akn =

∞∑
n=1

∞∑
k=1

akn.

Second Proof. Let

M := sup

{
K∑
k=1

N∑
n=1

akn : K,N ∈ N

}
= sup

{
N∑
n=1

K∑
k=1

akn : K,N ∈ N

}

and

L :=

∞∑
k=1

∞∑
n=1

akn.

Since

L =

∞∑
k=1

∞∑
n=1

akn = lim
K→∞

K∑
k=1

∞∑
n=1

akn = lim
K→∞

lim
N→∞

K∑
k=1

N∑
n=1

akn

and
∑K
k=1

∑N
n=1 akn ≤M for all K and N, it follows that L ≤M. Conversely,

K∑
k=1

N∑
n=1

akn ≤
K∑
k=1

∞∑
n=1

akn ≤
∞∑
k=1

∞∑
n=1

akn = L

and therefore taking the supremum of the left side of this inequality over K
and N shows that M ≤ L. Thus we have shown

∞∑
k=1

∞∑
n=1

akn = M.

By symmetry (or by a similar argument), we also have that
∑∞
n=1

∑∞
k=1 akn =

M and hence the proof is complete.

Definition 1.12. A sequence {an}∞n=1 ⊂ R is summable (absolutely con-
vergent) if

∑∞
n=1 |an| < ∞. When {an}∞n=1 ⊂ R is summable we let a±n =

max (∓an, 0) and define,

∞∑
n=1

an :=
∞∑
n=1

a+
n −

∞∑
n=1

a−n . (1.7)

Remark 1.13. From Eq. (1.7) it follows that∣∣∣∣∣
∞∑
n=1

an

∣∣∣∣∣ ≤
∞∑
n=1

a+
n +

∞∑
n=1

a−n =

∞∑
n=1

(
a+
n + a−n

)
=

∞∑
n=1

|an| .

Proposition 1.14 (Linearity). If {an}∞n=1 and {bn}∞n=1 are summable λ ∈ R,
then {an + λbn}∞n=1 is summable and

∞∑
n=1

(an + λbn) =

∞∑
n=1

an + λ

∞∑
n=1

bn.

Proof. Let cn := an + λbn so that |cn| ≤ |an|+ |λ| |bn| and hence

∞∑
n=1

|cn| =
∞∑
n=1

|an + λbn| ≤
∞∑
n=1

|an|+ |λ|
∞∑
n=1

|bn| <∞.

This shows {cn}∞n=1 is summable. Let us now suppose that λ ≥ 0 for the
moment. in which case we have

cn = c+n − c−n = an + λbn = a+
n − a−n + λb+n − λb−n

and therefore,
c+n + a−n + λb−n = c−n + a+

n + λb+n .

Summing this equation on n while making use of Remark 1.9, then shows,

∞∑
n=1

c+n +

∞∑
n=1

a−n + λ

∞∑
n=1

b−n

=

∞∑
n=1

(
c+n + a−n + λb−n

)
=

∞∑
n=1

(
c−n + a+

n + λb+n
)

=

∞∑
n=1

c−n +

∞∑
n=1

a+
n + λ

∞∑
n=1

b+n .

Rearranging these terms gives,

∞∑
n=1

cn =

∞∑
n=1

c+n −
∞∑
n=1

c−n =

∞∑
n=1

a+
n + λ

∞∑
n=1

b+n −
∞∑
n=1

a−n − λ
∞∑
n=1

b−n

=

∞∑
n=1

an + λ

∞∑
n=1

bn.

To finish the proof we need only observe that (−1 · an)
±

= a∓n and hence
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1.1 Infinite sums 13

∞∑
n=1

−1 · an =

∞∑
n=1

a−n −
∞∑
n=1

a+
n = −

( ∞∑
n=1

a+
n −

∞∑
n=1

a−n

)
= −

∞∑
n=1

an.

You are asked to prove the next three results in the exercises.

Proposition 1.15 (Fubini for sums). Suppose {akn}∞k,n=1 ⊂ R such that

∞∑
k=1

∞∑
n=1

|akn| =
∞∑
n=1

∞∑
k=1

|akn| <∞.

Then
∞∑
k=1

∞∑
n=1

akn =

∞∑
n=1

∞∑
k=1

akn.

[In this simple setting, this is in fact a special case of the statement that
absolutely convergent sums are independent of rearrangements.]

Example 1.16 (Counter example). Let {Smn}∞m,n=1 be any sequence of complex
numbers such that limm→∞ Smn = 1 for all n and limn→∞ Smn = 0 for all n.
For example, take Smn = 1m≥n or Sm,n = m

m+n . Then define {aij}∞i,j=1 so that

Smn =

m∑
i=1

n∑
j=1

aij (1.8)

in which case we will have

∞∑
i=1

∞∑
j=1

aij = lim
m→∞

lim
n→∞

Smn = 0 6= 1 = lim
n→∞

lim
m→∞

Smn =

∞∑
j=1

∞∑
i=1

aij .

To find aij which give Eq. (1.8) if we define Smn = 0 if m = 0 or n = 0, then

Smn − Sm−1,n =

n∑
j=1

amj

and so

amn =

n∑
j=1

amj −
n−1∑
j=1

amj

= (Smn − Sm−1,n)− (Sm,n−1 − Sm−1,n−1)

= Smn − Sm−1,n − Sm,n−1 + Sm−1,n−1.

Applying this to the example where Sm,n = 1m≥n gives,

am,n = 1m≥n − 1m−1≥n − 1m≥n−1 + 1m−1≥n−1

= 2 · 1m≥n − 1m≥n+1 − 1m≥n−1

= 1m=n − 1m=n−1.

Thus it follows that n→ am,n is summable and m→ am,n is summable and

∞∑
m=1

am,n = 1n=1 and

∞∑
n=1

am,n = 0

and therefore
∞∑
n=1

∞∑
m=1

am,n = 1 6= 0 =

∞∑
m=1

∞∑
n=1

am,n.

Note: the graph of am,n is 0 everywhere except on the two lines, n = m
where am,m = 1 and n = m+ 1 where am,m+1 = −1. For an integral variant of
this example, fatten up am,n to produce that function,

h (x, y) = 1x≤y≤x+1 − 1x+1<y≤x+2,

see Figure 1.1. For this h we have

Fig. 1.1. The function h is 1 between the black and the green line, it is −1 between
the green and red line, at it 0 on the remaining regions in [0,∞)2.

∫ ∞
0

dx h (x, y) = y1y≤1 + (2− y) 11≤y≤2 and∫ ∞
0

dy h (x, y) = 0 for all x ≥ 0

Page: 13 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



14 1 Limsups, Liminfs and Extended Limits

and hence∫ ∞
0

dx

∫ ∞
0

dy h (x, y) = 0 6= 1 =

∫ ∞
0

dy

∫ ∞
0

dx h (x, y) .

Proposition 1.17 (Fatou’s Lemma for sums). Suppose that for each n ∈ N,
{hn (i)}∞i=1 is any sequence in [0,∞] , then

∞∑
i=1

lim inf
n→∞

hn (i) ≤ lim inf
n→∞

∞∑
i=1

hn (i) .

The next proposition is referred to as the dominated convergence theorem
(DCT for short) for sums.

Proposition 1.18 (DCT for sums). Suppose that for each n ∈ N,
{fn (i)}∞i=1 ⊂ R is a sequence and {gn (i)}∞i=1 is a sequence in [0,∞) such that;

1.
∑∞
i=1 gn (i) <∞ for all n,

2. f (i) = limn→∞ fn (i) and g (i) := limn→∞ gn (i) exists for each i,
3. |fn (i)| ≤ gn (i) for all i and n,
4. limn→∞

∑∞
i=1 gn (i) =

∑∞
i=1 g (i) <∞.

Then

lim
n→∞

∞∑
i=1

fn (i) =

∞∑
i=1

lim
n→∞

fn (i) =

∞∑
i=1

f (i) .

(Often this proposition is used in the special case where gn = g for all n.)

Exercise 1.1 (Prove the Fubini Proposition 1.15). Suppose {akn}∞k,n=1 ⊂
R such that

∞∑
k=1

∞∑
n=1

|akn| =
∞∑
n=1

∞∑
k=1

|akn| <∞.

Then
∞∑
k=1

∞∑
n=1

akn =

∞∑
n=1

∞∑
k=1

akn.

Hint: Let a+
kn := max (akn, 0) and a−kn = max (−akn, 0) and observe that; akn =

a+
kn− a

−
kn and

∣∣a+
kn

∣∣+ ∣∣a−kn∣∣ = |akn| . Now apply Tonelli’s theorem (Proposition

1.11) with akn replaced by a+
kn and a−kn. You should be careful to verify that

{akn}∞n=1 is summable for each k and that{Sk =
∑∞
n=1 ak,n}

∞
k=1

is summable
so that

∑∞
k=1

∑∞
n=1 akn =

∑∞
k=1 Sk exits, etc. etc.

Exercise 1.2 (Prove Fatou’s Lemma in Proposition 1.17). Suppose that
for each n ∈ N, {hn (i)}∞i=1 is any sequence in [0,∞] , then

∞∑
i=1

lim inf
n→∞

hn (i) ≤ lim inf
n→∞

∞∑
i=1

hn (i) .

Hint: apply the MCT by applying the monotone convergence theorem with
fn (i) := infm≥n hm (i) .

Exercise 1.3 (Prove DCT as in Proposition 1.18). Suppose that for each
n ∈ N, {fn (i)}∞i=1 ⊂ R is a sequence and {gn (i)}∞i=1 is a sequence in [0,∞)
such that;

1.
∑∞
i=1 gn (i) <∞ for all n,

2. f (i) = limn→∞ fn (i) and g (i) := limn→∞ gn (i) exists for each i,
3. |fn (i)| ≤ gn (i) for all i and n,
4. limn→∞

∑∞
i=1 gn (i) =

∑∞
i=1 g (i) <∞.

Then

lim
n→∞

∞∑
i=1

fn (i) =

∞∑
i=1

lim
n→∞

fn (i) =

∞∑
i=1

f (i) .

Hint: Apply Fatou’s lemma twice. Once with hn (i) = gn (i) + fn (i) and once
with hn (i) = gn (i)− fn (i) .
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2

Basic Metric and Topological Space Notions

The reader may refer to this chapter when the need arises later.

Definition 2.1 (Pseudo-Metrics). Let X be a non-empty set. A function
d : X × X → [0,∞) is called a pseudo-metric on X if d is symmetric and
satisfies the triangle inequality, i.e.

1. (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X, and
2. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

If we further assume that d is non-degenerate in the sense that d(x, y) = 0
if and only if x = y ∈ X, then we say d is a metric on X.

Notice that any subset, Y, of a (pseudo) metric space (X, d) is a metric space
by simply restricting d to Y × Y.

Example 2.2. Let us mention just a very few examples of (pseudo-metric) spaces.

1. Let X = R. Then d (x, y) = |y − x| is the usual metric on R. Another useful
metric is d (x, y) =

∣∣tan−1 (y)− tan−1 (x)
∣∣ .

2. If X = Rd, then d (x, y) =
√∑d

j=1 (yj − xj)2
is the usual Euclidean dis-

tance metric on Rd. Subsets like the unit sphere in Rd are metric spaces as
well.

3. Let X = C ([0, 1] ,C) be the continuous function the
d (f, g) := maxx∈[0,1] |f (x)− g (x)| is a metric while d (f, g) :=
maxx∈[0,1/2] |f (x)− g (x)| is a Pseudo - metric on X.

4. Any normed space (X, ‖·‖) (see Definition ??) is a metric space with
d(x, y) := ‖x− y‖ . Thus the space `p(µ) (as in Theorem ??) is a metric
space for all p ∈ [1,∞].

5. Let X denote the C1 – periodic functions on R. Then d (f, g) :=
maxx∈R |f ′ (x)− g′ (x)| is a pseudo-metric on X.

Throughout this chapter, let (X, d) be a pseudo-metric space and we will
often just say (X, d) is a metric space even though we may allow d to be degen-
erate unless explicitly noted.

Definition 2.3. Let (X, d) be a metric space. The open ball B(x, δ) ⊂ X
centered at x ∈ X with radius δ > 0 is the set

B(x, δ) := {y ∈ X : d(x, y) < δ}.

We will often also write B(x, δ) as Bx(δ). We also define the closed ball cen-
tered at x ∈ X with radius δ > 0 as the set Cx(δ) := {y ∈ X : d(x, y) ≤ δ}.

Definition 2.4. A sequence {xn}∞n=1 ⊂ X is said to converge to a point x ∈ X
if limn→∞ d (x, xn) = 0 and abbreviate this by writing xn → x or xn

d→ x as
n→∞.

If xn → x and xn → y, then

d (x, y) ≤ d (x, xn) + d (xn, y)→ 0 as n→∞

and so d (x, y) = 0. If d is non-degenerate, then x = y and limits are unique
otherwise they are not.

Definition 2.5. A set E ⊂ X is bounded if E ⊂ B (x,R) for some x ∈ X and
R <∞. A set F ⊂ X is closed iff every convergent sequence {xn}∞n=1 which is
contained in F has its limits back in F.1 A set V ⊂ X is open iff V c is closed.
We will write F @ X to indicate F is a closed subset of X and V ⊂o X to
indicate the V is an open subset of X. We also let τd denote the collection of
open subsets of X relative to the metric d.

Exercise 2.1. Let F be a collection of closed subsets of X, show ∩F := ∩F∈FF
is closed. Also show that finite unions of closed sets are closed, i.e. if {Fk}Kk=1

are closed sets then ∪Kk=1Fk is closed. (By taking complements, this shows that
the collection of open sets, τd, is closed under finite intersections and arbitrary
unions.) Show by example that a countable union of closed sets need not be
closed.

Exercise 2.2. Show that V ⊂ X is open iff for every x ∈ V there is a δ > 0
such that Bx(δ) ⊂ V. In particular show Bx(δ) is open for all x ∈ X and δ > 0.
Hint: by definition V is not open iff V c is not closed.

Definition 2.6. A subset A ⊂ X is a neighborhood of x if there exists an
open set V ⊂o X such that x ∈ V ⊂ A. We will say that A ⊂ X is an open
neighborhood of x if A is open and x ∈ A.
1 When d is non-degenerate we require all the possible limits of {xn} to be in F. This

then implies that if x ∈ F and y ∈ X with d (x, y) = 0, then y ∈ F as well.
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The following “continuity” facts of the metric d will be used frequently in
the remainder of this book.

Lemma 2.7. For any non empty subset A ⊂ X, let dA(x) := inf{d(x, a)|a ∈
A}, then

|dA(x)− dA(y)| ≤ d(x, y) ∀x, y ∈ X (2.1)

and in particular if xn → x in X then dA (xn) → dA (x) as n → ∞. Moreover
the set Fε := {x ∈ X : dA(x) ≥ ε} is closed in X.

Proof. Let a ∈ A and x, y ∈ X, then

dA(x) ≤ d(x, a) ≤ d(x, y) + d(y, a).

Take the infimum over a in the above equation shows that

dA(x) ≤ d(x, y) + dA(y) ∀x, y ∈ X.

Therefore, dA(x)− dA(y) ≤ d(x, y) and by interchanging x and y we also have
that dA(y) − dA(x) ≤ d(x, y) which implies Eq. (2.1). If xn → x ∈ X, then by
Eq. (2.1),

|dA(x)− dA(xn)| ≤ d(x, xn)→ 0 as n→∞
so that limn→∞ dA (xn) = dA (x) . Now suppose that {xn}∞n=1 ⊂ Fε and xn → x
in X, then

dA (x) = lim
n→∞

dA (xn) ≥ ε

since dA (xn) ≥ ε for all n. This shows that x ∈ Fε and hence Fε is closed.

Corollary 2.8. The function d satisfies,

|d(x, y)− d(x′, y′)| ≤ d(y, y′) + d(x, x′).

In particular d : X × X → [0,∞) is “continuous” in the sense that d(x, y) is
close to d(x′, y′) if x is close to x′ and y is close to y′. (The notion of continuity
will be developed shortly.)

Proof. By Lemma 2.7 for single point sets and the triangle inequality for
the absolute value of real numbers,

|d(x, y)− d(x′, y′)| ≤ |d(x, y)− d(x, y′)|+ |d(x, y′)− d(x′, y′)|
≤ d(y, y′) + d(x, x′).

Example 2.9. Let x ∈ X and δ > 0, then Cx (δ) and Bx (δ)
c

are closed subsets
of X. For example if {yn}∞n=1 ⊂ Cx (δ) and yn → y ∈ X, then d (yn, x) ≤ δ for
all n and using Corollary 2.8 it follows d (y, x) ≤ δ, i.e. y ∈ Cx (δ) . A similar
proof shows Bx (δ)

c
is closed, see Exercise 2.2.

Lemma 2.10 (Approximating open sets from the inside by closed
sets). Let A be a closed subset of X and Fε := {x ∈ X|dA(x) ≥ ε} @ X
be as in Lemma 2.7. Then Fε ↑ Ac as ε ↓ 0.

Proof. It is clear that dA(x) = 0 for x ∈ A so that Fε ⊂ Ac for each ε > 0
and hence ∪ε>0Fε ⊂ Ac. Now suppose that x ∈ Ac ⊂o X. By Exercise 2.2 there
exists an ε > 0 such that Bx(ε) ⊂ Ac, i.e. d(x, y) ≥ ε for all y ∈ A. Hence
x ∈ Fε and we have shown that Ac ⊂ ∪ε>0Fε. Finally it is clear that Fε ⊂ Fε′

whenever ε′ ≤ ε.

Definition 2.11. Given a set A contained in a metric space X, let Ā ⊂ X be
the closure of A defined by

Ā := {x ∈ X : ∃ {xn} ⊂ A 3 x = lim
n→∞

xn}.

That is to say Ā contains all limit points of A. We say A is dense in X if
Ā = X, i.e. every element x ∈ X is a limit of a sequence of elements from A.
A metric space is said to be separable if it contains a countable dense subset,
D.

Exercise 2.3. Given A ⊂ X, show Ā is a closed set and in fact

Ā = ∩{F : A ⊂ F ⊂ X with F closed}. (2.2)

That is to say Ā is the smallest closed set containing A.

Exercise 2.4. If D is a dense subset of a metric space (X, d) and E ⊂ X is
a subset such that to every point x ∈ D there exists {xn}∞n=1 ⊂ E with x =
limn→∞ xn, then E is also a dense subset of X. If points in E well approximate
every point in D and the points in D well approximate the points in X, then
the points in E also well approximate all points in X.

Exercise 2.5. Suppose (X, d) is a metric space which contains an uncountable
subset Λ ⊂ X with the property that there exists ε > 0 such that d (a, b) ≥ ε
for all a, b ∈ Λ with a 6= b. Show that (X, d) is not separable.

2.1 Metric spaces as topological spaces

Let (X, d) be a metric space and let τ = τd denote the collection of open
subsets of X. (Recall V ⊂ X is open iff V c is closed iff for all x ∈ V there
exists an ε = εx > 0 such that B (x, εx) ⊂ V iff V can be written as a (possibly
uncountable) union of open balls.) Although we will stick with metric spaces
in this chapter, it will be useful to introduce the definitions needed here in the
more general context of a general “topological space,” i.e. a space equipped
with a collection of “open sets.”
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2.1 Metric spaces as topological spaces 17

Definition 2.12 (Topological Space). Let X be a set. A topology on X is
a collection of subsets (τ) of X with the following properties;

1. τ contains both the empty set (∅) and X.
2. τ is closed under arbitrary unions.
3. τ is closed under finite intersections.

The elements V ∈ τ are called open subsets of X. A subset F ⊂ X is said
to be closed if F c is open. I will write V ⊂o X to indicate that V ⊂ X and
V ∈ τ and similarly F @ X will denote F ⊂ X and F is closed. Given x ∈ X
we say that V ⊂ X is an open neighborhood of x if V ∈ τ and x ∈ V. Let
τx = {V ∈ τ : x ∈ V } denote the collection of open neighborhoods of x.

Of course every metric space (X, d) is also a topological space where we take
τ = τd.

Definition 2.13. Let (X, τ) be a topological space and A be a subset of X.

1. The closure of A is the smallest closed set Ā containing A, i.e.

Ā := ∩{F : A ⊂ F @ X} .

(Because of Exercise 2.3 this is consistent with Definition 2.11 for the clo-
sure of a set in a metric space.)

2. The interior of A is the largest open set Ao contained in A, i.e.

Ao = ∪{V ∈ τ : V ⊂ A} .

3. A ⊂ X is a neighborhood of a point x ∈ X if x ∈ Ao.
4. The accumulation points of A is the set

acc(A) = {x ∈ X : V ∩ [A \ {x}] 6= ∅ for all V ∈ τx}.

5. The boundary of A is the set bd(A) := Ā \Ao.
6. A is dense in X if Ā = X and X is said to be separable if there exists a

countable dense subset of X.

Remark 2.14. The relationships between the interior and the closure of a set
are:

(Ao)c =
⋂
{V c : V ∈ τ and V ⊂ A} =

⋂
{C : C is closed C ⊃ Ac} = Ac

and similarly, (Ā)c = (Ac)o. Hence the boundary of A may be written as

bd(A) := Ā \Ao = Ā ∩ (Ao)c = Ā ∩Ac, (2.3)

which is to say bd(A) consists of the points in both the closures of A and Ac.

2.1.1 Continuity

Suppose now that (X, ρ) and (Y, d) are two metric spaces and f : X → Y is a
function.

Definition 2.15. A function f : X → Y is continuous at x ∈ X if for all
ε > 0 there is a δ > 0 such that

d(f(x), f(x′)) < ε provided that ρ(x, x′) < δ. (2.4)

The function f is said to be continuous if f is continuous at all points x ∈ X.

The following lemma gives two other characterizations of continuity of a
function at a point.

Lemma 2.16 (Local Continuity Lemma). Suppose that (X, ρ) and (Y, d)
are two metric spaces and f : X → Y is a function defined in a neighborhood
of a point x ∈ X. Then the following are equivalent:

1. f is continuous at x ∈ X.
2. For all neighborhoods A ⊂ Y of f(x), f−1(A) is a neighborhood of x ∈ X.
3. For all sequences {xn}∞n=1 ⊂ X such that x = limn→∞ xn, {f(xn)} is con-

vergent in Y and

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.

Proof. 1 =⇒ 2. If A ⊂ Y is a neighborhood of f (x) , there exists ε > 0
such that Bf(x) (ε) ⊂ A and because f is continuous there exists a δ > 0 such
that Eq. (2.4) holds. Therefore

Bx (δ) ⊂ f−1
(
Bf(x) (ε)

)
⊂ f−1 (A)

showing f−1 (A) is a neighborhood of x.
2 =⇒ 3. Suppose that {xn}∞n=1 ⊂ X and x = limn→∞ xn. Then for any ε >

0, Bf(x) (ε) is a neighborhood of f (x) and so f−1
(
Bf(x) (ε)

)
is a neighborhood

of x which must contain Bx (δ) for some δ > 0. Because xn → x, it follows that
xn ∈ Bx (δ) ⊂ f−1

(
Bf(x) (ε)

)
for a.a. n and this implies f (xn) ∈ Bf(x) (ε) for

a.a. n, i.e. d(f(x), f (xn)) < ε for a.a. n. Since ε > 0 is arbitrary it follows that
limn→∞ f (xn) = f (x) .

3. =⇒ 1. We will show not 1. =⇒ not 3. If f is not continuous at x,
there exists an ε > 0 such that for all n ∈ N there exists a point xn ∈ X with
ρ (xn, x) < 1

n yet d (f (xn) , f (x)) ≥ ε. Hence xn → x as n→∞ yet f (xn) does
not converge to f (x) .

Here is a global version of the previous lemma.
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18 2 Basic Metric and Topological Space Notions

Lemma 2.17 (Global Continuity Lemma). Suppose that (X, ρ) and (Y, d)
are two metric spaces and f : X → Y is a function defined on all of X. Then
the following are equivalent:

1. f is continuous.
2. f−1(V ) ∈ τρ for all V ∈ τd, i.e. f−1(V ) is open in X if V is open in Y.
3. f−1(C) is closed in X if C is closed in Y.
4. For all convergent sequences {xn} ⊂ X, {f(xn)} is convergent in Y and

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.

Proof. Since f−1 (Ac) =
[
f−1 (A)

]c
, it is easily seen that 2. and 3. are

equivalent. So because of Lemma 2.16 it only remains to show 1. and 2. are
equivalent. If f is continuous and V ⊂ Y is open, then for every x ∈ f−1 (V ) , V
is a neighborhood of f (x) and so f−1 (V ) is a neighborhood of x. Hence f−1 (V )
is a neighborhood of all of its points and from this and Exercise 2.2 it follows that
f−1 (V ) is open. Conversely, if x ∈ X and A ⊂ Y is a neighborhood of f (x) then
there exists V ⊂o X such that f (x) ∈ V ⊂ A. Hence x ∈ f−1 (V ) ⊂ f−1 (A)
and by assumption f−1 (V ) is open showing f−1 (A) is a neighborhood of x.
Therefore f is continuous at x and since x ∈ X was arbitrary, f is continuous.

Definition 2.18 (Continuity at a point in topological terms). Let
(X, τX) and (Y, τY ) be topological spaces. A function f : X → Y is contin-
uous at a point x ∈ X if for every open neighborhood V of f(x) there is an
open neighborhood U of x such that U ⊂ f−1(V ). See Figure 2.1.

Y
V

f(x)

f

X

U

x

f−1(V )

Fig. 2.1. Checking that a function is continuous at x ∈ X.

Definition 2.19 (Global continuity in topological terms). Let (X, τX)
and (Y, τY ) be topological spaces. A function f : X → Y is continuous if

f−1(τY ) :=
{
f−1 (V ) : V ∈ τY

}
⊂ τX .

We will also say that f is τX/τY –continuous or (τX , τY ) – continuous. Let
C(X,Y ) denote the set of continuous functions from X to Y.

Exercise 2.6. Show f : X → Y is continuous (Definition 2.19) iff f is contin-
uous at all points x ∈ X.

Exercise 2.7. Show f : X → Y is continuous iff f−1(C) is closed in X for all
closed subsets C of Y.

Definition 2.20. A map f : X → Y between topological spaces is called a
homeomorphism provided that f is bijective, f is continuous and f−1 : Y →
X is continuous. If there exists f : X → Y which is a homeomorphism, we say
that X and Y are homeomorphic. (As topological spaces X and Y are essentially
the same.)

Example 2.21. The function dA defined in Lemma 2.7 is continuous for each
A ⊂ X. In particular, if A = {x} , it follows that y ∈ X → d(y, x) is continuous
for each x ∈ X.

Exercise 2.8. Use Example 2.21 and Lemma 2.17 to recover the results of
Example 2.9.

Exercise 2.9 (A joint continuity criteria). Let X,Y, Z be three metric
spaces and F : X × Y → Z be a function such that;

1. For each x ∈ X the map Y 3 y → F (x, y) ∈ Z is continuous and moreover
are locally equi-continuous in x. In more detail, assume for all (a, b) ∈ X×Y
there exists κ := κ (a, b) > 0 such that

lim
y→b

sup
x∈BX(a,ε)

d (F (x, y) , F (x, b)) = 0.

2. There exists a dense subset Y0 ⊂ Y such that X 3 x → F (x, y) ∈ Z is
continuous for any fixed y ∈ Y0.

Show;

1. X 3 x→ F (x, y) ∈ Z is continuous for any fixed y ∈ Y and then show
2. F : X × Y → Z is jointly continuous on X × Y.
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Lemma 2.22 (Urysohn’s Lemma for Metric Spaces). Let (X, d) be a met-
ric space and suppose that A and B are two disjoint closed subsets of X. Then

f(x) =
dB(x)

dA(x) + dB(x)
for x ∈ X (2.5)

defines a continuous function, f : X → [0, 1], such that f(x) = 1 for x ∈ A and
f(x) = 0 if x ∈ B.

Proof. By Lemma 2.7, dA and dB are continuous functions on X. Since
A and B are closed, dA(x) > 0 if x /∈ A and dB(x) > 0 if x /∈ B. Since

A ∩B = ∅, dA(x) + dB(x) > 0 for all x and (dA + dB)
−1

is continuous as well.
The remaining assertions about f are all easy to verify.

Sometimes Urysohn’s lemma will be use in the following form. Suppose
F ⊂ V ⊂ X with F being closed and V being open, then there exists f ∈
C (X, [0, 1])) such that f = 1 on F while f = 0 on V c. This of course follows
from Lemma 2.22 by taking A = F and B = V c.

Corollary 2.23. If A and B are two disjoint closed subsets of X, then there
exists disjoint open subsets U and V of X such that A ⊂ U and B ⊂ V.

Proof. Let f be as in Lemma 2.22 so that f ∈ C (X → [0, 1]) such that
f = 1 on A and f = 0 on B. Then set U =

{
f > 1

2

}
and V = {f < 1/2} .

2.2 Completeness in Metric Spaces

Definition 2.24 (Cauchy sequences). A sequence {xn}∞n=1 in a metric space
(X, d) is Cauchy provided that

lim
m,n→∞

d(xn, xm) = 0.

Exercise 2.10. Let (X, d) be a pseudo metric space.

1. Show every convergent sequence, {xn}∞n=1 ⊂ X, is Cauchy.
2. If xn → x and yn → y show d (xn, yn)→ d (x, y) .
3. If {xn}∞n=1 , {yn}

∞
n=1 ⊂ X are Cauchy sequences, show limn→∞ d (xn, yn)

exists in [0,∞).

As you showed in Exercise 2.10, convergent sequences are always Cauchy
sequences. The converse is not always true. For example, let X = Q be the set
of rational numbers and d(x, y) = |x − y|. Choose a sequence {xn}∞n=1 ⊂ Q
which converges to

√
2 ∈ R, then {xn}∞n=1 is (Q, d) – Cauchy but not (Q, d) –

convergent. The sequence does converge in R however.

Definition 2.25. A metric space (X, d) is complete if all Cauchy sequences
are convergent sequences.

Exercise 2.11. Let (X, d) be a complete metric space. Let A ⊂ X be a subset
of X viewed as a metric space using d|A×A. Show that (A, d|A×A) is complete
iff A is a closed subset of X.

Example 2.26. Examples 2. – 4. of complete metric spaces will be verified in
Chapter ?? below.

1. X = R and d(x, y) = |x− y|, see Theorem ?? above.

2. X = Rn and d(x, y) = ‖x− y‖2 =
(∑n

i=1(xi − yi)2
)1/2

.
3. X = `p(µ) for p ∈ [1,∞] and any weight function µ : X → (0,∞).
4. X = C([0, 1],R) – the space of continuous functions from [0, 1] to R and

d(f, g) := max
t∈[0,1]

|f(t)− g(t)|.

This is a special case of Lemma ?? below.
5. Let X = C([0, 1],R) and

d(f, g) :=

∫ 1

0

|f(t)− g(t)| dt.

You are asked in Exercise ?? to verify that (X, d) is a metric space which
is not complete.

Exercise 2.12 (Completions of Metric Spaces). Suppose that (X, d) is a
(not necessarily complete) metric space. Using the following outline show there
exists a complete metric space

(
X̄, d̄

)
and an isometric map i : X → X̄ such

that i (X) is dense in X̄, see Definition 2.11.

1. Let C denote the collection of Cauchy sequences a = {an}∞n=1 ⊂ X. Given
two element a, b ∈ C show dC (a, b) := limn→∞ d (an, bn) exists, dC (a, b) ≥ 0
for all a, b ∈ C and dC satisfies the triangle inequality,

dC (a, c) ≤ dC (a, b) + dC (b, c) for all a, b, c ∈ C.

Thus (C, dC) would be a metric space if it were true that dC(a, b) = 0 iff
a = b. This however is false, for example if an = bn for all n ≥ 100, then
dC(a, b) = 0 while a need not equal b.

2. Define two elements a, b ∈ C to be equivalent (write a ∼ b) when-
ever dC(a, b) = 0. Show “ ∼ ” is an equivalence relation on C and that
dC (a′, b′) = dC (a, b) if a ∼ a′ and b ∼ b′. (Hint: see Corollary 2.8.)
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20 2 Basic Metric and Topological Space Notions

3. Given a ∈ C let ā := {b ∈ C : b ∼ a} denote the equivalence class containing
a and let X̄ := {ā : a ∈ C} denote the collection of such equivalence classes.
Show that d̄

(
ā, b̄
)

:= dC (a, b) is well defined on X̄ × X̄ and verify
(
X̄, d̄

)
is

a metric space.
4. For x ∈ X let i (x) = ā where a is the constant sequence, an = x for all n.

Verify that i : X → X̄ is an isometric map and that i (X) is dense in X̄.
5. Verify

(
X̄, d̄

)
is complete. Hint: if {ā(m)}∞m=1 is a Cauchy sequence in X̄

choose bm ∈ X such that d̄ (i (bm) , ā(m)) ≤ 1/m. Then show ā(m) → b̄
where b = {bm}∞m=1 .

Definition 2.27 (Lip-K functions). Suppose that (X, d) is a pseudo-metric
space, U be a non-empty subset of X, and K > 0. A function f : U → C is
Lip-K on U if

|f (y)− f (x)| ≤ Kd (x, y) for all x, y ∈ U.

The basic fact about pseudo-metrics and Lip-K - functions that we will use
is contained in the next lemma.

Lemma 2.28. Let (X, d) be a pseudo-metric space, U be a non-empty subset of
X, Ū denote its closure in X, and f : U → C be a Lip-K function. Then there
exists a unique Lip-K function, f̂ : Ū → C such that f = f̂ |U . [See Exercise
2.18 for a generalization of this result.]

Exercise 2.13. Prove Lemma 2.28. [It is useful to observe that every Lip-K
function on U as above is continuous on U.]

Example 2.29. Let ε > 0, X = [ε,∞), d (x, y) := |y − x| for x, y ∈ X, U :=

X ∩Q, and f
(
m
n

)
= n

m =
(
m
n

)−1
for m,n ∈ Q. For x, y ∈ U we have

|f (x)− f (y)| =
∣∣∣∣ 1x − 1

y

∣∣∣∣ =
1

|x| |y|
|y − x| ≤ 1

ε2
|y − x| .

Thus f is Lip–ε−2 and therefore extends to a Lip–ε−2 function on Ū = X.
This shows how to construct the inverse of a real number from knowing the
how to compute inverses of numbers in Q. Note that for x ∈ X, we will have
x−1 = limn→∞ x−1

n where xn ∈ U such that xn → x as n→∞. Thus it follows
that

x · x−1 = lim
n→∞

xn · lim
n→∞

x−1
n = lim

n→∞

[
xn · x−1

n

]
= 1.

2.3 Sequential compactness

Definition 2.30. A metric space, (Y, ρ) , is (sequentially) compact iff every se-
quence, {yn}∞n=1 ⊂ Y has a convergent subsequence.

The method of proof of the next proposition typically goes under the name
of Cantor’s diagonalization technique.

Proposition 2.31 (A “little” Tychonov theorem). Suppose that Λ is a
countable set (like N) and for each λ ∈ Λ, (Yλ, ρλ) is a compact metric space.
Given sequences, {yλ (n) : n ∈ N} ⊂ Yλ, for each λ ∈ Λ, there exists an increas-
ing sequence, {nk}∞k=1 ⊂ N such that yλ := limk→∞ yλ (nk) exists in Yλ for each
λ ∈ Λ.

Proof. Since Λ is countable we may as well assume that Λ = N. By as-
sumption and induction there exists infinite subsets {Γλ}∞λ=1 of N such that
Γ1 ⊃ Γ2 ⊃ Γ3 ⊃ . . . and limΓλ3n→∞ yλ (n) = yλ ∈ Yλ exists for all λ ∈ N.
We now define nk inductively by n1 = minΓ1, n2 = min [Γ2 ∩ (n1,∞)] ,
n3 = min [Γ3 ∩ (n2,∞)] , etc. etc. It then follow that nk ∈ Γλ for all k ≥ λ,
nk ≥ k and nk ↑ ∞ as k →∞. Since subsequences of convergent sequences are
still convergent we find,

lim
k→∞

yλ (nk) = lim
Γλ3n→∞

yλ (n) = yλ ∈ Yλ for all λ ∈ Λ.

2.4 Supplementary Remarks

2.4.1 Word of Caution

Example 2.32. Let (X, d) be a metric space. It is always true that Bx(ε) ⊂ Cx(ε)
since Cx(ε) is a closed set containing Bx(ε). However, it is not always true that
Bx(ε) = Cx(ε). For example let X = {1, 2} and d(1, 2) = 1, then B1(1) = {1} ,
B1(1) = {1} while C1(1) = X. For another counterexample, take

X =
{

(x, y) ∈ R2 : x = 0 or x = 1
}

with the usually Euclidean metric coming from the plane. Then

B(0,0)(1) =
{

(0, y) ∈ R2 : |y| < 1
}
,

B(0,0)(1) =
{

(0, y) ∈ R2 : |y| ≤ 1
}
, while

C(0,0)(1) = B(0,0)(1) ∪ {(1, 0)} .

In spite of the above examples, Lemmas 2.33 and 2.34 below shows that for
certain metric spaces of interest it is true that Bx(ε) = Cx(ε).
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Lemma 2.33. Suppose that (X, |·|) is a normed vector space and d is the metric
on X defined by d(x, y) = |x− y| . Then

Bx(ε) = Cx(ε) and

bd(Bx(ε)) = {y ∈ X : d(x, y) = ε}.

where the boundary operation, bd(·) is defined in Definition ?? (BRUCE: For-
ward Reference.) below.

Proof. We must show that C := Cx(ε) ⊂ Bx(ε) =: B̄. For y ∈ C, let
v = y − x, then

|v| = |y − x| = d(x, y) ≤ ε.

Let αn = 1− 1/n so that αn ↑ 1 as n→∞. Let yn = x+ αnv, then d(x, yn) =
αnd(x, y) < ε, so that yn ∈ Bx(ε) and d(y, yn) = (1− αn) |v| → 0 as n → ∞.
This shows that yn → y as n→∞ and hence that y ∈ B̄.

2.4.2 Riemannian Metrics

This subsection is not completely self contained and may safely be skipped.

Lemma 2.34. Suppose that X is a Riemannian (or sub-Riemannian) manifold
and d is the metric on X defined by

d(x, y) = inf {`(σ) : σ(0) = x and σ(1) = y}

where `(σ) is the length of the curve σ. We define `(σ) =∞ if σ is not piecewise
smooth.

Then

Bx(ε) = Cx(ε) and

bd(Bx(ε)) = {y ∈ X : d(x, y) = ε}

where the boundary operation, bd(·) is defined in Definition ?? below.

Proof. Let C := Cx(ε) ⊂ Bx(ε) =: B̄. We will show that C ⊂ B̄ by showing
B̄c ⊂ Cc. Suppose that y ∈ B̄c and choose δ > 0 such that By(δ) ∩ B̄ = ∅. In
particular this implies that

By(δ) ∩Bx(ε) = ∅.

We will finish the proof by showing that d(x, y) ≥ ε + δ > ε and hence that
y ∈ Cc. This will be accomplished by showing: if d(x, y) < ε + δ then By(δ) ∩
Bx(ε) 6= ∅. If d(x, y) < max(ε, δ) then either x ∈ By(δ) or y ∈ Bx(ε). In either
case By(δ)∩Bx(ε) 6= ∅. Hence we may assume that max(ε, δ) ≤ d(x, y) < ε+ δ.
Let α > 0 be a number such that

Fig. 2.2. An almost length minimizing curve joining x to y.

max(ε, δ) ≤ d(x, y) < α < ε+ δ

and choose a curve σ from x to y such that `(σ) < α. Also choose 0 < δ′ < δ such
that 0 < α− δ′ < ε which can be done since α− δ < ε. Let k(t) = d(y, σ(t)) a
continuous function on [0, 1] and therefore k([0, 1]) ⊂ R is a connected set which
contains 0 and d(x, y). Therefore there exists t0 ∈ [0, 1] such that d(y, σ(t0)) =
k(t0) = δ′. Let z = σ(t0) ∈ By(δ) then

d(x, z) ≤ `(σ|[0,t0]) = `(σ)− `(σ|[t0,1]) < α− d(z, y) = α− δ′ < ε

and therefore z ∈ Bx(ε) ∩Bx(δ) 6= ∅.

Remark 2.35. Suppose again that X is a Riemannian (or sub-Riemannian) man-
ifold and

d(x, y) = inf {`(σ) : σ(0) = x and σ(1) = y} .

Let σ be a curve from x to y and let ε = `(σ) − d(x, y). Then for all 0 ≤ u <
v ≤ 1,

d(x, y) + ε = `(σ) = `(σ|[0,u]) + `(σ|[u,v]) + `(σ|[v,1])

≥ d(x, σ(u)) + `(σ|[u,v]) + d(σ(v), y)

and therefore, using the triangle inequality,

`(σ|[u,v]) ≤ d(x, y) + ε− d(x, σ(u))− d(σ(v), y)

≤ d(σ(u), σ(v)) + ε.

This leads to the following conclusions. If σ is within ε of a length minimizing
curve from x to y then σ|[u,v] is within ε of a length minimizing curve from σ(u)
to σ(v). In particular if σ is a length minimizing curve from x to y then σ|[u,v]

is a length minimizing curve from σ(u) to σ(v).
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2.5 Exercises

Exercise 2.14. Let (X, d) be a metric space. Suppose that {xn}∞n=1 ⊂ X is a
sequence and set εn := d(xn, xn+1). Show that for m > n that

d(xn, xm) ≤
m−1∑
k=n

εk ≤
∞∑
k=n

εk.

Conclude from this that if

∞∑
k=1

εk =

∞∑
n=1

d(xn, xn+1) <∞

then {xn}∞n=1 is Cauchy. Moreover, show that if {xn}∞n=1 is a convergent se-
quence and x = limn→∞ xn then

d(x, xn) ≤
∞∑
k=n

εk.

Exercise 2.15. Show that (X, d) is a complete metric space iff every sequence
{xn}∞n=1 ⊂ X such that

∑∞
n=1 d(xn, xn+1) <∞ is a convergent sequence in X.

You may find it useful to prove the following statements in the course of the
proof.

1. If {xn} is Cauchy sequence, then there is a subsequence yj := xnj such that∑∞
j=1 d(yj+1, yj) <∞.

2. If {xn}∞n=1 is Cauchy and there exists a subsequence yj := xnj of {xn} such
that x = limj→∞ yj exists, then limn→∞ xn also exists and is equal to x.

Exercise 2.16. Suppose that f : [0,∞) → [0,∞) is a C2 – function such
that f(0) = 0, f ′ > 0 and f ′′ ≤ 0 and (X, ρ) is a metric space. Show that
d(x, y) = f(ρ(x, y)) is a metric on X. In particular show that

d(x, y) :=
ρ(x, y)

1 + ρ(x, y)

is a metric on X. (Hint: use calculus to verify that f(a + b) ≤ f(a) + f(b) for
all a, b ∈ [0,∞).)

Exercise 2.17. Let {(Xn, dn)}∞n=1 be a sequence of metric spaces, X :=∏∞
n=1Xn, and for x = (x(n))

∞
n=1 and y = (y(n))

∞
n=1 in X let

d(x, y) =

∞∑
n=1

2−n
dn(x(n), y(n))

1 + dn(x(n), y(n))
. (2.6)

Show:

1. (X, d) is a metric space,
2. a sequence {xk}∞k=1 ⊂ X converges to x ∈ X iff xk(n) → x(n) ∈ Xn as
k →∞ for each n ∈ N and

3. X is complete if Xn is complete for all n.

Exercise 2.18. Suppose (X, ρ) and (Y, d) are metric spaces and A is a dense
subset of X.

1. Show that if F : X → Y and G : X → Y are two continuous functions
such that F = G on A then F = G on X. Hint: consider the set C :=
{x ∈ X : F (x) = G (x)} .

2. Now suppose that (Y, d) is complete. If f : A → Y is a function which is
uniformly continuous (i.e. for every ε > 0 there exists a δ > 0 such that

d (f (a) , f (b)) < ε for all a, b ∈ A with ρ (a, b) < δ),

show there is a unique continuous function F : X → Y such that F = f on
A. Hint: each point x ∈ X is a limit of a sequence consisting of elements
from A.

3. Let X = R = Y and A = Q ⊂ X, find a function f : Q→ R which is
continuous on Q but does not extend to a continuous function on R.
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Basic Probabilistic Notions

Definition 3.1. A sample space Ω is a set which is to represents all possible
outcomes of an “experiment.”

Example 3.2. 1. The sample space for flipping a coin one time could be taken
to be, Ω = {0, 1} .

2. The sample space for flipping a coin N -times could be taken to be, Ω =
{0, 1}N and for flipping an infinite number of times,

Ω = {ω = (ω1, ω2, . . . ) : ωi ∈ {0, 1}} = {0, 1}N .

3. If we have a roulette wheel with 38 entries, then we might take

Ω = {00, 0, 1, 2, . . . , 36}

for one spin,
Ω = {00, 0, 1, 2, . . . , 36}N

for N spins, and
Ω = {00, 0, 1, 2, . . . , 36}N

for an infinite number of spins.
4. If we have a spinner (a board with an arrow attached to the board by a

bearing at its base), we could take

Ω = S1 = {z ∈ C : |z| = 1} =
{
eiθ : −π ≤ θ ≤ π

}
.

5. If we throw darts at a board of radius R, we may take

Ω = DR :=
{

(x, y) ∈ R2 : x2 + y2 ≤ R2
}

for one throw,
Ω = DN

R

for N throws, and
Ω = DN

R

for an infinite number of throws.
6. Suppose we release a perfume particle at location x ∈ R3 and follow its

motion for all time, 0 ≤ t <∞. In this case, we might take,

Ω =
{
ω ∈ C ([0,∞) ,R3) : ω (0) = x

}
.

Definition 3.3. An event, A, is a subset of Ω. Given A ⊂ Ω we also define
the indicator function of A by

1A (ω) :=

{
1 if ω ∈ A
0 if ω /∈ A.

Example 3.4. Suppose that Ω = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here ωn = 1 represents the fact that a head was
thrown on the nth – toss, while ωn = 0 represents a tail on the nth – toss.

1. A = {ω ∈ Ω : ω3 = 1} represents the event that the third toss was a head.
2. A = ∪∞i=1 {ω ∈ Ω : ωi = ωi+1 = 1} represents the event that (at least) two

heads are tossed twice in a row at some time.
3. A = ∩∞N=1 ∪n≥N {ω ∈ Ω : ωn = 1} is the event where there are infinitely

many heads tossed in the sequence.
4. A = ∪∞N=1 ∩n≥N {ω ∈ Ω : ωn = 1} is the event where heads occurs from

some time onwards, i.e. ω ∈ A iff there exists, N = N (ω) such that ωn = 1
for all n ≥ N.

Ideally we would like to assign a probability, P (A) , to all events A ⊂ Ω.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, ω (n) ∈ Ω for each n ∈ N,
then try to “define” P (A) = limN→∞ PN (A) where
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PN (A) :=
1

N

N∑
k=1

1A (ω (k)) (3.1)

:=
1

N
# {1 ≤ k ≤ N : ω (k) ∈ A} . (3.2)

Here PN (A) is the (empirical) relative frequency that event A happened during
the first N trials. The properties of this function are indicated in the next simple
lemma.

Lemma 3.5. The function PN (·) satisfies;

1. PN (A) ∈ [0, 1] for all A ⊂ Ω.
2. PN (∅) = 0 and PN (Ω) = 1.
3. Additivity. If A and B are disjoint event, i.e. A ∩ B = AB = ∅, then
PN (A ∪B) = PN (A) + PN (B) .

4. Countable Additivity. More generally, if {Aj}∞j=1 are pairwise disjoint

events (i.e. Aj ∩Ak = ∅ for all j 6= k), then

PN
(
∪∞j=1Aj

)
=

∞∑
j=1

PN (Aj) .

Proof. Items 1. and 2. are obvious. For the additivity of item 3. first observe
that if A and B are disjoint events, i.e. A∩B = AB = ∅, then 1A∪B = 1A+1B .
Therefore we have

PN (A ∪B) =
1

N

N∑
k=1

1A∪B (ω (k)) =
1

N

N∑
k=1

[1A (ω (k)) + 1B (ω (k))]

= PN (A) + PN (B) .

Similarly for item 4., if {Aj}∞j=1 are pairwise disjoint events (i.e. Aj∩Ak = ∅
for all j 6= k), then again, 1∪∞

j=1
Aj =

∑∞
j=1 1Aj and therefore

PN
(
∪∞j=1Aj

)
=

1

N

N∑
k=1

1∪∞
j=1

Aj (ω (k)) =
1

N

N∑
k=1

∞∑
j=1

1Aj (ω (k))

=

∞∑
j=1

1

N

N∑
k=1

1Aj (ω (k)) =

∞∑
j=1

PN (Aj) .

We expect that PN (A) is an approximation to the “true” probability of the
event A which gets closer to the truth as N →∞. Thus we wish to define P (A)
to be the relative long term relative frequency that the event A occurred for
the given sequence of experiments, {ω (k)}∞k=1 , i.e.

“P (A) := lim
N→∞

PN (A) = lim
N→∞

1

N

N∑
k=1

1A (ω (k)) .” (3.3)

There are of course a number of problems with defining P as in Eq. (3.3)
of which the most important is how do we know the limit even exits. Even if
the limit exists we may wonder if the answer is independent of the sequence of
experiments we used to compute P (A) . Nevertheless, we will take it for granted
in this chapter that the limit does exist and is well defined, i.e. independent of
the given sequence of experiments.

Under the postulate that limit in Eq. (3.3) exists for each even A ⊂ Ω, we
may formally pass to the limit in the expressions in items 1. – 4. of Lemma 3.5
in order to “show” P satisfies;

1. P (A) ∈ [0, 1] for all A ⊂ Ω.
2. P (∅) = 0 and P (Ω) = 1.
3. Additivity. If A and B are disjoint event, i.e. A ∩ B = AB = ∅, then

1A∪B = 1A + 1B so that

P (A ∪B) = lim
N→∞

PN (A ∪B) = lim
N→∞

[PN (A) + PN (B)] = P (A)+P (B) .

4. Countable Additivity. If {Aj}∞j=1 are pairwise disjoint events (i.e. Aj ∩
Ak = ∅ for all j 6= k), then again, 1∪∞

j=1
Aj =

∑∞
j=1 1Aj and therefore we

might hope that (by another leap of faith) that

P
(
∪∞j=1Aj

)
= lim
N→∞

PN
(
∪∞j=1Aj

)
= lim
N→∞

∞∑
j=1

PN (Aj)

?
=

∞∑
j=1

lim
N→∞

PN (Aj) =

∞∑
j=1

P (Aj) .

Definition 3.6 (Probability Measures (Provisional)). Loosely speaking a
probability measure is a function, P : 2Ω → [0, 1] for which the 4 conditions
above are satisfied. (Probability theory is the study of such functions.)

Example 3.7. Let us consider the tossing of a fair coin N times. In this case we
would expect that every ω ∈ Ω is equally likely, i.e. P ({ω}) = 1

2N
. Assuming

this we are then forced to define

P (A) =
1

2N
# (A) .

Observe that this probability has the following property. Suppose that σ ∈
{0, 1}k is a given sequence, then
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P ({ω : (ω1, . . . , ωk) = σ}) =
1

2N
· 2N−k =

1

2k
.

That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.

Example 3.8. The previous example suggests that if we flip a fair coin an infinite
number of times, so that now Ω = {0, 1}N , then we should define

P ({ω ∈ Ω : (ω1, . . . , ωk) = σ}) =
1

2k
(3.4)

for any k ≥ 1 and σ ∈ {0, 1}k . Assuming there exists a probability, P : 2Ω →
[0, 1] such that Eq. (3.4) holds, we would like to compute, for example, the
probability of the event B where an infinite number of heads are tossed. To try
to compute this, let

An = {ω ∈ Ω : ωn = 1} = {heads at time n}
BN := ∪n≥NAn = {at least one heads at time N or later}

and
B = ∩∞N=1BN = {An i.o.} = ∩∞N=1 ∪n≥N An.

Since

BcN = ∩n≥NAcn ⊂ ∩M≥n≥NAcn = {ω ∈ Ω : ωN = ωN+1 = · · · = ωM = 0} ,

we see that

P (BcN ) ≤ 1

2M−N
→ 0 as M →∞.

Therefore, P (BN ) = 1 for all N. If we assume that P is continuous under taking
decreasing limits1 we may conclude, using BN ↓ B, that

P (B) = lim
N→∞

P (BN ) = 1.

Without this continuity assumption we would not be able to compute P (B) .

The unfortunate fact is that we can not always assign a desired probability
function, P (A) , for all A ⊂ Ω. For example we have the following negative
theorem.

Theorem 3.9 (No-Go Theorem for fair spinners). Let Ω =
{z ∈ C : |z| = 1} be the unit circle. Then there is no probability function,
P : 2Ω → [0, 1] such that P is invariant under rotations.

1 We will see a little later this is a consequence of countable additivity.

Proof. We are going to use the fact proved below in Proposition 6.3, that
the continuity condition on P is equivalent to the σ – additivity of P. For z ∈ Ω
and N ⊂ Ω let

zN := {zn ∈ Ω : n ∈ N}, (3.5)

that is to say eiθN is the set N rotated counter clockwise by angle θ. By
assumption, we are supposing that

P (zN) = P (N) (3.6)

for all z ∈ Ω and N ⊂ Ω.
Let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q}

– a countable subgroup of Ω. As above R acts on Ω by rotations and divides Ω
up into equivalence classes, where z, w ∈ Ω are equivalent if z = rw for some
r ∈ R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N ⊂ Ω be the set of these representative
points. Then every point z ∈ Ω may be uniquely written as z = nr with n ∈ N
and r ∈ R. That is to say

Ω =
∑
r∈R

(rN) (3.7)

where
∑
αAα is used to denote the union of pair-wise disjoint sets {Aα} . By

Eqs. (3.6) and (3.7),

1 = P (Ω) =
∑
r∈R

P (rN) =
∑
r∈R

P (N). (3.8)

We have thus arrived at a contradiction, since the right side of Eq. (3.8) is either
equal to 0 or to ∞ depending on whether P (N) = 0 or P (N) > 0.

Here are some other related results which should give one pause even when
thinking about desirable finitely additive measures.

Theorem 3.10 (Banach–Tarski paradox 1942). Given any two bounded
subsets A and B of Rd with d ≥ 3, both of which have a non-empty interior,
there are partitions of A and B into a finite number of disjoint subsets, A =
A1∪· · ·∪Ak and B = B1∪· · ·∪Bk such that Ai and Bi are congruent for each
i.

Theorem 3.11 (Robinson’s doubling of the sphere 1947). It is possible
to double the ball in R3 by decomposing it into five pieces. To be more precise if
B is the unit ball in R3 there exists {Ai}5i=1 ⊂ B such that B =

∑5
i=1Ai while∑5

i=1A
′
i = B ∪ B′ where B′ is a translate of B such that B′ ∩ B = ∅ an each

A′i is congruent to Ai for 1 ≤ i ≤ 5.
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To avoid the issues inherent in the last three theorems we are going to have
to relinquish the idea that P should necessarily be defined on all of 2Ω . So we
are going to only define P on particular subsets, B ⊂ 2Ω . We will developed
this below under the title of σ – algebras.

Remark 3.12 (What is probability about.). Given a sample space Ω our goals in
a nutshell are as follows;

1. Start with a “natural” probability P0 defined on some relatively small col-
lection of events (A) in Ω, see Proposition 5.8.

2. Verify that P0 has the continuity property of being countably additive –
this is a substantial restriction on P0, see Proposition 6.4.

3. Show that continuous P0’s have a unique extension (P ) to (B) – the “clo-
sure” of A, see Theorem 6.20 and 6.28.

4. Now try to compute as explicitly as possible P (A) for A ∈ B and more gen-
erally “expectations of random variables” relative to P. [This is essentially
the main content of the course and the rest of these notes.]



Part II

Formal Development





4

Preliminaries

4.1 Set Operations

Let N denote the positive integers, N0 := N∪{0} be the non-negative integers
and Z = N0 ∪ (−N) – the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 4.1 Given two sets X and Y, let Y X denote the collection of all
functions f : X → Y. If X = N, we will say that f ∈ Y N is a sequence
with values in Y and often write fn for f (n) and express f as {fn}∞n=1 . If
X = {1, 2, . . . , N}, we will write Y N in place of Y {1,2,...,N} and denote f ∈ Y N
by f = (f1, f2, . . . , fN ) where fn = f(n).

Notation 4.2 More generally if {Xα : α ∈ A} is a collection of non-empty sets,
let XA =

∏
α∈A

Xα and πα : XA → Xα be the canonical projection map defined

by πα(x) = xα. If If Xα = X for some fixed space X, then we will write
∏
α∈A

Xα

as XA rather than XA.

Recall that an element x ∈ XA is a “choice function,” i.e. an assignment
xα := x(α) ∈ Xα for each α ∈ A. The axiom of choice states that XA 6= ∅
provided that Xα 6= ∅ for each α ∈ A.

Notation 4.3 Given a set X, let 2X denote the power set of X – the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2X is that if we think of 2
meaning {0, 1} , then an element of a ∈ 2X = {0, 1}X is completely determined
by the set

A := {x ∈ X : a(x) = 1} ⊂ X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.

For A ∈ 2X let
Ac := X \A = {x ∈ X : x /∈ A}

and more generally if A,B ⊂ X let

B \A := {x ∈ B : x /∈ A} = B ∩Ac.

We also define the symmetric difference of A and B by

A4B := (B \A) ∪ (A \B) .

As usual if {Aα}α∈I is an indexed collection of subsets of X we define the union
and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and

∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 4.4 We will also write
∑
α∈I Aα for ∪α∈IAα in the case that

{Aα}α∈I are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For example
let {An}∞n=1 be a sequence of subsets from X and define

inf
k≥n

An := ∩k≥nAk, sup
k≥n

An := ∪k≥nAk,

lim sup
n→∞

An := inf
n

sup
k≥n

Ak = {x ∈ X : # {n : x ∈ An} =∞} =: {An i.o.}

and

lim inf
n→∞

An := sup
n

inf
k≥n

Ak = {x ∈ X : x ∈ An for all n sufficiently large} =: {An a.a.} .

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost
always.) Then x ∈ {An i.o.} iff

∀N ∈ N ∃ n ≥ N 3 x ∈ An

and this may be expressed as

{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff

∃ N ∈ N 3 ∀ n ≥ N, x ∈ An

which may be written as

{An a.a.} = ∪∞N=1 ∩n≥N An.
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Definition 4.5. Given a set A ⊂ X, let

1A (x) =

{
1 if x ∈ A
0 if x /∈ A

be the indicator function of A.

Example 4.6. Here are some example identities involving indicator functions.
Let A and B be subsets of X, then

1A∩B = 1A · 1B = min (1A, 1B) ,

1A∪B = max (1A, 1B) ,

1Ac = 1− 1A, and 1A4B = |1A − 1B |

Lemma 4.7 (Properties of inf and sup). We have:

1. (∪nAn)
c

= ∩nAcn,
2. {An i.o.}c = {Acn a.a.} ,
3. lim sup

n→∞
An = {x ∈ X :

∑∞
n=1 1An (x) =∞} ,

4. lim infn→∞An =
{
x ∈ X :

∑∞
n=1 1Acn (x) <∞

}
,

5. supk≥n 1Ak (x) = 1∪k≥nAk = 1supk≥n Ak ,
6. infk≥n 1Ak (x) = 1∩k≥nAk = 1infk≥n Ak ,
7. 1lim sup

n→∞
An = lim sup

n→∞
1An , and

8. 1lim infn→∞ An = lim infn→∞ 1An .

Proof. These results follow fairly directly from the definitions and so the
proof is left to the reader – some of the results are in the exercises below. (The
reader should definitely provide a proof for herself.)

Definition 4.8. A set X is said to be countable if is empty or there is an
injective function f : X → N, otherwise X is said to be uncountable.

Lemma 4.9 (Basic Properties of Countable Sets).

1. If A ⊂ X is a subset of a countable set X then A is countable.
2. Any infinite subset Λ ⊂ N is in one to one correspondence with N.
3. A non-empty set X is countable iff there exists a surjective map, g : N→ X.
4. If X and Y are countable then X × Y is countable.
5. Suppose for each m ∈ N that Am is a countable subset of a set X, then
A = ∪∞m=1Am is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2X is uncountable for any infinite set X.

Proof. We take each item in turn.

1. If f : X → N is an injective map then so is the restriction, f |A, of f to the
subset A.

2. Let f (1) = minΛ and define f inductively by

f(n+ 1) = min (Λ \ {f(1), . . . , f(n)}) .

Since Λ is infinite the process continues indefinitely. The function f : N→ Λ
defined this way is a bijection.

3. If g : N→ X is a surjective map, let

f(x) = min g−1 ({x}) = min {n ∈ N : f(n) = x} .

Then f : X → N is injective which combined with item 2. (taking Λ = f(X))
shows X is countable. Conversely if f : X → N is injective let x0 ∈ X be
a fixed point and define g : N → X by g(n) = f−1(n) for n ∈ f (X) and
g(n) = x0 otherwise.

4. Let us first construct a bijection, h, from N to N × N. To do this put the
elements of N× N into an array of the form

(1, 1) (1, 2) (1, 3) . . .
(2, 1) (2, 2) (2, 3) . . .
(3, 1) (3, 2) (3, 3) . . .

...
...

...
. . .


and then “count” these elements by counting the sets {(i, j) : i+ j = k}
one at a time. For example let h (1) = (1, 1) , h(2) = (2, 1), h (3) = (1, 2),
h(4) = (3, 1), h(5) = (2, 2), h(6) = (1, 3) and so on. If f : N→X and
g : N→Y are surjective functions, then the function (f × g)◦h : N→X×Y
is surjective where (f × g) (m,n) := (f (m), g(n)) for all (m,n) ∈ N× N.

5. If A = ∅ then A is countable by definition so we may assume A 6= ∅. With
out loss of generality we may assume A1 6= ∅ and by replacing Am by A1

if necessary we may also assume Am 6= ∅ for all m. For each m ∈ N let
am : N→Am be a surjective function and then define f : N×N→ ∪∞m=1Am
by f(m,n) := am(n). The function f is surjective and hence so is the
composition, f ◦ h : N → ∪∞m=1Am, where h : N→ N × N is the bijection
defined above.

6. Let us begin by showing 2N = {0, 1}N is uncountable. For sake of con-

tradiction suppose f : N → {0, 1}N is a surjection and write f (n) as

(f1 (n) , f2 (n) , f3 (n) , . . . ) . Now define a ∈ {0, 1}N by an := 1 − fn(n).
By construction fn (n) 6= an for all n and so a /∈ f (N) . This contradicts
the assumption that f is surjective and shows 2N is uncountable.
For the general case, since Y X0 ⊂ Y X for any subset Y0 ⊂ Y, if Y X0 is
uncountable then so is Y X . In this way we may assume Y0 is a two point
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set which may as well be Y0 = {0, 1} . Moreover, since X is an infinite set we
may find an injective map x : N → X and use this to set up an injection,
i : 2N → 2X by setting i (A) := {xn : n ∈ N} ⊂ X for all A ⊂ N. If 2X

were countable we could find an injective map f : 2X → N. We then have
f ◦ i : 2N → N is also injective which would imply 2N is countable which it
is not.

4.2 Exercises

Let f : X → Y be a function and {Ai}i∈I be an indexed family of subsets of Y,
verify the following assertions.

Exercise 4.1. (∩i∈IAi)c = ∪i∈IAci .

Exercise 4.2. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 4.3. Let {Bi}i∈I be another collection of subsets of Y. Show [∪i∈IAi]\
[∪i∈IBi] ⊂ ∪i∈I (Ai \Bi) and then use this inclusion twice to show [∪i∈IAi]4
[∪i∈IBi] ⊂ ∪i∈I (Ai 4Bi) .

Exercise 4.4 (Triangle inclusion for sets). If A,B,C are subsets of X, show
A \ C ⊂ [A \B] ∪ [B \ C] and use this identity twice to show

A4 C ⊂ [A4B] ∪ [B 4 C] . (4.1)

Exercise 4.5. f−1(∪i∈IAi) = ∪i∈If−1(Ai).

Exercise 4.6. f−1(∩i∈IAi) = ∩i∈If−1(Ai).

Exercise 4.7. Find a function f : X = {a, b, c} → Y = {1, 2} and subsets C
and D of X such that

f(C ∩D) 6= f(C) ∩ f(D) and f (Cc) 6= [f (C)]
c
.

4.3 Algebraic sub-structures of sets

Definition 4.10. A collection of subsets A of a set X is a π – system or
multiplicative system if A is closed under taking finite intersections.

Definition 4.11. A collection of subsets A of a set X is an algebra (Field)
if

1. ∅, X ∈ A
2. A ∈ A implies that Ac ∈ A
3. A is closed under finite unions, i.e. if A1, . . . , An ∈ A then A1∪· · ·∪An ∈ A.

In view of conditions 1. and 2., 3. is equivalent to
3′. A is closed under finite intersections.

Definition 4.12. A collection of subsets B of X is a σ – algebra (or some-
times called a σ – field) if B is an algebra which also closed under countable
unions, i.e. if {Ai}∞i=1 ⊂ B, then ∪∞i=1Ai ∈ B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections.)

Example 4.13. Here are some examples of algebras.

1. B = 2X , then B is a σ – algebra.
2. B = {∅, X} is a σ – algebra called the trivial σ – field.
3. Let X = {1, 2, 3}, then A = {∅, X, {1} , {2, 3}} is an algebra while, S :=
{∅, X, {2, 3}} is a not an algebra but is a π – system.

4. Suppose that S is a set (called state space) and Ω := S∞ := SN (think of
N as time and Ω as path space). For each n ∈ N, let

An := {B ×Ω : B ⊂ Sn} .

Then An is a σ-algebra while A := ∪∞n=1An is an algebra. [When S is
an uncountable set we will typically only used a modified version of this
construction.]

Proposition 4.14. Let E be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and σ – algebra σ(E) which contains E .

Proof. Simply take

A(E) :=
⋂
{A : A is an algebra such that E ⊂ A}

and
σ(E) :=

⋂
{M :M is a σ – algebra such that E ⊂M}.

Example 4.15. Suppose X = {1, 2, 3} and E = {∅, X, {1, 2}, {1, 3}}, see Figure
4.1. Then

A(E) = σ(E) = 2X .

On the other hand if E = {{1, 2}} , then A (E) = {∅, X, {1, 2}, {3}}.
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Fig. 4.1. A collection of subsets.

Exercise 4.8. Suppose that Ei ⊂ 2X for i = 1, 2. Show that A (E1) = A (E2)
iff E1 ⊂ A (E2) and E2 ⊂ A (E1) . Similarly show, σ (E1) = σ (E2) iff E1 ⊂ σ (E2)
and E2 ⊂ σ (E1) . Give a simple example where A (E1) = A (E2) while E1 6= E2.

In this course we will often be interested in the Borel σ – algebra on a
topological space.

Definition 4.16 (Borel σ – field). The Borel σ – algebra, B = BR =
B (R) , on R is the smallest σ -field containing all of the open subsets of R.
More generally if (X, τ) is a topological space, the Borel σ – algebra on X is
BX := σ (τ) – i.e. the smallest σ – algebra containing all open (closed) subsets
of X.

Exercise 4.9. Verify the Borel σ – algebra, BR, is generated by any of the
following collection of sets:

1. E1 := {(a,∞) : a ∈ R} , 2. E2 := {(a,∞) : a ∈ Q} or 3. E3 := {[a,∞) : a ∈ Q} .

Hint: make use of the ideas in Exercise 4.8.

We will postpone a more in depth study of σ – algebras until later. For now,
let us concentrate on understanding the the simpler notion of an algebra.

Definition 4.17. Let X be a set. We say that a family of sets F ⊂ 2X is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F .

Example 4.18. Let X be a set and E = {A1, . . . , An} where A1, . . . , An is a
partition of X. In this case

A(E) = σ(E) = {∪i∈ΛAi : Λ ⊂ {1, 2, . . . , n}}

where ∪i∈ΛAi := ∅ when Λ = ∅. Notice that

# (A(E)) = #(2{1,2,...,n}) = 2n.

Example 4.19. Suppose that X is a set and that A ⊂ 2X is a finite algebra, i.e.
# (A) <∞. For each x ∈ X let

Ax = ∩{A ∈ A : x ∈ A} ∈ A,

wherein we have used A is finite to insure Ax ∈ A. Hence Ax is the smallest set
in A which contains x.

Now suppose that y ∈ X. If x ∈ Ay then Ax ⊂ Ay so that Ax ∩ Ay = Ax.
On the other hand, if x /∈ Ay then x ∈ Ax \Ay and therefore Ax ⊂ Ax \Ay, i.e.
Ax ∩ Ay = ∅. Therefore we have shown, either Ax ∩ Ay = ∅ or Ax ∩ Ay = Ax.
By reversing the roles of x and y it also follows that either Ay ∩ Ax = ∅ or
Ay ∩Ax = Ay. Therefore we may conclude, either Ax = Ay or Ax ∩Ay = ∅ for
all x, y ∈ X.

[Alternatively, let x, y ∈ X. If x /∈ Ay, then x ∈ Ax \ Ay ∈ A and therefore
Ax \ Ay = Ax, i.e. Ay ∩ Ax = ∅. Similarly if y /∈ Ax, then Ay ∩ Ax = ∅. From
these remarks we may now also conclude that if x ∈ Ay, then y ∈ Ax (for
otherwise Ay ∩Ax = ∅) and therefore Ax ⊂ Ay and Ay ⊂ Ax, i.e. Ax = Ay.]

Let us now define {Bi}ki=1 to be an enumeration of {Ax}x∈X . It is a straight-
forward to conclude that

A = {∪i∈ΛBi : Λ ⊂ {1, 2, . . . , k}} .

For example observe that for any A ∈ A, we have A = ∪x∈AAx = ∪i∈ΛBi where
Λ := {i : Bi ⊂ A} .

Proposition 4.20. Suppose that B ⊂ 2X is a σ – algebra and B is at most
a countable set. Then there exists a unique finite partition F of X such that
F ⊂ B and every element B ∈ B is of the form

B = ∪{A ∈ F : A ⊂ B} . (4.2)

In particular B is actually a finite set and # (B) = 2n for some n ∈ N.

Proof. We proceed as in Example 4.19. For each x ∈ X let

Ax = ∩{A ∈ B : x ∈ A} ∈ B,

wherein we have used B is a countable σ – algebra to insure Ax ∈ B. Just as
above either Ax ∩Ay = ∅ or Ax = Ay and therefore F = {Ax : x ∈ X} ⊂ B is a
(necessarily countable) partition of X for which Eq. (4.2) holds for all B ∈ B.

Enumerate the elements of F as F = {Pn}Nn=1 where N ∈ N or N = ∞. If
N =∞, then the correspondence

a ∈ {0, 1}N → Aa = ∪{Pn : an = 1} ∈ B

is bijective and therefore, by Lemma 4.9, B is uncountable. Thus any countable
σ – algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader.
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Example 4.21 (Countable/Co-countable σ – Field). Let X = R and E :=
{{x} : x ∈ R} . Then σ (E) consists of those subsets, A ⊂ R, such that A is
countable or Ac is countable. Similarly, A (E) consists of those subsets, A ⊂ R,
such that A is finite or Ac is finite. More generally we have the following exercise.

Exercise 4.10 (Look at but do not hand in.). Let X be a set, I be an
infinite index set, and E = {Ai}i∈I be a partition of X. Prove the algebra,
A (E) , and that σ – algebra, σ (E) , generated by E are given by

A(E) = {∪i∈ΛAi : Λ ⊂ I with # (Λ) <∞ or # (Λc) <∞} (4.3)

and
σ(E) = {∪i∈ΛAi : Λ ⊂ I with Λ countable or Λc countable} (4.4)

respectively. Here we are using the convention that ∪i∈ΛAi := ∅ when Λ = ∅.
In particular if I is countable, then

σ(E) = {∪i∈ΛAi : Λ ⊂ I} .

Proposition 4.22. Let X be a set and E ⊂ 2X . Let Ec := {Ac : A ∈ E} and
Ec := E ∪ {X, ∅} ∪ Ec Then

A(E) := {finite unions of finite intersections of elements from Ec}. (4.5)

Proof. Let A denote the right member of Eq. (4.5). From the definition of
an algebra, it is clear that E ⊂ A ⊂ A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z ∈ A be expressed as

Z =

N⋃
i=1

K⋂
j=1

Aij

where Aij ∈ Ec. Therefore, writing Bij = Acij ∈ Ec, we find that

Zc =

N⋂
i=1

K⋃
j=1

Bij =

K⋃
j1,...,jN=1

(B1j1 ∩B2j2 ∩ · · · ∩BNjN ) ∈ A

wherein we have used the fact that B1j1∩B2j2∩· · ·∩BNjN is a finite intersection
of sets from Ec.

Corollary 4.23. Let E ⊂ 2Ω . If # (E) < ∞ then # (A (E)) < ∞ and σ (E) =
A (E) .

Remark 4.24. One might think that in general σ(E) may be described as the
countable unions of countable intersections of sets in Ec. However this is in
general false, since if

Z =

∞⋃
i=1

∞⋂
j=1

Aij

with Aij ∈ Ec, then

Zc =

∞⋃
j1=1,j2=1,...jN=1,...

( ∞⋂
`=1

Ac`,j`

)

which is now an uncountable union. Thus the above description is not correct.
In general it is complicated to explicitly describe σ(E), see Proposition 1.23 on
page 39 of Folland for details. Also see Proposition 4.20.

Definition 4.25 (Topologies). A collection τ ⊂ 2X is a said to be a topology
on X if

1. ∅, X ∈ τ
2. if V1, V2 ∈ τ, then V1 ∩ V2 ∈ τ, i.e. τ is closed under finite intersections.
3. If {Vα}α∈A ⊂ τ then ∪α∈AVα ∈ τ, i.e. τ is closed under arbitrary unions.

The sets V ∈ τ are called open sets while those sets F ⊂ X such that
F c ∈ τ are said to be closed sets.

Exercise 4.11. Let τ be a topology on a set X and A = A(τ) be the algebra
generated by τ. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F ∩ V where F is closed and V is open.

Definition 4.26. A set S ⊂ 2X is said to be an semialgebra or elementary
class provided that

• ∅ ∈ S
• S is closed under finite intersections
• if E ∈ S, then Ec is a finite disjoint union of sets from S. (In particular

X = ∅c is a finite disjoint union of elements from S.)

We will typically denote semi-algebras or elementary classes by either S or
E .

Proposition 4.27. Suppose S ⊂ 2X is a elementary class, then A = A(S)
consists of sets which may be written as finite disjoint unions of sets from S.
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Proof. (Although it is possible to give a proof using Proposition 4.22, it is
just as simple to give a direct proof.) Let A denote the collection of sets which
may be written as finite disjoint unions of sets from S. Clearly S ⊂ A ⊂ A(S) so
it suffices to show A is an algebra since A(S) is the smallest algebra containing
S. By the properties of S, we know that ∅, X ∈ A. The following two steps now
finish the proof.

1. (A is closed under finite intersections.) Suppose that Ai =
∑
F∈Λi F ∈ A

where, for i = 1, 2, Λi is a finite collection of disjoint sets from S. Then

A1 ∩A2 =

(∑
F∈Λ1

F

)⋂(∑
F∈Λ1

F

)
=

⋃
(F1,F2)∈Λ1×Λ2

[F1 ∩ F2]

and this is a pairwise disjoint (you check) union of elements from S. Therefore
A is closed under finite intersections.

2. (A is closed under complementation.) IfA =
∑
F∈Λ F with Λ being a finite

collection of disjoint sets from S, then Ac =
⋂
F∈Λ F

c. Since, by assumption,
F c ∈ A for all F ∈ Λ ⊂ S and A is closed under finite intersections by step 1.,
it follows that Ac ∈ A.

Example 4.28. Let X = R, then

S :=
{

(a, b] ∩ R : a, b ∈ R̄
}

= {(a, b] : a ∈ [−∞,∞) and a < b <∞} ∪ {∅,R}

is a elementary class. The algebra, A(S), generated by S consists of finite dis-
joint unions of sets from S. For example,

A = (0, π] ∪ (2π, 7] ∪ (11,∞) ∈ A (S) .

Exercise 4.12. Let A ⊂ 2X and B ⊂ 2Y be elementary class. Show the collec-
tion

S := A×̇B := {A×B : A ∈ A and B ∈ B}

is also a elementary class.



5

Finitely Additive Measures / Integration

Definition 5.1. Suppose that E ⊂ 2Ω is a collection of subsets of Ω and µ :
E → [0,∞] is a function. Then

1. µ is additive or finitely additive on E if

µ(E) =

n∑
i=1

µ(Ei) (5.1)

whenever E =
∑n
i=1Ei ∈ E with Ei ∈ E for i = 1, 2, . . . , n <∞.

2. µ is σ – additive (or countable additive) on E if Eq. (5.1) holds even
when n =∞.

3. µ is sub-additive (finitely sub-additive) on E if

µ(E) ≤
n∑
i=1

µ(Ei)

whenever E =
⋃n
i=1Ei ∈ E with n ∈ N∪{∞} (n ∈ N).

4. µ is a finitely additive measure if E = A is an algebra, µ (∅) = 0, and µ
is finitely additive on A.

5. µ is a premeasure if µ is a finitely additive measure which is σ – additive
on A.

6. µ is a measure if µ is a premeasure on a σ – algebra. Furthermore if
µ (Ω) = 1, we say µ is a probability measure on Ω.

Proposition 5.2 (Basic properties of finitely additive measures). Sup-
pose µ is a finitely additive measure on an algebra, A ⊂ 2Ω , A,B ∈ A with
A ⊂ B and {Aj}nj=1 ⊂ A, then :

1. (µ is monotone) µ (A) ≤ µ(B) if A ⊂ B.
2. For A,B ∈ A, the following strong additivity formula holds;

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (5.2)

3. (µ is finitely subbadditive) µ(∪nj=1Aj) ≤
∑n
j=1 µ(Aj).

4. µ is sub-additive on A iff

µ(A) ≤
∞∑
i=1

µ(Ai) for A =

∞∑
i=1

Ai (5.3)

where A ∈ A and {Ai}∞i=1 ⊂ A are pairwise disjoint sets.

5. (µ is countably superadditive) If A =
∑∞
i=1Ai with Ai, A ∈ A, then

µ

( ∞∑
i=1

Ai

)
≥
∞∑
i=1

µ (Ai) . (5.4)

(See Remark 5.10 for example where this inequality is strict.)
6. A finitely additive measure, µ, is a premeasure iff µ is subadditive.

Proof.

1. Since B is the disjoint union of A and (B \ A) and B \ A = B ∩ Ac ∈ A it
follows that

µ(B) = µ(A) + µ(B \A) ≥ µ(A).

2. Since
A ∪B = [A \ (A ∩B)]

∑
[B \ (A ∩B)]

∑
A ∩B,

µ (A ∪B) = µ (A ∪B \ (A ∩B)) + µ (A ∩B)

= µ (A \ (A ∩B)) + µ (B \ (A ∩B)) + µ (A ∩B) .

Adding µ (A ∩B) to both sides of this equation proves Eq. (5.2).

3. Let {Ei}ni=1 ⊂ A and set Ẽj = Ej \ (E1 ∪ · · · ∪ Ej−1) so that the Ẽj ’s

are pair-wise disjoint and E = ∪nj=1Ẽj . Since Ẽj ⊂ Ej it follows from the
monotonicity of µ that

µ(E) =

n∑
j=1

µ(Ẽj) ≤
n∑
j=1

µ(Ej).

4. If A =
⋃∞
i=1Bi with A ∈ A and Bi ∈ A, then A =

∑∞
i=1Ai where Ai :=

Bi \ (B1 ∪ . . . Bi−1) ∈ A and B0 = ∅. Therefore using the monotonicity of
µ and Eq. (5.3)

µ(A) ≤
∞∑
i=1

µ(Ai) ≤
∞∑
i=1

µ(Bi).



36 5 Finitely Additive Measures / Integration

5. Suppose that A =
∑∞
i=1Ai with Ai, A ∈ A, then

∑n
i=1Ai ⊂ A for all n

and so by the monotonicity and finite additivity of µ,
∑n
i=1 µ (Ai) ≤ µ (A) .

Letting n→∞ in this equation shows µ is superadditive.
6. This is a simple combination of the previous two items.

5.1 Examples of Measures

Most σ – algebras and σ -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe ex-
plicitly what is going on.

Example 5.3. Suppose that Ω is a finite set, B := 2Ω , and p : Ω → [0, 1] is a
function such that ∑

ω∈Ω
p (ω) = 1.

Then
P (A) :=

∑
ω∈A

p (ω) for all A ⊂ Ω

defines a measure on 2Ω .

Example 5.4. Suppose that Ω is any set and ω ∈ Ω is a point. For A ⊂ Ω, let

δω(A) =

{
1 if ω ∈ A
0 if ω /∈ A.

Then µ = δω is a measure on Ω called the Dirac delta measure at ω.

Example 5.5. Suppose B ⊂ 2Ω is a σ algebra, µ is a measure on B, and λ > 0,
then λ · µ is also a measure on B. Moreover, if J is an index set and {µj}j∈J
are all measures on B, then µ =

∑∞
j=1 µj , i.e.

µ(A) :=

∞∑
j=1

µj(A) for all A ∈ B,

defines another measure on B. To prove this we must show that µ is countably
additive. Suppose that A =

∑∞
i=1Ai with Ai ∈ B, then (using Tonelli for sums,

Proposition 1.11),

µ(A) =

∞∑
j=1

µj(A) =

∞∑
j=1

∞∑
i=1

µj(Ai)

=

∞∑
i=1

∞∑
j=1

µj(Ai) =

∞∑
i=1

µ(Ai).

Example 5.6. Suppose thatΩ is a countable set and λ : Ω → [0,∞] is a function.
Let Ω = {ωn}∞n=1 be an enumeration of Ω and then we may define a measure
µ on 2Ω by,

µ = µλ :=

∞∑
n=1

λ(ωn)δωn .

We will now show this measure is independent of our choice of enumeration of
Ω by showing,

µ(A) =
∑
ω∈A

λ(ω) := sup
Λ⊂fA

∑
ω∈Λ

λ (ω) ∀ A ⊂ Ω. (5.5)

Here we are using the notation, Λ ⊂f A to indicate that Λ is a finite subset of
A.

To verify Eq. (5.5), let M := supΛ⊂fA
∑
ω∈Λ λ (ω) and for each N ∈ N let

ΛN := {ωn : ωn ∈ A and 1 ≤ n ≤ N} .

Then by definition of µ,

µ (A) =

∞∑
n=1

λ(ωn)δωn (A) = lim
N→∞

N∑
n=1

λ(ωn)1ωn∈A

= lim
N→∞

∑
ω∈ΛN

λ (ω) ≤M.

On the other hand if Λ ⊂f A, then∑
ω∈Λ

λ(ω) =
∑

n: ωn∈Λ
λ(ωn) = µ (Λ) ≤ µ (A)

from which it follows that M ≤ µ (A) . This shows that µ is independent of how
we enumerate Ω.

5.2 Additive probabilities on infinite products of a
discrete space

Let S be a non-empty finite or countable set (we refer to S as state space),
Ω := S∞ := SN (think of N as time and Ω as path space)

An := {B ×Ω : B ⊂ Sn} for all n ∈ N,

and A := ∪∞n=1An. We call the elements, A ∈ A, the cylinder subsets of Ω.
Notice that A ⊂ Ω is a cylinder set iff there exists n ∈ N and B ⊂ Sn such that
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A = B ×Ω := {ω ∈ Ω : (ω1, . . . , ωn) ∈ B} .

Also observe that we may write A as A = B′ ×Ω where B′ = B × Sk ⊂ Sn+k

for any k ≥ 0.

Exercise 5.1 (Look at but do not hand in.). Show;

1. An is an algebra for each n ∈ N,
2. An ⊂ An+1 for all n, and
3. A ⊂ 2Ω is an algebra of subsets of Ω. (In fact, you might show that
A = ∪∞n=1An is an algebra whenever {An}∞n=1 is an increasing sequence
of algebras.)

Let us now further suppose that P : A → [0, 1] is a finitely additive prob-
ability measure such that P |An is σ-additive1 for each n ∈ N and we further
define s = (s1, . . . , sn) ∈ Sn,

Qn (B) := P (B ×Ω) for all B ⊂ Sn and

pn (s) := Qn ({s})
= P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) . (5.6)

Then Qn is easily seen to be countably additive (as you should check) and
satisfies,

Qn (B) =
∑
s∈B

pn (s) for all B ⊂ Sn.

Exercise 5.2 (Consistency Conditions). [Look at only, do not hand in.]
If pn is defined as above, show:

1.
∑
s∈S p1 (s) = 1 and

2. for all n ∈ N and (s1, . . . , sn) ∈ Sn,

pn (s1, . . . , sn) =
∑
s∈S

pn+1 (s1, . . . , sn, s) .

These conditions are basically equivalent to the statements that Q1 (S) = 1
and Qn+1 (B × S) = Qn (B) for all n ∈ N and B ⊂ Sn.

Exercise 5.3 (Converse to 5.2). Suppose for each n ∈ N we are given func-
tions, pn : Sn → [0, 1] such that the consistency conditions in Exercise 5.2 hold.
Then there exists a unique finitely additive probability measure, P on A such
that Eq. (5.6) holds for all n ∈ N and (s1, . . . , sn) ∈ Sn and such that P |An is
a σ-additive measure on An for all n ∈ N.
1 We will show a little later that any such P has a unique extension to a σ-additive

probability measure on σ (A) .

Corollary 5.7. Suppose for each k ∈ N, qk : S → [0, 1] is a function such
that

∑
s∈S qk (s) = 1. Then there exists a unique finitely additive probability

measure, P on A such that P |An is σ-additive for all n ∈ N and

P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) = q1 (s1) q2 (s2) · · · qn (sn)

holds for all n ∈ N and (s1, . . . , sn) ∈ Sn.

Proof. Let pn (s1, . . . , sn) := q1 (s1) q2 (s2) · · · qn (sn) and observe that∑
s∈S

p1 (s) =
∑
s∈S

q1 (s) = 1

and ∑
λ∈S

pn+1 (s1, . . . , sn, λ) =
∑
λ∈S

q1 (s1) q2 (s2) · · · qn (sn) qn+1 (λ)

= q1 (s1) q2 (s2) · · · qn (sn)
∑
λ∈S

qn+1 (λ)

= q1 (s1) q2 (s2) · · · qn (sn) = pn (s1, . . . , sn) .

Hence the result follows from Exercise 5.3.
The above example has a natural extension to the case where Ω is uncount-

able and λ : Ω → [0,∞] is any function. In this setting we simply may define
µ : 2Ω → [0,∞] using Eq. (5.5). We leave it to the reader to verify that this is
indeed a measure on 2Ω .

5.2.1 Finitely additive measures on R

We will construct many more measure in Chapter 6 below. The starting point of
these constructions will be the construction of finitely additive measures using
the next proposition.

Proposition 5.8 (Construction of Finitely Additive Measures). Sup-
pose S ⊂ 2Ω is a semi-algebra (see Definition 4.26) and A = A(S) is the
algebra generated by S. Then every additive function µ : S → [0,∞] such that
µ (∅) = 0 extends uniquely to an additive measure (which we still denote by µ)
on A.

Proof. Since (by Proposition 4.27) every element A ∈ A is of the form
A =

∑
iEi for a finite collection of Ei ∈ S, it is clear that if µ extends to a

measure then the extension is unique and must be given by

µ(A) =
∑
i

µ(Ei). (5.7)
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To prove existence, the main point is to show that µ(A) in Eq. (5.7) is well
defined; i.e. if we also have A =

∑
j Fj with Fj ∈ S, then we must show∑

i

µ(Ei) =
∑
j

µ(Fj). (5.8)

But Ei =
∑
j (Ei ∩ Fj) and the additivity of µ on S implies µ(Ei) =

∑
j µ(Ei∩

Fj) and hence ∑
i

µ(Ei) =
∑
i

∑
j

µ(Ei ∩ Fj) =
∑
i,j

µ(Ei ∩ Fj).

Similarly, ∑
j

µ(Fj) =
∑
i,j

µ(Ei ∩ Fj)

which combined with the previous equation shows that Eq. (5.8) holds. It is
now easy to verify that µ extended to A as in Eq. (5.7) is an additive measure
on A.

Proposition 5.9. Let Ω = R, S be the semi-algebra,

S = {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}, (5.9)

and A = A(S) be the algebra formed by taking finite disjoint unions of elements
from S, see Proposition 4.27. To each finitely additive probability measures µ :
A → [0,∞], there is a unique increasing function F : R̄→ [0, 1] such that
F (−∞) = 0, F (∞) = 1 and

µ((a, b] ∩ R) = F (b)− F (a) ∀ a ≤ b in R̄. (5.10)

Conversely, given an increasing function F : R̄→ [0, 1] such that F (−∞) = 0,
F (∞) = 1 there is a unique finitely additive measure µ = µF on A such that
the relation in Eq. (5.10) holds. (Eventually we will only be interested in the
case where F (−∞) = lima↓−∞ F (a) and F (∞) = limb↑∞ F (b) .)

Proof. Given a finitely additive probability measure µ, let

F (x) := µ ((−∞, x] ∩ R) for all x ∈ R̄.

Then F (∞) = 1, F (−∞) = 0 and for b > a,

F (b)− F (a) = µ ((−∞, b] ∩ R)− µ ((−∞, a]) = µ ((a, b] ∩ R) .

Conversely, suppose F : R̄→ [0, 1] as in the statement of the theorem is
given. Define µ on S using the formula in Eq. (5.10). The argument will be

completed by showing µ is additive on S and hence, by Proposition 5.8, has a
unique extension to a finitely additive measure on A. Suppose that

(a, b] =
n∑
i=1

(ai, bi].

By reordering (ai, bi] if necessary, we may assume that

a = a1 < b1 = a2 < b2 = a3 < · · · < bn−1 = an < bn = b.

Therefore, by the telescoping series argument,

µ((a, b] ∩ R) = F (b)− F (a) =

n∑
i=1

[F (bi)− F (ai)] =

n∑
i=1

µ((ai, bi] ∩ R).

Remark 5.10. Suppose that F : R̄→ R̄ is any non-decreasing function such that
F (R) ⊂ R. Then the same methods used in the proof of Proposition 5.9 shows
that there exists a unique finitely additive measure, µ = µF , on A = A (S) such
that Eq. (5.10) holds. If F (∞) > limb↑∞ F (b) and Ai = (i, i+1] for i ∈ N, then

∞∑
i=1

µF (Ai) =

∞∑
i=1

(F (i+ 1)− F (i)) = lim
N→∞

N∑
i=1

(F (i+ 1)− F (i))

= lim
N→∞

(F (N + 1)− F (1)) < F (∞)− F (1) = µF (∪∞i=1Ai) .

This shows that strict inequality can hold in Eq. (5.4) and that µF is not
a premeasure. Similarly one shows µF is not a premeasure if F (−∞) <
lima↓−∞ F (a) or if F is not right continuous at some point a ∈ R. Indeed,
in the latter case consider

(a, a+ 1] =

∞∑
n=1

(a+
1

n+ 1
, a+

1

n
].

Working as above we find,

∞∑
n=1

µF

(
(a+

1

n+ 1
, a+

1

n
]

)
= F (a+ 1)− F (a+)

while µF ((a, a+ 1]) = F (a+ 1)−F (a) . We will eventually show in Chapter 6
below that µF extends uniquely to a σ – additive measure on BR whenever F
is increasing, right continuous, and F (±∞) = limx→±∞ F (x) .
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5.3 *Finitely additive measures on product spaces

In this section, let A ⊂ 2X and B ⊂ 2Y be algebras.

Definition 5.11. Let

A×̇B := {A×B : (A,B) ∈ A× B}

and A� B be the sub-algebra of 2X×Y generated by A×̇B.

As we have seen in Exercise 4.12, A×̇B is a semi-algebra and therefore A�B
consists of subsets, C ⊂ X × Y, which may be written as;

C =

n∑
i=1

Ai ×Bi with (Ai, Bi) ∈ A× B. (5.11)

Definition 5.12. A function, ρ : A×̇B → C is bi-additive if for each A ∈ A,
the function

B ∈ B → ρ(A×B) ∈ C

is an additive measure on B and for each B ∈ B, the function

A ∈ A → ρ(A×B) ∈ C

is an additive measure on A.

Theorem 5.13. If ρ : A×̇B → C is a bi-additive function, then ρ extends
uniquely to an additive measure on the product algebra A � B. [This theorem
has an obvious generalization to multiple factors.]

Proof. The collection E = A×̇B is an elementary family, see Exercise 4.12.
Therefore, it suffices to show ρ is additive on E . To check this suppose that
A×B ∈ E and

A×B =

n∑
k=1

(Ak ×Bk)

with Ak ×Bk ∈ E . We wish to show

ρ(A×B) =

n∑
k=1

ρ(Ak ×Bk).

For this consider the finite algebras A′ ⊂ 2A and B′ ⊂ 2B generated by {Ak}nk=1

and {Bk}nk=1 respectively. Let Πa ⊂ A′ and Πb ⊂ B′ be partitions of A and B
which generate A′ and B′ respectively as described in Proposition 4.20. Then

Πa×̇Πb = {α× β : (α, β) ∈ Πa ×Πb}

is a partition of A × B. I now claim to each (α, β) ∈ Πa × Πb there exists a
unique k such that α × β ⊂ Ak × Bk. Indeed, choose an x ∈ α and y ∈ β,
then there exists a unique k such that (x, y) ∈ Ak × Bk and since α ∩ Ak 6= ∅
and β ∩ Bk 6= ∅ we must have α ⊂ Ak and β ⊂ Bk. The consequence of this
observation is that

Ak ×Bk =
∑

α⊂Ak, β⊂Bk

α× β for 1 ≤ k ≤ n,

where we agree that sums involving α (β) run through Πa (Πb) .
By the construction of Πa and Πb we also have

Ak =
∑
α⊂Ak

α, and Bk =
∑
β⊂Bk

β.

Using the bi-additivity of ρ it then follows that

ρ (Ak ×Bk) = ρ

Ak × ∑
β⊂Bk

β

 =
∑
β⊂Bk

ρ (Ak × β)

=
∑
β⊂Bk

ρ

( ∑
α⊂Ak

α× β

)
=
∑
β⊂Bk

∑
α⊂Ak

ρ (α× β)

=
∑

α×β⊂Ak×Bk

ρ (α× β) . (5.12)

By summing this equation on k, using the claim above, and then the bi-
additivity of ρ again we learn that

n∑
k=1

ρ (Ak ×Bk) =
∑

(α,β)∈Πa×Πb

ρ (α× β)

=
∑
α∈Πa

ρ (α×B) = ρ (A×B) .

Example 5.14 (Product Measure). If A ⊂ 2X and B ⊂ 2Y be are subalgebras
and µ : A → [0,∞] and ν : B → [0,∞] are finitely additive measures then there
exists a unique finitely additive measure, µ � ν : A � B → [0,∞] such that
µ � ν (A×B) = µ (A) · ν (B) for all A ∈ A and B ∈ B. We refer to µ � ν as
a product measure. To verify this assertion one needs only apply Theorem
5.13 with ρ (A×B) := µ (A) · ν (B) .

Here is another interesting application of Theorem 5.13.
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Proposition 5.15. Suppose that A ⊂ 2X is an algebra and for each t ∈ R,
µt : A → C is a finitely additive measure. Let Y = (u, v] ⊂ R be a finite interval
and B ⊂ 2Y denote the algebra generated by E := {(a, b] : (a, b] ⊂ Y } . Then
there is a unique additive measure µ on C, the algebra generated by A×̇B :=
{A×B : A ∈ A and B ∈ B} such that

µ(A× (a, b]) = µb(A)− µa(A) ∀ (a, b] ∈ E and A ∈ A.

Proof. By Proposition 5.9 and Remark 5.10, for each A ∈ A, the function
(a, b] → µ(A × (a, b]) extends to a unique measure on B which we continue to
denote by µ. Now if B ∈ B, then B =

∑
k Ik with Ik ∈ E , then

µ(A×B) =
∑
k

µ(A× Ik)

from which we learn that A → µ(A × B) is still finitely additive. The proof is
complete with an application of Theorem 5.13.

5.4 Simple Random Variables

Before constructing σ – additive measures (see Chapter 6 below), we are going
to pause to discuss a preliminary notion of integration and develop some of its
properties. Hopefully this will help the reader to develop the necessary intuition
before heading to the general theory. First we need to describe the functions
we are (currently) able to integrate.

Definition 5.16 (Simple random variables). A function, f : Ω → Y is said
to be simple if f (Ω) ⊂ Y is a finite set. If A ⊂ 2Ω is an algebra, we say that a
simple function f : Ω → Y is measurable if {f = y} := f−1 ({y}) ∈ A for all
y ∈ Y. A measurable simple function, f : Ω → C, is called a simple random
variable relative to A.

Notation 5.17 Given an algebra, A ⊂ 2Ω , let S(A) denote the collection of
simple random variables from Ω to C. For example if A ∈ A, then 1A ∈ S (A)
is a measurable simple function.

Lemma 5.18. Let A ⊂ 2Ω be an algebra, then;

1. S (A) is a sub-algebra of all functions from Ω to C.
2. f : Ω → C, is a A – simple random variable iff there exists αi ∈ C and
Ai ∈ A for 1 ≤ i ≤ n for some n ∈ N such that

f =

n∑
i=1

αi1Ai . (5.13)

3. For any function, F : C→ C, F ◦f ∈ S (A) for all f ∈ S (A) . In particular,
|f | ∈ S (A) if f ∈ S (A) .

Proof. 1. Let us observe that 1Ω = 1 and 1∅ = 0 are in S (A) . If f, g ∈ S (A)
and c ∈ C\ {0} , then

{f + cg = λ} =
⋃

a,b∈C:a+cb=λ

({f = a} ∩ {g = b}) ∈ A (5.14)

and
{f · g = λ} =

⋃
a,b∈C:a·b=λ

({f = a} ∩ {g = b}) ∈ A (5.15)

from which it follows that f + cg and f · g are back in S (A) .
2. Since S (A) is an algebra, every f of the form in Eq. (5.13) is in S (A) .

Conversely if f ∈ S (A) it follows by definition that f =
∑
α∈f(Ω) α1{f=α}

which is of the form in Eq. (5.13).
3. If F : C→ C, then

F ◦ f =
∑

α∈f(Ω)

F (α) · 1{f=α} ∈ S (A) .

Exercise 5.4 (A – measurable simple functions). As in Example 4.19, let
A ⊂ 2Ω be a finite algebra and {B1, . . . , Bk} be the partition of Ω associated to
A. Show that a function, f : Ω → C, is an A – simple function iff f is constant
on Bi for each i. Thus any A – simple function is of the form,

f =

k∑
i=1

αi1Bi (5.16)

for some αi ∈ C.

Corollary 5.19. Suppose that Λ is a finite set and Z : Ω → Λ is a function.
Let

A := A (Z) := Z−1
(
2Λ
)

:=
{
Z−1 (E) : E ⊂ Λ

}
.

Then A is an algebra and f : Ω → C is an A – simple function iff f = F ◦ Z
for some function F : Λ→ C.

Proof. For λ ∈ Λ, let

Aλ := {Z = λ} = {ω ∈ Ω : Z (ω) = λ} .

The {Aλ}λ∈Λ is the partition of Ω determined by A. Therefore f is an A –
simple function iff f |Aλ is constant for each λ ∈ Λ. Let us denote this constant
value by F (λ) . As Z = λ on Aλ, F : Λ→ C is a function such that f = F ◦Z.

Conversely if F : Λ→ C is a function and f = F ◦Z, then f = F (λ) on Aλ,
i.e. f is an A – simple function.
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5.4.1 The algebraic structure of simple functions*

Definition 5.20. A simple function algebra, S, is a subalgebra2 of the
bounded complex functions on Ω such that 1 ∈ S and each function in S is
a simple function. If S is a simple function algebra, let

A (S) := {A ⊂ Ω : 1A ∈ S} .

(It is easily checked that A (S) is a sub-algebra of 2Ω .)

Lemma 5.21. Suppose that S is a simple function algebra, f ∈ S and α ∈ f (Ω)
– the range of f. Then {f = α} ∈ A (S) .

Proof. Let {λi}ni=0 be an enumeration of f (Ω) with λ0 = α. Then

g :=

[
n∏
i=1

(α− λi)

]−1 n∏
i=1

(f − λi1) ∈ S.

Moreover, we see that g = 0 on ∪ni=1 {f = λi} while g = 1 on {f = α} . So we
have shown g = 1{f=α} ∈ S and therefore that {f = α} ∈ A (S) .

Exercise 5.5. Continuing the notation introduced above:

1. Show A (S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A ∈
{

Algebras ⊂ 2Ω
}
→ S (A) ∈ {simple function algebras on Ω}

is bijective and the map, S→ A (S) , is the inverse map.

5.5 Simple Integration

Definition 5.22 (Simple Integral). Suppose now that P is a finitely additive
probability measure on an algebra A ⊂ 2Ω . For f ∈ S (A) the integral or
expectation, E(f) = EP (f), is defined by

EP (f) =

∫
Ω

fdP =
∑
y∈C

yP (f = y). (5.17)

Example 5.23. Suppose that A ∈ A, then

E1A = 0 · P (Ac) + 1 · P (A) = P (A) . (5.18)
2 To be more explicit we are assuming that S is a linear subspace of bounded functions

which is closed under pointwise multiplication.

Remark 5.24. Let us recall that our intuitive notion of P (A) was given as in
Eq. (3.1) by

P (A) = lim
N→∞

1

N

N∑
k=1

1A (ω (k))

where ω (k) ∈ Ω was the result of the kth “independent” experiment. If we use
this interpretation back in Eq. (5.17) we arrive at,

E(f) =
∑
y∈C

yP (f = y) =
∑
y∈C

y · lim
N→∞

1

N

N∑
k=1

1f(ω(k))=y

= lim
N→∞

1

N

∑
y∈C

y

N∑
k=1

1f(ω(k))=y

= lim
N→∞

1

N

N∑
k=1

∑
y∈C

f (ω (k)) · 1f(ω(k))=y

= lim
N→∞

1

N

N∑
k=1

f (ω (k)) .

Thus informally, Ef should represent the limiting average of the values of f
over many “independent” trials. We will later revisit this idea when we discuss
the strong law of large numbers.

We now extend the above notion to general positively finite additive mea-
sures, µ.

Definition 5.25 (Simple Integral). Suppose now that µ is a finitely additive
measure on an algebra A ⊂ 2Ω and let S+ (A) denote the [0,∞] – valued A –
simple functions and for f ∈ S+ (A) we let

Eµ(f) =

∫
Ω

fdµ =
∑

y∈[0,∞]

yµ(f = y). (5.19)

[For f ∈ S+ (A) , Eµ(f) =∞ is allowed and we use the convention that 0 ·∞ =
0 =∞ · 0.] Further let

Sµ (A) := {f ∈ S (A) : µ (f 6= 0) <∞}

and for f ∈ Sµ (A) we let

Eµ(f) =

∫
Ω

fdµ =
∑

y∈C\{0}

yµ(f = y).
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It is easy to verify that Sµ (A) is a subspace of S (A) and that S+ (A) is
closed under addition and scalar multiplication by non-negative constants.

Proposition 5.26. The expectation operator, E = Eµ : S+ (A) → [0,∞] , sat-
isfies:

1. If f ∈ S+ (A) and λ ∈ [0,∞] , then

E(λf) = λE(f). (5.20)

2. If f, g ∈ S+ (A) , then f + g ∈ S+ (A) and

E(f + g) = E(g) + E(f). (5.21)

3. If f, g ∈ S+ (A) and f ≤ g, then E (f) ≤ E (g) .

Proof.

1. If λ = 0 or λ = ∞ we have E(0 · f) = 0 = 0 · E(f) and E [∞ · f ] = ∞ iff
µ (f 6= 0) > 0 iff Ef > 0 iff ∞ · Ef = ∞ respectively. If 0 < λ < ∞ and
f ∈ S+ (A) , then

E(λf) =
∑

y∈[0,∞]

y µ(λf = y) =
∑

y∈[0,∞]

y µ(f = y/λ)

=
∑

z∈[0,∞]

λz µ(f = z) = λE(f).

2. Writing {f = a, g = b} for f−1({a}) ∩ g−1({b}), we have

E(f + g) =
∑

z∈[0,∞]

z µ(f + g = z)

=
∑

z∈[0,∞]

z µ

( ∑
a+b=z

{f = a, g = b}

)

=
∑

z∈[0,∞]

z
∑
a+b=z

µ ({f = a, g = b})

=
∑

z∈[0,∞]

∑
a+b=z

(a+ b)µ ({f = a, g = b})

=
∑
a,b

(a+ b)µ ({f = a, g = b}) .

But

∑
a,b

aµ ({f = a, g = b}) =
∑
a

a
∑
b

µ ({f = a, g = b})

=
∑
a

aµ (∪b {f = a, g = b})

=
∑
a

aµ ({f = a}) = Ef

and similarly, ∑
a,b

bµ ({f = a, g = b}) = Eg.

Equation (5.21) is now a consequence of the last three displayed equations.
3. Let h := g − f1{f<∞} ≥ 0. Notice that {h =∞} = {g =∞} and for
x ∈ [0,∞),

{h = x} = ∪a−b=x {g = a} ∩ {f = b} ∈ A

so that h ∈ S+ (A) . As (is easily verified) g = f + h it follows that

Eµg = Eµf + Eµh ≥ Eµf.

Alternative proof. If λ ≥ 0, then

λ · µ (g = λ) =
∑

0≤y≤λ

λµ (g = λ, f = y)

≥
∑

0≤y≤λ

yµ (g = λ, f = y)

=
∑
0≤y

yµ (g = λ, f = y) .

Summing this inequality on λ ≥ 0 then gives,

Eµg ≥
∑

0≤y,λ

yµ (g = λ, f = y)

=
∑
0≤y

y
∑
0≤λ

µ (g = λ, f = y)

=
∑
0≤y

yµ (f = y) = Eµf.

Proposition 5.27. The expectation operator, E = Eµ : Sµ (A)→ C, satisfies:

1. If f ∈ Sµ (A) and λ ∈ C, then

E(λf) = λE(f). (5.22)
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2. If f, g ∈ Sµ (A) , then

E(f + g) = E(g) + E(f). (5.23)

Items 1. and 2. say that E (·) is a linear functional on Sµ (A) .

3. If f =
∑N
j=1 λj1Aj for some λj ∈ C and some Aj ∈ A with µ (Aj) < ∞,

then

E (f) =

N∑
j=1

λjµ (Aj) . (5.24)

4. E is positive, i.e. E(f) ≥ 0 for all 0 ≤ f ∈ Sµ (A) . More generally, if
f, g ∈ Sµ (A) and f ≤ g, then E (f) ≤ E (g) .

5. For all f ∈ Sµ (A) ,
|Ef | ≤ E |f | . (5.25)

Proof.

1. If λ 6= 0, then

E(λf) =
∑
y∈C

y µ(λf = y) =
∑
y∈C

y µ(f = y/λ)

=
∑
z∈C

λz µ(f = z) = λE(f).

The case λ = 0 is trivial.
2. Writing {f = a, g = b} for f−1({a}) ∩ g−1({b}), then

E(f + g) =
∑
z∈C

z µ(f + g = z)

=
∑
z∈C

z µ

( ∑
a+b=z

{f = a, g = b}

)
=
∑
z∈C

z
∑
a+b=z

µ ({f = a, g = b})

=
∑
z∈C

∑
a+b=z

(a+ b)µ ({f = a, g = b})

=
∑
a,b

(a+ b)µ ({f = a, g = b}) .

But

∑
a,b

aµ ({f = a, g = b}) =
∑
a

a
∑
b

µ ({f = a, g = b})

=
∑
a

aµ (∪b {f = a, g = b})

=
∑
a

aµ ({f = a}) = Ef

and similarly, ∑
a,b

bµ ({f = a, g = b}) = Eg.

Equation (5.23) is now a consequence of the last three displayed equations.

3. If f =
∑N
j=1 λj1Aj , then

Ef = E

 N∑
j=1

λj1Aj

 =

N∑
j=1

λjE1Aj =

N∑
j=1

λjµ (Aj) .

4. If f ≥ 0 then

E(f) =
∑
a≥0

aµ(f = a) ≥ 0

and if f ≤ g, then g − f ≥ 0 so that

E (g)− E (f) = E (g − f) ≥ 0.

5. By the triangle inequality,

|Ef | =

∣∣∣∣∣∑
λ∈C

λµ (f = λ)

∣∣∣∣∣ ≤∑
λ∈C
|λ|µ (f = λ) = E |f | ,

wherein the last equality we have used Eq. (5.24) and the fact that |f | =∑
λ∈C |λ| 1f=λ.

Remark 5.28. If Ω is a finite set and A = 2Ω , then

f (·) =
∑
ω∈Ω

f (ω) 1{ω}

and hence
EP f =

∑
ω∈Ω

f (ω)P ({ω}) .
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Exercise 5.6. Let P is a finitely additive probability measure on an algebra
A ⊂ 2Ω and for A,B ∈ A let ρ (A,B) := P (A4B) where A4B = (A \B) ∪
(B \A) . Show;

1. ρ (A,B) = E |1A − 1B | and then use this (or not) to show
2. ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈ A.

Remark: it is now easy to see that ρ : A×A → [0, 1] satisfies the axioms of
a metric except for the condition that ρ (A,B) = 0 does not imply that A = B
but only that A = B modulo a set of probability zero.

Lemma 5.29 (Chebyshev’s Inequality). Suppose that f ∈ S(A), ε > 0, and
p > 0, then

P ({|f | ≥ ε}) = E
[
1|f |≥ε

]
≤ E

[
|f |p

εp
1|f |≥ε

]
≤ ε−pE |f |p . (5.26)

Proof. First observe that

|f |p =
∑
λ∈C
|λ|p 1{f=λ}

is a simple random variable and {|f | ≥ ε} =
∑
|λ|≥ε {f = λ} ∈ A. Therefore

|f |p
εp 1|f |≥ε is a simple random variable and since,

1|f |≥ε ≤
|f |p

εp
1|f |≥ε ≤ ε−p |f |

p
,

the estimates in Eq. (5.26) follow from item 4. of Proposition 5.27.

Lemma 5.30 (Inclusion Exclusion Formula). If An ∈ A for n =
1, 2, . . . ,M such that µ

(
∪Mn=1An

)
<∞, then

µ
(
∪Mn=1An

)
=

M∑
k=1

(−1)
k+1

∑
1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank) . (5.27)

Proof. This may be proved inductively from Eq. (5.2). We will give a dif-
ferent and perhaps more illuminating proof here. Let A := ∪Mn=1An.

Since Ac =
(
∪Mn=1An

)c
= ∩Mn=1A

c
n, we have

1− 1A = 1Ac =

M∏
n=1

1Acn =

M∏
n=1

(1− 1An)

= 1 +

M∑
k=1

(−1)
k

∑
1≤n1<n2<···<nk≤M

1An1
· · · 1Ank

= 1 +

M∑
k=1

(−1)
k

∑
1≤n1<n2<···<nk≤M

1An1
∩···∩Ank

from which it follows that

1∪Mn=1An
= 1A =

M∑
k=1

(−1)
k+1

∑
1≤n1<n2<···<nk≤M

1An1
∩···∩Ank . (5.28)

Integrating this identity with respect to µ gives Eq. (5.27).

Remark 5.31. The following identity holds even when µ
(
∪Mn=1An

)
=∞,

µ
(
∪Mn=1An

)
+

M∑
k=2 & k even

∑
1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank)

=

M∑
k=1 & k odd

∑
1≤n1<n2<···<nk≤M

µ (An1
∩ · · · ∩Ank) . (5.29)

This can be proved by moving every term with a negative sign on the right
side of Eq. (5.28) to the left side and then integrate the resulting identity.
Alternatively, Eq. (5.29) follows directly from Eq. (5.27) if µ

(
∪Mn=1An

)
< ∞

and when µ
(
∪Mn=1An

)
=∞ one easily verifies that both sides of Eq. (5.29) are

infinite.

To better understand Eq. (5.28), consider the case M = 3 where,

1− 1A = (1− 1A1) (1− 1A2) (1− 1A3)

= 1− (1A1 + 1A2 + 1A3)

+ 1A11A2 + 1A11A3 + 1A21A3 − 1A11A21A3

so that

1A1∪A2∪A3
= 1A1

+ 1A2
+ 1A3

− (1A1∩A2
+ 1A1∩A3

+ 1A2∩A3
) + 1A1∩A2∩A3

Here is an alternate proof of Eq. (5.28). Let ω ∈ Ω and by relabeling the
sets {An} if necessary, we may assume that ω ∈ A1 ∩ · · · ∩Am and ω /∈ Am+1 ∪
· · · ∪AM for some 0 ≤ m ≤M. (When m = 0, both sides of Eq. (5.28) are zero
and so we will only consider the case where 1 ≤ m ≤ M.) With this notation
we have
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M∑
k=1

(−1)
k+1

∑
1≤n1<n2<···<nk≤M

1An1
∩···∩Ank (ω)

=
m∑
k=1

(−1)
k+1

∑
1≤n1<n2<···<nk≤m

1An1
∩···∩Ank (ω)

=

m∑
k=1

(−1)
k+1

(
m

k

)

= 1−
m∑
k=0

(−1)
k

(1)
n−k

(
m

k

)
= 1− (1− 1)

m
= 1.

This verifies Eq. (5.28) since 1∪Mn=1An
(ω) = 1.

Example 5.32 (Coincidences). Let Ω be the set of permutations (think of card

shuffling), ω : {1, 2, . . . , n} → {1, 2, . . . , n} , and define P (A) := #(A)
n! to be the

uniform distribution (Haar measure) on Ω. We wish to compute the probability
of the event, B, that a random permutation fixes some index i. To do this, let
Ai := {ω ∈ Ω : ω (i) = i} and observe that B = ∪ni=1Ai. So by the Inclusion
Exclusion Formula, we have

P (B) =

n∑
k=1

(−1)
k+1

∑
1≤i1<i2<i3<···<ik≤n

P (Ai1 ∩ · · · ∩Aik) .

Since

P (Ai1 ∩ · · · ∩Aik) = P ({ω ∈ Ω : ω (i1) = i1, . . . , ω (ik) = ik})

=
(n− k)!

n!

and

# {1 ≤ i1 < i2 < i3 < · · · < ik ≤ n} =

(
n

k

)
,

we find

P (B) =

n∑
k=1

(−1)
k+1

(
n

k

)
(n− k)!

n!
=

n∑
k=1

(−1)
k+1 1

k!
. (5.30)

For large n this gives,

P (B) = −
n∑
k=1

1

k!
(−1)

k ∼= 1−
∞∑
k=0

1

k!
(−1)

k
= 1− e−1 ∼= 0.632.

Example 5.33 (Expected number of coincidences). Continue the notation in Ex-
ample 5.32. We now wish to compute the expected number of fixed points of
a random permutation, ω, i.e. how many cards in the shuffled stack have not
moved on average. To this end, let

Xi = 1Ai

and observe that

N (ω) =

n∑
i=1

Xi (ω) =

n∑
i=1

1ω(i)=i = # {i : ω (i) = i} .

denote the number of fixed points of ω. Hence we have

EN =

n∑
i=1

EXi =

n∑
i=1

P (Ai) =

n∑
i=1

(n− 1)!

n!
= 1.

Let us check the above formulas when n = 3. In this case we have

ω N (ω)
1 2 3 3
1 3 2 1
2 1 3 1
2 3 1 0
3 1 2 0
3 2 1 1

and so

P (∃ a fixed point) =
4

6
=

2

3
∼= 0.67 ∼= 0.632

while
3∑
k=1

(−1)
k+1 1

k!
= 1− 1

2
+

1

6
=

2

3

and

EN =
1

6
(3 + 1 + 1 + 0 + 0 + 1) = 1.

The next three problems generalize the results above. The following notation
will be used throughout these exercises.

1. (Ω,A, P ) is a finitely additive probability space, so P (Ω) = 1,
2. Ai ∈ A for i = 1, 2, . . . , n,
3. N (ω) :=

∑n
i=1 1Ai (ω) = # {i : ω ∈ Ai} , and
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4. {Sk}nk=1 are given by

Sk :=
∑

1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩Aik)

=
∑

Λ⊂{1,2,...,n}3|Λ|=k

P (∩i∈ΛAi) .

Exercise 5.7. For 1 ≤ k ≤ n, show;

1. (as functions on Ω) that(
N

k

)
=

∑
Λ⊂{1,2,...,n}3|Λ|=k

1∩i∈ΛAi , (5.31)

where by definition (
m

k

)
=


0 if k > m
m!

k!·(m−k)! if 1 ≤ k ≤ m
1 if k = 0

. (5.32)

2. Conclude from Eq. (5.31) that for all z ∈ C,

(1 + z)
N

= 1 +

n∑
k=1

zk
∑

1≤i1<i2<···<ik≤n

1Ai1∩···∩Aik (5.33)

provided (1 + z)
0

= 1 even when z = −1.
3. Conclude from Eq. (5.31) that Sk = EP

(
N
k

)
.

Exercise 5.8. Taking expectations of Eq. (5.33) implies,

E
[
(1 + z)

N
]

= 1 +

n∑
k=1

Skz
k. (5.34)

Show that setting z = −1 in Eq. (5.34) gives another proof of the inclusion
exclusion formula. Hint: use the definition of the expectation to write out

E
[
(1 + z)

N
]

explicitly.

Exercise 5.9. Let 1 ≤ m ≤ n. In this problem you are asked to compute the
probability that there are exactly m – coincidences. Namely you should show,

P (N = m) =

n∑
k=m

(−1)
k−m

(
k

m

)
Sk

=

n∑
k=m

(−1)
k−m

(
k

m

) ∑
1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩Aik)

Hint: differentiate Eq. (5.34) m times with respect to z and then evaluate the
result at z = −1. In order to do this you will find it useful to derive formulas
for;

dm

dzm
|z=−1 (1 + z)

n
and

dm

dzm
|z=−1z

k.

Example 5.34. Let us again go back to Example 5.33 where we computed,

Sk =

(
n

k

)
(n− k)!

n!
=

1

k!
.

Therefore it follows from Exercise 5.9 that

P (∃ exactly m fixed points) = P (N = m)

=

n∑
k=m

(−1)
k−m

(
k

m

)
1

k!

=
1

m!

n∑
k=m

(−1)
k−m 1

(k −m)!
.

So if n is much bigger than m we may conclude that

P (∃ exactly m fixed points) ∼=
1

m!
e−1.

Let us check our results are consistent with Eq. (5.30);

P (∃ a fixed point) =

n∑
m=1

P (N = m)

=

n∑
m=1

n∑
k=m

(−1)
k−m

(
k

m

)
1

k!

=
∑

1≤m≤k≤n

(−1)
k−m

(
k

m

)
1

k!

=

n∑
k=1

k∑
m=1

(−1)
k−m

(
k

m

)
1

k!

=

n∑
k=1

[
k∑

m=0

(−1)
k−m

(
k

m

)
− (−1)

k

]
1

k!

= −
n∑
k=1

(−1)
k 1

k!

wherein we have used,

k∑
m=0

(−1)
k−m

(
k

m

)
= (1− 1)

k
= 0.
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5.5.1 * Appendix: Bonferroni Inequalities

In this appendix (see Feller Volume 1., p. 106-111 for more) we want to dis-
cuss what happens if we truncate the sums in the inclusion exclusion formula
of Lemma 5.30. In order to do this we will need the following lemma whose
combinatorial meaning was explained to me by Jeff Remmel.

Lemma 5.35. Let n ∈ N0 and 0 ≤ k ≤ n, then

k∑
l=0

(−1)
l

(
n

l

)
= (−1)

k

(
n− 1

k

)
1n>0 + 1n=0. (5.35)

Proof. The case n = 0 is trivial. We give two proofs for when n ∈ N.
First proof. Just use induction on k. When k = 0, Eq. (5.35) holds since

1 = 1. The induction step is as follows,

k+1∑
l=0

(−1)
l

(
n

l

)
= (−1)

k

(
n− 1

k

)
+

(
n

k + 1

)

=
(−1)

k+1

(k + 1)!
[n (n− 1) . . . (n− k)− (k + 1) (n− 1) . . . (n− k)]

=
(−1)

k+1

(k + 1)!
[(n− 1) . . . (n− k) (n− (k + 1))] = (−1)

k+1

(
n− 1

k + 1

)
.

Second proof. Let Ω = {1, 2, . . . , n} and observe that

mk :=

k∑
l=0

(−1)
l

(
n

l

)
=

k∑
l=0

(−1)
l ·#

(
Λ ∈ 2Ω : # (Λ) = l

)
=

∑
Λ∈2Ω : #(Λ)≤k

(−1)
#(Λ)

(5.36)

Define T : 2Ω → 2Ω by

T (S) =

{
S ∪ {1} if 1 /∈ S
S \ {1} if 1 ∈ S .

Observe that T is a bijection of 2Ω such that T takes even cardinality sets to
odd cardinality sets and visa versa. Moreover, if we let

Γk :=
{
Λ ∈ 2Ω : # (Λ) ≤ k and 1 ∈ Λ if # (Λ) = k

}
,

then T (Γk) = Γk for all 1 ≤ k ≤ n. Since

∑
Λ∈Γk

(−1)
#(Λ)

=
∑
Λ∈Γk

(−1)
#(T (Λ))

=
∑
Λ∈Γk

− (−1)
#(Λ)

we see that
∑
Λ∈Γk (−1)

#(Λ)
= 0. Using this observation with Eq. (5.36) implies

mk =
∑
Λ∈Γk

(−1)
#(Λ)

+
∑

#(Λ)=k & 1/∈Λ

(−1)
#(Λ)

= 0 + (−1)
k

(
n− 1

k

)
.

Corollary 5.36 (Bonferroni Inequalitites). Let µ : A → [0, µ (Ω)] be a
finitely additive finite measure on A ⊂ 2Ω , An ∈ A for n = 1, 2, . . . ,M, N :=∑M
n=1 1An , and

Sk :=
∑

1≤i1<···<ik≤M

µ (Ai1 ∩ · · · ∩Aik) = Eµ
[(
N

k

)]
.

Then for 1 ≤ k ≤M,

µ
(
∪Mn=1An

)
=

k∑
l=1

(−1)
l+1

Sl + (−1)
k Eµ

[(
N − 1

k

)]
. (5.37)

This leads to the Bonferroni inequalities;

µ
(
∪Mn=1An

)
≤

k∑
l=1

(−1)
l+1

Sl if k is odd

and

µ
(
∪Mn=1An

)
≥

k∑
l=1

(−1)
l+1

Sl if k is even.

Proof. By Lemma 5.35,

k∑
l=0

(−1)
l

(
N

l

)
= (−1)

k

(
N − 1

k

)
1N>0 + 1N=0.

Therefore integrating this equation with respect to µ gives,

µ (Ω) +

k∑
l=1

(−1)
l
Sl = µ (N = 0) + (−1)

k Eµ
(
N − 1

k

)
and therefore,
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µ
(
∪Mn=1An

)
= µ (N > 0) = µ (Ω)− µ (N = 0)

= −
k∑
l=1

(−1)
l
Sl + (−1)

k Eµ
(
N − 1

k

)
.

The Bonferroni inequalities are a simple consequence of Eq. (5.37) and the fact
that (

N − 1

k

)
≥ 0 =⇒ Eµ

(
N − 1

k

)
≥ 0.

5.6 * Finitely Additive Measures on Rd and [0, 1]d

(Riesz Markov theorem is in Section 11.2 below.) Let us begin by describing

finite measure on A = A
(
Rd
)

– the subalgebra of 2R
d

generated by E×̇ . . . ×̇E
where E is the semi-algebra of subsets of R defined by

E := {R ∩ (a, b] : −∞ ≤ a < b ≤ ∞} ⊂ 2R.

For a,b ∈ R̄d we let (a,b] := ((a1, b1]× · · · × (ad, bd]) ∩ Rd and so with this
notation,

E×̇ . . . ×̇E =
{

(a,b] : a,b ∈ R̄d with a ≤ b
}
.

Notation 5.37 If a, b ∈ R̄d and γ ⊂ {1, 2, . . . , d} , let aγ × bγc be the point in
R̄d defined by

(aγ × bγc)j :=

{
aj if j ∈ γ
bj if j ∈ γc .

Lemma 5.38. For all a, b ∈ R̄d with a ≤ b we have,

1(a,b] =
∑

γ⊂{1,2,...,d}

(−1)
|γ|

1(−∞,aγ×bγc ]. (5.38)

Proof. If x ∈ R̄d, then

1(a,b] (x) =

d∏
i=1

1(ai,bi] (xi) =

d∏
i=1

[
1(−∞,bi] (xi)− 1(−∞,ai] (xi)

]
=

∑
γ⊂{1,2,...,d}

(−1)
|γ|∏

i∈γ
1(−∞,ai] (xi) ·

∏
j∈γc

1(−∞,bj ] (xj)

=
∑

γ⊂{1,2,...,d}

(−1)
|γ|

1(−∞,aγ×bγc ] (x) .

Corollary 5.39. Suppose that V is a vector space, µ : A
(
Rd
)
→ V is a finitely

additive measure, and for b ∈ R̄d let F (b) := µ ((−∞, b]) . Then for all a, b ∈ R̄d
with a ≤ b,

µ ((a, b]) =
∑

γ⊂{1,2,...,d}

(−1)
|γ|
F (aγ × bγc) . (5.39)

Proof. The result follows directly by integrating Eq. (5.38) relative to µ
while using µ ((−∞, aγ × bγc ]) = F (aγ × bγc) for all γ ⊂ {1, 2, . . . , d} .

Remark 5.40. Corollary 5.39 may be understood using the inclusion exclusion
formula. For example, when d = 2 we have

(a, b] = Sb \
[
S(a1,b2) ∪ S(b1,a2)

]
and hence

µ ((a, b]) = µ (Sb)− µ
(
S(a1,b2) ∪ S(b1,a2)

)
= µ (Sb)−

[
µ
(
S(a1,b2)

)
+ µ

(
S(b1,a2)

)
− µ

(
S(a1,b2) ∩ S(b1,a2)

)]
= µ (Sb)− µ

(
S(a1,b2)

)
− µ

(
S(b1,a2)

)
+ µ (Sa)

= F (b)− F (a1, b1)− F (b1, a2) + F (a) ,

wherein the third equality we have used S(a1,b2) ∩ S(b1,a2) = Sa).

We will give a converse to this corollary in Proposition 5.41 below. To help
motivate the proof of Proposition 5.41, observe if µ is a finitely additive measure
on A

(
Rd
)
, then to each b ∈ R̄, µb (C) := µ (C × (−∞, b]) for C ∈ A

(
Rd−1

)
defines a finitely additive measure on A

(
Rd−1

)
. Moreover, if a, b ∈ R̄ with

a ≤ b we further have µ (C × (a, b]) = µb (C)− µa (C) .

Proposition 5.41. To every function, F : R̄d → V, there exists a unique
finitely additive measure (µF ) on A(Rd) such that

µF ((a, b]) =
∑

γ⊂{1,2,...,d}

(−1)|γ|F (aγ × bγc) (5.40)

for all a, b ∈ R̄d with a ≤ b.

Proof. The proof for d = 1 is completely analogous to the proof of It would be good
to include this result
explicity rather than
leaving it this way.

Proposition 5.9 and so will be omitted. To each a = (a1, . . . , ad) ∈ R̄d, let
a′ := (a1, . . . , ad−1) so that a = (a′, ad) . With this notation in hand we proceed
to the induction step.

Suppose that d ≥ 2 and we have proved the proposition when d is replaced
by d−1. Then for c ∈ R̄ let µc = µF (·,c) be the unique finitely additive measure

on A
(
Rd−1

)
(guaranteed to exist by the induction hypothesis) such that for all

a′, b′ ∈ R̄d−1 with a′ ≤ b′ we have
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µc ((a′, b′]) =
∑

γ⊂{1,2,...,d−1}

(−1)|γ|F (a′γ × b′γc , c). (5.41)

By Proposition 5.15, there is a unique finitely additive measure (µF ) on
A(Rd) = A

(
Rd−1

)
⊗A(R) such that

µF (C × (ad, bd]) = µbd (C)−µad (C) ∀ C ∈ A
(
Rd−1

)
and −∞ ≤ ad ≤ bd ≤ ∞.

Letting a ≤ b with a, b ∈ R̄d and using Eq. (5.41) it is not to hard to show,

µF ((a, b]) =
∑

γ⊂{1,2,...,d−1}

(−1)|γ|
[
F (a′γ × b′γc , b)− F (a′γ × b′γc , a)

]
=

∑
γ⊂{1,2,...,d}

(−1)|γ|F (aγ × bγc).

The point is that the subsets, γ ⊂ {1, 2, . . . , d} , split into two types; those
which contain d and those which do not.

We now wish to prove the analogous result with Rd replaced by [0, 1]
d
. We

begin with some needed additional notation.

Notation 5.42 For a, b ∈ [0, 1]
d

with a ≤ b, let

{a, b] := {1a1, b1]× · · · × {dad, bd]

where {i= ( if ai > 0 and is either ( or [ when ai = 0.

Remark 5.43. The point of this notation is that [0, 1]
d

is the product of [0, 1]
with itself d – times and if E ⊂ 2[0,1] are the sets of the form [0, b] with 0 ≤ b ≤ 1

or (a, b] with 0 ≤ a < b ≤ 1, then A
(

[0, 1]
d
)

is generated by the semi-algebra,

E×̇ . . . ×̇E , consisting of sets of the form {a, b] with 0 ≤ a ≤ b ≤ 1.

Lemma 5.44. For all a, b ∈ [0, 1]
d

with a ≤ b we have,

1{a,b] =
∑

γ⊂{1,2,...,d}

wγ (−1)
|γ|

1(−∞,aγ×bγc ] (5.42)

where

wγ =

{
1 if {i= ( for all i ∈ γ
0 otherwise.

In particular,∑
|γ| even

wγ1[0,aγ×bγc ] =
∑
|γ| odd

wγ1[0,aγ×bγc ] + 1{a,b] ≥
∑
|γ| odd

wγ1[0,aγ×bγc ].

(5.43)

Proof. Let

wi :=

{
1 if {i= (
0 otherwise.

and observe that wγ =
∏
i∈γ wi. Hence if x ∈ [0, 1]

d
, then

1{a,b] (x) =

d∏
i=1

1{iai,bi] (xi) =

d∏
i=1

[
1[0,bi] (xi)− wi1[0,ai] (xi)

]
=

∑
γ⊂{1,2,...,d}

(−1)
|γ|∏

i∈γ
wi1[0,ai] (xi) ·

∏
j∈γc

1(−∞,bj ] (xj)

=
∑

γ⊂{1,2,...,d}

(−1)
|γ|
wγ1[0,aγ×bγc ] (x) .

Corollary 5.45. Suppose that V is a vector space, µ : A
(

[0, 1]
d
)
→ V is a

finitely additive measure, and for b ∈ [0, 1]
d

let F (b) := µ ([0, b]) . Then for all

a, b ∈ [0, 1]
d

with a ≤ b,

µ ({a, b]) =
∑

γ⊂{1,2,...,d}

wγ (−1)
|γ|
F (aγ × bγc) . (5.44)

Proof. First proof. The result follows directly by integrating Eq. (5.42)
relative to µ while using µ ([0, aγ × bγc ]) = F (aγ × bγc) for all γ ⊂ {1, 2, . . . , d} .

Second proof. We carry this proof out only in the case d = 2. We have

µ ({a, b]) = µ ({1a1, b1]× {2a2, b2]) = µ ({1a1, b1]× [0, b2])− w2µ ({1a1, b1]× [0, a2])

= µ ([0, b1]]× [0, b2])− w1µ ([0, a1]× [0, b2])

− w2 [µ ([0, b1]× [0, a2])− w1µ ([0, a1]× [0, a2])]

= F (b)− w1F (a1, b2)− w2F (b1, a2)− w1w2F (a) .

The general scheme of this proof would then follow by induction.
The next result is the converse of this corollary.

Proposition 5.46. To every function, F : [0, 1]
d → V, there exists a unique

finitely additive measure (µF ) on A([0, 1]
d
) such that Eq. (5.44) holds for all

a, b ∈ [0, 1]
d

with a ≤ b.

Proof. The proof for d = 1 is completely analogous to the proof of Propo-
sition 5.9 and so will be omitted. Now suppose that d ≥ 2 and we have proved
the Proposition when d is replaced by d− 1. Then for c ∈ [0, 1] let µc = µF (·,c)

be the unique finitely additive measure on A
(

[0, 1]
d−1
)

(guaranteed to exist
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by the induction hypothesis) such that for all a′, b′ ∈ [0, 1]
d−1

with a′ ≤ b′ we
have

µc ({a′, b′]) =
∑

γ⊂{1,2,...,d−1}

wγ(−1)|γ|F (a′γ × b′γc , c). (5.45)

By Proposition 5.15, there is a unique finitely additive measure (µF ) on

A([0, 1]
d
) = A

(
[0, 1]

d−1
)
⊗A([0, 1]) such that

µF (C × {ad, bd]) = µbd (C)−wdµad (C) ∀ C ∈ A
(

[0, 1]
d−1
)

& 0 ≤ ad ≤ bd ≤ 1.

Letting a ≤ b with a, b ∈ [0, 1]
d

and using Eq. (5.41) it is not to hard to show,

µF ({a, b]) =
∑

γ⊂{1,2,...,d−1}

wγ(−1)|γ|
[
F (a′γ × b′γc , b)− wdF (a′γ × b′γc , a)

]
=

∑
γ⊂{1,2,...,d}

wγ(−1)|γ|F (aγ × bγc).

The point is that the subsets, γ ⊂ {1, 2, . . . , d} , split into two types; those
which contain d and those which do not.

5.7 * Appendix: Riemann Stieljtes integral

In this subsection, let Ω be a set, A ⊂ 2Ω be an algebra of sets, and P := µ :
A → [0,∞) be a finitely additive measure with µ (Ω) <∞. As above let

Eµf :=

∫
Ω

fdµ :=
∑
λ∈C

λµ(f = λ) ∀ f ∈ S (A) . (5.46)

Notation 5.47 For any function, f : Ω → C let ‖f‖u := supω∈Ω |f (ω)| .
Further, let S̄ := S (A) denote those functions, f : Ω → C such that there exists
fn ∈ S (A) such that limn→∞ ‖f − fn‖u = 0.

Exercise 5.10 (Do not hand in). Prove the following statements.

1. For all f ∈ S (A) ,
|Eµf | ≤ µ (Ω) ‖f‖u . (5.47)

2. If f ∈ S̄ and fn ∈ S := S (A) such that limn→∞ ‖f − fn‖u = 0, show
limn→∞ Eµfn exists. Also show that defining Eµf := limn→∞ Eµfn is well
defined, i.e. you must show that limn→∞ Eµfn = limn→∞ Eµgn if gn ∈ S
such that limn→∞ ‖f − gn‖u = 0.

3. Show Eµ : S̄→ C is still linear and still satisfies Eq. (5.47).

4. Show |f | ∈ S̄ if f ∈ S̄ and that Eq. (5.25) is still valid, i.e. |Eµf | ≤ Eµ |f |
for all f ∈ S̄.

Let us now specialize the above results to the case where Ω = [0, T ] for
some T <∞. Let S := {(a, b] : 0 ≤ a ≤ b ≤ T} ∪ {0} which is easily seen to be
a semi-algebra. The following proposition is fairly straightforward and will be
left to the reader.

Proposition 5.48 (Riemann Stieljtes integral). Let F : [0, T ] → R be an
increasing function, then;

1. there exists a unique finitely additive measure, µF , on A := A (S) such that
µF ((a, b]) = F (b)− F (a) for all 0 ≤ a ≤ b ≤ T and µF ({0}) = 0. (In fact
one could allow for µF ({0}) = λ for any λ ≥ 0, but we would then have to
write µF,λ rather than µF .)

2. Show C ([0, 1] ,C) ⊂ S (A). More precisely, suppose π :=
{0 = t0 < t1 < · · · < tn = T} is a partition of [0, T ] and c = (c1, . . . , cn) ∈
[0, T ]

n
with ti−1 ≤ ci ≤ ti for each i. Then for f ∈ C ([0, 1] ,C) , let

fπ,c := f (0) 1{0} +

n∑
i=1

f (ci) 1(ti−1,ti]. (5.48)

Show that ‖f − fπ,c‖u is small provided, |π| := max {|ti − ti−1| : i = 1, 2, . . . , n}
is small.

3. Using the above results, show∫
[0,T ]

fdµF = lim
|π|→0

n∑
i=1

f (ci) (F (ti)− F (ti−1))

where the ci may be chosen arbitrarily subject to the constraint that ti−1 ≤
ci ≤ ti.

It is customary to write
∫ T

0
fdF for

∫
[0,T ]

fdµF . This integral satisfies the
estimates,∣∣∣∣∣

∫
[0,T ]

fdµF

∣∣∣∣∣ ≤
∫

[0,T ]

|f | dµF ≤ ‖f‖u (F (T )− F (0)) ∀ f ∈ S (A).

When F (t) = t, ∫ T

0

fdF =

∫ T

0

f (t) dt,

is the usual Riemann integral.
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Exercise 5.11. Let a ∈ (0, T ) , λ > 0, and

G (x) = λ · 1x≥a =

{
λ if x ≥ a
0 if x < a

.

1. Explicitly compute
∫

[0,T ]
fdµG for all f ∈ C ([0, 1] ,C) .

2. If F (x) = x + λ · 1x≥a describe
∫

[0,T ]
fdµF for all f ∈ C ([0, 1] ,C) . Hint:

if F (x) = G (x) + H (x) where G and H are two increasing functions on
[0, T ] , show ∫

[0,T ]

fdµF =

∫
[0,T ]

fdµG +

∫
[0,T ]

fdµH .

Exercise 5.12. Suppose that F,G : [0, T ] → R are two increasing functions
such that F (0) = G (0) , F (T ) = G (T ) , and F (x) 6= G (x) for at most count-
ably many points, x ∈ (0, T ) . Show∫

[0,T ]

fdµF =

∫
[0,T ]

fdµG for all f ∈ C ([0, 1] ,C) . (5.49)

Note well, given F (0) = G (0) , µF = µG on A iff F = G.

One of the points of the previous exercise is to show that Eq. (5.49) holds
when G (x) := F (x+) – the right continuous version of F. The exercise applies
since and increasing function can have at most countably many jumps, see
Remark 26.18. So if we only want to integrate continuous functions, we may
always assume that F : [0, T ]→ R is right continuous.

5.8 * Tonelli and Fubini’s Theorem I

In the last part of this section we will extend some of the above ideas to
more general “finitely additive measure spaces.” A finitely additive mea-
sure space is a triple, (X,A, µ), where X is a set, A ⊂ 2X is an algebra, and
µ : A → [0,∞] is a finitely additive measure. Let (Y,B, ν) be another finitely
additive measure space. Further let µ� ν be the product measure on A�B as
described in Example

Theorem 5.49 (Tonelli’s Theorem). If f ∈ S+ (A� B) then for each x ∈ X,
f (x, ·) ∈ S+ (B) and X 3 x→

∫
Y
f (x, y) dν (y) is in S+ (A) and moreover,∫

X×Y
f (x, y) d (µ� ν) (x, y) =

∫
X

[∫
Y

f (x, y) dν (y)

]
dµ (x) .

Similarly, for each y ∈ Y, f (·, y) ∈ S+ (A) and Y 3 y →
∫
X
f (x, y) dµ (x) is in

S+ (B) and moreover,∫
X×Y

f (x, y) d (µ� ν) (x, y) =

∫
Y

[∫
X

f (x, y) dµ (x)

]
dν (y) .

Proof. By the usual arguments it suffices to assume f = 1A×B for some
(A,B) ∈ A× B in which case the above results are trivial.

Theorem 5.50 (Product Measure and Fubini’s Theorem). Assume that
µ (X) < ∞ and ν (Y ) < ∞ for simplicity. Then there is a unique finitely
additive measure, µ� ν, on A�B such that µ� ν (A×B) = µ (A) ν (B) for all
A ∈ A and B ∈ B. Moreover if f ∈ S (A� B) then;

1. y → f (x, y) is in S (B) for all x ∈ X and x → f (x, y) is in S (A) for all
y ∈ Y.

2. x→
∫
Y
f (x, y) dν (y) is in S (A) and y →

∫
X
f (x, y) dµ (x) is in S (B) .

3. we have,∫
X

[∫
Y

f (x, y) dν (y)

]
dµ (x)

=

∫
X×Y

f (x, y) d (µ� ν) (x, y)

=

∫
Y

[∫
X

f (x, y) dµ (x)

]
dν (y) .

We will refer to µ� ν as the product measure of µ and ν.

Proof. According to Eq. (5.11),

1C (x, y) =

n∑
i=1

1Ai×Bi (x, y) =

n∑
i=1

1Ai (x) 1Bi (y)

from which it follows that 1C (x, ·) ∈ S (B) for each x ∈ X and∫
Y

1C (x, y) dν (y) =

n∑
i=1

1Ai (x) ν (Bi) .

It now follows from this equation that x→
∫
Y

1C (x, y) dν (y) ∈ S (A) and that∫
X

[∫
Y

1C (x, y) dν (y)

]
dµ (x) =

n∑
i=1

µ (Ai) ν (Bi) .

Similarly one shows that∫
Y

[∫
X

1C (x, y) dµ (x)

]
dν (y) =

n∑
i=1

µ (Ai) ν (Bi) .

In particular this shows that we may define
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(µ� ν) (C) =

n∑
i=1

µ (Ai) ν (Bi)

and with this definition we have,∫
X

[∫
Y

1C (x, y) dν (y)

]
dµ (x)

= (µ� ν) (C)

=

∫
Y

[∫
X

1C (x, y) dµ (x)

]
dν (y) .

From either of these representations it is easily seen that µ � ν is a finitely
additive measure on A � B with the desired properties. Moreover, we have
already verified the Theorem in the special case where f = 1C with C ∈ A �
B. Since the general element, f ∈ S (A� B) , is a linear combination of such
functions, it is easy to verify using the linearity of the integral and the fact that
S (A) and S (B) are vector spaces that the theorem is true in general.

Example 5.51. Suppose that f ∈ S (A) and g ∈ S (B) . Let f ⊗ g (x, y) :=
f (x) g (y) . Since we have,

f ⊗ g (x, y) =

(∑
a

a1f=a (x)

)(∑
b

b1g=b (y)

)
=
∑
a,b

ab1{f=a}×{g=b} (x, y)

it follows that f ⊗ g ∈ S (A� B) . Moreover, using Fubini’s Theorem 5.50 it
follows that ∫

X×Y
f ⊗ g d (µ� ν) =

[∫
X

f dµ

] [∫
Y

g dν

]
.

Remark 5.52. We can at this point now use the obvious generalizations of these
results to prove the classical Weierstrass approximation theorems. [See Theorem
5.69 and more generally Section 5.11.]

5.9 Conditional probabilities and expectations

We begin with the notion of conditional probabilities which tries to capture the
dependency of one event on another. Throughout this section let (Ω,B, P ) be
a finitely additive probability space. For motivational purposes we heuristically
think that P may be computed using,

P (B) := lim
N→∞

1

N

N∑
n=1

1B (ωn) for all B ∈ B,

where {ωn}∞n=1 ⊂ Ω are the outcomes of a sequence of identical and independent
experiments.

For events A and B ∈ B we wish to know how likely the event A is given
that we know that B has occurred. Informally (in the spirit of Chapter 3) we
want P (A|B) := limN→∞ PN (A|B) where

PN (A|B) =
# {k : 1 ≤ k ≤ N and ω (k) ∈ A ∩B}

# {k : 1 ≤ k ≤ N and ω (k) ∈ B}

=
1
N# {k : 1 ≤ k ≤ N and ω (k) ∈ A ∩B}

1
N# {k : 1 ≤ k ≤ N and ω (k) ∈ B}

=
PN (A ∩B)

PN (B)
,

which represents the frequency in the first N trials that A occurs given that
we know that B has occurred. [This is only defined when PN (B) > 0, i.e.
where B has occurred during the first N – trials.] As we explained, we expect
P (A ∩B) = limN→∞ PN (A ∩B) and P (B) = limN→∞ PN (B) and all of this
together leads to the following definition.

Definition 5.53. If B is a non-null event, i.e. P (B) > 0, define the condi-
tional probability of A given B by,

P (A|B) :=
P (A ∩B)

P (B)
.

We may now ask a similar question as to what is the expectation of a random
variable, X : Ω → R, given an event B. Using the above notation and ideas
along with the intuition in Remark 5.24 it is reasonable to write,

EP [X|B] = lim
N→∞

1∑N
n=1 1B (ωn)

N∑
n=1

X (ωn) 1B (ωn)

= lim
N→∞

N∑N
n=1 1B (ωn)

1

N

N∑
n=1

X (ωn) 1B (ωn)

=
1

P (B)
E [X · 1B ] = EP (·|B) [X] .

Definition 5.54 (Conditional expectation I). If X : Ω → R is a B-simple
function and B ∈ B with P (B) > 0, then conditional expectation of X
given B is

EP [X|B] =
1

P (B)
E [X · 1B ] = EP (·|B) [X] .
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It turns out that a far reaching generalization of this notion is to defined
the conditional expectation of X given a sub-algebra,3 A ⊂ B. For this mo-
tivational and introductory section we are going to assume that A is a finite
sub-algebra, i.e. # (A) < ∞, and X : Ω → R is a B – simple function. Recall
from Example 4.19, for each ω ∈ Ω, let Aω := ∩{A ∈ A : ω ∈ A} and recall
that either Aω = Aω′ or Aω ∩Aω′ = ∅ for all ω, ω′ ∈ Ω. Let {B1, . . . , Bm} ⊂ A
be an enumeration of {Aω : ω ∈ Ω} in which case {B1, . . . , Bm} is a partition
of Ω and A = A ({B1, . . . , Bm}) .

We now imagine that our measuring devices can only tell us which Bi
that the ωn is in and hence we get a report from the experiment consisting
of {(i (ωn) , X (ωn))}∞n=1 ⊂ {1, . . . ,m} × R where i (ω) = j iff ω ∈ Bj , i.e.
i :=

∑m
j=1 j1Bj . Our manager now asks us to make sense out this data, i.e. she

wants to know what X (ω) will be if we know ω ∈ Bj . However the data we
are given is inconsistent with giving such an answer so we do the best we can
and give her the average of the X (ωn) for which ωn ∈ Bj , i.e. we report that
our best guess, X̄, to X given we are not able to observe ω directly but only
whether ω ∈ Bj for some j is the random variable,

X̄ (ω) =

N∑
j=1

E [X|Bj ] 1Bj (ω) (5.50)

with the convention (say) that E [X|Bj ] = 0 if P (Bj) = 0. Noting that
1Bj (ω) = 1 iff ω ∈ Bj iff Bj = Aω, we may rewrite this expression as

X̄ (ω) :=
1

P (Aω)
E [1AωX] for all ω ∈ Ω (5.51)

with the convention that X̄ (ω) = 0 if P (Aω) = 0. It should be noted, from
Exercise 5.4, that X̄ = EAX ∈ S (A) .

Definition 5.55 (Conditional expectation). Let X : Ω → R be a B – simple
random variable, i.e. X ∈ S (B) and A ⊂ B is as above, we say that X̄ ∈ S (A)
given by either of the previously displayed equations is the conditional expec-
tation of X given A and we denote X̄ by E [X|A] or EAX. So in summary,

EAX =

N∑
j=1

E [X|Bj ] 1Bj =

m∑
j=1

EP (·|Bj) [X] · 1Bj , (5.52)

with the convention that E [X|Bj ] = 0 if P (Bj) = 0.

Exercise 5.13 (Simple conditional expectation). Let X ∈ S (B) and, for
simplicity, assume all functions are real valued. Prove the following assertions;

3 To do so in full generality later we will need to use σ-additive probabilities and
σ-algebras in the full constructions.

1. (Orthogonal Projection Property 1.) If Z ∈ S (A), then

E [XZ] = E
[
X̄Z

]
= E [EAX · Z] (5.53)

and

(EAZ) (ω) =

{
Z (ω) if P (Aω) > 0

0 if P (Aω) = 0
. (5.54)

[Applying Eq. (5.54) with Z = EAX then shows EA [EAX] = EAX for all
X ∈ S (B) .4]

2. (Orthogonal Projection Property 2.) If Y ∈ S (A) satisfies, E [XZ] =
E [Y Z] for all Z ∈ S (A) , then Y (ω) = X̄ (ω) whenever P (Aω) > 0. In

particular, P
(
Y 6= X̄

)
= 0. Hint: use item 1. to compute E

[(
X̄ − Y

)2]
.

3. (Best Approximation Property.) For any Y ∈ S (A) ,

E
[(
X − X̄

)2] ≤ E [(X − Y )
2
]

(5.55)

with equality iff X̄ = Y almost surely (a.s. for short), where X̄ = Y a.s. iff
P
(
X̄ 6= Y

)
= 0. In words, X̄ = EAX is the best (“L2”) approximation to

X by an A – measurable random variable.
4. (Contraction Property.) E

∣∣X̄∣∣ ≤ E |X| . (It is typically not true that∣∣X̄ (ω)
∣∣ ≤ |X (ω)| for all ω.)

5. (Pull Out Property.) If Z ∈ S (A) , then

EA [ZX] = ZEAX.

Remark 5.56. The cleanest way to see that EA in Eq. (5.50) is an orthogonal
projection is to let

(X,Y ) := E [XY ] for all X,Y ∈ S (B)

and observe that (·, ·) satisfies the axioms of inner product except for possibly
the axiom that (X,X) = 0 implies X = 0. What is true is that if (X,X) = 0,
then X = 0 a.s., i.e. P (X 6= 0) = 0. To avoid technicalities associate with these

“null” sets, let us suppose that P (Bi) > 0 for each i. In this case

{
1Bi√
P (Bi)

}
i

is an orthonormal basis for the subspace S (A) ⊂ S (B) . Therefore orthogonal
projection from S (B) onto S (A) is given by

4 All in all these results basically show that EA is orthogonal projection from S (B)
onto S (A) relative to the inner product

(f, g) = E [fg] for all f, g ∈ S (B) .
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X →
∑
i

(
X,

1Bi√
P (Bi)

)
1Bi√
P (Bi)

=
∑
i

E [X1Bi ]

P (Bi)
1Bi

which is precisely the formula for EAX.

5.10 Simple Independence and the Weak Law of Large
Numbers

Again we assume throughout this section let (Ω,B, P ) be a finitely additive
probability space. Informally, we say two experiments are independent if know-
ing the outcome of one of the experiments in no way influences the second
experiment. As an example of independent experiments, suppose that one ex-
periment is the outcome of spinning a roulette wheel and the second is the
outcome of rolling a dice. We expect these two experiments will be indepen-
dent. As an example of dependent experiments, suppose that dice roller now
has two dice – one red and one black. The person rolling dice throws his black
or red dice after the roulette ball has stopped and landed on either black or
red respectively. If the black and the red dice are weighted differently, we ex-
pect that these two experiments are no longer independent. We now go to the
mathematical definitions of independence.

Definition 5.57. Two events, A,B ∈ B are P - independent events if either
P (B) = 0 or P (B) > 0 and P (A|B) = P (A) . Alternatively put, A and B are
independent provided P (A ∩B) = P (A)P (B) .

Definition 5.58. Suppose that S and T are sets and X : Ω → S and
Y : Ω → T are B – simple functions, i.e. X and Y have finite range and
{X = s} , {Y = t} ∈ B for all s ∈ S and t ∈ T. We say that X and Y are (P )
independent if {X = s} and {Y = t} are independent events for all s ∈ S and
t ∈ T.

Proposition 5.59. Suppose that S and T are sets and X : Ω → S and Y :
Ω → T are B – simple functions. The following are equivalent;

1. X and Y are independent
2. E [f (X) g (Y )] = E [f (X)]E [g (Y )] for all functions, f : S → R and g :
T → R.

3. P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) for all A ⊂ S and B ⊂ T.

Proof. We will prove 1. =⇒ 2. =⇒ 3. =⇒ 1.
(1. =⇒ 2.) We have f (X) =

∑
s∈S f (s) 1X=s and g (Y ) =

∑
t∈T g (t) 1Y=t

and therefore,

f (X) g (Y ) =
∑
s∈S

∑
t∈T

f (s) g (t) 1X=s · 1Y=t =
∑
s∈S

∑
t∈T

f (s) g (t) 1X=s,Y=t

and therefore,

E [f (X) g (Y )] =
∑
s∈S

∑
t∈T

f (s) g (t)P (X = s, Y = t)

=
∑
s∈S

∑
t∈T

f (s)P (X = s) g (t)P (Y = t) = E [f (X)]E [g (Y )] .

(2. =⇒ 3.) For A ⊂ S and B ⊂ T take f = 1A and g = 1B in item 2. to
learn

P (X ∈ A, Y ∈ B) = E [1X∈A1Y ∈B ] = E [1A (X) 1B (Y )]

= E [1A (X)] · E [1B (Y )] = P (X ∈ A) · P (Y ∈ B) .

(3. =⇒ 1.) For s ∈ S and t ∈ T, let A = {s} and B = {t} in item 3. to
learn

P ({X = s} ∩ {Y = t}) = P ({X = s})P ({Y = t}) ,
i.e. {X = s} and {Y = t} are independent events for all s ∈ S and t ∈ T.

Exercise 5.14. Suppose that S, T, U are sets and X : Ω → S, Y : Ω → T,
and Z : Ω → U are B – simple functions such that Z is independent of (X,Y ) :
Ω → S × T. Show that Z is independent of X. [In words, if knowing values of
both (X,Y ) does not change the likelihood that Z = u then knowing the value
of just X does not change the likelihood that Z = u either.]

Example 5.60. It is not true in general that if Z is independent of X and Z
is independent of Y then Z is independent of (X,Y ) . For example let X,Y :
Ω → {±1} be independent random variables (i.e. B – simple functions) such
that P (X = ±1) = 1

2 = P (Y = ±1) . Then take Z = XY. It is now fairly easy
to verify that X and Z are independent and Y and Z are independent while
Z = XY is not independent of (X,Y ) .

Method 1. Let f, g : {±1} → R be two functions, then (by doing the x –
sum first)

E [f (Z)] =
1

4

∑
x,y∈{±1}

f (xy) =
1

2

∑
y∈{±1}

E [f (X)] = Ef (X) ,

E [f (Z) g (Y )] = E [f (XY ) g (Y )] =
1

4

∑
x,y∈{±1}

f (xy) g (y)

=
1

2

∑
y∈{±1}

[Ef (X)] g (y) = Ef (X) · Eg (Y )

= E [f (Z)] · Eg (Y ) .
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This shows Y and Z are independent and a similar computation shows X and
Z are independent. On the other hand Z = XY is not independent of (X,Y ) .
For example

0 = P (Z = 1, (X,Y ) = (1,−1))

while

P (Z = 1) · P ((X,Y ) = (1,−1)) =
1

2
· 1

4
=

1

8
6= 0.

Method 2. The reader should verify that for ε, δ ∈ {±1} that P (Z = δ) =
1
2 ,

P (X = ε, Z = δ) =
1

4
= P (X = ε)P (Z = δ)

and same with X replaced by Y. This shows that X and Z are independent
and Y and Z are independent while Z = XY is not independent of (X,Y ) . For
example

0 = P (Z = 1, (X,Y ) = (1,−1))

while

P (Z = 1) · P ((X,Y ) = (1,−1)) =
1

2
· 1

4
=

1

8
6= 0.

Remark 5.61. The above example easily generalizes as follows. Let G be any
finite group and suppose that X,Y : Ω → G are independent random functions
such that P (X = g) = P (Y = g) = 1

#(G) for all g ∈ G, i.e. X and Y are

uniformly distributed on G. Then Z = XY will be independent of X and of Y
separately but not independent of (X,Y ) : Ω → G × G. Example 5.60 is the
special case where G = {±1} . Later we may see “continuous” versions of this
example as well where G is replaced by any compact group.

Definition 5.62. Suppose that {Si}ni=1 are sets and Xi : Ω → Si is an B –
simple function for each 1 ≤ i ≤ n. We say {Xi}ni=1 are independent iff for
each 1 ≤ i ≤ n, Xi is independent of X(i) : Ω →

∏
j 6=i Sj where X(i) (ω) :=(

X1 (ω) , . . . , X̂i (ω) , . . . , Xn (ω)
)

where the hat over a term means that term

is to be omitted from the list.

Exercise 5.15. Suppose that Xi : Ω → Si is an B – simple function for each
1 ≤ i ≤ n. Show {Xi}ni=1 are independent iff

P (∩ni=1 {Xi = si}) =

n∏
i=1

P (Xi = si) (5.56)

for all (s1, . . . , sn) ∈ S1 × · · · × Sn.

Exercise 5.16. Suppose that Xi : Ω → Si is an B – simple function for each
1 ≤ i ≤ n. Show the following are equivalent;

1. {Xi}ni=1 are independent.
2. For all choices of functions, fi : Si → R with 1 ≤ i ≤ n,

E

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

E [fi (Xi)] .

3. For all choices of subsets Ai ⊂ Si with 1 ≤ i ≤ n,

P (∩ni=1 {Xi ∈ Ai}) =

n∏
i=1

P ({Xi ∈ Ai}) .

Remark 5.63. If {X,Y, Z} are as in Example 5.60, then X is independent of
Y, X is independent of Z, and Y is independent of Z, yet {X,Y, Z} is not an
independent collection of random variables. Thus independence of three or more
random variables can not be verified by checking independence of all pairs of
these random variables.

Exercise 5.17. Suppose now that S is a finite set, Ω = Sn, B = 2Ω , and
Xi : Ω → S is projection onto the ith factor of Ω, i.e.

Xi (ω) = ωi ∈ S for all ω = (ω1, . . . , ωn) ∈ Ω.

Let P be a probability measure on (Ω,B) . Show {Xi}ni=1 are P – independent
iff P there are functions, qi : S → [0, 1] (for 1 ≤ i ≤ n) such that

∑
s∈S qi (s) = 1

and

P ({s}) =

n∏
i=1

qi (si) for all s ∈ Ω. (5.57)

and define qi (s) := P (Xi = s) for all s ∈ S and 1 ≤ i ≤ n.

Example 5.64 (Heuristics of independence and conditional expectations). Let us
suppose that we have an experiment consisting of spinning a spinner with values
in Λ1 = {1, 2, . . . , 10} and rolling a die with values in Λ2 = {1, 2, 3, 4, 5, 6} . So
the outcome of an experiment is represented by a point, ω = (x, y) ∈ Ω =
Λ1 × Λ2. Let X (x, y) = x, Y (x, y) = y, B = 2Ω , and

A = A (X) = X−1
(
2Λ1
)

=
{
X−1 (A) : A ⊂ Λ1

}
⊂ B,

so that A is the smallest algebra of subsets of Ω such that {X = x} ∈ A for all
x ∈ Λ1. Notice that the partition associated to A is precisely

{{X = 1} , {X = 2} , . . . , {X = 10}} .

Let us now suppose that the spins of the spinner are “empirically independent”
of the throws of the dice. As usual let us run the experiment repeatedly to
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produce a sequence of results, ωn = (xn, yn) for all n ∈ N. If g : Λ2 → R is a
function, we have (heuristically) that

EA [g (Y )] (x, y) = lim
N→∞

∑N
n=1 g (Y (ω (n))) 1X(ω(n))=x∑N

n=1 1X(ω(n))=x

= lim
N→∞

∑N
n=1 g (yn) 1xn=x∑N

n=1 1xn=x

.

As the {yn} sequence of results are independent of the {xn} sequence, we should
expect by the usual mantra5 that

lim
N→∞

∑N
n=1 g (yn) 1xn=x∑N

n=1 1xn=x

= lim
N→∞

1

M (N)

M(N)∑
n=1

g (ȳn) = E [g (Y )] ,

where M (N) =
∑N
n=1 1xn=x and (ȳ1, ȳ2, . . . ) = {yl : 1xl=x} . (We are also

assuming here that P (X = x) > 0 so that we expect, M (N) ∼ P (X = x)N
for N large, in particular M (N) → ∞.) Thus under the assumption that X
and Y are describing “independent” experiments we have heuristically deduced
that EA [g (Y )] : Ω → R is the constant function;

EA [g (Y )] (x, y) = E [g (Y )] for all (x, y) ∈ Ω. (5.58)

Let us further observe that if f : Λ1 → R is any other function, then f (X) is
an A – simple function and therefore by Eq. (5.58) and Exercise 5.13

E [f (X)]·E [g (Y )] = E [f (X) · E [g (Y )]] = E [f (X) · EA [g (Y )]] = E [f (X) · g (Y )] .

Lemma 5.65 (Conditional Expectation and Independence). Let Ω =
Λ1 × Λ2, X, Y, B = 2Ω , and A =X−1

(
2Λ1
)
, be as in Example 5.64 above.

Assume that P : B → [0, 1] is a probability measure. If X and Y are P –
independent, then Eq. (5.58) holds.

Proof. From the definitions of conditional expectation and of independence
we have,

EA [g (Y )] (x, y) =
E [1X=x · g (Y )]

P (X = x)
=
E [1X=x] · E [g (Y )]

P (X = x)
= E [g (Y )] .

The following theorem summarizes much of what we (i.e. you) have shown
regarding the underlying notion of independence of a pair of simple functions.

5 That is it should not matter which sequence of independent experiments are used
to compute the time averages.

Theorem 5.66 (Independence result summary). Let (Ω,B, P ) be a
finitely additive probability space, Λ be a finite set, and X,Y : Ω → Λ be two
B – measurable simple functions, i.e. {X = x} ∈ B and {Y = y} ∈ B for all
x, y ∈ Λ. Further let A = A (X) := A ({X = x} : x ∈ Λ) . Then the following
are equivalent;

1. P (X = x, Y = y) = P (X = x) · P (Y = y) for all x ∈ Λ and y ∈ Λ,
2. E [f (X) g (Y )] = E [f (X)]E [g (Y )] for all functions, f : Λ → R and g :
Λ→ R,

3. EA(X) [g (Y )] = E [g (Y )] for all g : Λ→ R, and
4. EA(Y ) [f (X)] = E [f (X)] for all f : Λ→ R.

We say that X and Y are P – independent if any one (and hence all) of the
above conditions holds.

Exercise 5.18 (A Weak Law of Large Numbers). Suppose that Λ ⊂ R is
a finite set, n ∈ N, Ω = Λn, p (ω) =

∏n
i=1 q (ωi) where q : Λ → [0, 1] such that∑

λ∈Λ q (λ) = 1, and let P : 2Ω → [0, 1] be the probability measure defined as
in Eq. (5.57) with S replaced by Λ. Further let Xi (ω) = ωi for i = 1, 2, . . . , n,

ξ := EXi, σ
2 := E (Xi − ξ)2

, and

Sn =
1

n
(X1 + · · ·+Xn) .

1. Show, ξ =
∑
λ∈Λ λ q (λ) and

σ2 =
∑
λ∈Λ

(λ− ξ)2
q (λ) =

∑
λ∈Λ

λ2q (λ)− ξ2. (5.59)

2. Show, ESn = ξ.
3. Let δij = 1 if i = j and δij = 0 if i 6= j. Show

E [(Xi − ξ) (Xj − ξ)] = δijσ
2.

4. Using Sn − ξ may be expressed as, 1
n

∑n
i=1 (Xi − ξ) , show

E (Sn − ξ)2
=

1

n
σ2. (5.60)

5. Conclude using Eq. (5.60) and Chebyshev’s Inequality (Remark 5.29) that

P (|Sn − ξ| ≥ ε) ≤
1

nε2
σ2. (5.61)

So for large n, Sn is concentrated near ξ = EXi with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.
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Definition 5.67 (Covariance). Let (Ω,B, P ) is a finitely additive probability.
The covariance, Cov (X,Y ) , of X,Y ∈ S (B) is defined by

Cov (X,Y ) = E [(X − ξX) (Y − ξY )] = E [XY ]− EX · EY

where ξX := EX and ξY := EY. The variance of X,

Var (X) := Cov (X,X) = E
[
X2
]
− (EX)

2

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] = EX ·
EY. More generally we say {Xk}nk=1 ⊂ S (B) are uncorrelated iff Cov (Xi, Xj) =
0 for all i 6= j.

Remark 5.68. 1. Observe that X and Y are independent iff f (X) and g (Y ) are
uncorrelated for all functions, f and g on the range of X and Y respectively. In
particular if X and Y are independent then Cov (X,Y ) = 0.

2. If you look at your proof of the weak law of large numbers in Exercise
5.18 you will see that it suffices to assume that {Xi}ni=1 are uncorrelated rather
than the stronger condition of being independent.

Exercise 5.19 (Bernoulli Random Variables). Let Λ = {0, 1} , X : Λ→ R
be defined by X (0) = 0 and X (1) = 1, x ∈ [0, 1] , and define Q = xδ1 +
(1− x) δ0, i.e. Q ({0}) = 1− x and Q ({1}) = x. Verify,

ξ (x) := EQX = x and

σ2 (x) := EQ (X − x)
2

= (1− x)x ≤ 1/4.

Theorem 5.69 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f ∈ C([0, 1] ,C) and

pn (x) :=

n∑
k=0

(
n

k

)
f

(
k

n

)
xk (1− x)

n−k
.

Then
lim
n→∞

sup
x∈[0,1]

|f (x)− pn (x)| = 0.

Proof. Let x ∈ [0, 1] , Λ = {0, 1} , q (0) = 1− x, q (1) = x, Ω = Λn, and

Px ({ω}) = q (ω1) . . . q (ωn) = x
∑n

i=1
ωi · (1− x)

1−
∑n

i=1
ωi .

As above, let Sn = 1
n (X1 + · · ·+Xn) , where Xi (ω) = ωi and observe that

Px

(
Sn =

k

n

)
=

(
n

k

)
xk (1− x)

n−k
.

Therefore, writing Ex for EPx , we have

Ex [f (Sn)] =

n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)

n−k
= pn (x) .

Hence we find

|pn (x)− f (x)| = |Exf (Sn)− f (x)| = |Ex [f (Sn)− f (x)]|
≤ Ex |f (Sn)− f (x)|
= Ex [|f (Sn)− f (x)| : |Sn − x| ≥ ε]

+ Ex [|f (Sn)− f (x)| : |Sn − x| < ε]

≤ 2M · Px (|Sn − x| ≥ ε) + δ (ε)

where

M := max
y∈[0,1]

|f (y)| and

δ (ε) := sup {|f(y)− f(x)| : x, y ∈ [0, 1] and |y − x| ≤ ε}

is the modulus of continuity of f. Now by the above exercises,

Px (|Sn − x| ≥ ε) ≤
1

4nε2
(see Figure 5.1) (5.62)

and hence we may conclude that

max
x∈[0,1]

|pn (x)− f (x)| ≤ M

2nε2
+ δ (ε)

and therefore, that

lim sup
n→∞

max
x∈[0,1]

|pn (x)− f (x)| ≤ δ (ε) .

This completes the proof, since by uniform continuity of f, δ (ε) ↓ 0 as ε ↓ 0.

5.10.1 Complex Weierstrass Approximation Theorem

The main goal of this subsection is to prove Theorem 5.75 which states that
any continuous 2π – periodic function on R may be well approximated by
trigonometric polynomials. The main ingredient is the following two dimen-
sional generalization of Theorem 5.69. All of the results in this section have
natural generalization to higher dimensions as well , see Theorem 5.76.
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Fig. 5.1. Plots of Px (Sn = k/n) versus k/n for n = 100 with x = 1/4 (black), x = 1/2
(red), and x = 5/6 (green).

Theorem 5.70 (Weierstrass Approximation Theorem). Suppose that

K = [0, 1]
2
, f ∈ C(K,C), and

pn (x, y) :=

n∑
k,l=0

f

(
k

n
,
l

n

)(
n

k

)(
n

l

)
xk (1− x)

n−k
yl (1− y)

n−l
. (5.63)

Then pn → f uniformly on K.

Proof. We are going to follow the argument given in the proof of Theorem
5.69. By considering the real and imaginary parts of f separately, it suffices
to assume f ∈ C([0, 1]

2
,R). For (x, y) ∈ K and n ∈ N we may choose a

collection of independent Bernoulli simple random variables {Xi, Yi}ni=1 such
that P (Xi = 1) = x and P (Yi = 1) = y for all 1 ≤ i ≤ n. Then letting
Sn := 1

n

∑n
i=1Xi and Tn := 1

n

∑n
i=1 Yi, we have

E [f (Sn, Tn)] =

n∑
k,l=0

f

(
k

n
,
l

n

)
P (n · Sn = k, n · Tn = l) = pn (x, y)

where pn (x, y) is the polynomial given in Eq. (5.63) wherein the assumed in-
dependence is needed to show,

P (n · Sn = k, n · Tn = l) =

(
n

k

)(
n

l

)
xk (1− x)

n−k
yl (1− y)

n−l
.

Thus if M = sup {|f(x, y)| : (x, y) ∈ K} , ε > 0,

δε = sup {|f(x′, y′)− f(x, y)| : (x, y) , (x′, y′) ∈ K and ‖(x′, y′)− (x, y)‖ ≤ ε} ,

and
A := {‖(Sn, Tn)− (x, y)‖ > ε} ,

we have,

|f(x, y)− pn(x, y)| = |E (f(x, y)− f ((Sn, Tn)))|
≤ E |f(x, y)− f ((Sn, Tn))|

=E [|f(x, y)− f (Sn, Tn)| : A]

+ E [|f(x, y)− f (Sn, Tn)| : Ac]
≤2M · P (A) + δε · P (Ac)

≤ 2M · P (A) + δε. (5.64)

To estimate P (A) , observe that if

‖(Sn, Tn)− (x, y)‖2 = (Sn − x)
2

+ (Tn − y)
2
> ε2,

then either,
(Sn − x)

2
> ε2/2 or (Tn − y)

2
> ε2/2

and therefore by sub-additivity and Eq. (5.62) we know

P (A) ≤ P
(
|Sn − x| > ε/

√
2
)

+ P
(
|Tn − y| > ε/

√
2
)

≤ 1

2nε2
+

1

2nε2
=

1

nε2
. (5.65)

Using this estimate in Eq. (5.64) gives,

|f(x, y)− pn(x, y)| ≤ 2M · 1

nε2
+ δε

and as right is independent of (x, y) ∈ K we may conclude,

lim sup
n→∞

sup
(x,y)∈K

|f (x, y)− pn (x, y)| ≤ δε

which completes the proof since δε ↓ 0 as ε ↓ 0 because f is uniformly continuous
on K.

Remark 5.71. We can easily improve our estimate on P (A) in Eq. (5.65) by a
factor of two as follows. As in the proof of Theorem 5.69,

E
[
‖(Sn, Tn)− (x, y)‖2

]
= E

[
(Sn − x)

2
+ (Tn − y)

2
]

= Var (Sn) + Var (Tn)

=
1

n
x (1− x) + y (1− y) ≤ 1

2n
.
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Therefore by Chebyshev’s inequality,

P (A) = P (‖(Sn, Tn)− (x, y)‖ > ε) ≤ 1

ε2
E ‖(Sn, Tn)− (x, y)‖2 ≤ 1

2nε2
.

Corollary 5.72. Suppose that K = [a, b]× [c, d] is any compact rectangle in R2.
Then every function, f ∈ C(K,C), may be uniformly approximated by polyno-
mial functions in (x, y) ∈ R2.

Proof. Let F (x, y) := f (a+ x (b− a) , c+ y (d− c)) – a continuous func-

tion of (x, y) ∈ [0, 1]
2
. Given ε > 0, we may use Theorem Theorem 5.70 to find

a polynomial, p (x, y) , such that sup(x,y)∈[0,1]2 |F (x, y)− p (x, y)| ≤ ε. Letting
ξ = a+ x (b− a) and η := c+ y (d− c) , it now follows that

sup
(ξ.η)∈K

∣∣∣∣f (ξ, η)− p
(
ξ − a
b− a

,
η − c
d− c

)∣∣∣∣ ≤ ε
which completes the proof since p

(
ξ−a
b−a ,

η−c
d−c

)
is a polynomial in (ξ, η) .

Theorem 5.73 (Complex Weierstrass Approximation Theorem).
Suppose that K ⊂ C is a compact rectangle. Then there exists poly-
nomials in (z = x+ iy, z̄ = x− iy) , pn(z, z̄) for z ∈ C, such that
supz∈K |qn(z, z̄)− f(z)| → 0 as n→∞ for every f ∈ C (K,C) .

Proof. The mapping (x, y) ∈ R × R → z = x + iy ∈ C is an isomorphism
of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2 and y = z−z̄
2i .

Therefore under this identification any polynomial p(x, y) on R × R may be
written as a polynomial q in (z, z̄), namely

q(z, z̄) = p

(
z + z̄

2
,
z − z̄

2i

)
.

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x + iy, x − iy). Hence the result now follows from
Corollary 5.72.

Example 5.74. Let K = S1 = {z ∈ C : |z| = 1} and A be the set of polynomials
in (z, z̄) restricted to S1. Then A is dense in C(S1). To prove this first observe

if f ∈ C
(
S1
)

then F (z) = |z| f
(
z
|z|

)
for z 6= 0 and F (0) = 0 defines F ∈ C(C)

such that F |S1 = f. By applying Theorem 5.73 to F restricted to a compact
rectangle containing S1 we may find qn (z, z̄) converging uniformly to F on K
and hence on S1. Since z̄ = z−1 on S1, we have shown polynomials in z and
z−1 are dense in C(S1).

Theorem 5.75 (Density of Trigonometric Polynomials). Any 2π – pe-
riodic continuous function, f : R → C, may be uniformly approximated by a
trigonometric polynomial of the form

p (x) =
∑
λ∈Λ

aλe
iλ·x

where Λ is a finite subset of Z and aλ ∈ C for all λ ∈ Λ.
Proof. For z ∈ S1, define F (z) := f(θ) where θ ∈ R is chosen so that

z = eiθ. Since f is 2π – periodic, F is well defined since if θ solves eiθ = z then
all other solutions are of the form {θ + 2πn : n ∈ Z} . Since the map θ → eiθ

is a local homeomorphism, i.e. for any J = (a, b) with b − a < 2π, the map

θ ∈ J φ→ J̃ :=
{
eiθ : θ ∈ J

}
⊂ S1 is a homeomorphism, it follows that F (z) =

f ◦ φ−1(z) for z ∈ J̃ . This shows F is continuous when restricted to J̃ . Since
such sets cover S1, it follows that F is continuous.

By Example 5.74, the polynomials in z and z̄ = z−1 are dense in C(S1).
Hence for any ε > 0 there exists

p(z, z̄) =
∑

0≤m,n≤N

am,nz
mz̄n

such that |F (z)− p(z, z̄)| ≤ ε for all z ∈ S1. Taking z = eiθ then implies

sup
θ

∣∣f(θ)− p
(
eiθ, e−iθ

)∣∣ ≤ ε
where

p
(
eiθ, e−iθ

)
=

∑
0≤m,n≤N

am,ne
i(m−n)θ

is the desired trigonometry polynomial.

Exercise 5.20. Use Example 5.79 to show that any 2π – periodic continuous
function, g : Rd → C, may be uniformly approximated by a trigonometric
polynomial of the form

p (x) =
∑
λ∈Λ

aλe
iλ·x

where Λ is a finite subset of Zd and aλ ∈ C for all λ ∈ Λ. Hint: start by

showing there exists a unique continuous function, f :
(
S1
)d → C such that

f
(
eix1 , . . . , eixd

)
= F (x) for all x = (x1, . . . , xd) ∈ Rd.

Exercise 5.21. Suppose f ∈ C (R,C) is a 2π – periodic function (i.e.
f (x+ 2π) = f (x) for all x ∈ R) and∫ 2π

0

f (x) einxdx = 0 for all n ∈ Z,

show again that f ≡ 0. Hint: Use Exercise 5.20.
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5.11 *Appendix: A Multi-dimensional Weirstrass
Approximation Theorem

The following theorem is the multi-dimensional generalization of Theorem 5.69.

Theorem 5.76 (Weierstrass Approximation Theorem). Suppose that
K = [a1, b1] × . . . [ad, bd] with −∞ < ai < bi < ∞ is a compact rectangle
in Rd. Then for every f ∈ C(K,C), there exists polynomials pn on Rd such that
pn → f uniformly on K.

Proof. By a simple scaling and translation of the arguments of f we may
assume without loss of generality that K = [0, 1]

d
. By considering the real and

imaginary parts of f separately, it suffices to assume f ∈ C([0,1],R).
Given x ∈ K, let

{
Xn =

(
X1
n, . . . , X

d
n

)}∞
n=1

be i.i.d. random vectors with

values in Rd such that

P (Xn = η) =

d∏
i=1

(1− xi)1−ηi xηii

for all η = (η1, . . . , ηd) ∈ {0, 1}d . Since each Xj
n is a Bernoulli random variable

with P
(
Xj
n = 1

)
= xj , we know that

EXn = x and Var
(
Xj
n

)
= xj − x2

j = xj(1− xj).

As usual let Sn := X1 + · · ·+Xn ∈ Rd, then

E
[
Sn
n

]
= x and

E

[∥∥∥∥Snn − x
∥∥∥∥2
]

=

d∑
j=1

E
(
Sjn
n
− xj

)2

=

d∑
j=1

Var

(
Sjn
n
− xj

)

=

d∑
j=1

Var

(
Sjn
n

)
=

1

n2
·
d∑
j=1

n∑
k=1

Var
(
Xj
k

)

=
1

n

d∑
j=1

xj(1− xj) ≤
d

4n
.

This shows Sn/n→ x in L2 (P ) and hence by Chebyshev’s inequality, Sn/n
P→ x

and in fact for any ε > 0,

P

(∥∥∥∥Snn − x
∥∥∥∥ ≥ ε) ≤ 1

ε2

d

4n
.

Observe that

pn(x) := E
[
f

(
Sn
n

)]
=

∑
η:{1,2,...,n}→{0,1}d

f

(
η (1) + · · ·+ η (n)

n

)
P (X1 = η (1) , . . . , Xn = η (n))

=
∑

η:{1,2,...,n}→{0,1}d
f

(
η (1) + · · ·+ η (n)

n

) n∏
k=1

d∏
i=1

(1− xi)1−ηi(k)
x
ηi(k)
i

(5.66)

is a polynomial in x of degree nd at most. If we further let M =
sup {|f(x)| : x ∈ K} , and

δε = sup {|f(y)− f(x)| : x, y ∈ K and ‖y − x‖ ≤ ε} ,

then

|f(x)− pn(x)| =
∣∣∣∣E(f(x)− f

(
Sn
n

))∣∣∣∣ ≤ E ∣∣∣∣f(x)− f
(
Sn
n

)∣∣∣∣
≤E

[∣∣∣∣f(x)− f
(
Sn
n

)∣∣∣∣ : ‖Sn − x‖ > ε

]
+ E

[∣∣∣∣f(x)− f
(
Sn
n

)∣∣∣∣ : ‖Sn − x‖ ≤ ε
]

≤2MP (‖Sn − x‖ > ε) + δε ≤
2dM

nε2
+ δε. (5.67)

Therefore,
lim sup
n→∞

max
x∈K
|f(x)− pn(x)| ≤ δε → 0 as ε ↓ 0

wherein we have used the uniform continuity of f to guarantee δε ↓ 0 as ε ↓ 0.

Remark 5.77. We can write out the expression in Eq. (5.66) more explicitly by
observing that

{
S1
n, . . . , S

d
n

}
are independent random variables with

Px
(
Sin = k

)
=

(
n

k

)
xki (1− xi)n−k for 0 ≤ k ≤ n

and therefore

pn (x) = E
[
f

(
Sn
n

)]
= E

[
f

((
S1
n, . . . , S

d
n

)
n

)]

=
∑

k∈{0,...,n}d
f

(
k

n

) d∏
i=1

(
n

ki

)
xkii (1− xi)n−ki .
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Theorem 5.73 has the following multi-dimensional generalization.

Theorem 5.78 (Complex Weierstrass Approximation Theorem). Sup-
pose that K ⊂ Cd ∼= Rd × Rd is a compact rectangle. Then there ex-
ists polynomials in (z = x+ iy, z̄ = x− iy) , pn(z, z̄) for z ∈ Cd, such that
supz∈K |qn(z, z̄)− f(z)| → 0 as n→∞ for every f ∈ C (K,C) .

Proof. The mapping (x, y) ∈ Rd×Rd → z = x+ iy ∈ Cd is an isomorphism
of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2 and y = z−z̄
2i .

Therefore under this identification any polynomial p(x, y) on Rd × Rd may be
written as a polynomial q in (z, z̄), namely

q(z, z̄) = p(
z + z̄

2
,
z − z̄

2i
).

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x + iy, x − iy). Hence the result now follows from
Theorem 5.76.

Example 5.79. Let(
S1
)d

=
{
z = (z1, . . . , zd) ∈ Cd : |zj | = 1 1 ≤ j ≤ d

}
⊂ Cd

A be the set of polynomials in (z, z̄) restricted to
(
S1
)d
. Then A is dense in

C
((
S1
)d)

. To prove this first observe if f ∈ C
((
S1
)d)

then

F (z) = |z1| . . . |zd| f
(
z1

|z1|
, . . . ,

zd
|zd|

)
when zi 6= 0 for all i

and F (z) = 0 if zi = 0 for some i defines a continuous function on Cd such that
F |K = f. By applying Theorem 5.78 to F restricted to a compact rectangle

K containing
(
S1
)d

we may find qn (z, z̄) converging uniformly to F on K and

hence on
(
S1
)d
. Since z̄ = z−1 on

(
S1
)d
, we have also shown polynomials in z

and z−1 :=
(
z−1

1 , . . . , z−1
d

)
are dense in C

((
S1
)d)

.





6

Countably Additive Measures

Let A ⊂ 2Ω be an algebra and µ : A → [0,∞] be a finitely additive measure.
Recall that µ is a premeasure on A if µ is σ – additive on A.

Definition 6.1. A premeasure space is a triple, (Ω,A, µ) , where Ω is a non-
empty set, A is a sub-algebra of 2Ω , and µ : A → [0,∞] is a premeasure on A. If
in addition A is a σ – algebra (Definition 4.12), we say (Ω,A) is a measurable
space and (Ω,A, µ) is a measure space.

Definition 6.2. Let (Ω,B) be a measurable space. We say that P : B → [0, 1] is
a probability measure on (Ω,B) if P is a measure on B such that P (Ω) = 1
and in this case we say (Ω,B, P ) is a probability space.

The main construction theorem of this chapter is Theorem 6.20 which in
part states that if (Ω,A, µ) is a premeasure space such that µ (Ω) < ∞, then
there exists a unique σ-additive measure, µ̄ : σ (A)→ [0, µ (Ω)] , which extends
µ. Before going on to Theorem 6.20 and its proof let us first give some equivalent
conditions for checking when a finitely additive measure is in fact a premeasure.

Proposition 6.3 (Equivalent premeasure conditions). Suppose that µ is
a finitely additive measure on an algebra, A ⊂ 2Ω . Then the following are
equivalent:

1. µ is subadditive on A.
2. µ is a premeasure on A, i.e. µ is σ – additive on A.
3. For all An ∈ A such that An ↑ A ∈ A, µ (An) ↑ µ (A) .

If we now further assume that µ (Ω) <∞ then the any of the above condi-
tions are also equivalent to any of the following conditions.

4. For all An ∈ A such that An ↓ A ∈ A, µ (An) ↓ µ (A) .
5. For all An ∈ A such that An ↑ Ω, µ (An) ↑ µ (Ω) .
6. For all An ∈ A such that An ↓ ∅, µ (An) ↓ 0.

Proof. The equivalence of 1 and 2 has already been shown in Proposition
5.2. We will next show 2 ⇐⇒ 3 ⇐⇒ 4.

2. =⇒ 3. Suppose An ∈ A such that An ↑ A ∈ A. Let A′n := An \ An−1

with A0 := ∅. Then {A′n}
∞
n=1 are disjoint, An = ∪nk=1A

′
k and A = ∪∞k=1A

′
k.

Therefore,

µ (A) =

∞∑
k=1

µ (A′k) = lim
n→∞

n∑
k=1

µ (A′k) = lim
n→∞

µ (∪nk=1A
′
k) = lim

n→∞
µ (An) .

3. =⇒ 2. If {An}∞n=1 ⊂ A are disjoint and A := ∪∞n=1An ∈ A, then
∪Nn=1An ↑ A. Therefore,

µ (A) = lim
N→∞

µ
(
∪Nn=1An

)
= lim
N→∞

N∑
n=1

µ (An) =

∞∑
n=1

µ (An) .

We now further assume that µ (Ω) <∞ which allows us to use µ (B \A) =
µ (B)− µ (A) for all A,B ∈ A with A ⊂ B.

3. =⇒ 4. If An ∈ A such that An ↓ A ∈ A, then Acn ↑ Ac and therefore,

lim
n→∞

(µ (Ω)− µ (An)) = lim
n→∞

µ (Acn) = µ (Ac) = µ (Ω)− µ (A) .

4. =⇒ 3. If An ∈ A such that An ↑ A ∈ A, then Acn ↓ Ac and therefore we
again have,

lim
n→∞

(µ (Ω)− µ (An)) = lim
n→∞

µ (Acn) = µ (Ac) = µ (Ω)− µ (A) .

The same proof used for 3. ⇐⇒ 4. shows 5. ⇐⇒ 6. and it is clear that
4. =⇒ 6. To finish the proof we will show 6. =⇒ 3.

6. =⇒ 3. If An ∈ A such that An ↑ A ∈ A, then A \An ↓ ∅ and therefore

lim
n→∞

[µ (A)− µ (An)] = lim
n→∞

µ (A \An) = 0.

The following result is another useful result for verifying a finitely additive
measure is a premeasure.

Proposition 6.4. Suppose that S ⊂ 2Ω is a semi-algebra, A = A(S) and µ :
A → [0,∞] is a finitely additive measure. Then µ is a premeasure on A iff µ is
countably sub-additive on S.

Proof. Clearly if µ is a premeasure on A then µ is σ - additive and hence
sub-additive on S. Because of Proposition 5.2, to prove the converse it suffices
to show that the sub-additivity of µ on S implies the sub-additivity of µ on A.
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So suppose A =
∑∞
n=1An ∈ A with each An ∈ A . By Proposition 4.27 we

may write A =
∑k
j=1Ej and An =

∑Nn
i=1En,i with Ej , En,i ∈ S. Intersecting

the identity, A =
∑∞
n=1An, with Ej implies

Ej = A ∩ Ej =

∞∑
n=1

An ∩ Ej =

∞∑
n=1

Nn∑
i=1

En,i ∩ Ej .

By the assumed sub-additivity of µ on S,

µ(Ej) ≤
∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej) .

Summing this equation on j and using the finite additivity of µ shows

µ(A) =

k∑
j=1

µ(Ej) ≤
k∑
j=1

∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej)

=

∞∑
n=1

Nn∑
i=1

k∑
j=1

µ (En,i ∩ Ej) =

∞∑
n=1

Nn∑
i=1

µ (En,i) =

∞∑
n=1

µ (An) .

We will give explicit examples of premeasure spaces and hence measure
spaces after we have developed Theorem 6.20. The notion of an “outer measure”
(which is the topic of the next section) is an intermediate step in proving the
main measure construction theorems.

6.1 Outer Measures

Definition 6.5 (Outer measures). Let Ω be a non-empty set. A function
ν : 2Ω → [0,∞] is an outer measure (on Ω) if;

1. ν(∅) = 0,
2. ν is monotonic (i.e. ν (A) ≤ ν (B) whenever A ⊂ B) and
3. ν is countably sub-additive (i.e. ν (∪∞n=1An) ≤

∑∞
n=1 ν (An) for all

{An}∞n=1 ⊂ 2Ω).

Proposition 6.6 (Example of an outer measure.). Let E ⊂ 2Ω be arbitrary
collection of subsets of Ω such that ∅, Ω ∈ E . Let ρ : E → [0,∞] be a function
such that ρ(∅) = 0. For any A ⊂ Ω, define

ρ∗(A) = inf

{ ∞∑
k=1

ρ(Ek) : A ⊂
∞⋃
k=1

Ek with Ek ∈ E

}
. (6.1)

Then ρ∗ is an outer measure.

Proof. It is clear that ρ∗ is monotonic and ρ∗(∅) = 0. Suppose {An}∞n=1 ⊂
2Ω and ε > 0 is given. By definition of ρ∗ (An) , there exists {Enk}∞k=1 ⊂ E such

that An ⊂
∞⋃
k=1

Enk and

∞∑
k=1

ρ(Enk) ≤ ρ∗(An) + 2−nε.

Using these inequalities and the fact that
∞⋃
n=1

An ⊂
∞⋃

n,k=1

Enk, it follows that

ρ∗

( ∞⋃
n=1

An

)
≤
∞∑
n=1

∞∑
k=1

ρ(Enk) ≤
∞∑
n=1

[
ρ∗(An) + 2−nε

]
=

∞∑
n=1

ρ∗(An) + ε.

The sub-additivity of ρ∗ then follows from this inequality as ε > 0 was arbitrary.

It is important that we allowed for countable E-covers of A in the definition
of ρ∗ (A). If we had defined

ρ∗(A) = inf

{
N∑
k=1

ρ(Ek) : A ⊂
N⋃
k=1

Ek with Ek ∈ E and N ∈ N

}

we could not in general show that ρ∗ is countably subadditive but only finitely
subadditve. Countable subadditivity is key to all of the development to follow.

Definition 6.7 (The outer metric). If ν is an outer measure on Ω, the
associate outer pseudo-metric (dν) on 2Ω is defined by

dν (A,B) := ν (A4B) ∈ [0,∞] ∀ A,B ∈ 2Ω .

Proposition 6.8 (Properties of the outer metric). If ν : 2Ω → [0,∞] is
an outer measure and d = dν is as in Definition 6.7, then;

1. d is a pseudo metric, i.e. is symmetric and satisfies the triangle inequality.
2. d (Ac, Cc) = d (A,C) for all A,B ∈ 2Ω .
3. If {An}∞n=1 , {Bn}

∞
n=1 ⊂ 2Ω , then

d (∪∞n=1An,∪∞n=1Bn) ≤
∞∑
n=1

d (An, Bn) and (6.2)

d (∩∞n=1An,∩∞n=1Bn) ≤
∞∑
n=1

d (An, Bn) . (6.3)

Proof. We take each item in turn.

Page: 64 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



6.2 Construction of σ–Additive Finite Measures 65

1. Since A4B = B4A it follows that d (A,B) = d (B,A) and hence we need
only shows that d satisfies the triangle inequality. If A,B,C ∈ 2Ω , then

1A4C = |1A − 1C | ≤ |1A − 1B |+ |1B − 1C | = 1A4B + 1B4C .

From this equation (or directly from Exercise 4.4) it easily follows that

A4 C ⊂ [A4B] ∪ [B 4 C]

and therefore,

d (A,C) = ν (A4 C) ≤ ν ([A4B] ∪ [B 4 C])

≤ ν (A4B) + ν (B 4 C) = d (A,B) + d (B,C) .

2. As
Ac 4 Cc = [Ac ∩ C] ∪ [Cc ∩A] = [C \A] ∪ [A \ C] = A4 C

it follows that d (Ac, Cc) = d (A,C) . This also may be verified alternatively
as follows;

1Ac4Cc = |1Ac − 1Cc | = |[1− 1A]− [1− 1C ]| = |1A − 1C | = 1A4C .

3. By Exercise 4.3,

[∪∞n=1An]4 [∪∞n=1Bn] ⊂ ∪∞n=1 [An 4Bn] . (6.4)

Hence using the monotonicity and finite subadditivity of ν then gives;

d (∪∞n=1An,∪∞n=1Bn) = ν ([∪∞n=1An]4 [∪∞n=1Bn]) ≤ ν (∪∞n=1 [An 4Bn])

≤
∞∑
n=1

ν (An 4Bn) =

∞∑
n=1

d (An, Bn) ,

which proves Eq. (6.2). Equation (6.3) may be proved similarly or by com-
bining item 2. with Eq. (6.2) as follows;

d (∩∞n=1An,∩∞n=1Bn)

= d ([∩∞n=1An]
c
, [∩∞n=1Bn]

c
)

= d (∪∞n=1A
c
n,∪∞n=1B

c
n) ≤

∞∑
n=1

d (Acn, B
c
n) =

∞∑
n=1

d (An, Bn) .

6.2 Construction of σ–Additive Finite Measures

The most important special case of the construction in Proposition 6.6 is when
E = A is an algebra and ρ = µ is a premeasure on A. The next two relatively
easy results will play an important role in this section.

Lemma 6.9 (Outer measures dominate). Suppose that (Ω,A, µ) is a pre-
measure space and ν : σ (A) → [0,∞] is a σ-additive measure such that ν = µ
on A, then

ν (B) ≤ µ∗ (B) for all B ∈ σ (A) .

Proof. If B ∈ σ (A) and {An}∞n=1 ⊂ A is a cover of B (i.e. B ⊂ ∪∞n=1An),
then

ν (B) ≤
∞∑
n=1

ν (An) =

∞∑
n=1

µ (An) .

As this inequality holds for every A-cover of B, it follows that ν (B) ≤ µ∗ (B) .

Proposition 6.10. If (Ω,A, µ) is a finitely additive measure space then µ∗ ≤ µ
on A. Moreover µ∗ = µ on A iff µ is a premeasure.

Proof. If A ∈ A, then A ⊂ ∪∞n=1An where A1 = A and Ak = ∅ for all k ≥ 2
and therefore,

µ∗ (A) ≤
∞∑
n=1

µ (An) = µ (A) .

Hence µ∗ ≤ µ on A.
Now suppose µ is a premeasure on A and that {An}∞n=1 ⊂ A is a given cover

of A, i.e. A = ∪∞n=1An. Let A0 = ∅ and defined

Ãn := A ∩An \ [A1 ∪ · · · ∪An−1] ∈ A for all n ∈ N.

We then have Ãn ⊂ An and A =
∑∞
n=1 Ãn = ∪∞n=1An and therefore

µ (A) =

∞∑
n=1

µ
(
Ãn

)
≤
∞∑
n=1

µ (An) .

As {An}∞n=1 ⊂ A was an arbitrary cover of A, it follows from the previous
equation that µ (A) ≤ µ∗ (A) and hence µ = µ∗ on A.

Lastly let us suppose that µ = µ∗ on A. If {A} ∪ {An}∞n=1 ⊂ A are such
that A =

∑∞
n=1An, then by definition of µ∗ and the assumption that µ = µ∗

on A we find,

µ (A) = µ∗ (A) ≤
∞∑
n=1

µ (An) = lim
N→∞

N∑
n=1

µ (An) = lim
N→∞

µ

(
N∑
n=1

An

)
≤ µ (A) ,
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wherein we have used the finite additivity and monotonicity of µ. The previous
equation clearly implies µ (A) =

∑∞
n=1 µ (An) which shows µ is a premeasure

on A.

Corollary 6.11. Suppose that (Ω,A, µ) is a premeasure space such that
µ (Ω) < ∞ and let d (A,B) = µ∗ (A4B) for all A,B ∈ 2Ω . Then µ is Lip-
1 relative to d. Hence, Lemma 2.28, µ has a unique Lip-1 extension, µ̄, to
B = B (µ) := Ād.

Summary: A subset, B ⊂ Ω, is in B iff there exists {An} ⊂ A such that
limn→∞ µ∗ (An 4B) = 0 and in which case µ̄ (B) := limn→∞ µ (An) = µ∗ (B) .

Proof. Let A,B ∈ A. By the basic properties of the simple integral and the
fact that µ = µ∗ on A we find,

|µ (B)− µ (A)| =
∣∣∣∣∫
Ω

(1B − 1A) dµ

∣∣∣∣
≤
∫
Ω

|1B − 1A| dµ = µ (B 4A) = µ∗ (B∆A) = d (A,B) .

Definition 6.12. Given a collection of subsets, E , of Ω, let Eσ denote the col-
lection of subsets of Ω which are finite or countable unions of sets from E .
Similarly let Eδ denote the collection of subsets of Ω which are finite or count-
able intersections of sets from E . We also write Eσδ = (Eσ)δ and Eδσ = (Eδ)σ ,
etc.

Lemma 6.13. Suppose that A ⊂ 2Ω is an algebra. Then:

1. Aσ is closed under taking countable unions and finite intersections.
2. The map, Aσ 3 A→ Ac ∈ Aδ is a bijection.
3. Aδ is closed under taking countable intersections and finite unions.

Proof. 1. By construction Aσ is closed under countable unions. Moreover
if A = ∪∞i=1Ai and B = ∪∞j=1Bj with Ai, Bj ∈ A, then

A ∩B = ∪∞i,j=1Ai ∩Bj ∈ Aσ,

which shows that Aσ is also closed under finite intersections.
2. If Ai ∈ A and A = ∪∞i=1Ai ∈ Aσ, then Ac = ∩∞i=1A

c
i ∈ Aδ and visa versa.

3. This item follows directly from items 1. and 2. or may be proved directly.

Proposition 6.14. Suppose that (Ω,A, µ) is a premeasure space. If A ∈ Aσ
and {An}∞n=1 ⊂ A are such that An ↑ A, then

µ∗ (A) =↑ lim
n→∞

µ (An) =

∞∑
n=1

µ (An \An−1) . (6.5)

Moreover, if we further assume that µ (Ω) <∞, then

d (An, A) = µ∗ (A)− µ (An)→ 0 as n→∞

and in particular B = Ā = Āσ and

µ̄ (A) = lim
n→∞

µ (An) = µ∗ (A) . (6.6)

Proof. Since A =
∑∞
n=1 [An \An−1] , by the definition of µ∗ (A) it follows

that

µ∗ (A) ≤
∞∑
n=1

µ (An \An−1) = lim
N→∞

N∑
n=1

µ (An \An−1)

= lim
N→∞

µ

(
N∑
n=1

[An \An−1]

)
= lim
N→∞

µ (AN ) ≤ µ∗ (A) ,

wherein the last inequality we have used µ (AN ) = µ∗ (AN ) ≤ µ∗ (A) since that
A 3 AN ⊂ A. For the second assertion observe that for each n ∈ N,

A 3 AN \An ↑ A \An as N ↑ ∞.

So by what we have just proved while using µ (Ω) < ∞ so that µ (AN ) < ∞
we find,

d (An, A) = µ∗ (A \An) = lim
N→∞

µ (AN \An)

= lim
N→∞

[µ (AN )− µ (An)] = µ∗ (A)− µ (An)

where the last expression goes to zero as n→∞ since the first assertion implies,
µ (An) ↑ µ∗ (A) as n→∞. This in particular shows thatAσ ⊂ Ā and asA ⊂ Aσ
we may conclude that Ā ⊂ Āσ ⊂ Ā, i.e. B = Ā = Āσ.

Proposition 6.15. If (Ω,A, µ) is a finite (µ (Ω) <∞) premeasure space, then
B = Ā ⊂ 2Ω is a σ-algebra.

Proof. Since A ⊂ B , we have ∅, Ω ∈ B. If B ∈ B, there exists An ∈ A so
that limn→∞ d (An, B) = 0 and so by Proposition 6.8,

lim
n→∞

d (Acn, B
c) = lim

n→∞
d (An, B) = 0

which shows Bc ∈ B.
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Now suppose that {Bn}∞n=1 ⊂ B and B := ∪∞n=1Bn. Given ε > 0 we may
find An ∈ A so that d (An, Bn) ≤ ε2−n for all n. With A := ∪∞n=1An ∈ Aσ, it
follows (using Proposition 6.8) that

d (A,B) = d (∪∞n=1An,∪∞n=1Bn) ≤
∞∑
n=1

d (An, Bn) ≤ ε. (6.7)

As ε > 0, this shows B ∈ Āσ = Ād = B.

Remark 6.16. If (Ω,A, µ) is a premeasure space, 0 < M <∞, and B ⊂ Ω, then
µ∗ (B) < M iff there exists D :=

∑∞
j=1Dj such that Dj ∈ A, B ⊂ D, and

µ∗ (D) =

∞∑
j=1

µ (Dj) < M.

Proposition 6.17. Let (Ω,A, µ) be a premeasure space with µ (Ω) < ∞ and
B ∈ 2Ω . Then the following are equivalent;

1. For all ε > 0 there exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C and
µ∗ (C \A) < ε.

2. For all ε > 0 there exists a C ∈ Aσ such that B ⊂ C and µ∗ (C \B) < ε.
3. The set B is in B = B (µ) .

Proof. (1 =⇒ 2) This implication simply follows by monotonicity of µ∗

which implies µ∗ (C \B) ≤ µ∗ (C \A) < ε.
(2 =⇒ 3) Assuming 2 we may find Cn ∈ Aσ so that B ⊂ Cn and

d (B,Cn) = µ∗ (Cn \B) < 1/n→ 0 as n→∞. This shows that B ∈ Āσ = B.
(3 =⇒ 1) Given if B ∈ B, then for all ε > 0 there exists Gε ∈ A so that

ε > d (Gε, B) = µ∗ (B∆Gε) and so by Remark 6.16, there exists Dε ⊂ Aσ such
that µ∗ (Dε) < ε and B∆Gε ⊂ Dε. We now let

Aδ 3 Aε := Gε \Dε ⊂ Gε \ [B∆Gε] = B ∩Gε ⊂ B

and
Aσ 3 Cε := Gε ∪Dε ⊃ Gε ∪ [B∆Gε] = B ∪Gε ⊃ B.

Thus Aε ⊂ B ⊂ Cε and the proof is complete since µ∗ (Cε \Bε) = µ∗ (Dε) < ε
because,

Cε \Bε = [Gε ∪Dε] \ [Gε \Dε] = [[Gε \Dε] ∪Dε] \ [Gε \Dε] = Dε.

Proposition 6.18. Let (Ω,A, µ) be a premeasure space with µ (Ω) < ∞, then
µ̄ = µ∗ on B.

Proof. Let B ∈ B and ε > 0 be given and choose C ∈ Aσ so that B ⊂ C
and d (B,C) = µ∗ (C \B) < ε. Using the fact that µ̄ is Lip-1 on B we have

µ̄ (B) = |µ̄ (B)− µ̄ (∅)| ≤ d (B, ∅) = µ∗ (B) , and

|µ̄ (B)− µ̄ (C)| ≤ d (B,C) < ε.

These inequalities along with Eq. (6.6) then imply,

µ̄ (B) ≤ µ∗ (B) ≤ µ∗ (C) = µ̄ (C) < µ̄ (B) + ε.

As ε > 0 was arbitrary we conclude that µ̄ (B) = µ∗ (B) .

Proposition 6.19. If (Ω,A, µ) is a finite premeasure space, then µ̄ defined in
Theorem 6.20 is a σ – additive measure on the σ-algebra, B = Ād.

Proof. For A,B ∈ B, choose An, Bn ∈ A so that An
d→ A and Bn

d→ B as
n→∞. By Proposition 6.8 it follows that

An ∪Bn
d→ A ∪B and An ∩Bn

d→ A ∩B as n→∞.

Therefore using the definition of µ̄ and the finite additivity of µ, it follows that

µ̄ (A ∪B) + µ̄ (A ∩B) = lim
n→∞

[µ (An ∪Bn) + µ (An ∩Bn)]

= lim
n→∞

[µ (An) + µ (Bn)]

= µ̄ (A) + µ̄ (A) .

This shows that µ̄ is finitely additive. Since, by Propositions 6.18 µ̄ = µ∗ on
B, it follows that µ̄ is sub-additive on B and hence µ̄ is countably additive, see
Proposition 5.2.

The next theorem summarizes most of the results we have proved in this
section.

Theorem 6.20 (Finite premeasure extension theorem). If (Ω,A, µ) is
a finite premeasure space, B = Ād ⊂ 2Ω , and µ̄ is the unique d – continuous
extension of µ from A to B, then;

1. |µ̄ (B)− µ̄ (A)| ≤ d (A,B) = µ∗ (A∆B) for all A,B ∈ B,
2. B := Ād is a σ-algebra which necessarily contains A and hence σ (A) .
3. For B ∈ 2Ω , the following are equivalent;

a) For all ε > 0 there exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C
and µ∗ (C \A) < ε.

b) For all ε > 0 there exists a C ∈ Aσ such that B ⊂ C and µ∗ (C \B) < ε.
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c) The set B is in B = B (µ) , i.e. for ε > 0 there exists A ∈ A such that
µ∗ (B∆A) < ε.

4. µ̄ = µ∗ on B so that

µ̄ (B) = µ∗ (B)

= inf

µ∗ (C) =

∞∑
j=1

µ (Cj) : B ⊂ C :=

∞∑
j=1

Cj with Cj ∈ A

 .

5. µ̄ : B → [0, µ (Ω)] is a σ-additive measure, i.e. (Ω,B, µ̄) is a measure space!
6. If ν is any measure on σ (A) such that ν = µ on A, then ν = µ̄ on σ (A) .

Proof. The only thing left to prove is the uniqueness assertion. If ν is a
measure on σ (A) such that ν = µ on A, then from Lemma 6.9 we know that
ν (B) ≤ µ∗ (B) for all B ∈ σ (A) . Consequently if B1, B2 ∈ σ (A) , then

|ν (B1)− ν (B2)| = |Eν [1B1 − 1B2 ]|
≤Eν |1B1 − 1B2 | = Eν1B1∆B2

= ν (B1∆B2) ≤ µ∗ (B1∆B2) = dµ∗ (B1, B2) .

Thus ν is a Lip -1 continuous and hence ν = µ̄ on σ (A) ⊂ B as A is dµ∗ –
dense in σ (A) .

Exercise 6.1. Suppose A ⊂ 2Ω is an algebra and µ and ν are two finite σ-
additive measures on B = σ (A) such that µ = ν on A. Show µ = ν on B.

Exercise 6.2. Let µ, µ̄, A, and B := B (µ) be as in Theorem 6.20. Further
suppose that B0 ⊂ 2Ω is a σ-algebra such that A ⊂ B0 ⊂ B and ν : B0 →
[0, µ (Ω)] is a σ-additive measure on B0 such that ν = µ on A. Show that ν = µ̄
on B0 as well.

6.3 A Discrete Kolmogorov’s Extension Theorem

In this section we continue the setup in Section 5.2. In detail, let S be a non-
empty finite or countable state space, Ω := S∞ := SN (path or configuration
space),

An := {B ×Ω : B ⊂ Sn} for all n ∈ N,
and A := ∪∞n=1An.

The next result is a key compactness result we will use in this section.

Theorem 6.21 (A finite intersection property I). Let S be an arbitrary
set, Ω := SN, {Nn}∞n=1 ⊂ N be an increasing sequence such that limn→∞Nn =

∞, and B̃n = Bn×Ω with Bn ⊂f SNn for all n ∈ N. If
{
B̃n

}∞
n=1

has the finite

intersection property, i.e. ∩Mn=1B̃n 6= ∅ for all M <∞, then ∩∞n=1B̃n 6= ∅.

Proof. Let πn : Ω → SNn be the projection map onto the first Nn –
coordinates,

πn (ω) = (ω1, ω2, . . . , ωNn) ∈ SNn ∀ ω ∈ Ω.
We will abuse notation and also use πn to denote the projection from SM →
SNn for all M ≥ Nn. By replacing B̃n by B̃1 ∩ · · · ∩ B̃n if necessary, we may

assume that
{
B̃n = Bn ×Ω

}∞
n=1

are non-increasing non empty sets where again

∅ 6= Bn ⊂ SNn .
For each n ∈ N choose ω (n) ∈ B̃n = π−1

n (Bn) . Then using B̃n ⊂ B̃1 for all
n we have,

π1 (ω (n)) ∈ π1

(
B̃n

)
⊂ π1

(
B̃1

)
= B1 ∀ n ∈ N.

Let Γ0 := N. As B1 is a finite set, there exists λ1 ∈ B1 such that

Γ1 = {n ∈ N = �0 : π1 (ω (n)) = λ1}

is an infinite set. Similarly for n ∈ Γ1 with n ≥ 2,

π2 (ω (n)) ∈ π2

(
B̃n

)
⊂ π2

(
B̃2

)
= B2

and since B2 is a finite set there exists λ2 ∈ B2 such that

Γ2 = {n ∈ Γ1 : n ≥ 2 and π2 (ω (n)) = λ2}

is an infinite set. Continuing this way inductively we produce for all k ∈ N, a
λk ∈ Bk such that

Γk := {n ∈ Γk−1 : n ≥ k and πk (ω (n)) = λk} ⊂ Γk−1

is an infinite set. By construction, if k > l ≥ 1 and n ∈ Γk ⊂ Γl, then

λl = πl (ω (n)) = πl ◦ πk (ω (n)) = πl (λk) .

From this “consistency relation,” it follows that there exists a unique point
λ ∈ Ω such that πl (λ) = λl for all l ∈ N. Since

πl (λ) = λl = πl (ω (n)) ∈ Bl for all n ∈ Γl

it follows that λ ∈ B̃l for all l and therefore λ ∈ ∩∞l=1B̃l which shows ∩∞l=1B̃l 6= ∅.

For later purposes, let us record a jazzed up version of the last result.

Theorem 6.22 (A finite intersection property II). Let (S, ρ) be a met-
ric space, Ω := SN, {Nn}∞n=1 ⊂ N be an increasing sequence such that

limn→∞Nn = ∞, and B̃n = Bn × Ω with Bn is a compact subset of SNn

for all n ∈ N. If
{
B̃n

}∞
n=1

has the finite intersection property, i.e. ∩Mn=1B̃n 6= ∅

for all M <∞, then ∩∞n=1B̃n 6= ∅.
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Proof. The proof is very similar to what we have just done. We again
let πn : Ω → SNn be the projection map onto the first Nn – coordinates as
above and again replace B̃n by B̃1 ∩ · · · ∩ B̃n if necessary so that we may

assume that
{
B̃n = Bn ×Ω

}∞
n=1

are non-increasing non empty sets with Bn

being a non-empty compact subset of SNn . [As B̃1 ∩ · · · ∩ B̃n = K × Ω where
K = ∩nk=1

[
Bk × SNn−Nk

]
is a closed subset of Bn ⊂ SNn and Bn was compact

it follows that K is still compact.]
For each n ∈ N choose ω (n) ∈ B̃n = π−1

n (Bn) . Then using B̃n ⊂ B̃1 for all
n we have,

π1 (ω (n)) ∈ π1

(
B̃n

)
⊂ π1

(
B̃1

)
= B1 ∀ n ∈ N.

Let Γ0 := N. As B1 is a compact set, there exists λ1 ∈ B1 and an infinite subset,
Γ1 ⊂ N, such that

π1 (ω (n))→ λ1 as Γ1 3 n→∞.
Similarly for n ∈ Γ1 with n ≥ 2,

π2 (ω (n)) ∈ π2

(
B̃n

)
⊂ π2

(
B̃2

)
= B2

and since B2 is a compact set there exists λ2 ∈ B2 and an infinite subset,
Γ2 ⊂ Γ1, such that

π2 (ω (n))→ λ2 as Γ2 3 n→∞.

Continuing this way inductively we produce for all k ∈ N, a λk ∈ Bk and an
infinite subset, Γk ⊂ Γk−1, such that

πk (ω (n))→ λk as Γk 3 n→∞.

By construction, if k > l ≥ 1 then Γk ⊂ Γl and

λl = lim
Γl3n→∞

πl (ω (n)) = lim
Γk3n→∞

πl (ω (n))

= lim
Γk3n→∞

πl ◦ πk (ω (n)) = πl (λk) .

From this “consistency relation,” it follows that there exists a unique point
λ ∈ Ω such that πl (λ) = λl for all l ∈ N. Since

πl (λ) = λl = πl (ω (n)) ∈ Bl for all n ∈ Γl

it follows that λ ∈ B̃l for all l and therefore λ ∈ ∩∞l=1B̃l which shows ∩∞l=1B̃l 6= ∅.

Theorem 6.23 (Kolmogorov’s Extension Theorem I.). Suppose that S is
a finite set. Then every finitely additive probability measure, P : A → [0, 1] ,
has a unique extension to a probability measure on B := σ (A) .

Proof. If {An}∞n=1 ⊂ A is a decreasing sequence of non-empty sets then
there exists Nn ↑ ∞ such that An = Bn × Ω with Bn ⊂ SNn for all n.
Since SNn is a finite set, Bn is necessarily a finite subset as well. Hence an
application of Theorem 6.21 asserts that ∩∞n=1An 6= ∅. Thus we may con-
clude that if {An}∞n=1 ⊂ A with An ↓ ∅, then An = ∅ for a.a. n and hence
limn→∞ P (An) = limn→∞ 0 = 0. This shows P is a premeasure on A and the
result now follows by an application of Theorem 6.20.

Exercise 6.3. Suppose S is a finite set, Ω = SN, and B := σ (A) as above.
Show every sequence of probability measures {Pn}∞n=1 possesses a subsequence
{P ′k = Pnk}

∞
k=1 such that limk→∞ P ′k (A) = P (A) for all A ∈ A where P is a

probability measure on (Ω,B) . Hints: 1) note that A is a countable collection
of subsets of Ω, and 2) use Cantor’s diagonalization argument.

The next theorem extends this result to the setting where S is countably
additive.

Theorem 6.24 (Kolmogorov’s Extension Theorem II). If P : A → [0, 1]
is a finitely additive probability measure such that P |An is a σ -additive measure
for all n ∈ N then P is a premeasure and hence extends uniquely to a σ-additive
probability measure on σ (A) , still denoted by P.

Proof. Suppose that An ∈ A with An ↓ and P (An) ≥ ε for all n ∈ N.
Choose Nn ∈ N such that Nn ↑ ∞ as n → ∞ such that An = Cn × Ω ∈
ANn with Cn ⊂ SNn for all n ∈ N. Then choose finite sets Bn ⊂ Cn so that

P
(
An \ B̃n

)
≤ 1

2ε2
−n for all n. We then have

P
(
An \ B̃1 ∩ · · · ∩ B̃n

)
≤

n∑
j=1

P
(
Aj \ B̃j

)
≤ 1

2
ε

n∑
j=1

2−j

≤ 1

4
ε · 1

1− 1
2

=
1

2
ε

from which it follows that

ε ≤ P (An) =P
(
B̃1 ∩ · · · ∩ B̃n

)
+ P

(
An \ B̃1 ∩ · · · ∩ B̃n

)
≤P

(
B̃1 ∩ · · · ∩ B̃n

)
+ ε/2

so that P
(
B̃1 ∩ · · · ∩ B̃n

)
≥ ε/2. In particular B̃1 ∩ · · · ∩ B̃n 6= ∅ for all n ∈ N

and therefore by Theorem 6.21,

∅ 6= ∩∞j=1B̃j ⊂ ∩∞j=1Aj

and the result is proved.
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Corollary 6.25 (Kolmogorov’s Extension Theorem IIa). Probability
measures, P, on (Ω, σ (A)) are in one to one correspondence with sequences
of functions, pn : Sn → [0, 1] for n ∈ N which satisfy the consistency condi-
tions, ∑

t∈S
pn (s1, . . . , sn−1, t) = pn−1 (s1, . . . , sn−1) for all n ∈ N (6.8)

where by convention, p0 := 1. The correspondence is determined by

pn (s1, . . . , sn) := P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) . (6.9)

Proof. If P is a probability measure on (Ω, σ (A)) and pn : Sn → [0, 1] is
defined as in Eq. (6.9), it is a simple matter to verify the consistency conditions
in Eq. (6.8) hold using the countable additivity of P. Conversely if pn : Sn →
[0, 1] for n ∈ N which satisfy the consistency conditions in Eq. (6.8), then you
have shown in Exercise 5.3 that there exists a unique finitely additive probability
measure, P, on (Ω,A) such that P |An is σ-additive for each n and

pn (s1, . . . , sn) := P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) .

By Theorem 6.24, this finitely additive measure extends uniquely to as σ-
additive measure, still denote by P, on σ (A) .

Example 6.26 (Existence of iid simple R.V.s). Suppose now that q : S → [0, 1]
is a function such that

∑
s∈S q (s) = 1. Then there exists a unique probability

measure P on σ (A) such that, for all n ∈ N and (s1, . . . , sn) ∈ Sn, we have

P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) = q (s1) . . . q (sn) .

One need only define pn (s1, . . . , sn) := q (s1) . . . q (sn) and note that∑
t∈S

pn (s1, . . . , sn−1, t) = q (s1) . . . q (sn−1)
∑
t∈S

q (t) = pn−1 (s1, . . . , sn−1) .

Thus the claim follows directly from Corollary 6.25.

Example 6.27 (Markov Chain Probabilities). Let S be a finite or at most count-
able state space and p : S × S → [0, 1] be a Markov kernel, i.e.∑

y∈S
p (x, y) = 1 for all x ∈ S. (6.10)

Also let π : S → [0, 1] be a probability function, i.e.
∑
x∈S π (x) = 1. We now

take
Ω := SN0 = {ω = (s0, s1, . . . ) : sj ∈ S}

and let Xn : Ω → S be given by

Xn (s0, s1, . . . ) = sn for all n ∈ N0.

Then there exists a unique probability measure, Pπ, on σ (A) such that

Pπ (X0 = x0, . . . , Xn = xn) = π (x0) p (x0, x1) . . . p (xn−1, xn)

for all n ∈ N0 and x0, x1, . . . , xn ∈ S. To see such a measure exists, we need
only verify that

pn (x0, . . . , xn) := π (x0) p (x0, x1) . . . p (xn−1, xn)

verifies the hypothesis of Exercise 5.3 taking into account a shift of the n –
index.

6.4 Construction of σ - Finite Measures

The goal of this section is to generalize Theorem 6.20 and Proposition 6.17 to
σ – finite measures.

Theorem 6.28 (σ - Finite Premeasure Extension Theorem). If (Ω,A, µ)
is a premeasure space such that µ is σ – finite on A (i.e. there exists An ∈ A
with µ (An) <∞ such that An ↑ Ω), then there exists a unique measure, µ̄, on
σ (A) such that µ̄ = µ on A.

Proof. Existence of an extension. Let {Ωn}∞n=1 ⊂ A be a partition of
Ω such that µ (Ωn) <∞ for all n. [Take Ωn := An \An−1 with the convention
that A0 = ∅.] To each n ∈ N let µn be the finite premeasure on A defined by

µn (A) := µn (A ∩Ωn) for all A ∈ A

and let µ̄n be an extension of µn to σ (A) guaranteed by Theorem 6.20. Then
the measure, µ̄ :=

∑∞
n=1 µ̄n, is then an extension of µ to σ (A) .

Uniqueness of the extension. Suppose that ν is another measure on
σ (A) such that ν = µ on A. Given n ∈ N, let νn be the measure on σ (A)
defined by νn (B) := ν (B ∩Ωn) for all B ∈ σ (A) . As νn = µn = µ̄n on A, it
follows by Exercise 6.1 that νn = µ̄n on σ (A) and therefore

ν =

∞∑
n=1

νn =

∞∑
n=1

µ̄n = µ.

Corollary 6.29. Suppose that µ is a σ – finite premeasure on an algebra A.
If B ∈ σ (A) and ε > 0 is given, there exists A ∈ Aδ and C ∈ Aσ such that
A ⊂ B ⊂ C and µ̄ (C \A) < ε. Moreover if µ̄ (B) < ∞ and ε > 0 is given,
there exists A ∈ A so that µ̄ (B 4A) < ε.
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Proof. Let {Ωn}∞n=1 ⊂ A be a partition of Ω such that µ (Ωn) <∞ for all
n and let µ̄n be the measure on σ (A) defined by µ̄n (B) := µ̄ (B ∩Ωn) for all
B ∈ σ (A) . According to Proposition 6.17, to each B ∈ σ (A) and ε > 0, there
exists (for all n ∈ N) Cn ∈ Aσ such that B ⊂ Cn and

ε2−n > µ̄n (Cn \B) = µ̄ ([Cn \B] ∩Ωn) = µ̄ ([Cn ∩Ωn] \B) .

Taking C :=
∑∞
n=1 [Cn ∩Ωn] ∈ Aσ it follows that B ⊂ C and

µ̄ (C \B) =

∞∑
n=1

µ̄ (Cn ∩Ωn \B) ≤
∞∑
n=1

ε2−n < ε.

Applying this same result to Bc ∈ σ (A) , there exists A ∈ Aδ so that Bc ⊂
Ac ∈ Aσ and

µ̄ (B \A) = µ̄ (Ac \Bc) < ε.

From this we conclude that µ̄ (C \A) < 2ε which suffices as ε > 0 was arbitrary.
Let us now further assume that µ̄ (B) <∞ and ε > 0 be given. By what we

have just proved there exists a C ∈ Aσ such that B ⊂ C with µ̄ (C \B) < ε and
further, by the definition of Aσ, there exists An ∈ A such that An ↑ C ∈ Aσ.
Hence it follows that,

µ̄ (An 4B) = µ̄ ([An \B] ∪ [B \An]) ≤ µ̄ (An \B) + µ̄ (B \An)

≤ µ̄ (C \B) + µ̄ (B \An) < ε+ µ̄ (B \An) .

As µ̄ (B) < ∞ and B \ An ⊂ C \ An ↓ ∅, we know that µ̄ (B \An) ↓ 0 and
therefore for n sufficiently large we see that µ̄ (An 4B) < ε.

Corollary 6.30. Suppose that µ is a σ – finite premeasure on an algebra A and
µ̄ is its unique extension to a measure on σ (A) , then again µ̄ = µ∗ on σ (A) .

Proof. From Lemma 6.9 we know that µ̄ ≤ µ∗ on σ (A) . Let B ∈ σ (A) and
ε > 0 be given and then use Corollary 6.29 to find C ∈ Aσ such that B ⊂ C and
µ̄ (C \B) < ε. If An ∈ A with An ↑ C, it follows from Eq. (6.5) of Proposition
6.14 and the continuity of µ̄ under increasing limits that

µ∗ (C) = lim
n→∞

µ (An) = lim
n→∞

µ̄ (An) = µ̄ (C) .

Combining these observations implies,

µ̄ (B) ≤ µ∗ (B) ≤ µ∗ (C) = µ̄ (C) = µ̄ (B) + µ̄ (C \B) < µ̄ (B) + ε,

i.e.
µ̄ (B) ≤ µ∗ (B) < µ̄ (B) + ε for all ε > 0.

As this is true for all ε > 0, we have shown µ̄ (B) = µ∗ (B) and the proof is
complete.

The following slight reformulation of Theorem 6.28 can be useful.

Corollary 6.31 (*). Let A be an algebra of sets, {Ωm}∞m=1 ⊂ A is a given
sequence of sets such that Ωm ↑ Ω as m→∞. Let

Af := {A ∈ A : A ⊂ Ωm for some m ∈ N} .

Notice that Af is a ring, i.e. closed under differences, intersections and unions
and contains the empty set. Further suppose that µ : Af → [0,∞) is an additive
set function such that µ (An) ↓ 0 for any sequence, {An} ⊂ Af such that An ↓ ∅
as n→∞. Then µ extends uniquely to a σ – finite measure on A.

Proof. Existence. By assumption, µm := µ|AΩm : AΩm → [0,∞) is a
premeasure on (Ωm,AΩm) and hence by Theorem 6.28 extends to a measure
µ′m on (Ωm, σ (AΩm) = BΩm) . Let µ̄m (B) := µ′m (B ∩Ωm) for all B ∈ B.
Then {µ̄m}∞m=1 is an increasing sequence of measure on (Ω,B) and hence µ̄ :=
limm→∞ µ̄m defines a measure on (Ω,B) such that µ̄|Af = µ.

Uniqueness. If µ1 and µ2 are two such extensions, then µ1 (Ωm ∩B) =
µ2 (Ωm ∩B) for all B ∈ A and therefore by Proposition 6.55 or Exercise 7.1 we
know that µ1 (Ωm ∩B) = µ2 (Ωm ∩B) for all B ∈ B. We may now let m→∞
to see that in fact µ1 (B) = µ2 (B) for all B ∈ B, i.e. µ1 = µ2.

6.5 Radon Measures on R

We say that a measure, µ, on (R,BR) is a Radon measure if µ ([a, b]) < ∞
for all −∞ < a < b < ∞. In this section we will give a characterization of all
Radon measures on R. Throughout this section let

S := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} ,

be the semi-algebra of half open intervals and A = A (S) be the algebra gener-
ated by S consisting of those subsets, A ⊂ R, which may be written as finite dis-
joint unions of sets from S, see Example 4.28. Recall that BR = σ (A) = σ (S) .

If µ is a Radon measure on (R,BR) , then we can always find a function,
F : R→ R, such that

µ ((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞. (6.11)

For example if µ (R) <∞ we can take F (x) = µ ((−∞, x]) while if µ (R) =∞
we might take

F (x) =

{
µ ((0, x]) if x ≥ 0
−µ ((x, 0]) if x ≤ 0

. (6.12)
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Remark 6.32. It is a simple matter to see that Eq. (6.11) only uniquely deter-
mines F modulo an additive constant. We can fix this constant by requiring F
take on a specific value at a specific point in R (or possibly R̄). For example by
replacing F by F − F (0) if necessary we may normalize F so that F (0) = 0.
This normalization then leads to the formula for F in Eq. (6.12). If µ (R) <∞
then we may replace F by F − limx→−∞ F (x) . In this case the resulting F
satisfies F (−∞) := limx→−∞ F (x) = 0 and we find F (x) = µ ((−∞, x]) .

Lemma 6.33. If µ is a Radon measure on (R,BR) and F : R→ R is chosen
so that µ ((a, b]) = F (b)− F (a) , then F is increasing and right continuous.

Proof. The function F is increasing by the monotonicity of µ. To see that
F is right continuous, let b ∈ R and choose a ∈ (−∞, b) and any sequence
{bn}∞n=1 ⊂ (b,∞) such that bn ↓ b as n → ∞. Since µ ((a, b1]) < ∞ and
(a, bn] ↓ (a, b] as n→∞, it follows that

F (bn)− F (a) = µ((a, bn]) ↓ µ((a, b]) = F (b)− F (a).

Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
limy↓b F (y) = F (b).

The key result of this section is the converse to this lemma.

Theorem 6.34. Suppose F : R→ R is a right continuous increasing function.
Then there exists a unique Radon measure, µ = µF , on (R,BR) such that Eq.
(6.11) holds.

Proof. Let us define F (±∞) := limx→±∞ F (x) and let µ = µF be the
finitely additive measure on (R,A) described in Proposition 5.9 and Remark
5.10. To finish the proof it suffices by Theorem 6.28 to show that µ is a premea-
sure on A = A (S) . In light of Proposition 6.4, to finish the proof it suffices to
show µ is sub-additive on S, i.e. we must show

µ(J) ≤
∞∑
n=1

µ(Jn), (6.13)

where J =
∑∞
n=1 Jn with J = (a, b] ∩ R and Jn = (an, bn] ∩ R. Recall from

Proposition 5.2 that the finite additivity of µ implies

∞∑
n=1

µ(Jn) ≤ µ (J) . (6.14)

We begin with the special case where −∞ < a < b < ∞. We now give two
proofs of Eq. (6.14).

First proof of Eq. (6.14) when −∞ < a < b <∞. Our proof will be by
“continuous induction.” The strategy is to show a ∈ Λ where

Λ :=

{
α ∈ [a, b] : µ(J ∩ (α, b]) ≤

∞∑
n=1

µ(Jn ∩ (α, b])

}
. (6.15)

As b ∈ J, there exists an k such that b ∈ Jk and hence (ak, bk] = (ak, b] for this
k. It now easily follows that Jk ⊂ Λ so that Λ is not empty. To finish the proof
we are going to show ā := inf Λ ∈ Λ and that ā = a.

• Let αm ∈ Λ such that αm ↓ ā, i.e.

µ(J ∩ (αm, b]) ≤
∞∑
n=1

µ(Jn ∩ (αm, b]). (6.16)

The right continuity of F implies α→ µ (Jn ∩ (α, b]) is right continuous. So
by the dominated convergence theorem1 for sums,

µ(J ∩ (ā, b]) = lim
m→∞

µ(J ∩ (αm, b])

≤ lim
m→∞

∞∑
n=1

µ(Jn ∩ (αm, b])

=

∞∑
n=1

lim
m→∞

µ(Jn ∩ (αm, b]) =

∞∑
n=1

µ(Jn ∩ (ā, b]),

i.e. ā ∈ Λ.
• If ā > a, then ā ∈ Jl = (al, bl] for some l. Letting α = al < ā, we have,

µ(J ∩ (α, b]) = µ(J ∩ (α, ā]) + µ(J ∩ (ā, b])

≤ µ(Jl ∩ (α, ā]) +

∞∑
n=1

µ(Jn ∩ (ā, b])

= µ(Jl ∩ (α, ā]) + µ (Jl ∩ (ā, b]) +
∑
n 6=l

µ(Jn ∩ (ā, b])

= µ(Jl ∩ (α, b]) +
∑
n 6=l

µ(Jn ∩ (ā, b])

≤
∞∑
n=1

µ(Jn ∩ (α, b]).

This shows α ∈ Λ and α < ā which violates the definition of ā. Thus we
must conclude that ā = a.

1 DCT applies as µ(Jn ∩ (αm, b]) ≤ µ(Jn) and
∑∞
n=1 µ (Jn) ≤ µ (J) < ∞ by Eq.

(6.16).
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Second proof of Eq. (6.14) when −∞ < a < b < ∞. Choose numbers
ã > a, b̃n > bn in which case I := (ã, b] ⊂ J,

J̃n := (an, b̃n] ⊃ J̃on := (an, b̃n) ⊃ Jn.

Since Ī = [ã, b] is compact and Ī ⊂ J ⊂
∞⋃
n=1

J̃on there exists2 N <∞ such that

I ⊂ Ī ⊂
N⋃
n=1

J̃on ⊂
N⋃
n=1

J̃n.

Hence by finite sub-additivity of µ,

F (b)− F (ã) = µ(I) ≤
N∑
n=1

µ(J̃n) ≤
∞∑
n=1

µ(J̃n).

Using the right continuity of F and letting ã ↓ a in the above inequality,

µ (J) = µ((a, b]) = F (b)− F (a) ≤
∞∑
n=1

µ
(
J̃n

)
=

∞∑
n=1

µ (Jn) +

∞∑
n=1

µ(J̃n \ Jn). (6.17)

Given ε > 0, we may use the right continuity of F to choose b̃n so that

µ(J̃n \ Jn) = F (b̃n)− F (bn) ≤ ε2−n ∀ n ∈ N.

Using this in Eq. (6.17) shows

µ(J) = µ((a, b]) ≤
∞∑
n=1

µ (Jn) + ε

which verifies Eq. (6.13) since ε > 0 was arbitrary.
Using either of the two proofs above, the hard work is now done but we still

have to check the cases where a = −∞ or b = ∞. For example, suppose that
b =∞ so that

2 To see this, let c := sup
{
x ≤ b : [ã, x] is finitely covered by

{
J̃on

}∞
n=1

}
. If c < b,

then c ∈ J̃om for some m and there exists x ∈ J̃om such that [ã, x] is finitely covered

by
{
J̃on

}∞
n=1

, say by
{
J̃on

}N
n=1

. We would then have that
{
J̃on

}max(m,N)

n=1
finitely

covers [a, c′] for all c′ ∈ J̃om. But this contradicts the definition of c.

J = (a,∞) =

∞∑
n=1

Jn

with Jn = (an, bn] ∩ R. Then

IM := (a,M ] = J ∩ IM =

∞∑
n=1

Jn ∩ IM

and so by what we have already proved,

F (M)− F (a) = µ(IM ) ≤
∞∑
n=1

µ(Jn ∩ IM ) ≤
∞∑
n=1

µ(Jn).

Now let M →∞ in this last inequality to find that

µ((a,∞)) = F (∞)− F (a) ≤
∞∑
n=1

µ(Jn).

The other cases where a = −∞ and b ∈ R and a = −∞ and b =∞ are handled
similarly.

Corollary 6.35. Suppose −∞ < α < β < ∞ and F : [α, β] → R is a right
continuous increasing function. Then there exists a unique measure, µ = µF ,
on
(
[α, β] ,B[α,β]

)
such that

µ ([α, b]) = F (b) for all α ≤ a ≤ b ≤ β.

Proof. Extend F to R by setting F (x) = F (α) for x ≥ α and F (x) = F (β)
for x ≤ β. The extension now satisfies the hypothesis of Theorem 6.34 and hence
there exists a measure µ̂ on (R,BR) such that Eq. (6.11) holds. The measure µ̂
satisfies,

µ̂ ([α, b]) = µ̂ ([α, b]) = lim
n→∞

µ̂

(
(α− 1

n
, b]

)
= lim
n→∞

[
F (b)− F

(
α− 1

n

)]
= F (b)− F (α) .

Therefore the desired measure is given by µ (A) := F (α) δα (A) + µ̂ (A) for all
A ∈ B[α,β].

It is instructive to give another proof of Theorem 6.34 which we base on the
following simple lemma.

Lemma 6.36. Let F : R→ R be a increasing right continuous function and µ
be the finitely additive measure on A = A (S) such that

µ ((a, b] ∩ R) = F (b)− F (a) for all −∞ ≤ a ≤ b ≤ ∞.

Then for all bounded sets, A ∈ A and δ > 0, there exists B ∈ A such that
B ⊂ B̄ ⊂ A and µ (A \B) < δ.

Page: 73 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



74 6 Countably Additive Measures

Proof. Write A =
∑n
k=1(ak, bk] and then take B :=

∑n
k=1(ãk, bk] where

ak < ãk < bk. Then

B ⊂ B̄ =

n∑
k=1

[ãk, bk] ⊂ A

and

µ (A \B) = µ

(
n∑
k=1

(ak, ãk]

)
=

n∑
k=1

[F (ãk)− F (ak)] .

Using the right continuity of F we may now choose ãk sufficiently close to ak
so that the latter sum is less than δ.

Alternate proof of Theorem 6.34. For J = (α, β] with −∞ < α < β <
∞, let µJ (A) := µ (J ∩A) for all A ∈ A so that µJ is a finitely additive measure
on A such that

µJ (R) = µ (J) = F (β)− F (α) <∞.

Claim: µJ is a premeasure and hence extends to a measure, µ̄J , on (R, σ (A)) =
(R,BR) .

To prove this claim, suppose that An ∈ A such that An ↓ and

ε := lim
n→∞

µJ (An) = inf
n
µJ (An) > 0.

We need to show ∩∞n=1An 6= ∅. Since µJ (An) = µ (An ∩ J) we may replace An
by An ∩ J if necessary so that An ⊂ J for all n and particular An is bounded
for all n. By the Lemma 6.36, we may choose Bn ∈ A such that Bn ⊂ B̄n ⊂ An
and µ (An \Bn) < ε2−(n+1). It then follows that

ε− µJ (B1 ∩ · · · ∩Bn) ≤µJ (An)− µJ (B1 ∩ · · · ∩Bn)

= µJ (An \B1 ∩ · · · ∩Bn) ≤ 1

2

n∑
k=1

ε2−k ≤ ε/2

and hence µJ (B1 ∩ · · · ∩Bn) ≥ ε/2 for all n. In particular, this shows

∅ 6= B1 ∩ · · · ∩Bn ⊂ B̄1 ∩ · · · ∩ B̄n for all n ∈ N.

Since the
{
B̄n
}∞
n=1

are all closed subsets of the compact set, J̄ , they satisfy the
finite intersection property and we may conclude that

∅ 6= ∩∞n=1B̄n ⊂ ∩∞n=1An

and the claim is proved.
To finish the proof of existence, let Jn := (n, n + 1] and then define

µ̄ :=
∑
n∈Z µ̄Jn , which is a measure on (R,BR) . Let us note that µ̄Jn (Jcn) =

µJn (Jcn) = µ (∅) = 0. So given −∞ < a < b < ∞ we choose M ∈ N so that
(a, b] ⊂ (−M,M ], then

µ̄ ((a, b]) =
∑
|n|≤M

µ̄Jn ((a, b]) =
∑
|n|≤M

µJn ((a, b])

=
∑
|n|≤M

µ (Jn ∩ (a, b]) = µ ((−M,M + 1] ∩ (a, b])

= µ ((a, b]) = F (b)− F (a) .

Uniqueness. Suppose that µ and ν are two σ–additive measures Radon
measures on (R,BR) which agree on A. For J = (α, β] as above, let µJ (B) =
µ (B ∩ J) and νJ (B) = ν (B ∩ J) for all B ∈ BR. Then µJ and νJ are bounded
measures (R,BR) which agree on A and hence µJ = νJ . It then follows for any
B ∈ BR that,

µ (B) = lim
n→∞

µ ((−n, n] ∩B) = lim
n→∞

ν ((−n, n] ∩B) = ν (B) .

Exercise 6.4. Let Ω = R, A ⊂ 2R be the algebra generated by half open
intervals, µ be the length measure on A, and set B = ∪∞n=−∞(2n, 2n+ 1] ∈ Aσ.
Show d (B,A) = ∞ for all A ∈ A and use this to conclude that Aσ is not
contained in Ā and that B = Ā is not a σ-algebra.

Definition 6.37. Given a probability measure, P on BR, the cumulative dis-
tribution function (CDF) of P is defined as the function, F = FP : R→ [0, 1]
given as

F (x) := P ((−∞, x]) . (6.18)

Example 6.38. Suppose that

P = pδ−1 + qδ1 + rδπ

with p, q, r > 0 and p+ q + r = 1. In this case,

F (x) =


0 for x < −1
p for −1 ≤ x < 1

p+ q for 1 ≤ x < π
1 for π ≤ x <∞

.
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A plot of F (x) with p = .2, q = .3, and r = .5.

Lemma 6.39. If F = FP : R→ [0, 1] is a distribution function for a probability
measure, P, on BR, then:

1. F is non-decreasing,
2. F is right continuous,
3. F (−∞) := limx→−∞ F (x) = 0, and F (∞) := limx→∞ F (x) = 1.

Proof. The monotonicity of P shows that F (x) in Eq. (6.18) is non-
decreasing. For b ∈ R let An = (−∞, bn] with bn ↓ b as n→∞. The continuity
of P implies

F (bn) = P ((−∞, bn]) ↓ µ((−∞, b]) = F (b).

Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
F (b+) := limy↓b F (y) = F (b). This show that F is right continuous. Similar
arguments show that F (∞) = 1 and F (−∞) = 0.

The converse of Lemma 6.39 now follows directly from Theorem 6.34.

Theorem 6.40. To each function F : R→ [0, 1] satisfying properties 1. – 3..
in Lemma 6.39, there exists a unique probability measure, PF , on BR such that

PF ((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞.

Example 6.41 (Uniform Distribution). The function,

F (x) :=

 0 for x ≤ 0
x for 0 ≤ x < 1
1 for 1 ≤ x <∞

,

is the distribution function for a measure, m on BR which is concentrated on
(0, 1]. The measure, m is called the uniform distribution or Lebesgue mea-
sure on (0, 1].

Fig. 6.1. The cumulative distribution function for the uniform distribution.

6.6 Lebesgue Measure

Definition 6.42 (Lebesgue Measure). If F (x) = x for all x ∈ R, we denote
µF by m and call m Lebesgue measure on (R,BR) , i.e. Lebesgue measure is
the unique σ-additive measure, m, on (R,BR) such that

m ((a, b]) = b− a for all −∞ < a < b <∞.

Notation 6.43 Given x ∈ R and B ⊂ R, let

x+B := {x+ y : y ∈ B} and x ·B := {xy : y ∈ B} .

In Exercise 9.2 below you are asked to show that for any B ∈ BR and any
x ∈ R that x+B ∈ BR and x ·B ∈ BR.

Theorem 6.44. Lebesgue measure m is invariant under translations, i.e. for
B ∈ BR and x ∈ R,

m(x+B) = m(B). (6.19)

Lebesgue measure, m, is the unique measure on BR such that m((0, 1]) = 1 and
Eq. (6.19) holds for B ∈ BR and x ∈ R. Moreover, m has the scaling property

m(λB) = |λ|m(B) (6.20)

where λ ∈ R, B ∈ BR and λB := {λx : x ∈ B}.

Proof. Let mx(B) := m(x+B), then one easily shows that mx is a measure
on BR such that mx((a, b]) = b − a for all a < b. Therefore, mx = m on A (S)
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where S is the semi-algebra of half open intervals and so by the uniqueness
assertion in Theorem 6.28 or more directly using Theorem 6.34.

For the converse, suppose that m is translation invariant and m((0, 1]) = 1.
Given n ∈ N, we have

(0, 1] = ∪nk=1(
k − 1

n
,
k

n
] = ∪nk=1

(
k − 1

n
+ (0,

1

n
]

)
.

Therefore,

1 = m((0, 1]) =

n∑
k=1

m

(
k − 1

n
+ (0,

1

n
]

)

=

n∑
k=1

m((0,
1

n
]) = n ·m((0,

1

n
]).

That is to say

m((0,
1

n
]) = 1/n.

Similarly, m((0, ln ]) = l/n for all l, n ∈ N and therefore by the translation
invariance of m,

m((a, b]) = b− a for all a, b ∈ Q with a < b.

Finally for a, b ∈ R such that a < b, choose an, bn ∈ Q such that bn ↓ b and
an ↑ a, then (an, bn] ↓ (a, b] and thus

m((a, b]) = lim
n→∞

m((an, bn]) = lim
n→∞

(bn − an) = b− a,

i.e. m is Lebesgue measure. To prove Eq. (6.20) we may assume that λ 6= 0

since this case is trivial to prove. Now let mλ(B) := |λ|−1
m(λB). It is easily

checked that mλ is again a measure on BR which satisfies

mλ((a, b]) = λ−1m ((λa, λb]) = λ−1(λb− λa) = b− a

if λ > 0 and

mλ((a, b]) = |λ|−1
m ([λb, λa)) = − |λ|−1

(λb− λa) = b− a

if λ < 0. Hence mλ = m.

6.7 Metric-Measure Space Regularity Results

This section is a self study guide to the “approximating” Borel sets in a metric
space by closed and open subsets of the metric space. We begin with some basic
properties of metric spaces. Throughout this section we will assume that (X, ρ)
is a metric space and BX denotes the Borel σ-algebra on X.

Lemma 6.45. For any non empty subset A ⊂ X, let ρA (x) := inf{ρ(x, a)|a ∈
A}, then

|ρA (x)− ρA(y)| ≤ ρ (x, y) ∀x, y ∈ X (6.21)

which shows ρA : X → [0,∞) is continuous.

Proof. Let a ∈ A and x, y ∈ X, then

ρA (x) ≤ ρ(x, a) ≤ ρ (x, y) + ρ(y, a).

Take the infimum over a in the above equation shows that

ρA (x) ≤ ρ (x, y) + ρA(y) ∀x, y ∈ X.

Therefore, ρA (x)− ρA(y) ≤ ρ (x, y) and by interchanging x and y we also have
that ρA(y)− ρA (x) ≤ ρ (x, y) which implies Eq. (6.21).

Corollary 6.46. The function ρ satisfies,

|ρ (x, y)− ρ(x′, y′)| ≤ ρ(y, y′) + ρ(x, x′).

In particular ρ : X ×X → [0,∞) is continuous.

Proof. By Lemma 6.45 for single point sets and the triangle inequality for
the absolute value of real numbers,

|ρ (x, y)− ρ(x′, y′)| ≤ |ρ (x, y)− ρ(x, y′)|+ |ρ(x, y′)− ρ(x′, y′)|
≤ ρ(y, y′) + ρ(x, x′).

Corollary 6.47. Given any set A ⊂ X and ε > 0, then

Aε := {ρA < ε} := {x ∈ X : ρA (x) < ε}

is an open set containing A and Aε ↓ Ā as ε ↓ 0 where Ā is the closure of A.
Similarly,

Fε := {ρA ≥ ε} = {x ∈ X : ρA (x) ≥ ε}

is a closed set and Fε ↑ (Ac)
o

as ε ↓ 0 where (Ac)
o

is the interior of Ac := X\A.

Proof. Because of the continuity of ρA and the facts that (−∞, ε) is open
in R and [ε,∞) is closed in R, it follows that Aε = ρ−1

A ((−∞, ε)) is open and
Fε = ρ−1

A ([ε,∞)) is closed. We have x ∈ ∩ε>0Aε iff ρA (x) < ε for all ε > 0 iff
ρA (x) = 0 and hence

A ⊂ {ρA = 0} = ∩ε>0Aε.
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Since {ρA = 0} is closed it follows that Ā ⊂ {ρA = 0} . Conversely if x ∈
{ρA = 0} then there exists {xn} ⊂ A such that limn→∞ ρ (x, xn) = 0, i.e.
xn → x and therefore x ∈ Ā.

To finish the proof observe that

[∪ε>0Fε]
c

= ∩ε>0F
c
ε = ∩ε>0 {ρA < ε} = Ā

and therefore
∪ε>0Fε = Āc = (Ac)

o
.

Lemma 6.48 (Urysohn’s Lemma for Metric Spaces). Let (X, d) be a met-
ric space and suppose that A and B are two disjoint closed subsets of X. Then

f (x) =
dB (x)

dA (x) + dB (x)
for x ∈ X (6.22)

defines a continuous function, f : X → [0, 1], such that f (x) = 1 for x ∈ A and
f (x) = 0 if x ∈ B.

Proof. By Lemma 6.45, dA and dB are continuous functions on X. Since
A and B are closed, dA (x) > 0 if x /∈ A and dB (x) > 0 if x /∈ B. Since

A∩B = ∅, dA (x) + dB (x) > 0 for all x and (dA + dB)
−1

is continuous as well.
The remaining assertions about f are all easy to verify.

Sometimes Urysohn’s lemma will be use in the following form. Suppose
F ⊂ V ⊂ X with F being closed and V being open, then there exists f ∈
C (X, [0, 1])) such that f = 1 on F while f = 0 on V c. This of course follows
from Lemma 6.48 by taking A = F and B = V c.

Corollary 6.49. If A and B are two disjoint closed subsets of a metric space,
(X, d) , then there exists disjoint open subsets U and V of X such that A ⊂ U
and B ⊂ V.

Proof. Let f be as in Lemma 6.48 so that f ∈ C (X → [0, 1]) such that
f = 1 on A and f = 0 on B. Then set U =

{
f > 1

2

}
and V = {f < 1/2} .

We now (as we did with outer measures) associate a pseudo metric to any
measure space.

Proposition 6.50 (The measure pseudo metric). Let (Ω,B, µ) be a mea-
sure space and define

dµ (A,B) := µ (A4B) ∈ [0,∞] ∀ A,B ∈ B.

Then d = dµ satisfies;

1. d is a pseudo metric, i.e. d (A,B) = d (B,A) and d (A,C) ≤ d (A,B) +
d (B,C) for all A,B,C ∈ B.

2. d (Ac, Cc) = d (A,C) for all A,B ∈ B.
3. If {An}∞n=1 , {Bn}

∞
n=1 ⊂ B, then

d (∪∞n=1An,∪∞n=1Bn) ≤
∞∑
n=1

d (An, Bn) and (6.23)

d (∩∞n=1An,∩∞n=1Bn) ≤
∞∑
n=1

d (An, Bn) . (6.24)

In summary,

max {d (∩∞n=1An,∩∞n=1Bn) , d (∪∞n=1An,∪∞n=1Bn)} ≤
∞∑
n=1

d (An, Bn) .

(6.25)

Proof. We take each item in turn.

1. The fact that d is a pseudo metric easily follows from the fact that 1A4C =
|1A − 1C | and therefore,

d (A,C) = E |1A − 1C | .

2. Item 2. follows from the fact that

Ac 4 Cc = [Ac ∩ C] ∪ [Cc ∩A] = [C \A] ∪ [A \ C] = A4 C

which is also seen via,

1Ac4Cc = |1Ac − 1Cc | = |[1− 1A]− [1− 1C ]| = |1A − 1C | = 1A4C .

3. It is a simple exercise to verify,

[∪∞n=1An]4 [∪∞n=1Bn] ⊂ ∪∞n=1 [An 4Bn]

and hence

d (∪∞n=1An,∪∞n=1Bn) = µ ([∪∞n=1An]4 [∪∞n=1Bn]) ≤ µ (∪∞n=1 [An 4Bn])

≤
∞∑
n=1

µ (An 4Bn) =

∞∑
n=1

d (An, Bn) ,

which proves Eq. (6.23). Equation (6.24) may be proved similarly or by
combining item 2. with Eq. (6.23) as follows;
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d (∩∞n=1An,∩∞n=1Bn)

= d ([∩∞n=1An]
c
, [∩∞n=1Bn]

c
)

= d (∪∞n=1A
c
n,∪∞n=1B

c
n) ≤

∞∑
n=1

d (Acn, B
c
n) =

∞∑
n=1

d (An, Bn) .

6.7.1 Regularity Exercises for Borel measures on (X,BX)

Exercise 6.5. If (X, ρ) is a metric space and µ is a finite measure on (X,BX) ,
then for all A ∈ BX and ε > 0 there exists a closed set F and open set V such
that F ⊂ A ⊂ V and µ (V \ F ) = µ (F 4 V ) < ε. Here are some suggestions.

1. Let B0 denote those A ⊂ X such that for all ε > 0 there exists a closed set
F and open set V such that F ⊂ A ⊂ V and dµ (F, V ) = µ (V \ F ) < ε.

2. Show B0 contains all closed (or open if you like) sets using Corollary 6.47.
3. Show B0 is a σ-algebra. [You may find Proposition 6.50 to be helpful in this

step.]
4. Explain why this proves the result.

Exercise 6.6. Let (X, ρ) be a metric space and µ be a measure on (X,BX) . If
there exists open sets, {Vn}∞n=1 , of X such that Vn ↑ X and µ (Vn) <∞ for all
n, then for all A ∈ BX and ε > 0 there exists a closed set F and open set V
such that F ⊂ A ⊂ V and dµ (F, V ) = µ (V \ F ) < ε. Hints:

1. Show it suffices to prove; for all ε > 0 and A ∈ BX , there exists an open set
V ⊂ X such that A ⊂ V and µ (V \A) < ε.

2. Now you must verify the assertion above holds. For this, you may find it
useful to apply Exercise 6.5 to the measures, µn : BX → [0, µ (Vn)] , defined
by µn (A) := µ (A ∩ Vn) for all A ∈ BX . The ε > 0 in Exercise 6.5 should
be replaced by judiciously chosen small quantities εn > 0 depending on n,
for example εn = ε2−n will work.

Exercise 6.7 (Special case of above). Let B = BRn =
σ ({open subsets of Rn}) be the Borel σ – algebra on Rn and µ be a
probability measure on B. Further, let B0 denote those sets B ∈ B such that
for every ε > 0 there exists F ⊂ B ⊂ V such that F is closed, V is open, and
µ (V \ F ) < ε. Show:

1. B0 contains all closed subsets of B. Hint: given a closed subset, F ⊂ Rn and
k ∈ N, let Vk := ∪x∈FB (x, 1/k) , where B (x, δ) := {y ∈ Rn : |y − x| < δ} .
Show, Vk ↓ F as k →∞.

2. Show B0 is a σ – algebra and use this along with the first part of this
exercise to conclude B = B0. Hint: follow closely the method used in the
first step of the proof of Theorem 7.7.

3. Show for every ε > 0 and B ∈ B, there exist a compact subset,K ⊂ Rn, such
that K ⊂ B and µ (B \K) < ε. Hint: take K := F ∩ {x ∈ Rn : |x| ≤ n}
for some sufficiently large n.

Go to Chapter 9

6.8 * The π – λ theorem

This section may and probably should be omitted on first reading. Later in
Chapter 12 we will come back to a function theoretic variant of the results in
this chapter which we will tend to use throughout the book.

Recall that a collection, P ⊂ 2Ω , is a π – class or π – system if it is closed
under finite intersections. We also need the notion of a λ –system.

Definition 6.51 (λ – system). A collection of sets, L ⊂ 2Ω , is λ – class or
λ – system if

a. Ω ∈ L
b. If A,B ∈ L and A ⊂ B, then B \A ∈ L. (Closed under proper differences.)
c. If An ∈ L and An ↑ A, then A ∈ L. (Closed under countable increasing

unions.)

Remark 6.52. If L is a collection of subsets of Ω which is both a λ – class and
a π – system then L is a σ – algebra. Indeed, since Ac = Ω \ A, we see that
any λ - system is closed under complementation. If L is also a π – system, it is
closed under intersections and therefore L is an algebra. Since L is also closed
under increasing unions, L is a σ – algebra.

Lemma 6.53 (Alternate Axioms for a λ – System*). Suppose that L ⊂ 2Ω

is a collection of subsets Ω. Then L is a λ – class iff λ satisfies the following
postulates:

1. Ω ∈ L
2. A ∈ L implies Ac ∈ L. (Closed under complementation.)
3. If {An}∞n=1 ⊂ L are disjoint, then

∑∞
n=1An ∈ L. (Closed under disjoint

unions.)

Proof. Suppose that L satisfies a. – c. above. Clearly then postulates 1. and
2. hold. Suppose that A,B ∈ L such that A ∩B = ∅, then A ⊂ Bc and

Ac ∩Bc = Bc \A ∈ L.
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Taking complements of this result shows A ∪ B ∈ L as well. So by induction,
Bm :=

∑m
n=1An ∈ L. Since Bm ↑

∑∞
n=1An it follows from postulate c. that∑∞

n=1An ∈ L.
Now suppose that L satisfies postulates 1. – 3. above. Notice that ∅ ∈ L

and by postulate 3., L is closed under finite disjoint unions. Therefore if A,B ∈
L with A ⊂ B, then Bc ∈ L and A ∩ Bc = ∅ allows us to conclude that
A ∪ Bc ∈ L. Taking complements of this result shows B \ A = Ac ∩ B ∈ L as
well, i.e. postulate b. holds. If An ∈ L with An ↑ A, then Bn := An \An−1 ∈ L
for all n, where by convention A0 = ∅. Hence it follows by postulate 3 that
∪∞n=1An =

∑∞
n=1Bn ∈ L.

Theorem 6.54 (Dynkin’s π – λ Theorem). If L is a λ class which contains
a π – class, P, then σ(P) ⊂ L.

Proof. We start by proving the following assertion; for any element C ∈ L,
the collection of sets,

LC := {D ∈ L : C ∩D ∈ L} ,

is a λ – system. To prove this claim, observe that: a. Ω ∈ LC , b. if A ⊂ B with
A,B ∈ LC , then A ∩ C, B ∩ C ∈ L with A ∩ C ⊂ B ∩ C and therefore,

(B \A) ∩ C = [B ∩ C] \A = [B ∩ C] \ [A ∩ C] ∈ L.

This shows that LC is closed under proper differences. c. If An ∈ LC with
An ↑ A, then An ∩C ∈ L and An ∩C ↑ A∩C ∈ L, i.e. A ∈ LC . Hence we have
verified LC is still a λ – system.

For the rest of the proof, we may assume without loss of generality that L
is the smallest λ – class containing P – if not just replace L by the intersection
of all λ – classes containing P. Then for C ∈ P we know that LC ⊂ L is a λ
- class containing P and hence LC = L. Since C ∈ P was arbitrary, we have
shown, C ∩ D ∈ L for all C ∈ P and D ∈ L. We may now conclude that if
C ∈ L, then P ⊂ LC ⊂ L and hence again LC = L. Since C ∈ L is arbitrary,
we have shown C∩D ∈ L for all C,D ∈ L, i.e. L is a π – system. So by Remark
6.52, L is a σ algebra. Since σ (P) is the smallest σ – algebra containing P it
follows that σ (P) ⊂ L.

As an immediate corollary, we have the following uniqueness result.

Proposition 6.55. Suppose that P ⊂ 2Ω is a π – system. If P and Q are two
probability3 measures on σ (P) such that P = Q on P, then P = Q on σ (P) .

Proof. Let L := {A ∈ σ (P) : P (A) = Q (A)} . One easily shows L is a λ –
class which contains P by assumption. Indeed, Ω ∈ P ⊂ L, if A,B ∈ L with
A ⊂ B, then

3 More generally, P and Q could be two measures such that P (Ω) = Q (Ω) <∞.

P (B \A) = P (B)− P (A) = Q (B)−Q (A) = Q (B \A)

so that B \A ∈ L, and if An ∈ L with An ↑ A, then P (A) = limn→∞ P (An) =
limn→∞Q (An) = Q (A) which shows A ∈ L. Therefore σ (P) ⊂ L = σ (P) and
the proof is complete.

Example 6.56. Let Ω := {a, b, c, d} and let µ and ν be the probability measure
on 2Ω determined by, µ ({x}) = 1

4 for all x ∈ Ω and ν ({a}) = ν ({d}) = 1
8 and

ν ({b}) = ν ({c}) = 3/8. In this example,

L :=
{
A ∈ 2Ω : P (A) = Q (A)

}
is λ – system which is not an algebra. Indeed, A = {a, b} and B = {a, c} are in
L but A ∩B /∈ L.

Exercise 6.8. Suppose that µ and ν are two measures (not assumed to be
finite) on a measure space, (Ω,B) such that µ = ν on a π – system, P. Further
assume B = σ (P) and there exists Ωn ∈ P such that; i) µ (Ωn) = ν (Ωn) <∞
for all n and ii) Ωn ↑ Ω as n ↑ ∞. Show µ = ν on B.

Hint: Consider the measures, µn (A) := µ (A ∩Ωn) and νn (A) =
ν (A ∩Ωn) .

Corollary 6.57. A probability measure, P, on (R,BR) is uniquely determined
by its cumulative distribution function,

F (x) := P ((−∞, x]) .

Proof. This follows from Proposition 6.55 wherein we use the fact that
P := {(−∞, x] : x ∈ R} is a π – system such that BR = σ (P) .

Remark 6.58. Corollary 6.57 generalizes to Rn. Namely a probability measure,
P, on (Rn,BRn) is uniquely determined by its CDF,

F (x) := P ((−∞, x]) for all x ∈ Rn

where now

(−∞, x] := (−∞, x1]× (−∞, x2]× · · · × (−∞, xn].

Exercise 6.9. Given x ∈ R \ {0} let

x+B := {x+ y : y ∈ B} and x ·B := {xy : y ∈ B} . (6.26)

Use the π – λ Theorem 6.54 to show x+B and x ·B are in BR for all B ∈ BR.
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Exercise 6.10 (* Density of A in σ (A)). Suppose thatA ⊂ 2Ω is an algebra,
B := σ (A) , and P is a probability measure on B. Let ρ (A,B) := P (A4B) .
The goal of this exercise is to use the π – λ theorem to show that A is dense in
B relative to the “metric,” ρ. More precisely you are to show using the following
outline that for every B ∈ B there exists A ∈ A such that that P (A4B) < ε.
[Some of the assertions to be proved below have already been covered in the
Exercises in subsection 4.2.]

1. Recall from Exercise 5.6 that ρ (a,B) = P (A4B) = E |1A − 1B | .
2. Observe; if B = ∪Bi and A = ∪iAi, then

B \A = ∪i [Bi \A] ⊂ ∪i (Bi \Ai) ⊂ ∪iAi 4Bi and

A \B = ∪i [Ai \B] ⊂ ∪i (Ai \Bi) ⊂ ∪iAi 4Bi

so that
A4B ⊂ ∪i (Ai 4Bi) .

3. We also have

(B2 \B1) \ (A2 \A1) = B2 ∩Bc1 ∩ (A2 \A1)
c

= B2 ∩Bc1 ∩ (A2 ∩Ac1)
c

= B2 ∩Bc1 ∩ (Ac2 ∪A1)

= [B2 ∩Bc1 ∩Ac2] ∪ [B2 ∩Bc1 ∩A1]

⊂ (B2 \A2) ∪ (A1 \B1)

and similarly,

(A2 \A1) \ (B2 \B1) ⊂ (A2 \B2) ∪ (B1 \A1)

so that

(A2 \A1)4 (B2 \B1) ⊂ (B2 \A2) ∪ (A1 \B1) ∪ (A2 \B2) ∪ (B1 \A1)

= (A1 4B1) ∪ (A2 4B2) .

4. Observe that An ∈ B and An ↑ A, then

P (B 4An) = P (B \An) + P (An \B)

→ P (B \A) + P (A \B) = P (A4B) .

5. Let L be the collection of sets B ∈ B for which the assertion of the theorem
holds. Show L is a λ – system which contains A.

6.9 * Supplement: Generalizations of Theorem 6.34 to Rn

Notation 6.59 Let a, b ∈ R̄n we say a < b if ai < bi for all i and a ≤ b if
ai ≤ bi for all i. For a < b we let

(a, b] := (a1, b1] ∩ R× · · · × (an, bn] ∩ R.

Also define x ∧ y := (x1 ∧ y1, . . . , xn ∧ yn) for all x, y ∈ Rn.

Definition 6.60. A function F : Rn → C (or any normed space) is right
continuous at a ∈ Rn if for every ε > 0 there exists a δ > 0 such that
|F (b)− F (a)| < ε for all b ∈ [a,∞) such that |b− a| ≤ δ. Alternative put, F
is right continuous at a iff for every ε > 0 there exists b ∈ Rn such that b > a
and |F (y)− F (a)| < ε for all a ≤ y < b.

Definition 6.61. Let A = A (Rn) be the sub-algebra of B generated by sets of
the form (a, b] ∩ Rn with a, b ∈ R̄n. [Note that (a, b] = ∅ if ai ≥ bi for some i.]

Theorem 6.62. Suppose F : Rn → R is a right continuous function and µF :
A (Rn) → R is the associated finitely additive measure as given in Eq. (5.40)
of Proposition 5.41. If µF is positive4 in the sense that µF ((a, b]) ≥ 0 for all
a ≤ b, then there exists a unique measure µ = µ̄F on BRn such that

µ ((a, b]) = µF ((a, b]) =
∑

Λ⊂{1,2,...,n}

(−1)|Λ|F (aΛ × bΛc)

for all a ≤ b with a, b ∈ Rn.

Proof. We let µF be the finitely additive measure on A = A (Rn) given
in Proposition 5.41, which (by assumption) is non-negative on A (Rn) . So to
finish the proof we need only show µ := µF is a premeasure on A which we
will do by showing µ is subadditive on E := {(a, b] : a, b ∈ Rn and a ≤ b} , i.e.
if (a, b] =

∑∞
n=1(an, bn] then we must show

µ ((a, b]) ≤
∞∑
n=1

µ ((an, bn]) .

We may suppose that a < b (i.e. ai < bi for all i) for otherwise (a, b] = ∅ and
µ ((a, b]) = 0 and there will be nothing to prove. For any choice of a < ã < b
and b̃n > bn for all n ∈ N, we have

4 It is not sufficient to assume that F is non-decreasing in each of it variables. For
example F (x, y) := x+y−xy on [0, 1]2 satisfies, Fx = 1−y ≥ 0 and Fy = 1−x ≥ 0
while Fx,y = −1 < 0. In this case µF

(
[0, 1]2

)
= −1 < 0 and more generally

µF ((a,b]) = − (b1 − a1) (b2 − a2) < 0 for all a < b. Moreover if F is sufficiently
smooth, then non-decreasing in each of its variables means ∂iF ≥ 0 for all i whereas
dµF = ∂1 . . . ∂nFdm will be a positive measure iff ∂1 . . . ∂nF ≥ 0.
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[ã, b] ⊂ (a, b] ⊂ ∪n
(
an, b̃n

)
.

So by compactness there exists N <∞ such that

(ã, b] ⊂ [ã, b] ⊂ ∪Nn=1

(
an, b̃n

)
⊂ ∪Nn=1(an, b̃n].

By finite sub-additivity and monotonicity of µ, we have

µ ((ã, b]) ≤
N∑
n=1

µ
(

(an, b̃n]
)
≤
∞∑
n=1

µ
(

(an, b̃n]
)
.

Using the right continuity of F it follows that

µ ((a, b]) = lim
ã↓a

µ ((ã, b]) ≤
∞∑
n=1

µ
(

(an, b̃n]
)
. (6.27)

Also using the right continuity of F, for every ε > 0 we may choose b̃n > bn

such that µ
(

(an, b̃n]
)
≤ µ ((an, bn]) + ε2−n which combined with Eq. (6.27)

implies,

µ ((a, b]) ≤
∞∑
n=1

[
µ ((an, bn]) + ε2−n

]
=

∞∑
n=1

µ ((an, bn]) + ε.

As ε > 0 is arbitrary the proof is complete in the case a < b.
The proof for the cases where some of the components of a are −∞ and or

some the components of b are +∞ follows as in the proof to Theorem 6.34.

Lemma 6.63 (Right Continuous Versions). Suppose G : Rn → R is in-
creasing in each of its variables.5 For x ∈ Rn let F (x) := infy>xG (y) . Then
F is increasing in each of its variables and F is right continuous.

Proof. If a ≤ b and y > b then y > a so that F (a) ≤ G (y) . Therefore
F (a) ≤ infy>bG (y) = F (b) and so F is increasing in each of its variables. Now
suppose that ε > 0 there exists β > a such that 0 ≤ G (β) − F (a) < ε. Then
for any a < b < β, we have

0 ≤ G (y)− F (a) ≤ G (β)− F (a) < ε for all b < y < β.

From this it follows that

0 ≤ F (b)− F (a) ≤ inf
b<y<β

G (y)− F (a) ≤ G (β)− F (a) < ε

which proves the right continuity of F.

5 The increasing in each of its variables assumption is a bit of a red herring. For
example, if F (x, y) = xy − x− y, then µF = Lebesgue measure on the plane since
Fx,y = 1. However Fx = y− 1 and Fy = x− 1 has variable signs. Actually we could
use the simpler example of F (x, y) = xy just as well.

6.10 * Appendix: Completions of Measure Spaces

Definition 6.64. A set E ⊂ Ω is a null set if E ∈ B and µ(E) = 0. If P is
some “property” which is either true or false for each x ∈ Ω, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E := {x ∈ Ω : P is false for x}

is a null set. For example if f and g are two measurable functions on (Ω,B, µ),
f = g a.e. means that µ(f 6= g) = 0.

Definition 6.65. A measure space (Ω,B, µ) is complete if every subset of a
null set is in B, i.e. for all F ⊂ Ω such that F ⊂ E ∈ B with µ(E) = 0 implies
that F ∈ B.

Proposition 6.66 (Completion of a Measure). Let (Ω,B, µ) be a measure
space. Set

N = N µ := {N ⊂ Ω : ∃ F ∈ B such that N ⊂ F and µ(F ) = 0} ,
B = B̄µ := {A ∪N : A ∈ B and N ∈ N} and

µ̄(A ∪N) := µ(A) for A ∈ B and N ∈ N ,

see Fig. 6.2. Then B̄ is a σ – algebra, µ̄ is a well defined measure on B̄, µ̄ is the
unique measure on B̄ which extends µ on B, and (Ω, B̄, µ̄) is complete measure
space. The σ-algebra, B̄, is called the completion of B relative to µ and µ̄, is
called the completion of µ.

Proof. Clearly Ω, ∅ ∈ B̄. Let A ∈ B and N ∈ N and choose F ∈ B such

Fig. 6.2. Completing a σ – algebra.

that N ⊂ F and µ(F ) = 0. Since N c = (F \N) ∪ F c,
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(A ∪N)c = Ac ∩N c = Ac ∩ (F \N ∪ F c)
= [Ac ∩ (F \N)] ∪ [Ac ∩ F c]

where [Ac ∩ (F \ N)] ∈ N and [Ac ∩ F c] ∈ B. Thus B̄ is closed under
complements. If Ai ∈ B and Ni ⊂ Fi ∈ B such that µ(Fi) = 0 then
∪(Ai ∪ Ni) = (∪Ai) ∪ (∪Ni) ∈ B̄ since ∪Ai ∈ B and ∪Ni ⊂ ∪Fi and
µ(∪Fi) ≤

∑
µ(Fi) = 0. Therefore, B̄ is a σ – algebra. Suppose A∪N1 = B∪N2

with A,B ∈ B and N1, N2,∈ N . Then A ⊂ A ∪ N1 ⊂ A ∪ N1 ∪ F2 = B ∪ F2

which shows that
µ(A) ≤ µ(B) + µ(F2) = µ(B).

Similarly, we show that µ(B) ≤ µ(A) so that µ(A) = µ(B) and hence µ̄(A ∪
N) := µ(A) is well defined. It is left as an exercise to show µ̄ is a measure, i.e.
that it is countable additive.



7

*Measure construction extras

The reader is advised that this chapter may and should be ignored.

7.1 Overview

The goal of this chapter is develop methods for proving the existence of prob-
ability measures with desirable properties. The main results of this chapter
may are summarized in the following theorem. Throughout this chapter A will
be a sub-algebra of 2Ω and µ will be a finitely additive measure on A with
µ (Ω) <∞.

Theorem 7.1. A finitely additive finite measure µ on an algebra, A ⊂ 2Ω ,
extends to σ – additive measure on σ (A) iff µ is a premeasure on A. If the
extension exists it is unique.

Proof. The uniqueness assertion is proved Proposition 6.55 below. The ex-
istence assertion of the theorem is contained in Theorem 6.20 (also restated in
Theorem 7.4 below).

In order to use this theorem it is necessary to determine when a finitely ad-
ditive probability measure in is in fact a premeasure. The following proposition
(which may be omitted until needed) is sometimes useful in this regard.

7.1.1 An Extension of Measure Strategy

Let us end this overview by briefly explaining the strategy we will use below
for extending measures.

Example 7.2. It is easy to verify that to every finitely additive measure, µ : A →
[0,∞), the function dµ : A×A → [0,∞) defined by

dµ (A,B) := µ (A4B) =

∫
Ω

|1B − 1A| dµ

is a pseudo metric on A. In general dµ (A,B) = 0 does not imply A = B but
only that A = B modulo sets of µ – measure zero.

Lemma 7.3. If µ : A → [0,∞) is a finitely additive measure, then µ is Lip-1
relative to dµ, i.e.

|µ (B)− µ (A)| ≤ dµ (A,B) ∀ A,B ∈ A.

Proof. First proof. By the basic properties of the simple integral we find,

|µ (B)− µ (A)| =
∣∣∣∣∫
Ω

(1B − 1A) dµ

∣∣∣∣ ≤ ∫
Ω

|1B − 1A| dµ = µ (B 4A) = dµ (A,B) .

Second proof. Using the basic properties of measures we have,

µ (B)− µ (A) = µ (B \A) + µ (B ∩A)− [µ (A \B) + µ (B ∩A)]

= µ (B \A)− µ (A \B) .

Basic inequalities then give

|µ (B)− µ (A)| ≤ µ (B \A) + µ (A \B) = µ (B 4A) = dµ (A,B) .

Our proof strategy for constructing σ – additive measures is now as follows.
1) we look for a pseudo-metric d on 2Ω such that d = dµ on A and then 2) we
extend µ to a Lip−1 function (µ̄) on Ād by continuity using Lemma 2.28. It
will turn out that if we choose d sufficiently carefully (i.e. sufficiently “small”),
then B := Ād will be a σ – algebra and µ̄ will be a measure on B. The outcome
of this strategy is summarized in the next theorem.

Theorem 7.4 (Finite premeasure extension theorem II.). Let (Ω,A, µ)
be a premeasure space with µ (Ω) <∞ and define µ∗ : 2Ω → [0, µ (Ω)] by

µ∗ (B) = inf

{ ∞∑
n=1

µ (An) : An ∈ A with B ⊂ ∪∞n=1An

}
.

Further let B ⊂ 2Ω consist of those B ⊂ Ω such that there exists {An} ⊂ A
such that limn→∞ µ∗ (An 4B) = 0.Then;

1. B is a σ -algebra containing A,



84 7 *Measure construction extras

2. if B ∈ B and {An} ⊂ A with and B ⊂ Ω such that limn→∞ µ∗ (An 4B) =
0, then µ̄ (B) := limn→∞ µ (An) exists and gives a well defined σ – additive
measure, µ̄ : B → [0,∞) extending µ on A.

We will begin the proof of this result in section 6.1 below and it will be
completed with the proof of Theorem 6.20. Before doing so we pause for a
couple of optional sections pertaining to the uniqueness of the extensions and
their continuity properties.

7.2 Monotone Class Theorems

In this section we record a theorem which is a cousin of the π – λ theorem.

Definition 7.5 (Montone Class). C ⊂ 2Ω is a monotone class if it is closed
under countable increasing unions and countable decreasing intersections.

Lemma 7.6 (Monotone Class Theorem*). Suppose A ⊂ 2Ω is an algebra
and C is the smallest monotone class containing A. Then C = σ(A).

Proof. For C ∈ C let

C(C) = {B ∈ C : C ∩B,C ∩Bc, B ∩ Cc ∈ C},

then C(C) is a monotone class. Indeed, if Bn ∈ C(C) and Bn ↑ B, then Bcn ↓ Bc
and so

C 3 C ∩Bn ↑ C ∩B
C 3 C ∩Bcn ↓ C ∩Bc and

C 3 Bn ∩ Cc ↑ B ∩ Cc.

Since C is a monotone class, it follows that C ∩ B,C ∩ Bc, B ∩ Cc ∈ C, i.e.
B ∈ C(C). This shows that C(C) is closed under increasing limits and a similar
argument shows that C(C) is closed under decreasing limits. Thus we have
shown that C(C) is a monotone class for all C ∈ C. If A ∈ A ⊂ C, then
A ∩ B,A ∩ Bc, B ∩ Ac ∈ A ⊂ C for all B ∈ A and hence it follows that
A ⊂ C(A) ⊂ C. Since C is the smallest monotone class containing A and C(A) is
a monotone class containing A, we conclude that C(A) = C for any A ∈ A. Let
B ∈ C and notice that A ∈ C(B) happens iff B ∈ C(A). This observation and
the fact that C(A) = C for all A ∈ A implies A ⊂ C(B) ⊂ C for all B ∈ C. Again
since C is the smallest monotone class containing A and C(B) is a monotone
class we conclude that C(B) = C for all B ∈ C. That is to say, if A,B ∈ C then
A ∈ C = C(B) and hence A ∩ B, A ∩ Bc, Ac ∩ B ∈ C. So C is closed under
complements (since Ω ∈ A ⊂ C) and finite intersections and increasing unions
from which it easily follows that C is a σ – algebra.

7.3 * σ - Algebra Regularity and Uniqueness Results

The goal of this appendix it to approximating measurable sets from inside
and outside by classes of sets which are relatively easy to understand. Our
first few results are already contained in Carathoédory’s existence of measures
proof. Nevertheless, we state these results again and give another somewhat
independent proof.

Theorem 7.7 (Finite Regularity Result). Suppose A ⊂ 2Ω is an algebra,
B = σ (A) and µ : B → [0,∞) is a finite measure, i.e. µ (Ω) < ∞. Then for
every ε > 0 and B ∈ B there exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C
and µ (C \A) < ε.

Proof. Let B0 denote the collection of B ∈ B such that for every ε > 0
there here exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C and µ (C \A) < ε.
It is now clear that A ⊂ B0 and that B0 is closed under complementation. Now
suppose that Bi ∈ B0 for i = 1, 2, . . . and ε > 0 is given. By assumption there
exists Ai ∈ Aδ and Ci ∈ Aσ such that Ai ⊂ Bi ⊂ Ci and µ (Ci \Ai) < 2−iε.

Let A := ∪∞i=1Ai, A
N := ∪Ni=1Ai ∈ Aδ, B := ∪∞i=1Bi, and C := ∪∞i=1Ci ∈

Aσ. Then AN ⊂ A ⊂ B ⊂ C and

C \A = [∪∞i=1Ci] \A = ∪∞i=1 [Ci \A] ⊂ ∪∞i=1 [Ci \Ai] .

Therefore,

µ (C \A) = µ (∪∞i=1 [Ci \A]) ≤
∞∑
i=1

µ (Ci \A) ≤
∞∑
i=1

µ (Ci \Ai) < ε.

Since C \ AN ↓ C \ A, it also follows that µ
(
C \AN

)
< ε for sufficiently large

N and this shows B = ∪∞i=1Bi ∈ B0. Hence B0 is a sub-σ-algebra of B = σ (A)
which contains A which shows B0 = B.

Many theorems in the sequel will require some control on the size of a
measure µ. The relevant notion for our purposes (and most purposes) is that
of a σ – finite measure defined next.

Definition 7.8. Suppose Ω is a set, E ⊂ B ⊂ 2Ω and µ : B → [0,∞] is a
function. The function µ is σ – finite on E if there exists En ∈ E such that
µ(En) < ∞ and Ω = ∪∞n=1En. If B is a σ – algebra and µ is a measure on B
which is σ – finite on B we will say (Ω,B, µ) is a σ – finite measure space.

The reader should check that if µ is a finitely additive measure on an algebra,
B, then µ is σ – finite on B iff there exists Ωn ∈ B such that Ωn ↑ Ω and
µ(Ωn) <∞.
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Corollary 7.9 (σ – Finite Regularity Result). Theorem 7.7 continues to
hold under the weaker assumption that µ : B → [0,∞] is a measure which is σ
– finite on A.

Proof. Let Ωn ∈ A such that ∪∞n=1Ωn = Ω and µ(Ωn) <∞ for all n.Since
A ∈ B →µn (A) := µ (Ωn ∩A) is a finite measure on A ∈ B for each n, by
Theorem 7.7, for every B ∈ B there exists Cn ∈ Aσ such that B ⊂ Cn and
µ (Ωn ∩ [Cn \B]) = µn (Cn \B) < 2−nε. Now let C := ∪∞n=1 [Ωn ∩ Cn] ∈ Aσ
and observe that B ⊂ C and

µ (C \B) = µ (∪∞n=1 ([Ωn ∩ Cn] \B))

≤
∞∑
n=1

µ ([Ωn ∩ Cn] \B) =

∞∑
n=1

µ (Ωn ∩ [Cn \B]) < ε.

Applying this result to Bc shows there exists D ∈ Aσ such that Bc ⊂ D and

µ (B \Dc) = µ (D \Bc) < ε.

So if we let A := Dc ∈ Aδ, then A ⊂ B ⊂ C and

µ (C \A) = µ ([B \A] ∪ [(C \B) \A]) ≤ µ (B \A) + µ (C \B) < 2ε

and the result is proved.

Exercise 7.1. Suppose A ⊂ 2Ω is an algebra and µ and ν are two measures on
B = σ (A) .

a. Suppose that µ and ν are finite measures such that µ = ν on A. Show
µ = ν.

b. Generalize the previous assertion to the case where you only assume that
µ and ν are σ – finite on A.

Corollary 7.10. Suppose A ⊂ 2Ω is an algebra and µ : B = σ (A) → [0,∞] is
a measure which is σ – finite on A. Then for all B ∈ B, there exists A ∈ Aδσ
and C ∈ Aσδ such that A ⊂ B ⊂ C and µ (C \A) = 0.

Proof. By Theorem 7.7, given B ∈ B, we may choose An ∈ Aδ and Cn ∈ Aσ
such that An ⊂ B ⊂ Cn and µ(Cn\B) ≤ 1/n and µ(B\An) ≤ 1/n. By replacing
AN by ∪Nn=1An and CN by ∩Nn=1Cn, we may assume that An ↑ and Cn ↓ as n
increases. Let A = ∪An ∈ Aδσ and C = ∩Cn ∈ Aσδ, then A ⊂ B ⊂ C and

µ(C \A) = µ(C \B) + µ(B \A) ≤ µ(Cn \B) + µ(B \An)

≤ 2/n→ 0 as n→∞.

7.4 *Other characterizations of B

This section may (probably should) be skipped on first reading. Its purpose is to
serve as motivation for Carathéodory’s general construction theorem appearing
in the optional Chapter 8.

Proposition 7.11 (*Other characterizations of B). Let

B′ :=
{
B ⊂ Ω : µ∗ (E ∩B) + µ∗ (E \B) = µ∗ (E) ∀ E ∈ 2Ω

}
and

B′′ := {B ⊂ Ω : µ∗ (B) + µ∗ (Bc) = µ (Ω)}

Then we have B = B′ = B′′ and moreover µ̄ = µ∗|B.

Proof. Let us first observe that B′ may be expressed alternatively as;

B′ :=
{
B ⊂ Ω : µ∗ (E ∩B) + µ∗ (E \B) ≤ µ∗ (E) ∀ E ∈ 2Ω

}
.

This is because the subadditivty of µ∗ automatically implies

µ∗ (E) ≤ µ∗ (E ∩B) + µ∗ (E \B)∀ B,E ∈ 2Ω .

As the test for as set to be in B′′ is the same as one of the tests (namely
E = Ω) for being in B′, we have B′ ⊂ B′′. We will now complete the proof that
B = B′ = B′′ by showing B ⊂ B′ and B′′ ⊂ B.

(B ⊂ B′) . If B ∈ B, E ∈ 2Ω , and C ∈ Aσ such that E ⊂ C, then

µ∗ (E ∩B) + µ∗ (E \B) ≤ µ∗ (C ∩B) + µ∗ (C \B)

= µ̄ (C ∩B) + µ̄ (C \B) = µ̄ (C) = µσ (C) .

Taking the infimum over all C ∈ Aσ such that E ⊂ C shows

µ∗ (E ∩B) + µ∗ (E \B) ≤ µ∗ (E)

and hence B ∈ B′.
(B′′ ⊂ B) . If B ∈ B′′ and ε > 0 is given, there exists C,D ∈ Aσ so that

B ⊂ C, Bc ⊂ D,

µ̄ (C) = µσ (C) ≤ µ∗ (B) + ε, and µ̄ (D) = µσ (D) ≤ µ∗ (Bc) + ε.

Summing these inequalities while using B ∈ B′′ implies,

µ̄ (C) + µ̄ (D) ≤ µ (Ω) + 2ε =⇒ µ̄ (C) ≤ µ̄ (Dc) + 2ε.

As Dc ⊂ B ⊂ C and C \Dc = C ∩D ∈ Aσ, it follows that
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µ∗ (C \Dc) = µσ (C \Dc) = µ̄ (C \Dc) ≤ 2ε.

Consequently we conclude that,

d (B,C) = µ∗ (C \B) ≤ µ∗ (C \Dc) ≤ 2ε and (7.1)

d (B,Dc) = µ∗ (B \Dc) ≤ µ∗ (C \Dc) ≤ 2ε. (7.2)

Since ε > 0 is arbitrary these equations show B ∈ Ādσ = B and also that
B ∈ Ādδ . Moreover, since µ̄ = µσ on Aσ and µ̄ is Lip−1 relative to d, we also
find,

|µ̄ (B)− µ∗ (B)| ≤ |µ̄ (B)− µ̄ (C)|+ |µσ (C)− µ∗ (B)|
≤ 2ε+ ε = 3ε.

Again as ε > 0 is arbitrary we have also shown that µ̄ = µ∗ on B.

Notation 7.12 (Inner measures) If µ : A → [0,∞) is a finite premeasure
and B ⊂ Ω let

µ∗ (B) := sup
{
µδ (A) : Aδ 3 A ⊂ B

}
,

where µδ := µ̄|Aδ . We refer to µ∗ (B) as the inner measure (or inner con-
tent) of B.

Remark 7.13. If A ∈ Aδ and An ∈ A are such that An ↓ A, then µδ (A) =
limn→∞ µ (An) . This shows that µδ may be computed directly from µ without
referring to the extension µ̄ as in Notation 7.12.

Corollary 7.14. Let (Ω,A, µ) be a finite premeasure space and µ∗ and µ∗ be the
inner and outer measures associated to µ as in Notations 7.12 and Proposition
6.6 and Proposition 6.14 respectively. Then (continuing to use the notation in
Theorem 6.20)

B := Ād = {B ⊂ Ω : µ∗ (B) = µ∗ (B)} . (7.3)

Proof. From Proposition 7.11 we know that B ∈ B iff µ∗ (B) + µ∗ (Bc) =
µ (Ω) . Now choose Cn ∈ Aσ such that Bc ⊂ Cn and µ̄ (Cn) ↓ µ∗ (Bc) and let
An := Ccn ∈ Aδ with An ⊂ B, then

µ∗ (B) = µ (Ω)− µ∗ (Bc) = lim
n→∞

[µ (Ω)− µ̄ (Cn)]

= lim
n→∞

µ̄ (An) ≤ µ∗ (B) .

As µ∗ (B) ≤ µ∗ (B) holds for all B ∈ 2Ω it follows that B ∈ B implies µ∗ (B) =
µ∗ (B) .

Conversely if B ∈ 2Ω satisfies µ∗ (B) = µ∗ (B) , there exists Aδ 3 An ⊂ B ⊂
Cn ∈ Aσ such that limn→∞ µ̄ (Cn) = limn→∞ µ̄ (An) which implies

lim
n→∞

µ∗ (Cn \An) = lim
n→∞

µ̄ (Cn \An) = 0

and hence d (B,Cn) = µ∗ (Cn \B) ≤ µ∗ (Cn \An)→ 0 as n→∞ which shows
B ∈ Ādσ = B.

7.5 * Appendix: Alternate measure extension
construction

(The reader wanting for more motivation of the construction measure in this
section may wish to read Section 7.3 below first.)

Suppose µ is a finite premeasure on an algebra, A ⊂ 2Ω , and A ∈ Aδ ∩Aσ.
Since A,Ac ∈ Aσ and Ω = A∪Ac, it follows that µ (Ω) = µ (A)+µ (Ac) . From
this observation we may extend µ to a function on Aδ ∪ Aσ by defining

µ (A) := µ (Ω)− µ (Ac) for all A ∈ Aδ. (7.4)

Lemma 7.15. Suppose µ is a finite premeasure on an algebra, A ⊂ 2Ω , and
µ has been extended to Aδ ∪ Aσ as described in Proposition ?? and Eq. (7.4)
above.

1. If A ∈ Aδ then µ (A) = inf {µ (B) : A ⊂ B ∈ A} .
2. If A ∈ Aδ and An ∈ A such that An ↓ A, then µ (A) =↓ limn→∞ µ (An) .
3. µ is strongly additive when restricted to Aδ.
4. If A ∈ Aδ and C ∈ Aσ such that A ⊂ C, then µ (C \A) = µ (C)− µ (A) .

Proof.

1. Since µ (B) = µ (Ω)− µ (Bc) and A ⊂ B iff Bc ⊂ Ac, it follows that

inf {µ (B) : A ⊂ B ∈ A} = inf {µ (Ω)− µ (Bc) : A 3 Bc ⊂ Ac}
= µ (Ω)− sup {µ (B) : A 3 B ⊂ Ac}
= µ (Ω)− µ (Ac) = µ (A) .

2. Similarly, since Acn ↑ Ac ∈ Aσ, by the definition of µ (A) and Proposition
?? it follows that

µ (A) = µ (Ω)− µ (Ac) = µ (Ω)− ↑ lim
n→∞

µ (Acn)

=↓ lim
n→∞

[µ (Ω)− µ (Acn)] =↓ lim
n→∞

µ (An) .

3. Suppose A,B ∈ Aδ and An, Bn ∈ A such that An ↓ A and Bn ↓ B, then
An ∪Bn ↓ A ∪B and An ∩Bn ↓ A ∩B and therefore,
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µ (A ∪B) + µ (A ∩B) = lim
n→∞

[µ (An ∪Bn) + µ (An ∩Bn)]

= lim
n→∞

[µ (An) + µ (Bn)] = µ (A) + µ (B) .

All we really need is the finite additivity of µ which can be proved as follows.
Suppose that A,B ∈ Aδ are disjoint, then A∩B = ∅ implies Ac ∪Bc = Ω.
So by the strong additivity of µ on Aσ it follows that

µ (Ω) + µ (Ac ∩Bc) = µ (Ac) + µ (Bc)

from which it follows that

µ (A ∪B) = µ (Ω)− µ (Ac ∩Bc)
= µ (Ω)− [µ (Ac) + µ (Bc)− µ (Ω)]

= µ (A) + µ (B) .

4. Since Ac, C ∈ Aσ we may use the strong additivity of µ on Aσ to conclude,

µ (Ac ∪ C) + µ (Ac ∩ C) = µ (Ac) + µ (C) .

Because Ω = Ac ∪C, and µ (Ac) = µ (Ω)− µ (A) , the above equation may
be written as

µ (Ω) + µ (C \A) = µ (Ω)− µ (A) + µ (C)

which finishes the proof.

If B ⊂ Ω has the same inner and outer content (see Notations 7.12 and ??
respectively) it is reasonable to define the measure of B as this common value.
As we will see in Theorem 7.18 below, this extension becomes a σ – additive
measure on a σ – algebra of subsets of Ω.

Definition 7.16 (Measurable Sets). Suppose µ is a finite premeasure on an
algebra A ⊂ 2Ω . We say that B ⊂ Ω is measurable if µ∗ (B) = µ∗ (B) where
µ∗ (B) and µ∗ (B) as in Notations 7.12 and ?? respectively. We will denote the
collection of measurable subsets of Ω by B = B (µ) and define µ̄ : B → [0, µ (Ω)]
by

µ̄ (B) := µ∗ (B) = µ∗ (B) for all B ∈ B. (7.5)

Remark 7.17. Observe that µ∗ (B) = µ∗ (B) iff for all ε > 0 there exists A ∈ Aδ
and C ∈ Aσ such that A ⊂ B ⊂ C and

µ (C \A) = µ (C)− µ (A) < ε, (7.6)

wherein we have used Lemma 7.15 for the first equality. Moreover we will use
below that if B ∈ B and Aδ 3 A ⊂ B ⊂ C ∈ Aσ, then

µ (A) ≤ µ∗ (B) = µ̄ (B) = µ∗ (B) ≤ µ (C) . (7.7)

Theorem 7.18 (Finite Premeasure Extension Theorem (revisited)).
Suppose µ is a finite premeasure on an algebra A ⊂ 2Ω and µ̄ : B := B (µ) →
[0, µ (Ω)] be as in Definition 7.16. Then B is a σ – algebra on Ω which contains
A and µ̄ is a σ – additive measure on B. Moreover, µ̄ is the unique measure on
B such that µ̄|A = µ.

Proof. 1. B is an algebra. It is clear that A ⊂ B and that B is closed
under complementation – see Eq. (7.6) and use the fact that Ac \ Cc = C \ A.
Now suppose that Bi ∈ B for i = 1, 2 and ε > 0 is given. We may then
choose Ai ⊂ Bi ⊂ Ci such that Ai ∈ Aδ, Ci ∈ Aσ, and µ (Ci \Ai) < ε for
i = 1, 2. Then with A = A1 ∪ A2, B = B1 ∪ B2 and C = C1 ∪ C2, we have
Aδ 3 A ⊂ B ⊂ C ∈ Aσ. Since

C \A = (C1 \A) ∪ (C2 \A) ⊂ (C1 \A1) ∪ (C2 \A2) ,

it follows from the sub-additivity of µ that

µ (C \A) ≤ µ (C1 \A1) + µ (C2 \A2) < 2ε.

Since ε > 0 was arbitrary, we have shown that B ∈ B which completes the proof
that B is an algebra.

2. B is a σ−algebra. As we know B is an algebra, to show B is a σ – algebra
it suffices to show that B =

∑∞
n=1Bn ∈ B whenever {Bn}∞n=1 is a disjoint

sequence in B. To this end, let ε > 0 be given and choose Ai ⊂ Bi ⊂ Ci such
that Ai ∈ Aδ, Ci ∈ Aσ, and µ (Ci \Ai) < ε2−i for all i. Let C := ∪∞i=1Ci ∈ Aσ
and for n ∈ N let An :=

∑n
i=1Ai ∈ Aδ. Since the {Ai}∞i=1 are pairwise disjoint

we may use Lemma 7.15 to show,

n∑
i=1

µ (Ci) =

n∑
i=1

(µ (Ai) + µ (Ci \Ai))

= µ (An) +

n∑
i=1

µ (Ci \Ai) ≤ µ (Ω) +

n∑
i=1

ε2−i

which on letting n→∞ implies

∞∑
i=1

µ (Ci) ≤ µ (Ω) + ε <∞. (7.8)

Using

C \An = ∪∞i=1 (Ci \An) ⊂ [∪ni=1 (Ci \Ai)] ∪
[
∪∞i=n+1Ci

]
∈ Aσ,

and the sub-additivity of µ on Aσ it follows that
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µ (C \An) ≤
n∑
i=1

µ (Ci \Ai) +

∞∑
i=n+1

µ (Ci) ≤ ε
n∑
i=1

2−i +

∞∑
i=n+1

µ (Ci)

≤ ε+

∞∑
i=n+1

µ (Ci)→ ε as n→∞,

wherein we have used Eq. (7.8) in computing the limit. In summary, B =
∪∞i=1Bi, Aδ 3 An ⊂ B ⊂ C ∈ Aσ, C \ An ∈ Aσ with µ (C\An) ≤ 2ε for all n
sufficiently large. Since ε > 0 is arbitrary, it follows that B ∈ B.

3. µ̄ is a measure. Continuing the notation in step 2, we have

∞∑
i=1

µ (Ai)
n→∞←−

n∑
i=1

µ (Ai) = µ (An) ≤ µ̄ (B) ≤ µ (C) ≤
∞∑
i=1

µ (Ci) . (7.9)

On the other hand, since Ai ⊂ Bi ⊂ Ci, it follows (see Eq. (7.7)) that µ (Ai) ≤
µ̄ (Bi) ≤ µ (Ci) and therefore that

∞∑
i=1

µ (Ai) ≤
∞∑
i=1

µ̄ (Bi) ≤
∞∑
i=1

µ (Ci) . (7.10)

Equations (7.9) and (7.10) show that µ̄ (B) and
∑∞
i=1 µ̄ (Bi) are both between∑∞

i=1 µ (Ai) and
∑∞
i=1 µ (Ci) and so∣∣∣∣∣µ̄ (B)−

∞∑
i=1

µ̄ (Bi)

∣∣∣∣∣ ≤
∞∑
i=1

µ (Ci)−
∞∑
i=1

µ (Ai) =

∞∑
i=1

µ (Ci \Ai) ≤
∞∑
i=1

ε2−i = ε.

Since ε > 0 is arbitrary, we have shown µ̄ (B) =
∑∞
i=1 µ̄ (Bi) , i.e. µ̄ is a measure

on B.
Since we really had no choice as to how to extend µ, it is to be expected

that the extension is unique. You are asked to supply the details in Exercise 6.2
below.

Corollary 7.19. Suppose that A ⊂ 2Ω is an algebra and µ : B0 := σ (A) →
[0, µ (Ω)] is a σ – additive finite measure. Then for every B ∈ σ (A) and ε > 0;

1. there exists Aδ 3 A ⊂ B ⊂ C ∈ Aσand ε > 0 such that µ (C \A) < ε and
2. there exists A ∈ A such that µ (A4B) < ε.

Exercise 7.2. Prove corollary 7.19 by considering ν̄ where ν := µ|A. Hint:
you may find Exercise 5.6 useful here.



8

*Carathéodory’s Construction of Measures

This chapter deals with Carathéodory’s very general measure construction
theorem. This chapter may be safely skipped as we will not make direct
use of the results here in the remainder of this book.

8.1 General Extension and Construction Theorem

Proposition 7.11 motivates the following definition.

Definition 8.1. Let µ∗ : 2Ω → [0,∞] be an outer measure, see Definition 6.5.
Define the µ∗-measurable sets to be

M(µ∗) := {B ⊂ Ω : µ∗(E) ≥ µ∗(E ∩B) + µ∗(E ∩Bc) ∀ E ⊂ Ω}.

Because of the sub-additivity of µ∗, we may equivalently define M(µ∗) by

M(µ∗) = {B ⊂ Ω : µ∗(E) = µ∗(E ∩B) + µ∗(E ∩Bc) ∀ E ⊂ Ω}. (8.1)

Theorem 8.2 (Carathéodory’s Construction Theorem). Let µ∗ be an
outer measure on Ω and M :=M(µ∗). Then M is a σ-algebra and µ := µ∗|M
is a complete measure.

Proof. Clearly ∅, Ω ∈M and if A ∈M then Ac ∈M. So to show thatM is
an algebra we must show thatM is closed under finite unions, i.e. if A,B ∈M
and E ∈ 2Ω then

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ(E \ (A ∪B)).

Using the definition of M three times, we have

µ∗(E) = µ∗(E ∩A) + µ∗(E \A) (8.2)

= µ∗(E ∩A ∩B) + µ∗((E ∩A) \B)

+ µ∗((E \A) ∩B) + µ∗((E \A) \B). (8.3)

By the sub-additivity of µ∗ and the set identity,

E ∩ (A ∪B) = (E ∩A) ∪ (E ∩B)

= [((E ∩A) \B) ∪ (E ∩A ∩B)] ∪ [((E ∩B) \A) ∪ (E ∩A ∩B)]

= [E ∩A ∩B] ∪ [(E ∩A) \B] ∪ [(E \A) ∩B] ,

we have

µ∗(E ∩A ∩B) + µ∗((E ∩A) \B) + µ∗((E \A) ∩B) ≥ µ∗ (E ∩ (A ∪B)) .

Using this inequality in Eq. (8.3) shows

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E \ (A ∪B)) (8.4)

which implies A ∪ B ∈ M. So M is an algebra. Now suppose A,B ∈ M are
disjoint, then taking E = A ∪B in Eq. (8.2) implies

µ∗(A ∪B) = µ∗(A) + µ∗(B)

and µ = µ∗|M is finitely additive on M.
We now must show that M is a σ – algebra and the µ is σ – additive. Let

Ai ∈M (without loss of generality assume Ai ∩Aj = ∅ if i 6= j) Bn =
⋃n
i=1Ai,

and B =
∞⋃
j=1

Aj , then for E ⊂ Ω we have

µ∗(E ∩Bn) = µ∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩Acn)

= µ∗(E ∩An) + µ∗(E ∩Bn−1).

and so by induction,

µ∗(E ∩Bn) =

n∑
k=1

µ∗(E ∩Ak). (8.5)

Therefore we find that

µ∗(E) = µ∗(E ∩Bn) + µ∗(E ∩Bcn)

=

n∑
k=1

µ∗(E ∩Ak) + µ∗(E ∩Bcn)

≥
n∑
k=1

µ∗(E ∩Ak) + µ∗(E ∩Bc)

where the last inequality is a consequence of the monotonicity of µ∗ and the
fact that Bc ⊂ Bcn. Letting n→∞ in this equation shows that
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µ∗(E) ≥
∞∑
k=1

µ∗(E ∩Ak) + µ∗(E ∩Bc)

≥ µ∗(∪k(E ∩Ak)) + µ∗(E \B)

= µ∗(E ∩B) + µ∗(E \B) ≥ µ∗(E),

wherein we have used the sub-additivity µ∗ twice. Hence B ∈ M and we have
shown M is a σ – algebra. Since µ∗(E) ≥ µ∗(E ∩ Bn) we may let n → ∞ in
Eq. (8.5) to find

µ∗(E) ≥
∞∑
k=1

µ∗(E ∩Ak).

Letting E = B = ∪Ak in this inequality then implies µ∗(B) ≥
∞∑
k=1

µ∗(Ak) and

hence, by the sub-additivity of µ∗, µ∗(B) =
∞∑
k=1

µ∗(Ak). Therefore, µ = µ∗|M
is countably additive on M.

Finally we show µ is complete. If N ⊂ F ∈M and µ(F ) = 0 = µ∗(F ), then
µ∗(N) = 0 and

µ∗(E) ≤ µ∗(E ∩N) + µ∗(E ∩N c) = µ∗(E ∩N c) ≤ µ∗(E).

which shows that N ∈M.

8.2 Extensions of General Premeasures

In this subsection let Ω be a set, A be a subalgebra of 2Ω and µ0 : A → [0,∞]
be a premeasure on A.

Theorem 8.3. Let A ⊂ 2Ω be an algebra, µ be a premeasure on A and µ∗ be
the associated outer measure as defined in Eq. (8.1) with ρ = µ. Let M :=
M(µ∗) ⊃ σ(A), then:

1. A ⊂M(µ∗) and µ∗|A = µ.
2. µ̄ = µ∗|M is a measure on M which extends µ.
3. If ν : M → [0,∞] is another measure such that ν = µ on A and B ∈ M,

then ν(B) ≤ µ̄(B) and ν(B) = µ̄(B) whenever µ̄(B) <∞.
4. If µ is σ-finite on A then the extension, µ̄, of µ toM is unique and moreover

M = σ (A)
µ̄|σ(A)

.

Proof. Recall from Proposition ?? that µ extends to a countably additive
function on Aσ and µ∗ = µ on A.

1. Let A ∈ A and E ⊂ Ω such that µ∗(E) <∞. Given ε > 0 choose pairwise
disjoint sets, Bj ∈ A, such that E ⊂ B :=

∑∞
j=1Bj and

µ∗(E) + ε ≥ µ (B) =
∞∑
j=1

µ(Bj).

Since A ∩ E ⊂
∑∞
j=1(Bj ∩ Ac) and E ∩ Ac ⊂

∑∞
j=1(Bj ∩ Ac), using the

sub-additivity of µ∗ and the additivity of µ on A we have,

µ∗(E) + ε ≥
∞∑
j=1

µ(Bj) =

∞∑
j=1

[µ(Bj ∩A) + µ(Bj ∩Ac)]

≥ µ∗(E ∩A) + µ∗(E ∩Ac).

Since ε > 0 is arbitrary this shows that

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac)

and therefore that A ∈M(µ∗).
2. This is a direct consequence of item 1. and Theorem 8.2.
3. If A :=

∑∞
j=1Aj with {Aj}∞j=1 ⊂ A being a collection of pairwise disjoint

sets, then

ν (A) =

∞∑
j=1

ν(Aj) =

∞∑
j=1

µ(Aj) = µ (A) .

This shows ν = µ = µ̄ on Aσ. Consequently, if B ∈M, then

ν(B) ≤ inf {ν (A) : B ⊂ A ∈ Aσ}
= inf {µ (A) : B ⊂ A ∈ Aσ} = µ∗(B) = µ̄(B). (8.6)

If µ̄(B) <∞ and ε > 0 is given, there exists A ∈ Aσ such that B ⊂ A and
µ̄ (A) = µ (A) ≤ µ̄ (B) + ε. From Eq. (8.6), this implies

ν (A \B) ≤ µ̄(A \B) ≤ ε.

Therefore,

ν (B) ≤ µ̄ (B) ≤ µ̄ (A) = ν (A) = ν (B) + ν (A \B) ≤ ν (B) + ε

which shows µ̄(B) = ν(B) because ε > 0 was arbitrary.
4. For the σ – finite case, choose Ωj ∈ M such that Ωj ↑ Ω and µ̄(Ωj) < ∞

then
µ̄(B) = lim

j→∞
µ̄(B ∩Ωj) = lim

j→∞
ν(B ∩Ωj) = ν(B).
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Theorem 8.4 (Regularity Theorem). Suppose that µ is a σ – finite pre-
measure on an algebra A, µ̄ is the extension described in Theorem 8.3 and
B ∈M :=M (µ∗) . Then:

1.
µ̄ (B) := inf {µ̄ (C) : B ⊂ C ∈ Aσ} .

2. For any ε > 0 there exists A ⊂ B ⊂ C such that A ∈ Aδ, C ∈ Aσ and
µ̄(C \A) < ε.

3. There exists A ⊂ B ⊂ C such that A ∈ Aδσ, C ∈ Aσδ and µ̄(C \A) = 0.
4. The σ-algebra, M, is the completion of σ (A) with respect to µ̄|σ(A).

Proof. The proofs of items 1. – 3. are the same as the proofs of the corre-
sponding results in Theorem 7.7, Corollary 7.9, and Theorem 6.28 and so will be
omitted. Moreover, item 4. is a simple consequence of item 3. and Proposition
6.66.

The following proposition shows that measures may be “restricted” to non-
measurable sets.

Proposition 8.5. Suppose that (Ω,M, µ) is a probability space and Ω0 ⊂ Ω
is any set. Let MΩ0

:= {A ∩Ω0 : A ∈M} and set P (A ∩ Ω0) := µ∗(A ∩ Ω0).
Then P is a measure on the σ - algebra MΩ0

. Moreover, if P ∗ is the outer
measure generated by P, then P ∗(A) = µ∗(A) for all A ⊂ Ω0.

Proof. Let A,B ∈M such that A∩B = ∅. Then since A ∈M ⊂M(µ∗) it
follows from Eq. (8.1) with E := (A ∪B) ∩Ω0 that

µ∗((A ∪B) ∩Ω0) = µ∗((A ∪B) ∩Ω0 ∩A) + µ∗((A ∪B) ∩Ω0 ∩Ac)
= µ∗(Ω0 ∩A) + µ∗(B ∩Ω0)

which shows that P is finitely additive. Now suppose A =
∑∞
j=1Aj with Aj ∈

M and let Bn :=
∑∞
j=n+1Aj ∈M. By what we have just proved,

µ∗(A ∩Ω0) =

n∑
j=1

µ∗(Aj ∩Ω0) + µ∗(Bn ∩Ω0) ≥
n∑
j=1

µ∗(Aj ∩Ω0).

Passing to the limit as n → ∞ in this last expression and using the sub-
additivity of µ∗ we find

∞∑
j=1

µ∗(Aj ∩Ω0) ≥ µ∗(A ∩Ω0) ≥
∞∑
j=1

µ∗(Aj ∩Ω0).

Thus

µ∗(A ∩Ω0) =

∞∑
j=1

µ∗(Aj ∩Ω0)

and we have shown that P = µ∗|MΩ0
is a measure. Now let P ∗ be the outer

measure generated by P. For A ⊂ Ω0, we have

P ∗(A) = inf {P (B) : A ⊂ B ∈MΩ0
}

= inf {P (B ∩Ω0) : A ⊂ B ∈M}
= inf {µ∗(B ∩Ω0) : A ⊂ B ∈M} (8.7)

and since µ∗(B ∩Ω0) ≤ µ∗(B),

P ∗(A) ≤ inf {µ∗(B) : A ⊂ B ∈M}
= inf {µ(B) : A ⊂ B ∈M} = µ∗(A).

On the other hand, for A ⊂ B ∈M, we have µ∗(A) ≤ µ∗(B∩Ω0) and therefore
by Eq. (8.7)

µ∗(A) ≤ inf {µ∗(B ∩Ω0) : A ⊂ B ∈M} = P ∗(A).

and we have shown
µ∗(A) ≤ P ∗(A) ≤ µ∗(A).

8.3 More Motivation of Carathéodory’s Construction
Theorem 8.2

The next Proposition helps to motivate this definition and the Carathéodory’s
construction Theorem 8.2.

Proposition 8.6. Suppose E = M is a σ – algebra, ρ = µ : M → [0,∞] is a
measure and µ∗ is defined as in Eq. (6.1). Then

1. For A ⊂ X
µ∗(A) = inf{µ(B) : B ∈M and A ⊂ B}.

In particular, µ∗ = µ on M.
2. Then M⊂M(µ∗), i.e. if A ∈M and E ⊂ X then

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac). (8.8)

3. Assume further that µ is σ – finite on M, then M(µ∗) = M̄ = M̄µ and
µ∗|M(µ∗) = µ̄ where (M̄ = M̄µ, µ̄) is the completion of (M, µ) .

Page: 91 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32
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Proof. Item 1. If Ei ∈M such that A ⊂ ∪Ei = B and Ẽi = Ei \ (E1∪ · · ·∪
Ei−1) then ∑

µ(Ei) ≥
∑

µ(Ẽi) = µ(B)

so
µ∗(A) ≤

∑
µ(Ẽi) = µ(B) ≤

∑
µ(Ei).

Therefore, µ∗(A) = inf{µ(B) : B ∈M and A ⊂ B}.
Item 2. If µ∗(E) =∞ Eq. (8.8) holds trivially. So assume that µ∗(E) <∞.

Let ε > 0 be given and choose, by Item 1., B ∈ M such that E ⊂ B and
µ(B) ≤ µ∗(E) + ε. Then

µ∗(E) + ε ≥ µ(B) = µ(B ∩A) + µ(B ∩Ac)
≥ µ∗(E ∩A) + µ∗(E ∩Ac).

Since ε > 0 is arbitrary we are done.
Item 3. Let us begin by assuming the µ(X) <∞. We have already seen that

M⊂M(µ∗). Suppose that A ∈ 2X satisfies,

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)∀E ∈ 2X . (8.9)

By Item 1., there exists Bn ∈ M such that A ⊂ Bn and µ∗(Bn) ≤ µ∗(A) + 1
n

for all n ∈ N. Therefore B = ∩Bn ⊃ A and µ(B) ≤ µ∗(A) + 1
n for all n which

implies that µ(B) ≤ µ∗(A) which implies that µ(B) = µ∗(A). Similarly there
exists C ∈ M such that Ac ⊂ C and µ∗(Ac) = µ(C). Taking E = X in Eq.
(8.9) shows

µ(X) = µ∗(A) + µ∗(Ac) = µ(B) + µ(C)

so
µ(Cc) = µ(X)− µ (C) = µ(B).

Thus letting D = Cc, we have

D ⊂ A ⊂ B and µ(D) = µ∗(A) = µ(B)

so µ(B \D) = 0 and hence

A = D ∪ [(B\D) ∩A]

where D ∈M and (B\D) ∩A ∈ N showing that A ∈ M̄ and µ∗(A) = µ̄(A).
Now if µ is σ – finite, choose Xn ∈ M such that µ(Xn) < ∞ and Xn ↑ X.

Given A ∈M(µ∗) set An = Xn ∩A. Therefore

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) ∀ E ∈ 2X .

Replace E by Xn to learn,

µ∗(Xn) = µ∗(An) + µ∗(Xn \A) = µ∗(An) + µ∗(Xn \An).

The same argument as above produces sets Dn ⊂ An ⊂ Bn such that µ(Dn) =
µ∗(An) = µ(Bn). Hence An = Dn ∪Nn and Nn := (Bn \Dn)∩An ∈ N . So we
learn that

A = D ∪N := (∪Dn) ∪ (∪Nn) ∈M∪N = M̄.

We also see that µ∗(A) = µ(D) since D ⊂ A ⊂ D ∪ F where F ∈M such that
N ⊂ F and

µ(D) = µ∗(D) ≤ µ∗(A) ≤ µ(D ∪ F ) = µ(D).
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Random Variables

Notation 9.1 If f : X → Y is a function and E ⊂ 2Y let

f∗E := f∗ (E) := {f−1(E)|E ∈ E}.

If G ⊂ 2X , let
f∗G := {A ∈ 2Y |f−1(A) ∈ G}.

Definition 9.2. Let E ⊂ 2Y be a collection of sets, B ⊂ Y, iB : B → Y be the
inclusion map (iB(y) = y for all y ∈ B) and

EB = i∗B(E) = {B ∩ E : E ∈ E} .

Exercise 9.1. If f : X → Y is a function and F ⊂ 2Y and B ⊂ 2X are σ –
algebras (algebras), then f∗F and f∗B are σ – algebras (algebras).

The following results will be used frequently (often without further refer-
ence) in the sequel.

Lemma 9.3 (A key measurability lemma). If f : X → Y is a function and
E ⊂ 2Y , then

σ (f∗E) = f∗ (σ(E)) . (9.1)

In particular, if B ⊂ Y then

(σ(E))B = σ(EB), (9.2)

(Similar assertion hold with σ (·) being replaced by A (·) .)

Proof. LetM := σ (f∗E) . by Exercise 9.1 below, f∗(σ(E)) is a σ – algebra
and since E ⊂ σ(E), it follows that f∗E ⊂ f∗(σ(E)) and therefore

M := σ (f∗ (E)) ⊂ f∗(σ(E)). (9.3)

For the reverse inclusion we again appeal to Exercise 9.1 which implies

f∗M := {B ⊂ Y : f∗ (B) ∈M := σ (f∗ (E))}

is a σ-algebra. If B ∈ E , then f−1 (B) ∈ f∗ (E) ⊂ σ (f∗ (E)) = M and so
B ∈ f∗M, i.e.

E ⊂ f∗M which implies σ (E) ⊂ f∗M.

Thus for B ∈ σ (E) we have f−1 (B) ∈M, i.e.

f∗ (σ (E)) ⊂M = σ (f∗ (E)) . (9.4)

Equations (9.3) and (9.4) gives Eq. (9.1). Equation (9.2) is a special case of Eq.
(9.1) with X = B and f = iB : B → Y ;

(σ(E))B = i−1
B (σ(E)) = σ(i−1

B (E)) = σ(EB).

Example 9.4. Let E = {(a, b] : −∞ < a < b <∞} and B = σ (E) be the Borel σ
– field on R. Then

E(0,1] = {(a, b] : 0 ≤ a < b ≤ 1}

and we have
B(0,1] = σ

(
E(0,1]

)
.

In particular, if A ∈ B such that A ⊂ (0, 1], then A ∈ σ
(
E(0,1]

)
.

Exercise 9.2. Given x ∈ R \ {0} let

x+B := {x+ y : y ∈ B} and x ·B := {xy : y ∈ B} . (9.5)

Show x + B and x · B are in BR for all B ∈ BR. Hint: take E =
{(a, b) : −∞ < a < b <∞} and apply Lemma 9.3 with f (y) = y − x and
f (y) = y/x respectively.

9.1 Measurable Functions

Definition 9.5. A measurable space is a pair (X,M), where X is a set and
M is a σ – algebra on X.

To motivate the notion of a measurable function, suppose (X,M, µ) is a
measure space and f : X → R+ is a function. Roughly speaking, we are going
to define

∫
X

fdµ as a certain limit of sums of the form,
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∞∑
0<a1<a2<a3<...

aiµ(f−1(ai, ai+1]).

For this to make sense we will need to require f−1((a, b]) ∈ M for all a < b.
Because of Corollary 9.12 below, this last condition is equivalent to the condition
f∗BR ⊂M.

Definition 9.6. Let (X,M) and (Y,F) be measurable spaces. A function f :
X → Y is measurable of more precisely, M/F – measurable or (M,F) –
measurable, if f∗F ⊂M, i.e. if f−1 (A) ∈M for all A ∈ F .

Remark 9.7. Let f : X → Y be a function. Given a σ – algebra F ⊂ 2Y , the σ
– algebra M := f∗F is the smallest σ – algebra on X such that f is (M,F) -
measurable . Similarly, if M is a σ - algebra on X then

F = f∗M ={A ∈ 2Y |f−1(A) ∈M}

is the largest σ – algebra on Y such that f is (M,F) - measurable.

Example 9.8 (Indicator Functions). Let (X,M) be a measurable space and A ⊂
X. Then 1A is (M,BR) – measurable iff A ∈ M. Indeed, 1−1

A (W ) is either ∅,
X, A or Ac for any W ⊂ R with 1−1

A ({1}) = A.

Example 9.9 (Simple Functions). Let (X,M) be a measurable space and f :
X → R be a simple function. Then f is (M,BR) – measurable iff f−1 ({x}) ∈M
for all x ∈ f (X) . Indeed, if B ∈ BR, then

f−1 (B) = ∪x∈B∩f(X)f
−1 ({x})

from which the result easily follows.

Example 9.10 (Simple Functions Again). Suppose f : X → Y with Y being a
finite or countable set and F = 2Y . Then f is measurable iff f−1 ({y}) ∈ M
for all y ∈ Y.

Proposition 9.11. Suppose that (X,M) and (Y,F) are measurable spaces and
further assume E ⊂ F generates F , i.e. F = σ (E) . Then a map, f : X → Y is
measurable iff f∗E ⊂M.

Proof. If f is M/F measurable, then f∗E ⊂ f∗F ⊂ M. Conversely if
f∗E ⊂M then σ (f∗E) ⊂M and so making use of Lemma 9.3,

f∗F = f∗ [σ (E)] = σ (f∗E) ⊂M.

Corollary 9.12. Suppose that (X,M) is a measurable space. Then the follow-
ing conditions on a function f : X → R are equivalent:

1. f is (M,BR) – measurable,
2. f−1((a,∞)) ∈M for all a ∈ R,
3. f−1((a,∞)) ∈M for all a ∈ Q,
4. f−1((−∞, a]) ∈M for all a ∈ R.

Exercise 9.3 (Look at but do not hand in). Prove Corollary 9.12, i.e.
Suppose that (X,M) is a measurable space. Then the following conditions on
a function f : X → R are equivalent:

1. f is (M,BR) – measurable,
2. f−1((a,∞)) ∈M for all a ∈ R,
3. f−1((a,∞)) ∈M for all a ∈ Q,
4. f−1((−∞, a]) ∈M for all a ∈ R.

Hint: See Exercise 4.9.

Exercise 9.4. Show that every monotone function f : R→ R is (BR,BR) –
measurable.

We will often deal with functions f : X → R̄ = R∪{±∞} . When talking
about measurability in this context we will refer to the σ – algebra on R̄ defined
by

BR̄ := σ ({[a,∞] : a ∈ R}) . (9.6)

Proposition 9.13 (The Structure of BR̄). Let BR and BR̄ be as above, then

BR̄ = {A ⊂ R̄ : A ∩ R ∈BR}. (9.7)

In particular {∞} , {−∞} ∈ BR̄ and BR ⊂ BR̄.

Proof. Let us first observe that

{−∞} = ∩∞n=1[−∞,−n) = ∩∞n=1[−n,∞]c ∈ BR̄,
{∞} = ∩∞n=1[n,∞] ∈ BR̄ and R = R̄\ {±∞} ∈ BR̄.

Letting i : R→ R̄ be the inclusion map,

i∗BR̄ = σ
(
i∗
({

[a,∞] : a ∈ R̄
}))

= σ
({
i−1 ([a,∞]) : a ∈ R̄

})
= σ

({
[a,∞] ∩ R : a ∈ R̄

})
= σ ({[a,∞) : a ∈ R}) = BR.

Thus we have shown

BR = i∗BR̄ = {A ∩ R : A ∈ BR̄}.

This implies:
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1. A ∈ BR̄ =⇒ A ∩ R ∈BR and
2. if A ⊂ R̄ is such that A∩R ∈BR there exists B ∈ BR̄ such that A∩R = B∩R.

Because A 4 B ⊂ {±∞} and {∞} , {−∞} ∈ BR̄ we may conclude that
A ∈ BR̄ as well.

This proves Eq. (9.7).

Corollary 9.14. Let (X,M) be a measurable space and f : X → R̄ be a func-
tion. Then the following are equivalent

1. f is (M,BR̄) - measurable,
2. f−1((a,∞]) ∈M for all a ∈ R,
3. f−1((−∞, a]) ∈M for all a ∈ R,
4. f−1({−∞}) ∈M, f−1({∞}) ∈M and f0 : X → R defined by

f0 (x) :=

{
f (x) if f (x) ∈ R

0 if f (x) ∈ {±∞}

is measurable.

Exercise 9.5. Prove Corollary 9.14 noting that the equivalence of items 1. – 3.
is a direct analogue of Corollary 9.12. Use Proposition 9.13 to handle item 4.

Proposition 9.15 (Closure under sups, infs and limits). Suppose that
(X,M) is a measurable space and fj : (X,M)→ R for j ∈ N is a sequence of
M/BR – measurable functions. Then

supjfj , infjfj , lim sup
j→∞

fj and lim inf
j→∞

fj

are allM/BR – measurable functions. (Note that this result is in generally false
when (X,M) is a topological space and measurable is replaced by continuous in
the statement.)

Proof. Define g+(x) := sup j fj(x), then

{x : g+(x) ≤ a} = {x : fj(x) ≤ a ∀ j}
= ∩j{x : fj(x) ≤ a} ∈ M

so that g+ is measurable. Similarly if g−(x) = infj fj(x) then

{x : g−(x) ≥ a} = ∩j{x : fj(x) ≥ a} ∈ M.

Since

lim sup
j→∞

fj = inf
n

sup {fj : j ≥ n} and

lim inf
j→∞

fj = sup
n

inf {fj : j ≥ n}

we are done by what we have already proved.

Exercise 9.6. Let (X,M) be a measure space and fn : X → R be a sequence
of measurable functions on X. Show that {x : limn→∞ fn(x) exists in R} ∈ M.
Similarly show the same holds if R is replaced by C.

Definition 9.16. Given measurable spaces (X,M) and (Y,F) and a subset
A ⊂ X. We say a function f : A→ Y is measurable iff f is MA/F – measur-
able.

Proposition 9.17 (Localizing Measurability). Let (X,M) and (Y,F) be
measurable spaces and f : X → Y be a function.

1. If f is measurable and A ⊂ X then f |A : A→ Y is MA/F – measurable.
2. Suppose there exist An ∈ M such that X = ∪∞n=1An and f |An is MAn/F

– measurable for all n, then f is M – measurable.

Proof. 1. If f : X → Y is measurable, f−1(B) ∈ M for all B ∈ F and
therefore

f |−1
A (B) = A ∩ f−1(B) ∈MA for all B ∈ F .

2. If B ∈ F , then

f−1(B) = ∪∞n=1

(
f−1(B) ∩An

)
= ∪∞n=1f |−1

An
(B).

Since each An ∈ M,MAn ⊂M and so the previous displayed equation shows
f−1(B) ∈M.

Lemma 9.18 (Composing Measurable Functions). Suppose that
(X,M), (Y,F) and (Z,G) are measurable spaces. If f : (X,M) → (Y,F) and
g : (Y,F) → (Z,G) are measurable functions then g ◦ f : (X,M) → (Z,G) is
measurable as well.

Proof. Let us first observe that

(g ◦ f)
∗ G =

{
(g ◦ f)

−1
(C) : C ∈ G

}
=
{
f−1

(
g−1 (C)

)
: C ∈ G

}
= f∗ (g∗G) .

By assumption g∗(G) ⊂ F and f∗F ⊂M so that

(g ◦ f)
∗ G = f∗ (g∗G) ⊂ f∗F ⊂M.

Definition 9.19 (σ – Algebras Generated by Functions). Let X be a
set, I be an index set, and suppose there is a collection of measurable spaces
{(Yα,Fα) : α ∈ I} and functions fα : X → Yα for all α ∈ I. Let σ(fα : α ∈ I)
denote the smallest σ – algebra on X such that each fα is measurable, i.e.

σ(fα : α ∈ I) = σ(∪αf∗αFα).
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Exercise 9.7. Let X be a set, I be an index set, and suppose there is a collec-
tion of measurable spaces {(Yα,Fα) : α ∈ I} and functions fα : X → Yα for all
α ∈ I. If Eα ⊂ Fα for each α ∈ I are such that Fα := σ (Eα) , show

σ (fα : α ∈ I) := σ (∪α∈If∗αFα) = σ (∪α∈If∗αEα) .

Exercise 9.8. Let X be a set, I be an index set, and suppose there is a col-
lection of measurable spaces {(Yα,Fα) : α ∈ I} and functions fα : X → Yα
for all α ∈ I. If Z is another set and G : Z → X is a function then
G∗σ (fα : α ∈ I) = σ (fα ◦G : α ∈ I) .

Exercise 9.9. If M is the σ – algebra generated by E ⊂ 2X , then M is the
union of the σ – algebras generated by countable subsets F ⊂ E .

Example 9.20. Suppose that Y is a finite set, F = 2Y , and X = Y N for some
N ∈ N. Let πi : Y N → Y be the projection maps, πi (y1, . . . , yN ) = yi. Then,
as the reader should check,

σ (π1, . . . , πn) =
{
A× ΛN−n : A ⊂ Λn

}
.

Proposition 9.21. Assuming the notation in Definition 9.19 (so fα : X →
Yα for all α ∈ I) and additionally let (Z,M) be a measurable space. Then

g : Z → X is (M, σ(fα : α ∈ I)) – measurable iff fα ◦ g
(
Z

g→ X
fα→ Yα

)
is

(M,Fα)–measurable for all α ∈ I.

Proof. (⇒) If g is (M, σ(fα : α ∈ I)) – measurable, then the composition
fα ◦ g is (M,Fα) – measurable by Lemma 9.18.

(⇐) Since σ(fα : α ∈ I) = σ (E) where E := ∪αf∗αFα, according to Propo-
sition 9.11, it suffices to show g−1 (A) ∈ M for A ∈ f∗αFα. But this is true
since if A = f−1

α (B) for some B ∈ Fα, then g−1 (A) = g−1
(
f−1
α (B)

)
=

(fα ◦ g)
−1

(B) ∈M because fα ◦ g : Z → Yα is assumed to be measurable.

Definition 9.22. If {(Yα,Fα) : α ∈ I} is a collection of measurable spaces, then
the product measure space, (Y,F) , is Y :=

∏
α∈I Yα, F := σ (πα : α ∈ I) where

πα : Y → Yα is the α – component projection. We call F the product σ – algebra
and denote it by, F = ⊗α∈IFα.

Let us record an important special case of Proposition 9.21.

Corollary 9.23. If (Z,M) is a measure space, then g : Z → Y =
∏
α∈I Yα is

(M,F := ⊗α∈IFα) – measurable iff πα ◦ g : Z → Yα is (M,Fα) – measurable
for all α ∈ I.

As a special case of the above corollary, if A = {1, 2, . . . , n} , then Y =
Y1 × · · · × Yn and g = (g1, . . . , gn) : Z → Y is measurable iff each component,
gi : Z → Yi, is measurable. Here is another closely related result.

Proposition 9.24. Suppose X is a set, {(Yα,Fα) : α ∈ I} is a collection of
measurable spaces, and we are given maps, fα : X → Yα, for all α ∈ I. If
f : X → Y :=

∏
α∈I Yα is the unique map, such that πα ◦ f = fα, then

σ (fα : α ∈ I) = σ (f) = f∗F

where F := ⊗α∈IFα.

Proof. Since πα ◦ f = fα is σ (fα : α ∈ I) /Fα – measurable for all α ∈ I it
follows from Corollary 9.23 that f : X → Y is σ (fα : α ∈ I) /F – measurable.
Since σ (f) is the smallest σ – algebra on X such that f is measurable we may
conclude that σ (f) ⊂ σ (fα : α ∈ I) .

Conversely, for each α ∈ I, fα = πα ◦ f is σ (f) /Fα – measurable for all
α ∈ I being the composition of two measurable functions. Since σ (fα : α ∈ I)
is the smallest σ – algebra on X such that each fα : X → Yα is measurable, we
learn that σ (fα : α ∈ I) ⊂ σ (f) .

Exercise 9.10. Suppose that (Y1,F1) and (Y2,F2) are measurable spaces and
Ei is a subset of Fi such that Yi ∈ Ei and Fi = σ (Ei) for i = 1 and 2. Show
F1 ⊗F2 = σ (E) where E := {A1 ×A2 : Ai ∈ Ei for i = 1, 2} . Hints:

1. First show that if Y is a set and S1 and S2 are two non-empty sub-
sets of 2Y , then σ (σ (S1) ∪ σ (S2)) = σ (S1 ∪ S2) . (In fact, one has that
σ (∪α∈Iσ (Sα)) = σ (∪α∈ISα) for any collection of non-empty subsets,
{Sα}α∈I ⊂ 2Y .)

2. After this you might start your proof as follows;

F1 ⊗F2 := σ (π∗1 (F1) ∪ π∗2 (F2)) = σ (π∗1 (σ (E2)) ∪ π∗2 (σ (E2))) = . . . .

Remark 9.25. The reader should convince herself that Exercise 9.10 admits the
following extension. If I is any finite or countable index set, {(Yi,Fi)}i∈I are
measurable spaces and Ei ⊂ Fi are such that Yi ∈ Ei and Fi = σ (Ei) for all
i ∈ I, then

⊗i∈IFi = σ

({∏
i∈I

Ai : Aj ∈ Ej for all j ∈ I

})
and in particular,

⊗i∈IFi = σ

({∏
i∈I

Ai : Aj ∈ Fj for all j ∈ I

})
.

The last fact is easily verified directly without the aid of Exercise 9.10.
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Exercise 9.11. Suppose that (Y1,F1) and (Y2,F2) are measurable spaces and
∅ 6= Bi ⊂ Yi for i = 1, 2. Show

[F1 ⊗F2]B1×B2
= [F1]B1

⊗ [F2]B2
.

Hint: you may find it useful to use the result of Exercise 9.10 with

E := {A1 ×A2 : Ai ∈ Fi for i = 1, 2} .

Definition 9.26. A function f : X → Y between two topological spaces is
Borel measurable if f∗(BY ) ⊂ BX .

Proposition 9.27. Let X and Y be two topological spaces and f : X → Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma 9.3 and BY = σ(τY ),

f∗BY = f∗(σ(τY )) = σ(f∗τY ) ⊂ σ(τX) = BX .

Example 9.28. For i = 1, 2, . . . , n, let πi : Rn → R be defined by πi (x) = xi.
Then each πi is continuous and therefore BRn/BR – measurable.

Lemma 9.29. Let E denote the collection of open rectangle in Rn, then BRn =
σ (E) . We also have that BRn = σ (π1, . . . , πn) = BR⊗· · ·⊗BR and in particular,
A1 × · · · × An ∈ BRn whenever Ai ∈ BR for i = 1, 2, . . . , n. Therefore BRn may
be described as the σ algebra generated by {A1 × · · · ×An : Ai ∈ BR} . (Also see
Remark 9.25.)

Proof. Assertion 1. Since E ⊂ BRn , it follows that σ (E) ⊂ BRn . Let

E0 := {(a, b) : a, b ∈ Qn 3 a < b} ,

where, for a, b ∈ Rn, we write a < b iff ai < bi for i = 1, 2, . . . , n and let

(a, b) = (a1, b1)× · · · × (an, bn) . (9.8)

Since every open set, V ⊂ Rn, may be written as a (necessarily) countable
union of elements from E0, we have

V ∈ σ (E0) ⊂ σ (E) ,

i.e. σ (E0) and hence σ (E) contains all open subsets of Rn. Hence we may
conclude that

BRn = σ (open sets) ⊂ σ (E0) ⊂ σ (E) ⊂ BRn .

Assertion 2. Since each πi : Rn → R is continuous, it is BRn/BR – measur-
able and therefore, σ (π1, . . . , πn) ⊂ BRn . Moreover, if (a, b) is as in Eq. (9.8),
then

(a, b) = ∩ni=1π
−1
i ((ai, bi)) ∈ σ (π1, . . . , πn) .

Therefore, E ⊂ σ (π1, . . . , πn) and BRn = σ (E) ⊂ σ (π1, . . . , πn) .
Assertion 3. If Ai ∈ BR for i = 1, 2, . . . , n, then

A1 × · · · ×An = ∩ni=1π
−1
i (Ai) ∈ σ (π1, . . . , πn) = BRn .

Corollary 9.30. If (X,M) is a measurable space, then

f = (f1, f2, . . . , fn) : X → Rn

is (M,BRn) – measurable iff fi : X → R is (M,BR) – measurable for each i.
In particular, a function f : X → C is (M,BC) – measurable iff Re f and Im f
are (M,BR) – measurable.

Proof. This is an application of Lemma 9.29 and Corollary 9.23 with Yi = R
for each i.

Corollary 9.31. Let (X,M) be a measurable space and f, g : X → C be
(M,BC) – measurable functions. Then f ± g and f · g are also (M,BC) –
measurable.

Proof. Define F : X → C × C, A± : C × C → C and M : C × C −→ C
by F (x) = (f(x), g(x)), A±(w, z) = w ± z and M(w, z) = wz. Then A± and
M are continuous and hence (BC2 ,BC) – measurable. Also F is (M,BC2) –
measurable since π1◦F = f and π2◦F = g are (M,BC) – measurable. Therefore
A±◦F = f±g and M ◦F = f ·g, being the composition of measurable functions,
are also measurable.

Lemma 9.32. The function, i : C→ C, defined by

i(z) =

{
1
z if z 6= 0
0 if z = 0

is BC/BC - measurable.

Proof. We first assume α = 0. For any open set V ⊂ C we have

i−1(V ) = i−1(V \ {0}) ∪ i−1(V ∩ {0})

Because i is continuous except at z = 0, i−1(V \ {0}) is an open set and hence
in BC. Moreover, i−1(V ∩ {0}) ∈ BC since i−1(V ∩ {0}) is either the empty set
or the one point set {0} . Therefore i∗τC ⊂ BC and hence i∗BC = i∗(σ(τC)) =
σ(i∗τC) ⊂ BC which shows that i is Borel measurable.
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Lemma 9.33. Let α ∈ C, (X,M) be a measurable space, and f : X → C be a
(M,BC) – measurable function. Then

F (x) :=

{ 1
f(x) if f(x) 6= 0

α if f(x) = 0

is measurable.

Proof. Simply observe that

F = i ◦ f + α · 1{0} ◦ f

where i (z) is as in Lemma 9.32. This gives the result since composition of
measurable maps are measurable and linear combination of measurable maps
are still measurable.

Remark 9.34. For the real case of Lemma 9.33, define i as above but now take
z to real. From the plot of i, Figure 9.34, the reader may easily verify that
i−1 ((−∞, a]) is an infinite half interval for all a and therefore i is measurable.
See Example 9.35 for another proof of this fact.

Example 9.35. As we saw in Remark 9.34, i : R→ R defined by

i(z) =

{
1
z if z 6= 0
0 if z = 0.

(9.9)

is measurable by a simple direct argument. For an alternative argument, let

in (z) :=
z

z2 + 1
n

for all n ∈ N.

Then in is continuous and limn→∞ in (z) = i (z) for all z ∈ R from which it
follows that i is Borel measurable.

Similarly we may consider i defined in Eq. (9.9) to be a function from C to C.
Again i (·) is Borel measurable (see also Lemma 9.33) since i (z) = limn→∞ in (z)
for all z ∈ C where,

in (z) :=
z̄

|z|2 + 1
n

for all n ∈ N.

Here is another corollary of Proposition 9.13.

Corollary 9.36. Let (X,M) be a measurable space, f, g : X → R̄ be functions
and define f · g : X → R̄ and (f + g) : X → R̄ using the conventions, 0 ·∞ = 0
and (f + g) (x) = 0 if f (x) = ∞ and g (x) = −∞ or f (x) = −∞ and g (x) =
∞. Then f · g and f + g are measurable functions on X if both f and g are
measurable.

Exercise 9.12. Prove Corollary 9.36.

Example 9.37. Let {rn}∞n=1 be an enumeration of the points in Q ∩ [0, 1] and
define

f(x) =

∞∑
n=1

2−n
1√
|x− rn|

with the convention that

1√
|x− rn|

= 5 if x = rn.

Then f : R→ R̄ is measurable. Indeed, if

gn (x) =

{
1√
|x−rn|

if x 6= rn

0 if x = rn

then gn (x) =
√
|i (x− rn)| is measurable as the composition of measurable is

measurable. Therefore gn + 5 · 1{rn} is measurable as well. Finally,

f (x) = lim
N→∞

N∑
n=1

2−n
1√
|x− rn|

is measurable since sums of measurable functions are measurable and limits
of measurable functions are measurable. Moral: if you can explicitly write a
function f : R̄→ R̄ down then it is going to be measurable.

Definition 9.38. Given a function f : X → R̄ let f+(x) := max {f(x), 0} and
f− (x) := max (−f(x), 0) = −min (f(x), 0) . Notice that f = f+ − f−.

Corollary 9.39. Suppose (X,M) is a measurable space and f : X → R̄ is a
function. Then f is measurable iff f± are measurable.

Proof. If f is measurable, then Proposition 9.15 implies f± are measurable.
Conversely if f± are measurable then so is f = f+ − f−.

Definition 9.40. Let (X,M) be a measurable space. A function ϕ : X → F
(F denotes either R, C or [0,∞] ⊂ R̄) is a simple function if ϕ is M – BF
measurable and ϕ(X) contains only finitely many elements.
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Any such simple functions can be written as

ϕ =

n∑
i=1

λi1Ai with Ai ∈M and λi ∈ F. (9.10)

Indeed, take λ1, λ2, . . . , λn to be an enumeration of the range of ϕ and Ai =
ϕ−1({λi}). Note that this argument shows that any simple function may be
written intrinsically as

ϕ =
∑
y∈F

y1ϕ−1({y}). (9.11)

The next theorem shows that simple functions are “pointwise dense” in the
space of measurable functions.

Theorem 9.41 (Approximation Theorem). Let f : X → [0,∞] be measur-
able and define, see Figure 9.1,

ϕn(x) :=

22n−1∑
k=0

k

2n
1f−1(( k

2n ,
k+1
2n ])(x) + 2n1f−1((2n,∞])(x)

=

22n−1∑
k=0

k

2n
1{ k

2n<f≤
k+1
2n }(x) + 2n1{f>2n}(x)

then ϕn ≤ f for all n, ϕn(x) ↑ f(x) for all x ∈ X and ϕn ↑ f uniformly on the
sets XM := {x ∈ X : f(x) ≤M} with M <∞.

Moreover, if f : X → C is a measurable function, then there exists simple
functions ϕn such that limn→∞ ϕn(x) = f(x) for all x and |ϕn| ↑ |f | as n→∞.

Proof. Since f−1
(
( k

2n ,
k+1
2n ]
)

and f−1((2n,∞]) are inM as f is measurable,
ϕn is a measurable simple function for each n. Because

(
k

2n
,
k + 1

2n
] = (

2k

2n+1
,

2k + 1

2n+1
] ∪ (

2k + 1

2n+1
,

2k + 2

2n+1
],

if x ∈ f−1
(
( 2k

2n+1 ,
2k+1
2n+1 ]

)
then ϕn(x) = ϕn+1(x) = 2k

2n+1 and if x ∈
f−1

(
( 2k+1

2n+1 ,
2k+2
2n+1 ]

)
then ϕn(x) = 2k

2n+1 <
2k+1
2n+1 = ϕn+1(x). Similarly

(2n,∞] = (2n, 2n+1] ∪ (2n+1,∞],

and so for x ∈ f−1((2n+1,∞]), ϕn(x) = 2n < 2n+1 = ϕn+1(x) and for x ∈
f−1((2n, 2n+1]), ϕn+1(x) ≥ 2n = ϕn(x). Therefore ϕn ≤ ϕn+1 for all n. It is
clear by construction that 0 ≤ ϕn(x) ≤ f(x) for all x and that 0 ≤ f(x) −
ϕn(x) ≤ 2−n if x ∈ X2n = {f ≤ 2n} . Hence we have shown that ϕn(x) ↑ f(x)
for all x ∈ X and ϕn ↑ f uniformly on bounded sets.

x
0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

Fig. 9.1. Constructing the simple function, ϕ2, approximating a function, f : X →
[0,∞]. The graph of ϕ2 is in red.

For the second assertion, first assume that f : X → R is a measurable
function and choose ϕ±n to be non-negative simple functions such that ϕ±n ↑ f±
as n→∞ and define ϕn = ϕ+

n − ϕ−n . Then (using ϕ+
n · ϕ−n ≤ f+ · f− = 0)

|ϕn| = ϕ+
n + ϕ−n ≤ ϕ+

n+1 + ϕ−n+1 = |ϕn+1|

and clearly |ϕn| = ϕ+
n +ϕ−n ↑ f+ + f− = |f | and ϕn = ϕ+

n −ϕ−n → f+− f− = f
as n → ∞. Now suppose that f : X → C is measurable. We may now choose
simple function un and vn such that |un| ↑ |Re f | , |vn| ↑ |Im f | , un → Re f and
vn → Im f as n→∞. Let ϕn = un + ivn, then

|ϕn|2 = u2
n + v2

n ↑ |Re f |2 + |Im f |2 = |f |2

and ϕn = un + ivn → Re f + i Im f = f as n→∞.

9.2 Factoring Random Variables

Lemma 9.42. Suppose that (Y,F) is a measurable space and Y : Ω → Y is a
map. Then to every (σ(Y ),BR̄) – measurable function, h : Ω → R̄, there is a
(F ,BR̄) – measurable function H : Y→ R̄ such that h = H ◦Y. More generally,

Page: 99 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



100 9 Random Variables

R̄ may be replaced by any “standard Borel space,”1 i.e. a space, (S,BS) which
is measure theoretic isomorphic to a Borel subset of R.

(Ω, σ(Y ))
Y- (Y,F)

(S,BS)

h
? H�

Proof. First suppose that h = 1A where A ∈ σ(Y ) = Y −1(F). Let B ∈ F
such that A = Y −1(B) then 1A = 1Y −1(B) = 1B ◦ Y and hence the lemma
is valid in this case with H = 1B . More generally if h =

∑
ai1Ai is a simple

function, then there exists Bi ∈ F such that 1Ai = 1Bi ◦Y and hence h = H ◦Y
with H :=

∑
ai1Bi – a simple function on R̄.

For a general (F ,BR̄) – measurable function, h, from Ω → R̄, choose simple
functions hn converging to h. Let Hn : Y → R̄ be simple functions such that
hn = Hn ◦ Y. Then it follows that

h = lim
n→∞

hn = lim sup
n→∞

hn = lim sup
n→∞

Hn ◦ Y = H ◦ Y

where H := lim sup
n→∞

Hn – a measurable function from Y to R̄.

For the last assertion we may assume that S ∈ BR and BS = (BR)S =
{A ∩ S : A ∈ BR} . Since iS : S → R is measurable, what we have just proved
shows there exists, H : Y → R̄ which is (F ,BR̄) – measurable such that h =
iS ◦ h = H ◦ Y. The only problems with H is that H (Y) may not be contained
in S. To fix this, let

HS =

{
H|H−1(S) on H−1 (S)
∗ on Y \H−1 (S)

where ∗ is some fixed arbitrary point in S. It follows from Proposition 9.17 that
HS : Y→ S is (F ,BS) – measurable and we still have h = HS ◦ Y as the range
of Y must necessarily be in H−1 (S) .

Here is how this lemma will often be used in these notes.

Corollary 9.43. Suppose that (Ω,B) is a measurable space, Xn : Ω → R are
B/BR – measurable functions, and Bn := σ (X1, . . . , Xn) ⊂ B for each n ∈ N.
Then h : Ω → R is Bn – measurable iff there exists H : Rn → R which is
BRn/BR – measurable such that h = H (X1, . . . , Xn) .

1 Standard Borel spaces include almost any measurable space that we will consider in
these notes. For example they include all complete seperable metric spaces equipped
with the Borel σ – algebra, see Section 13.6.

(Ω,Bn = σ (Y ))
Y :=(X1,...,Xn)- (Rn,BRn)

(R,BR)

h
? H�

Proof. By Lemma 9.29 and Corollary 9.23, the map, Y := (X1, . . . , Xn) :
Ω → Rn is (B,BRn = BR ⊗ · · · ⊗ BR) – measurable and by Proposition 9.24,
Bn = σ (X1, . . . , Xn) = σ (Y ) . Thus we may apply Lemma 9.42 to see that
there exists a BRn/BR – measurable map, H : Rn → R, such that h = H ◦ Y =
H (X1, . . . , Xn) .
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9.3 Summary of Measurability Statements

It may be worthwhile to gather the statements of the main measurability re-
sults of Sections 9.1 and 9.2 in one place. To do this let (Ω,B) , (X,M), and
{(Yα,Fα)}α∈I be measurable spaces and fα : Ω → Yα be given maps for all
α ∈ I. Also let πα : Y → Yα be the α – projection map,

F := ⊗α∈IFα := σ (πα : α ∈ I)

be the product σ – algebra on Y, and f : Ω → Y be the unique map determined
by πα ◦ f = fα for all α ∈ I. Then the following measurability results hold;

1. For A ⊂ Ω, the indicator function, 1A, is (B,BR) – measurable iff A ∈ B.
(Example 9.8).

2. If E ⊂M generatesM (i.e.M = σ (E)), then a map, g : Ω → X is (B,M)
– measurable iff g−1 (E) ⊂ B (Lemma 9.3 and Proposition 9.11).

3. The notion of measurability may be localized (Proposition 9.17).
4. Composition of measurable functions are measurable (Lemma 9.18).
5. Continuous functions between two topological spaces are also Borel mea-

surable (Proposition 9.27).
6. σ (f) = σ (fα : α ∈ I) (Proposition 9.24).
7. A map, h : X → Ω is (M, σ (f) = σ (fα : α ∈ I)) – measurable iff fα ◦ h is

(M,Fα) – measurable for all α ∈ I (Proposition 9.21).
8. A map, h : X → Y is (M,F) – measurable iff πα◦h is (M,Fα) – measurable

for all α ∈ I (Corollary 9.23).
9. If I = {1, 2, . . . , n} , then

⊗α∈IFα = F1 ⊗ · · · ⊗ Fn = σ ({A1 ×A2 × · · · ×An : Ai ∈ Fi for i ∈ I}) ,

this is a special case of Remark 9.25.
10. BRn = BR ⊗ · · · ⊗ BR (n - times) for all n ∈ N, i.e. the Borel σ – algebra on

Rn is the same as the product σ – algebra. (Lemma 9.29).
11. The collection of measurable functions from (Ω,B) to

(
R̄,BR̄

)
is closed un-

der the usual pointwise algebraic operations (Corollary 9.36). They are also
closed under the countable supremums, infimums, and limits (Proposition
9.15).

12. The collection of measurable functions from (Ω,B) to (C,BC) is closed under
the usual pointwise algebraic operations and countable limits. (Corollary
9.31 and Proposition 9.15). The limiting assertion follows by considering
the real and imaginary parts of all functions involved.

13. The class of measurable functions from (Ω,B) to
(
R̄,BR̄

)
and from (Ω,B)

to (C,BC) may be well approximated by measurable simple functions (The-
orem 9.41).

14. If Xi : Ω → R are B/BR – measurable maps and Bn := σ (X1, . . . , Xn) ,
then h : Ω → R is Bn – measurable iff h = H (X1, . . . , Xn) for some BRn/BR
– measurable map, H : Rn → R (Corollary 9.43).

15. We also have the more general factorization Lemma 9.42.

For the most part most of our future measurability issues can be resolved
by one or more of the items on this list.

9.4 Generating All Distributions from the Uniform
Distribution

The proof of the following proposition is routine and will be left to the reader.

Proposition 9.44. Let (X,M, µ) be a measure space, (Y,F) be a measurable
space and f : X → Y be a measurable map. Define a function ν : F → [0,∞] by
ν(A) := µ(f−1(A)) for all A ∈ F . Then ν is a measure on (Y,F) . (In the future
we will denote ν by f∗µ or µ◦f−1 or Lawµ (f) and call f∗µ the push-forward
of µ by f or the law of f under µ.

If U ∈ (0, 1) is a random variable with the uniform distribution, G :
(0, 1)→ R is a non-decreasing function, and F (x) := P (G (U) ≤ x) is the cu-
mulative distribution function of G (U) , then

F (x) = m ({y ∈ (0, 1) : G (y) ≤ x}) = sup {y ∈ (0, 1) : G (y) ≤ x} . (9.12)

Now suppose that F : R→ [0, 1] is a cumulative distribution function of a
probability measure on (R,BR) , i.e. F is non-decreasing, right continuous, and
limx→∞ F (x) = 1, and limx→−∞ F (x) = 0. We would like to find a function
G as above such that Eq. (9.12) holds. If F happened to be continuous and
strictly increasing we should take G (y) = F−1 (y) . For general distributions
functions (F ) we will show that

G (y) := inf {x ∈ R : y ≤ F (x)} for all y ∈ (0, 1) , (9.13)

(see see Figure 9.2) is the required function.

Theorem 9.45. If F : R→ [0, 1] is a cumulative distribution function of a
probability measure µ = µF on (R,BR) and G is defined as in Eq. (9.13), then
G : (0, 1)→ R is a non-decreasing (hence Borel measurable) function such that
LawP (G (U)) = G∗m = µF .

Proof. Since y < 1, G (y) < ∞ and since y > 0, G (y) > −∞ wherein we
have used limx→∞ F (x) = 1, and limx→−∞ F (x) = 0 respectively. Since F is
non-decreasing it is easily seen that G is non-decreasing. To finish the proof it
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Fig. 9.2. A pictorial definition of G.

suffices to prove G (y) ≤ x iff y ≤ F (x) . For once this is done it easily follows
that Eq. (9.12) is valid.

By definition of G (y) , G (y) ≤ x iff there exists a non-increasing se-
quence {xn} ⊂ R such that y ≤ F (xn) for all n and limn→∞ xn ≤ x. Since
limξ↓−∞ F (ξ) = 0 and y > 0, it follows that limn→∞ xn = x0 ∈ R for some
x0 ∈ (−∞, x]. Because F is right continuous we may conclude that F (x0) ≥ y.
Thus we have shown G (y) ≤ x iff there exists x0 ≤ x such that y ≤ F (x0) . As
F is non-decreasing this last equivalence is equivalent to G (y) ≤ x iff y ≤ F (x) .

Theorem 9.46 (Durret’s Version). Given a distribution function, F :
R→ [0, 1] let Y : (0, 1)→ R be defined (see Figure 9.3) by,

Y (x) := sup {y : F (y) < x} .

Then Y : (0, 1)→ R is Borel measurable and Y∗m = µF where µF is the unique
measure on (R,BR) such that µF ((a, b]) = F (b)− F (a) for all −∞ < a < b <
∞.

Proof. Since Y : (0, 1)→ R is a non-decreasing function, Y is measurable.
Also observe, if y < Y (x) , then F (y) < x and hence,

F (Y (x)−) = lim
y↑Y (x)

F (y) ≤ x.

For y > Y (x) , we have F (y) ≥ x and therefore,

F (Y (x)) = F (Y (x) +) = lim
y↓Y (x)

F (y) ≥ x

and so we have shown

F (Y (x)−) ≤ x ≤ F (Y (x)) .

Fig. 9.3. A pictorial definition of Y (x) .

We will now show

{x ∈ (0, 1) : Y (x) ≤ y0} = (0, F (y0)] ∩ (0, 1) . (9.14)

For the inclusion “⊂,” if x ∈ (0, 1) and Y (x) ≤ y0, then x ≤ F (Y (x)) ≤ F (y0),
i.e. x ∈ (0, F (y0)] ∩ (0, 1) . Conversely if x ∈ (0, 1) and x ≤ F (y0) then (by
definition of Y (x)) y0 ≥ Y (x) .

From the identity in Eq. (9.14), it follows that Y is measurable and

(Y∗m) ((−∞, y0)) = m
(
Y −1(−∞, y0)

)
= m ((0, F (y0)] ∩ (0, 1)) = F (y0) .

Therefore, Law (Y ) = µF as desired.
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Integration Theory

In this chapter, we will greatly extend the “simple” integral or expectation
which was developed in Section 5.5 above. Recall there that if (Ω,B, µ) was
measurable space and ϕ : Ω → [0,∞) was a measurable simple function, then
we let

Eµϕ :=
∑

λ∈[0,∞)

λµ (ϕ = λ) .

The conventions being use here is that 0 · µ (ϕ = 0) = 0 even when µ (ϕ = 0) =
∞. This convention is necessary in order to make the integral linear – at a
minimum we will want Eµ [0] = 0. Please be careful not blindly apply the
0 · ∞ = 0 convention in other circumstances.

10.1 Integrals of positive functions

Definition 10.1. Let L+ = L+ (B) = {f : Ω → [0,∞] : f is measurable}.
Define ∫

Ω

f (ω) dµ (ω) =

∫
Ω

fdµ := sup {Eµϕ : ϕ is simple and ϕ ≤ f} .

We say the f ∈ L+ is integrable if
∫
Ω
fdµ <∞. If A ∈ B, let∫

A

f (ω) dµ (ω) =

∫
A

fdµ :=

∫
Ω

1Af dµ.

We also use the notation,

Ef =

∫
Ω

fdµ and E [f : A] :=

∫
A

fdµ.

Remark 10.2. Because of item 4. of Proposition 5.27, if ϕ is a non-negative
simple function,

∫
Ω
ϕdµ = Eµϕ so that

∫
Ω

is an extension of Eµ.

Lemma 10.3. Let f, g ∈ L+ (B) . Then:

1. if λ ≥ 0, then ∫
Ω

λfdµ = λ

∫
Ω

fdµ

wherein λ
∫
Ω
fdµ ≡ 0 if λ = 0, even if

∫
Ω
fdµ =∞.

2. if 0 ≤ f ≤ g, then ∫
Ω

fdµ ≤
∫
Ω

gdµ. (10.1)

3. For all ε > 0 and p > 0,

µ(f ≥ ε) ≤ 1

εp

∫
Ω

fp1{f≥ε}dµ ≤
1

εp

∫
Ω

fpdµ. (10.2)

The inequality in Eq. (10.2) is called Chebyshev’s Inequality for p = 1 and
Markov’s inequality for p = 2.

4. If
∫
Ω
fdµ < ∞ then µ(f = ∞) = 0 (i.e. f < ∞ a.e.) and the set {f > 0}

is σ – finite.

Proof. 1. We may assume λ > 0 in which case,∫
Ω

λfdµ = sup {Eµϕ : ϕ is simple and ϕ ≤ λf}

= sup
{
Eµϕ : ϕ is simple and λ−1ϕ ≤ f

}
= sup {Eµ [λψ] : ψ is simple and ψ ≤ f}
= sup {λEµ [ψ] : ψ is simple and ψ ≤ f}

= λ

∫
Ω

fdµ.

2. Since

{ϕ is simple and ϕ ≤ f} ⊂ {ϕ is simple and ϕ ≤ g} ,

Eq. (10.1) follows from the definition of the integral.
3. Since 1{f≥ε} ≤ 1{f≥ε}

1
εf ≤

1
εf we have

1{f≥ε} ≤ 1{f≥ε}

(
1

ε
f

)p
≤
(

1

ε
f

)p
and by monotonicity and the multiplicative property of the integral,

µ(f ≥ ε) =

∫
Ω

1{f≥ε}dµ ≤
(

1

ε

)p ∫
Ω

1{f≥ε}f
pdµ ≤

(
1

ε

)p ∫
Ω

fpdµ.
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4. If µ (f =∞) > 0, then ϕn := n1{f=∞} is a simple function such that
ϕn ≤ f for all n and hence

nµ (f =∞) = Eµ (ϕn) ≤
∫
Ω

fdµ

for all n. Letting n → ∞ shows
∫
Ω
fdµ = ∞. Thus if

∫
Ω
fdµ < ∞ then

µ (f =∞) = 0.
Moreover,

{f > 0} = ∪∞n=1 {f > 1/n}

with µ (f > 1/n) ≤ n
∫
Ω
fdµ <∞ for each n.

Theorem 10.4 (Monotone Convergence Theorem). Suppose fn ∈ L+ is
a sequence of functions such that fn ↑ f (f is necessarily in L+) then∫

fn ↑
∫
f as n→∞.

Proof. Since fn ≤ fm ≤ f, for all n ≤ m <∞,∫
fn ≤

∫
fm ≤

∫
f

from which if follows
∫
fn is increasing in n and

lim
n→∞

∫
fn ≤

∫
f. (10.3)

For the opposite inequality, let ϕ : Ω → [0,∞) be a simple function such
that 0 ≤ ϕ ≤ f, α ∈ (0, 1) and Ωn := {fn ≥ αϕ} .1 Notice that Ωn ↑ Ω and
fn ≥ α1Ωn · ϕ and so by definition of

∫
fn,∫

fn ≥ Eµ [α1Ωnϕ] = αEµ [1Ωnϕ] . (10.4)

Then using the identity

1Ωnϕ = 1Ωn
∑
y>0

y1{ϕ=y} =
∑
y>0

y1{ϕ=y}∩Ωn ,

and the linearity of Eµ we have,

1 Notice that in order for Ωn to be measurable we must assume that fn is measurable
here.

lim
n→∞

Eµ [1Ωnϕ] = lim
n→∞

∑
y>0

y · µ(Ωn ∩ {ϕ = y})

=
∑
y>0

y lim
n→∞

µ(Ωn ∩ {ϕ = y}) (finite sum)

=
∑
y>0

yµ({ϕ = y}) = Eµ [ϕ] ,

wherein we have used the continuity of µ under increasing unions for the third
equality. This identity allows us to let n → ∞ in Eq. (10.4) to conclude
limn→∞

∫
fn ≥ αEµ [ϕ] and since α ∈ (0, 1) was arbitrary we may further

conclude, Eµ [ϕ] ≤ limn→∞
∫
fn. The latter inequality being true for all simple

functions ϕ with ϕ ≤ f then implies that∫
f = sup

0≤ϕ≤f
Eµ [ϕ] ≤ lim

n→∞

∫
fn,

which combined with Eq. (10.3) proves the theorem.

Remark 10.5. The definition
∫
fdµ makes sense for all functions f : Ω → [0,∞]

and not just measurable functions. However, the measurability of the fn (and
hence f = limn→∞ fn) was needed in the proof of the monotone convergence
theorem in order for Ωn := {fn ≥ αϕ} to be measurable.

Remark 10.6 (“Explicit” Integral Formula). Given f : Ω → [0,∞] measurable,
we know from the approximation Theorem 9.41 ϕn ↑ f where

ϕn :=

22n−1∑
k=0

k

2n
1{ k

2n<f≤
k+1
2n } + 2n1{f>2n}.

Therefore by the monotone convergence theorem,∫
Ω

fdµ = lim
n→∞

∫
Ω

ϕndµ

= lim
n→∞

22n−1∑
k=0

k

2n
µ

(
k

2n
< f ≤ k + 1

2n

)
+ 2nµ (f > 2n)

 .
Corollary 10.7. If fn ∈ L+ is a sequence of functions then∫ ∞∑

n=1

fn =

∞∑
n=1

∫
fn.

In particular, if
∑∞
n=1

∫
fn <∞ then

∑∞
n=1 fn <∞ a.e.
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Proof. First off we show that∫
(f1 + f2) =

∫
f1 +

∫
f2

by choosing non-negative simple function ϕn and ψn such that ϕn ↑ f1 and
ψn ↑ f2. Then (ϕn + ψn) is simple as well and (ϕn + ψn) ↑ (f1 + f2) so by the
monotone convergence theorem,∫

(f1 + f2) = lim
n→∞

∫
(ϕn + ψn) = lim

n→∞

(∫
ϕn +

∫
ψn

)
= lim
n→∞

∫
ϕn + lim

n→∞

∫
ψn =

∫
f1 +

∫
f2.

Now to the general case. Let gN :=
N∑
n=1

fn and g =
∞∑
1
fn, then gN ↑ g and so

again by monotone convergence theorem and the additivity just proved,

∞∑
n=1

∫
fn := lim

N→∞

N∑
n=1

∫
fn = lim

N→∞

∫ N∑
n=1

fn

= lim
N→∞

∫
gN =

∫
g =:

∫ ∞∑
n=1

fn.

Example 10.8 (Sums as Integrals I). Suppose, Ω = N, B := 2N, µ (A) = # (A)
for A ⊂ Ω is the counting measure on B, and f : N→ [0,∞] is a function. Since

f =

∞∑
n=1

f (n) 1{n},

it follows from Corollary 10.7 that∫
N
fdµ =

∞∑
n=1

∫
N
f (n) 1{n}dµ =

∞∑
n=1

f (n)µ ({n}) =

∞∑
n=1

f (n) .

Thus the integral relative to counting measure is simply the infinite sum.

Lemma 10.9 (Sums as Integrals II*). Let Ω be a set and ρ : Ω → [0,∞] be
a function, let µ =

∑
ω∈Ω ρ(ω)δω on B = 2Ω , i.e.

µ(A) =
∑
ω∈A

ρ(ω).

If f : Ω → [0,∞] is a function (which is necessarily measurable), then∫
Ω

fdµ =
∑
Ω

fρ.

Proof. Suppose that ϕ : Ω → [0,∞) is a simple function, then ϕ =∑
z∈[0,∞) z1{ϕ=z} and∑

Ω

ϕρ =
∑
ω∈Ω

ρ(ω)
∑

z∈[0,∞)

z1{ϕ=z}(ω) =
∑

z∈[0,∞)

z
∑
ω∈Ω

ρ(ω)1{ϕ=z}(ω)

=
∑

z∈[0,∞)

zµ({ϕ = z}) =

∫
Ω

ϕdµ.

So if ϕ : Ω → [0,∞) is a simple function such that ϕ ≤ f, then∫
Ω

ϕdµ =
∑
Ω

ϕρ ≤
∑
Ω

fρ.

Taking the sup over ϕ in this last equation then shows that∫
Ω

fdµ ≤
∑
Ω

fρ.

For the reverse inequality, let Λ ⊂f Ω be a finite set and N ∈ (0,∞).
Set fN (ω) = min {N, f(ω)} and let ϕN,Λ be the simple function given by
ϕN,Λ(ω) := 1Λ(ω)fN (ω). Because ϕN,Λ(ω) ≤ f(ω),∑

Λ

fNρ =
∑
Ω

ϕN,Λρ =

∫
Ω

ϕN,Λdµ ≤
∫
Ω

fdµ.

Since fN ↑ f as N →∞, we may let N →∞ in this last equation to concluded∑
Λ

fρ ≤
∫
Ω

fdµ.

Since Λ is arbitrary, this implies∑
Ω

fρ ≤
∫
Ω

fdµ.

Exercise 10.1. Suppose that µn : B → [0,∞] are measures on B for n ∈ N.
Also suppose that µn(A) is increasing in n for all A ∈ B. Prove that µ : B →
[0,∞] defined by µ(A) := limn→∞ µn(A) is also a measure.

Lemma 10.10. If ϕ ≥ 0 is a simple function and E ⊂ Ω is a null set, then∫
E
ϕdµ = 0 and hence

∫
Ec
ϕdµ =

∫
X
ϕdµ.
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Proof. Write ϕ =
∑n
i=1 λi1Ai , then 1Eϕ =

∑n
i=1 λi1Ai∩E and therefore,∫

E

ϕdµ =

n∑
i=1

λiµ (Ai ∩ E) =

n∑
i=1

λi · 0 = 0.

Proposition 10.11. If f, g ≥ 0 are measurable functions such that f ≤ g a.e.
then

∫
Ω
fdµ ≤

∫
Ω
gdµ. In particular if f = g a.e. then

∫
Ω
fdµ =

∫
Ω
gdµ. Also

if f ≥ 0 is a measurable function, then f = 0 a.e. iff
∫
Ω
fdµ = 0.

Proof. Let E be the exceptional null set where f > g, i.e.

E = {f > g} := {ω ∈ Ω : f(ω) > g(ω)}.

If ϕ ≥ 0 is a measurable simple function such that ϕ ≤ f, then

1Ecϕ ≤ 1Ecf ≤ 1Ecg ≤ g

and hence ∫
Ω

ϕdµ =

∫
Ω

1Ecϕdµ ≤
∫
Ω

gdµ.

As this is true for all 0 ≤ ϕ ≤ f , we find
∫
Ω
fdµ ≤

∫
Ω
gdµ. If f = g a.e. then∫

Ω
fdµ ≤

∫
Ω
gdµ and

∫
Ω
gdµ ≤

∫
Ω
fdµ which implies

∫
Ω
fdµ =

∫
Ω
gdµ.

If f = 0 a.e. then ∫
Ω

fdµ =

∫
Ω

0 · dm = 0.

Conversely if
∫
Ω
fdµ = 0, then by Lemma 10.3,

µ(f ≥ 1/n) ≤ n
∫
Ω

fdµ = 0 for all n.

As {f ≥ 1/n} ↑ {f > 0} it follows that µ (f > 0) =↑ limn→∞ µ (f ≥ 1/n) = 0,
i.e. f = 0 a.e.

Corollary 10.12. Suppose that {fn} is a sequence of non-negative measurable
functions and f is a measurable function such that fn ↑ f off a null set, then∫

fn ↑
∫
f as n→∞.

Proof. Let E ⊂ Ω be a null set such that fn1Ec ↑ f1Ec as n → ∞. Then
by the monotone convergence theorem and Proposition 10.11,∫

fn =

∫
fn1Ec ↑

∫
f1Ec =

∫
f as n→∞.

Lemma 10.13 (Fatou’s Lemma). If fn : Ω → [0,∞] is a sequence of mea-
surable functions then ∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn

Proof. Define gk := inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all k ≤ n, ∫
gk ≤

∫
fn for all n ≥ k

and therefore ∫
gk ≤ lim inf

n→∞

∫
fn for all k.

We may now use the monotone convergence theorem to let k →∞ to find∫
lim inf

n→∞
fn =

∫
lim
k→∞

gk
MCT
= lim

k→∞

∫
gk ≤ lim inf

n→∞

∫
fn.

The following Corollary and the next lemma are simple applications of Corol-
lary 10.7.

Corollary 10.14. Suppose that (Ω,B, µ) is a measure space and {An}∞n=1 ⊂ B
is a collection of sets such that µ(Ai ∩Aj) = 0 for all i 6= j, then

µ (∪∞n=1An) =

∞∑
n=1

µ(An).

Proof. Since

µ (∪∞n=1An) =

∫
Ω

1∪∞n=1An
dµ and

∞∑
n=1

µ(An) =

∫
Ω

∞∑
n=1

1Andµ

it suffices to show
∞∑
n=1

1An = 1∪∞n=1An
µ – a.e. (10.5)

Now
∑∞
n=1 1An ≥ 1∪∞n=1An

and
∑∞
n=1 1An(ω) 6= 1∪∞n=1An

(ω) iff ω ∈ Ai ∩Aj for
some i 6= j, that is{

ω :

∞∑
n=1

1An(ω) 6= 1∪∞n=1An
(ω)

}
= ∪i<jAi ∩Aj

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (10.5) and hence the corollary.
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Lemma 10.15 (The First Borell – Cantelli Lemma). Let (Ω,B, µ) be a
measure space, An ∈ B, and set

{An i.o.} = {ω ∈ Ω : ω ∈ An for infinitely many n’s} =
∞⋂
N=1

⋃
n≥N

An.

If
∑∞
n=1 µ(An) <∞ then µ({An i.o.}) = 0.

Proof. (First Proof.) Let us first observe that

{An i.o.} =

{
ω ∈ Ω :

∞∑
n=1

1An(ω) =∞

}
.

Hence if
∑∞
n=1 µ(An) <∞ then

∞ >

∞∑
n=1

µ(An) =

∞∑
n=1

∫
Ω

1An dµ =

∫
Ω

∞∑
n=1

1An dµ

implies that
∞∑
n=1

1An(ω) <∞ for µ - a.e. ω. That is to say µ({An i.o.}) = 0.

(Second Proof.) Of course we may give a strictly measure theoretic proof of
this fact:

µ(An i.o.) = lim
N→∞

µ

 ⋃
n≥N

An


≤ lim
N→∞

∑
n≥N

µ(An)

and the last limit is zero since
∑∞
n=1 µ(An) <∞.

Example 10.16. Suppose that (Ω,B, P ) is a probability space (i.e. P (Ω) = 1)
and Xn : Ω → {0, 1} are Bernoulli random variables with P (Xn = 1) = pn and
P (Xn = 0) = 1 − pn. If

∑∞
n=1 pn < ∞, then P (Xn = 1 i.o.) = 0 and hence

P (Xn = 0 a.a.) = 1. In particular, P (limn→∞Xn = 0) = 1.

10.2 Integrals of Complex Valued Functions

Definition 10.17. A measurable function f : Ω → R̄ is integrable if f+ :=
f1{f≥0} and f− = −f 1{f≤0} are integrable. We write L1 (µ;R) for the space
of real valued integrable functions. For f ∈ L1 (µ;R) , let

∫
Ω

fdµ =

∫
Ω

f+dµ−
∫
Ω

f−dµ.

To shorten notation in this chapter we may simply write
∫
fdµ or even

∫
f for∫

Ω
fdµ.

Convention: If f, g : Ω → R̄ are two measurable functions, let f+g denote
the collection of measurable functions h : Ω → R̄ such that h(ω) = f(ω) + g(ω)
whenever f(ω) +g(ω) is well defined, i.e. is not of the form∞−∞ or −∞+∞.
We use a similar convention for f − g. Notice that if f, g ∈ L1 (µ;R) and
h1, h2 ∈ f + g, then h1 = h2 a.e. because |f | <∞ and |g| <∞ a.e.

Notation 10.18 (Abuse of notation) We will sometimes denote the inte-
gral

∫
Ω
fdµ by µ (f) . With this notation we have µ (A) = µ (1A) for all A ∈ B.

Remark 10.19. Since
f± ≤ |f | ≤ f+ + f−,

a measurable function f is integrable iff
∫
|f | dµ <∞. Hence

L1 (µ;R) :=

{
f : Ω → R̄ : f is measurable and

∫
Ω

|f | dµ <∞
}
.

If f, g ∈ L1 (µ;R) and f = g a.e. then f± = g± a.e. and so it follows from
Proposition 10.11 that

∫
fdµ =

∫
gdµ. In particular if f, g ∈ L1 (µ;R) we may

define ∫
Ω

(f + g) dµ =

∫
Ω

hdµ

where h is any element of f + g.

Proposition 10.20. The map

f ∈ L1 (µ;R)→
∫
Ω

fdµ ∈ R

is linear and has the monotonicity property:
∫
fdµ ≤

∫
gdµ for all f, g ∈

L1 (µ;R) such that f ≤ g a.e.

Proof. Let f, g ∈ L1 (µ;R) and a, b ∈ R. By modifying f and g on a null set,
we may assume that f, g are real valued functions. We have af + bg ∈ L1 (µ;R)
because

|af + bg| ≤ |a| |f |+ |b| |g| ∈ L1 (µ;R) .

If a < 0, then
(af)+ = −af− and (af)− = −af+

so that
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af = −a

∫
f− + a

∫
f+ = a(

∫
f+ −

∫
f−) = a

∫
f.

A similar calculation works for a > 0 and the case a = 0 is trivial so we have
shown that ∫

af = a

∫
f.

Now set h = f + g. Since h = h+ − h−,

h+ − h− = f+ − f− + g+ − g−

or
h+ + f− + g− = h− + f+ + g+.

Therefore, ∫
h+ +

∫
f− +

∫
g− =

∫
h− +

∫
f+ +

∫
g+

and hence∫
h =

∫
h+ −

∫
h− =

∫
f+ +

∫
g+ −

∫
f− −

∫
g− =

∫
f +

∫
g.

Finally if f+ − f− = f ≤ g = g+ − g− then f+ + g− ≤ g+ + f− which implies
that ∫

f+ +

∫
g− ≤

∫
g+ +

∫
f−

or equivalently that∫
f =

∫
f+ −

∫
f− ≤

∫
g+ −

∫
g− =

∫
g.

The monotonicity property is also a consequence of the linearity of the integral,
the fact that f ≤ g a.e. implies 0 ≤ g − f a.e. and Proposition 10.11.

Definition 10.21. A measurable function f : Ω → C is integrable if∫
Ω
|f | dµ <∞. Analogously to the real case, let

L1 (µ;C) :=

{
f : Ω → C : f is measurable and

∫
Ω

|f | dµ <∞
}
.

denote the complex valued integrable functions. Because, max (|Re f | , |Im f |) ≤
|f | ≤

√
2 max (|Re f | , |Im f |) ,

∫
|f | dµ <∞ iff∫

|Re f | dµ+

∫
|Im f | dµ <∞.

For f ∈ L1 (µ;C) define∫
f dµ =

∫
Re f dµ+ i

∫
Im f dµ.

It is routine to show the integral is still linear on L1 (µ;C) (prove!). In the
remainder of this section, let L1 (µ) be either L1 (µ;C) or L1 (µ;R) . If A ∈ B
and f ∈ L1 (µ;C) or f : Ω → [0,∞] is a measurable function, let∫

A

fdµ :=

∫
Ω

1Afdµ.

Proposition 10.22. Suppose that f ∈ L1 (µ;C) , then∣∣∣∣∫
Ω

fdµ

∣∣∣∣ ≤ ∫
Ω

|f | dµ. (10.6)

Proof. Start by writing
∫
Ω
f dµ = Reiθ with R ≥ 0. We may assume that

R =
∣∣∫
Ω
fdµ

∣∣ > 0 since otherwise there is nothing to prove. Since

R = e−iθ
∫
Ω

f dµ =

∫
Ω

e−iθf dµ =

∫
Ω

Re
(
e−iθf

)
dµ+ i

∫
Ω

Im
(
e−iθf

)
dµ,

it must be that
∫
Ω

Im
[
e−iθf

]
dµ = 0. Using the monotonicity in Proposition

10.11, ∣∣∣∣∫
Ω

fdµ

∣∣∣∣ =

∫
Ω

Re
(
e−iθf

)
dµ ≤

∫
Ω

∣∣Re
(
e−iθf

)∣∣ dµ ≤ ∫
Ω

|f | dµ.

Proposition 10.23. Let f, g ∈ L1 (µ) , then

1. The set {f 6= 0} is σ – finite, in fact {|f | ≥ 1
n} ↑ {f 6= 0} and µ(|f | ≥ 1

n ) <
∞ for all n.

2. The following are equivalent

a)
∫
E
f =

∫
E
g for all E ∈ B

b)
∫
Ω

|f − g| = 0

c) f = g a.e.

Proof. 1. By Chebyshev’s inequality, Lemma 10.3,

µ(|f | ≥ 1

n
) ≤ n

∫
Ω

|f | dµ <∞

for all n.
2. (a) =⇒ (c) Notice that∫

E

f =

∫
E

g ⇔
∫
E

(f − g) = 0
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for all E ∈ B. Taking E = {Re(f − g) > 0} and using 1E Re(f − g) ≥ 0, we
learn that

0 = Re

∫
E

(f − g)dµ =

∫
1E Re(f − g) =⇒ 1E Re(f − g) = 0 a.e.

This implies that 1E = 0 a.e. which happens iff

µ ({Re(f − g) > 0}) = µ(E) = 0.

Similar µ(Re(f−g) < 0) = 0 so that Re(f−g) = 0 a.e. Similarly, Im(f−g) = 0
a.e and hence f − g = 0 a.e., i.e. f = g a.e.

(c) =⇒ (b) is clear and so is (b) =⇒ (a) since∣∣∣∣∫
E

f −
∫
E

g

∣∣∣∣ ≤ ∫ |f − g| = 0.

Lemma 10.24 (Integral Comparison I). Suppose that h ∈ L1 (µ) satisfies∫
A

hdµ ≥ 0 for all A ∈ B, (10.7)

then h ≥ 0 a.e.

Proof. Since by assumption,

0 = Im

∫
A

hdµ =

∫
A

Imhdµ for all A ∈ B,

we may apply Proposition 10.23 to conclude that Imh = 0 a.e. Thus we may
now assume that h is real valued. Taking A = {h < 0} in Eq. (10.7) implies∫

Ω

1A |h| dµ =

∫
Ω

−1Ahdµ = −
∫
A

hdµ ≤ 0.

However 1A |h| ≥ 0 and therefore it follows that
∫
Ω

1A |h| dµ = 0 and so Proposi-
tion 10.23 implies 1A |h| = 0 a.e. which then implies 0 = µ (A) = µ (h < 0) = 0.

Lemma 10.25 (Integral Comparison II). Suppose (Ω,B, µ) is a σ – finite
measure space (i.e. there exists Ωn ∈ B such that Ωn ↑ Ω and µ (Ωn) < ∞ for
all n) and f, g : Ω → [0,∞] are B – measurable functions. Then f ≥ g a.e. iff∫

A

fdµ ≥
∫
A

gdµ for all A ∈ B. (10.8)

In particular f = g a.e. iff equality holds in Eq. (10.8).

Proof. It was already shown in Proposition 10.11 that f ≥ g a.e. implies
Eq. (10.8). For the converse assertion, let Bn := {f ≤ n1Ωn} . Then from Eq.
(10.8),

∞ > nµ (Ωn) ≥
∫
f1Bndµ ≥

∫
g1Bndµ

from which it follows that both f1Bn and g1Bn are in L1 (µ) and hence h :=
f1Bn − g1Bn ∈ L1 (µ) . Using Eq. (10.8) again we know that∫

A

h =

∫
f1Bn∩A −

∫
g1Bn∩A ≥ 0 for all A ∈ B.

An application of Lemma 10.24 implies h ≥ 0 a.e., i.e. f1Bn ≥ g1Bn a.e. Since
Bn ↑ {f <∞} , we may conclude that

f1{f<∞} = lim
n→∞

f1Bn ≥ lim
n→∞

g1Bn = g1{f<∞} a.e.

Since f ≥ g whenever f =∞, we have shown f ≥ g a.e.
If equality holds in Eq. (10.8), then we know that g ≤ f and f ≤ g a.e., i.e.

f = g a.e.
Notice that we can not drop the σ – finiteness assumption in Lemma 10.25.

For example, let µ be the measure on B such that µ (A) = ∞ when A 6= ∅,
g = 3, and f = 2. Then equality holds (both sides are infinite unless A = ∅
when they are both zero) in Eq. (10.8) holds even though f < g everywhere.

Definition 10.26. Let (Ω,B, µ) be a measure space and L1(µ) = L1(Ω,B, µ)
denote the set of L1 (µ) functions modulo the equivalence relation; f ∼ g iff
f = g a.e. We make this into a normed space using the norm

‖f − g‖L1 =

∫
|f − g| dµ

and into a metric space using ρ1(f, g) = ‖f − g‖L1 .

Warning: in the future we will often not make much of a distinction between
L1(µ) and L1 (µ) . On occasion this can be dangerous and this danger will be
pointed out when necessary.

Remark 10.27. More generally we may define Lp(µ) = Lp(Ω,B, µ) for p ∈ [1,∞)
as the set of measurable functions f such that∫

Ω

|f |p dµ <∞

modulo the equivalence relation; f ∼ g iff f = g a.e.
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110 10 Integration Theory

We will see in later that

‖f‖Lp =

(∫
|f |p dµ

)1/p

for f ∈ Lp(µ)

is a norm and (Lp(µ), ‖·‖Lp) is a Banach space in this norm and in particular,

‖f + g‖p ≤ ‖f‖p + ‖g‖p for all f, g ∈ Lp (µ) .

Theorem 10.28 (Dominated Convergence Theorem). Suppose fn, gn, g ∈
L1 (µ) , fn → f a.e., |fn| ≤ gn ∈ L1 (µ) , gn → g a.e. and

∫
Ω
gndµ →

∫
Ω
gdµ.

Then f ∈ L1 (µ) and ∫
Ω

fdµ = lim
h→∞

∫
Ω

fndµ.

(In most typical applications of this theorem gn = g ∈ L1 (µ) for all n.)

Proof. Notice that |f | = limn→∞ |fn| ≤ limn→∞ |gn| ≤ g a.e. so that
f ∈ L1 (µ) . By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,∫

Ω

(g ± f)dµ =

∫
Ω

lim inf
n→∞

(gn ± fn) dµ ≤ lim inf
n→∞

∫
Ω

(gn ± fn) dµ

= lim
n→∞

∫
Ω

gndµ+ lim inf
n→∞

(
±
∫
Ω

fndµ

)
=

∫
Ω

gdµ+ lim inf
n→∞

(
±
∫
Ω

fndµ

)
Since lim infn→∞(−an) = − lim sup

n→∞
an, we have shown,

∫
Ω

gdµ±
∫
Ω

fdµ ≤
∫
Ω

gdµ+

{
lim infn→∞

∫
Ω
fndµ

− lim sup
n→∞

∫
Ω
fndµ

and therefore

lim sup
n→∞

∫
Ω

fndµ ≤
∫
Ω

fdµ ≤ lim inf
n→∞

∫
Ω

fndµ.

This shows that lim
n→∞

∫
Ω
fndµ exists and is equal to

∫
Ω
fdµ.

Exercise 10.2. Give another proof of Proposition 10.22 by first proving Eq.
(10.6) with f being a simple function in which case the triangle inequality for
complex numbers will do the trick. Then use the approximation Theorem 9.41
along with the dominated convergence Theorem 10.28 to handle the general
case.

Corollary 10.29. Let {fn}∞n=1 ⊂ L1 (µ) be a sequence such that∑∞
n=1 ‖fn‖L1(µ) <∞, then

∑∞
n=1 fn is convergent a.e. and

∫
Ω

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

∫
Ω

fndµ.

Proof. The condition
∑∞
n=1 ‖fn‖L1(µ) < ∞ is equivalent to

∑∞
n=1 |fn| ∈

L1 (µ) . Hence
∑∞
n=1 fn is almost everywhere convergent and if SN :=

∑N
n=1 fn,

then

|SN | ≤
N∑
n=1

|fn| ≤
∞∑
n=1

|fn| ∈ L1 (µ) .

So by the dominated convergence theorem,∫
Ω

( ∞∑
n=1

fn

)
dµ =

∫
Ω

lim
N→∞

SNdµ = lim
N→∞

∫
Ω

SNdµ

= lim
N→∞

N∑
n=1

∫
Ω

fndµ =

∞∑
n=1

∫
Ω

fndµ.

Example 10.30 (Sums as integrals). Suppose, Ω = N, B := 2N, µ is counting
measure on B (see Example 10.8), and f : N→ C is a function. From Example
10.8 we have f ∈ L1 (µ) iff

∑∞
n=1 |f (n)| < ∞, i.e. iff the sum,

∑∞
n=1 f (n) is

absolutely convergent. Moreover, if f ∈ L1 (µ) , we may again write

f =

∞∑
n=1

f (n) 1{n}

and then use Corollary 10.29 to conclude that∫
N
fdµ =

∞∑
n=1

∫
N
f (n) 1{n}dµ =

∞∑
n=1

f (n)µ ({n}) =

∞∑
n=1

f (n) .

So again the integral relative to counting measure is simply the infinite sum
provided the sum is absolutely convergent.

However if f (n) = (−1)
n 1
n , then

∞∑
n=1

f (n) := lim
N→∞

N∑
n=1

f (n)

is perfectly well defined while
∫
N fdµ is not. In fact in this case we have,
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10.2 Integrals of Complex Valued Functions 111∫
N
f±dµ =∞.

The point is that when we write
∑∞
n=1 f (n) the ordering of the terms in the

sum may matter. On the other hand,
∫
N fdµ knows nothing about the integer

ordering.

The following corollary will be routinely be used in the sequel – often without
explicit mention.

Corollary 10.31 (Differentiation Under the Integral). Suppose that J ⊂
R is an open interval and f : J ×Ω → C is a function such that

1. ω → f(t, ω) is measurable for each t ∈ J.
2. f(t0, ·) ∈ L1(µ) for some t0 ∈ J.
3. ∂f

∂t (t, ω) exists for all (t, ω).

4. There is a function g ∈ L1 (µ) such that
∣∣∣∂f∂t (t, ·)

∣∣∣ ≤ g for each t ∈ J.

Then f(t, ·) ∈ L1 (µ) for all t ∈ J (i.e.
∫
Ω
|f(t, ω)| dµ(ω) < ∞), t →∫

Ω
f(t, ω)dµ(ω) is a differentiable function on J, and

d

dt

∫
Ω

f(t, ω)dµ(ω) =

∫
Ω

∂f

∂t
(t, ω)dµ(ω).

Proof. By considering the real and imaginary parts of f separately, we may
assume that f is real. Also notice that

∂f

∂t
(t, ω) = lim

n→∞
n(f(t+ n−1, ω)− f(t, ω))

and therefore, for ω → ∂f
∂t (t, ω) is a sequential limit of measurable functions

and hence is measurable for all t ∈ J. By the mean value theorem,

|f(t, ω)− f(t0, ω)| ≤ g(ω) |t− t0| for all t ∈ J (10.9)

and hence

|f(t, ω)| ≤ |f(t, ω)− f(t0, ω)|+ |f(t0, ω)| ≤ g(ω) |t− t0|+ |f(t0, ω)| .

This shows f(t, ·) ∈ L1 (µ) for all t ∈ J. Let G(t) :=
∫
Ω
f(t, ω)dµ(ω), then

G(t)−G(t0)

t− t0
=

∫
Ω

f(t, ω)− f(t0, ω)

t− t0
dµ(ω).

By assumption,

lim
t→t0

f(t, ω)− f(t0, ω)

t− t0
=
∂f

∂t
(t, ω) for all ω ∈ Ω

and by Eq. (10.9),∣∣∣∣f(t, ω)− f(t0, ω)

t− t0

∣∣∣∣ ≤ g(ω) for all t ∈ J and ω ∈ Ω.

Therefore, we may apply the dominated convergence theorem to conclude

lim
n→∞

G(tn)−G(t0)

tn − t0
= lim
n→∞

∫
Ω

f(tn, ω)− f(t0, ω)

tn − t0
dµ(ω)

=

∫
Ω

lim
n→∞

f(tn, ω)− f(t0, ω)

tn − t0
dµ(ω)

=

∫
Ω

∂f

∂t
(t0, ω)dµ(ω)

for all sequences tn ∈ J \ {t0} such that tn → t0. Therefore, Ġ(t0) =

limt→t0
G(t)−G(t0)

t−t0 exists and

Ġ(t0) =

∫
Ω

∂f

∂t
(t0, ω)dµ(ω).

Corollary 10.32. Suppose that {an}∞n=0 ⊂ C is a sequence of complex numbers
such that series

f(z) :=

∞∑
n=0

an(z − z0)n

is convergent for |z − z0| < R, where R is some positive number. Then f :
D(z0, R)→ C is complex differentiable on D(z0, R) and

f ′(z) =

∞∑
n=0

nan(z − z0)n−1 =

∞∑
n=1

nan(z − z0)n−1. (10.10)

By induction it follows that f (k) exists for all k and that

f (k)(z) =

∞∑
n=0

n(n− 1) . . . (n− k + 1)an(z − z0)n−1.

Proof. Let ρ < R be given and choose r ∈ (ρ,R). Since z = z0 + r ∈
D(z0, R), by assumption the series

∞∑
n=0

anr
n is convergent and in particular
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112 10 Integration Theory

M := supn |anrn| < ∞. We now apply Corollary 10.31 with X = N∪{0} , µ
being counting measure, Ω = D(z0, ρ) and g(z, n) := an(z − z0)n. Since

|g′(z, n)| = |nan(z − z0)n−1| ≤ n |an| ρn−1

≤ 1

r
n
(ρ
r

)n−1

|an| rn ≤
1

r
n
(ρ
r

)n−1

M

and the function G(n) := M
r n
(
ρ
r

)n−1
is summable (by the Ratio test for exam-

ple), we may use G as our dominating function. It then follows from Corollary
10.31

f(z) =

∫
X

g(z, n)dµ(n) =

∞∑
n=0

an(z − z0)n

is complex differentiable with the differential given as in Eq. (10.10).

10.3 Integration on R

Notation 10.33 If m is Lebesgue measure on BR, f is a non-negative Borel

measurable function and a < b with a, b ∈ R̄, we will often write
∫ b
a
f (x) dx or∫ b

a
fdm for

∫
(a,b]∩R fdm.

Example 10.34. Suppose −∞ < a < b <∞, f ∈ C([a, b],R) and m be Lebesgue
measure on R. Given a partition,

π = {a = a0 < a1 < · · · < an = b},

let
mesh(π) := max{|aj − aj−1| : j = 1, . . . , n}

and

fπ (x) :=

n−1∑
l=0

f (al) 1(al,al+1](x).

Then ∫ b

a

fπ dm =

n−1∑
l=0

f (al)m ((al, al+1]) =

n−1∑
l=0

f (al) (al+1 − al)

is a Riemann sum. Therefore if {πk}∞k=1 is a sequence of partitions with
limk→∞mesh(πk) = 0, we know that

lim
k→∞

∫ b

a

fπk dm =

∫ b

a

f (x) dx (10.11)

where the latter integral is the Riemann integral. Using the (uniform) continuity
of f on [a, b] , it easily follows that limk→∞ fπk (x) = f (x) and that |fπk (x)| ≤
g (x) := M1(a,b] (x) for all x ∈ (a, b] where M := maxx∈[a,b] |f (x)| < ∞. Since∫
R gdm = M (b− a) <∞, we may apply D.C.T. to conclude,

lim
k→∞

∫ b

a

fπk dm =

∫ b

a

lim
k→∞

fπk dm =

∫ b

a

f dm.

This equation with Eq. (10.11) shows∫ b

a

f dm =

∫ b

a

f (x) dx

whenever f ∈ C([a, b],R), i.e. the Lebesgue and the Riemann integral agree
on continuous functions. See Theorem 11.5 below for a more general statement
along these lines.

Theorem 10.35 (The Fundamental Theorem of Calculus). Suppose
−∞ < a < b < ∞, f ∈ C((a, b),R)∩L1((a, b),m) and F (x) :=

∫ x
a
f(y)dm(y).

Then

1. F ∈ C([a, b],R) ∩ C1((a, b),R).
2. F ′(x) = f(x) for all x ∈ (a, b).
3. If G ∈ C([a, b],R) ∩ C1((a, b),R) is an anti-derivative of f on (a, b) (i.e.
f = G′|(a,b)) then ∫ b

a

f(x)dm(x) = G(b)−G(a).

Proof. Since F (x) :=
∫
R 1(a,x)(y)f(y)dm(y), limx→z 1(a,x)(y) = 1(a,z)(y) for

m – a.e. y and
∣∣1(a,x)(y)f(y)

∣∣ ≤ 1(a,b)(y) |f(y)| is an L1 – function, it follows
from the dominated convergence Theorem 10.28 that F is continuous on [a, b].
Simple manipulations show,

∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ =
1

|h|


∣∣∣∫ x+h

x
[f(y)− f(x)] dm(y)

∣∣∣ if h > 0∣∣∣∫ xx+h
[f(y)− f(x)] dm(y)

∣∣∣ if h < 0

≤ 1

|h|

{∫ x+h

x
|f(y)− f(x)| dm(y) if h > 0∫ x

x+h
|f(y)− f(x)| dm(y) if h < 0

≤ sup {|f(y)− f(x)| : y ∈ [x− |h| , x+ |h|]}

and the latter expression, by the continuity of f, goes to zero as h → 0 . This
shows F ′ = f on (a, b).

Page: 112 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



10.3 Integration on R 113

For the converse direction, we have by assumption that G′(x) = F ′(x) for
x ∈ (a, b). Therefore by the mean value theorem, F −G = C for some constant
C. Hence ∫ b

a

f(x)dm(x) = F (b) = F (b)− F (a)

= (G(b) + C)− (G(a) + C) = G(b)−G(a).

We can use the above results to integrate some non-Riemann integrable
functions:

Example 10.36. For all λ > 0,∫ ∞
0

e−λxdm(x) = λ−1 and

∫
R

1

1 + x2
dm(x) = π.

The proof of these identities are similar. By the monotone convergence theorem,
Example 10.34 and the fundamental theorem of calculus for Riemann integrals
(or Theorem 10.35 below),∫ ∞

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdx

= − lim
N→∞

1

λ
e−λx|N0 = λ−1

and ∫
R

1

1 + x2
dm(x) = lim

N→∞

∫ N

−N

1

1 + x2
dm(x) = lim

N→∞

∫ N

−N

1

1 + x2
dx

= lim
N→∞

[
tan−1(N)− tan−1(−N)

]
= π.

Example 10.37 (
∫ 1

0
x−pdx). In this example we consider the integrability of the

function, x→ x−p for x near 0. Using the MCT and the fundamental theorem
of calculus, ∫

(0,1]

1

xp
dm(x) = lim

n→∞

∫ 1

0

1( 1
n ,1](x)

1

xp
dm(x)

= lim
n→∞

∫ 1

1
n

1

xp
dx = lim

n→∞

x−p+1

1− p

∣∣∣∣1
1/n

=

{ 1
1−p if p < 1

∞ if p > 1

If p = 1 we find∫
(0,1]

1

xp
dm(x) = lim

n→∞

∫ 1

1
n

1

x
dx = lim

n→∞
ln(x)|11/n =∞.

Exercise 10.3. Show ∫ ∞
1

1

xp
dm (x) =

{
∞ if p ≤ 1
1
p−1 if p > 1

.

Example 10.38 (Integration of Power Series). Suppose R > 0 and {an}∞n=0 is a
sequence of complex numbers such that

∑∞
n=0 |an| rn < ∞ for all r ∈ (0, R).

Then∫ β

α

( ∞∑
n=0

anx
n

)
dm(x) =

∞∑
n=0

an

∫ β

α

xndm(x) =

∞∑
n=0

an
βn+1 − αn+1

n+ 1

for all −R < α < β < R. Indeed this follows from Corollary 10.29 since

∞∑
n=0

∫ β

α

|an| |x|n dm(x) ≤
∞∑
n=0

(∫ |β|
0

|an| |x|n dm(x) +

∫ |α|
0

|an| |x|n dm(x)

)

≤
∞∑
n=0

|an|
|β|n+1

+ |α|n+1

n+ 1
≤ 2r

∞∑
n=0

|an| rn <∞

where r = max(|β| , |α|).

Example 10.39. Let {rn}∞n=1 be an enumeration of the points in Q ∩ [0, 1] and
define

f(x) =

∞∑
n=1

2−n
1√
|x− rn|

with the convention that

1√
|x− rn|

= 5 if x = rn.

Since, By Theorem 10.35,∫ 1

0

1√
|x− rn|

dx =

∫ 1

rn

1√
x− rn

dx+

∫ rn

0

1√
rn − x

dx

= 2
√
x− rn|1rn − 2

√
rn − x|rn0 = 2

(√
1− rn −

√
rn
)

≤ 4,

we find

Page: 113 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



114 10 Integration Theory∫
[0,1]

f(x)dm(x) =

∞∑
n=1

2−n
∫

[0,1]

1√
|x− rn|

dx ≤
∞∑
n=1

2−n4 = 4 <∞.

In particular, m(f = ∞) = 0, i.e. that f < ∞ for almost every x ∈ [0, 1] and
this implies that

∞∑
n=1

2−n
1√
|x− rn|

<∞ for a.e. x ∈ [0, 1].

This result is somewhat surprising since the singularities of the summands form
a dense subset of [0, 1].

Example 10.40. The following limit holds,

lim
n→∞

∫ n

0

(
1− x

n

)n
dm(x) = 1. (10.12)

DCT Proof. To verify this, let fn(x) :=
(
1− x

n

)n
1[0,n](x). Then

limn→∞ fn(x) = e−x for all x ≥ 0. Moreover by simple calculus2

1− x ≤ e−x for all x ∈ R.

Therefore, for x < n, we have

0 ≤ 1− x

n
≤ e−x/n =⇒

(
1− x

n

)n
≤
[
e−x/n

]n
= e−x,

from which it follows that

0 ≤ fn(x) ≤ e−x for all x ≥ 0.

From Example 10.36, we know∫ ∞
0

e−xdm(x) = 1 <∞,

so that e−x is an integrable function on [0,∞). Hence by the dominated con-
vergence theorem,

lim
n→∞

∫ n

0

(
1− x

n

)n
dm(x) = lim

n→∞

∫ ∞
0

fn(x)dm(x)

=

∫ ∞
0

lim
n→∞

fn(x)dm(x) =

∫ ∞
0

e−xdm(x) = 1.

2 Since y = 1 − x is the tangent line to y = e−x at x = 0 and e−x is convex up, it
follows that 1− x ≤ e−x for all x ∈ R.

MCT Proof. The limit in Eq. (10.12) may also be computed using the
monotone convergence theorem. To do this we must show that n → fn (x) is
increasing in n for each x and for this it suffices to consider n > x. But for
n > x,

d

dn
ln fn (x) =

d

dn

[
n ln

(
1− x

n

)]
= ln

(
1− x

n

)
+

n

1− x
n

x

n2

= ln
(

1− x

n

)
+

x
n

1− x
n

= h (x/n)

where, for 0 ≤ y < 1,

h (y) := ln(1− y) +
y

1− y
.

Since h (0) = 0 and

h′ (y) = − 1

1− y
+

1

1− y
+

y

(1− y)
2 > 0

it follows that h ≥ 0. Thus we have shown, fn (x) ↑ e−x as n→∞ as claimed.

Example 10.41. Suppose that fn (x) := n1(0, 1
n ] (x) for n ∈ N. Then

limn→∞ fn (x) = 0 for all x ∈ R while

lim
n→∞

∫
R
fn (x) dx = lim

n→∞
1 = 1 6= 0 =

∫
R

lim
n→∞

fn (x) dx.

The problem is that the best dominating function we can take is

g (x) = sup
n
fn (x) =

∞∑
n=1

n · 1( 1
n+1 ,

1
n ] (x) .

Notice that ∫
R
g (x) dx =

∞∑
n=1

n ·
(

1

n
− 1

n+ 1

)
=

∞∑
n=1

1

n+ 1
=∞.

Example 10.42 (Jordan’s Lemma). In this example, let us consider the limit;

lim
n→∞

∫ π

0

cos

(
sin

θ

n

)
e−n sin(θ)dθ.

Let

fn (θ) := 1(0,π] (θ) cos

(
sin

θ

n

)
e−n sin(θ).

Then
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|fn| ≤ 1(0,π] ∈ L1 (m)

and
lim
n→∞

fn (θ) = 1(0,π] (θ) 1{π} (θ) = 1{π} (θ) .

Therefore by the D.C.T.,

lim
n→∞

∫ π

0

cos

(
sin

θ

n

)
e−n sin(θ)dθ =

∫
R

1{π} (θ) dm (θ) = m ({π}) = 0.

Example 10.43. Recall from Example 10.36 that

λ−1 =

∫
[0,∞)

e−λxdm(x) for all λ > 0.

Let ε > 0. For λ ≥ 2ε > 0 and n ∈ N there exists Cn(ε) <∞ such that

0 ≤
(
− d

dλ

)n
e−λx = xne−λx ≤ Cn(ε)e−εx.

Using this fact, Corollary 10.31 and induction gives

n!λ−n−1 =

(
− d

dλ

)n
λ−1 =

∫
[0,∞)

(
− d

dλ

)n
e−λxdm(x)

=

∫
[0,∞)

xne−λxdm(x).

That is

n! = λn
∫

[0,∞)

xne−λxdm(x). (10.13)

Remark 10.44. Corollary 10.31 may be generalized by allowing the hypothesis to
hold for x ∈ X \E where E ∈ B is a fixed null set, i.e. E must be independent
of t. Consider what happens if we formally apply Corollary 10.31 to g(t) :=∫∞

0
1x≤tdm(x),

ġ(t) =
d

dt

∫ ∞
0

1x≤tdm(x)
?
=

∫ ∞
0

∂

∂t
1x≤tdm(x).

The last integral is zero since ∂
∂t1x≤t = 0 unless t = x in which case it is not

defined. On the other hand g(t) = t so that ġ(t) = 1. (The reader should decide
which hypothesis of Corollary 10.31 has been violated in this example.)

Exercise 10.4 (Folland 2.28 on p. 60.). Compute the following limits and
justify your calculations:

1. lim
n→∞

∫∞
0

sin( xn )

(1+ x
n )n dx.

2. lim
n→∞

∫ 1

0
1+nx2

(1+x2)n dx

3. lim
n→∞

∫∞
0

n sin(x/n)
x(1+x2) dx

4. For all a ∈ R compute,

f (a) := lim
n→∞

∫ ∞
a

n(1 + n2x2)−1dx.

Exercise 10.5 (Integration by Parts). Suppose that f, g : R→ R are two
continuously differentiable functions such that f ′g, fg′, and fg are all Lebesgue
integrable functions on R. Prove the following integration by parts formula;∫

R
f ′ (x) · g (x) dx = −

∫
R
f (x) · g′ (x) dx. (10.14)

Similarly show that if Suppose that f, g : [0,∞)→ [0,∞) are two continuously
differentiable functions such that f ′g, fg′, and fg are all Lebesgue integrable
functions on [0,∞), then∫ ∞

0

f ′ (x) · g (x) dx = −f (0) g (0)−
∫ ∞

0

f (x) · g′ (x) dx. (10.15)

Outline: 1. First notice that Eq. (10.14) holds if f (x) = 0 for |x| ≥ N for
some N <∞ by undergraduate calculus.

2. Let ψ : R→ [0, 1] be a continuously differentiable function such that
ψ (x) = 1 if |x| ≤ 1 and ψ (x) = 0 if |x| ≥ 2. For any ε > 0 let ψε(x) = ψ(εx)
Write out the identity in Eq. (10.14) with f (x) being replaced by f (x)ψε (x) .

3. Now use the dominated convergence theorem to pass to the limit as ε ↓ 0
in the identity you found in step 2.

4. A similar outline works to prove Eq. (10.15).

Definition 10.45 (Gamma Function). The Gamma function, Γ : R+ →
R+ is defined by

Γ (x) :=

∫ ∞
0

ux−1e−udu =

∫ ∞
0

uxe−u
du

u
(10.16)

(The reader should check that Γ (x) <∞ for all x > 0.)

Here are some of the more basic properties of this function.

Example 10.46 (Γ – function properties). Let Γ be the gamma function, then;

1. Γ (1) = 1 as is easily verified.
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2. Γ (x+ 1) = xΓ (x) for all x > 0 as follows by integration by parts;

Γ (x+ 1) =

∫ ∞
0

e−u ux du =

∫ ∞
0

ux
(
− d

du
e−u

)
du

= x

∫ ∞
0

ux−1 e−u du = x Γ (x).

In particular, it follows from items 1. and 2. and induction that

Γ (n+ 1) = n! for all n ∈ N. (10.17)

(Equation (10.17) was also proved in Eq. (10.13).)
3. Γ (1/2) =

√
π. This last assertion is a bit trickier. One proof is to make use

of the fact (proved below in Lemma 14.19) that∫ ∞
−∞

e−ar
2

dr =

√
π

a
for all a > 0. (10.18)

Taking a = 1 and making the change of variables, u = r2 below implies,

√
π =

∫ ∞
−∞

e−r
2

dr = 2

∫ ∞
0

u−1/2e−udu = Γ (1/2) .

Γ (1/2) = 2

∫ ∞
0

e−r
2

dr =

∫ ∞
−∞

e−r
2

dr

= I1(1) =
√
π.

4. A simple induction argument using items 2. and 3. now shows that

Γ

(
n+

1

2

)
=

(2n− 1)!!

2n
√
π

where (−1)!! := 1 and (2n− 1)!! = (2n− 1) (2n− 3) . . . 3 · 1 for n ∈
N.Letting the mesh of Π tend to zero using the uniform continuity of f
then shows λ (f) = µ (f) .

10.4 Densities and Change of Variables Theorems

Exercise 10.6 (Measures and Densities). Let (X,M, µ) be a measure
space and ρ : X → [0,∞] be a measurable function. For A ∈ M, set
ν(A) :=

∫
A
ρdµ.

1. Show ν :M→ [0,∞] is a measure.

2. Let f : X → [0,∞] be a measurable function, show∫
X

fdν =

∫
X

fρdµ. (10.19)

Hint: first prove the relationship for characteristic functions, then for sim-
ple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X → C is in L1(ν) iff |f | ρ ∈ L1(µ)
and if f ∈ L1(ν) then Eq. (10.19) still holds.

Notation 10.47 It is customary to informally describe ν defined in Exercise
10.6 by writing dν = ρdµ.

Exercise 10.7 (Abstract Change of Variables Formula). Let (X,M, µ)
be a measure space, (Y,F) be a measurable space and f : X → Y be a mea-
surable map. Recall that ν = f∗µ : F → [0,∞] defined by ν(A) := µ(f−1(A))
for all A ∈ F is a measure on F .

1. Show ∫
Y

gdν =

∫
X

(g ◦ f) dµ (10.20)

for all measurable functions g : Y → [0,∞].Hint: see the hint from Exercise
10.6.

2. Show a measurable function g : Y → C is in L1(ν) iff g ◦f ∈ L1(µ) and that
Eq. (10.20) holds for all g ∈ L1(ν).

Example 10.48. Suppose (Ω,B, P ) is a probability space and {Xi}ni=1 are ran-
dom variables on Ω with ν := LawP (X1, . . . , Xn) , then

E [g (X1, . . . , Xn)] =

∫
Rn
g dν

for all g : Rn → R which are Borel measurable and either bounded or non-
negative. This follows directly from Exercise 10.7 with f := (X1, . . . , Xn) :
Ω → Rn and µ = P.

Remark 10.49. As a special case of Example 10.48, suppose that X is a random
variable on a probability space, (Ω,B, P ) , and F (x) := P (X ≤ x) . Then

E [f (X)] =

∫
R
f (x) dF (x) (10.21)

where dF (x) is shorthand for dµF (x) and µF is the unique probability measure
on (R,BR) such that µF ((−∞, x]) = F (x) for all x ∈ R. Moreover if F : R →
[0, 1] happens to be C1-function, then
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dµF (x) = F ′ (x) dm (x) (10.22)

and Eq. (10.21) may be written as

E [f (X)] =

∫
R
f (x)F ′ (x) dm (x) . (10.23)

To verify Eq. (10.22) it suffices to observe, by the fundamental theorem of
calculus, that

µF ((a, b]) = F (b)− F (a) =

∫ b

a

F ′ (x) dx =

∫
(a,b]

F ′dm.

From this equation we may deduce that µF (A) =
∫
A
F ′dm for all A ∈ BR.

Equation 10.23 now follows from Exercise 10.6.

Exercise 10.8. Let F : R → R be a C1-function such that F ′(x) > 0 for all
x ∈ R and limx→±∞ F (x) = ±∞. (Notice that F is strictly increasing so that
F−1 : R→ R exists and moreover, by the inverse function theorem that F−1 is
a C1 – function.) Let m be Lebesgue measure on BR and

ν(A) = m(F (A)) = m(
(
F−1

)−1
(A)) =

(
F−1
∗ m

)
(A)

for all A ∈ BR. Show dν = F ′dm. Use this result to prove the change of variable
formula, ∫

R
h ◦ F · F ′dm =

∫
R
hdm (10.24)

which is valid for all Borel measurable functions h : R→ [0,∞].
Hint: Start by showing dν = F ′dm on sets of the form A = (a, b] with

a, b ∈ R and a < b. Then use the uniqueness assertions in Exercise 7.1 to
conclude dν = F ′dm on all of BR. To prove Eq. (10.24) apply Exercise 10.7
with g = h ◦ F and f = F−1.

10.5 Square Integrable Random Variables and
Correlations

Suppose that (Ω,B, P ) is a probability space. We say that X : Ω → R is
integrable if X ∈ L1 (P ) and square integrable if X ∈ L2 (P ) . When X is
integrable we let aX := EX be the mean of X.

Now suppose that X,Y : Ω → R are two square integrable random variables.
Since

0 ≤ |X − Y |2 = |X|2 + |Y |2 − 2 |X| |Y | ,

it follows that

|XY | ≤ 1

2
|X|2 +

1

2
|Y |2 ∈ L1 (P ) .

In particular by taking Y = 1, we learn that |X| ≤ 1
2

(
1 +

∣∣X2
∣∣) which shows

that every square integrable random variable is also integrable.

Definition 10.50. The covariance, Cov (X,Y ) , of two square integrable ran-
dom variables, X and Y, is defined by

Cov (X,Y ) = E [(X − aX) (Y − aY )] = E [XY ]− EX · EY

where aX := EX and aY := EY. The variance of X,

Var (X) := Cov (X,X) = E
[
X2
]
− (EX)

2
(10.25)

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] =
EX · EY. More generally we say {Xk}nk=1 ⊂ L2 (P ) are uncorrelated iff
Cov (Xi, Xj) = 0 for all i 6= j.

It follows from Eq. (10.25) that

Var (X) ≤ E
[
X2
]

for all X ∈ L2 (P ) . (10.26)

Lemma 10.51. The covariance function, Cov (X,Y ) is bilinear in X and
Y and Cov (X,Y ) = 0 if either X or Y is constant. For any constant k,
Var (X + k) = Var (X) and Var (kX) = k2 Var (X) . If {Xk}nk=1 are uncor-
related L2 (P ) – random variables, then

Var (Sn) =

n∑
k=1

Var (Xk) .

Proof. We leave most of this simple proof to the reader. As an example of
the type of argument involved, let us prove Var (X + k) = Var (X) ;

Var (X + k) = Cov (X + k,X + k) = Cov (X + k,X) + Cov (X + k, k)

= Cov (X + k,X) = Cov (X,X) + Cov (k,X)

= Cov (X,X) = Var (X) ,

wherein we have used the bilinearity of Cov (·, ·) and the property that
Cov (Y, k) = 0 whenever k is a constant.

Exercise 10.9 (A Weak Law of Large Numbers). Assume {Xn}∞n=1 is a
sequence if uncorrelated square integrable random variables which are identi-

cally distributed, i.e. Xn
d
= Xm for all m,n ∈ N. Let Sn :=

∑n
k=1Xk, µ := EXk

and σ2 := Var (Xk) (these are independent of k). Show;
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E
[
Sn
n

]
= µ,

E
(
Sn
n
− µ

)2

= Var

(
Sn
n

)
=
σ2

n
, and

P

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
≤ σ2

nε2

for all ε > 0 and n ∈ N. (Compare this with Exercise 5.18.)

10.6 Medians

Definition 10.52 (Medians). Suppose (Ω,B, P ) is a probability space and X :
Ω → R is a random variable. We then let We say m ∈ R is a median of X if

median (X) := {m ∈ R : P (X ≥ m) ∧ P (X ≤ m) ≥ 1/2}

and call any element m ∈ median (X) ⊂ R a median of X.

Example 10.53. Suppose −∞ < a < b <∞ and X is a simple random variable
such that P (X = a) = 1

2 = P (X = b) . It is then an easy exercise to see
that median (X) = [a, b] . Similarly if X is a simple random variable such that
P (X = a) = 1/4 and P (X = b) = 3/4, then median (X) = {b} .

Recall if X is an L2 (P ) - random variable and µ = EX, then for any a ∈ R,

E [X − a]
2

= E [X − µ+ (µ− a)]
2

= E (X − µ)
2

+ 2 (µ− a)E (X − µ) + (µ− a)
2

= E (X − µ)
2

+ (µ− a)
2

so that
µ = arg min

a
E [X − a]

2
.

In the problems below along with Remark 10.55 you will show

median (X) = arg min
a
E |X − a| .

Example 10.54. Suppose that dµ (x) = 1
(β−α)1α≤x≤βdx on (R,BR) and X (x) =

x. Then median (X) = β+α
2 while for α ≤ a ≤ β,

F (x) := (β − α)E |X − a| = −
∫ a

α

(x− a) dx+

∫ β

a

(x− a) dx

=
1

2

[
(α− a)

2
+ (β − a)

2
]
.

As simple calculus exercise shows this function is minimized at a = α+β
2 and

F

(
α+ β

2

)
=

(β − α)
2

4
.

Exercise 10.10. Let (Ω,B, P ) be a probability space and X : Ω → R is a
random variable. Prove the following assertions.

1. If a < b and a, b ∈ median (X) , then [a, b] ⊂ median (X) .
2. If

m− := inf {m ∈ R : P (X ≤ m) ≥ 1/2} and

m+ := sup {m ∈ R : P (X ≥ m) ≥ 1/2} ,

show −∞ < m− ≤ m+ < ∞ and median (X) = [m−,m+] . [In particular
median (X) 6= ∅.]

3. If I = [a, b] is a bounded closed interval such that P (X ∈ I) ≥ 1/2, then
either {a, b} ∩median (X) 6= ∅ or median (X) ⊂ (a, b) .

Exercise 10.11. Let (Ω,B, P ) be a probability space, X ∈ L1 (P : R) , and
m ∈ median (X) . Show for any 1 ≤ p <∞ and a ∈ R that

|m− a|p ≤ 2E [|X − a|p] . (10.27)

[In particular, by taking a = EX and p = 2 it follows that3

|m− EX| ≤
√

2 Var (X)

and if Var (X) is small the medians of X and mean, EX, must be close. ] Hint:
you may find it useful to consider two case, m > a and m < a.

Exercise 10.12 (L1-minimization). Let (Ω,B, P ) be a probability space,
X ∈ L1 (P : R) , and m ∈ median (X) . Show

E |X − a| ≥ E |X −m| for all a ∈ R. (10.28)

Hints:

1. Let Y = X −m and α = a −m, then 0 ∈ median (Y ) = median (X) −m
and Eq. (10.28) is then equivalent to proving

E |Y − α| ≥ E |Y | for all α ∈ R. (10.29)

2. A simple exercise shows for α > 0 that

|Y − α| − |Y | = −α1Y≥α + (α− 2Y ) 10<Y<α + α1Y≤0 (10.30)

≥ −α1Y >0 + α1Y≤0. (10.31)
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Fig. 10.1. Graph of |y − 3| − |y| .

3. Integrate Eq. (10.31) to find to prove Eq. (10.29) for α > 0.
4. If α < 0 show that you may use item 3. by replacing Y by −Y.

Remark 10.55. Suppose again the 0 ∈ median (Y ) and α > 0. From Eq. (10.30)
it follows that

|Y − α| − |Y | = −α1Y≥α + α1Y <α − 2Y · 10<Y<α

and integrating this identity implies,

E |Y − α| − E |Y | = −αP (Y ≥ α) + αP (Y < α)− 2E [Y 10<Y<α]

= α (1− 2P (Y ≥ α))− 2E [Y 10<Y<α]

≥ α (1− 2P (Y ≥ α)) .

Thus if E |Y − α| = E |Y | we conclude that 0 ≥ 1 − 2P (Y ≥ α) , i.e. that
P (Y ≥ α) ≥ 1/2. Since P (Y ≤ α) ≥ P (Y ≥ 0) ≥ 1/2 it follows that α ∈
median (Y ) . A similar argument (or by replacing Y by −Y ) we may also con-
clude that E |Y − α| = E |Y | implies α ∈ median (Y ) when α < 0. Consequently,
it is not hard to now conclude that m ∈ median (X) iff

E |X −m| = min
a∈R

E |X − a| .

10.7 Some Common Distributions

10.7.1 Some Discrete Distributions

Exercise 10.13. Let d ∈ N, Ω = Nd0, B = 2Ω , µ : B → N0 ∪ {∞} be counting
measure on Ω, and for x ∈ Rd and ω ∈ Ω, let xω := xω1

1 . . . xωnn . Further suppose
that f : Ω → C is function and ri > 0 for 1 ≤ i ≤ d such that

3 One may remove the factor of 2 here by using the next problem along with Hölder’s
or Jensen’s inequalites which has not yet been covered.

∑
ω∈Ω
|f (ω)| rω =

∫
Ω

|f (ω)| rωdµ (ω) <∞,

where r := (r1, . . . , rd) . Show;

1. There is a constant, C <∞ such that |f (ω)| ≤ C
rω for all ω ∈ Ω.

2. Let

U :=
{
x ∈ Rd : |xi| < ri ∀ i

}
and Ū =

{
x ∈ Rd : |xi| ≤ ri ∀ i

}
Show

∑
ω∈Ω |f (ω)xω| < ∞ for all x ∈ Ū and the function, F : U → R

defined by

F (x) =
∑
ω∈Ω

f (ω)xω is continuous on Ū .

3. Show, for all x ∈ U and 1 ≤ i ≤ d, that

∂

∂xi
F (x) =

∑
ω∈Ω

ωif (ω)xω−ei

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the ith – standard basis vector on Rd.
4. For any α ∈ Ω, let ∂α :=

(
∂
∂x1

)α1

. . .
(

∂
∂xd

)αd
and α! :=

∏d
i=1 αi! Explain

why we may now conclude that

∂αF (x) =
∑
ω∈Ω

α!f (ω)xω−α for all x ∈ U. (10.32)

5. Conclude that f (α) = (∂αF )(0)
α! for all α ∈ Ω.

6. If g : Ω → C is another function such that
∑
ω∈Ω g (ω)xω =

∑
ω∈Ω f (ω)xω

for x in a neighborhood of 0 ∈ Rd, then g (ω) = f (ω) for all ω ∈ Ω.

Definition 10.56 (Generating Function). Suppose that N : Ω → N0 is an
integer valued random variable on a probability space, (Ω,B, P ) . The generating
function associated to N is defined by

GN (z) := E
[
zN
]

=

∞∑
n=0

P (N = n) zn for |z| ≤ 1. (10.33)

By Corollary 10.32, it follows that P (N = n) = 1
n!G

(n)
N (0) so that GN can

be used to completely recover the distribution of N.

Proposition 10.57 (Generating Functions). The generating function sat-
isfies,

G
(k)
N (z) = E

[
N (N − 1) . . . (N − k + 1) zN−k

]
for |z| < 1
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and
G(k) (1) = lim

z↑1
G(k) (z) = E [N (N − 1) . . . (N − k + 1)] ,

where it is possible that one and hence both sides of this equation are infinite.
In particular, G′ (1) := limz↑1G

′ (z) = EN and if EN2 <∞,

Var (N) = G′′ (1) +G′ (1)− [G′ (1)]
2
. (10.34)

Proof. By Corollary 10.32 for |z| < 1,

G
(k)
N (z) =

∞∑
n=0

P (N = n) · n (n− 1) . . . (n− k + 1) zn−k

= E
[
N (N − 1) . . . (N − k + 1) zN−k

]
. (10.35)

Since, for z ∈ (0, 1) ,

0 ≤ N (N − 1) . . . (N − k + 1) zN−k ↑ N (N − 1) . . . (N − k + 1) as z ↑ 1,

we may apply the MCT to pass to the limit as z ↑ 1 in Eq. (10.35) to find,

G(k) (1) = lim
z↑1

G(k) (z) = E [N (N − 1) . . . (N − k + 1)] .

Exercise 10.14 (Some Discrete Distributions). Let p ∈ (0, 1] and λ > 0.
In the four parts below, the distribution of N will be described. You should
work out the generating function, GN (z) , in each case and use it to verify the
given formulas for EN and Var (N) .

1. Bernoulli(p) : P (N = 1) = p and P (N = 0) = 1 − p. You should find
EN = p and Var (N) = p− p2.

2. Binomial(n, p) : P (N = k) =
(
n
k

)
pk (1− p)n−k for k = 0, 1, . . . , n.

(P (N = k) is the probability of k successes in a sequence of n indepen-
dent yes/no experiments with probability of success being p.) You should
find EN = np and Var (N) = n

(
p− p2

)
.

3. Geometric(p) : P (N = k) = p (1− p)k−1
for k ∈ N. (P (N = k) is the

probability that the kth – trial is the first time of success out a sequence
of independent trials with probability of success being p.) You should find
EN = 1/p and Var (N) = 1−p

p2 .

4. Poisson(λ) : P (N = k) = λk

k! e
−λ for all k ∈ N0. You should find EN = λ =

Var (N) .

Exercise 10.15 (A law of rare events). Let Sn,p
d
= Binomial(n, p), k ∈ N,

pn = λn/n where λn → λ > 0 as n→∞. Show that

lim
n→∞

P (Sn,pn = k) =
λk

k!
e−λ = P (Poisson (λ) = k) .

[See Exercise 10.14 for the definitions of the distributions being used here.
Interpretation. Given a large n ∈ N, k ∈ N with k << n, and p = O (1/n),

then

P (Binomial (n, p) = k) ∼= P (Poisson (pn) = k) =
(pn)

k

k!
e−pn.

(We will come back to the Poisson distribution and the related Poisson process
later on.)

10.7.2 Continuous Distributions

Definition 10.58 (Moment Generating Function). Let (Ω,B, P ) be a
probability space and X : Ω → R a random variable. The moment gener-
ating function of X is MX : R→ [0,∞] defined by

MX (t) := E
[
etX
]
.

Proposition 10.59. Suppose there exists ε > 0 such that E
[
eε|X|

]
< ∞, then

MX (t) is a smooth function of t ∈ (−ε, ε) and

MX (t) =

∞∑
n=0

tn

n!
EXn if |t| ≤ ε. (10.36)

In particular,

EXn =

(
d

dt

)n
|t=0MX (t) for all n ∈ N0. (10.37)

Proof. If |t| ≤ ε, then

E

[ ∞∑
n=0

|t|n

n!
|X|n

]
≤ E

[ ∞∑
n=0

εn

n!
|X|n

]
= E

[
eε|X|

]
<∞.

it etX ≤ eε|X| for all |t| ≤ ε. Hence it follows from Corollary 10.29 that, for
|t| ≤ ε,

MX (t) = E
[
etX
]

= E

[ ∞∑
n=0

tn

n!
Xn

]
=

∞∑
n=0

tn

n!
EXn.

Equation (10.37) now is a consequence of Corollary 10.32.
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Example 10.60 (Uniform Distribution). Suppose that X has the uniform distri-
bution in [0, b] for some b ∈ (0,∞) , i.e. X∗P = 1

b ·m on [0, b] . More explicitly,

E [f (X)] =
1

b

∫ b

0

f (x) dx for all bounded measurable f.

The moment generating function for X is;

MX (t) =
1

b

∫ b

0

etxdx =
1

bt

(
etb − 1

)
=

∞∑
n=1

1

n!
(bt)

n−1
=

∞∑
n=0

bn

(n+ 1)!
tn.

On the other hand (see Proposition 10.59),

MX (t) =

∞∑
n=0

tn

n!
EXn.

Thus it follows that

EXn =
bn

n+ 1
.

Of course this may be calculated directly just as easily,

EXn =
1

b

∫ b

0

xndx =
1

b (n+ 1)
xn+1|b0 =

bn

n+ 1
.

Definition 10.61. A random variable T ≥ 0 is said to be exponential with
parameter λ ∈ [0,∞) provided, P (T > t) = e−λt for all t ≥ 0. We will write

T
d
= E (λ) for short.

If λ > 0, we have

P (T > t) = e−λt =

∫ ∞
t

λe−λτdτ

from which it follows that P (T ∈ (t, t+ dt)) = λ1t≥0e
−λtdt. Applying Corollary

10.31 repeatedly implies,

ET =

∫ ∞
0

τλe−λτdτ = λ

(
− d

dλ

)∫ ∞
0

e−λτdτ = λ

(
− d

dλ

)
λ−1 = λ−1

and more generally that

ET k =

∫ ∞
0

τke−λτλdτ = λ

(
− d

dλ

)k ∫ ∞
0

e−λτdτ = λ

(
− d

dλ

)k
λ−1 = k!λ−k.

(10.38)

In particular we see that

Var (T ) = 2λ−2 − λ−2 = λ−2. (10.39)

Alternatively we may compute the moment generating function for T,

MT (a) := E
[
eaT
]

=

∫ ∞
0

eaτλe−λτdτ

=

∫ ∞
0

eaτλe−λτdτ =
λ

λ− a
=

1

1− aλ−1
(10.40)

which is valid for a < λ. On the other hand (see Proposition 10.59), we know
that

E
[
eaT
]

=

∞∑
n=0

an

n!
E [Tn] for |a| < λ. (10.41)

Comparing this with Eq. (10.40) again shows that Eq. (10.38) is valid.
Here is yet another way to understand and generalize Eq. (10.40). We simply

make the change of variables, u = λτ in the integral in Eq. (10.38) to learn,

ET k = λ−k
∫ ∞

0

uke−udτ = λ−kΓ (k + 1) .

This last equation is valid for all k ∈ (−1,∞) – in particular k need not be an
integer.

Theorem 10.62 (Memoryless property). A random variable, T ∈ (0,∞]
has an exponential distribution iff it satisfies the memoryless property:

P (T > s+ t|T > s) = P (T > t) for all s, t ≥ 0,

where as usual, P (A|B) := P (A ∩B) /P (B) when p (B) > 0. (Note that T
d
=

E (0) means that P (T > t) = e0t = 1 for all t > 0 and therefore that T = ∞
a.s.)

Proof. (The following proof is taken from [32].) Suppose first that T
d
= E (λ)

for some λ > 0. Then

P (T > s+ t|T > s) =
P (T > s+ t)

P (T > s)
=
e−λ(s+t)

e−λs
= e−λt = P (T > t) .

For the converse, let g (t) := P (T > t) , then by assumption,

g (t+ s)

g (s)
= P (T > s+ t|T > s) = P (T > t) = g (t)
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whenever g (s) 6= 0 and g (t) is a decreasing function. Therefore if g (s) = 0 for
some s > 0 then g (t) = 0 for all t > s. Thus it follows that

g (t+ s) = g (t) g (s) for all s, t ≥ 0.

Since T > 0, we know that g (1/n) = P (T > 1/n) > 0 for some n and
therefore, g (1) = g (1/n)

n
> 0 and we may write g (1) = e−λ for some 0 ≤ λ <

∞.
Observe for p, q ∈ N, g (p/q) = g (1/q)

p
and taking p = q then shows,

e−λ = g (1) = g (1/q)
q
. Therefore, g (p/q) = e−λp/q so that g (t) = e−λt for all

t ∈ Q+ := Q ∩ R+. Given r, s ∈ Q+ and t ∈ R such that r ≤ t ≤ s we have,
since g is decreasing, that

e−λr = g (r) ≥ g (t) ≥ g (s) = e−λs.

Hence letting s ↑ t and r ↓ t in the above equations shows that g (t) = e−λt for

all t ∈ R+ and therefore T
d
= E (λ) .

We now turn to the all important Gaussian (normal) random variables.

Definition 10.63 (Normal / Gaussian Random Variables). A random
variable, Y, is normal with mean µ standard deviation σ2 iff

P (Y ∈ B) =
1√

2πσ2

∫
B

e−
1

2σ2 (y−µ)2

dy for all B ∈ BR. (10.42)

We will abbreviate this by writing Y
d
= N

(
µ, σ2

)
. When µ = 0 and σ2 = 1 we

will simply write N for N (0, 1) and if Y
d
= N, we will say Y is a standard

normal random variable.

Observe that Eq. (10.42) is equivalent to writing

E [f (Y )] =
1√

2πσ2

∫
R
f (y) e−

1
2σ2 (y−µ)2

dy

for all bounded measurable functions, f : R→ R. Also observe that Y
d
=

N
(
µ, σ2

)
is equivalent to Y

d
= σN+µ. Indeed, by making the change of variable,

y = σx+ µ, we find

E [f (σN + µ)] =
1√
2π

∫
R
f (σx+ µ) e−

1
2x

2

dx

=
1√
2π

∫
R
f (y) e−

1
2σ2 (y−µ)2 dy

σ
=

1√
2πσ2

∫
R
f (y) e−

1
2σ2 (y−µ)2

dy.

Lastly the constant,
(
2πσ2

)−1/2
is chosen so that

1√
2πσ2

∫
R
e−

1
2σ2 (y−µ)2

dy =
1√
2π

∫
R
e−

1
2y

2

dy = 1,

see Example 10.46 and Lemma 14.19.

Exercise 10.16. Suppose that X
d
= N (0, 1) and f : R→ R is a C1 – function

such that Xf (X) , f ′ (X) and f (X) are all integrable random variables. Show

E [Xf (X)] = − 1√
2π

∫
R
f (x)

d

dx
e−

1
2x

2

dx

=
1√
2π

∫
R
f ′ (x) e−

1
2x

2

dx = E [f ′ (X)] .

Example 10.64. Suppose that X
d
= N (0, 1) and define αk := E

[
X2k

]
for all

k ∈ N0. By Exercise 10.16,

αk+1 = E
[
X2k+1 ·X

]
= (2k + 1)αk with α0 = 1.

Hence it follows that

α1 = α0 = 1, α2 = 3α1 = 3, α3 = 5 · 3

and by a simple induction argument,

EX2k = αk = (2k − 1)!!, (10.43)

where (−1)!! := 0. Actually we can use the Γ – function to say more. Namely
for any β > −1,

E |X|β =
1√
2π

∫
R
|x|β e− 1

2x
2

dx =

√
2

π

∫ ∞
0

xβe−
1
2x

2

dx.

Now make the change of variables, y = x2/2 (i.e. x =
√

2y and dx = 1√
2
y−1/2dy)

to learn,

E |X|β =
1√
π

∫ ∞
0

(2y)
β/2

e−yy−1/2dy

=
1√
π

2β/2
∫ ∞

0

y(β+1)/2e−yy−1dy =
1√
π

2β/2Γ

(
β + 1

2

)
. (10.44)

Exercise 10.17. Suppose that X
d
= N (0, 1) and λ ∈ R. Show

f (λ) := E
[
eiλX

]
= exp

(
−λ2/2

)
. (10.45)

Hint: Use Corollary 10.31 to show, f ′ (λ) = iE
[
XeiλX

]
and then use Exercise

10.16 to see that f ′ (λ) satisfies a simple ordinary differential equation.
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Exercise 10.18. Suppose that X
d
= N (0, 1) and t ∈ R. Show E

[
etX
]

=

exp
(
t2/2

)
. (You could follow the hint in Exercise 10.17 or you could use a

completion of the squares argument along with the translation invariance of
Lebesgue measure.)

Exercise 10.19. Use Exercise 10.18 and Proposition 10.59 to give another

proof that EX2k = (2k − 1)!! when X
d
= N (0, 1) .

Exercise 10.20. Let X
d
= N (0, 1) and α ∈ R, find ρ : R+ → R+ := (0,∞)

such that

E [f (|X|α)] =

∫
R+

f (x) ρ (x) dx

for all continuous functions, f : R+ → R with compact support in R+.

Lemma 10.65 (Gaussian tail estimates). Suppose that X is a standard
normal random variable, i.e.

P (X ∈ A) =
1√
2π

∫
A

e−x
2/2dx for all A ∈ BR,

then for all x ≥ 0,

P (X ≥ x) ≤ min

(
1

2
− x√

2π
e−x

2/2,
1√
2πx

e−x
2/2

)
≤ 1

2
e−x

2/2. (10.46)

Moreover (see [35, Lemma 2.5]),

P (X ≥ x) ≥ max

(
1− x√

2π
,

x

x2 + 1

1√
2π
e−x

2/2

)
(10.47)

which combined with Eq. (10.46) proves Mill’s ratio (see [18]);

lim
x→∞

P (X ≥ x)
1√
2πx

e−x2/2
= 1. (10.48)

Proof. See Figure 10.2 where; the green curve is the plot of P (X ≥ x) , the
black is the plot of

min

(
1

2
− 1√

2πx
e−x

2/2,
1√
2πx

e−x
2/2

)
,

the red is the plot of 1
2e
−x2/2, and the blue is the plot of

max

(
1

2
− x√

2π
,

x

x2 + 1

1√
2π
e−x

2/2

)
.

Fig. 10.2. Plots of P (X ≥ x) and its estimates.

The formal proof of these estimates for the reader who is not convinced by
Figure 10.2 is given below.

We begin by observing that

P (X ≥ x) =
1√
2π

∫ ∞
x

e−y
2/2dy ≤ 1√

2π

∫ ∞
x

y

x
e−y

2/2dy

≤ − 1√
2π

1

x
e−y

2/2|−∞x =
1√
2π

1

x
e−x

2/2. (10.49)

If we only want to prove Mill’s ratio (10.48), we could proceed as follows. Let
α > 1, then for x > 0,

P (X ≥ x) =
1√
2π

∫ ∞
x

e−y
2/2dy

≥ 1√
2π

∫ αx

x

y

αx
e−y

2/2dy = − 1√
2π

1

αx
e−y

2/2|y=αx
y=x

=
1√
2π

1

αx
e−x

2/2
[
1− e−α

2x2/2
]

from which it follows,

lim inf
x→∞

[√
2πxex

2/2 · P (X ≥ x)
]
≥ 1/α ↑ 1 as α ↓ 1.

The estimate in Eq. (10.49) shows lim supx→∞

[√
2πxex

2/2 · P (X ≥ x)
]
≤ 1.

To get more precise estimates, we begin by observing,

P (X ≥ x) =
1

2
− 1√

2π

∫ x

0

e−y
2/2dy (10.50)

≤ 1

2
− 1√

2π

∫ x

0

e−x
2/2dy ≤ 1

2
− 1√

2π
e−x

2/2x.
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This equation along with Eq. (10.49) gives the first equality in Eq. (10.46). To
prove the second equality observe that

√
2π > 2, so

1√
2π

1

x
e−x

2/2 ≤ 1

2
e−x

2/2 if x ≥ 1.

For x ≤ 1 we must show,

1

2
− x√

2π
e−x

2/2 ≤ 1

2
e−x

2/2

or equivalently that f (x) := ex
2/2 −

√
2
πx ≤ 1 for 0 ≤ x ≤ 1. Since f is convex(

f ′′ (x) =
(
x2 + 1

)
ex

2/2 > 0
)
, f (0) = 1 and f (1) ∼= 0.85 < 1, it follows that

f ≤ 1 on [0, 1] . This proves the second inequality in Eq. (10.46).
It follows from Eq. (10.50) that

P (X ≥ x) =
1

2
− 1√

2π

∫ x

0

e−y
2/2dy

≥ 1

2
− 1√

2π

∫ x

0

1dy =
1

2
− 1√

2π
x for all x ≥ 0.

So to finish the proof of Eq. (10.47) we must show,

f (x) :=
1√
2π
xe−x

2/2 −
(
1 + x2

)
P (X ≥ x)

=
1√
2π

[
xe−x

2/2 −
(
1 + x2

) ∫ ∞
x

e−y
2/2dy

]
≤ 0 for all 0 ≤ x <∞.

This follows by observing that f (0) = −1/2 < 0, limx↑∞ f (x) = 0 and

f ′ (x) =
1√
2π

[
e−x

2/2
(
1− x2

)
− 2xP (X ≥ x) +

(
1 + x2

)
e−x

2/2
]

= 2

(
1√
2π
e−x

2/2 − xP (X ≥ y)

)
≥ 0,

where the last inequality is a consequence Eq. (10.46).

10.8 Stirling’s Formula

On occasion one is faced with estimating an integral of the form,
∫
J
e−G(t)dt,

where J = (a, b) ⊂ R and G (t) is a C1 – function with a unique (for simplicity)
global minimum at some point t0 ∈ J. The idea is that the majority contribu-
tion of the integral will often come from some neighborhood, (t0 − α, t0 + α) ,

of t0. Moreover, it may happen that G (t) can be well approximated on this
neighborhood by its Taylor expansion to order 2;

G (t) ∼= G (t0) +
1

2
G̈ (t0) (t− t0)

2
.

Notice that the linear term is zero since t0 is a minimum and therefore Ġ (t0) =
0. We will further assume that G̈ (t0) 6= 0 and hence G̈ (t0) > 0. Under these
hypothesis we will have,∫

J

e−G(t)dt ∼= e−G(t0)

∫
|t−t0|<α

exp

(
−1

2
G̈ (t0) (t− t0)

2

)
dt.

Making the change of variables, s =
√
G̈ (t0) (t− t0) , in the above integral then

gives,∫
J

e−G(t)dt ∼=
1√
G̈ (t0)

e−G(t0)

∫
|s|<
√
G̈(t0)·α

e−
1
2 s

2

ds

=
1√
G̈ (t0)

e−G(t0)

[
√

2π −
∫ ∞
√
G̈(t0)·α

e−
1
2 s

2

ds

]

=
1√
G̈ (t0)

e−G(t0)

√2π −O

 1√
G̈ (t0) · α

e−
1
2 G̈(t0)·α2

 .
If α is sufficiently large, for example if

√
G̈ (t0) · α = 3, then the error term is

about 0.0037 and we should be able to conclude that∫
J

e−G(t)dt ∼=

√
2π

G̈ (t0)
e−G(t0). (10.51)

The proof of the next theorem (Stirling’s formula for the Gamma function) will
illustrate these ideas and what one has to do to carry them out rigorously.

Theorem 10.66 (Stirling’s formula). The Gamma function (see Definition
10.45), satisfies Stirling’s formula,

lim
x→∞

Γ (x+ 1)√
2πe−xxx+1/2

= 1. (10.52)

In particular, if n ∈ N, we have

n! = Γ (n+ 1) ∼
√

2πe−nnn+1/2

where we write an ∼ bn to mean, limn→∞
an
bn

= 1. (See Example 10.71 below
for a slightly cruder but more elementary estimate of n!)
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Proof. (The following proof is an elaboration of the proof found on page
236-237 in Krantz’s Real Analysis and Foundations.) We begin with the formula
for Γ (x+ 1) ;

Γ (x+ 1) =

∫ ∞
0

e−ttxdt =

∫ ∞
0

e−Gx(t)dt, (10.53)

where
Gx (t) := t− x ln t.

Then Ġx (t) = 1−x/t, G̈x (t) = x/t2, Gx has a global minimum (since G̈x > 0)
at t0 = x where

Gx (x) = x− x lnx and G̈x (x) = 1/x.

So if Eq. (10.51) is valid in this case we should expect,

Γ (x+ 1) ∼=
√

2πxe−(x−x ln x) =
√

2πe−xxx+1/2

which would give Stirling’s formula. The rest of the proof will be spent on
rigorously justifying the approximations involved.

Let us begin by making the change of variables s =
√
G̈ (t0) (t− t0) =

1√
x

(t− x) as suggested above. Then

Gx (t)−Gx (x) = (t− x)− x ln (t/x) =
√
xs− x ln

(
x+
√
xs

x

)
= x

[
s√
x
− ln

(
1 +

s√
x

)]
= s2q

(
s√
x

)
where

q (u) :=
1

u2
[u− ln (1 + u)] for u > −1 with q (0) :=

1

2
.

Setting q (0) = 1/2 makes q a continuous and in fact smooth function on
(−1,∞) , see Figure 10.3. Using the power series expansion for ln (1 + u) we
find,

q (u) =
1

2
+

∞∑
k=3

(−u)
k−2

k
for |u| < 1. (10.54)

Making the change of variables, t = x +
√
xs in the second integral in Eq.

(10.53) yields,

Γ (x+ 1) = e−(x−x ln x)
√
x

∫ ∞
−
√
x

e
−q
(
s√
x

)
s2
ds = xx+1/2e−x · I (x) ,

where

I (x) =

∫ ∞
−
√
x

e
−q
(
s√
x

)
s2
ds =

∫ ∞
−∞

1s≥−
√
x · e

−q
(
s√
x

)
s2
ds. (10.55)

Fig. 10.3. Plot of q (u) .

From Eq. (10.54) it follows that limu→0 q (u) = 1/2 and therefore,∫ ∞
−∞

lim
x→∞

[
1s≥−

√
x · e

−q
(
s√
x

)
s2
]
ds =

∫ ∞
−∞

e−
1
2 s

2

ds =
√

2π. (10.56)

So if there exists a dominating function, F ∈ L1 (R,m) , such that

1s≥−
√
x · e

−q
(
s√
x

)
s2 ≤ F (s) for all s ∈ R and x ≥ 1,

we can apply the DCT to learn that limx→∞ I (x) =
√

2π which will complete
the proof of Stirling’s formula.

We now construct the desired function F. From Eq. (10.54) it follows that
q (u) ≥ 1/2 for −1 < u ≤ 0. Since u− ln (1 + u) > 0 for u 6= 0 (u− ln (1 + u) is
convex and has a minimum of 0 at u = 0) we may conclude that q (u) > 0 for
all u > −1 therefore by compactness (on [0,M ]), min−1<u≤M q (u) = ε (M) > 0
for all M ∈ (0,∞) , see Remark 10.67 for more explicit estimates. Lastly, since
1
u ln (1 + u)→ 0 as u→∞, there exists M <∞ (M = 3 would due) such that
1
u ln (1 + u) ≤ 1

2 for u ≥M and hence,

q (u) =
1

u

[
1− 1

u
ln (1 + u)

]
≥ 1

2u
for u ≥M.

So there exists ε > 0 and M <∞ such that (for all x ≥ 1),
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1s≥−
√
xe
−q
(
s√
x

)
s2 ≤ 1−

√
x<s≤Me

−εs2 + 1s≥Me
−
√
xs/2

≤ 1−
√
x<s≤Me

−εs2 + 1s≥Me
−s/2

≤ e−εs
2

+ e−|s|/2 =: F (s) ∈ L1 (R, ds) .

We will sometimes use the following variant of Eq. (10.52);

lim
x→∞

Γ (x)√
2π
x

(
x
e

)x = 1 (10.57)

To prove this let x go to x− 1 in Eq. (10.52) in order to find,

1 = lim
x→∞

Γ (x)
√

2πe−x · e · (x− 1)
x−1/2

= lim
x→∞

Γ (x)√
2π
x

(
x
e

)x ·√ x
x−1 · e ·

(
1− 1

x

)x
which gives Eq. (10.57) since

lim
x→∞

√
x

x− 1
· e ·

(
1− 1

x

)x
= 1.

Remark 10.67 (Estimating q (u) by Taylor’s Theorem). Another way to estimate
q (u) is to use Taylor’s theorem with integral remainder. In general if h is C2 –
function on [0, 1] , then by the fundamental theorem of calculus and integration
by parts,

h (1)− h (0) =

∫ 1

0

ḣ (t) dt = −
∫ 1

0

ḣ (t) d (1− t)

= −ḣ (t) (1− t) |10 +

∫ 1

0

ḧ (t) (1− t) dt

= ḣ (0) +
1

2

∫ 1

0

ḧ (t) dν (t) (10.58)

where dν (t) := 2 (1− t) dt which is a probability measure on [0, 1] . Applying
this to h (t) = F (a+ t (b− a)) for a C2 – function on an interval of points
between a and b in R then implies,

F (b)− F (a) = (b− a) Ḟ (a) +
1

2
(b− a)

2
∫ 1

0

F̈ (a+ t (b− a)) dν (t) . (10.59)

(Similar formulas hold to any order.) Applying this result with F (x) = x −
ln (1 + x) , a = 0, and b = u ∈ (−1,∞) gives,

u− ln (1 + u) =
1

2
u2

∫ 1

0

1

(1 + tu)
2 dν (t) ,

i.e.

q (u) =
1

2

∫ 1

0

1

(1 + tu)
2 dν (t) .

From this expression for q (u) it now easily follows that

q (u) ≥ 1

2

∫ 1

0

1

(1 + 0)
2 dν (t) =

1

2
if − 1 < u ≤ 0

and

q (u) ≥ 1

2

∫ 1

0

1

(1 + u)
2 dν (t) =

1

2 (1 + u)
2 .

So an explicit formula for ε (M) is ε (M) = (1 +M)
−2
/2.

10.8.1 Two applications of Stirling’s formula

In this subsection suppose x ∈ (0, 1) and Sn
d
=Binomial(n, x) for all n ∈ N, i.e.

Px (Sn = k) =

(
n

k

)
xk (1− x)

n−k
for 0 ≤ k ≤ n. (10.60)

Recall that ESn = nx and Var (Sn) = nσ2 where σ2 := x (1− x) . The weak
law of large numbers states (Exercise 5.18) that

P

(∣∣∣∣Snn − x
∣∣∣∣ ≥ ε) ≤ 1

nε2
σ2

and therefore, Snn is concentrating near its mean value, x, for n large, i.e. Sn ∼=
nx for n large. The next central limit theorem describes the fluctuations of Sn
about nx.

Theorem 10.68 (De Moivre-Laplace Central Limit Theorem). For all
−∞ < a < b <∞,

lim
n→∞

P

(
a ≤ Sn − nx

σ
√
n
≤ b
)

=
1√
2π

∫ b

a

e−
1
2y

2

dy

= P (a ≤ N ≤ b)

where N
d
= N (0, 1) . Informally, Sn−nx

σ
√
n

d∼= N or equivalently, Sn
d∼= nx+σ

√
n·N

which if valid in a neighborhood of nx whose length is order
√
n.

Page: 126 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



10.8 Stirling’s Formula 127

Proof. (We are not going to cover all the technical details in this proof as
we will give much more general versions of this theorem later.) Starting with
the definition of the Binomial distribution we have,

pn := P

(
a ≤ Sn − nx

σ
√
n
≤ b
)

= P
(
Sn ∈ nx+ σ

√
n [a, b]

)
=

∑
k∈nx+σ

√
n[a,b]

P (Sn = k)

=
∑

k∈nx+σ
√
n[a,b]

(
n

k

)
xk (1− x)

n−k
.

Letting k = nx+σ
√
nyk, i.e. yk = (k − nx) /σ

√
n we see that ∆yk = yk+1−yk =

1/ (σ
√
n) . Therefore we may write pn as

pn =
∑

yk∈[a,b]

σ
√
n

(
n

k

)
xk (1− x)

n−k
∆yk. (10.61)

So to finish the proof we need to show, for k = O (
√
n) (yk = O (1)), that

σ
√
n

(
n

k

)
xk (1− x)

n−k ∼ 1√
2π
e−

1
2y

2
k as n→∞ (10.62)

in which case the sum in Eq. (10.61) may be well approximated by the “Riemann
sum;”

pn ∼
∑

yk∈[a,b]

1√
2π
e−

1
2y

2
k∆yk →

1√
2π

∫ b

a

e−
1
2y

2

dy as n→∞.

By Stirling’s formula,

σ
√
n

(
n

k

)
= σ
√
n

1

k!

n!

(n− k)!
∼ σ
√
n√

2π

nn+1/2

kk+1/2 (n− k)
n−k+1/2

=
σ√
2π

1(
k
n

)k+1/2 (
1− k

n

)n−k+1/2

=
σ√
2π

1(
x+ σ√

n
yk

)k+1/2 (
1− x− σ√

n
yk

)n−k+1/2

∼ σ√
2π

1√
x (1− x)

1(
x+ σ√

n
yk

)k (
1− x− σ√

n
yk

)n−k
=

1√
2π

1(
x+ σ√

n
yk

)k (
1− x− σ√

n
yk

)n−k .

In order to shorten the notation, let zk := σ√
n
yk = O

(
n−1/2

)
so that k =

nx+ nzk = n (x+ zk) . In this notation we have shown,

√
2πσ
√
n

(
n

k

)
xk (1− x)

n−k ∼ xk (1− x)
n−k

(x+ zk)
k

(1− x− zk)
n−k

=
1(

1 + 1
xzk
)k (

1− 1
1−xzk

)n−k
=

1(
1 + 1

xzk
)n(x+zk)

(
1− 1

1−xzk

)n(1−x−zk)
=: q (n, k) .

(10.63)

Taking logarithms and using Taylor’s theorem we learn

n (x+ zk) ln

(
1 +

1

x
zk

)
= n (x+ zk)

(
1

x
zk −

1

2x2
z2
k +O

(
n−3/2

))
= nzk +

n

2x
z2
k +O

(
n−3/2

)
and

n (1− x− zk) ln

(
1− 1

1− x
zk

)
= n (1− x− zk)

(
− 1

1− x
zk −

1

2 (1− x)
2 z

2
k +O

(
n−3/2

))
= −nzk +

n

2 (1− x)
z2
k +O

(
n−3/2

)
.

and then adding these expressions shows,

− ln q (n, k) =
n

2
z2
k

(
1

x
+

1

1− x

)
+O

(
n−3/2

)
=

n

2σ2
z2
k +O

(
n−3/2

)
=

1

2
y2
k +O

(
n−3/2

)
.

Combining this with Eq. (10.63) shows,

σ
√
n

(
n

k

)
xk (1− x)

n−k ∼ 1√
2π

exp

(
−1

2
y2
k +O

(
n−3/2

))
which gives the desired estimate in Eq. (10.62).

The previous central limit theorem has shown that
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Sn
n

d∼= x+
σ√
n
N

which implies the major fluctuations of Sn/n occur within intervals about x

of length O
(

1√
n

)
. The next result aims to understand the rare events where

Sn/n makes a “large” deviation from its mean value, x – in this case a large
deviation is something of size O (1) as n→∞.

Theorem 10.69 (Binomial Large Deviation Bounds). Let us continue to
use the notation in Theorem 10.68. Then for all y ∈ (0, x) ,

lim
n→∞

1

n
lnPx

(
Sn
n
≤ y
)

= y ln
x

y
+ (1− y) ln

1− x
1− y

.

Roughly speaking,

Px

(
Sn
n
≤ y
)
≈ e−nIx(y)

where Ix (y) is the “rate function,”

Ix (y) := y ln
y

x
+ (1− y) ln

1− y
1− x

,

see Figure 10.4 for the graph of I1/2.

Fig. 10.4. A plot of the rate function, I1/2.

Proof. By definition of the binomial distribution,

Px

(
Sn
n
≤ y
)

= Px (Sn ≤ ny) =
∑
k≤ny

(
n

k

)
xk (1− x)

n−k
.

If ak ≥ 0, then we have the following crude estimates on
∑m−1
k=0 ak,

max
k<m

ak ≤
m−1∑
k=0

ak ≤ m ·max
k<m

ak. (10.64)

In order to apply this with ak =
(
n
k

)
xk (1− x)

n−k
and m = [ny] , we need to

find the maximum of the ak for 0 ≤ k ≤ ny. This is easy to do since ak is
increasing for 0 ≤ k ≤ ny as we now show. Consider,

ak+1

ak
=

(
n
k+1

)
xk+1 (1− x)

n−k−1(
n
k

)
xk (1− x)

n−k

=
k! (n− k)! · x

(k + 1)! · (n− k − 1)! · (1− x)

=
(n− k) · x

(k + 1) · (1− x)
.

Therefore, where the latter expression is greater than or equal to 1 iff

ak+1

ak
≥ 1 ⇐⇒ (n− k) · x ≥ (k + 1) · (1− x)

⇐⇒ nx ≥ k + 1− x ⇐⇒ k < (n− 1)x− 1.

Thus for k < (n− 1)x− 1 we may conclude that
(
n
k

)
xk (1− x)

n−k
is increasing

in k.
Thus the crude bound in Eq. (10.64) implies,(
n

[ny]

)
x[ny] (1− x)

n−[ny] ≤ Px
(
Sn
n
≤ y
)
≤ [ny]

(
n

[ny]

)
x[ny] (1− x)

n−[ny]

or equivalently,

1

n
ln

[(
n

[ny]

)
x[ny] (1− x)

n−[ny]

]
≤ 1

n
lnPx

(
Sn
n
≤ y
)

≤ 1

n
ln

[
(ny)

(
n

[ny]

)
x[ny] (1− x)

n−[ny]

]
.
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By Stirling’s formula, for k such that k and n− k is large we have,(
n

k

)
∼ 1√

2π

nn+1/2

kk+1/2 · (n− k)
n−k+1/2

=

√
n√
2π

1(
k
n

)k+1/2 ·
(
1− k

n

)n−k+1/2

and therefore,

1

n
ln

(
n

k

)
∼ −k

n
ln

(
k

n

)
−
(

1− k

n

)
ln

(
1− k

n

)
.

So taking k = [ny] , we learn that

lim
n→∞

1

n
ln

(
n

[ny]

)
= −y ln y − (1− y) ln (1− y)

and therefore,

lim
n→∞

1

n
lnPx

(
Sn
n
≤ y
)

= −y ln y − (1− y) ln (1− y) + y lnx+ (1− y) ln (1− x)

= y ln
x

y
+ (1− y) ln

(
1− x
1− y

)
.

As a consistency check it is worth noting, by Jensen’s inequality described
below, that

−Ix (y) = y ln
x

y
+ (1− y) ln

(
1− x
1− y

)
≤ ln

(
y
x

y
+ (1− y)

1− x
1− y

)
= ln (1) = 0.

This must be the case since

−Ix (y) = lim
n→∞

1

n
lnPx

(
Sn
n
≤ y
)
≤ lim
n→∞

1

n
ln 1 = 0.

10.8.2 A primitive Stirling type approximation

Theorem 10.70. Suppose that f : (0,∞) → R is an increasing concave down
function (like f (x) = lnx) and let sn :=

∑n
k=1 f (k) , then

sn −
1

2
(f (n) + f (1)) ≤

∫ n

1

f (x) dx

≤ sn −
1

2
[f (n+ 1) + 2f (1)] +

1

2
f (2)

≤ sn −
1

2
[f (n) + 2f (1)] +

1

2
f (2) .

Proof. On the interval, [k − 1, k] , we have that f (x) is larger than the
straight line segment joining (k − 1, f (k − 1)) and (k, f (k)) and thus

1

2
(f (k) + f (k − 1)) ≤

∫ k

k−1

f (x) dx.

Summing this equation on k = 2, . . . , n shows,

sn −
1

2
(f (n) + f (1)) =

n∑
k=2

1

2
(f (k) + f (k − 1))

≤
n∑
k=2

∫ k

k−1

f (x) dx =

∫ n

1

f (x) dx.

For the upper bound on the integral we observe that f (x) ≤ f (k)−f ′ (k) (x− k)
for all x and therefore,∫ k

k−1

f (x) dx ≤
∫ k

k−1

[f (k)− f ′ (k) (x− k)] dx = f (k)− 1

2
f ′ (k) .

Summing this equation on k = 2, . . . , n then implies,∫ n

1

f (x) dx ≤
n∑
k=2

f (k)− 1

2

n∑
k=2

f ′ (k) .

Since f ′′ (x) ≤ 0, f ′ (x) is decreasing and therefore f ′ (x) ≤ f ′ (k − 1) for x ∈
[k − 1, k] and integrating this equation over [k − 1, k] gives

f (k)− f (k − 1) ≤ f ′ (k − 1) .

Summing the result on k = 3, . . . , n+ 1 then shows,
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f (n+ 1)− f (2) ≤
n∑
k=2

f ′ (k)

and thus ti follows that∫ n

1

f (x) dx ≤
n∑
k=2

f (k)− 1

2
(f (n+ 1)− f (2))

= sn −
1

2
[f (n+ 1) + 2f (1)] +

1

2
f (2)

≤ sn −
1

2
[f (n) + 2f (1)] +

1

2
f (2)

Example 10.71 (Approximating n!). Let us take f (n) = lnn and recall that∫ n

1

lnxdx = n lnn− n+ 1.

Thus we may conclude that

sn −
1

2
lnn ≤ n lnn− n+ 1 ≤ sn −

1

2
lnn+

1

2
ln 2.

Thus it follows that(
n+

1

2

)
lnn− n+ 1− ln

√
2 ≤ sn ≤

(
n+

1

2

)
lnn− n+ 1.

Exponentiating this identity then implies,

e√
2
· e−nnn+1/2 ≤ n! ≤ e · e−nnn+1/2

which compares well with Strirling’s formula (Theorem 10.66) which states,

n! ∼
√

2πe−nnn+1/2.

Observe that

e√
2
∼= 1. 922 1 ≤

√
2π ∼= 2. 506 ≤ e ∼= 2.718 3.

10.9 More Exercises

Exercise 10.21. Let µ be a measure on an algebraA ⊂ 2X , then µ(A)+µ(B) =
µ(A ∪B) + µ(A ∩B) for all A,B ∈ A.

Exercise 10.22 (From problem 12 on p. 27 of Folland.). Let (X,M, µ)
be a finite measure space and for A,B ∈ M let ρ(A,B) = µ(A 4 B) where
A4B = (A \B) ∪ (B \A) . It is clear that ρ (A,B) = ρ (B,A) . Show:

1. ρ satisfies the triangle inequality:

ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈M.

2. Define A ∼ B iff µ(A 4 B) = 0 and notice that ρ (A,B) = 0 iff A ∼ B.
Show “∼ ” is an equivalence relation.

3. Let M/ ∼ denote M modulo the equivalence relation, ∼, and let [A] :=
{B ∈M : B ∼ A} . Show that ρ̄ ([A] , [B]) := ρ (A,B) is gives a well defined
metric on M/ ∼ .

4. Similarly show µ̃ ([A]) = µ (A) is a well defined function onM/ ∼ and show
µ̃ : (M/ ∼)→ R+ is ρ̄ – continuous.

Exercise 10.23. Suppose that µn :M→ [0,∞] are measures onM for n ∈ N.
Also suppose that µn(A) is increasing in n for all A ∈M. Prove that µ :M→
[0,∞] defined by µ(A) := limn→∞ µn(A) is also a measure.

Exercise 10.24. Now suppose that Λ is some index set and for each λ ∈ Λ,
µλ : M → [0,∞] is a measure on M. Define µ : M → [0,∞] by µ(A) =∑
λ∈Λ µλ(A) for each A ∈M. Show that µ is also a measure.

Exercise 10.25. Let (X,M, µ) be a measure space and {An}∞n=1 ⊂M, show

µ({An a.a.}) ≤ lim inf
n→∞

µ (An)

and if µ (∪m≥nAm) <∞ for some n, then

µ({An i.o.}) ≥ lim sup
n→∞

µ (An) .

Exercise 10.26 (Folland 2.13 on p. 52.). Suppose that {fn}∞n=1 is a se-
quence of non-negative measurable functions such that fn → f pointwise and

lim
n→∞

∫
fn =

∫
f <∞.

Then ∫
E

f = lim
n→∞

∫
E

fn

for all measurable sets E ∈M. The conclusion need not hold if limn→∞
∫
fn =∫

f. Hint: “Fatou times two.”
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Exercise 10.27. Give examples of measurable functions {fn} on R such that
fn decreases to 0 uniformly yet

∫
fndm = ∞ for all n. Also give an example

of a sequence of measurable functions {gn} on [0, 1] such that gn → 0 while∫
gndm = 1 for all n.

Exercise 10.28. Suppose {an}∞n=−∞ ⊂ C is a summable sequence (i.e.∑∞
n=−∞ |an| < ∞), then f(θ) :=

∑∞
n=−∞ ane

inθ is a continuous function for
θ ∈ R and

an =
1

2π

∫ π

−π
f(θ)e−inθdθ.

Exercise 10.29. For any function f ∈ L1 (m) , show x ∈
R→

∫
(−∞,x]

f (t) dm (t) is continuous in x. Also find a finite measure, µ,

on BR such that x→
∫

(−∞,x]
f (t) dµ (t) is not continuous.

Exercise 10.30. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is
wrong by a factor of −1 and the sum is on k = 1 to ∞. In part (e), s should be
taken to be a. You may also freely use the Taylor series expansion

(1− z)−1/2 =

∞∑
n=0

(2n− 1)!!

2nn!
zn =

∞∑
n=0

(2n)!

4n (n!)
2 z

n for |z| < 1.

Exercise 10.31. Prove Lemma 11.2.

Exercise 10.32. In each case below find L (allowing for values of ±∞) and
justify the calculations:

1. L = lim
n→∞

∫ 1

0

min (nx, 1)

x
dx,

2. L = lim
n→∞

∫ ∞
0

e−n
2x2

cos
(
e−n

2x
)
n2xdx, and

3. L = lim
n→∞

∫ ∞
−∞

e−|x−nπ/2| sin

(
1

n
x

)
dx.





11

* More Measure Theory Results

The results in this chapter are highly optional on first reading.

11.1 Comparison of the Lebesgue and the Riemann
Integral*

For the rest of this chapter, let −∞ < a < b < ∞ and f : [a, b] → R be a
bounded function. A partition of [a, b] is a finite subset π ⊂ [a, b] containing
{a, b}. To each partition

π = {a = t0 < t1 < · · · < tn = b} (11.1)

of [a, b] let
mesh(π) := max{|tj − tj−1| : j = 1, . . . , n},

Mj = sup{f(x) : tj ≤ x ≤ tj−1}, mj = inf{f(x) : tj ≤ x ≤ tj−1}

Gπ = f(a)1{a} +

n∑
1

Mj1(tj−1,tj ], gπ = f(a)1{a} +

n∑
1

mj1(tj−1,tj ] and

Sπf =
∑

Mj(tj − tj−1) and sπf =
∑

mj(tj − tj−1).

Notice that

Sπf =

∫ b

a

Gπdm and sπf =

∫ b

a

gπdm.

The upper and lower Riemann integrals are defined respectively by∫ b

a

f(x)dx = inf
π
Sπf and

∫ a

b

f(x)dx = sup
π

sπf.

Definition 11.1. The function f is Riemann integrable iff
∫ b
a
f =

∫ b
a
f ∈ R

and which case the Riemann integral
∫ b
a
f is defined to be the common value:∫ b

a

f(x)dx =

∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

The proof of the following Lemma is left to the reader as Exercise 10.31.

Lemma 11.2. If π′ and π are two partitions of [a, b] and π ⊂ π′ then

Gπ ≥ Gπ′ ≥ f ≥ gπ′ ≥ gπ and

Sπf ≥ Sπ′f ≥ sπ′f ≥ sπf.

There exists an increasing sequence of partitions {πk}∞k=1 such that mesh(πk) ↓
0 and

Sπkf ↓
∫ b

a

f and sπkf ↑
∫ b

a

f as k →∞.

If we let
G := lim

k→∞
Gπk and g := lim

k→∞
gπk (11.2)

then by the dominated convergence theorem,∫
[a,b]

gdm = lim
k→∞

∫
[a,b]

gπk = lim
k→∞

sπkf =

∫ b

a

f(x)dx (11.3)

and∫
[a,b]

Gdm = lim
k→∞

∫
[a,b]

Gπk = lim
k→∞

Sπkf =

∫ b

a

f(x)dx. (11.4)

Notation 11.3 For x ∈ [a, b], let

H(x) = lim sup
y→x

f(y) := lim
ε↓0

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} and

h(x) = lim inf
y→x

f(y) := lim
ε↓0

inf {f(y) : |y − x| ≤ ε, y ∈ [a, b]}.

Lemma 11.4. The functions H,h : [a, b]→ R satisfy:

1. h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b] and h(x) = H(x) iff f is continuous
at x.

2. If {πk}∞k=1 is any increasing sequence of partitions such that mesh(πk) ↓ 0
and G and g are defined as in Eq. (11.2), then

G(x) = H(x) ≥ f(x) ≥ h(x) = g(x) ∀ x /∈ π := ∪∞k=1πk. (11.5)

(Note π is a countable set.)
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3. H and h are Borel measurable.

Proof. Let Gk := Gπk ↓ G and gk := gπk ↑ g.

1. It is clear that h(x) ≤ f(x) ≤ H(x) for all x and H(x) = h(x) iff lim
y→x

f(y)

exists and is equal to f(x). That is H(x) = h(x) iff f is continuous at x.
2. For x /∈ π,

Gk(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ gk(x) ∀ k

and letting k →∞ in this equation implies

G(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ g(x) ∀ x /∈ π. (11.6)

Moreover, given ε > 0 and x /∈ π,

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} ≥ Gk(x)

for all k large enough, since eventually Gk(x) is the supremum of f(y) over
some interval contained in [x − ε, x + ε]. Again letting k → ∞ implies

sup
|y−x|≤ε

f(y) ≥ G(x) and therefore, that

H(x) = lim sup
y→x

f(y) ≥ G(x)

for all x /∈ π. Combining this equation with Eq. (11.6) then implies H(x) =
G(x) if x /∈ π. A similar argument shows that h(x) = g(x) if x /∈ π and
hence Eq. (11.5) is proved.

3. The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set π,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 11.5. Let f : [a, b]→ R be a bounded function. Then∫ b

a

f =

∫
[a,b]

Hdm and

∫ b

a

f =

∫
[a,b]

hdm (11.7)

and the following statements are equivalent:

1. H(x) = h(x) for m -a.e. x,
2. the set

E := {x ∈ [a, b] : f is discontinuous at x}

is an m̄ – null set.
3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measurable1, i.e. f is L/B –
measurable where L is the Lebesgue σ – algebra and B is the Borel σ – algebra
on [a, b]. Moreover if we let m̄ denote the completion of m, then∫

[a,b]

Hdm =

∫ b

a

f(x)dx =

∫
[a,b]

fdm̄ =

∫
[a,b]

hdm. (11.8)

Proof. Let {πk}∞k=1 be an increasing sequence of partitions of [a, b] as de-
scribed in Lemma 11.2 and let G and g be defined as in Lemma 11.4. Since
m(π) = 0, H = G a.e., Eq. (11.7) is a consequence of Eqs. (11.3) and (11.4).
From Eq. (11.7), f is Riemann integrable iff∫

[a,b]

Hdm =

∫
[a,b]

hdm

and because h ≤ f ≤ H this happens iff h(x) = H(x) for m - a.e. x. Since
E = {x : H(x) 6= h(x)}, this last condition is equivalent to E being a m – null
set. In light of these results and Eq. (11.5), the remaining assertions including
Eq. (11.8) are now consequences of Lemma 11.20.

Notation 11.6 In view of this theorem we will often write
∫ b
a
f(x)dx for∫ b

a
fdm.

11.2 Riesz Markov Theorem for [0, 1]d and Rd

Before getting to the main theorem let us begin with a few basic generalities. For
the moment suppose (X, ρ) be a metric space. For example, it will be sufficient
to take X to be a subset of Rd and ρ to be the usual Euclidean metric. Let
Cc (X) denote the compactly supported real valued continuous functions on
X. If X is compact we simply write C (X) for Cc (X) . For f ∈ Cc (X) we let
‖f‖∞ := maxx∈X |f (x)| .

Definition 11.7. A positive linear functional, I, on Cc (X) is a linear map,
I : Cc (X)→ R such that I (f) ≥ 0 whenever f ≥ 0.

Example 11.8. If µ is any measure on (X,BX) with µ (K) <∞ for all compact
subset K ⊂ X, then I (f) := µ (f) :=

∫
X
fdµ is a positive linear functional on

Cc (X) . The Riesz Markov theorem states under certain assumptions on (X, ρ)
that the converse result is true as well.

Proposition 11.9. If I is a positive linear functional on Cc(X) and K is a
compact subset of X, then there exists CK <∞ such that |I(f)| ≤ CK‖f‖∞ for
all f ∈ Cc(X) with supp(f) ⊂ K.
1 f need not be Borel measurable.
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Proof. By Urysohn’s Lemma for metric spaces (see Lemma 2.22 or also ??),
there exists ϕ ∈ Cc(X, [0, 1]) such that ϕ = 1 on K. Then for all f ∈ Cc(X,R)
such that supp(f) ⊂ K, |f | ≤ ‖f‖∞ϕ or equivalently ‖f‖∞ϕ ± f ≥ 0. Hence
‖f‖∞I(ϕ)± I(f) ≥ 0 or equivalently, |I(f)| ≤ ‖f‖∞I(ϕ). Letting CK := I(ϕ),
we have shown that |I (f)| ≤ CK‖f‖∞ for all f ∈ Cc(X,R) with supp(f) ⊂ K.
For general f ∈ Cc(X,C) with supp(f) ⊂ K, choose |α| = 1 such that αI(f) ≥
0. Then

|I (f)| = αI(f) = I(α f) = I(Re(αf)) ≤ CK‖Re (αf) ‖∞ ≤ CK‖f‖∞.

Notation 11.10 Let C (X)↓ = {f∞ : X → [−∞,∞)| ∃ fn ∈ C (X) 3 fn ↓ f∞}
where fn ↓ f∞ means fn (x) ≥ fn+1 (x) for all n ∈ N and x ∈ X and
f∞ (x) = limn→∞ fn (x) ∈ [−∞,∞) for all x ∈ X.

Example 11.11. If F is a closed subset of X, then 1F ∈ C (X)↓ . To prove this
first observe that ρF (x) := inf {ρ (x, y) : y ∈ F} ≥ 0 is a continuous function
such that ρF (x) = 0 iff x ∈ F. Now let hn : [0,∞) → [0, 1] be defined by
hn (t) = max {0, 1− nt} so that hn ↓ 1{0}. It then follows that fn := hn ◦ ρF ∈
C (X) with fn ↓ 1{0} ◦ ρF = 1F .

Theorem 11.12. Suppose that X is compact and λ is a positive linear func-
tional on C (X) . Then λ satisfies;

1. If fn, f ∈ C (X) and fn ↓ f∞ ∈ C (X)↓ with f∞ ≤ f, then limn→∞ λ (fn) ≤
λ (f) .

2. If fn, gn ∈ C (X) such that fn ↓ f∞ and gn ↓ g∞ (pointwise) with f∞ ≤ g∞,
then limn→∞ λ (fn) ≤ limn→∞ λ (gn) . In particular if fn ↓ f∞ and gn ↓ f∞,
then limn→∞ then limn→∞ λ (fn) = limn→∞ λ (gn) .

3. Because of item 2. we may extend λ to a function on C (X)↓ by setting
λ (f∞) := limn→∞ λ (fn) whenever fn ∈ C (X) with fn ↓ f∞. The extension
satisfies;

a) λ (f) ≤ λ (g) for all f, g ∈ C (X)↓ with f ≤ g and
b) for all f, g ∈ C (X)↓ and a ≥ 0, f + ag ∈ C (X)↓ and

λ (f + ag) = λ (f) + aλ (g) . (11.9)

Proof. We take each item in turn.

1. If fn, f ∈ C (X) and f∞ ∈ C (X)↓ are as in item 1., then fn ≤ fn ∨ f ↓ f
and so by Dini’s theorem it follows that fn∨f → f uniformly on X. Because
λ is a bounded linear functional (see Propositions 11.9) it follows that

lim
n→∞

λ (fn) ≤ lim
n→∞

λ (fn ∨ f) = λ (f) .

2. If fn, gn ∈ C (X) and f∞, g∞ ∈ C (X)↓ are as in item 2., then for each
m ∈ N,

fn ≤ fn ∨ gm ↓ f ∨ gm = gm as n→∞.

Hence by item 1., limn→∞ λ (fn) ≤ λ (gm) and the result follows by letting
m→∞ in this last inequality.

3. The monotinicity assertion of item 3a. follows directly from item 2. The
proof 3b. is straight forward and will be left to the reader.

Remark 11.13. Because of Theorem 11.12 and Example 11.11, if (X, ρ) is a
compact metric space and λ ∈ C (X)

∗
is a positive linear functional, then

λ (1F ) is well defined for all F closed subsets, F ⊂ X. Moreover if F1, F2 are
closed subsets of X such that F1 ⊂ F2, then λ (1F1

) ≤ λ (1F2
) . It is fact true

it this level of generality that there exists a Borel measure, µ, on (X,BX) such
that µ (F ) = λ (1F ) for closed subsets F ⊂ X. In this section we are going to

verify this assertion when X = [0, 1]
d

for d ∈ N.

Definition 11.14. To each b ∈ R and ε > 0 let ϕb,ε ∈ C (R, [0, 1]) be defined
by

ϕb,ε (x) =

 1 if x ≤ b
1− (x− b)/ε if b ≤ x ≤ b+ ε

0 if x ≥ b+ ε.
(11.10)

The key property of these functions are that ϕb,ε ↓ 1(−∞,b] as ε ↓ 0.

Theorem 11.15 (Riesz Markov Theorem for an Interval). Let X = [0, 1]
and λ ∈ C (X)

∗
be a positive linear functional. Then there exists a unique Borel

measure, µ, on BX such that

λ (f) =

∫ 1

0

fdµ for all f ∈ C (X) . (11.11)

Proof. The uniqueness is an easy consequence of the multiplicative systems
theorem and hence we will concentrate on existence. We break the existence
proof up into a number of steps.

1. For b ∈ [0, 1], let F (b) := λ
(
1[0,b]

)
which is a well defined non-decreasing

function on [0, 1] by Remark 11.13. It is also true that F is right continuous.
To prove this choose δn so that

0 < δn <
1

n
− 1

n+ 1
=

1

n (n+ 1)
. (11.12)

Then
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1[0,b+ 1
n ] ≤ fn := ϕb+ 1

n ,δn
|[0,1] ↓ 1[0,b] as n→∞

and hence

F (b+) = lim
n→∞

F

(
b+

1

n

)
≤ lim
n→∞

λ (fn) = F (b) ≤ F (b+) .

2. By item 1. and Corollary 6.35, there exists a unique measure µ on B[0,1]

such that F (b) = µ([0, b]) for all b ∈ [0, 1].
3. If a, b ∈ [0, 1] with a < b, then λ

(
1[a,b]

)
≤ µ ([a, b]) . Since

µ ([0, b]) = F (b) = λ
(
1[0,b]

)
we may assume that 0 < a ≤ b ≤ 1. For any 0 < ã < a we have,

1[0,ã] + 1[a,b] ≤ 1[0,b]

and therefore

F (ã) + λ
(
1[a,b]

)
= λ

(
1[0,ã] + 1[a,b]

)
≤ λ

(
1[0,b]

)
= F (b) .

From this equation it follows that

λ
(
1[a,b]

)
≤ F (b)− F (ã) = µ ((ã, b]) .

Letting ã ↑ a gives the desired result, namely that λ
(
1[a,b]

)
≤ µ ([a, b]) .

4. Since
∑
x∈[0,1] µ ({x}) ≤ µ ([0, 1]) < ∞, it follows that U :=

{x ∈ [0, 1] : µ ({x}) > 0} is at most a countable set.
5. (Verification of Eq. (11.11).) First assume f ∈ C (X) is non-negative, i.e.
f ≥ 0. Let

π= {0 = a0 < a1 < · · · < an = 1}

be a partition of [0, 1] where we always assume that aj ∈ U c for 1 ≤ j < n.
Let

cπi := max {|f(x)| : ai ≤ x ≤ ai+1} for 0 ≤ i < n,

and define fπ and f̂π by

fπ = c01[0,a1] +

n−1∑
i=1

ci1(ai,ai+1] and

f̂π = c01[0,a1] +

n−1∑
i=1

ci1[ai,ai+1] ∈ C ([0, 1])↓ .

It is easy to see that f ≤ fπ ≤ f̂π and that fπ → f uniformly on X. Hence
it follows that

λ (f) ≤ λ
(
f̂π

)
= c0λ

(
1[0,a1]

)
+

n−1∑
i=1

ciλ
(
1[ai,ai+1]

)
≤ c0µ ([0, a1]) +

n−1∑
i=1

ciµ ([ai, ai+1])

= c0µ ([0, a1]) +

n−1∑
i=1

ciµ ((ai, ai+1])

= µ (fπ)→ µ (f) as mesh (π)→ 0

wherein we have used µ ({ai}) = 0 for all 1 ≤ i < n in the second to last
inequality and the dominated convergence theorem to take the limit.
Thus we have shown that λ(f) ≤ µ(f) for all f ≥ 0. Since λ(1) = µ(1), if
f ∈ C (X) and M = ‖f‖∞ we find that

Mλ(1) + λ(f) = λ(f +M) ≤ µ(f +M) = µ(f) +Mµ(1)

and thus λ(f) ≤ µ(f) for all f ∈ C (X) . Replacing f by −f implies that
µ(f) ≤ λ(f) and therefore that λ(f) = µ(f).

The next theorem is the multi-dimensional extension of Theorem 11.15.
The proof will follow the same pattern as its one dimensional cousin with a
few complications due to cumbersome nature of multi-dimensional cumulative
distribution functions.

Theorem 11.16 (Multi-Dimensional Riesz Markov Theorem). Let X =
[0, 1]d and λ ∈ C (X)

∗
be a positive linear functional. Then there exists a unique

Borel measure, µ, on BX such that

λ (f) = µ (f) :=

∫
X

fdµ for all f ∈ C (X) . (11.13)

Proof. For b ∈ [0, 1]
d

and ε > 0 let ϕb,ε (x) :=
∏d
i=1 ϕbi,ε (xi) so that

ϕb,ε|X ∈ C (X) and ϕb,ε ↓ 1[0,b] as ε ↓ 0 which again shows 1[0,b] ∈ C (X)↓ .
We will carry the proof in a number of steps.

1. We start by defining F : [0, 1]
d → [0,∞) by F (b) := λ

(
1[0,b]

)
for all

b ∈ [0, 1]
d

which exists by Remark 11.13. Let µF be the unique finitely

additive measure on A
(

[0, 1]
d
)

such that

µF ({a, b]) =
∑

γ⊂{1,...,d}

εγ (−1)
|γ|
F (aγ × bγc) . (11.14)
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Notice that if a,b ∈ [0, 1]
d

with a ≤ b, then 1[0,a] ≤ 1[0,b] and so F (a) =

λ
(
1[0,a]

)
≤ λ

(
1[0,b]

)
= F (b) .

In what follows we extend F to [0,∞)d by setting F (b) :=
F (b1 ∧ 1, . . . , bd ∧ 1) .

2. Next we will show F is right continuous and µF ≥ 0 and hence there exists
a unique extension, µ, of µF to BX . We now prove these claims.

a) Right continuity of F. We must show if bn ∈ [0, 1]
d

with a ≤ bn and
limn→∞ bn = a, then limn→∞ F (bn) = F (a) . If we let cm := a+ 1

m1
for m ∈ N, we will have [0,bn] ⊂ [0, cm] for all sufficiently large n and
hence

lim sup
n→∞

F (bn) = lim sup
n→∞

λ
(
1[0,bn]

)
≤ λ

(
1[0,cm]

)
= F (cm) .

Therefore

F (a) ≤ lim inf
n→∞

F (bn) ≤ lim sup
n→∞

F (bn) ≤ lim
m→∞

F (cm)

and so to finish the proof of right continuity it suffices to show
limn→∞ F (cn) ≤ F (a) .
If we let δn > 0 be as in Eq. (11.12), then

1[0,cn] ≤ ϕcn,δn ↓ 1[0,a]

and therefore

F (cn) ≤ λ (ϕcn,δn) ↓ λ
(
1[0,a]

)
= F (a)

which shows limn→∞ F (cn) ≤ F (a) .
b) µF is positive. Let a, b ∈ [0, 1]

n
. From Eq. (5.43) we have∑

|γ| even

wγ1[0,aγ×bγc ] ≥
∑
|γ| odd

wγ1[0,aγ×bγc ]

and therefore using Theorem 11.12,

∑
|γ| even

wγF (aγ × bγc) = λ

 ∑
|γ| even

wγ

(
1[0,aγ×bγc ]

)
≥ λ

 ∑
|γ| odd

wγ1[0,aγ×bγc ]

 =
∑
|γ| odd

wγF (aγ × bγc) .

The inequality combined with Eq. (11.14) shows µF ({a, b]) ≥ 0.

3. Next we show that if a, b ∈ [0, 1]
n

with a < b then λ
(
1[a,b]

)
≤ µF ([a, b]) . To

prove this let ãi = 0 and and {ai, bi] = [0, bi] if ai = 0 and ãi ∈ (0, ai) and
{ai, bi] = (ai, bi] if ai > 0. If we further let ξγ :=

∏
i∈γ 1ai 6=0 =

∏
i∈γ 1ãi 6=0,

then we find,

1[a,b] (x) =

d∏
i=1

1[ai,bi] (xi) =

d∏
i=1

[
1[0,bi] (xi)− 1[0,ai) (xi)

]
=

d∏
i=1

[
1[0,bi] (xi)− 1ai 6=0 · 1[0,ai) (xi)

]
≤

d∏
i=1

[
1[0,bi] (xi)− 1ai 6=0 · 1[0,ãi] (xi)

]
=

∑
γ⊂{1,2,...,d}

ξγ (−1)
|γ|

1ãγ×bγc (x) .

This inequality may be rewritten as

1[a,b] +
∑
|γ| odd

ξγ1ãγ×bγc ≤
∑
|γ| even

ξγ1ãγ×bγc .

Applying λ to the last inequality and solving the result for λ
(
1[a,b]

)
shows

λ
(
1[a,b]

)
≤

∑
γ⊂{1,2,...,d}

ξγ (−1)
|γ|
λ
(
1ãγ×bγc

)
=

∑
γ⊂{1,2,...,d}

ξγ (−1)
|γ|
F (ãγ × bγc) = µF ({ã, b])

Letting ã ↑ a in this inequality then implies λ
(
1[a,b]

)
≤ µF ([a, b]) .

4. (Verification of Eq. (11.13).) Let π= {0 = s0 < s1 < · · · < sn = 1} be
partition of [0, 1] , for s = sk ∈ π \ {1} let s+ := sk+1,and let Π
be the partition of [0, 1]

n
consisting of rectangles Q of the form {a,a+]

where a = (a1, . . . , ad) ∈ [π \ {1}]n , a+ =
(
(a1)+ , . . . , (ad)+

)
, and

{a,a+] =
∏d
i=1{ai, (ai)+] with {ai, (ai)+] = (ai, (ai)+] if ai > 0 and

{ai, (ai)+] =
[
ai, (ai)+

]
if ai = 0. Let us first assume that f ∈ C (X) is

a non-negative function and for Q ∈ Π let cQ := maxx∈Q̄ f (x) and define

fπ and f̂π by

fπ :=
∑
Q∈Π

cQ1Q and f̂π :=
∑
Q∈Π

cQ1Q̄.

Since 0 ≤ f ≤ fπ ≤ f̂π ∈ C (X)↓ , we conclude that
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0 ≤ λ (f) ≤ λ
(
f̂π
)

=
∑
Q∈Π

cQλ
(
1Q̄
)
≤
∑
Q∈Π

cQµF
(
Q̄
)

(11.15)

wherein the last inequality we have used step 6.
Since ∑

u∈[0,1]

µ
({
x ∈ [0, 1]

d
: xi = u

})
≤ µ

(
[0, 1]

d
)
<∞

we conclude that

U :=
{
u ∈ [0, 1] : max

i
µ
({
x ∈ [0, 1]

d
: xi = u

})
> 0
}

is at most countable. Let us now always suppose that we have chosen π so
that π \ {0, 1} ⊂ U c in which case µF

(
Q̄
)

= µF (Q) for all Q ∈ Π. Thus
under previous restriction on π we the inequality in Eq. (11.15) becomes

0 ≤ λ (f) ≤
∑
Q∈Π

cQµF (Q) = µ (fπ) .

Since fπ → f boundedly as |π| → 0 with π \ {0, 1} ⊂ U c as above, we may
pass to the limit in the previous inequality using DCT to find 0 ≤ λ (f) ≤
µ (f) for all f ≥ 0.
For arbitrary f ∈ C (X) choose M > 0 so that M + f ≥ 0 and therefore,

Mλ (1) + λ (f) = λ (M + f) ≤ µ (M + f) = Mµ (1) + µ (f) .

As µ (1) = F (1) = λ (1) , we conclude that λ (f) ≤ µ (f) for all f ∈ C (X) .
Replacing f by −f then shows µ (f) ≤ λ (f) for all f ∈ C (X) and hence it
follows that λ (f) = µ (f) .

Theorem 11.17. Suppose that λ ∈ Cc
(

(0, 1)
d
)∗

is a positive linear functional.

Then there exists a K – finite measure µ on
(

(0, 1)
d
,B(0,1)d

)
such that λ (f) =

µ (f) for all f ∈ Cc
(

(0, 1)
d
)
.

Proof. Given ϕ ∈ Cc

(
(0, 1)

d
, [0, 1]

)
, let λϕ (f) := λ (ϕ · f) for all f ∈

Cc

(
[0, 1]

d
)
. As λϕ is a positive linear functional on C

(
[0, 1]

d
)

we may ap-

ply Theorem 11.16 to find a unique measure µϕ on
(

[0, 1]
d
,B[0,1]d

)
such that

λϕ (f) = µϕ (f) for all f ∈ C
(

[0, 1]
d
)
. We now complete the proof in a number

of steps.

1. If ψ ∈ Cc
(

(0, 1)
d
, [0, 1]

)
with ϕ ≤ ψ then µϕ ≤ µψ. To see this is the case

first observe that if F is a closed subset of [0, 1]
d

and fn ∈ C
(

[0, 1]
d
)

are

chosen so that fn ↓ 1F , then

µϕ (F ) = lim
n→∞

λϕ (fn) = lim
n→∞

λ (ϕfn) = λ (ϕ · 1F ) . (11.16)

As ϕ · 1F ≤ ψ · 1F it follows

µϕ (F ) = λ (ϕ · 1F ) ≤ λ (ψ · 1F ) = µψ (F ) .

Then using the regularity properties of µϕ and µψ (see Exercise 6.7 and/or
??) if A ∈ B[0,1]d we have,

µϕ (A) = sup {µϕ (F ) : F ⊂ A & F closed}
≤ sup {µψ (F ) : F ⊂ A & F closed} = µψ (A) . (11.17)

2. If A ∈ B[0,1]d with A ⊂ {ϕ = ψ} , then µϕ (A) = µψ (A) . Indeed if F is

a closed subset of A, then ϕ · 1F = ψ · 1F and hence from Eq. (11.16) it
follows that µϕ (F ) = µψ (F ) and in this case the inequality in Eq. (11.17)
becomes an equality.

3. Let Qn :=
[

1
n , 1−

1
n

]d
for n ≥ 3 and let ϕn ∈ Cc

(
(0, 1)

d
, [0, 1]

)
be chosen

so that 1Qn ≤ ϕn and supp (ϕn) ⊂ Qn+1 and hence ϕn ↑ 1(0,1)d . We then
define the measure µ on B(0,1)d by

µ (A) =↑ lim
n→∞

µϕn (A) ∀ A ∈ B(0,1)d .

4. An easy consequence of item 2. is that if f is a bounded B(0,1)d – measurable

function with compact support in (0, 1)
d
, then µ (f) = µϕn (f) for all n such

that supp (f) ⊂ Qn. In particular if f ∈ Cc
(

(0, 1)
d
)

with supp (f) ⊂ Qn,

then
µ (f) = µϕn (f) = λϕn (f) = λ (ϕnf) = λ (f)

and the proof is complete.

Corollary 11.18. Suppose that λ ∈ Cc
(
Rd
)∗

is a positive linear functional.

Then there exists a K – finite measure µ on
(
Rd,BRd

)
such that λ (f) = µ (f)

for all f ∈ Cc
(
Rd
)
.

Proof. The map, ψ : (0, 1) → R be defined by ψ (t) = cot−1 (t/π) is a

homeomorphism and hence so is ψ : (0, 1)
d → Rd where

ψ (t1, . . . , td) := (ψ (t1) , . . . , ψ (td)) .

Using this homeomorphic identification of (0, 1)
d

with Rd we may easily trans-
late the statement in Theorem 11.17 to the statement in the corollary.
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11.2.1 Bone yards to the proof of Theorems 11.15 11.16

Proof.

11.3 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 11.19. Suppose that (X,B, µ) is a complete measure space2 and
f : X → R is measurable.

1. If g : X → R is a function such that f(x) = g(x) for µ – a.e. x, then g is
measurable.

2. If fn : X → R are measurable and f : X → R is a function such that
limn→∞ fn = f, µ - a.e., then f is measurable as well.

Proof. 1. Let E = {x : f(x) 6= g(x)} which is assumed to be in B and
µ(E) = 0. Then g = 1Ecf + 1Eg since f = g on Ec. Now 1Ecf is measurable
so g will be measurable if we show 1Eg is measurable. For this consider,

(1Eg)−1(A) =

{
Ec ∪ (1Eg)−1(A \ {0}) if 0 ∈ A
(1Eg)−1(A) if 0 /∈ A (11.18)

Since (1Eg)−1(B) ⊂ E if 0 /∈ B and µ(E) = 0, it follow by completeness of
B that (1Eg)−1(B) ∈ B if 0 /∈ B. Therefore Eq. (11.18) shows that 1Eg is
measurable. 2. Let E = {x : lim

n→∞
fn(x) 6= f(x)} by assumption E ∈ B and

µ(E) = 0. Since g := 1Ef = limn→∞ 1Ecfn, g is measurable. Because f = g
on Ec and µ(E) = 0, f = g a.e. so by part 1. f is also measurable.

The above results are in general false if (X,B, µ) is not complete. For exam-
ple, let X = {0, 1, 2}, B = {{0}, {1, 2}, X, ϕ} and µ = δ0. Take g(0) = 0, g(1) =
1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

Lemma 11.20. Suppose that (X,M, µ) is a measure space and M̄ is the com-
pletion of M relative to µ and µ̄ is the extension of µ to M̄. Then a function
f : X → R is (M̄,B = BR) – measurable iff there exists a function g : X → R
that is (M,B) – measurable such E = {x : f(x) 6= g(x)} ∈ M̄ and µ̄ (E) = 0,
i.e. f(x) = g(x) for µ̄ – a.e. x. Moreover for such a pair f and g, f ∈ L1(µ̄) iff
g ∈ L1(µ) and in which case ∫

X

fdµ̄ =

∫
X

gdµ.

2 Recall this means that if N ⊂ X is a set such that N ⊂ A ∈ M and µ(A) = 0,
then N ∈M as well.

Proof. Suppose first that such a function g exists so that µ̄(E) = 0. Since g
is also (M̄,B) – measurable, we see from Proposition 11.19 that f is (M̄,B) –
measurable. Conversely if f is (M̄,B) – measurable, by considering f± we may
assume that f ≥ 0. Choose (M̄,B) – measurable simple function ϕn ≥ 0 such
that ϕn ↑ f as n→∞. Writing

ϕn =
∑

ak1Ak

with Ak ∈ M̄, we may choose Bk ∈M such that Bk ⊂ Ak and µ̄(Ak \Bk) = 0.
Letting

ϕ̃n :=
∑

ak1Bk

we have produced a (M,B) – measurable simple function ϕ̃n ≥ 0 such that
En := {ϕn 6= ϕ̃n} has zero µ̄ – measure. Since µ̄ (∪nEn) ≤

∑
n µ̄ (En) , there

exists F ∈M such that ∪nEn ⊂ F and µ(F ) = 0. It now follows that

1F · ϕ̃n = 1F · ϕn ↑ g := 1F f as n→∞.

This shows that g = 1F f is (M,B) – measurable and that {f 6= g} ⊂ F has µ̄
– measure zero. Since f = g, µ̄ – a.e.,

∫
X
fdµ̄ =

∫
X
gdµ̄ so to prove Eq. (11.19)

it suffices to prove ∫
X

gdµ̄ =

∫
X

gdµ. (11.19)

Because µ̄ = µ on M, Eq. (11.19) is easily verified for non-negative M –
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem 9.41 it holds for all M – measurable functions
g : X → [0,∞]. The rest of the assertions follow in the standard way by
considering (Re g)± and (Im g)± .
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12

Functional Forms of the π – λ Theorem

In this chapter we will develop a very useful function analogue of the π – λ
theorem. The results in this section will be used often in the sequel.

12.1 Multiplicative System Theorems

Notation 12.1 Let Ω be a set and H be a subset of the bounded real valued
functions on Ω. We say that H is closed under bounded convergence if; for
every sequence, {fn}∞n=1 ⊂ H, satisfying:

1. there exists M <∞ such that |fn (ω)| ≤M for all ω ∈ Ω and n ∈ N,
2. f (ω) := limn→∞ fn (ω) exists for all ω ∈ Ω, then f ∈ H.

Notation 12.2 For any σ-algebra, B ⊂ 2Ω , let B (Ω,B;R) be the bounded
B/BR-measurable functions from Ω to R.

Notation 12.3 If M is any subset of B
(
Ω, 2Ω ;R

)
, let H (M) denote the small-

est subspace of bounded functions on Ω which contains M∪{1} . (As usual such
a space exists by taking the intersection of all such spaces.)

Definition 12.4. A subset, M ⊂ B
(
Ω, 2Ω ;R

)
, is called a multiplicative sys-

tem if M is closed under finite products, i.e. f, g ∈M, then f · g ∈M.

The following result may be found in Dellacherie [7, p. 14]. The style of
proof given here may be found in Janson [23, Appendix A., p. 309].

Theorem 12.5 (Dynkin’s Multiplicative System Theorem). Suppose
that H is a vector subspace of bounded functions from Ω to R which contains the
constant functions and is closed under bounded convergence. If M ⊂ H is a mul-
tiplicative system, then H contains all bounded σ (M) – measurable functions,
i.e. H contains B (Ω, σ (M) ;R) .

Proof. We are going to in fact prove: if M ⊂ B
(
Ω, 2Ω ;R

)
is a multiplicative

system, then H (M) = B (Ω, σ (M) ;R) . This suffices to prove the theorem as
H (M) ⊂ H is contained in H by very definition of H (M) . To simplify notation
let us now assume that H = H (M) . The remainder of the proof will be broken
into five steps.

Step 1. (H is an algebra of functions.) For f ∈ H, let Hf :=
{g ∈ H : gf ∈ H} . The reader will now easily verify that Hf is a linear sub-
space of H, 1 ∈ Hf , and Hf is closed under bounded convergence. Moreover if
f ∈M, since M is a multiplicative system, M ⊂ Hf . Hence by the definition of
H, H = Hf , i.e. fg ∈ H for all f ∈ M and g ∈ H. Having proved this it now
follows for any f ∈ H that M ⊂ Hf and therefore as before, Hf = H. Thus we
may conclude that fg ∈ H whenever f, g ∈ H, i.e. H is an algebra of functions.

Step 2. (B := {A ⊂ Ω : 1A ∈ H} is a σ – algebra.) Using the fact that H
is an algebra containing constants, the reader will easily verify that B is closed
under complementation, finite intersections, and contains Ω, i.e. B is an algebra.
Using the fact that H is closed under bounded convergence, it follows that B is
closed under increasing unions and hence that B is σ – algebra.

Step 3. (B (Ω,B;R) ⊂ H) Since H is a vector space and H contains 1A
for all A ∈ B, H contains all B – measurable simple functions. Since every
bounded B – measurable function may be written as a bounded limit of such
simple functions (see Theorem 9.41), it follows that H contains all bounded B
– measurable functions.

Step 4. (σ (M) ⊂ B.) Let ϕn (x) = 0 ∨ [(nx) ∧ 1] (see Figure 12.1 below)
so that ϕn (x) ↑ 1x>0. Given f ∈ M and a ∈ R, let Fn := ϕn (f − a) and
M := supω∈Ω |f (ω)− a| . By the Weierstrass approximation Theorem 5.69, we
may find polynomial functions, pl (x) such that pl → ϕn uniformly on [−M,M ] .
Since pl is a polynomial and H is an algebra, pl (f − a) ∈ H for all l. Moreover,
pl ◦ (f − a)→ Fn uniformly as l→∞, from with it follows that Fn ∈ H for all
n. Since, Fn ↑ 1{f>a} it follows that 1{f>a} ∈ H, i.e. {f > a} ∈ B. As the sets
{f > a} with a ∈ R and f ∈M generate σ (M) , it follows that σ (M) ⊂ B.

Step 5. (H (M) = B (Ω, σ (M) ;R) .) By step 4., σ (M) ⊂ B, and so
B (Ω, σ (M) ;R) ⊂ B (Ω,B;R) which combined with step 3. shows,

B (Ω, σ (M) ;R) ⊂ B (Ω,B;R) ⊂ H (M) .

However, we know that B (Ω, σ (M) ;R) is a subspace of bounded measurable
functions containing M and therefore H (M) ⊂ B (Ω, σ (M) ;R) which suffices
to complete the proof.

Corollary 12.6. Suppose H is a subspace of bounded real valued functions such
that 1 ∈ H and H is closed under bounded convergence. If P ⊂ 2Ω is a mul-
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Fig. 12.1. Plots of ϕ1, ϕ2 and ϕ3 which are continuous functions used to approximate,
x→ 1x≥0.

tiplicative class such that 1A ∈ H for all A ∈ P, then H contains all bounded
σ(P) – measurable functions.

Proof. LetM = {1}∪{1A : A ∈ P} . ThenM ⊂ H is a multiplicative system
and the proof is completed with an application of Theorem 12.5.

Example 12.7. Suppose µ and ν are two probability measure on (Ω,B) such
that ∫

Ω

fdµ =

∫
Ω

fdν (12.1)

for all f in a multiplicative subset, M, of bounded measurable functions on Ω.
Then µ = ν on σ (M) . Indeed, apply Theorem 12.5 with H being the bounded
measurable functions on Ω such that Eq. (12.1) holds. In particular if M =
{1} ∪ {1A : A ∈ P} with P being a multiplicative class we learn that µ = ν on
σ (M) = σ (P) .

Exercise 12.1. Let Ω := {1, 2, 3, 4} and M := {1A, 1B} where A := {1, 2} and
B := {2, 3} .

a) Show σ (M) = 2Ω .
b) Find two distinct probability measures, µ and ν on 2Ω such that µ (A) =

ν (A) and µ (B) = ν (B) , i.e. Eq. (12.1) holds for all f ∈M.

Moral: the assumption that M is multiplicative can not be dropped from
Theorem 12.5.

Proposition 12.8. Suppose µ and ν are two measures on (Ω,B) , P ⊂ B is a
multiplicative system (i.e. closed under intersections as in Definition 4.10) such
that µ (A) = ν (A) for all A ∈ P. If there exists Ωn ∈ P such that Ωn ↑ Ω and
µ (Ωn) = ν (Ωn) <∞, then µ = ν on σ (P) .

Proof. Step 1. First assume that µ (Ω) = ν (Ω) < ∞ and then apply
Example 12.7 with M = {1A : A ∈ P} in order to find µ = ν on σ (M) = σ (P) .

Step 2. For the general case let µn (B) := µ (B ∩Ωn) and νn (B) :=
ν (B ∩Ωn) for all B ∈ B. Then µn = νn on P (because Ωn ∈ P) and

µn (Ω) = µ (Ωn) = ν (Ωn) = νn (Ω) .

Therefore by step 1, µn = νn on σ (P) . Passing to the limit as n → ∞ then
shows

µ (B) = lim
n→∞

µ (B ∩Ωn) = lim
n→∞

µn (B)

= lim
n→∞

νn (B) = lim
n→∞

ν (B ∩Ωn) = ν (B)

for all B ∈ σ (P).
Here is a complex version of Theorem 12.5.

Theorem 12.9 (Complex Multiplicative System Theorem). Suppose H
is a complex linear subspace of the bounded complex functions on Ω, 1 ∈ H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M ⊂ H is multiplicative system which is closed under conjugation, then H
contains all bounded complex valued σ(M)-measurable functions.

Proof. Let M0 = spanC(M∪ {1}) be the complex span of M. As the reader
should verify, M0 is an algebra, M0 ⊂ H, M0 is closed under complex conjuga-
tion and σ (M0) = σ (M) . Let

HR := {f ∈ H : f is real valued} and

MR
0 := {f ∈M0 : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and MR

0 ⊂ HR. Moreover, MR
0 is a multiplicative

system (as the reader should check) and therefore by Theorem 12.5, HR contains
all bounded σ

(
MR

0

)
– measurable real valued functions. Since H and M0 are

complex linear spaces closed under complex conjugation, for any f ∈ H or
f ∈ M0, the functions Re f = 1

2

(
f + f̄

)
and Im f = 1

2i

(
f − f̄

)
are in H or

M0 respectively. Therefore M0 = MR
0 + iMR

0 , σ
(
MR

0

)
= σ (M0) = σ (M) , and

H = HR + iHR. Hence if f : Ω → C is a bounded σ (M) – measurable function,
then f = Re f + i Im f ∈ H since Re f and Im f are in HR.

Lemma 12.10. If −∞ < a < b < ∞, there exists fn ∈ Cc (R, [0, 1]) such that
limn→∞ fn = 1(a,b].

Proof. The reader should verify limn→∞ fn = 1(a,b] where fn ∈ Cc (R, [0, 1])
is defined (for n sufficiently large) by
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fn (x) :=


0 on (−∞, a] ∪ [b+ 1

n ,∞)
n (x− a) if a ≤ x ≤ a+ 1

n
1 if a+ 1

n ≤ x ≤ b
1− n (b− x) if b ≤ x ≤ b+ 1

n

.

Fig. 12.2. Here is a plot of f2 (x) when a = 1.5 and b = 3.5.

Lemma 12.11. For each λ > 0, let eλ (x) := eiλx. Then

BR = σ (eλ : λ > 0) = σ
(
e−1
λ (W ) : λ > 0, W ∈ BR

)
.

Proof. Let S1 := {z ∈ C : |z| = 1} . For −π < α < β < π let

A (α, β) :=
{
eiθ : α < θ < β

}
= S1 ∩

{
reiθ : α < θ < β, r > 0

}
which is a measurable subset of C (why). Moreover we have eλ (x) ∈ A (α, β)
iff λx ∈

∑
n∈Z [(α, β) + 2πn] and hence

e−1
λ (A (α, β)) =

∑
n∈Z

[(
α

λ
,
β

λ

)
+ 2π

n

λ

]
∈ σ (eλ : λ > 0) .

Hence if −∞ < a < b < ∞ and λ > 0 sufficiently small so that −π < λa <
λb < π, we have

e−1
λ (A (λa, λb)) =

∑
n∈Z

[
(a, b) + 2π

n

λ

]
and hence

(a, b) = ∩λ>0e
−1
λ (A (λa, λb)) ∈ σ (eλ : λ > 0) .

This shows BR ⊂ σ (eλ : λ > 0) . As eλ is continuous and hence Borel measurable
for all λ > 0 we automatically know that σ (eλ : λ > 0) ⊂ BR.

Remark 12.12. A slight modification of the above proof actually shows if {λn} ⊂
(0,∞) with limn→∞ λn = 0, then σ (eλn : n ∈ N) = BR.

Corollary 12.13. Each of the following σ – algebras on Rd are equal to BRd ;

1.M1 := σ (∪ni=1 {x→ f (xi) : f ∈ Cc (R)}) ,
2.M2 := σ (x→ f1 (x1) . . . fd (xd) : fi ∈ Cc (R))
3.M3 = σ

(
Cc
(
Rd
))
, and

4.M4 := σ
({
x→ eiλ·x : λ ∈ Rd

})
.

Proof. As the functions defining each Mi are continuous and hence Borel
measurable, it follows thatMi ⊂ BRd for each i. So to finish the proof it suffices
to show BRd ⊂Mi for each i.
M1 case. Let a, b ∈ R with −∞ < a < b < ∞. By Lemma 12.10, there

exists fn ∈ Cc (R) such that limn→∞ fn = 1(a,b]. Therefore it follows that
x → 1(a,b] (xi) is M1 – measurable for each i. Moreover if −∞ < ai < bi < ∞
for each i, then we may conclude that

x→
d∏
i=1

1(ai,bi] (xi) = 1(a1,b1]×···×(ad,bd] (x)

is M1 – measurable as well and hence (a1, b1] × · · · × (ad, bd] ∈ M1. As such
sets generate BRd we may conclude that BRd ⊂M1.

and therefore M1 = BRd .
M2 case. As above, we may find fi,n → 1(ai,bi] as n→∞ for each 1 ≤ i ≤ d

and therefore,

1(a1,b1]×···×(ad,bd] (x) = lim
n→∞

f1,n (x1) . . . fd,n (xd) for all x ∈ Rd.

This shows that 1(a1,b1]×···×(ad,bd] is M2 – measurable and therefore (a1, b1] ×
· · · × (ad, bd] ∈M2.
M3 case. This is easy since BRd =M2 ⊂M3 ⊂ BRd .
M4 case. Let πj : Rd → R be projection onto the jth – factor, then for

λ > 0, eλ ◦ πj (x) = eiλxj . It then follows that

σ (eλ ◦ πj : λ > 0) = σ
(

(eλ ◦ πj)−1
(W ) : λ > 0,W ∈ BC

)
= σ

(
π−1
j

(
e−1
λ (W )

)
: λ > 0,W ∈ BC

)
= π−1

j

(
σ
((
e−1
λ (W )

)
: λ > 0,W ∈ BC

))
= π−1

j (BR)

wherein we have used Lemma 12.11 for the last equality. Since
σ (eλ ◦ πj : λ > 0) ⊂M4 for each j we must have

BRd =

d times︷ ︸︸ ︷
BR ⊗ · · · ⊗ BR = σ (πj : 1 ≤ j ≤ d) ⊂M4.

Alternative proof. By Lemma 12.19 below there exists gn ∈Trig(R) such
that limn→∞ gn = 1(a,b]. Since x→ gn (xi) is in the span

{
x→ eiλ·x : λ ∈ Rd

}
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for each n, it follows that x→ 1(a,b] (xi) isM4 – measurable for all −∞ < a <
b < ∞. Therefore, just as in the proof of case 1., we may now conclude that
BRd ⊂M4.

Corollary 12.14. Suppose that H is a subspace of complex valued functions on
Rd which is closed under complex conjugation and bounded convergence. If H
contains any one of the following collection of functions;

1. M := {x→ f1 (x1) . . . fd (xd) : fi ∈ Cc (R)}
2. M := Cc

(
Rd
)
, or

3. M :=
{
x→ eiλ·x : λ ∈ Rd

}
then H contains all bounded complex Borel measurable functions on Rd.

Proof. Observe that if f ∈ Cc (R) such that f (x) = 1 in a neighborhood
of 0, then fn (x) := f (x/n) → 1 as n → ∞. Therefore in cases 1. and 2., H
contains the constant function, 1, since

1 = lim
n→∞

fn (x1) . . . fn (xd) .

In case 3, 1 ∈ M ⊂ H as well. The result now follows from Theorem 12.9 and
Corollary 12.13.

Proposition 12.15 (Change of Variables Formula). Suppose that −∞ <
a < b < ∞ and u : [a, b] → R is a continuously differentiable function which
is not necessarily invertible. Let [c, d] = u ([a, b]) where c = minu ([a, b]) and
d = maxu ([a, b]). (By the intermediate value theorem u ([a, b]) is an interval.)
Then for all bounded measurable functions, f : [c, d]→ R we have∫ u(b)

u(a)

f (x) dx =

∫ b

a

f (u (t)) u̇ (t) dt. (12.2)

Moreover, Eq. (12.2) is also valid if f : [c, d]→ R is measurable and∫ b

a

|f (u (t))| |u̇ (t)| dt <∞. (12.3)

Proof. Let H denote the space of bounded measurable functions such that
Eq. (12.2) holds. It is easily checked that H is a linear space closed under
bounded convergence. Next we show that M = C ([c, d] ,R) ⊂ H which cou-
pled with Corollary 12.14 will show that H contains all bounded measurable
functions from [c, d] to R.

If f : [c, d] → R is a continuous function and let F be an anti-derivative of
f. Then by the fundamental theorem of calculus,

∫ b

a

f (u (t)) u̇ (t) dt =

∫ b

a

F ′ (u (t)) u̇ (t) dt

=

∫ b

a

d

dt
F (u (t)) dt = F (u (t)) |ba

= F (u (b))− F (u (a)) =

∫ u(b)

u(a)

F ′ (x) dx =

∫ u(b)

u(a)

f (x) dx.

Thus M ⊂ H and the first assertion of the proposition is proved.
Now suppose that f : [c, d]→ R is measurable and Eq. (12.3) holds. For M <

∞, let fM (x) = f (x) · 1|f(x)|≤M – a bounded measurable function. Therefore
applying Eq. (12.2) with f replaced by |fM | shows,∣∣∣∣∣

∫ u(b)

u(a)

|fM (x)| dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

|fM (u (t))| u̇ (t) dt

∣∣∣∣∣ ≤
∫ b

a

|fM (u (t))| |u̇ (t)| dt.

Using the MCT, we may let M ↑ ∞ in the previous inequality to learn∣∣∣∣∣
∫ u(b)

u(a)

|f (x)| dx

∣∣∣∣∣ ≤
∫ b

a

|f (u (t))| |u̇ (t)| dt <∞.

Now apply Eq. (12.2) with f replaced by fM to learn∫ u(b)

u(a)

fM (x) dx =

∫ b

a

fM (u (t)) u̇ (t) dt.

Using the DCT we may now let M → ∞ in this equation to show that Eq.
(12.2) remains valid.

Exercise 12.2. Suppose that u : R→ R is a continuously differentiable func-
tion such that u̇ (t) ≥ 0 for all t and limt→±∞ u (t) = ±∞. Use the multiplicative
system theorm to prove∫

R
f (x) dx =

∫
R
f (u (t)) u̇ (t) dt (12.4)

for all measurable functions f : R→ [0,∞] . In particular applying this result
to u (t) = at+ b where a > 0 implies,∫

R
f (x) dx = a

∫
R
f (at+ b) dt.

Definition 12.16. The Fourier transform or characteristic function of
a finite measure, µ, on

(
Rd,BRd

)
, is the function, µ̂ : Rd → C defined by

µ̂ (λ) :=

∫
Rd
eiλ·xdµ (x) for all λ ∈ Rd
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Corollary 12.17. Suppose that µ and ν are two probability measures on(
Rd,BRd

)
. Then any one of the next three conditions implies that µ = ν;

1.
∫
Rd f1 (x1) . . . fd (xd) dν (x) =

∫
Rd f1 (x1) . . . fd (xd) dµ (x) for all fi ∈

Cc (R) .
2.
∫
Rd f (x) dν (x) =

∫
Rd f (x) dµ (x) for all f ∈ Cc

(
Rd
)
.

3. ν̂ = µ̂.

Item 3. asserts that the Fourier transform is injective.

Proof. Let H be the collection of bounded complex measurable functions
from Rd to C such that ∫

Rd
fdµ =

∫
Rd
fdν. (12.5)

It is easily seen that H is a linear space closed under complex conjugation and
bounded convergence (by the DCT). Since H contains one of the multiplicative
systems appearing in Corollary 12.14, it contains all bounded Borel measurable
functions form Rd → C. Thus we may take f = 1A with A ∈ BRd in Eq. (12.5)
to learn, µ (A) = ν (A) for all A ∈ BRd .

In many cases we can replace the condition in item 3. of Corollary 12.17 by;∫
Rd
eλ·xdµ (x) =

∫
Rd
eλ·xdν (x) for all λ ∈ U, (12.6)

where U is a neighborhood of 0 ∈ Rd. In order to do this, one must assume
at least assume that the integrals involved are finite for all λ ∈ U. The idea
is to show that Condition 12.6 implies ν̂ = µ̂. You are asked to carry out this
argument in Exercise 12.3 making use of the following lemma.

Lemma 12.18 (Analytic Continuation). Let ε > 0 and Sε :=
{x+ iy ∈ C : |x| < ε} be an ε strip in C about the imaginary axis. Sup-
pose that h : Sε → C is a function such that for each b ∈ R, there exists
{cn (b)}∞n=0 ⊂ C such that

h (z + ib) =

∞∑
n=0

cn (b) zn for all |z| < ε. (12.7)

If cn (0) = 0 for all n ∈ N0, then h ≡ 0.

Proof. It suffices to prove the following assertion; if for some b ∈ R we know
that cn (b) = 0 for all n, then cn (y) = 0 for all n and y ∈ (b− ε, b+ ε) . We
now prove this assertion.

Let us assume that b ∈ R and cn (b) = 0 for all n ∈ N0. It then follows
from Eq. (12.7) that h (z + ib) = 0 for all |z| < ε. Thus if |y − b| < ε, we

may conclude that h (x+ iy) = 0 for x in a (possibly very small) neighborhood
(−δ, δ) of 0. Since

∞∑
n=0

cn (y)xn = h (x+ iy) = 0 for all |x| < δ,

it follows that

0 =
1

n!

dn

dxn
h (x+ iy) |x=0 = cn (y)

and the proof is complete.

Lemma 12.19 (This may be omitted.). Suppose that −∞ < a < b < ∞
and let Trig(R) ⊂ C (R,C) be the complex linear span of

{
x→ eiλx : λ ∈ R

}
.

Then there exists fn ∈ Cc (R, [0, 1]) and gn ∈Trig(R) such that limn→∞ fn (x) =
1(a,b] (x) = limn→∞ gn (x) for all x ∈ R.

Proof. The assertion involving fn ∈ Cc (R, [0, 1]) was the content of one of
your homework assignments. For the assertion involving gn ∈Trig(R) , it will
suffice to show that any f ∈ Cc (R) may be written as f (x) = limn→∞ gn (x)
for some {gn} ⊂Trig(R) where the limit is uniform for x in compact subsets of
R.

So suppose that f ∈ Cc (R) and L > 0 such that f (x) = 0 if |x| ≥ L/4.
Then

fL (x) :=

∞∑
n=−∞

f (x+ nL)

is a continuous L – periodic function on R, see Figure 12.3. If ε > 0 is given,
we may apply Theorem 5.75 to find Λ ⊂f Z such that∣∣∣∣∣fL

(
L

2π
x

)
−
∑
α∈Λ

aλe
iαx

∣∣∣∣∣ ≤ ε for all x ∈ R,

wherein we have use the fact that x → fL
(
L
2πx
)

is a 2π – periodic function of
x. Equivalently we have,

max
x

∣∣∣∣∣fL (x)−
∑
α∈Λ

aλe
i 2πα
L x

∣∣∣∣∣ ≤ ε.
In particular it follows that fL (x) is a uniform limit of functions from Trig(R) .
Since limL→∞ fL (x) = f (x) uniformly on compact subsets of R, it is easy to
conclude there exists gn ∈Trig(R) such that limn→∞ gn (x) = f (x) uniformly
on compact subsets of R.
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Fig. 12.3. This is plot of f8 (x) where f (x) =
(
1− x2

)
1|x|≤1. The center hump by

itself would be the plot of f (x) .

12.2 Exercises

Exercise 12.3. Suppose ε > 0 and X and Y are two random variables such
that E

[
etX
]

= E
[
etY
]
<∞ for all |t| ≤ ε. Show;

1. E
[
eε|X|

]
and E

[
eε|Y |

]
are finite.

2. E
[
eitX

]
= E

[
eitY

]
for all t ∈ R. Hint: Consider h (z) := E

[
ezX

]
−E

[
ezY
]

for z ∈ Sε. Now show for |z| ≤ ε and b ∈ R, that

h (z + ib) = E
[
eibXezX

]
− E

[
eibY ezY

]
=

∞∑
n=0

cn (b) zn (12.8)

where

cn (b) :=
1

n!

(
E
[
eibXXn

]
− E

[
eibY Y n

])
. (12.9)

3. Conclude from item 2. that X
d
= Y, i.e. that LawP (X) = LawP (Y ) .

Exercise 12.4. Let (Ω,B, P ) be a probability space and X,Y : Ω → R be a
pair of random variables such that

E [f (X) g (Y )] = E [f (X) g (X)]

for every pair of bounded measurable functions, f, g : R→ R. Show
P (X = Y ) = 1. Hint: Let H denote the bounded Borel measurable functions,
h : R2 → R such that

E [h (X,Y )] = E [h (X,X)] .

Use Theorem 12.5 to show H is the vector space of all bounded Borel measurable
functions. Then take h (x, y) = 1{x=y}.

Exercise 12.5 (Density of A – simple functions). Let (Ω,B, P ) be a prob-
ability space and assume that A is a sub-algebra of B such that B = σ (A) .
Let H denote the bounded measurable functions f : Ω → R such that for every
ε > 0 there exists an an A – simple function, ϕ : Ω → R such that E |f − ϕ| < ε.
Show H consists of all bounded measurable functions, f : Ω → R. Hint: let M
denote the collection of A – simple functions.

Corollary 12.20. Suppose that (Ω,B, P ) is a probability space, {Xn}∞n=1 is a
collection of random variables on Ω, and B∞ := σ (X1, X2, X3, . . . ) . Then for
all ε > 0 and all bounded B∞ – measurable functions, f : Ω → R, there exists
an n ∈ N and a bounded BRn – measurable function G : Rn → R such that
E |f −G (X1, . . . , Xn)| < ε. Moreover we may assume that supx∈Rn |G (x)| ≤
M := supω∈Ω |f (ω)| .

Proof. Apply Exercise 12.5 with A := ∪∞n=1σ (X1, . . . , Xn) in order to find
an A – measurable simple function, ϕ, such that E |f − ϕ| < ε. By the definition
of A we know that ϕ is σ (X1, . . . , Xn) – measurable for some n ∈ N. It now
follows by the factorization Lemma 9.42 that ϕ = G (X1, . . . , Xn) for some BRn
– measurable function G : Rn → R. If necessary, replace G by [G ∧M ]∨ (−M)
in order to insure supx∈Rn |G (x)| ≤M.

Exercise 12.6 (Density of A in B = σ (A)). Keeping the same notation as
in Exercise 12.5 but now take f = 1B for some B ∈ B and given ε > 0, write
ϕ =

∑n
i=0 λi1Ai where λ0 = 0, {λi}ni=1 is an enumeration of ϕ (Ω) \ {0} , and

Ai := {ϕ = λi} . Show; 1.

E |1B − ϕ| = P (A0 ∩B) +

n∑
i=1

[|1− λi|P (B ∩Ai) + |λi|P (Ai \B)] (12.10)

≥ P (A0 ∩B) +

n∑
i=1

min {P (B ∩Ai) , P (Ai \B)} . (12.11)

2. Now let ψ =
∑n
i=0 αi1Ai with

αi =

{
1 if P (Ai \B) ≤ P (B ∩Ai)
0 if P (Ai \B) > P (B ∩Ai)

.

Then show that

E |1B − ψ| = P (A0 ∩B) +

n∑
i=1

min {P (B ∩Ai) , P (Ai \B)} ≤ E |1B − ϕ| .
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Observe that ψ = 1D where D = ∪i:αi=1
Ai ∈ A and so you have shown; for

every ε > 0 there exists a D ∈ A such that

P (B∆D) = E |1B − 1D| < ε.

Exercise 12.7. Suppose that {(Xi,Bi)}ni=1 are measurable spaces and for each
i, Mi is a multiplicative system of real bounded measurable functions on Xi

such that σ (Mi) = Bi and there exist χn ∈Mi such that χn → 1 boundedly as
n→∞. Given fi : Xi → R let f1 ⊗ · · · ⊗ fn : X1 × · · · ×Xn → R be defined by

(f1 ⊗ · · · ⊗ fn) (x1, . . . , xn) = f1 (x1) . . . fn (xn) .

Show
M1 ⊗ · · · ⊗Mn := {f1 ⊗ · · · ⊗ fn : fi ∈Mi for 1 ≤ i ≤ n}

is a multiplicative system of bounded measurable functions on
(X := X1 × · · · ×Xn,B := B1 ⊗ · · · ⊗ Bn) such that σ (M1 ⊗ · · · ⊗Mn) = B.

12.2.1 Obsolete stuff follows.

Notation 12.21 Suppose M is a subset of `∞ (X,R) .

1. Let H (M) denote the smallest subspace of `∞ (X,R) which contains M, the
constant functions, and is closed under bounded convergence.

2. Let Hσ (M) denote the smallest σ – function algebra containing M.

Exercise 12.8. Let X = {1, 2, 3, 4} , A = {1, 2} , B = {2, 3} and M :=
{1A, 1B} . Show Hσ (M) 6= H (M) in this case.

12.3 A Strengthening of the Multiplicative System
Theorem*

Notation 12.22 We say that H ⊂ `∞ (Ω,R) is closed under monotone
convergence if; for every sequence, {fn}∞n=1 ⊂ H, satisfying:

1. there exists M <∞ such that 0 ≤ fn (ω) ≤M for all ω ∈ Ω and n ∈ N,
2. fn (ω) is increasing in n for all ω ∈ Ω, then f := limn→∞ fn ∈ H.

Clearly if H is closed under bounded convergence then it is also closed under
monotone convergence. I learned the proof of the converse from Pat Fitzsim-
mons but this result appears in Sharpe [41, p. 365].

Proposition 12.23. *Let Ω be a set. Suppose that H is a vector subspace of
bounded real valued functions from Ω to R which is closed under monotone con-
vergence. Then H is closed under uniform convergence as well, i.e. {fn}∞n=1 ⊂ H
with supn∈N supω∈Ω |fn (ω)| <∞ and fn → f, then f ∈ H.

Proof. Let us first assume that {fn}∞n=1 ⊂ H such that fn converges uni-
formly to a bounded function, f : Ω → R. Let ‖f‖∞ := supω∈Ω |f (ω)| . Let
ε > 0 be given. By passing to a subsequence if necessary, we may assume
‖f − fn‖∞ ≤ ε2−(n+1). Let

gn := fn − δn +M

with δn and M constants to be determined shortly. We then have

gn+1 − gn = fn+1 − fn + δn − δn+1 ≥ −ε2−(n+1) + δn − δn+1.

Taking δn := ε2−n, then δn − δn+1 = ε2−n (1− 1/2) = ε2−(n+1) in which case
gn+1 − gn ≥ 0 for all n. By choosing M sufficiently large, we will also have
gn ≥ 0 for all n. Since H is a vector space containing the constant functions,
gn ∈ H and since gn ↑ f +M, it follows that f = f +M −M ∈ H. So we have
shown that H is closed under uniform convergence.

This proposition immediately leads to the following strengthening of Theo-
rem 12.5.

Theorem 12.24. *Suppose that H is a vector subspace of bounded real val-
ued functions on Ω which contains the constant functions and is closed under
monotone convergence. If M ⊂ H is multiplicative system, then H contains all
bounded σ (M) – measurable functions.

Proof. Proposition 12.23 reduces this theorem to Theorem 12.5.

12.4 The Bounded Approximation Theorem*

This section should be skipped until needed (if ever!).

Notation 12.25 Given a collection of bounded functions, M, from a set, Ω, to
R, let M↑ (M↓) denote the the bounded monotone increasing (decreasing) limits
of functions from M. More explicitly a bounded function, f : Ω → R is in M↑
respectively M↓ iff there exists fn ∈M such that fn ↑ f respectively fn ↓ f.

Theorem 12.26 (Bounded Approximation Theorem*). Let (Ω,B, µ) be
a finite measure space and M be an algebra of bounded R – valued measurable
functions such that:

1. σ (M) = B,
2. 1 ∈M, and
3. |f | ∈M for all f ∈M.
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Then for every bounded σ (M) measurable function, g : Ω → R, and every
ε > 0, there exists f ∈M↓ and h ∈M↑ such that f ≤ g ≤ h and µ (h− f) < ε.1

Proof. Let us begin with a few simple observations.

1. M is a “lattice” – if f, g ∈M then

f ∨ g =
1

2
(f + g + |f − g|) ∈M

and

f ∧ g =
1

2
(f + g − |f − g|) ∈M.

2. If f, g ∈M↑ or f, g ∈M↓ then f + g ∈M↑ or f + g ∈M↓ respectively.
3. If λ ≥ 0 and f ∈M↑ (f ∈M↓), then λf ∈M↑ (λf ∈M↓) .
4. If f ∈M↑ then −f ∈M↓ and visa versa.
5. If fn ∈M↑ and fn ↑ f where f : Ω → R is a bounded function, then f ∈M↑.

Indeed, by assumption there exists fn,i ∈ M such that fn,i ↑ fn as i→∞.
By observation (1), gn := max {fij : i, j ≤ n} ∈M. Moreover it is clear that
gn ≤ max {fk : k ≤ n} = fn ≤ f and hence gn ↑ g := limn→∞ gn ≤ f. Since
fij ≤ g for all i, j, it follows that fn = limj→∞ fnj ≤ g and consequently
that f = limn→∞ fn ≤ g ≤ f. So we have shown that gn ↑ f ∈M↑.

Now let H denote the collection of bounded measurable functions which
satisfy the assertion of the theorem. Clearly, M ⊂ H and in fact it is also easy
to see that M↑ and M↓ are contained in H as well. For example, if f ∈ M↑, by
definition, there exists fn ∈ M ⊂ M↓ such that fn ↑ f. Since M↓ 3 fn ≤ f ≤
f ∈ M↑ and µ (f − fn) → 0 by the dominated convergence theorem, it follows
that f ∈ H. As similar argument shows M↓ ⊂ H. We will now show H is a
vector sub-space of the bounded B = σ (M) – measurable functions.
H is closed under addition. If gi ∈ H for i = 1, 2, and ε > 0 is given, we

may find fi ∈M↓ and hi ∈M↑ such that fi ≤ gi ≤ hi and µ (hi − fi) < ε/2 for
i = 1, 2. Since h = h1 + h2 ∈M↑, f := f1 + f2 ∈M↓, f ≤ g1 + g2 ≤ h, and

µ (h− f) = µ (h1 − f1) + µ (h2 − f2) < ε,

it follows that g1 + g2 ∈ H.
H is closed under scalar multiplication. If g ∈ H then λg ∈ H for all

λ ∈ R. Indeed suppose that ε > 0 is given and f ∈ M↓ and h ∈ M↑ such that
f ≤ g ≤ h and µ (h− f) < ε. Then for λ ≥ 0, M↓ 3 λf ≤ λg ≤ λh ∈M↑ and

µ (λh− λf) = λµ (h− f) < λε.

1 Bruce: rework the Daniel integral section in the Analysis notes to stick to latticies
of bounded functions.

Since ε > 0 was arbitrary, if follows that λg ∈ H for λ ≥ 0. Similarly, M↓ 3
−h ≤ −g ≤ −f ∈M↑ and

µ (−f − (−h)) = µ (h− f) < ε.

which shows −g ∈ H as well.
Because of Theorem 12.24, to complete this proof, it suffices to show H is

closed under monotone convergence. So suppose that gn ∈ H and gn ↑ g, where
g : Ω → R is a bounded function. Since H is a vector space, it follows that
0 ≤ δn := gn+1 − gn ∈ H for all n ∈ N. So if ε > 0 is given, we can find,
M↓ 3 un ≤ δn ≤ vn ∈ M↑ such that µ (vn − un) ≤ 2−nε for all n. By replacing
un by un∨0 ∈M↓ (by observation 1.), we may further assume that un ≥ 0. Let

v :=

∞∑
n=1

vn =↑ lim
N→∞

N∑
n=1

vn ∈M↑ (using observations 2. and 5.)

and for N ∈ N, let

uN :=

N∑
n=1

un ∈M↓ (using observation 2).

Then
∞∑
n=1

δn = lim
N→∞

N∑
n=1

δn = lim
N→∞

(gN+1 − g1) = g − g1

and uN ≤ g − g1 ≤ v. Moreover,

µ
(
v − uN

)
=

N∑
n=1

µ (vn − un) +

∞∑
n=N+1

µ (vn) ≤
N∑
n=1

ε2−n +

∞∑
n=N+1

µ (vn)

≤ ε+

∞∑
n=N+1

µ (vn) .

However, since

∞∑
n=1

µ (vn) ≤
∞∑
n=1

µ
(
δn + ε2−n

)
=

∞∑
n=1

µ (δn) + εµ (Ω)

=

∞∑
n=1

µ (g − g1) + εµ (Ω) <∞,

it follows that for N ∈ N sufficiently large that
∑∞
n=N+1 µ (vn) < ε. Therefore,

for this N, we have µ
(
v − uN

)
< 2ε and since ε > 0 is arbitrary, if follows

that g − g1 ∈ H. Since g1 ∈ H and H is a vector space, we may conclude that
g = (g − g1) + g1 ∈ H.
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12.5 Distributions / Laws of Random Vectors

Definition 12.27. Suppose that {Xi}ni=1 is a sequence of random variables on
a probability space, (Ω,B, P ) . The probability measure,

µ = (X1, . . . , Xn)∗ P = P ◦ (X1, . . . , Xn)
−1

on BR

(see Proposition 9.44) is called the joint distribution (or law) of
(X1, . . . , Xn) . To be more explicit,

µ (B) := P ((X1, . . . , Xn) ∈ B) := P ({ω ∈ Ω : (X1 (ω) , . . . , Xn (ω)) ∈ B})

for all B ∈ BRn .

Corollary 12.28. The joint distribution, µ is uniquely determined from the
knowledge of

P ((X1, . . . , Xn) ∈ A1 × · · · ×An) for all Ai ∈ BR

or from the knowledge of

P (X1 ≤ x1, . . . , Xn ≤ xn) for all Ai ∈ BR

for all x = (x1, . . . , xn) ∈ Rn.

Proof. Apply Example 12.7 (or see Proposition 6.55) with P being the π –
systems defined by

P := {A1 × · · · ×An ∈ BRn : Ai ∈ BR}

for the first case and

P := {(−∞, x1]× · · · × (−∞, xn] ∈ BRn : xi ∈ R}

for the second case.

Definition 12.29. Suppose that {Xi}ni=1 and {Yi}ni=1 are two finite sequences
of random variables on two probability spaces, (Ω,B, P ) and (Ω′,B′, P ′) respec-

tively. We write (X1, . . . , Xn)
d
= (Y1, . . . , Yn) if (X1, . . . , Xn) and (Y1, . . . , Yn)

have the same distribution / law, i.e. if

P ((X1, . . . , Xn) ∈ B) = P ′ ((Y1, . . . , Yn) ∈ B) for all B ∈ BRn .

More generally, if {Xi}∞i=1 and {Yi}∞i=1 are two sequences of random variables

on two probability spaces, (Ω,B, P ) and (Ω′,B′, P ′) we write {Xi}∞i=1
d
= {Yi}∞i=1

iff (X1, . . . , Xn)
d
= (Y1, . . . , Yn) for all n ∈ N.

Proposition 12.30. Let us continue using the notation in Definition 12.29.
Further let

X = (X1, X2, . . . ) : Ω → RN and Y := (Y1, Y2, . . . ) : Ω′ → RN

and let F := ⊗n∈NBR – be the product σ – algebra on RN. Then {Xi}∞i=1
d
=

{Yi}∞i=1 iff X∗P = Y∗P
′ as measures on

(
RN,F

)
.

Proof. Let

P := ∪∞n=1

{
A1 ×A2 × · · · ×An × RN : Ai ∈ BR for 1 ≤ i ≤ n

}
.

Notice that P is a π – system and it is easy to show σ (P) = F (see Exercise
9.10). Therefore by Example 12.7 (or see Proposition 6.55), X∗P = Y∗P

′ iff
X∗P = Y∗P

′ on P. Now for A1 ×A2 × · · · ×An × RN ∈ P we have,

X∗P
(
A1 ×A2 × · · · ×An × RN) = P ((X1, . . . , Xn) ∈ A1 ×A2 × · · · ×An)

and hence the condition becomes,

P ((X1, . . . , Xn) ∈ A1 ×A2 × · · · ×An) = P ′ ((Y1, . . . , Yn) ∈ A1 ×A2 × · · · ×An)

for all n ∈ N and Ai ∈ BR. Another application of Example 12.7 or us-
ing Corollary 12.28 allows us to conclude that shows that X∗P = Y∗P

′ iff

(X1, . . . , Xn)
d
= (Y1, . . . , Yn) for all n ∈ N.

Corollary 12.31. Continue the notation above and assume that {Xi}∞i=1
d
=

{Yi}∞i=1 . Further let

X± =

{
lim supn→∞Xn if +
lim infn→∞Xn if −

and define Y± similarly. Then (X−, X+)
d
= (Y−, Y+) as random variables into(

R̄2,BR̄ ⊗ BR̄
)
. In particular,

P
(

lim
n→∞

Xn exists in R
)

= P ′
(

lim
n→∞

Yn exists in R
)
. (12.12)

Proof. First suppose that (Ω′,B′, P ′) =
(
RN,F , P ′ := X∗P

)
where

Yi (a1, a2, . . . ) := ai = πi (a1, a2, . . . ) . Then for C ∈ BR̄ ⊗ BR̄ we have,

X−1 ({(Y−, Y+) ∈ C}) = {(Y− ◦X,Y+ ◦X) ∈ C} = {(X−, X+) ∈ C} ,

since, for example,

Y− ◦X = lim inf
n→∞

Yn ◦X = lim inf
n→∞

Xn = X−.
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Therefore it follows that

P ((X−, X+) ∈ C) = P ◦X−1 ({(Y−, Y+) ∈ C}) = P ′ ({(Y−, Y+) ∈ C}) .
(12.13)

The general result now follows by two applications of this special case.
For the last assertion, take

C = {(x, x) : x ∈ R} ∈ BR2 = BR ⊗ BR ⊂ BR̄ ⊗ BR̄.

Then (X−, X+) ∈ C iff X− = X+ ∈ R which happens iff limn→∞Xn exists in
R. Similarly, (Y−, Y+) ∈ C iff limn→∞ Yn exists in R and therefore Eq. (12.12)
holds as a consequence of Eq. (12.13).

Exercise 12.9. Let {Xi}∞i=1 and {Yi}∞i=1 be two sequences of random variables

such that {Xi}∞i=1
d
= {Yi}∞i=1 . Let {Sn}∞n=1 and {Tn}∞n=1 be defined by, Sn :=

X1 + · · ·+Xn and Tn := Y1 + · · ·+ Yn. Prove the following assertions.

1. Suppose that f : Rn → Rk is a BRn/BRk – measurable function, then

f (X1, . . . , Xn)
d
= f (Y1, . . . , Yn) .

2. Use your result in item 1. to show {Sn}∞n=1
d
= {Tn}∞n=1 .

Hint: Apply item 1. with k = n after making a judicious choice for f :
Rn → Rn.



13

Multiple and Iterated Integrals

13.1 Iterated Integrals

Notation 13.1 (Iterated Integrals) If (X,M, µ) and (Y,N , ν) are two
measure spaces and f : X × Y → C is a M⊗N – measurable function, the
iterated integrals of f (when they make sense) are:∫

X

dµ(x)

∫
Y

dν(y)f(x, y) :=

∫
X

[∫
Y

f(x, y)dν(y)

]
dµ(x)

and ∫
Y

dν(y)

∫
X

dµ(x)f(x, y) :=

∫
Y

[∫
X

f(x, y)dµ(x)

]
dν(y).

Notation 13.2 Suppose that f : X → C and g : Y → C are functions, let f⊗g
denote the function on X × Y given by

f ⊗ g(x, y) = f(x)g(y).

Notice that if f, g are measurable, then f ⊗ g is (M⊗N ,BC) – measurable.
To prove this let F (x, y) = f(x) and G(x, y) = g(y) so that f ⊗ g = F ·G will
be measurable provided that F and G are measurable. Now F = f ◦ π1 where
π1 : X × Y → X is the projection map. This shows that F is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

13.2 Tonelli’s Theorem and Product Measure

Theorem 13.3. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces
and f is a nonnegative (M⊗N ,BR) – measurable function, then for each y ∈ Y,

x→ f(x, y) is M – B[0,∞] measurable, (13.1)

for each x ∈ X,
y → f(x, y) is N – B[0,∞] measurable, (13.2)

x→
∫
Y

f(x, y)dν(y) is M – B[0,∞] measurable, (13.3)

y →
∫
X

f(x, y)dµ(x) is N – B[0,∞] measurable, (13.4)

and ∫
X

dµ(x)

∫
Y

dν(y)f(x, y) =

∫
Y

dν(y)

∫
X

dµ(x)f(x, y). (13.5)

Proof. Suppose that E = A×B ∈ E :=M×N and f = 1E . Then

f(x, y) = 1A×B(x, y) = 1A(x)1B(y)

and one sees that Eqs. (13.1) and (13.2) hold. Moreover∫
Y

f(x, y)dν(y) =

∫
Y

1A(x)1B(y)dν(y) = 1A(x)ν(B),

so that Eq. (13.3) holds and we have∫
X

dµ(x)

∫
Y

dν(y)f(x, y) = ν(B)µ(A). (13.6)

Similarly, ∫
X

f(x, y)dµ(x) = µ(A)1B(y) and∫
Y

dν(y)

∫
X

dµ(x)f(x, y) = ν(B)µ(A)

from which it follows that Eqs. (13.4) and (13.5) hold in this case as well.
For the moment let us now further assume that µ(X) < ∞ and ν(Y ) < ∞

and let H be the collection of all bounded (M⊗N ,BR) – measurable functions
on X × Y such that Eqs. (13.1) – (13.5) hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence the-
orem (the dominating function always being a constant), one easily shows that
H closed under bounded convergence. Since we have just verified that 1E ∈ H
for all E in the π – class, E , it follows by Corollary 12.6 that H is the space
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of all bounded (M⊗N ,BR) – measurable functions on X × Y. Moreover, if
f : X × Y → [0,∞] is a (M⊗N ,BR̄) – measurable function, let fM = M ∧ f
so that fM ↑ f as M →∞. Then Eqs. (13.1) – (13.5) hold with f replaced by
fM for all M ∈ N. Repeated use of the monotone convergence theorem allows
us to pass to the limit M →∞ in these equations to deduce the theorem in the
case µ and ν are finite measures.

For the σ – finite case, choose Xn ∈M, Yn ∈ N such that Xn ↑ X, Yn ↑ Y,
µ(Xn) <∞ and ν(Yn) <∞ for all m,n ∈ N. Then define µm(A) = µ(Xm ∩A)
and νn(B) = ν(Yn∩B) for all A ∈M and B ∈ N or equivalently dµm = 1Xmdµ
and dνn = 1Yndν. By what we have just proved Eqs. (13.1) – (13.5) with
µ replaced by µm and ν by νn for all (M⊗N ,BR̄) – measurable functions,
f : X ×Y → [0,∞]. The validity of Eqs. (13.1) – (13.5) then follows by passing
to the limits m→∞ and then n→∞ making use of the monotone convergence
theorem in the following context. For all u ∈ L+(X,M),∫

X

udµm =

∫
X

u1Xmdµ ↑
∫
X

udµ as m→∞,

and for all and v ∈ L+(Y,N ),∫
Y

vdµn =

∫
Y

v1Yndµ ↑
∫
Y

vdµ as n→∞.

Corollary 13.4. Suppose (X,M, µ) and (Y,N , ν) are σ – finite measure
spaces. Then there exists a unique measure π on M⊗N such that π(A×B) =
µ(A)ν(B) for all A ∈M and B ∈ N . Moreover π is given by

π(E) =

∫
X

dµ(x)

∫
Y

dν(y)1E(x, y) =

∫
Y

dν(y)

∫
X

dµ(x)1E(x, y) (13.7)

for all E ∈M⊗N and π is σ – finite.

Proof. Notice that any measure π such that π(A × B) = µ(A)ν(B) for
all A ∈ M and B ∈ N is necessarily σ – finite. Indeed, let Xn ∈ M and
Yn ∈ N be chosen so that µ(Xn) < ∞, ν(Yn) < ∞, Xn ↑ X and Yn ↑ Y,
then Xn × Yn ∈ M ⊗ N , Xn × Yn ↑ X × Y and π(Xn × Yn) < ∞ for all n.
The uniqueness assertion is a consequence of the combination of Exercises 4.12
and 7.1 Proposition 4.27 with E = M×N . For the existence, it suffices to
observe, using the monotone convergence theorem, that π defined in Eq. (13.7)
is a measure onM⊗N . Moreover this measure satisfies π(A×B) = µ(A)ν(B)
for all A ∈M and B ∈ N from Eq. (13.6).

Notation 13.5 The measure π is called the product measure of µ and ν and
will be denoted by µ⊗ ν.

Theorem 13.6 (Tonelli’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ – finite measure spaces and π = µ ⊗ ν is the product measure on M⊗N .
If f ∈ L+(X × Y,M⊗N ), then f(·, y) ∈ L+(X,M) for all y ∈ Y, f(x, ·) ∈
L+(Y,N ) for all x ∈ X,∫

Y

f(·, y)dν(y) ∈ L+(X,M),

∫
X

f(x, ·)dµ(x) ∈ L+(Y,N )

and ∫
X×Y

f dπ =

∫
X

dµ(x)

∫
Y

dν(y)f(x, y) (13.8)

=

∫
Y

dν(y)

∫
X

dµ(x)f(x, y). (13.9)

Proof. By Theorem 13.3 and Corollary 13.4, the theorem holds when
f = 1E with E ∈ M ⊗ N . Using the linearity of all of the statements, the
theorem is also true for non-negative simple functions. Then using the mono-
tone convergence theorem repeatedly along with the approximation Theorem
9.41, one deduces the theorem for general f ∈ L+(X × Y,M⊗N ).

Example 13.7. In this example we are going to show, I :=
∫
R e
−x2/2dm (x) =√

2π. To this end we observe, using Tonelli’s theorem, that

I2 =

[∫
R
e−x

2/2dm (x)

]2

=

∫
R
e−y

2/2

[∫
R
e−x

2/2dm (x)

]
dm (y)

=

∫
R2

e−(x2+y2)/2dm2 (x, y)

where m2 = m⊗m is “Lebesgue measure” on
(
R2,BR2 = BR ⊗ BR

)
. From the

monotone convergence theorem,

I2 = lim
R→∞

∫
DR

e−(x2+y2)/2dm2 (x, y)

where DR =
{

(x, y) : x2 + y2 < R2
}
. Using the change of variables theorem

described in Section 14 below,1 we find∫
DR

e−(x2+y2)/2dπ (x, y) =

∫
(0,R)×(0,2π)

e−r
2/2rdrdθ

= 2π

∫ R

0

e−r
2/2rdr = 2π

(
1− e−R

2/2
)
.

1 Alternatively, you can easily show that the integral
∫
DR

fdm2 agrees with the
multiple integral in undergraduate analysis when f is continuous. Then use the
change of variables theorem from undergraduate analysis.
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From this we learn that

I2 = lim
R→∞

2π
(

1− e−R
2/2
)

= 2π

as desired.

13.3 Fubini’s Theorem

Notation 13.8 If (X,M, µ) is a measure space and f : X → C is any mea-
surable function, let∫

X

fdµ :=

{∫
X
fdµ if

∫
X
|f | dµ <∞

0 otherwise.

Theorem 13.9 (Fubini’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ – finite measure spaces, π = µ ⊗ ν is the product measure on M⊗N and
f : X × Y → C is a M⊗N – measurable function. Then the following three
conditions are equivalent:∫

X×Y
|f | dπ <∞, i.e. f ∈ L1(π), (13.10)∫

X

(∫
Y

|f(x, y)| dν(y)

)
dµ(x) <∞ and (13.11)∫

Y

(∫
X |f(x, y)| dµ(x)

)
dν(y) <∞. (13.12)

If any one (and hence all) of these condition hold, then f(x, ·) ∈ L1(ν) for µ-a.e.

x, f(·, y) ∈ L1(µ) for ν-a.e. y,
∫
Y
f(·, y)dv(y) ∈ L1(µ),

∫
X
f(x, ·)dµ(x) ∈ L1(ν)

and Eqs. (13.8) and (13.9) are still valid after putting a bar over the integral
symbols.

Proof. The equivalence of Eqs. (13.10) – (13.12) is a direct consequence of
Tonelli’s Theorem 13.6. Now suppose f ∈ L1(π) is a real valued function and
let

E :=

{
x ∈ X :

∫
Y

|f (x, y)| dν (y) =∞
}
. (13.13)

Then by Tonelli’s theorem, x →
∫
Y
|f (x, y)| dν (y) is measurable and hence

E ∈M. Moreover Tonelli’s theorem implies∫
X

[∫
Y

|f (x, y)| dν (y)

]
dµ (x) =

∫
X×Y

|f | dπ <∞

which implies that µ (E) = 0. Let f± be the positive and negative parts of f,
then∫

Y

f (x, y) dν (y) =

∫
Y

1Ec (x) f (x, y) dν (y)

=

∫
Y

1Ec (x) [f+ (x, y)− f− (x, y)] dν (y)

=

∫
Y

1Ec (x) f+ (x, y) dν (y)−
∫
Y

1Ec (x) f− (x, y) dν (y) .

(13.14)

Noting that 1Ec (x) f± (x, y) = (1Ec ⊗ 1Y · f±) (x, y) is a positive M ⊗ N –
measurable function, it follows from another application of Tonelli’s theorem

that x →
∫
Y
f (x, y) dν (y) is M – measurable, being the difference of two

measurable functions. Moreover∫
X

∣∣∣∣∣
∫
Y

f (x, y) dν (y)

∣∣∣∣∣ dµ (x) ≤
∫
X

[∫
Y

|f (x, y)| dν (y)

]
dµ (x) <∞,

which shows
∫
Y
f(·, y)dv(y) ∈ L1(µ). Integrating Eq. (13.14) on x and using

Tonelli’s theorem repeatedly implies,∫
X

[∫
Y

f (x, y) dν (y)

]
dµ (x)

=

∫
X

dµ (x)

∫
Y

dν (y) 1Ec (x) f+ (x, y)−
∫
X

dµ (x)

∫
Y

dν (y) 1Ec (x) f− (x, y)

=

∫
Y

dν (y)

∫
X

dµ (x) 1Ec (x) f+ (x, y)−
∫
Y

dν (y)

∫
X

dµ (x) 1Ec (x) f− (x, y)

=

∫
Y

dν (y)

∫
X

dµ (x) f+ (x, y)−
∫
Y

dν (y)

∫
X

dµ (x) f− (x, y)

=

∫
X×Y

f+dπ −
∫
X×Y

f−dπ =

∫
X×Y

(f+ − f−) dπ =

∫
X×Y

fdπ (13.15)

which proves Eq. (13.8) holds.
Now suppose that f = u + iv is complex valued and again let E be as in

Eq. (13.13). Just as above we still have E ∈M and µ (E) = 0 and∫
Y

f (x, y) dν (y) =

∫
Y

1Ec (x) f (x, y) dν (y) =

∫
Y

1Ec (x) [u (x, y) + iv (x, y)] dν (y)

=

∫
Y

1Ec (x)u (x, y) dν (y) + i

∫
Y

1Ec (x) v (x, y) dν (y) .
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The last line is a measurable in x as we have just proved. Similarly one shows∫
Y
f (·, y) dν (y) ∈ L1 (µ) and Eq. (13.8) still holds by a computation similar to

that done in Eq. (13.15). The assertions pertaining to Eq. (13.9) may be proved
in the same way.

The previous theorems generalize to products of any finite number of σ –
finite measure spaces.

Theorem 13.10. Suppose {(Xi,Mi, µi)}ni=1 are σ – finite measure spaces
and X := X1 × · · · × Xn. Then there exists a unique measure (π) on
(X,M1 ⊗ · · · ⊗Mn) such that

π(A1 × · · · ×An) = µ1(A1) . . . µn(An) for all Ai ∈Mi. (13.16)

(This measure and its completion will be denoted by µ1 ⊗ · · · ⊗ µn.) If f : X →
[0,∞] is a M1 ⊗ · · · ⊗Mn – measurable function then∫

X

fdπ =

∫
Xσ(1)

dµσ(1)(xσ(1))· · ·
∫
Xσ(n)

dµσ(n)(xσ(n)) f(x1, . . . , xn) (13.17)

where σ is any permutation of {1, 2, . . . , n}. In particular f ∈ L1(π), iff∫
Xσ(1)

dµσ(1)(xσ(1))· · ·
∫
Xσ(n)

dµσ(n)(xσ(n)) |f(x1, . . . , xn)| <∞

for some (and hence all) permutations, σ. Furthermore, if f ∈ L1 (π) , then∫
X

fdπ =

∫
Xσ(1)

dµσ(1)(xσ(1)) . . .

∫
Xσ(n)

dµσ(n)(xσ(n)) f(x1, . . . , xn) (13.18)

for all permutations σ.

Proof. (* I would consider skipping this tedious proof.) The proof will be by
induction on n with the case n = 2 being covered in Theorems 13.6 and 13.9. So
let n ≥ 3 and assume the theorem is valid for n− 1 factors or less. To simplify
notation, for 1 ≤ i ≤ n, let Xi =

∏
j 6=iXj ,Mi := ⊗j 6=iMi, and µi := ⊗j 6=iµj

be the product measure on
(
Xi,Mi

)
which is assumed to exist by the induction

hypothesis. Also letM :=M1⊗· · ·⊗Mn and for x = (x1, . . . , xi, . . . , xn) ∈ X
let

xi := (x1, . . . , x̂i, . . . , xn) := (x1, . . . , xi−1, xi+1, . . . , xn) .

Here is an outline of the argument with some details being left to the reader.

1. If f : X → [0,∞] is M -measurable, then

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

f (x1, . . . , xi, . . . , xn) dµi (xi)

is Mi -measurable. Thus by the induction hypothesis, the right side of Eq.
(13.17) is well defined.

2. If σ ∈ Sn (the permutations of {1, 2, . . . , n}) we may define a measure π on
(X,M) by;

π (A) :=

∫
Xσ1

dµσ1 (xσ1)· · ·
∫
Xσn

dµσn (xσn) 1A (x1, . . . , xn) . (13.19)

It is easy to check that π is a measure which satisfies Eq. (13.16). Using the
σ – finiteness assumptions and the fact that

P := {A1 × · · · ×An : Ai ∈Mi for 1 ≤ i ≤ n}

is a π – system such that σ (P) =M, it follows from Exercise 6.8 that there
is only one such measure satisfying Eq. (13.16). Thus the formula for π in
Eq. (13.19) is independent of σ ∈ Sn.

3. From Eq. (13.19) and the usual simple function approximation arguments
we may conclude that Eq. (13.17) is valid.
Now suppose that f ∈ L1 (X,M, π) .

4. Using step 1 it is easy to check that

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

f (x1, . . . , xi, . . . , xn) dµi (xi)

is Mi – measurable. Indeed,

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

|f (x1, . . . , xi, . . . , xn)| dµi (xi)

is Mi – measurable and therefore

E :=

{
(x1, . . . , x̂i, . . . , xn) :

∫
Xi

|f (x1, . . . , xi, . . . , xn)| dµi (xi) <∞
}
∈Mi.

Now let u := Re f and v := Im f and u± and v± are the positive and
negative parts of u and v respectively, then∫

Xi

f (x) dµi (xi) =

∫
Xi

1E
(
xi
)
f (x) dµi (xi)

=

∫
Xi

1E
(
xi
)
u (x) dµi (xi) + i

∫
Xi

1E
(
xi
)
v (x) dµi (xi) .

Both of these later terms are Mi – measurable since, for example,∫
Xi

1E
(
xi
)
u (x) dµi (xi) =

∫
Xi

1E
(
xi
)
u+ (x) dµi (xi)−

∫
Xi

1E
(
xi
)
u− (x) dµi (xi)

which is Mi – measurable by step 1.
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5. It now follows by induction that the right side of Eq. (13.18) is well defined.
6. Let i := σn and T : X → Xi ×Xi be the obvious identification;

T (xi, (x1, . . . , x̂i, . . . , xn)) = (x1, . . . , xn) .

One easily verifies T is M/Mi ⊗ Mi – measurable (use Corollary 9.23
repeatedly) and that π ◦ T−1 = µi ⊗ µi (see Exercise 6.8).

7. Let f ∈ L1 (π) . Combining step 6. with the abstract change of variables
Theorem (Exercise 10.7) implies∫

X

fdπ =

∫
Xi×Xi

(f ◦ T ) d
(
µi ⊗ µi

)
. (13.20)

By Theorem 13.9, we also have∫
Xi×Xi

(f ◦ T ) d
(
µi ⊗ µi

)
=

∫
Xi
dµi

(
xi
) ∫

Xi

dµi(xi) f ◦ T (xi, x
i)

=

∫
Xi
dµi

(
xi
) ∫

Xi

dµi(xi) f(x1, . . . , xn).

(13.21)

Then by the induction hypothesis,∫
Xi
dµi (xi)

∫
Xi

dµi(xi) f(x1, . . . , xn) =
∏
j 6=i

∫
Xj

dµj (xj)

∫
Xi

dµi(xi) f(x1, . . . , xn)

(13.22)
where the ordering the integrals in the last product are inconsequential.
Combining Eqs. (13.20) – (13.22) completes the proof.

Convention: We are now going to drop the bar above the integral sign
with the understanding that

∫
X
fdµ = 0 whenever f : X → C is a measurable

function such that
∫
X
|f | dµ =∞. However if f is a non-negative function (i.e.

f : X → [0,∞]) non-integrable function we will interpret
∫
X
fdµ to be infinite.

Example 13.11. In this example we will show

lim
M→∞

∫ M

0

sinx

x
dx = π/2. (13.23)

To see this write 1
x =

∫∞
0
e−txdt and use Fubini-Tonelli to conclude that

∫ M

0

sinx

x
dx =

∫ M

0

[∫ ∞
0

e−tx sinx dt

]
dx

=

∫ ∞
0

[∫ M

0

e−tx sinx dx

]
dt

=

∫ ∞
0

1

1 + t2
(
1− te−Mt sinM − e−Mt cosM

)
dt

→
∫ ∞

0

1

1 + t2
dt =

π

2
as M →∞,

wherein we have used the dominated convergence theorem (for instance, take
g (t) := 1

1+t2 (1 + te−t + e−t)) to pass to the limit.

The next example is a refinement of this result.

Example 13.12. We have∫ ∞
0

sinx

x
e−Λxdx =

1

2
π − arctanΛ for all Λ > 0 (13.24)

and forΛ,M ∈ [0,∞),∣∣∣∣∣
∫ M

0

sinx

x
e−Λxdx− 1

2
π + arctanΛ

∣∣∣∣∣ ≤ C e−MΛ

M
(13.25)

where C = maxx≥0
1+x
1+x2 = 1

2
√

2−2
∼= 1.2. In particular Eq. (13.23) is valid.

To verify these assertions, first notice that by the fundamental theorem of
calculus,

|sinx| =
∣∣∣∣∫ x

0

cos ydy

∣∣∣∣ ≤ ∣∣∣∣∫ x

0

|cos y| dy
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

1dy

∣∣∣∣ = |x|

so
∣∣ sin x
x

∣∣ ≤ 1 for all x 6= 0. Making use of the identity∫ ∞
0

e−txdt = 1/x

and Fubini’s theorem,
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0

sinx

x
e−Λxdx =

∫ M

0

dx sinx e−Λx
∫ ∞

0

e−txdt

=

∫ ∞
0

dt

∫ M

0

dx sinx e−(Λ+t)x

=

∫ ∞
0

1− (cosM + (Λ+ t) sinM) e−M(Λ+t)

(Λ+ t)
2

+ 1
dt

=

∫ ∞
0

1

(Λ+ t)
2

+ 1
dt−

∫ ∞
0

cosM + (Λ+ t) sinM

(Λ+ t)
2

+ 1
e−M(Λ+t)dt

=
1

2
π − arctanΛ− ε(M,Λ) (13.26)

where

ε(M,Λ) =

∫ ∞
0

cosM + (Λ+ t) sinM

(Λ+ t)
2

+ 1
e−M(Λ+t)dt.

Since ∣∣∣∣∣cosM + (Λ+ t) sinM

(Λ+ t)
2

+ 1

∣∣∣∣∣ ≤ 1 + (Λ+ t)

(Λ+ t)
2

+ 1
≤ C,

|ε(M,Λ)| ≤
∫ ∞

0

e−M(Λ+t)dt = C
e−MΛ

M
.

This estimate along with Eq. (13.26) proves Eq. (13.25) from which Eq. (13.23)
follows by taking Λ→∞ and Eq. (13.24) follows (using the dominated conver-
gence theorem again) by letting M →∞.

Lemma 13.13. Suppose that X is a random variable and ϕ : R→ R is a C1

– functions such that limx→−∞ ϕ (x) = 0 and either ϕ′ (x) ≥ 0 for all x or∫
R |ϕ

′ (x)| dx <∞. Then

E [ϕ (X)] =

∫ ∞
−∞

ϕ′ (y)P (X > y) dy.

Similarly if X ≥ 0 and ϕ : [0,∞) → R is a C1 – function such that ϕ (0) = 0
and either ϕ′ ≥ 0 or

∫∞
0
|ϕ′ (x)| dx <∞, then

E [ϕ (X)] =

∫ ∞
0

ϕ′ (y)P (X > y) dy.

Proof. By the fundamental theorem of calculus for all M <∞ and x ∈ R,

ϕ (x) = ϕ (−M) +

∫ x

−M
ϕ′ (y) dy. (13.27)

Under the stated assumptions on ϕ, we may use either the monotone or the
dominated convergence theorem to let M →∞ in Eq. (13.27) to find,

ϕ (x) =

∫ x

−∞
ϕ′ (y) dy =

∫
R

1y<xϕ
′ (y) dy for all x ∈ R.

Therefore,

E [ϕ (X)] = E
[∫

R
1y<Xϕ

′ (y) dy

]
=

∫
R
E [1y<X ]ϕ′ (y) dy =

∫ ∞
−∞

ϕ′ (y)P (X > y) dy,

where we applied Fubini’s theorem for the second equality. The proof of the
second assertion is similar and will be left to the reader.

Example 13.14. Here are a couple of examples involving Lemma 13.13.

1. Suppose X is a random variable, then

E
[
eX
]

=

∫ ∞
−∞

P (X > y) eydy =

∫ ∞
0

P (X > lnu) du, (13.28)

where we made the change of variables, u = ey, to get the second equality.
2. If X ≥ 0 and p ≥ 1, then

EXp = p

∫ ∞
0

yp−1P (X > y) dy. (13.29)

13.4 Fubini’s Theorem and Completions*

Notation 13.15 Given E ⊂ X × Y and x ∈ X, let

xE := {y ∈ Y : (x, y) ∈ E}.

Similarly if y ∈ Y is given let

Ey := {x ∈ X : (x, y) ∈ E}.

If f : X × Y → C is a function let fx = f(x, ·) and fy := f(·, y) so that
fx : Y → C and fy : X → C.

Theorem 13.16. Suppose (X,M, µ) and (Y,N , ν) are complete σ – finite
measure spaces. Let (X×Y,L, λ) be the completion of (X×Y,M⊗N , µ⊗ν). If
f is L – measurable and (a) f ≥ 0 or (b) f ∈ L1(λ) then fx is N – measurable
for µ a.e. x and fy is M – measurable for ν a.e. y and in case (b) fx ∈ L1(ν)
and fy ∈ L1(µ) for µ a.e. x and ν a.e. y respectively. Moreover,
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13.5 Kolmogorov’s Extension Theorems 157(
x→

∫
Y

fxdν

)
∈ L1 (µ) and

(
y →

∫
X

fydµ

)
∈ L1 (ν)

and ∫
X×Y

fdλ =

∫
Y

dν

∫
X

dµ f =

∫
X

dµ

∫
Y

dν f.

Proof. If E ∈M⊗N is a µ⊗ ν null set (i.e. (µ⊗ ν)(E) = 0), then

0 = (µ⊗ ν)(E) =

∫
X

ν(xE)dµ(x) =

∫
X

µ(Ey)dν(y).

This shows that

µ({x : ν(xE) 6= 0}) = 0 and ν({y : µ(Ey) 6= 0}) = 0,

i.e. ν(xE) = 0 for µ a.e. x and µ(Ey) = 0 for ν a.e. y. If h is L measurable and
h = 0 for λ – a.e., then there exists E ∈ M⊗N such that {(x, y) : h(x, y) 6=
0} ⊂ E and (µ⊗ ν)(E) = 0. Therefore |h(x, y)| ≤ 1E(x, y) and (µ⊗ ν)(E) = 0.
Since

{hx 6= 0} = {y ∈ Y : h(x, y) 6= 0} ⊂ xE and

{hy 6= 0} = {x ∈ X : h(x, y) 6= 0} ⊂ Ey

we learn that for µ a.e. x and ν a.e. y that {hx 6= 0} ∈ M, {hy 6= 0} ∈ N ,
ν({hx 6= 0}) = 0 and a.e. and µ({hy 6= 0}) = 0. This implies

∫
Y
h(x, y)dν(y)

exists and equals 0 for µ a.e. x and similarly that
∫
X
h(x, y)dµ(x) exists and

equals 0 for ν a.e. y. Therefore

0 =

∫
X×Y

hdλ =

∫
Y

(∫
X

hdµ

)
dν =

∫
X

(∫
Y

hdν

)
dµ.

For general f ∈ L1(λ), we may choose g ∈ L1(M⊗N , µ⊗ν) such that f(x, y) =
g(x, y) for λ− a.e. (x, y). Define h := f−g. Then h = 0, λ− a.e. Hence by what
we have just proved and Theorem 13.6 f = g + h has the following properties:

1. For µ a.e. x, y → f(x, y) = g(x, y) + h(x, y) is in L1(ν) and∫
Y

f(x, y)dν(y) =

∫
Y

g(x, y)dν(y).

2. For ν a.e. y, x→ f(x, y) = g(x, y) + h(x, y) is in L1(µ) and∫
X

f(x, y)dµ(x) =

∫
X

g(x, y)dµ(x).

From these assertions and Theorem 13.6, it follows that∫
X

dµ(x)

∫
Y

dν(y)f(x, y) =

∫
X

dµ(x)

∫
Y

dν(y)g(x, y)

=

∫
Y

dν(y)

∫
Y

dν(x)g(x, y)

=

∫
X×Y

g(x, y)d(µ⊗ ν)(x, y)

=

∫
X×Y

f(x, y)dλ(x, y).

Similarly it is shown that∫
Y

dν(y)

∫
X

dµ(x)f(x, y) =

∫
X×Y

f(x, y)dλ(x, y).

13.5 Kolmogorov’s Extension Theorems

In this section we will extend the results of Section 6.3 to spaces which are not
simply products of discrete spaces. We begin with a couple of results involving
the topology on RN .

13.5.1 Regularity and compactness results

Theorem 13.17 (Inner-Outer Regularity). Suppose µ is a probability mea-
sure on

(
RN ,BRN

)
, then for all B ∈ BRN we have

µ (B) = inf {µ (V ) : B ⊂ V and V is open} (13.30)

and
µ (B) = sup {µ (K) : K ⊂ B with K compact} . (13.31)

Proof. In this proof, C, and Ci will always denote a closed subset of RN
and V, Vi will always be open subsets of RN . Let F be the collection of sets,
A ∈ B, such that for all ε > 0 there exists an open set V and a closed set, C,
such that C ⊂ A ⊂ V and µ (V \ C) < ε. The key point of the proof is to show
F = B for this certainly implies Equation (13.30) and also that

µ (B) = sup {µ (C) : C ⊂ B with C closed} . (13.32)

Moreover, by MCT, we know that if C is closed and Kn :=
C ∩

{
x ∈ RN : |x| ≤ n

}
, then µ (Kn) ↑ µ (C) . This observation along

with Eq. (13.32) shows Eq. (13.31) is valid as well.
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To prove F = B, it suffices to show F is a σ – algebra which contains all
closed subsets of RN . To the prove the latter assertion, given a closed subset,
C ⊂ RN , and ε > 0, let

Cε := ∪x∈CB (x, ε)

where B (x, ε) :=
{
y ∈ RN : |y − x| < ε

}
. Then Cε is an open set and Cε ↓ C

as ε ↓ 0. (You prove.) Hence by the DCT, we know that µ (Cε \ C) ↓ 0 form
which it follows that C ∈ F .

We will now show that F is an algebra. Clearly F contains the empty set
and if A ∈ F with C ⊂ A ⊂ V and µ (V \ C) < ε, then V c ⊂ Ac ⊂ Cc with
µ (Cc \ V c) = µ (V \ C) < ε. This shows Ac ∈ F . Similarly if Ai ∈ F for i = 1, 2
and Ci ⊂ Ai ⊂ Vi with µ (Vi \ Ci) < ε, then

C := C1 ∪ C2 ⊂ A1 ∪A2 ⊂ V1 ∪ V2 =: V

and

µ (V \ C) ≤ µ (V1 \ C) + µ (V2 \ C)

≤ µ (V1 \ C1) + µ (V2 \ C2) < 2ε.

This implies that A1 ∪A2 ∈ F and we have shown F is an algebra.
We now show that F is a σ – algebra. To do this it suffices to show A :=∑∞
n=1An ∈ F if An ∈ F with An ∩Am = ∅ for m 6= n. Let Cn ⊂ An ⊂ Vn with

µ (Vn \ Cn) < ε2−n for all n and let CN := ∪n≤NCn and V := ∪∞n=1Vn. Then
CN ⊂ A ⊂ V and

µ
(
V \ CN

)
≤
∞∑
n=0

µ
(
Vn \ CN

)
≤

N∑
n=0

µ (Vn \ Cn) +

∞∑
n=N+1

µ (Vn)

≤
N∑
n=0

ε2−n +

∞∑
n=N+1

[
µ (An) + ε2−n

]
= ε+

∞∑
n=N+1

µ (An) .

The last term is less that 2ε for N sufficiently large because
∑∞
n=1 µ (An) =

µ (A) <∞.

Notation 13.18 Let I := [0, 1] , Q = IN, πj : Q → I be the projec-
tion map, πj (x) = xj (where x = (x1, x2, . . . , xj , . . . ) for all j ∈ N, and
BQ := σ (πj : j ∈ N) be the product σ – algebra on Q. Let us further say that a
sequence {x (m)}∞m=1 ⊂ Q, where x (m) = (x1 (m) , x2 (m) , . . . ) , converges to
x ∈ Q iff limm→∞ xj (m) = xj for all j ∈ N. (This is just pointwise conver-
gence.)

Lemma 13.19 (Baby Tychonoff’s Theorem). The infinite dimensional
cube, Q, is compact, i.e. every sequence {x (m)}∞m=1 ⊂ Q has a convergent
subsequence,{x (mk)}∞k=1 .

Proof. Since I is compact, it follows that for each j ∈ N, {xj (m)}∞m=1 has
a convergent subsequence. It now follow by Cantor’s diagonalization method,
that there is a subsequence, {mk}∞k=1 , of N such that limk→∞ xj (mk) ∈ I exists
for all j ∈ N.

Corollary 13.20 (Finite Intersection Property). Suppose that Km ⊂ Q
are sets which are, (i) closed under taking sequential limits2, and (ii) have the
finite intersection property, (i.e. ∩nm=1Km 6= ∅ for all m ∈ N), then ∩∞m=1Km 6=
∅.

Proof. By assumption, for each n ∈ N, there exists x (n) ∈ ∩nm=1Km.
Hence by Lemma 13.19 there exists a subsequence, x (nk) , such that x :=
limk→∞ x (nk) exists in Q. Since x (nk) ∈ ∩nm=1Km for all k large, and each
Km is closed under sequential limits, it follows that x ∈ Km for all m. Thus we
have shown, x ∈ ∩∞m=1Km and hence ∩∞m=1Km 6= ∅.

13.5.2 Kolmogorov’s Extension Theorem and Infinite Product
Measures

Theorem 13.21 (Kolmogorov’s Extension Theorem). Let I := [0, 1] .
For each n ∈ N, let µn be a probability measure on (In,BIn) such that
µn+1 (A× I) = µn (A) . Then there exists a unique measure, P on (Q,BQ)
such that

P (A×Q) = µn (A) (13.33)

for all A ∈ BIn and n ∈ N.

Proof. Let A := ∪Bn where Bn := {A×Q : A ∈ BIn} = σ (π1, . . . , πn) ,
where πi (x) = xi if x = (x1, x2, . . . ) ∈ Q. Then define P on A by Eq. (13.33)
which is easily seen (Exercise 13.1) to be a well defined finitely additive measure
on A. So to finish the proof it suffices to show if Bn ∈ A is a decreasing sequence
such that

inf
n
P (Bn) = lim

n→∞
P (Bn) = ε > 0,

then B := ∩Bn 6= ∅.
To simplify notation, we may reduce to the case where Bn ∈ Bn for all n.

To see this is permissible, let us choose 1 ≤ n1 < n2 < n3 < . . . . such that

2 For example, if Km = K′m × Q with K′m being a closed subset of Im, then Km is
closed under sequential limits.
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Bk ∈ Bnk for all k. (This is possible since Bn is increasing in n.) We now define

a new decreasing sequence of sets,
{
B̃k

}∞
k=1

as follows,

(
B̃1, B̃2, . . .

)
=

n1−1 times︷ ︸︸ ︷
Q, . . . , Q,

n2−n1 times︷ ︸︸ ︷
B1, . . . , B1 ,

n3−n2 times︷ ︸︸ ︷
B2, . . . , B2 ,

n4−n3 times︷ ︸︸ ︷
B3, . . . , B3, . . .

 .

We then have B̃n ∈ Bn for all n, limn→∞ P
(
B̃n

)
= ε > 0, and B = ∩∞n=1B̃n.

Hence we may replace Bn by B̃n if necessary so as to have Bn ∈ Bn for all n.
Since Bn ∈ Bn, there exists B′n ∈ BIn such that Bn = B′n × Q for all n.

Using the regularity Theorem 13.17, there are compact sets, K ′n ⊂ B′n ⊂ In,
such that µn (B′n \K ′n) ≤ ε2−n−1 for all n ∈ N. Let Kn := K ′n × Q, then
P (Bn \Kn) ≤ ε2−n−1 for all n. Moreover,

P (Bn \ [∩nm=1Km]) = P (∪nm=1 [Bn \Km]) ≤
n∑

m=1

P (Bn \Km)

≤
n∑

m=1

P (Bm \Km) ≤
n∑

m=1

ε2−m−1 ≤ ε/2.

So, for all n ∈ N,

P (∩nm=1Km) = P (Bn)− P (Bn \ [∩nm=1Km]) ≥ ε− ε/2 = ε/2,

and in particular, ∩nm=1Km 6= ∅. An application of Corollary 13.20 now implies,
∅ 6= ∩nKn ⊂ ∩nBn.

Exercise 13.1. Show that Eq. (13.33) defines a well defined finitely additive
measure on A := ∪Bn.

The next result is an easy corollary of Theorem 13.21.

Theorem 13.22. Suppose {(Xn,Mn)}n∈N are standard Borel spaces (see Ap-
pendix 13.6 below), X :=

∏
n∈N

Xn, πn : X → Xn be the nth – projection map,

Bn := σ (πk : k ≤ n) , B = σ(πn : n ∈ N), and Tn := Xn+1 × Xn+2 × . . . .
Further suppose that for each n ∈ N we are given a probability measure, µn on
M1 ⊗ · · · ⊗Mn such that

µn+1 (A×Xn+1) = µn (A) for all n ∈ N and A ∈M1 ⊗ · · · ⊗Mn.

Then there exists a unique probability measure, P, on (X,B) such that
P (A× Tn) = µn (A) for all A ∈M1 ⊗ · · · ⊗Mn.

Proof. Since each (Xn,Mn) is measure theoretic isomorphic to a Borel
subset of I, we may assume that Xn ∈ BI and Mn = (BI)Xn for all n. Given
A ∈ BIn , let µ̄n (A) := µn (A ∩ [X1 × · · · ×Xn]) – a probability measure on
BIn . Furthermore,

µ̄n+1 (A× I) = µn+1 ([A× I] ∩ [X1 × · · · ×Xn+1])

= µn+1 ((A ∩ [X1 × · · · ×Xn])×Xn+1)

= µn ((A ∩ [X1 × · · · ×Xn])) = µ̄n (A) .

Hence by Theorem 13.21, there is a unique probability measure, P̄ , on IN such
that

P̄
(
A× IN

)
= µ̄n (A) for all n ∈ N and A ∈ BIn .

We will now check that P := P̄ |⊗∞n=1Mn is the desired measure. First off we
have

P̄ (X) = lim
n→∞

P̄
(
X1 × · · · ×Xn × IN

)
= lim
n→∞

µ̄n (X1 × · · · ×Xn)

= lim
n→∞

µn (X1 × · · · ×Xn) = 1.

Secondly, if A ∈M1 ⊗ · · · ⊗Mn, we have

P (A× Tn) = P̄ (A× Tn) = P̄
((
A× IN

)
∩X

)
= P̄

(
A× IN

)
= µ̄n (A) = µn (A) .

Here is an example of this theorem in action.

Theorem 13.23 (Infinite Product Measures). Suppose that {νn}∞n=1 are a
sequence of probability measures on (R,BR) and B := ⊗n∈NBR is the product σ
– algebra on RN. Then there exists a unique probability measure, ν, on

(
RN,B

)
,

such that

ν
(
A1 ×A2 × · · · ×An × RN) = ν1 (A1) . . . νn (An) ∀ Ai ∈ BR & n ∈ N.

(13.34)
Moreover, this measure satisfies,∫

RN
f (x1, . . . , xn) dν (x) =

∫
Rn
f (x1, . . . , xn) dν1 (x1) . . . dνn (xn) (13.35)

for all n ∈ N and f : Rn → R which are bounded and measurable or non-negative
and measurable.

Proof. The measure ν is created by apply Theorem 13.22 with µn := ν1 ⊗
· · · ⊗ νn on (Rn,BRn = ⊗nk=1BR) for each n ∈ N. Observe that
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µn+1 (A× R) = µn (A) · νn+1 (R) = µn (A) ,

so that {µn}∞n=1 satisfies the needed consistency conditions. Thus there exists
a unique measure ν on

(
RN,B

)
such that

ν
(
A× RN) = µn (A) for all A ∈ BRn and n ∈ N.

Taking A = A1 × A2 × · · · × An with Ai ∈ BR then gives Eq. (13.34). For this
measure, it follows that Eq. (13.35) holds when f = 1A1×···×An . Thus by an
application of Theorem 12.5 with M = {1A1×···×An : Ai ∈ BR} and H being the
set of bounded measurable functions, f : Rn → R, for which Eq. (13.35) shows
that Eq. (13.35) holds for all bounded and measurable functions, f : Rn → R.
The statement involving non-negative functions follows by a simple limiting
argument involving the MCT.

It turns out that the existence of infinite product measures require no topo-
logical restrictions on the measure spaces involved. See Corollary 22.71 below.

13.6 Appendix: Standard Borel Spaces*

For more information along the lines of this section, see Royden [39] and
Parthasarathy [34].

Definition 13.24. Two measurable spaces, (X,M) and (Y,N ) are said to be
isomorphic if there exists a bijective map, f : X → Y such that f (M) = N
and f−1 (N ) = M, i.e. both f and f−1 are measurable. In this case we say f
is a measure theoretic isomorphism and we will write X ∼= Y.

Definition 13.25. A measurable space, (X,M) is said to be a standard Borel
space if (X,M) ∼= (B,BB) where B is a Borel subset of

(
(0, 1) ,B(0,1)

)
.

Definition 13.26 (Polish spaces). A Polish space is a separable topological
space (X, τ) which admits a complete metric, ρ, such that τ = τρ.

The main goal of this chapter is to prove every Borel subset of a Polish
space is a standard Borel space, see Corollary 13.36 below. Along the way we
will show a number of spaces, including [0, 1] , (0, 1], [0, 1]

d
, Rd, {0, 1}N , and

RN, are all (measure theoretic) isomorphic to (0, 1) . Moreover we also will see
that a countable product of standard Borel spaces is again a standard Borel
space, see Corollary 13.33.

*On first reading, you may wish to skip the rest of this
section.

Lemma 13.27. Suppose (X,M) and (Y,N ) are measurable spaces such that
X =

∑∞
n=1Xn, Y =

∑∞
n=1 Yn, with Xn ∈ M and Yn ∈ N . If (Xn,MXn)

is isomorphic to (Yn,NYn) for all n then X ∼= Y. Moreover, if (Xn,Mn) and
(Yn,Nn) are isomorphic measure spaces, then (X :=

∏∞
n=1Xn,⊗∞n=1Mn) are

(Y :=
∏∞
n=1 Yn,⊗∞n=1Nn) are isomorphic.

Proof. For each n ∈ N, let fn : Xn → Yn be a measure theoretic isomor-
phism. Then define f : X → Y by f = fn on Xn. Clearly, f : X → Y is a
bijection and if B ∈ N , then

f−1 (B) = ∪∞n=1f
−1 (B ∩ Yn) = ∪∞n=1f

−1
n (B ∩ Yn) ∈M.

This shows f is measurable and by similar considerations, f−1 is measurable
as well. Therefore, f : X → Y is the desired measure theoretic isomorphism.

For the second assertion, let fn : Xn → Yn be a measure theoretic isomor-
phism of all n ∈ N and then define

f (x) = (f1 (x1) , f2 (x2) , . . . ) with x = (x1, x2, . . . ) ∈ X.

Again it is clear that f is bijective and measurable, since

f−1

( ∞∏
n=1

Bn

)
=

∞∏
n=1

f−1
n (Bn) ∈ ⊗∞n=1Nn

for all Bn ∈Mn and n ∈ N. Similar reasoning shows that f−1 is measurable as
well.

Proposition 13.28. Let −∞ < a < b < ∞. The following measurable spaces
equipped with there Borel σ – algebras are all isomorphic; (0, 1) , [0, 1] , (0, 1],
[0, 1), (a, b) , [a, b] , (a, b], [a, b), R, and (0, 1)∪Λ where Λ is a finite or countable
subset of R \ (0, 1) .

Proof. It is easy to see by that any bounded open, closed, or half open
interval is isomorphic to any other such interval using an affine transformation.
Let us now show (−1, 1) ∼= [−1, 1] . To prove this it suffices, by Lemma 13.27,to
observe that

(−1, 1) = {0} ∪
∞∑
n=0

(
(−2−n,−2−n] ∪ [2−n−1, 2−n)

)
and

[−1, 1] = {0} ∪
∞∑
n=0

(
[−2−n,−2−n−1) ∪ (2−n−1, 2−n]

)
.

Similarly (0, 1) is isomorphic to (0, 1] because
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(0, 1) =

∞∑
n=0

[2−n−1, 2−n) and (0, 1] =

∞∑
n=0

(2−n−1, 2−n].

The assertion involving R can be proved using the bijection, tan :
(−π/2, π/2)→ R.

If Λ = {1} , then by Lemma 13.27 and what we have already proved, (0, 1)∪
{1} = (0, 1] ∼= (0, 1) . Similarly if N ∈ N with N ≥ 2 and Λ = {2, . . . , N + 1} ,
then

(0, 1) ∪ Λ ∼= (0, 1] ∪ Λ = (0, 2−N+1] ∪

[
N−1∑
n=1

(2−n, 2−n−1]

]
∪ Λ

while

(0, 1) =
(
0, 2−N+1

)
∪

[
N−1∑
n=1

(
2−n, 2−n−1

)]
∪
{

2−n : n = 1, 2, . . . , N
}

and so again it follows from what we have proved and Lemma 13.27 that (0, 1) ∼=
(0, 1) ∪ Λ. Finally if Λ = {2, 3, 4, . . . } is a countable set, we can show (0, 1) ∼=
(0, 1) ∪ Λ with the aid of the identities,

(0, 1) =

[ ∞∑
n=1

(
2−n, 2−n−1

)]
∪
{

2−n : n ∈ N
}

and

(0, 1) ∪ Λ ∼= (0, 1] ∪ Λ =

[ ∞∑
n=1

(2−n, 2−n−1]

]
∪ Λ.

Notation 13.29 Suppose (X,M) is a measurable space and A is a set. Let
πa : XA → X denote projection operator onto the ath – component of XA (i.e.
πa (ω) = ω (a) for all a ∈ A) and let M⊗A := σ (πa : a ∈ A) be the product σ –
algebra on XA.

Lemma 13.30. If ϕ : A→ B is a bijection of sets and (X,M) is a measurable
space, then

(
XA,M⊗A

) ∼= (XB ,M⊗B
)
.

Proof. The map f : XB → XA defined by f (ω) = ω ◦ ϕ for all ω ∈ XB is
a bijection with f−1 (α) = α ◦ ϕ−1. If a ∈ A and ω ∈ XB , we have

πX
A

a ◦ f (ω) = f (ω) (a) = ω (ϕ (a)) = πX
B

ϕ(a) (ω) ,

where πX
A

a and πX
B

b are the projection operators on XA and XB respectively.

Thus πX
A

a ◦ f = πX
B

ϕ(a) for all a ∈ A which shows f is measurable. Similarly,

πX
B

b ◦ f−1 = πX
A

ϕ−1(b) showing f−1 is measurable as well.

Proposition 13.31. Let Ω := {0, 1}N , πi : Ω → {0, 1} be projection onto the
ith component, and B := σ (π1, π2, . . . ) be the product σ – algebra on Ω. Then
(Ω,B) ∼=

(
(0, 1) ,B(0,1)

)
.

Proof. We will begin by using a specific binary digit expansion of a point
x ∈ [0, 1) to construct a map from [0, 1)→ Ω. To this end, let r1 (x) = x,

γ1 (x) := 1x≥2−1 and r2 (x) := x− 2−1γ1 (x) ∈ (0, 2−1),

then let γ2 := 1r2≥2−2 and r3 = r2− 2−2γ2 ∈
(
0, 2−2

)
. Working inductively, we

construct {γk (x) , rk (x)}∞k=1 such that γk (x) ∈ {0, 1} , and

rk+1 (x) = rk (x)− 2−kγk (x) = x−
k∑
j=1

2−jγj (x) ∈
(
0, 2−k

)
(13.36)

for all k. Let us now define g : [0, 1)→ Ω by g (x) := (γ1 (x) , γ2 (x) , . . . ) . Since
each component function, πj ◦ g = γj : [0, 1)→ {0, 1} , is measurable it follows
that g is measurable.

By construction,

x =

k∑
j=1

2−jγj (x) + rk+1 (x)

and rk+1 (x)→ 0 as k →∞, therefore

x =

∞∑
j=1

2−jγj (x) and rk+1 (x) =

∞∑
j=k+1

2−jγj (x) . (13.37)

Hence if we define f : Ω → [0, 1] by f =
∑∞
j=1 2−jπj , then f (g (x)) = x for all

x ∈ [0, 1). This shows g is injective, f is surjective, and f in injective on the
range of g.

We now claim that Ω0 := g ([0, 1)) , the range of g, consists of those ω ∈ Ω
such that ωi = 0 for infinitely many i. Indeed, if there exists an k ∈ N such
that γj (x) = 1 for all j ≥ k, then (by Eq. (13.37)) rk+1 (x) = 2−k which
would contradict Eq. (13.36). Hence g ([0, 1)) ⊂ Ω0. Conversely if ω ∈ Ω0 and
x = f (ω) ∈ [0, 1), it is not hard to show inductively that γj (x) = ωj for all
j, i.e. g (x) = ω. For example, if ω1 = 1 then x ≥ 2−1 and hence γ1 (x) = 1.
Alternatively, if ω1 = 0, then

x =

∞∑
j=2

2−jωj <

∞∑
j=2

2−j = 2−1

so that γ1 (x) = 0. Hence it follows that r2 (x) =
∑∞
j=2 2−jωj and by similar

reasoning we learn r2 (x) ≥ 2−2 iff ω2 = 1, i.e. γ2 (x) = 1 iff ω2 = 1. The full
induction argument is now left to the reader.
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162 13 Multiple and Iterated Integrals

Since single point sets are in B and

Λ := Ω \Ω0 = ∪∞n=1 {ω ∈ Ω : ωj = 1 for j ≥ n}

is a countable set, it follows that Λ ∈ B and therefore Ω0 = Ω \ Λ ∈ B.
Hence we may now conclude that g :

(
[0, 1),B[0,1)

)
→ (Ω0,BΩ0

) is a measurable

bijection with measurable inverse given by f |Ω0
, i.e.

(
[0, 1),B[0,1)

) ∼= (Ω0,BΩ0
) .

An application of Lemma 13.27 and Proposition 13.28 now implies

Ω = Ω0 ∪ Λ ∼= [0, 1) ∪ N ∼= [0, 1) ∼= (0, 1) .

Corollary 13.32. The following spaces are all isomorphic to
(
(0, 1) ,B(0,1)

)
;

(0, 1)
d

and Rd for any d ∈ N and [0, 1]
N

and RN where both of these spaces are
equipped with their natural product σ – algebras, .

Proof. In light of Lemma 13.27 and Proposition 13.28 we know that
(0, 1)

d ∼= Rd and (0, 1)
N ∼= [0, 1]

N ∼= RN. So, using Proposition 13.31, it suf-

fices to show (0, 1)
d ∼= Ω ∼= (0, 1)

N
and to do this it suffices to show Ωd ∼= Ω

and ΩN ∼= Ω.
To reduce the problem further, let us observe that Ωd ∼= {0, 1}N×{1,2,...,d}

and ΩN ∼= {0, 1}N
2

. For example, let g : ΩN → {0, 1}N
2

be defined by

g (ω) (i, j) = ω (i) (j) for all ω ∈ ΩN =
[
{0, 1}N

]N
. Then g is a bijection and

since π
{0,1}N

2

(i,j) ◦ g (ω) = πΩj

(
πΩ

N

i (ω)
)
, it follows that g is measurable. The in-

verse, g−1 : {0, 1}N
2

→ ΩN, to g is given by g−1 (α) (i) (j) = α (i, j) . To see

this map is measurable, we have πΩ
N

i ◦ g−1 : {0, 1}N
2

→ Ω = {0, 1}N is given

πΩ
N

i ◦ g−1 (α) = g−1 (α) (i) (·) = α (i, ·) and hence

πΩj ◦ πΩ
N

i ◦ g (α) = α (i, j) = π
{0,1}N

2

i,j (α)

from which it follows that πΩj ◦πΩ
N

i ◦g−1 = π{0,1}
N2

is measurable for all i, j ∈ N
and hence πΩ

N

i ◦ g−1 is measurable for all i ∈ N and hence g−1 is measurable.

This shows ΩN ∼= {0, 1}N
2

. The proof that Ωd ∼= {0, 1}N×{1,2,...,d} is analogous.
We may now complete the proof with a couple of applications of Lemma

13.30. Indeed N, N × {1, 2, . . . , d} , and N2 all have the same cardinality and
therefore,

{0, 1}N×{1,2,...,d} ∼= {0, 1}N
2 ∼= {0, 1}N = Ω.

Corollary 13.33. Suppose that (Xn,Mn) for n ∈ N are standard Borel spaces,
then X :=

∏∞
n=1Xn equipped with the product σ – algebra, M := ⊗∞n=1Mn is

again a standard Borel space.

Proof. Let An ∈ B[0,1] be Borel sets on [0, 1] such that there exists a mea-
surable isomorpohism, fn : Xn → An. Then f : X → A :=

∏∞
n=1An defined by

f (x1, x2, . . . ) = (f1 (x1) , f2 (x2) , . . . ) is easily seen to me a measure theoretic
isomorphism when A is equipped with the product σ – algebra, ⊗∞n=1BAn . So ac-
cording to Corollary 13.32, to finish the proof it suffice to show ⊗∞n=1BAn =MA

where M := ⊗∞n=1B[0,1] is the product σ – algebra on [0, 1]
N
.

The σ – algebra, ⊗∞n=1BAn , is generated by sets of the form, B :=
∏∞
n=1Bn

where Bn ∈ BAn ⊂ B[0,1]. On the other hand, the σ – algebra,MA is generated

by sets of the form, A ∩ B̃ where B̃ :=
∏∞
n=1 B̃n with B̃n ∈ B[0,1]. Since

A ∩ B̃ =

∞∏
n=1

(
B̃n ∩An

)
=

∞∏
n=1

Bn

where Bn = B̃n ∩An is the generic element in BAn , we see that ⊗∞n=1BAn and
MA can both be generated by the same collections of sets, we may conclude
that ⊗∞n=1BAn =MA.

Our next goal is to show that any Polish space with its Borel σ – algebra is
a standard Borel space.

Notation 13.34 Let Q := [0, 1]N denote the (infinite dimensional) unit cube
in RN. For a, b ∈ Q let

d(a, b) :=

∞∑
n=1

1

2n
|an − bn| =

∞∑
n=1

1

2n
|πn (a)− πn (b)| . (13.38)

Exercise 13.2. Show d is a metric and that the Borel σ – algebra on (Q, d) is
the same as the product σ – algebra.

Theorem 13.35. To every separable metric space (X, ρ), there exists a contin-
uous injective map G : X → Q such that G : X → G(X) ⊂ Q is a homeomor-
phism. Moreover if the metric, ρ, is also complete, then G (X) is a Gδ –set, i.e.
the G (X) is the countable intersection of open subsets of (Q, d) . In short, any
separable metrizable space X is homeomorphic to a subset of (Q, d) and if X is
a Polish space then X is homeomorphic to a Gδ – subset of (Q, d).

Proof. (This proof follows that in Rogers and Williams [38, Theorem 82.5
on p. 106.].) By replacing ρ by ρ

1+ρ if necessary, we may assume that 0 ≤ ρ < 1.

Let D = {an}∞n=1 be a countable dense subset of X and define

G (x) = (ρ (x, a1) , ρ (x, a2) , ρ (x, a3) , . . . ) ∈ Q
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and

γ (x, y) = d (G (x) , G (y)) =

∞∑
n=1

1

2n
|ρ (x, an)− ρ (y, an)|

for x, y ∈ X. To prove the first assertion, we must show G is injective and γ is
a metric on X which is compatible with the topology determined by ρ.

If G (x) = G (y) , then ρ (x, a) = ρ (y, a) for all a ∈ D. Since D is a dense
subset of X, we may choose αk ∈ D such that

0 = lim
k→∞

ρ (x, αk) = lim
k→∞

ρ (y, αk) = ρ (y, x)

and therefore x = y. A simple argument using the dominated convergence
theorem shows y → γ (x, y) is ρ – continuous, i.e. γ (x, y) is small if ρ (x, y) is
small. Conversely,

ρ (x, y) ≤ ρ (x, an) + ρ (y, an) = 2ρ (x, an) + ρ (y, an)− ρ (x, an)

≤ 2ρ (x, an) + |ρ (x, an)− ρ (y, an)| ≤ 2ρ (x, an) + 2nγ (x, y) .

Hence if ε > 0 is given, we may choose n so that 2ρ (x, an) < ε/2 and so if
γ (x, y) < 2−(n+1)ε, it will follow that ρ (x, y) < ε. This shows τγ = τρ. Since
G : (X, γ)→ (Q, d) is isometric, G is a homeomorphism.

Now suppose that (X, ρ) is a complete metric space. Let S := G (X) and σ
be the metric on S defined by σ (G (x) , G (y)) = ρ (x, y) for all x, y ∈ X. Then
(S, σ) is a complete metric (being the isometric image of a complete metric
space) and by what we have just prove, τσ = τdS . Consequently, if u ∈ S and ε >
0 is given, we may find δ′ (ε) such that Bσ (u, δ′ (ε)) ⊂ Bd (u, ε) . Taking δ (ε) =
min (δ′ (ε) , ε) , we have diamd (Bd (u, δ (ε))) < ε and diamσ (Bd (u, δ (ε))) < ε
where

diamσ (A) := {supσ (u, v) : u, v ∈ A} and

diamd (A) := {sup d (u, v) : u, v ∈ A} .

Let S̄ denote the closure of S inside of (Q, d) and for each n ∈ N let

Nn := {N ∈ τd : diamd (N) ∨ diamσ (N ∩ S) < 1/n}

and let Un := ∪Nn ∈ τd. From the previous paragraph, it follows that S ⊂ Un
and therefore S ⊂ S̄ ∩ (∩∞n=1Un) .

Conversely if u ∈ S̄ ∩ (∩∞n=1Un) and n ∈ N, there exists Nn ∈ Nn such
that u ∈ Nn. Moreover, since N1 ∩ · · · ∩Nn is an open neighborhood of u ∈ S̄,
there exists un ∈ N1 ∩ · · · ∩ Nn ∩ S for each n ∈ N. From the definition of
Nn, we have limn→∞ d (u, un) = 0 and σ (un, um) ≤ max

(
n−1,m−1

)
→ 0 as

m,n → ∞. Since (S, σ) is complete, it follows that {un}∞n=1 is convergent in
(S, σ) to some element u0 ∈ S. Since (S, dS) has the same topology as (S, σ)

it follows that d (un, u0) → 0 as well and thus that u = u0 ∈ S. We have
now shown, S = S̄ ∩ (∩∞n=1Un) . This completes the proof because we may
write S̄ =

(⋂∞
n=1 S1/n

)
where S1/n :=

{
u ∈ Q : d

(
u, S̄

)
< 1/n

}
and therefore,

S = (
⋂∞
n=1 Un) ∩

(⋂∞
n=1 S1/n

)
is a Gδ set.

Corollary 13.36. Every Polish space, X, with its Borel σ – algebra is a stan-
dard Borel space. Consequently any Borel subset of X is also a standard Borel
space.

Proof. Theorem 13.35 shows that X is homeomorphic to a measurable (in
fact a Gδ) subset Q0 of (Q, d) and hence X ∼= Q0. Since Q is a standard Borel
space so is Q0 and hence so is X.

13.7 More Exercises

Exercise 13.3. Let (Xj ,Mj , µj) for j = 1, 2, 3 be σ – finite measure spaces.
Let F : (X1 ×X2)×X3 → X1 ×X2 ×X3 be defined by

F ((x1, x2), x3) = (x1, x2, x3).

1. Show F is ((M1 ⊗M2)⊗M3,M1 ⊗M2 ⊗M3) – measurable and F−1 is
(M1 ⊗M2 ⊗M3, (M1 ⊗M2)⊗M3) – measurable. That is

F : ((X1 ×X2)×X3, (M1 ⊗M2)⊗M3)→ (X1×X2×X3,M1⊗M2⊗M3)

is a “measure theoretic isomorphism.”
2. Let π := F∗ [(µ1 ⊗ µ2)⊗ µ3] , i.e. π(A) = [(µ1 ⊗ µ2)⊗ µ3] (F−1(A)) for all
A ∈ M1 ⊗M2 ⊗M3. Then π is the unique measure on M1 ⊗M2 ⊗M3

such that
π(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

for all Ai ∈Mi. We will write π := µ1 ⊗ µ2 ⊗ µ3.
3. Let f : X1 ×X2 ×X3 → [0,∞] be a (M1 ⊗M2 ⊗M3,BR̄) – measurable

function. Verify the identity,∫
X1×X2×X3

fdπ =

∫
X3

dµ3(x3)

∫
X2

dµ2(x2)

∫
X1

dµ1(x1)f(x1, x2, x3),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six possible

orderings of the iterated integrals.

Exercise 13.4. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1],M =
B[0,1] be the Borel σ – field on X, m be Lebesgue measure on [0, 1] and ν be
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counting measure, ν(A) = #(A). Finally let D = {(x, x) ∈ X2 : x ∈ X} be the
diagonal in X2. Show∫

X

[∫
X

1D(x, y)dν(y)

]
dm(x) 6=

∫
X

[∫
X

1D(x, y)dm(x)

]
dν(y)

by explicitly computing both sides of this equation.

Exercise 13.5. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 13.6. Folland Problem 2.50 on p. 69 pertaining to area under a curve.
(Note the M×BR should be M⊗BR̄ in this problem.)

Exercise 13.7. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 13.8. Folland Problem 2.56 on p. 77. Let f ∈ L1((0, a), dm), g(x) =∫ a
x
f(t)
t dt for x ∈ (0, a), show g ∈ L1((0, a), dm) and∫ a

0

g(x)dx =

∫ a

0

f(t)dt.

Exercise 13.9. Show
∫∞

0

∣∣ sin x
x

∣∣ dm(x) = ∞. So sin x
x /∈ L1([0,∞),m) and∫∞

0
sin x
x dm(x) is not defined as a Lebesgue integral.

Exercise 13.10. Folland Problem 2.57 on p. 77.

Exercise 13.11. Folland Problem 2.58 on p. 77.

Exercise 13.12. Folland Problem 2.60 on p. 77. Properties of the Γ – function.

13.8 Exercises

Many of the following exercises are probably repeats of the exercises above.

Exercise 13.13. Prove Theorem ??. Suggestion, to get started define

π (A) :=

∫
X1

dµ (x1)· · ·
∫
Xn

dµ (xn) 1A (x1, . . . , xn)

and then show Eq. (??) holds. Use the case of two factors as the model of your
proof.

Exercise 13.14. Let (Xj ,Mj , µj) for j = 1, 2, 3 be σ – finite measure spaces.
Let F : (X1 ×X2)×X3 → X1 ×X2 ×X3 be defined by

F ((x1, x2), x3) = (x1, x2, x3).

1. Show F is ((M1 ⊗M2)⊗M3,M1 ⊗M2 ⊗M3) – measurable and F−1 is
(M1 ⊗M2 ⊗M3, (M1 ⊗M2)⊗M3) – measurable. That is

F : ((X1 ×X2)×X3, (M1 ⊗M2)⊗M3)→ (X1×X2×X3,M1⊗M2⊗M3)

is a “measure theoretic isomorphism.”
2. Let π := F∗ [(µ1 ⊗ µ2)⊗ µ3] , i.e. π(A) = [(µ1 ⊗ µ2)⊗ µ3] (F−1(A)) for all
A ∈ M1 ⊗M2 ⊗M3. Then π is the unique measure on M1 ⊗M2 ⊗M3

such that
π(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

for all Ai ∈Mi. We will write π := µ1 ⊗ µ2 ⊗ µ3.
3. Let f : X1 ×X2 ×X3 → [0,∞] be a (M1 ⊗M2 ⊗M3,BR̄) – measurable

function. Verify the identity,∫
X1×X2×X3

fdπ =

∫
X3

dµ3(x3)

∫
X2

dµ2(x2)

∫
X1

dµ1(x1)f(x1, x2, x3),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six possible

orderings of the iterated integrals.

Exercise 13.15. Prove the second assertion of Theorem ??. That is show md

is the unique translation invariant measure on BRd such that md((0, 1]d) = 1.
Hint: Look at the proof of Theorem ??.

Exercise 13.16. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1],M =
B[0,1] be the Borel σ – field on X, m be Lebesgue measure on [0, 1] and ν be
counting measure, ν(A) = #(A). Finally let D = {(x, x) ∈ X2 : x ∈ X} be the
diagonal in X2. Show∫

X

[∫
X

1D(x, y)dν(y)

]
dm(x) 6=

∫
X

[∫
X

1D(x, y)dm(x)

]
dν(y)

by explicitly computing both sides of this equation.

Exercise 13.17 (Folland Problem 2.48 on p. 69.). Let X = Y = N, B = 2N

and µ = ν =
∑∞
n=1 δn be counting measure on (X,B) and (Y,B) . If f : X×Y →

R is defined by
f (m,n) = 1m=n − 1m=n+1

show
∫
N×N |f | d(µ ⊗ ν) = ∞ while

∫
N dµ(m)

∫
N dν(n)f(m,n) and∫

N dν(n)
∫
N dµ(m)f(m,n) both exists but are unequal.

Exercise 13.18. Folland Problem 2.50 on p. 69 pertaining to area under a
curve. (Note the M×BR should be M⊗BR̄ in this problem.)
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Exercise 13.19. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 13.20 (Folland Problem 2.56 on p. 77. ). Let a ∈ (0,∞), f ∈
L1((0, a), dm), and

g(x) =

∫ a

x

f(t)

t
dt for x ∈ (0, a).

Show g ∈ L1((0, a), dm) and∫ a

0

g(x)dx =

∫ a

0

f(t)dt.

Exercise 13.21. Show
∫∞

0

∣∣ sin x
x

∣∣ dm(x) = ∞. So sin x
x /∈ L1([0,∞),m) and∫∞

0
sin x
x dm(x) is not defined as a Lebesgue integral.

Exercise 13.22. Folland Problem 2.57 on p. 77.

Exercise 13.23. Folland Problem 2.58 on p. 77.

Exercise 13.24 (Folland Problem 2.60 on p. 77.). If Γ (x) is the Γ -
function as in Definition 10.45, show

Γ (x)Γ (y)/Γ (x+ y) =

∫ 1

0

(1− r)x−1ry−1 dr for all x, y > 0.

Hint: write Γ (x)Γ (y) as a double integral and then make a couple of change
of variables.

Exercise 13.25. Folland Problem 2.61 on p. 77. Fractional integration.





14

Lebesgue Measure on Rd

Notation 14.1 Let

md =

d times︷ ︸︸ ︷
m⊗ · · · ⊗m on BRd =

d times︷ ︸︸ ︷
BR ⊗ · · · ⊗ BR

be the d – fold product of Lebesgue measure m on BR.
Alternatively, define md by induction on d using

md = m⊗md−1 on BRd = BR ⊗ BRd−1 .

[We will also use md to denote its completion and let Ld be the completion of
BRd relative to md. A subset A ∈ Ld is called a Lebesgue measurable set and
md is called d – dimensional Lebesgue measure, or just Lebesgue measure for
short.]

Definition 14.2. A function f : Rd → R is Lebesgue measurable if f∗BR ⊂
Ld.

Notation 14.3 I will often be sloppy in the sequel and write m for md and dx
for dm(x) = dmd(x), i.e.∫

Rd
f (x) dx =

∫
Rd
fdm =

∫
Rd
fdmd.

Hopefully the reader will understand the meaning from the context.

Theorem 14.4. If a ∈ Rd and f : Rd → [0,∞] is Borel measurable, then∫
Rd
f (x+ a) dmd (x) =

∫
Rd
f (x) dmd (x) (14.1)

and in particular Lebesgue measure, md, is invariant under translation. More-
over, if µ is a measure on BRd which is translation invariant and µ

(
(0, 1]d

)
<

∞, then µ = c ·md where c = µ
(
(0, 1]d

)
.

Proof. The proof of these assertions will be by induction on d. The case
d = 1 being already known. Here is the induction step to prove Eq. (14.1).
By Tonelli’s theorem along with the translation invariance of m1 if we let x =
(x1, y) ∈ R× Rd−1, then

∫
Rd
f (x+ a) dmd (x) =

∫
Rd−1

dy

∫
R
dx1f (x1 + a1, y + b)

=

∫
Rd−1

dy

∫
R
dx1f (x1, y + b)

=

∫
R
dx1

∫
Rd−1

dyf (x1, y + b)

=

∫
R
dx1

∫
Rd−1

dyf (x1, y) =

∫
Rd
f (x+ a) dmd (x)

wherein the induction step was used in the second to last equality. Taking
f = 1Ω with Ω ∈ BRd shows m (Ω − a) = m (Ω) which is the translation
invariance of md.

For the uniqueness assertion, let B ∈ BRd−1 be a fixed bounded set and then
define ν (A) := µ (A×B) for A ∈ BR. Then ν is translation invariant measure
on BR which is finite on bounded sets and hence ν (A) = ν ((0, 1]) ·m (A) , i.e.

µ (A×B) = m (A)µ ((0, 1]×B) .

As simple truncation arguments now shows this last equation holds for all B ∈
BRd−1 . Applying the induction hypothesis ot the translation ninvariant measure,
BRd−1 3 B → µ ((0, 1]×B) , we conclude that µ ((0, 1]×B) = c ·md−1 (B) for
all B ∈ BRd−1 . Combinining these results shows

µ (A×B) = c ·m (A)md−1 (B) = cmd (A×B) for all A ∈ BR and B ∈ BRd−1 .

By an application of Proposition 12.8 we conclude that µ = c ·md.

Exercise 14.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on BH which is invariant under translations and
satisfies, m(B0(ε)) > 0 for all ε > 0. Show m(V ) = ∞ for all non-empty open
subsets V ⊂ H.
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14.1 Linear Change of variables theorem

Suppose that T is an invertible d× d real matrix which we view to be a linear
transformation from Rd to Rd. Let mT := T−1

∗ m, i.e. mT is the measure on
BRd such that (mT ) (B) = m (TB) for all B ∈ BRd . Since Lebesgue measure is
translation invariant (Theorem 14.4)

(mT ) (x+B) = m (Tx+ TB) = m (TB) = (mT ) (B)

which shows mT is still translation invariant. We now let

δ (T ) := m
(
T [0, 1]

d
)

and observe that δ (T ) ∈ (0,∞) since T [0, 1]
d

is a bounded set with non-empty
interior. Then µ := 1

δ(T )mT is a translation invariant measure on BRd such that

µ
(

[0, 1]
d
)

= 1 and hence by Theorem 14.4 µ = m, i.e. mT = δ (T ) ·m. The

main goal of this section is to show δ (T ) = |detT | .
Let us begin by showing δ behaves like a determinant. If S is another in-

vertible d× d real matrix then

δ (ST )m = mST = δ (S)mT = δ (S) δ (T )m

which shows δ (ST ) = δ (S) δ (T ) . We also clearly have δ (I) = 1. Although this
indicates that δ may be the determinant it is certainly not enough to prove
it yet. For example, we could have δ (T ) = |detT |p for some p ∈ R. We are
going to show δ (T ) = |detT | by factoring T as T = RDS where R and S are
orthogonal matrices and D is a dilation. We will then compute δ on each of
the factors. Before getting started let us briefly review the basic notion of an
orthogonal matrix.

Let 〈x, y〉 or x · y denote the standard dot product on Rd, i.e.

〈x, y〉 = x · y =

d∑
j=1

xjyj .

Recall that if A is a d× d real matrix then the transpose matrix, Atr, may be
characterized as the unique real d× d matrix such that

〈Ax, y〉 =
〈
x,Atry

〉
for all x, y ∈ Rd.

Definition 14.5. A d× d real matrix, S, is orthogonal iff StrS = I or equiva-
lently stated Str = S−1.

Here are a few basic facts about orthogonal matrices.

1. A d× d real matrix, S, is orthogonal iff 〈Sx, Sy〉 = 〈x, y〉 for all x, y ∈ Rd.
2. If {uj}dj=1 is any orthonormal basis for Rd and S is the d× d matrix deter-

mined by Sej = uj for 1 ≤ j ≤ d, then S is orthogonal.1 Here is a proof for
your convenience; if x, y ∈ Rd, then

〈
x, Stry

〉
= 〈Sx, y〉 =

d∑
j=1

〈x, ej〉 〈Sej , y〉 =

d∑
j=1

〈x, ej〉 〈uj , y〉

=

d∑
j=1

〈
x, S−1uj

〉
〈uj , y〉 =

〈
x, S−1y

〉
from which it follows that Str = S−1.

3. If S is orthogonal, then 1 = det I = det (StrS) = detStr · detS = (detS)
2

and hence detS = ±1.

The following lemma is a special case the well known singular value de-
composition or SVD for short..

Lemma 14.6 (SVD). If T is a real d × d matrix, then there exists D =
diag (λ1, . . . , λd) with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 and two orthogonal matrices
R and S such that T = RDS. Further observe that |detT | = detD = λ1 . . . λd.

Proof. Since T trT is symmetric, by the spectral theorem there exists an
orthonormal basis {uj}dj=1 of Rd and λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 such that

T trTuj = λ2
juj for all j. In particular we have

〈Tuj , Tuk〉 =
〈
T trTuj , uk

〉
= λ2

jδjk ∀ 1 ≤ j, k ≤ d.

1. detT 6= 0 case.

a) (First proof.) In this case λ1 . . . λd = detT trT = (detT )
2
> 0 and so

λd > 0. It then follows that
{
vj := 1

λj
Tuj

}d
j=1

is an orthonormal basis

for Rd. Let us further let D = diag (λ1, . . . , λd) (i.e. Dej = λjej for
1 ≤ j ≤ d) and R and S be the orthogonal matrices defined by

Rej = vj and Strej = S−1ej = uj for all 1 ≤ j ≤ d.

Combining these definitions with the identity, Tuj = λjvj , implies

TS−1ej = λjRej = Rλjej = RDej for all 1 ≤ j ≤ d,

i.e. TS−1 = RD or equivalently T = RDS.

1 This is a standard result from linear algebra often stated as a matrix, S, is orthog-
onal iff the columns of S form an orthonormal basis.

Page: 168 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



14.2 General Change of Variables 169

b) (Second proof.) By the spectral theorem, T trT = StrD2S where S is
an orthogonal matrix and D is diagonal with the square roots of the
eigenvalue of T trT along the diagonal. From this equation we conclude,

ST trTStr = D2 =⇒
[
D−1ST tr

] [
TStrD−1

]
= I

and so R := TStrD−1 is an orthogonal matrix. Solving the last equation
for T then implies T = RDS.

2. detT = 0 case. In this case there exists 1 ≤ k < d such that λ1 ≥ λ2 ≥
· · · ≥ λk > 0 = λk+1 = · · · = λd. The only modification needed for the
above proof is to define vj := 1

λj
Tuj for j ≤ k and then extend choose

vk+1, . . . , vd ∈ Rd so that {vj}dj=1 is an orthonormal basis for Rd. We still
have Tuj = λjvj for all j and so the proof in the first case goes through
without change.

In the next theorem we will make use of Theorem 14.4 which characterizes
d-dimensional Lebesgue measure as the unique measure on

(
Rd,BRd

)
which is

translation invariant assigns unit measure to [0, 1]
d
.

Theorem 14.7. If T is a real d× d matrix, then m ◦ T = |detT | ·m.
Proof. Recall that we know mT = δ (T )m for some δ (T ) ∈ (0,∞) and so

we must show δ (T ) = |detT | . We first consider two special cases.

1. If T = R is orthogonal and B is the unit ball in Rd,2 then δ (R)m (B) =
m (RB) = m (B) from which it follows δ (R) = 1 = |detR| .

2. If T = D = diag (λ1, . . . , λd) with λi ≥ 0, then D [0, 1]
d

= [0, λ1] × · · · ×
[0, λd] so that

δ (D) = δ (D)m
(

[0, 1]
d
)

= m
(
D [0, 1]

d
)

= λ1 . . . λd = detD.

3. For the general case we use singular value decomposition (Lemma 14.6) to
write T = RDS and then find

δ (T ) = δ (R) δ (D) δ (S) = 1 · detD · 1 = |detT | .

Theorem 14.8 (Linear Change of Variables Theorem). If
T ∈ GL(d,R) = GL

(
Rd
)

– the space of d × d invertible matrices, then
the change of variables formula,∫

Rd
f(y)dy =

∫
Rd
f (Tx) · |detT | dx, (14.2)

holds for all f ∈ L+
(
Rd,BRd

)
or for all f ∈ L1

(
md
)
.

2 B =
{
x ∈ Rd : ‖x‖ < 1

}
.

Proof. Theorem 14.7 may be restated to say T−1
∗ m = m ◦ T = |detT | dm

which combined with the abstract change of variables theorem (see Exercise
10.73) gives ∫

Rd
fdm =

∫
Rd
f ◦ Td

[
T−1
∗ m

]
=

∫
Rd
f ◦ T · |detT | dm

for all f ∈ L+
(
Rd,BRd

)
.

In a Chapter ??, we will prove a much more general version of the change
of variables theorem for d-dimensional Lebesgue measure. In the next section
we describe an important “disintegration” theorem for md.

The next exercise gives an alternative proof of Theorem 14.7.

Exercise 14.2 (Change of variables for elementary matrices). Let R :=
(a, b] = (a1, b1]× · · · × (ad, bd] ⊂ Rd be a bounded half open rectangle. Show by
direct calculation that;

|detT |
∫
Rd

1R ◦ T (x) dx = m (R) =

∫
Rd

1R (y) dy (14.3)

for each of the following linear transformations;

1. Suppose that i < k and

T (x1, x2 . . . , xd) = (x1, . . . , xi−1, xk, xi+1 . . . , xk−1, xi, xk+1, . . . xd),

i.e. T swaps the i and k coordinates of x.
2. T (x1, . . . xk, . . . , xd) = (x1, . . . , cxk, . . . xd) where c ∈ R \ {0} .

3. T (x1, x2 . . . , xd) = (x1, . . . ,
i’th spot
xi + cxk, . . . xk, . . . xd) where c ∈ R.

Hint: you should use Fubini’s theorem along with the one dimensional
change of variables theorem.4

14.2 General Change of Variables

In this chapter we are going to first state and illustrate the multi-dimensional
change of variables theorem.

3 Recall that this exercise states;
∫
Y
gd [f∗µ] =

∫
X

(g ◦ f) dµ.
4 The point of this exercise to compute explicitly δ (T ) where T is an elementary

matrix and show in all case that δ (T ) = |detT | . This may be easier to do using
the integration theoretic definition of δ (T ) . Once all of this is done it follows by
the fact that every invertible matrix is the product of elementary matricies that
δ (T ) = |detT | whenever T is invertible.
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Notation 14.9 (Standing Notation) Let Ω be an open subset of Rd and
for 1 ≤ i ≤ d, let ∂i := ∂/∂xi for 1 ≤ i ≤ d. A function, T : Ω → Rd is
continuously differentiable if for all 1 ≤ i ≤ d and 1 ≤ j ≤ d, ∂iTj (x)
exists for x ∈ Ω and Ω 3 x → ∂iTj (x) ∈ R is continuous. We let C1

(
Ω,Rd

)
denote the vector space of continuously differentiable functions from Ω to Rd.

Definition 14.10 (Differentials). For T ∈ C1 (Ω,Rn) and let T ′ (x) be the
differential of T at x defined by.

T ′ (x) = [(∂1T ) (x) | . . . | (∂dT ) (x)] ∀ x ∈ Ω, (14.4)

where T (x) = (T1(x), . . . , Tn(x))tr. In more detail,

T ′ (x) =

∂1T1 (x) . . . ∂dT1 (x)
...

. . .
...

∂1Td (x) . . . ∂dTd (x)

 , (14.5)

i.e. the i - j-matrix entry of T ′(x) is given by T ′(x)ij = ∂jTi(x).

We now wish to sketch an outline of the proof of the change of variables
theorem. Our goal is to show d (m ◦ T ) = |detT ′ (·)| dm. If we can do this it
will then follows that∫

T (Ω)

fdm =

∫
Ω

f ◦ Td (m ◦ T ) =

∫
Ω

f ◦ T · |detT ′ (·)| dm.

Theorem 14.11 (Change of Variables Theorem I). Let Ω ⊂o Rd be an
open set and T : Ω → T (Ω) ⊂o Rd be a C1-diffeomorphism,5 see Figure 14.1.
Then d (m ◦ T ) = |detT ′ (·)| dm where both sides are measure on (Ω,BΩ) .

Proof. We will only sketch the idea of the proof here. Full proofs of the
theorem will appear at the end of this chapter. To verify that d (m ◦ T ) =
|detT ′ (·)| dm it suffices to show

m (T (R)) =

∫
R

|detT ′ (·)| dm (14.6)

whenever R ∈ BΩ is a half-open rectangle. Indeed if this can be done and
R0 ∈ BΩ is a half-open rectangle, then by the multiplicative system theorem
it will follows that d (m ◦ T ) = |detT ′ (·)| dm on all A ∈ BΩ with A ⊂ R0. If
A ∈ BΩ is a set such that Ā ⊂ Ω, we can find finitely many half-open rectangle,

5 That is T : Ω → T (Ω) ⊂o Rd is a continuously differentiable bijection and the
inverse map T−1 : T (Ω)→ Ω is also continuously differentiable.

y = T (x)

T (Q)

T (Ω)

y - space

x - space

x

Ω

dy = | det(T ′(x))|dx

Q

T

Fig. 14.1. The geometric setup of Theorem 14.13.

{Rj}nj=1 with Rj ⊂ Ω such that Ā ⊂ ∪nj=1R
o
j ⊂ ∪nj=1Rj . It is now a simple

matter to conclude that6

m (T (A)) =

∫
A

|detT ′ (·)| dm.

A simple truncation argument now shows that d (m ◦ T ) = |detT ′ (·)| dm on
all of BΩ . Thus it remains to prove Eq. (14.6) holds. The sketch of this proof
follows.

1. Decompose R into small cubes or almost cube regions, R =
∑N
i=1Qi and

let xi be the center point in Qi. Then

m (T (R)) =

N∑
i=1

m (T (Qi)) .

6 Suppose that µ and ν are two measure on a measure space (Ω,B) . If Aj ∈ B for
1 ≤ j ≤ N and µ = ν on BAj for all j, then µ = ν on B∪Aj . Indeed if B ∈ B∪Aj then

B =
∑n
j=1B ∩ Ãj where Ã1 = A1 and Ãj = Aj \ [A1 ∪ · · · ∪Aj−1] for 2 ≤ j ≤ N.

Since B ∩ Ãj ∈ BAj for each j we conclude that

µ (B) =

n∑
j=1

µ
(
B ∩ Ãj

)
=

n∑
j=1

ν
(
B ∩ Ãj

)
= ν (B) .
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2. We then use for x ∈ Qi, T (x) ∼= T (xi) + T ′ (xi) (x− xi) so that T (Qi) ∼=
T (xi) + T ′ (xi) (Q− xi) .

3. Consequently,

m (T (Qi)) ∼= m (T (xi) + T ′ (xi) (Qi − xi)) = m (T ′ (xi) (Qi − xi))
= |detT ′ (xi)|m (Qi − xi) = |detT ′ (xi)|m (Qi) .

4. Summing this equation indicates that

m (T (R)) ∼=
N∑
i=1

|detT ′ (xi)|m (Qi)→
∫
R

|detT ′ (·)| dm

as the mesh of the partition tends to 0.

Remark 14.12 (*Added details to the proof sketch). Here are some more the
details of the above proof which you may safely ignore! For the purposes of the
estimates below we let |x| = max1≤i≤d |xi| and ‖·‖ denote the corresponding
operator norm on d× d matrices.

By the definition of the derivative, for x0 ∈ Ω,

T (x0 + y) ∼= T (x0) + T ′ (x0) y =: T̃x0
(y)

which suggest we define,

Sx0
(y) = T ′ (x0)

−1
[T (x0 + y)− T (x0)]

so that
T (x0 + y) = T (x0) + T ′ (x0)Sx0 (y) = T̃x0 ◦ Sx0 (y) .

We then have Sx0
(0) = 0 and S′x0

(0) = I and hence

Sx0 (y) =

(∫ 1

0

S′x0
(ty) dt

)
y = y + ρx0 (y) y

where

ρx0
(y) =

∫ 1

0

[
S′x0

(ty)− I
]
dt.

Fix a compact subset, K ⊂ Ω, for example take

K = KN =

{
x ∈ Ω : d (x, ∂Ω) <

1

N

}
∩B (0, N)

for some N ∈ N so that KN ↑ Ω as N ↑ ∞. Then define

α (δ) := 1 + sup
x0∈K

sup
|y|≤δ

‖ρx0
(y)‖

so that α (δ) ↓ 1 as δ ↓ 0. We then have the estimate,

|Sx0
(y)| ≤ (1 + ‖ρx0

(y)‖) |y| ≤ α (|y|) |y| ≤ α (δ) |y| for |y| ≤ δ.

Choosing ᾱ (δ) > α (δ) so that ᾱ (δ) ↓ 1 (take ᾱ (δ) = α (δ) + δ for example)

and letting Qδ := (−δ, δ]d (note that Q̄δ = [−δ, δ]d = {y : |y| ≤ δ}) we find, for
all x0 ∈ K and δ small enough, that

Sx0
(Qδ) ⊂ Sx0

(
Q̄δ
)
⊂ Q̄α(δ)δ ⊂ Qᾱ(δ)δ.

By replacing δ by δ/ᾱ (δ) in this inequality we also have

Sx0

(
Qδ/ᾱ(δ)

)
⊂ Q ᾱ(δ/ᾱ(δ))

ᾱ(δ)
δ
⊂ Qδ (14.7)

where the last inclusion follows since δ/ᾱ (δ) ≤ δ so that ᾱ (δ/ᾱ (δ)) ≤ ᾱ (δ) .
We actually apply the above inclusion with Sx0

replaced by S−1
x0

which satisfies
the same properties of Sx0

. ]Note that S−1
x0

exists since

Sx0
(y) = T ′ (x0)

−1
[T (x0 + y)− T (x0)] = z ⇐⇒

T (x0 + y) = T (x0) + T ′ (x0) z ⇐⇒ x0 + y = T−1 (T (x0) + T ′ (x0) z)

and hence
S−1
x0

(z) = T−1 (T (x0) + T ′ (x0) z)− x0.]

We now let α̃ (δ) := 1 + supx0∈K sup|y|≤δ ‖ρ̃x0 (y)‖ where

ρ̃x0
(y) =

∫ 1

0

[(
S−1
x0

)′
(ty)− I

]
dt

and then set β (δ) = 1/ [α̃ (δ) + δ] ↑ 1. Then we will have from Eq. (14.7) with
Sx0 replaced by S−1

x0
that S−1

x0

(
Qβ(δ)δ

)
⊂ Qδ and so all together we have shown

Qβ(δ)δ ⊂ Sx0 (Qδ) ⊂ Qᾱ(δ)δ ∀ x0 ∈ K and δ small enough.

Applying T̃x0
to these inclusions then shows

T̃x0

(
Qβ(δ)δ

)
⊂ T (x0 +Qδ) ⊂ T̃x0

Qᾱ(δ)δ ∀ x0 ∈ K and δ small enough

and then taking the measure of all sets involved we learn,

|detT ′ (x0)|β (δ)
d
m (Qδ) ≤ m (T (x0 +Qδ)) ≤ |detT ′ (x0)| ᾱ (δ)

d
m (Qδ) .

Given a half open rectangle R ⊂ Ω with dyadic rationale vertices we get the
approximation,
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172 14 Lebesgue Measure on Rd

β (δ)
d
∑
x∈Λδ

|detT ′ (x)|m (Qδ)

≤ m (T (R)) =
∑
x∈Λδ

m (T (x+Qδ))

≤ ᾱ (δ)
d
∑
x∈Λδ

|detT ′ (x)|m (Qδ)

where Λδ are centers of δ - cubes which partitionR where δ = 2−n for sufficiently
large n. Letting δ = 2−n ↓ 0 in the above inequalities while using the dominated
convergence theorem to conclude that∑

x∈Λδ

|detT ′ (x)|m (Qδ)→
∫
R

|detT ′ (x)| dm (x)

allows us to show

m (T (R)) =

∫
R

|detT ′ (x)| dm (x) .

Theorem 14.13 (Change of Variables Theorem II). Let Ω ⊂o Rd be an
open set and T : Ω → T (Ω) ⊂o Rd be a C1-diffeomorphism,7 see Figure 14.1.
Then for any Borel measurable function, f : T (Ω)→ [0,∞],∫

Ω

f (T (x)) |detT ′ (x) |dx =

∫
T (Ω)

f (y) dy, (14.8)

In short, if we make the non-linear change of variables, y = T (x) , then dy =
|detT ′ (x)| dx. (Of course, as in the one dimensional case one must take care
of the limits of integration properly.)

Proof. Let g : Ω → [0,∞] be a measurable function, then by Theorem 14.11
and the abstract change of variables theorem we find,∫

Ω

g |detT ′| dm =

∫
Ω

gd [m ◦ T ] =

∫
T (Ω)

g ◦ T−1dm.

Equation (14.8) now follows by taking g = f ◦ T.

Remark 14.14. Theorem 14.13 is best remembered as the statement: if we make
the change of variables y = T (x) , then dy = |detT ′ (x) |dx. As usual, you must
also change the limits of integration appropriately, i.e. if x ranges through Ω
then y must range through T (Ω) .

7 That is T : Ω → T (Ω) ⊂o Rd is a continuously differentiable bijection and the
inverse map T−1 : T (Ω)→ Ω is also continuously differentiable.

Remark 14.15. When d = 1, one often learns the change of variables formula as∫ b

a

f (T (x))T ′ (x) dx =

∫ T (b)

T (a)

f (y) dy (14.9)

where f : [a, b]→ R is a continuous function and T is C1 – function defined in
a neighborhood of [a, b] . If T ′ > 0 on (a, b) then T ((a, b)) = (T (a) , T (b)) and
Eq. (14.9) is implies Eq. (14.8) with Ω = (a, b) . On the other hand if T ′ < 0
on (a, b) then T ((a, b)) = (T (b) , T (a)) and Eq. (14.9) is equivalent to∫

(a,b)

f (T (x)) (− |T ′ (x)|) dx = −
∫ T (a)

T (b)

f (y) dy = −
∫
T ((a,b))

f (y) dy

which is again implies Eq. (14.8). On the other hand Eq. (14.9) is more general
than Eq. (14.8) since it does not require T to be injective. The standard proof
of Eq. (14.9) is as follows. For z ∈ T ([a, b]) , let

F (z) :=

∫ z

T (a)

f (y) dy.

Then by the chain rule and the fundamental theorem of calculus,∫ b

a

f (T (x))T ′ (x) dx =

∫ b

a

F ′ (T (x))T ′ (x) dx =

∫ b

a

d

dx
[F (T (x))] dx

= F (T (x)) |ba =

∫ T (b)

T (a)

f (y) dy.

An application of Dynkin’s multiplicative systems theorem now shows that Eq.
(14.9) holds for all bounded measurable functions f on (a, b) . Then by the
usual truncation argument, it also holds for all positive measurable functions
on (a, b) .

Exercise 14.3. Continuing the setup in Theorem 14.13, show that f ∈
L1
(
T (Ω) ,md

)
iff ∫

Ω

|f ◦ T | |detT ′|dm <∞

and if f ∈ L1
(
T (Ω) ,md

)
, then Eq. (14.8) holds.

Example 14.16 (Polar Coordinates). Suppose T : (0,∞) × (0, 2π) → R2 is de-
fined by

x = T (r, θ) = (r cos θ, r sin θ) ,

i.e. we are making the change of variable,
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14.2 General Change of Variables 173

x1 = r cos θ and x2 = r sin θ for 0 < r <∞ and 0 < θ < 2π.

In this case

T ′(r, θ) =

(
cos θ − r sin θ
sin θ r cos θ

)
and therefore

dx = |detT ′(r, θ)| drdθ = rdrdθ.

Observing that

R2 \ T ((0,∞)× (0, 2π)) = ` := {(x, 0) : x ≥ 0}

has m2 – measure zero, it follows from the change of variables Theorem 14.13
that ∫

R2

f(x)dx =

∫ 2π

0

dθ

∫ ∞
0

dr r · f(r (cos θ, sin θ)) (14.10)

for any Borel measurable function f : R2 → [0,∞].

Example 14.17 (Holomorphic Change of Variables). Suppose that f : Ω ⊂o C ∼=
R2→ C is an injective holomorphic function such that f ′ (z) 6= 0 for all z ∈ Ω.
We may express f as

f (x+ iy) = U (x, y) + iV (x, y)

for all z = x+ iy ∈ Ω. Hence if we make the change of variables,

w = u+ iv = f (x+ iy) = U (x, y) + iV (x, y)

then

dudv =

∣∣∣∣det

[
Ux Uy
Vx Vy

]∣∣∣∣ dxdy = |UxVy − UyVx| dxdy.

Recalling that U and V satisfy the Cauchy Riemann equations, Ux = Vy and
Uy = −Vx with f ′ = Ux + iVx, we learn

UxVy − UyVx = U2
x + V 2

x = |f ′|2 .

Therefore
dudv = |f ′ (x+ iy)|2 dxdy.

Example 14.18. In this example we will evaluate the integral

I :=

∫∫
Ω

(
x4 − y4

)
dxdy

where
Ω =

{
(x, y) : 1 < x2 − y2 < 2, 0 < xy < 1

}
,

Fig. 14.2. The region Ω consists of the two curved rectangular regions shown.

see Figure 14.2. We are going to do this by making the change of variables,

(u, v) := T (x, y) =
(
x2 − y2, xy

)
,

in which case

dudv =

∣∣∣∣det

[
2x −2y
y x

]∣∣∣∣ dxdy = 2
(
x2 + y2

)
dxdy

Notice that(
x4 − y4

)
=
(
x2 − y2

) (
x2 + y2

)
= u

(
x2 + y2

)
=

1

2
ududv.

The function T is not injective on Ω but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
Ω = −D ∪ D and T (±D) = (1, 2) × (0, 1) . The change of variables theorem
then implies

I± :=

∫∫
±D

(
x4 − y4

)
dxdy =

1

2

∫∫
(1,2)×(0,1)

ududv =
1

2

u2

2
|21 · 1 =

3

4

and therefore I = I+ + I− = 2 · (3/4) = 3/2.

Exercise 14.4 (Spherical Coordinates). Let T : (0,∞)× (0, π)× (0, 2π)→
R3 be defined by

T (r, ϕ, θ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ)

= r (sinϕ cos θ, sinϕ sin θ, cosϕ) ,

see Figure 14.3. By making the change of variables x = T (r, ϕ, θ) , show
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Fig. 14.3. The relation of x to (r, φ, θ) in spherical coordinates.

∫
R3

f(x)dx =

∫ π

0

dϕ

∫ 2π

0

dθ

∫ ∞
0

dr r2 sinϕ · f(T (r, ϕ, θ))

for any Borel measurable function, f : R3 → [0,∞].

Lemma 14.19. Let a > 0 and

Id(a) :=

∫
Rd

e−a|x|
2

dm(x).

Then Id(a) = (π/a)d/2.

Proof. By Tonelli’s theorem and induction,

Id(a) =

∫
Rd−1×R

e−a|y|
2

e−at
2

md−1(dy) dt

= Id−1(a)I1(a) = Id1 (a). (14.11)

So it suffices to compute:

I2(a) =

∫
R2

e−a|x|
2

dm(x) =

∫
R2\{0}

e−a(x2
1+x2

2)dx1dx2.

Using polar coordinates, see Eq. (14.10), we find,

I2(a) =

∫ ∞
0

dr r

∫ 2π

0

dθ e−ar
2

= 2π

∫ ∞
0

re−ar
2

dr

= 2π lim
M→∞

∫ M

0

re−ar
2

dr = 2π lim
M→∞

e−ar
2

−2a

∫ M

0

=
2π

2a
= π/a.

This shows that I2(a) = π/a and the result now follows from Eq. (14.11).

14.3 The Polar Decomposition of Lebesgue Measure*

Let

Sd−1 = {x ∈ Rd : |x|2 :=

d∑
i=1

x2
i = 1}

be the unit sphere in Rd equipped with its Borel σ – algebra, BSd−1 and Φ :
Rd \{0} → (0,∞)×Sd−1 be defined by Φ(x) := (|x| , |x|−1

x). The inverse map,
Φ−1 : (0,∞)× Sd−1 → Rd \ {0} , is given by Φ−1(r, ω) = rω. Since Φ and Φ−1

are continuous, they are both Borel measurable. For E ∈ BSd−1 and a > 0, let

Ea := {rω : r ∈ (0, a] and ω ∈ E} = Φ−1((0, a]× E) ∈ BRd .

Definition 14.20. For E ∈ BSd−1 , let σ(E) := d ·m(E1). We call σ the surface
measure on Sd−1.

It is easy to check that σ is a measure. Indeed if E ∈ BSd−1 , then E1 =
Φ−1 ((0, 1]× E) ∈ BRd so that m(E1) is well defined. Moreover if E =

∑∞
i=1Ei,

then E1 =
∑∞
i=1 (Ei)1 and

σ(E) = d ·m(E1) =

∞∑
i=1

m ((Ei)1) =

∞∑
i=1

σ(Ei).

The intuition behind this definition is as follows. If E ⊂ Sd−1 is a set and ε > 0
is a small number, then the volume of

(1, 1 + ε] · E = {rω : r ∈ (1, 1 + ε] and ω ∈ E}

should be approximately given by m ((1, 1 + ε] · E) ∼= σ(E)ε, see Figure 14.4
below. On the other hand

Fig. 14.4. Motivating the definition of surface measure for a sphere.
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14.3 The Polar Decomposition of Lebesgue Measure* 175

m ((1, 1 + ε]E) = m (E1+ε \ E1) =
{

(1 + ε)d − 1
}
m(E1).

Therefore we expect the area of E should be given by

σ(E) = lim
ε↓0

{
(1 + ε)d − 1

}
m(E1)

ε
= d ·m(E1).

The following theorem is motivated by Example 14.16 and Exercise 14.4.

Theorem 14.21 (Polar Coordinates). If f : Rd → [0,∞] is a (BRd ,B)–
measurable function then∫

Rd

f(x)dm(x) =

∫
(0,∞)×Sd−1

f(rω)rd−1 drdσ(ω). (14.12)

In particular if f : R+ → R+ is measurable then∫
Rd

f(|x|)dx =

∫ ∞
0

f(r)dV (r) (14.13)

where V (r) = m (B(0, r)) = rdm (B(0, 1)) = d−1σ
(
Sd−1

)
rd.

Proof. By Exercise 10.7,∫
Rd

fdm =

∫
Rd\{0}

(
f ◦ Φ−1

)
◦ Φ dm =

∫
(0,∞)×Sd−1

(
f ◦ Φ−1

)
d (Φ∗m) (14.14)

and therefore to prove Eq. (14.12) we must work out the measure Φ∗m on
B(0,∞) ⊗ BSd−1 defined by

Φ∗m(A) := m
(
Φ−1(A)

)
∀ A ∈ B(0,∞) ⊗ BSd−1 . (14.15)

If A = (a, b]× E with 0 < a < b and E ∈ BSd−1 , then

Φ−1(A) = {rω : r ∈ (a, b] and ω ∈ E} = bE1 \ aE1

wherein we have used Ea = aE1 in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(Φ∗m) ((a, b]× E) = m (bE1 \ aE1) = m(bE1)−m(aE1)

= bdm(E1)− adm(E1) = d ·m(E1)

∫ b

a

rd−1dr. (14.16)

Letting dρ(r) = rd−1dr, i.e.

ρ(J) =

∫
J

rd−1dr ∀ J ∈ B(0,∞), (14.17)

Eq. (14.16) may be written as

(Φ∗m) ((a, b]× E) = ρ((a, b]) · σ(E) = (ρ⊗ σ) ((a, b]× E) . (14.18)

Since
E = {(a, b]× E : 0 < a < b and E ∈ BSd−1} ,

is a π class (in fact it is an elementary class) such that σ(E) = B(0,∞) ⊗BSd−1 ,
it follows from the π – λ Theorem and Eq. (14.18) that Φ∗m = ρ ⊗ σ. Using
this result in Eq. (14.14) gives∫

Rd

fdm =

∫
(0,∞)×Sd−1

(
f ◦ Φ−1

)
d (ρ⊗ σ)

which combined with Tonelli’s Theorem 13.6 proves Eq. (14.14).

Corollary 14.22. The surface area σ(Sd−1) of the unit sphere Sd−1 ⊂ Rd is

σ(Sd−1) =
2πd/2

Γ (d/2)
(14.19)

where Γ is the gamma function is as in Example 10.43 and 10.46.

Proof. Using Theorem 14.21 we find

Id(1) =

∫ ∞
0

dr rd−1e−r
2

∫
Sd−1

dσ = σ(Sd−1)

∫ ∞
0

rd−1e−r
2

dr.

We simplify this last integral by making the change of variables u = r2 so that
r = u1/2 and dr = 1

2u
−1/2du. The result is∫ ∞

0

rd−1e−r
2

dr =

∫ ∞
0

u
d−1

2 e−u
1

2
u−1/2du

=
1

2

∫ ∞
0

u
d
2−1e−udu =

1

2
Γ (d/2). (14.20)

Combing the the last two equations with Lemma 14.19 which states that Id(1) =
πd/2, we conclude that

πd/2 = Id(1) =
1

2
σ(Sd−1)Γ (d/2)

which proves Eq. (14.19).
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14.4 More Spherical Coordinates*

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r, θ) ∈ (0,∞) ×
[0, 2π) so that (

x1

x2

)
=

(
r cos θ
r sin θ

)
= T2(θ, r).

For n = 3 we let x3 = r cosϕ1 and then(
x1

x2

)
= T2(θ, r sinϕ1),

as can be seen from Figure 14.5, so that

Fig. 14.5. Setting up polar coordinates in two and three dimensions.

x1

x2

x3

 =

(
T2(θ, r sinϕ1)

r cosϕ1

)
=

 r sinϕ1 cos θ
r sinϕ1 sin θ
r cosϕ1

 =: T3(θ, ϕ1, r, ).

We continue to work inductively this way to define
x1

...
xn
xn+1

 =

(
Tn(θ, ϕ1, . . . , ϕn−2, r sinϕn−1, )

r cosϕn−1

)
= Tn+1(θ, ϕ1, . . . , ϕn−2, ϕn−1, r).

So for example,

x1 = r sinϕ2 sinϕ1 cos θ

x2 = r sinϕ2 sinϕ1 sin θ

x3 = r sinϕ2 cosϕ1

x4 = r cosϕ2

and more generally,

x1 = r sinϕn−2 . . . sinϕ2 sinϕ1 cos θ

x2 = r sinϕn−2 . . . sinϕ2 sinϕ1 sin θ

x3 = r sinϕn−2 . . . sinϕ2 cosϕ1

...

xn−2 = r sinϕn−2 sinϕn−3 cosϕn−4

xn−1 = r sinϕn−2 cosϕn−3

xn = r cosϕn−2. (14.21)

By the change of variables formula,∫
Rn
f(x)dm(x)

=

∫ ∞
0

dr

∫
0≤ϕi≤π,0≤θ≤2π

dϕ1 . . . dϕn−2dθ

[
∆n(θ, ϕ1, . . . , ϕn−2, r)
×f(Tn(θ, ϕ1, . . . , ϕn−2, r))

]
(14.22)

where
∆n(θ, ϕ1, . . . , ϕn−2, r) := |detT ′n(θ, ϕ1, . . . , ϕn−2, r)| .

Proposition 14.23. The Jacobian, ∆n is given by

∆n(θ, ϕ1, . . . , ϕn−2, r) = rn−1 sinn−2 ϕn−2 . . . sin
2 ϕ2 sinϕ1. (14.23)

If f is a function on rSn−1 – the sphere of radius r centered at 0 inside of Rn,
then∫
rSn−1

f(x)dσ(x) = rn−1

∫
Sn−1

f(rω)dσ(ω)

=

∫
0≤ϕi≤π,0≤θ≤2π

f(Tn(θ, ϕ1, . . . , ϕn−2, r))∆n(θ, ϕ1, . . . , ϕn−2, r)dϕ1 . . . dϕn−2dθ

(14.24)

Proof. We are going to compute ∆n inductively. Letting ρ := r sinϕn−1

and writing ∂Tn
∂ξ for ∂Tn

∂ξ (θ, ϕ1, . . . , ϕn−2, ρ) we have

∆n+1(θ,ϕ1, . . . , ϕn−2, ϕn−1, r)

=

∣∣∣∣[ ∂Tn∂θ ∂Tn
∂ϕ1

0 0

. . . ∂Tn
∂ϕn−2

. . . 0

∂Tn
∂ρ r cosϕn−1

−r sinϕn−1

∂Tn
∂ρ sinϕn−1

cosϕn−1

]∣∣∣∣
= r

(
cos2 ϕn−1 + sin2 ϕn−1

)
∆n(, θ, ϕ1, . . . , ϕn−2, ρ)

= r∆n(θ, ϕ1, . . . , ϕn−2, r sinϕn−1),
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i.e.

∆n+1(θ, ϕ1, . . . , ϕn−2, ϕn−1, r) = r∆n(θ, ϕ1, . . . , ϕn−2, r sinϕn−1). (14.25)

To arrive at this result we have expanded the determinant along the bottom
row. Staring with ∆2(θ, r) = r already derived in Example 14.16, Eq. (14.25)
implies,

∆3(θ, ϕ1, r) = r∆2(θ, r sinϕ1) = r2 sinϕ1

∆4(θ, ϕ1, ϕ2, r) = r∆3(θ, ϕ1, r sinϕ2) = r3 sin2 ϕ2 sinϕ1

...

∆n(θ, ϕ1, . . . , ϕn−2, r) = rn−1 sinn−2 ϕn−2 . . . sin
2 ϕ2 sinϕ1

which proves Eq. (14.23). Equation (14.24) now follows from Eqs. (14.12),
(14.22) and (14.23).

As a simple application, Eq. (14.24) implies

σ(Sn−1) =

∫
0≤ϕi≤π,0≤θ≤2π

sinn−2 ϕn−2 . . . sin
2 ϕ2 sinϕ1dϕ1 . . . dϕn−2dθ

= 2π

n−2∏
k=1

γk = σ(Sn−2)γn−2 (14.26)

where γk :=
∫ π

0
sink ϕdϕ. If k ≥ 1, we have by integration by parts that,

γk =

∫ π

0

sink ϕdϕ = −
∫ π

0

sink−1 ϕ d cosϕ = 2δk,1 + (k − 1)

∫ π

0

sink−2 ϕ cos2 ϕdϕ

= 2δk,1 + (k − 1)

∫ π

0

sink−2 ϕ
(
1− sin2 ϕ

)
dϕ = 2δk,1 + (k − 1) [γk−2 − γk]

and hence γk satisfies γ0 = π, γ1 = 2 and the recursion relation

γk =
k − 1

k
γk−2 for k ≥ 2.

Hence we may conclude

γ0 = π, γ1 = 2, γ2 =
1

2
π, γ3 =

2

3
2, γ4 =

3

4

1

2
π, γ5 =

4

5

2

3
2, γ6 =

5

6

3

4

1

2
π

and more generally by induction that

γ2k = π
(2k − 1)!!

(2k)!!
and γ2k+1 = 2

(2k)!!

(2k + 1)!!
.

Indeed,

γ2(k+1)+1 =
2k + 2

2k + 3
γ2k+1 =

2k + 2

2k + 3
2

(2k)!!

(2k + 1)!!
= 2

[2(k + 1)]!!

(2(k + 1) + 1)!!

and

γ2(k+1) =
2k + 1

2k + 1
γ2k =

2k + 1

2k + 2
π

(2k − 1)!!

(2k)!!
= π

(2k + 1)!!

(2k + 2)!!
.

The recursion relation in Eq. (14.26) may be written as

σ(Sn) = σ
(
Sn−1

)
γn−1 (14.27)

which combined with σ
(
S1
)

= 2π implies

σ
(
S1
)

= 2π,

σ(S2) = 2π · γ1 = 2π · 2,

σ(S3) = 2π · 2 · γ2 = 2π · 2 · 1

2
π =

22π2

2!!
,

σ(S4) =
22π2

2!!
· γ3 =

22π2

2!!
· 22

3
=

23π2

3!!

σ(S5) = 2π · 2 · 1

2
π · 2

3
2 · 3

4

1

2
π =

23π3

4!!
,

σ(S6) = 2π · 2 · 1

2
π · 2

3
2 · 3

4

1

2
π · 4

5

2

3
2 =

24π3

5!!

and more generally that

σ(S2n) =
2 (2π)

n

(2n− 1)!!
and σ(S2n+1) =

(2π)
n+1

(2n)!!
(14.28)

which is verified inductively using Eq. (14.27). Indeed,

σ(S2n+1) = σ(S2n)γ2n =
2 (2π)

n

(2n− 1)!!
π

(2n− 1)!!

(2n)!!
=

(2π)
n+1

(2n)!!

and

σ(S(n+1)) = σ(S2n+2) = σ(S2n+1)γ2n+1 =
(2π)

n+1

(2n)!!
2

(2n)!!

(2n+ 1)!!
=

2 (2π)
n+1

(2n+ 1)!!
.

Using
(2n)!! = 2n (2(n− 1)) . . . (2 · 1) = 2nn!

we may write σ(S2n+1) = 2πn+1

n! which shows that Eqs. (14.12) and (14.28 are
in agreement. We may also write the formula in Eq. (14.28) as

σ(Sn) =


2(2π)n/2

(n−1)!! for n even

(2π)
n+1

2

(n−1)!! for n odd.
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14.5 Gaussian Random Vectors

The following lemma is an easy application of Corollary 10.31 on differentiation
past the integral.

Lemma 14.24. Let (Ω,B, P ) be a probability space, X : Ω → Rd be a random
vector, and

fX (λ) := E
[
eiλ·X

]
be the characteristic function of X. If k ∈ N and E ‖X‖k <∞ then(

1

i
∂j1

1

i
∂j2 . . .

1

i
∂jkfX

)
(0) = E [Xj1 . . . Xjk ]

and in particular if k = 2 we have

EXj =

(
1

i
∂jfX

)
(0) and Cov (Xj , Xk) = − (∂j∂kfX) (0)+(∂jfX) (0)·(∂kfX) (0) .

Proof. The only thing to observe is that for 1 ≤ ` ≤ k and j1, . . . , j` ∈
{1, 2, . . . , d} we have

|Xj1 . . . Xj` | ≤ ‖X‖
` ≤

(
1 + ‖X‖k

)
and the latter random variable is assumed to be integrable.

Definition 14.25 (Gaussian Random Vectors). Let (Ω,B, P ) be a proba-
bility space and X : Ω → Rd be a random vector. We say that X is Gaussian if
there exists an d× d – symmetric matrix Q and a vector µ ∈ Rd such that

E
[
eiλ·X

]
= exp

(
−1

2
Qλ · λ+ iµ · λ

)
for all λ ∈ Rd. (14.29)

We will write X
d
= N (Q,µ) to denote a Gaussian random vector such that Eq.

(14.29) holds.

Notice that if there exists a random variable satisfying Eq. (14.29) then
its law is uniquely determined by Q and µ because of Corollary 12.17. In the
exercises below your will develop some basic properties of Gaussian random
vectors – see Theorem 14.30 for a summary of what you will prove.

Lemma 14.26. The martix Q in Eq. (14.29) is necessarily non-negative.

Proof. If there exists v ∈ Rd such that Qv · v < 0, then taking λ = tv in
Eq. (14.29) implies,∣∣∣E [eit(v·X)

]∣∣∣ =

∣∣∣∣exp

(
− t

2

2
Qv · v + itµ · v

)∣∣∣∣ = exp

(
− t

2

2
Qv · v

)
→∞ as t→∞.

On the other hand,∣∣E [eiλ·X]∣∣ ≤ E [∣∣eiλ·X ∣∣] = 1 for all λ ∈ Rd.

Thus we must have Qv · v ≥ 0 for all v ∈ Rd.

Definition 14.27. Given a Gaussian random vector, X, we call the pair, (Q,µ)
appearing in Eq. (14.29) the characteristics of X. We will also abbreviate the
statement that X is a Gaussian random vector with characteristics (Q,µ) by

writing X
d
= N (Q,µ) .

Lemma 14.28. Suppose that X
d
= N (Q,µ) and A : Rd → Rm is a m×d – real

matrix and α ∈ Rm, then AX + α
d
= N (AQAtr, Aµ+ α) . In short we might

abbreviate this by saying, AN (Q,µ) + α
d
= N (AQAtr, Aµ+ α) .

Proof. Let ξ ∈ Rm, then

E
[
eiξ·(AX+α)

]
= eiξ·αE

[
eiA

trξ·X
]

= eiξ·α exp

(
−1

2
QAtrξ ·Atrξ + iµ ·Atrξ

)
= eiξ·α exp

(
−1

2
AQAtrξ · ξ + iAµ · ξ

)
= exp

(
−1

2
AQAtrξ · ξ + i (Aµ+ α) · ξ

)
from which it follows that AX + α

d
= N (AQAtr, Aµ+ α) .

Exercise 14.5. Let P be the probability measure on Ω := Rd defined by

dP (x) :=

(
1

2π

)d/2
e−

1
2x·xdx =

d∏
i=1

(
1√
2π
e−x

2
i /2dxi

)
.

Show that N : Ω → Rd defined by N (x) = x is Gaussian and satisfies Eq.
(14.29) with Q = I and µ = 0. Also show

µi = ENi and δij = Cov (Ni, Nj) for all 1 ≤ i, j ≤ d. (14.30)

Hint: use Exercise 10.17 and (of course) Fubini’s theorem.
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Exercise 14.6. LetA be any realm×dmatrix and µ ∈ Rm and setX := AN+b
where Ω = Rd, P, and N are as in Exercise 14.5. Show that X is Gaussian by
showing Eq. (14.29) holds with Q = AAtr (Atr is the transpose of the matrix
A) and µ = b. Also show that

µi = EXi and Qij = Cov (Xi, Xj) for all 1 ≤ i, j ≤ m. (14.31)

Remark 14.29 (Spectral Theorem). Recall that if Q is a real symmetric d × d
matrix, then the spectral theorem asserts there exists an orthonormal basis,
{u}dj=1 , such that Quj = λjuj for some λj ∈ R. Moreover, λj ≥ 0 for all j is

equivalent to Q being non-negative. When Q ≥ 0 we may define Q1/2 by

Q1/2uj :=
√
λjuj for 1 ≤ j ≤ d.

Notice that Q1/2 ≥ 0 and Q =
(
Q1/2

)2
and Q1/2 is still symmetric. If Q is

positive definite, we may also define, Q−1/2 by

Q−1/2uj :=
1√
λj
uj for 1 ≤ j ≤ d

so that Q−1/2 =
[
Q1/2

]−1
.

Exercise 14.7. Suppose that Q is a positive definite (for simplicity) d× d real
matrix and µ ∈ Rd and let Ω = Rd, P, and N be as in Exercise 14.5. By Exercise
14.6 we know that X = Q1/2N + µ is a Gaussian random vector satisfying Eq.
(14.29). Use the multi-dimensional change of variables formula to show

LawP (X) (dy) =
1√

det (2πQ)
exp

(
−1

2
Q−1 (y − µ) · (y − µ)

)
dy.

Let us summarize some of what the preceding exercises have shown.

Theorem 14.30. To each positive definite d× d real symmetric matrix Q and
µ ∈ Rd there exist Gaussian random vectors, X, satisfying Eq. (14.29). More-
over for such an X,

LawP (X) (dy) =
1√

det (2πQ)
exp

(
−1

2
Q−1 (y − µ) · (y − µ)

)
dy

where Q and µ may be computed from X using,

µi = EXi and Qij = Cov (Xi, Xj) for all 1 ≤ i, j ≤ m. (14.32)

When Q is degenerate, i.e. Nul (Q) 6= {0} , then X = Q1/2N + µ is still a
Gaussian random vectors satisfying Eq. (14.29). However now the LawP (X) is

a measure on Rd which is concentrated on the non-trivial subspace, Nul (Q)
⊥

–
the details of this are left to the reader for now.

Lemma 14.31. If A is positive definite d× d real symmetric matrix, then∫
Rd

exp

(
−1

2
Ay · y

)
dy =

(2π)
d/2

√
detA

.

Proof. We give two proofs. For the first proof take Q = A−1 in Theorem
14.30 and µ = 0, then

1 = E [1] =

∫
1√

det (2πQ)
exp

(
−1

2
Q−1y · y

)
dy

which implies ∫
Rd

exp

(
−1

2
Ay · y

)
dy =

√
det (2πQ) =

(2π)
d/2

√
detA

.

For the second proof we let B =
√
A and make the change of variable,

y = B−1x to find,∫
Rd

exp

(
−1

2
Ay · y

)
dy =

∫
Rd

exp

(
−1

2
By ·By

)
dy

=

∫
Rd

exp

(
−1

2
x · x

) ∣∣det
(
B−1

)∣∣ dx
= (2π)

d/2 ∣∣det
(
B−1

)∣∣ =
(2π)

d/2

√
detA

.

Corollary 14.32. If X
d
= N (Q, 0) and ε > 0 so that Q−1 − εI is still positive

definite, then

E
[
e
ε
2‖X‖

2
]

=
1√

det (I − εQ)
.

Note that

Q−1 − εI > 0 ⇐⇒ Q1/2
[
Q−1 − εI

]
Q1/2 > 0 ⇐⇒ I − εQ > 0.

Proof. We have

E
[
eε‖X‖

2
]

=

∫
1√

det (2πQ)
exp

(
−1

2
Q−1x · x

)
e
ε
2‖x‖

2

dx

=

∫
1√

det (2πQ)
exp

(
−1

2

[
Q−1 − εI

]
x · x

)
dx

=
1√

det (2πQ)
· (2π)

d/2√
det (Q−1 − εI)

=
1√

det (I − εQ)
.
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Exercise 14.8 (Gaussian random vectors are “highly” integrable.).

Suppose that X : Ω → Rd is a Gaussian random vector, say X
d
= N (Q,µ) . Let

‖x‖ :=
√
x · x and m := max {Qx · x : ‖x‖ = 1} be the largest eigenvalue8 of Q.

Then E
[
eε‖X‖

2
]
<∞ for every ε < 1

2m .

Remark 14.33. We can in fact compute E
[
eε‖X‖

2
]

exactly – see Eq. (14.33) be-

low for the final answer. To this end, let {ui}di=1 be a diagonalizing orthonormal
basis (not necessarily the standard basis) for Q, i.e. Qu = qiu with qi ≥ 0 for
1 ≤ i ≤ d. Further let Zi := N · ui and observe that (Z1, . . . , Zd) is a linear
transform of N, namely

Z :=

Z1

...
Zd

 = RN

where R is the rotation matrix with rows, utr
1 , u

tr
2 , . . . , u

tr
d respectively. From

this it follows that Z
d
= N (RtrR, 0) = N (I, 0) is still a standard normal random

vector. Moreover,

‖X‖2 = ‖AN + µ‖2 = ‖AN‖2 + ‖µ‖2 + 2AN · µ

=

d∑
i=1

(
qiZ

2
i + 2

√
qiµiZi

)
+ ‖µ‖2

where µi := µ · ui. Therefore using the independence of the {Zi}di=1 ,

E
[
eε‖X‖

2
]

= eε‖µ‖
2

·
d∏
i=1

E
[
eε(qiZ

2
i+2
√
qiµiZi)

]
.

Now observe that for any α < 1, t ∈ R, and Z
d
= N (0, 1) , that

E
[
eαZ

2+tZ
]

=
1√
2π

∫
R
eαz

2+tze−
1
2 z

2

dz =
1√
2π

∫
R
e−

1
2 (1−2α)z2+tzdz

=
1√

(1− 2α)

1√
2π

∫
R
e
− 1

2x
2+ t√

1−2α
x
dx

=
1√

(1− 2α)
exp

(
1

2

t2

(1− 2α)

)
.

wherein we have made the change of variables, z = 1√
1−2α

x. So taking α = εqi
and t = 2ε

√
qiµi we may conclude

8 For those who know about operator norms observe that m = ‖Q‖ in this case.

E
[
eε‖X‖

2
]

= eε‖µ‖
2

·
d∏
i=1

1√
1− 2εqi

exp

((
2ε
√
qiµi

)2
2 (1− 2εqi)

)

= eε‖µ‖
2

· 1√
det (I − 2εQ)

exp

(
2ε2

d∑
i=1

qi
1− 2εqi

µ2
i

)

= eε‖µ‖
2

· 1√
det (I − 2εQ)

exp

(
2ε2

d∑
i=1

qi
1− 2εqi

µ2
i

)
.

To simplify this expression more observe that

ε ‖µ‖2 + 2ε2
d∑
i=1

qi
1− 2εqi

µ2
i =

d∑
i=1

[
2ε2 qi

1− 2εqi
+ ε

]
µ2
i

=

d∑
i=1

ε

1− 2εqi
µ2
i = ε (1− 2εQ)

−1
µ · µ.

Thus we have shown,

E
[
eε‖X‖

2
]

=
1√

det (I − 2εQ)
exp

(
εµ · (1− 2εQ)

−1
µ
)
. (14.33)

Because of Eq. (14.32), for all λ ∈ Rd we have

µ · λ =

d∑
i=1

EXi · λi = E (λ ·X)

and

Qλ · λ =
∑
i,j

Qijλiλj =
∑
i,j

λiλj Cov (Xi, Xj)

= Cov

∑
i

λiXi,
∑
j

λjXj

 = Var (λ ·X) .

Therefore we may reformulate the definition of a Gaussian random vector as
follows.

Definition 14.34 (Gaussian Random Vectors). Let (Ω,B, P ) be a proba-
bility space. A random vector, X : Ω → Rd, is Gaussian iff for all λ ∈ Rd,

E
[
eiλ·X

]
= exp

(
−1

2
Var (λ ·X) + iE (λ ·X)

)
. (14.34)

In short, X is a Gaussian random vector iff λ·X is a Gaussian random variable
for all λ ∈ Rd.
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Remark 14.35. To conclude that a random vector, X : Ω → Rd, is Gaussian
it is not enough to check that each of its components, {Xi}di=1 , are Gaussian
random variables. The following simple counter example was provided by Nate
Eldredge. Let (X,Y ) : Ω → R2 be a Random vector such that (X,Y )∗ P = µ⊗ν
where dµ (x) = 1√

2π
e−

1
2x

2

dx and ν = 1
2 (δ−1 + δ1) . Then (X,Y X) : Ω → R2 is

a random vector such that both components, X and Y X, are Gaussian random
variables but (X,Y X) is not a Gaussian random vector.

Exercise 14.9. Prove the assertion made in Remark 14.35. Hint: explicitly
compute E

[
ei(λ1X+λ2XY )

]
.

14.5.1 *Gaussian measures with possibly degenerate covariances

The main aim of this subsection is to explicitly describe Gaussian measures
with possibly degenerate covariances, Q. The case where Q > 0 has already
been done in Theorem 14.30.

Remark 14.36. Recall that if Q is a real symmetric N × N matrix, then the
spectral theorem asserts there exists an orthonormal basis, {u}Nj=1 , such that
Quj = λjuj for some λj ∈ R. Moreover, λj ≥ 0 for all j is equivalent to Q being
non-negative. Hence if Q ≥ 0 and f : {λj : j = 1, 2, . . . , N} → R, we may define
f (Q) to be the unique linear transformation on RN such that f (Q)uj = λjuj .

Example 14.37. When Q ≥ 0 and f (x) :=
√
x, we write Q1/2 or

√
Q for f (Q) .

Notice that Q1/2 ≥ 0 and Q = Q1/2Q1/2.

Example 14.38. When Q is symmetric and

f (x) =

{
1/x if x 6= 0
0 if x = 0

we will denote f (Q) by Q−1. As the notation suggests, f (Q) is the inverse of Q
when Q is invertible which happens iff λi 6= 0 for all i. When Q is not invertible,

Q−1 := f (Q) = Q|−1
Ran(Q)P, (14.35)

where P : RN → RN be orthogonal projection onto the Ran (Q) . Observe that
P = g (Q) where g (x) = 1x 6=0.

Lemma 14.39. For any Q ≥ 0 we can find a matrix, A, such that Q = AAtr.
In fact it suffices to take A = Q1/2.

Proposition 14.40. Suppose X
d
= N (Q, c) (see Definition 14.27) where c ∈

RN and Q is a positive semi-definite N×N real matrix. If µ = µ(Q,c) = P ◦X−1,
then

∫
RN

f (x) dµ (x) =
1

Z

∫
c+Ran(Q)

f (x) exp

(
−1

2
Q−1 (x− c) · (x− c)

)
dx

where dx is now “Lebesgue measure” on c+ Ran (Q) , Q−1 is defined as in Eq.

(14.35), and Z :=
√

det
(
2πQ|Ran(Q)

)
.

Proof. Let k = dim Ran (Q) and choose a linear transformation, U : Rk →
RN , such that Ran (U) = Ran (Q) and U : Rk → Ran (Q) is an isometric
isomorphism. Letting A := Q1/2U, we have

AAtr = Q1/2UU trQ1/2 = Q1/2PRan(Q)Q
1/2 = Q.

Therefore, if Y = N (Ik×k, 0) , then X = AY + c
d
= N (Q, c) by Lemma 14.28.

Observe that X − c = Q1/2UY takes values in Ran (Q) and hence the Law
of (X − c) is a probability measure on RN which is concentrated on Ran (Q) .
From this it follows that µ = P ◦X−1 is a probability measure on measure on
RN which is concentrated on the affine space, c + Ran (Q) . At any rate from
Theorem 14.30 we have∫

RN
f (x) dµ (x) =

∫
Rk
f (Ay + c)

(
1

2π

)k/2
e−

1
2 |y|

2

dy

=

∫
Rk
f
(
Q1/2Uy + c

)( 1

2π

)k/2
e−

1
2 |y|

2

dy.

Since
Q1/2Uy + c = UU trQ1/2Uy + c,

we may make the change of variables, z = U trQ1/2Uy, using

dz =
√

detQ|Ran(Q)dy =

√ ∏
i:λi 6=0

λidy

and

|y|2 =

∣∣∣∣(U trQ1/2U
)−1

z

∣∣∣∣2 =
∣∣∣U trQ−1/2Uz

∣∣∣2 =
(
Q−1/2Uz,Q−1/2Uz

)
RN

=
(
Q−1Uz, Uz

)
RN ,

to find
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182 14 Lebesgue Measure on Rd∫
RN

f (x) dµ (x) =

∫
Rk
f (Uz + c)

(
1

2π

)k/2
e
− 1

2

∣∣(UtrQ1/2U)
−1
z
∣∣2
dz

=

∫
Rk
f (Uz + c)

(
1

2π

)k/2
1√

detQ|Ran(Q)

e−
1
2 (Q−1Uz,Uz)RN dz

=

∫
Rk
f (Uz + c)

1√
det
(
2πQ|Ran(Q)

)e− 1
2 (Q−1Uz,Uz)RN dz

=

∫
Rk
f (Uz + c)

1√
det
(
2πQ|Ran(Q)

)e− 1
2 (Q−1(Uz+c−c),(Uz+c−c))RN dz.

This completes the proof, since x = Uz + c ∈ c + Ran (Q) is by definition dis-
tributed as Lebesgue measure on c+Ran (Q) when z is distributed as Lebesgue
measure on Rk.

14.6 More Exercises

Exercise 14.10 (Folland Problem 2.62 on p. 80. R). Show the surface
measure on Sd−1 is invariant under rotations.

Exercise 14.11 (Folland Problem 2.64 on p. 80. ). On the integrability

of |x|a |log |x||b for x near 0 and x near ∞ in Rn.

Exercise 14.12. Show, using Problem 14.10 that∫
Sd−1

ωiωjdσ (ω) =
1

d
δijσ

(
Sd−1

)
.

Hint: show
∫
Sd−1 ω

2
i dσ (ω) is independent of i and therefore

∫
Sd−1

ω2
i dσ (ω) =

1

d

d∑
j=1

∫
Sd−1

ω2
jdσ (ω) .

Exercise 14.13. Folland Problem 2.61 on p. 77. Fractional integration.

14.7 Other change of variables proofs

Note: you may skip the rest of this chapter!

[There are a number of proof in the Math 140 notes which might be better
to uses here.]

14.7.1 Induction on dimension proof of Theorem 14.13

Proof. The proof will be by induction on d. The case d = 1 was essentially done
in Exercise 10.8. Nevertheless, for the sake of completeness let us give a proof
here. Suppose d = 1, a < α < β < b such that [a, b] is a compact subinterval of
Ω. Then |detT ′| = |T ′| and∫

[a,b]

1T ((α,β]) (T (x)) |T ′ (x)| dx =

∫
[a,b]

1(α,β] (x) |T ′ (x)| dx =

∫ β

α

|T ′ (x)| dx.

If T ′ (x) > 0 on [a, b] , then∫ β

α

|T ′ (x)| dx =

∫ β

α

T ′ (x) dx = T (β)− T (α)

= m (T ((α, β])) =

∫
T ([a,b])

1T ((α,β]) (y) dy

while if T ′ (x) < 0 on [a, b] , then∫ β

α

|T ′ (x)| dx = −
∫ β

α

T ′ (x) dx = T (α)− T (β)

= m (T ((α, β])) =

∫
T ([a,b])

1T ((α,β]) (y) dy.

Combining the previous three equations shows∫
[a,b]

f (T (x)) |T ′ (x)| dx =

∫
T ([a,b])

f (y) dy (14.36)

whenever f is of the form f = 1T ((α,β]) with a < α < β < b. An application
of Dynkin’s multiplicative system Theorem 12.24 then implies that Eq. (14.36)
holds for every bounded measurable function f : T ([a, b]) → R. (Observe that
|T ′ (x)| is continuous and hence bounded for x in the compact interval, [a, b] .)

Recall that Ω =
∑N
n=1 (an, bn) where an, bn ∈ R∪{±∞} for n = 1, 2, · · · < N

with N =∞ possible. Hence if f : T (Ω)→ R + is a Borel measurable function
and an < αk < βk < bn with αk ↓ an and βk ↑ bn, then by what we have
already proved and the monotone convergence theorem
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14.7 Other change of variables proofs 183∫
Ω

1(an,bn) · (f ◦ T ) · |T ′|dm =

∫
Ω

(
1T ((an,bn)) · f

)
◦ T · |T ′|dm

= lim
k→∞

∫
Ω

(
1T ([αk,βk]) · f

)
◦ T · |T ′| dm

= lim
k→∞

∫
T (Ω)

1T ([αk,βk]) · f dm

=

∫
T (Ω)

1T ((an,bn)) · f dm.

Summing this equality on n, then shows Eq. (14.8) holds.
To carry out the induction step, we now suppose d > 1 and suppose the

theorem is valid with d being replaced by d−1. For notational compactness, let
us write vectors in Rd as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, T ′ (x) , will always be taken to be given
as in Eq. (14.5).

Case 1. Suppose T (x) has the form

T (x) = (xi, T2 (x) , . . . , Td (x)) (14.37)

or
T (x) = (T1 (x) , . . . , Td−1 (x) , xi) (14.38)

for some i ∈ {1, . . . , d} . For definiteness we will assume T is as in Eq. (14.37),
the case of T in Eq. (14.38) may be handled similarly. For t ∈ R, let it : Rd−1 →
Rd be the inclusion map defined by

it (w) := wt := (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ,

Ωt be the (possibly empty) open subset of Rd−1 defined by

Ωt :=
{
w ∈ Rd−1 : (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ∈ Ω

}
and Tt : Ωt → Rd−1 be defined by

Tt (w) = (T2 (wt) , . . . , Td (wt)) ,

see Figure 14.6. Expanding detT ′ (wt) along the first row of the matrix T ′ (wt)
shows

|detT ′ (wt)| = |detT ′t (w)| .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,

Fig. 14.6. In this picture d = i = 3 and Ω is an egg-shaped region with an egg-shaped
hole. The picture indicates the geometry associated with the map T and slicing the
set Ω along planes where x3 = t.

∫
Ω

f ◦ T |detT ′|dm =

∫
Rd

1Ω · f ◦ T |detT ′|dm

=

∫
Rd

1Ω (wt) (f ◦ T ) (wt) |detT ′ (wt) |dwdt

=

∫
R

∫
Ωt

(f ◦ T ) (wt) |detT ′ (wt) |dw

 dt
=

∫
R

∫
Ωt

f (t, Tt (w)) |detT ′t (w) |dw

 dt
=

∫
R

 ∫
Tt(Ωt)

f (t, z) dz

 dt =

∫
R

 ∫
Rd−1

1T (Ω) (t, z) f (t, z) dz

 dt
=

∫
T (Ω)

f (y) dy

wherein the last two equalities we have used Fubini-Tonelli along with the iden-
tity;

T (Ω) =
∑
t∈R

T (it (Ω)) =
∑
t∈R
{(t, z) : z ∈ Tt (Ωt)} .
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184 14 Lebesgue Measure on Rd

Case 2. (Eq. (14.8) is true locally.) Suppose that T : Ω → Rd is a general
map as in the statement of the theorem and x0 ∈ Ω is an arbitrary point. We
will now show there exists an open neighborhood W ⊂ Ω of x0 such that∫

W

f ◦ T |detT ′|dm =

∫
T (W )

fdm

holds for all Borel measurable function, f : T (W ) → [0,∞]. Let Mi be the 1-i
minor of T ′ (x0) , i.e. the determinant of T ′ (x0) with the first row and ith –
column removed. Since

0 6= detT ′ (x0) =

d∑
i=1

(−1)
i+1

∂iTj (x0) ·Mi,

there must be some i such that Mi 6= 0. Fix an i such that Mi 6= 0 and let,

S (x) := (xi, T2 (x) , . . . , Td (x)) . (14.39)

Observe that |detS′ (x0)| = |Mi| 6= 0. Hence by the inverse function Theorem,
there exist an open neighborhood W of x0 such that W ⊂o Ω and S (W ) ⊂o Rd
and S : W → S (W ) is a C1 – diffeomorphism. Let R : S (W )→ T (W ) ⊂o Rd
to be the C1 – diffeomorphism defined by

R (z) := T ◦ S−1 (z) for all z ∈ S (W ) .

Because

(T1 (x) , . . . , Td (x)) = T (x) = R (S (x)) = R ((xi, T2 (x) , . . . , Td (x)))

for all x ∈W, if

(z1, z2, . . . , zd) = S (x) = (xi, T2 (x) , . . . , Td (x))

then
R (z) =

(
T1

(
S−1 (z)

)
, z2, . . . , zd

)
. (14.40)

Observe that S is a map of the form in Eq. (14.37), R is a map of the form in Eq.
(14.38), T ′ (x) = R′ (S (x))S′ (x) (by the chain rule) and (by the multiplicative
property of the determinant)

|detT ′ (x)| = |detR′ (S (x)) | |detS′ (x)| ∀ x ∈W.

So if f : T (W )→ [0,∞] is a Borel measurable function, two applications of the
results in Case 1. shows,

∫
W

f ◦ T · | detT ′|dm =

∫
W

(f ◦R · | detR′|) ◦ S · |detS′| dm

=

∫
S(W )

f ◦R · | detR′|dm =

∫
R(S(W ))

fdm

=

∫
T (W )

fdm

and Case 2. is proved.
Case 3. (General Case.) Let f : Ω → [0,∞] be a general non-negative Borel

measurable function and let

Kn := {x ∈ Ω : dist(x,Ωc) ≥ 1/n and |x| ≤ n} .

Then each Kn is a compact subset of Ω and Kn ↑ Ω as n → ∞. Using the
compactness of Kn and case 2, for each n ∈ N, there is a finite open cover Wn

of Kn such that W ⊂ Ω and Eq. (14.8) holds with Ω replaced by W for each
W ∈ Wn. Let {Wi}∞i=1 be an enumeration of ∪∞n=1Wn and set W̃1 = W1 and

W̃i := Wi \(W1 ∪ · · · ∪Wi−1) for all i ≥ 2. Then Ω =
∑∞
i=1 W̃i and by repeated

use of case 2.,∫
Ω

f ◦ T |detT ′|dm =

∞∑
i=1

∫
Ω

1W̃i
· (f ◦ T ) · | detT ′|dm

=

∞∑
i=1

∫
Wi

[(
1T(W̃i)f

)
◦ T
]
· | detT ′|dm

=

∞∑
i=1

∫
T (Wi)

1T(W̃i) · f dm =

n∑
i=1

∫
T (Ω)

1T(W̃i) · f dm

=

∫
T (Ω)

fdm.

14.7.2 δ – function localization proof of the change of variables
Theorem 14.13

The proof we give here comes from [31]9 who attributes the idea to Cornea.
Recall that we are trying to prove Eq. (14.8) which states,

9 There are some mistakes in the arguments given in this reference which we have
taken the opportunity to correct in the exposition below.
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14.7 Other change of variables proofs 185∫
Ω

f (T (x)) |detT ′ (x) |dx =

∫
T (Ω)

f (y) dy.

The key heuristic10 idea of this proof is to first verify that the formula holds
when f (y) = δ (y0 − y) for all y0 ∈ T (Ω) , i.e. we wish to show (with x0 =
T−1 (y0)) that

1 =

∫
T (Ω)

δ (y0 − y) dy =

∫
Ω

δ (y0 − T (x)) |detT ′ (x) |dx. (14.41)

If we can verify Eq. (14.41), then multiplying this equation by f (y0) and inte-
grating the result ,would give,∫

T (Ω)

f (y0) dy0 =

∫
T (Ω)

dy0f (y0)

∫
Ω

dxδ (y0 − T (x)) |detT ′ (x) |

=

∫
Ω

dx

∫
T (Ω)

dy0f (y0) δ (y0 − T (x)) |detT ′ (x) |

=

∫
Ω

dx f (T (x)) |detT ′ (x) |

which is the desired change of variables formula. So let us explain why Eq.
(14.41) should be true.

As y0 − T (x) = 0 iff x = x0 := T−1 (y0) , we should have∫
Ω

δ (y0 − T (x)) |detT ′ (x) |dx =

∫
Ω

δ (y0 − T (x)) |detT ′ (x0) |dx

= |detT ′ (x0) | ·
∫
Ω

δ (y0 − T (x)) dx

and so Eq. (14.41) is equivalent to showing∫
Ω

δ (y0 − T (x)) dx =
1

|detT ′ (x0) |
∀ x0 ∈ Ω. (14.42)

The “reasons” to expect Eq. (14.42) is correct are; 1)

T (x) ∼= T (x0) + T ′ (x0) (x− x0) = y0 + T ′ (x0) (x− x0)

for x near x0, 2) δ (y0 − T (x)) is supported in an “infinitesimal” neighborhood
of x0 and so we expect δ (y0 − T (x)) = δ (T ′ (x0) (x− x0)) (not just approxi-
mately equal), and hence 3) making use of the change of variables theorem for
linear transformations we should have
10 If you are uncomfortable with the heuristic discussion to follows you may skip it

and jump directly to Proposition 14.41.

∫
Ω

δ (y0 − T (x)) dx =

∫
Ω

δ (T ′ (x0) (x− x0)) dx =

∫
Rd
δ (T ′ (x0)w) dw

=
1

|det [T ′ (x0)]|

∫
Rd
δ (z) dz =

1

|det [T ′ (x0)]|
.

The above “proof” outline is of course not rigorous since there is no honest
function satisfying the properties of a δ – function. To remedy this deficiency
we are going to replace δ by an approximate δ – sequence {δr}r>0 . So as usual

we let δ1 ∈ C∞c
(
Rd, [0,∞)

)
with supp (δ1) ⊂ B – the unit ball in Rd and∫

Rd δ1 (x) dx = 1 and then define, δr (z) = r−dδ1
(
r−1z

)
for all r > 0. The next

key proposition is a rigorous version of Eq. (14.42).

Proposition 14.41. If for each r > 0, Jr : T (Ω)→ [0,∞] be defined by

Jr (y) :=

∫
Ω

δr (T (x)− y) dx, (14.43)

then limr↓0 Jr (y) = 1/
∣∣detT ′

(
T−1 (y)

)∣∣ locally uniformly in y ∈ Ω. In more
detail we are claiming to any compact subset, K ⊂ T (Ω) ,

lim
r↓0

sup
y∈K

∣∣∣∣Jr (y)− 1

|detT ′ (T−1 (y))|

∣∣∣∣ = 0. (14.44)

We will give the proof of this result a little later in this section after Lemma
14.42. First let us show how to use Propositions 14.41 to prove Theorem 14.13.

Proof of Theorem 14.13.. Let f ∈ Cc (T (Ω) , [0,∞)) and K := supp (f).
Then by Tonelli’s theorem,∫
T (Ω)

f (y) Jr (y) dy =

∫
Ω

dx

∫
T (Ω)

dyδr (T (x)− y) f (y) =

∫
Ω

f ∗δr (T (x)) dx.

(14.45)
By Propositions 14.41 and dominated convergence theorem,

lim
r↓0

∫
T (Ω)

f (y) Jr (y) dy =

∫
T (Ω)

f (y)
1

|detT ′ (T−1 (y))|
dy. (14.46)

By simple approximate δ – function arguments we know f ∗ δr → f uniformly
on Ω and moreover supp (f ∗ δr) ⊂ Kr where Kr :=

{
x ∈ Rd : dK (x) ≤ r

}
.

Hence if we let

ρ = min

(
1

2
dist (K,T (Ω)

c
) , 1

)
, (14.47)

then for all 0 < r ≤ ρ, supp ((f ∗ δr) ◦ T ) ⊂ T−1 (Kρ) (a compact subset of
Ω) and (f ∗ δr) ◦ T → f ◦ T uniformly as r ↓ 0. Thus again by Dominated
convergence theorem we conclude

Page: 185 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



186 14 Lebesgue Measure on Rd

lim
r↓0

∫
Ω

f ∗ δr (T (x)) dx =

∫
Ω

f (T (x)) dx. (14.48)

Combining Eqs. (14.45), (14.46), and (14.48) implies∫
Ω

f (T (x)) dx =

∫
T (Ω)

f (y)
1

|detT ′ (T−1 (y))|
dy

from which Theorem 14.13 follows upon replacing f (y) by f (y) ·∣∣detT ′
(
T−1 (y)

)∣∣ .
The next lemma spells out certain mapping and continuity properties of

T−1, T, and T ′ which will be used in the proof of Proposition 14.41.

Lemma 14.42. Let K be a compact subset of T (Ω) , 0 < ρ ≤ 1 be as in Eq.
(14.47), Kρ :=

{
x ∈ Rd : dK (x) ≤ ρ

}
,11 and

M := sup
y∈Kρ

∥∥∥(T−1
)′

(y)
∥∥∥
op
<∞. (14.49)

Then
sup
y∈K

∥∥T−1 (y + w)− T−1 (y)
∥∥ ≤M ‖w‖ ∀ w ∈ ρB, (14.50)

inf
y∈K

∥∥T ′ (T−1 (y)
)
w
∥∥ ≥ 1

M
‖w‖ ∀ w ∈ Rd, (14.51)

and limr↓0 εK (r) = 0 where

εK (r) := sup
y∈K

sup
‖w‖≤rM

∥∥∥∥1

r

[
T
(
T−1 (y) + rw

)
− y
]
− T ′

(
T−1 (y)

)
w

∥∥∥∥
op

.

(14.52)

Proof. To simplify notation in the proof, let S := T−1 : T (Ω) → Ω. For
y ∈ K and ‖w‖ ≤ ρ we have by the fundamental theorem of calculus,

S (y + w)− S (y) =

[∫ 1

0

S′ (y + sw) ds

]
w (14.53)

which along with standard estimates gives Eq. (14.50).
By the chain rule applied to the identity, y = T ◦ S (y) for all y ∈ T (Ω) ,

we have I = T ′ (S (y))S′ (y) , i.e. S′ (y) = T ′ (S (y))
−1
. By the very definition

of M, we have∥∥∥T ′ (S (y))
−1
z
∥∥∥ = ‖S′ (y) z‖ ≤M ‖z‖ ∀ y ∈ K and z ∈ Rd.

11 We have K ⊂ Kρ ⊂ T (Ω) and Kρ is closed and bounded and hence compact.

Taking z = T ′ (S (y))w in this inequality leads directly to Eq. (14.51).
Let ρ̂ ∈ (0, ρ] be chosen so that Mρ̂ < dist (S (K) , Ωc) . In proving the last

assertion we always assume that r ∈ (0, ρ̂) . By the the fundamental theorem of
calculus, for y ∈ K and w ∈ rMB, we have

1

r
[T (S (y) + rw)− y]− T ′ (S (y))w

=

[
1

r

∫ r

0

T ′ ((S (y) + σw)) dσ

]
w − T ′ (S (y))w

=

[
1

r

∫ r

0

[T ′ ((S (y) + σw))− T ′ (S (y))] dσ

]
w

=

∫ r

0

[T ′ ((S (y) + σw))− T ′ (S (y))]
w

r
dσ.

It is now a simple matter to use this identity and simple estimates to show

εK (r) ≤ sup
y∈K

sup
‖w‖≤rM

‖T ′ ((S (y) + w))− T ′ (S (y))‖op ·M

which tends to 0 as r ↓ 0 by uniform continuity of T ′ on

[S (K)]Mρ̂ =
{
x ∈ Rd : dS(K) (x) ≤Mρ̂

}
.

We are now ready for the proof of Proposition 14.41.
Proof of Proposition 14.41. Let K be a compact subset of T (Ω), 0 <

ρ ≤ 1 be as in Eq. (14.47), and let y ∈ K and 0 < r ≤ ρ and let us continue to
use the notation in Lemma 14.42. If x ∈ Ω is such that δr (T (x)− y) > 0, then
‖T (x)− y‖ ≤ r or equivalently that T (x) ∈ y + rB, i.e. x ∈ T−1 (y + rB) .
Now the estimate in Eq. (14.50) implies12

T−1 (y + rB) ⊂ T−1 (y) + rMB ∀ y ∈ K and r ≤ ρ

and hence Jr (y) defined in Eq. (14.43) may be described by;

Jr (y) :=

∫
T−1(y)+rMB

δr (T (x)− y) dx ∀ y ∈ K.

12 At this point in [31], it is implicitly asserted that w → δ1
(
1
r

[
T
(
T−1 (y) + rw

)
− y
])

is supported in B. This is however falsie in general. For example if M > 1 and
T (x) = M−1x, then

w → δ1

(
1

r

[
T
(
T−1 (y) + rw

)
− y
])

= δ1
(
M−1w

)
which is supported in MB in general and not in B.
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We now make the affine change of variables, x = T−1 (y) + rw in the above
integral to find

Jr (y) :=

∫
w∈MB

δ1

(
1

r

[
T
(
T−1 (y) + rw

)
− y
])

dw ∀ y ∈ K.

Using the dominated convergence theorem along with the continuity of δ1 it
follows that

lim
r↓0

Jr (y) =

∫
MB

lim
r↓0

δ1

(
1

r

[
T
(
T−1 (y) + rw

)
− y
])

dw

=

∫
MB

δ1

(
lim
r↓0

1

r

[
T
(
T−1 (y) + rw

)
− y
])

dw

=

∫
MB

δ1
(
T ′
(
T−1 (y)

)
w
)
dw. (14.54)

According to Eq. (14.51),
∥∥T ′ (T−1 (y)

)
w
∥∥ > 1 if ‖w‖ > M and therefore,∫

MB

δ1
(
T ′
(
T−1 (y)

)
w
)
dw =

∫
Rd

δ1
(
T ′
(
T−1 (y)

)
w
)
dw

=

∫
Rd

δ1 (z)
1

|detT ′ (T−1 (y))|
dz

=
1

|detT ′ (T−1 (y))|

wherein we have made the linear change of variables, z = T ′
(
T−1 (y)

)
w in the

second equality13 and used
∫
Rd
δ1 (z) dz = 1 in the last equality.

To finish the proof we still need to show the convergence in Eq. (14.54) is
uniform over y ∈ K. However, for y ∈ K,
13 Note well that y is fixed here and so z is varying with w only.

∣∣∣∣∣∣Jr (y)−
∫
MB

δ1
(
T ′
(
T−1 (y)

)
w
)
dw

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
MB

[
δ1

(
1

r

[
T
(
T−1 (y) + rw

)
− y
])
− δ1

(
T ′
(
T−1 (y)

)
w
)]
dw

∣∣∣∣∣∣
≤
∫
MB

∣∣∣∣δ1(1

r

[
T
(
T−1 (y) + rw

)
− y
])
− δ1

(
T ′
(
T−1 (y)

)
w
)∣∣∣∣ dw

≤ ‖∇δ1‖∞ ·m (MB) · εK (r)→ 0 as r ↓ 0

wherein εK (r) is as in Eq. (14.52). The proof is complete since we have already
seen in Lemma 14.42 that limr↓0 εK (r) = 0.

14.7.3 Proof of Theorem 14.13 using the Radon Nykodym Thoerem

Remark 14.43 (A proof using the Radon Nykodym theorem). As usual let T :
Ω → T (Ω) be a C1 – diffeomorpshism and assume both T and T−1 have
globally bounded Lipschitz constants (this can be achieved by shrinking Ω if
necessary). We will work in the `∞ – norm on Rd.

1. If f : T (Ω)→ R and g : Ω → R we have∫
Ω

f ◦ Tdm =

∫
T (Ω)

fd
(
m ◦ T−1

)
(14.55)

and ∫
T (Ω)

g ◦ T−1dm =

∫
Ω

gd (m ◦ T ) . (14.56)

2. Referring to the math 140 notes, show |m ◦ T (A)| ≤ Km (A) and similarly∣∣m ◦ T−1 (A)
∣∣ ≤ Km (A) . Therefore by the easiest version of the the Radon

– Nykodym there are bounded non-negative functions, α and β such that

d (m ◦ T )

dm
= α : Ω → R and

d
(
m ◦ T−1

)
dm

= β : T (Ω)→ R.

In other words we now have,∫
Ω

f ◦ Tdm =

∫
T (Ω)

fβdm and (14.57)∫
T (Ω)

g ◦ T−1dm =

∫
Ω

gαdm. (14.58)
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3. There is a relationship between α and β. Indeed taking g = (fβ) ◦ T shows∫
Ω

f ◦ Tdm =

∫
T (Ω)

fβdm =

∫
T (Ω)

((fβ) ◦ T ) ◦ T−1dm

=

∫
Ω

(f ◦ T ) · (β ◦ T )αdm

from which we conclude

(β ◦ T )α = 1 a.e. ⇐⇒ α =
1

β ◦ T
(14.59)

We now wish to compute the functions α and β by taking limits and for
this we will use the Lebesgue differentiation theorem or the easier fact that
δr ∗ α→ α in L1

loc as r ↓ 0 where δr (x) := 1
m(Br(0))1Br(0).

4. For x ∈ Ω and y ∈ y ∈ Br (x) = x+Br (0) ,

T (y)− T (x) =

∫ 1

0

T ′ (x+ t (y − x)) (y − x) dt

=

[
T ′ (x) +

∫ 1

0

[T ′ (x+ t (y − x))− T ′ (x)] dt

]
(y − x)

= T ′ (x) [I + ε (x, y)] (y − x)

where

ε (x, y) :=

∫ 1

0

[
T ′ (x)

−1
T ′ (x+ t (y − x))− I

]
dt.

The error term, ε (x, y) , satisfies

‖ε (x, y)‖ ≤
∫ 1

0

∥∥∥T ′ (x)
−1
T ′ (x+ t (y − x))− I

∥∥∥ dt = ε0 (r)

where ε0 (r) denotes a function of r ≥ 0 such that limr↓0 ε0 (r) = ε0 (0) = 0.
Combining these identities and estimates while using

‖[I + ε (x, y)] (y − x)‖ ≤ r (1 + ε (r)) ∀ y ∈ Br (x) ,

implies
T (Br (x)) ⊂ T (x) + T ′ (x)Br·(1+ε(r)) (0) . (14.60)

5. We now give two arguments showing α (x) = d(m◦T )
dm (x) ≤ |detT ′ (x)| for

a.e. x ∈ Ω.
a) From Eq. (14.60) it follows that

m (T (Br (x)))

m (Br (x))
≤
m
(
T (x) + T ′ (x)Br(1+ε(r)) (0)

)
m (Br (x))

= |detT ′ (x)| · (1 + ε (r))
d
.

Letting r ↓ 0 and using the Lebesgue differentiation theorem (see The-
orem ??) which is a rather deep result!)

α (x) =
d (m ◦ T )

dm
(x) ≤ |detT ′ (x)| for a.e. x ∈ Ω. (14.61)

Applying this result with T replaced by T−1 then shows,

β (y) =
d
(
m ◦ T−1

)
dm

(y) ≤
∣∣∣det

(
T−1

)′
(y)
∣∣∣ for a.e. y ∈ T (Ω) .

(14.62)
b) Alternatively let us observe that

m (T (Br (x)))

m (Br (x))
=

1

m (Br (x))

∫
Br(0)

α (x+ y) dy = δr ∗ α (x) .

By the easier approximate identity Theorem ?? we know δr ∗ α→ α in
L1
loc and so there exists rn ↓ 0 such that δrn ∗ α → α a.e. as n → ∞.

Thus we again learn that for a.e. x,

α (x) = lim
n→∞

δrn ∗ α (x) = lim
n→∞

m (T (Brn (x)))

m (Brn (x))

≤ lim
n→∞

|detT ′ (x)| · (1 + ε (rn))
d

= |detT ′ (x)| .

6. We now use α = 1
β◦T from Eq. (14.59) along with the inequality in Eq.

(14.62) to learn

α (x) =
1

β ◦ T (x)
≥ 1∣∣det (T−1)

′
(T (x))

∣∣ .
On the other hand, since T−1 ◦ T = I, it follows by the chain rule that(
T−1

)′
(T (x))T ′ (x) = I and therefore

1∣∣det (T−1)
′
(T (x))

∣∣ = |detT ′ (x)|

and we may conclude α (x) ≥ |detT ′ (x)| . This result along with the in-
equality in Eq. (14.61) shows

α (x) = |detT ′ (x)| .
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7. Using this result back in Eq. (14.58) with g = f ◦ T for some function on
f : T (Ω)→ R gives,∫

T (Ω)

fdm =

∫
Ω

f ◦ T · |detT ′| dm.

Note: By working harder as in the inverse function Theorem ??, we could
have proved the stronger version of Eq. (14.60);

T (x) + T ′ (x)Br(1−ε(r)) (0) ⊂ T (Br (x)) ⊂ T (x) + T ′ (x)Br(1+ε(r)) (0) .

If we had done this we could have avoided discussing β altogether. Indeed, the
method of step 5. would then give

|detT ′ (x)| · (1− ε (r))
d ≤ m (T (Br (x)))

m (Br (x))
≤ |detT ′ (x)| · (1 + ε (r))

d

which upon letting r ↓ 0 would have shown d[m◦T ]
dm (x) = |detT ′ (x)| .





15

Independence

As usual, (Ω,B, P ) will be some fixed probability space. Recall that for
A,B ∈ B with P (B) > 0 we let

P (A|B) :=
P (A ∩B)

P (B)

which is to be read as; the probability of A given B.

Definition 15.1. We say that A is independent of B is P (A|B) = P (A) or
equivalently that

P (A ∩B) = P (A)P (B) .

We further say a finite sequence of collection of sets, {Ci}ni=1 , are independent
if

P (∩j∈JAj) =
∏
j∈J

P (Aj)

for all Ai ∈ Ci and J ⊂ {1, 2, . . . , n} .

15.1 Basic Properties of Independence

If {Ci}ni=1 , are independent classes then so are {Ci ∪ {Ω}}ni=1 . Moreover, if we
assume that Ω ∈ Ci for each i, then {Ci}ni=1 , are independent iff

P
(
∩nj=1Aj

)
=

n∏
j=1

P (Aj) for all (A1, . . . , An) ∈ C1 × · · · × Cn.

Theorem 15.2. Suppose that {Ci}ni=1 is a finite sequence of independent π –
classes. Then {σ (Ci)}ni=1 are also independent.

Proof. As mentioned above, we may always assume without loss of gener-
ality that Ω ∈ Ci. Fix, Aj ∈ Cj for j = 2, 3, . . . , n. We will begin by showing
that

Q (A) := P (A ∩A2 ∩ · · · ∩An) = P (A)P (A2) . . . P (An) for all A ∈ σ (C1) .
(15.1)

Since Q (·) and P (A2) . . . P (An)P (·) are both finite measures agreeing on Ω
and A in the π – system C1, Eq. (15.1) is a direct consequence of Proposition
6.55. Since (A2, . . . , An) ∈ C2 × · · · × Cn were arbitrary we may now conclude
that σ (C1) , C2, . . . , Cn are independent.

By applying the result we have just proved to the sequence, C2, . . . , Cn, σ (C1)
shows that σ (C2) , C3, . . . , Cn, σ (C1) are independent. Similarly we show induc-
tively that

σ (Cj) , Cj+1, . . . , Cn, σ (C1) , . . . , σ (Cj−1)

are independent for each j = 1, 2, . . . , n. The desired result occurs at j = n.

Corollary 15.3. Suppose that {Aj}mj=1 and {A′k}
n
k=1 are sets from B and let

A = A
(
{Aj}mj=1

)
and A′ = A

(
{A′k}

n
k=1

)
, then A and A′ are P -independent iff

P (AJ ∩BK) = P (AJ)P (BK) for all J ⊂ {1, 2, . . . ,m} and K ⊂ {1, 2, . . . , n}
where AJ = ∩i∈JAi and A′K = ∩k∈KA′k.

Proof. Apply Theorem 15.2 with C1 = {AJ : J ⊂ {1, 2, . . . ,m}} and C2 :=
{A′K : K ⊂ {1, 2, . . . , n}} .

Definition 15.4. Let (Ω,B, P ) be a probability space and {Aj}Nj=1 ⊂ B be a

collection of events and for J ⊂ {1, . . . , N} , let AJ := A
(
{Aj}j∈J

)
. We say

that there are no hidden dependencies among the {Aj}Nj=1 if for all proper

subsets, J ⊂ {1, . . . , N} , the algebras AJ and AJc are P -independent.

Corollary 15.5 (Characterizing no hidden independence). Let

{Aj}Nj=1 ⊂ B. Then there are no hidden dependencies among the {Aj}Nj=1 iff

P (∩j∈JAj) =
∏
j∈J

P (Aj) for all J ⊂ {1, . . . , N} . (15.2)

Proof. We will show if there are no hidden dependencies among the
{Aj}Nj=1 , then we will show that Eq. (15.2) holds by induction on n := # (J) .

When n = 1 there is nothing to prove. For n = 2, we have J = {a, b} and we let
Λ = {a} so that b ∈ Λc. By the assumption that AΛ and AΛc are P -independent
it follows that P (Aa ∩Ab) = P (Aa)P (Ab) as Aa ∈ AΛ and Ab ∈ AΛc . When
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n = 3 so that J = {a, b, c} we let Λ = {a, b} so that c ∈ Λc. As Aa ∩ Ab ∈ AΛ
and Ac ∈ AΛc , it follows by the hypothesis that

P (Aa ∩Ab ∩Ac) = P ([Aa ∩Ab] ∩Ac) = P (Aa ∩Ab)P (Ac) .

However, by the n = 2 case we also know that P (Aa ∩Ab) = P (Aa)P (Ab)
and so we have shown,

P (Aa ∩Ab ∩Ac) = P (Aa ∩Ab)P (Ac) = P (Aa)P (Ab)P (Ac) .

The full simple inductive proof is now left to the reader.
For the converse direction, for any J ⊂ {1, 2, . . . , N} let

CJ := {AΛ = ∩j∈ΛAj : Λ ⊂ J}

which is a multiplicative class generating AJ . From Eq. (15.2) it is now easy to
verify that CJ and CJc are P -independent for all J ⊂ {1, 2, . . . , N} and hence,
by Theorem 15.2, so are the algebras, AJ and AJc .

Definition 15.6. Let (Ω, ,B, P ) be a probability space, {(Si,Si)}ni=1 be a collec-
tion of measurable spaces and Yi : Ω → Si be a measurable map for 1 ≤ i ≤ n.
The maps {Yi}ni=1 are P - independent iff {Ci}ni=1 are P – independent, where
Ci := Y −1

i (Si) = σ (Yi) ⊂ B for 1 ≤ i ≤ n.

Theorem 15.7 (Independence and Product Measures). Let (Ω,B, P ) be
a probability space, {(Si,Si)}ni=1 be a collection of measurable spaces and Yi :
Ω → Si be a measurable map for 1 ≤ i ≤ n. Further let µi := P ◦ Y −1

i =
LawP (Yi) . Then {Yi}ni=1 are independent iff

LawP (Y1, . . . , Yn) = µ1 ⊗ · · · ⊗ µn,

where (Y1, . . . , Yn) : Ω → S1 × · · · × Sn and

LawP (Y1, . . . , Yn) = P ◦ (Y1, . . . , Yn)
−1

: S1 ⊗ · · · ⊗ Sn → [0, 1]

is the joint law of Y1, . . . , Yn.

Proof. Recall that the general element of Ci is of the form Ai = Y −1
i (Bi)

with Bi ∈ Si. Therefore for Ai = Y −1
i (Bi) ∈ Ci we have

P (A1 ∩ · · · ∩An) = P ((Y1, . . . , Yn) ∈ B1 × · · · ×Bn)

= ((Y1, . . . , Yn)∗ P ) (B1 × · · · ×Bn) .

If (Y1, . . . , Yn)∗ P = µ1 ⊗ · · · ⊗ µn it follows that

P (A1 ∩ · · · ∩An) = µ1 ⊗ · · · ⊗ µn (B1 × · · · ×Bn)

= µ1 (B1) · · ·µ (Bn) = P (Y1 ∈ B1) · · ·P (Yn ∈ Bn)

= P (A1) . . . P (An)

and therefore {Ci} are P – independent and hence {Yi} are P – independent.
Conversely if {Yi} are P – independent, i.e. {Ci} are P – independent, then

P ((Y1, . . . , Yn) ∈ B1 × · · · ×Bn) = P (A1 ∩ · · · ∩An)

= P (A1) . . . P (An)

= P (Y1 ∈ B1) · · ·P (Yn ∈ Bn)

= µ1 (B1) · · ·µ (Bn)

= µ1 ⊗ · · · ⊗ µn (B1 × · · · ×Bn) .

Since
π := {B1 × · · · ×Bn : Bi ∈ Si for 1 ≤ i ≤ n}

is a π – system which generates S1 ⊗ · · · ⊗ Sn and

(Y1, . . . , Yn)∗ P = µ1 ⊗ · · · ⊗ µn on π,

it follows that (Y1, . . . , Yn)∗ P = µ1 ⊗ · · · ⊗ µn on all of S1 ⊗ · · · ⊗ Sn.

Remark 15.8. When have a collection of not necessarily independent random
functions, Yi : Ω → Si, like in Theorem 15.7 it is not in general possible
to recover the joint distribution, π := LawP (Y1, . . . , Yn) , from the individual
distributions, µi = LawP (Yi) for all 1 ≤ i ≤ n. For example suppose that
Si = R for i = 1, 2. µ is a probability measure on (R,BR) , and (Y1, Y2) have
joint distribution, π, given by,

π (C) =

∫
R

1C (x, x) dµ (x) for all C ∈ BR2 .

If we let µi = LawP (Yi) , then for all A ∈ BR we have

µ1 (A) = P (Y1 ∈ A) = P ((Y1, Y2) ∈ A× R)

= π (A× R) =

∫
R

1A×R (x, x) dµ (x) = µ (A) .

Similarly we show that µ2 = µ. On the other hand if µ is not concentrated on
one point, µ ⊗ µ is another probability measure on

(
R2,BR2

)
with the same

marginals as π, i.e. π (A× R) = µ (A) = π (R×A) for all A ∈ BR.

Lemma 15.9. Let (Ω, ,B, P ) be a probability space, {(Si,Si)}ni=1 and
{(Ti, Ti)}ni=1 be two collection of measurable spaces, Fi : Si → Ti be a mea-
surable map for each i and Yi : Ω → Si be a collection of P – independent
measurable maps. Then {Fi ◦ Yi}ni=1 are also P – independent.
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Proof. Notice that

σ (Fi ◦ Yi) = (Fi ◦ Yi)−1
(Ti) = Y −1

i

(
Fi
−1 (Ti)

)
⊂ Y −1

i (Si) = Ci.

The fact that {σ (Fi ◦ Yi)}ni=1 is independent now follows easily from the as-
sumption that {Ci} are P – independent.

Example 15.10. If Ω :=
∏n
i=1 Si, B := S1 ⊗ · · · ⊗ Sn, Yi (s1, . . . , sn) = si for all

(s1, . . . , sn) ∈ Ω, and Ci := Y −1
i (Si) for all i. Then the probability measures, P,

on (Ω,B) for which {Ci}ni=1 are independent are precisely the product measures,
P = µ1 ⊗ · · · ⊗ µn where µi is a probability measure on (Si,Si) for 1 ≤ i ≤ n.
Notice that in this setting,

Ci := Y −1
i (Si) = {S1 × · · · × Si−1 ×B × Si+1 × · · · × Sn : B ∈ Si} ⊂ B.

Proposition 15.11. Suppose that (Ω,B, P ) is a probability space and {Zj}nj=1

are independent integrable random variables. Then
∏n
j=1 Zj is also integrable

and

E

 n∏
j=1

Zj

 =

n∏
j=1

EZj .

Proof. Let µj := P ◦Z−1
j : BR → [0, 1] be the law of Zj for each j. Then we

know (Z1, . . . , Zn)∗ P = µ1⊗· · ·⊗µn. Therefore by Example 10.48 and Tonelli’s
theorem,

E

 n∏
j=1

|Zj |

 =

∫
Rn

 n∏
j=1

|zj |

 d (⊗nj=1µj
)

(z)

=

n∏
j=1

∫
Rn
|zj | dµj (zj) =

n∏
j=1

E |Zj | <∞

which shows that
∏n
j=1 Zj is integrable. Thus again by Example 10.48 and

Fubini’s theorem,

E

 n∏
j=1

Zj

 =

∫
Rn

 n∏
j=1

zj

 d (⊗nj=1µj
)

(z)

=

n∏
j=1

∫
R
zjdµj (zj) =

n∏
j=1

EZj .

Theorem 15.12. Let (Ω, ,B, P ) be a probability space, {(Si,Si)}ni=1 be a collec-
tion of measurable spaces and Yi : Ω → Si be a measurable map for 1 ≤ i ≤ n.
Further let µi := P ◦Y −1

i = LawP (Yi) and π := P ◦(Y1, . . . , Yn)
−1

: S1⊗· · ·⊗Sn
be the joint distribution of

(Y1, . . . , Yn) : Ω → S1 × · · · × Sn.

Then the following are equivalent,

1. {Yi}ni=1 are independent,
2. π = µ1 ⊗ µ2 ⊗ · · · ⊗ µn
3. for all bounded measurable functions, f : (S1 × · · · × Sn,S1 ⊗ · · · ⊗ Sn) →

(R,BR) ,

Ef (Y1, . . . , Yn) =

∫
S1×···×Sn

f (x1, . . . , xn) dµ1 (x1) . . . dµn (xn) , (15.3)

( where the integrals may be taken in any order),
4. E [

∏n
i=1 fi (Yi)] =

∏n
i=1 E [fi (Yi)] for all bounded (or non-negative) measur-

able functions, fi : Si → R or C.

Proof. (1 ⇐⇒ 2) has already been proved in Theorem 15.7. The fact
that (2. =⇒ 3.) now follows from Exercise 10.7 and Fubini’s theorem. Sim-
ilarly, (3. =⇒ 4.) follows from Exercise 10.7 and Fubini’s theorem after taking
f (x1, . . . , xn) =

∏n
i=1 fi (xi) . Lastly for (4. =⇒ 1.) , let Ai ∈ Si and take

fi := 1Ai in 4. to learn,

P (∩ni=1 {Yi ∈ Ai}) = E

[
n∏
i=1

1Ai (Yi)

]
=

n∏
i=1

E [1Ai (Yi)] =

n∏
i=1

P (Yi ∈ Ai)

which shows that the {Yi}ni=1 are independent.

Corollary 15.13. Suppose that (Ω,B, P ) is a probability space and
{Yj : Ω → R}nj=1 is a sequence of random variables with countable ranges, say

Λ ⊂ R. Then {Yj}nj=1 are independent iff

P
(
∩nj=1 {Yj = yj}

)
=

n∏
j=1

P (Yj = yj) (15.4)

for all choices of y1, . . . , yn ∈ Λ.

Proof. If the {Yj} are independent then clearly Eq. (15.4) holds by definition
as {Yj = yj} ∈ Y −1

j (BR) . Conversely if Eq. (15.4) holds and fi : R→[0,∞) are
measurable functions then,
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E

[
n∏
i=1

fi (Yi)

]
=

∑
y1,...,yn∈Λ

n∏
i=1

fi (yi) · P
(
∩nj=1 {Yj = yj}

)
=

∑
y1,...,yn∈Λ

n∏
i=1

fi (yi) ·
n∏
j=1

P (Yj = yj)

=

n∏
i=1

∑
yi∈Λ

fi (yi) · P (Yj = yj)

=

n∏
i=1

E [fi (Yi)]

wherein we have used Tonelli’s theorem for sum in the third equality. It now
follows that {Yi} are independent using item 4. of Theorem 15.12.

Definition 15.14 (i.i.d.). A sequences of random variables, {Xn}∞n=1 , on a
probability space, (Ω,B, P ), are i.i.d. (= independent and identically dis-
tributed) if they are independent and (Xn)∗ P = (Xk)∗ P for all k, n. That is
we should have

P (Xn ∈ A) = P (Xk ∈ A) for all k, n ∈ N and A ∈ BR.

If {Xn}∞n=1 are i.i.d. random variables iff

P (X1 ∈ A1, . . . , Xn ∈ An) =

n∏
j=1

P (Xi ∈ Ai) =

n∏
j=1

P (X1 ∈ Ai) =

n∏
j=1

µ (Ai)

(15.5)
where µ = (X1)∗ P. The identity in Eq. (15.5) is to hold for all n ∈ N and all
Ai ∈ BR. If we choose µn = µ in Example 15.19, the {Yn}∞n=1 there are i.i.d.
with LawP (Yn) = P ◦ Y −1

n = µ for all n ∈ N. We will give another proof of the
existence of arbitrary sequences of independent random variables in Proposition
15.23 below which will rely on the following very special case.

Exercise 15.1. Suppose that Ω = [0, 1), B = B[0,1), and P = m is Lebesgue
measure on B. Let

Yn :=

2n−1∑
k=1

1[ 2k−1
2n , 2k

2n ) for all n ∈ N.

1. What is P (Yn = 1) and P (Yn = 0)?
2. Suppose that εi ∈ {0, 1} are given for i ∈ N, show (by induction on n) that

{Y1 = ε1, . . . , Yn = εn} = [
j

2n
,
j + 1

2n
)

where
j

2n
=

n∑
i=1

εi2
−i i.e. j =

n∑
i=1

εi2
n−i.

3. Show (using items 1. and 2.) that {Yj}nj=1 are independent random variables
for each n ∈ N.

4. Show (Y1 (ω) , Y2 (ω) , . . . ) is the binary digit expansion of ω ∈ [0, 1), namely
show

ω =

∞∑
i=1

Yi (ω) 2−i for all ω ∈ [0, 1). (15.6)

Hint: use item 2. to show for all n ∈ N that

n∑
i=1

Yi (ω) 2−i ≤ ω <
n∑
i=1

Yi (ω) 2−i +
1

2n
. (15.7)

Exercise 15.2. Let X,Y be two random variables on (Ω,B, P ) .

1. Show that X and Y are independent iff Cov (f (X) , g (Y )) = 0 (i.e. f (X)
and g (Y ) are uncorrelated) for bounded measurable functions, f, g : R→
R.

2. If X,Y ∈ L2 (P ) and X and Y are independent, then Cov (X,Y ) = 0.
3. Show by example that if X,Y ∈ L2 (P ) and Cov (X,Y ) = 0 does not

necessarily imply that X and Y are independent. Hint: try taking (X,Y ) =
(X,ZX) where X and Z are independent simple random variables such that
EZ = 0 similar to Remark 14.35.

Exercise 15.3 (A correlation inequality). Suppose that X is a random
variable and f, g : R→ R are two increasing functions such that both f (X)

and g (X) are square integrable, i.e. E |f (X)|2 + E |g (X)|2 < ∞. Show
Cov (f (X) , g (X)) ≥ 0. Hint: let Y be another random variable which has
the same law as X and is independent of X. Then consider

E [(f (Y )− f (X)) · (g (Y )− g (X))] .

Let us now specialize to the case where Si = Rmi and Si = BRmi for some
mi ∈ N.

Theorem 15.15. Let (Ω,B, P ) be a probability space, mj ∈ N, Sj = Rmj ,
Sj = BRmj , Yj : Ω → Sj be random vectors, and µj := LawP (Yj) = P ◦ Y −1

j :
Sj → [0, 1] for 1 ≤ j ≤ n. The the following are equivalent;

1. {Yj}nj=1 are independent,

2. LawP (Y1, . . . , Yn) = µ1 ⊗ µ2 ⊗ · · · ⊗ µn
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3. for all bounded measurable functions, f : (S1 × · · · × Sn,S1 ⊗ · · · ⊗ Sn) →
(R,BR) ,

Ef (Y1, . . . , Yn) =

∫
S1×···×Sn

f (x1, . . . , xn) dµ1 (x1) . . . dµn (xn) , (15.8)

( where the integrals may be taken in any order),

4. E
[∏n

j=1 fj (Yj)
]

=
∏n
j=1 E [fj (Yj)] for all bounded (or non-negative) mea-

surable functions, fj : Sj → R or C.
5. P

(
∩nj=1 {Yj ≤ yj}

)
=
∏n
j=1 P ({Yj ≤ yj}) for all yj ∈ Sj , where we say

that Yj ≤ yj iff (Yj)k ≤ (yj)k for 1 ≤ k ≤ mj .

6. E
[∏n

j=1 fj (Yj)
]

=
∏n
j=1 E [fj (Yj)] for all fj ∈ Cc (Sj ,R) ,

7. E
[
e
i
∑n

j=1
λj ·Yj

]
=
∏n
j=1 E

[
eiλj ·Yj

]
for all λj ∈ Sj = Rmj .

Proof. The equivalence of 1. – 4. has already been proved in Theorem 15.12.
It is also clear that item 4. implies any of the items 5. –7. upon noting that
item 5. may be written as,

E

 n∏
j=1

1(−∞,yj ] (Yj)

 =

n∏
j=1

E
[
1(−∞,yj ] (Yj)

]
where

(−∞, yj ] := (−∞, (yj)1]× · · · × (−∞, (yj)mj ].

The proofs that either 5. or 6. or 7. implies item 3. is a simple application of
the multiplicative system theorem in the form of either Corollary 12.6 or Corol-
lary 12.14. In each case, let H denote the linear space of bounded measurable
functions such that Eq. (15.8) holds. To complete the proof I will simply give
you the multiplicative system, M, to use in each of the cases. To describe M,
let N = m1 + · · ·+mn and

y = (y1, . . . , yn) =
(
y1, y2, . . . , yN

)
∈ RN and

λ = (λ1, . . . , λn) =
(
λ1, λ2, . . . , λN

)
∈ RN

For showing 5. =⇒ 3.take M =
{

1(−∞,y] : y ∈ RN
}
.

For showing 6. =⇒ 3. take M to be a those functions on RN which are of
the form, f (y) =

∏N
l=1 fl

(
yl
)

with each fl ∈ Cc (R) .
For showing 7. =⇒ 3. take M to be the functions of the form,

f (y) = exp

i n∑
j=1

λj · yj

 = exp (iλ · y) .

Alternatively we could show 7. =⇒ 2. as follows. Let N = m1 + · · · + mn,
π := Law (Y1, . . . , Yn) and λ := (λ1, . . . , λn) ∈ RN . Item 7. states,

π̂ (λ) :=

∫
RN

eiλ·ydπ (y) = E
[
e
i
∑n

j=1
λj ·Yj

]
=

n∏
j=1

E
[
eiλj ·Yj

]
=

n∏
j=1

∫
Rmj

eiλj ·yjdµj (yj)

= (µ1 ⊗ µ2 ⊗ · · · ⊗ µn)
ˆ

(λ)

and so π = µ1 ⊗ µ2 ⊗ · · · ⊗ µn by Corollary 12.17.

Definition 15.16. A collection of subsets of B, {Ct}t∈T is said to be indepen-
dent iff {Ct}t∈Λ are independent for all finite subsets, Λ ⊂ T. More explicitly,
we are requiring

P (∩t∈ΛAt) =
∏
t∈Λ

P (At)

whenever Λ is a finite subset of T and At ∈ Ct for all t ∈ Λ.

Corollary 15.17. If {Ct}t∈T is a collection of independent classes such that
each Ct is a π – system, then {σ (Ct)}t∈T are independent as well.

Definition 15.18. A collections of random variables, {Xt : t ∈ T} are inde-
pendent iff {σ (Xt) : t ∈ T} are independent.

Example 15.19. Suppose that {µn}∞n=1 is any sequence of probability measure
on (R,BR) . Let Ω = RN, B := ⊗∞n=1BR be the product σ – algebra on Ω, and
P := ⊗∞n=1µn be the product measure. Then the random variables, {Yn}∞n=1

defined by Yn (ω) = ωn for all ω ∈ Ω are independent with LawP (Yn) = µn for
each n.

Lemma 15.20 (Independence of groupings). Suppose that {Bt : t ∈ T} is
an independent family of σ – fields. Suppose further that {Ts}s∈S is a partition
of T (i.e. T =

∑
s∈S Ts) and let

BTs = ∨t∈TsBt := σ (∪t∈TsBt) .

Then {BTs}s∈S is again independent family of σ fields.

Proof. Let
Cs = {∩α∈KBα : Bα ∈ Bα, K ⊂f Ts} .

It is now easily checked that BTs = σ (Cs) and that {Cs}s∈S is an independent
family of π – systems. Therefore {BTs}s∈S is an independent family of σ –
algebras by Corollary 15.17.
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Remark 15.21. To better understand the last proof it is instructive to write
out a special case in more detail. Suppose that {A,B, C,D, E} are independent
sub-σ− algebras relative to (Ω,F , P ) . This independence implies

P (A ∩B ∩ C ∩D ∩ E) = P (A)P (B)P (C)P (D)P (E)

= P (A ∩B)P (C ∩D ∩ E)

for all A ∈ A, B ∈ B, C ∈ C, D ∈ D, and E ∈ E . Therefore,

C1 := {A ∩B : A ∈ A and B ∈ B} and

C2 := {C ∩D ∩ E : C ∈ C, D ∈ D, and E ∈ E}

are independent. As C1 and C2 are multiplicative we may conclude from Theorem
15.2 that A ∨ B = σ (C1) and C ∨ D ∨ E = σ (C2) are independent as well.

Corollary 15.22. Suppose that {Yn}∞n=1 is a sequence of independent random
variables (or vectors) and Λ1, . . . , Λm is a collection of pairwise disjoint subsets
of N. Further suppose that fi : RΛi → R is a measurable function for each
1 ≤ i ≤ m, then Zi := fi

(
{Yl}l∈Λi

)
is again a collection of independent random

variables.

Proof. Notice that σ (Zi) ⊂ σ
(
{Yl}l∈Λi

)
= σ (∪l∈Λiσ (Yl)) . Since

{σ (Yl)}∞l=1 are independent by assumption, it follows from Lemma 15.20 that{
σ
(
{Yl}l∈Λi

)}m
i=1

are independent and therefore so is {σ (Zi)}mi=1, i.e. {Zi}mi=1

are independent.

Proposition 15.23. Given any sequence, {µn}∞n=1 ,of probability measure on
(R,BR) , there exists a independent sequence, {Xn}∞n=1 , of random variables on(
[0, 1),B[0,1), P = m

)
such that LawP (Xn) = µn for all n.

Proof. Let {Yn}∞n=1 be i.i.d. Bernoulli random variables on(
[0, 1),B[0,1), P = m

)
as in Exercise 15.1. Let ϕ : N × N→ N be a bijection

and set Zl,n := Yϕ(l,n) so that {Zl,n}∞l,n=1 are i.i.d. Bernoulli random variables

on
(
[0, 1),B[0,1), P = m

)
. For each n ∈ N, let Un :=

∑∞
l=1 Zl,n2−l. According

to Corollary 15.22, {Un}∞n=1 are independent random variables. Moreover the
reader should verify that LawP (Un) = m for all n so that {Un}∞n=1 are i.i.d.
uniformly distributed random variables on

(
[0, 1),B[0,1), P = m

)
. We now

choose measurable functions, Gn : (0, 1) → R as in Theorem 9.45 so that
LawP (Gn (Un)) = µn for each n. Then {Xn := Gn (Un)}∞n=1 is the desired
collection of independent random variables on

(
[0, 1),B[0,1), P = m

)
. [See

Section 15.9 for more details on this type of construction.]
The following theorem follows immediately from the definitions and Theo-

rem 15.15.

Theorem 15.24. Let X := {Xt : t ∈ T} be a collection of random variables.
Then the following are equivalent:

1. The collection X is independent,
2.

P (∩t∈Λ {Xt ∈ At}) =
∏
t∈Λ

P (Xt ∈ At)

for all finite subsets, Λ ⊂ T, and all {At}t∈Λ ⊂ BR.
3.

P (∩t∈Λ {Xt ≤ xt}) =
∏
t∈Λ

P (Xt ≤ xt)

for all finite subsets, Λ ⊂ T, and all {xt}t∈Λ ⊂ R.
4. For all Γ ⊂f T and ft : Rn→ R which are bounded an measurable for all
t ∈ Γ,

E

[∏
t∈Γ

ft (Xt)

]
=
∏
t∈Γ

Eft (Xt) =

∫
RΓ

∏
t∈Γ

ft (xt)
∏
t∈Γ

dµt (xt) .

5. E
[∏

t∈Γ exp
(
eiλt·Xt

)]
=
∏
t∈Γ µ̂t (λ) .

6. For all Γ ⊂f T and f : (Rn)
Γ → R,

E [f (XΓ )] =

∫
(Rn)Γ

f (x)
∏
t∈Γ

dµt (xt) .

7. For all Γ ⊂f T, LawP (XΓ ) = ⊗t∈Γµt.
8. LawP (X) = ⊗t∈Tµt.

Moreover, if Bt is a sub-σ - algebra of B for t ∈ T, then {Bt}t∈T are inde-
pendent iff for all Γ ⊂f T,

E

[∏
t∈Γ

Xt

]
=
∏
t∈Γ

EXt for all Xt ∈ L∞ (Ω,Bt, P ) .

Proof. The equivalence of 1. and 2. follows almost immediately form the
definition of independence and the fact that σ (Xt) = {{Xt ∈ A} : A ∈ BR} .
Clearly 2. implies 3. holds. Finally, 3. implies 2. is an application of Corollary
15.17 with Ct := {{Xt ≤ a} : a ∈ R} and making use the observations that Ct
is a π – system for all t and that σ (Ct) = σ (Xt) . The remaining equivalence
are also easy to check.
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15.2 Independence for Gaussian Random Vectors 197

15.2 Independence for Gaussian Random Vectors

As you saw in Exercise 15.2, uncorrelated random variables are typically not
independent. However, if the random variables involved are jointly Gaussian
(see Definition 14.25), then independence and uncorrelated are actually the
same thing!

Lemma 15.25. Suppose that Z = (X,Y )
tr

is a Gaussian random vector with
X ∈ Rk and Y ∈ Rl. Then X is independent of Y iff Cov (Xi, Yj) = 0 for all
1 ≤ i ≤ k and 1 ≤ j ≤ l. This lemma also holds more generally. Namely if{
X l
}n
l=1

is a sequence of random vectors such that
(
X1, . . . , Xn

)
is a Gaussian

random vector. Then
{
X l
}n
l=1

are independent iff Cov
(
X l
i , X

l′

k

)
= 0 for all

l 6= l′ and i and k.

Proof. We know by Exercise 15.2 that if Xi and Yj are independent, then
Cov (Xi, Yj) = 0. For the converse direction, if Cov (Xi, Yj) = 0 for all 1 ≤ i ≤ k
and 1 ≤ j ≤ l and x ∈ Rk and y ∈ Rl, then

Var (x ·X + y · Y ) = Var (x ·X) + Var (y · Y ) + 2 Cov (x ·X, y · Y )

= Var (x ·X) + Var (y · Y ) .

Therefore using the fact that (X,Y ) is a Gaussian random vector,

E
[
eix·Xeiy·Y

]
= E

[
ei(x·X+y·Y )

]
= exp

(
−1

2
Var (x ·X + y · Y ) + E (x ·X + y · Y )

)
= exp

(
−1

2
Var (x ·X) + iE (x ·X)− 1

2
Var (y · Y ) + iE (y · Y )

)
= E

[
eix·X

]
· E
[
eiy·Y

]
,

and because x and y were arbitrary, we may conclude from Theorem 15.15 that
X and Y are independent.

Corollary 15.26. Suppose that X : Ω → Rk and Y : Ω → Rl are two indepen-
dent random Gaussian vectors, then (X,Y ) is also a Gaussian random vector.
This corollary generalizes to multiple independent random Gaussian vectors.

Proof. Let x ∈ Rk and y ∈ Rl, then

E
[
ei(x,y)·(X,Y )

]
=E

[
ei(x·X+y·Y )

]
= E

[
eix·Xeiy·Y

]
= E

[
eix·X

]
· E
[
eiy·Y

]
= exp

(
−1

2
Var (x ·X) + iE (x ·X)

)
× exp

(
−1

2
Var (y · Y ) + iE (y · Y )

)
= exp

(
−1

2
Var (x ·X) + iE (x ·X)− 1

2
Var (y · Y ) + iE (y · Y )

)
= exp

(
−1

2
Var (x ·X + y · Y ) + iE (x ·X + y · Y )

)
which shows that (X,Y ) is again Gaussian.

Notation 15.27 Suppose that {Xi}ni=1 is a collection of R – valued variables or

Rd – valued random vectors. We will write X1

⊥⊥
+ X2

⊥⊥
+ . . .

⊥⊥
+ Xn for X1+· · ·+Xn

under the additional assumption that the {Xi}ni=1 are independent.

Corollary 15.28. Suppose that {Xi}ni=1 are independent Gaussian random
variables, then Sn :=

∑n
i=1Xi is a Gaussian random variables with :

Var (Sn) =

n∑
i=1

Var (Xi) and ESn =

n∑
i=1

EXi, (15.9)

i.e.

X1

⊥⊥
+ X2

⊥⊥
+ . . .

⊥⊥
+ Xn

d
= N

(
n∑
i=1

Var (Xi) ,

n∑
i=1

EXi

)
.

In particular if {Xi}∞i=1 are i.i.d. Gaussian random variables with EXi = µ and
σ2 = Var (Xi) , then

Sn
n
− µ d

= N

(
0,
σ2

n

)
and (15.10)

Sn − nµ
σ
√
n

d
= N (0, 1) . (15.11)

Equation (15.11) is a very special case of the central limit theorem while Eq.
(15.10) leads to a very special case of the strong law of large numbers, see
Corollary 15.29.

Proof. The fact that Sn,
Sn
n − µ, and Sn−nµ

σ
√
n

are all Gaussian follows from

Corollary 15.28 and Lemma 14.28 or by direct calculation. The formulas for the
variances and means of these random variables are routine to compute.
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Recall the first Borel Cantelli-Lemma 10.15 states that if {An}∞n=1 are mea-
surable sets, then

∞∑
n=1

P (An) <∞ =⇒ P ({An i.o.}) = 0. (15.12)

Corollary 15.29. Let {Xi}∞i=1 be i.i.d. Gaussian random variables with EXi =
µ and σ2 = Var (Xi) . Then limn→∞

Sn
n = µ a.s. and moreover for every α < 1

2 ,
there exists Nα : Ω → N∪{∞} , such that P (Nα =∞) = 0 and∣∣∣∣Snn − µ

∣∣∣∣ ≤ n−α for n ≥ Nα.

In particular, limn→∞
Sn
n = µ a.s.

Proof. Let Z
d
= N (0, 1) so that σ√

n
Z

d
= N

(
0, σ

2

n

)
. From the Eq. (15.10)

and Eq. (10.46),

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε) = P

(∣∣∣∣ σ√nZ
∣∣∣∣ ≥ ε) = P

(
|Z| ≥

√
nε

σ

)
≤ exp

(
−1

2

(√
nε

σ

)2
)

= exp

(
− ε2

2σ2
n

)
.

Taking ε = n−α with 1− 2α > 0, it follows that

∞∑
n=1

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ n−α) ≤ ∞∑

n=1

exp

(
− 1

2σ2
n1−2α

)
<∞

and so by the first Borel-Cantelli lemma,

P

({∣∣∣∣Snn − µ
∣∣∣∣ ≥ n−α i.o.

})
= 0.

Therefore, P – a.s.,
∣∣Sn
n − µ

∣∣ ≤ n−α a.a., and in particular limn→∞
Sn
n = µ a.s.

15.3 Summing independent random variables

Suppose that (Ω,B, P ) is a probability space and Xj : Ω → R are random
variables for 1 ≤ j ≤ n. Let µ = LawP (X1, . . . , Xn) so that

E [f (X1, . . . , Xn)] =

∫
Rn
f (x) dµ (x) where x := (x1, . . . , xn) .

If we let Sn = X1 + · · ·+Xn, then

LawP (Sn) (B) = P (Sn ∈ B) = E [1B (Sn)]

=

∫
Rn

1B (x1 + · · ·+ xn) dµ (x) .

Let us now restrict to the case n = 2 and suppose that X1 and X2 are indepen-
dent random variables with laws µ1 and µ2 respectively, then

LawP (X1 +X2) (B) =

∫
R2

1B (x1 + x2) dµ1 ⊗ µ2 (x1, x2)

=

∫
R
dµ1 (x1)

∫
R
dµ2 (x2) 1B (x1 + x2)

=

∫
R
dµ1 (x1)

∫
R
dµ2 (x2) 1B−x1 (x2)

=

∫
R
µ2 (B − x1) dµ1 (x1) .

Similarly by reversing the order we did the integrals we also have

LawP (X1 +X2) (B) =

∫
R
µ1 (B − x2) dµ2 (x2) .

Definition 15.30 (Convolution of measures). If µ1 and µ2 are two prob-
ability measure on

(
Rd,BRd

)
the convolution of µ1 and µ2 is the probability

measure on
(
Rd,BRd

)
denoted by µ1 ∗ µ2 which is defined by

µ1 ∗ µ2 (B) =

∫
Rd
µ1 (B − x) dµ2 (x) .

As we saw above we have

µ1 ∗ µ2 (B) = µ2 ∗ µ1 (B) =

∫
Rd
µ2 (B − x) dµ1 (x)

=

∫
Rd×Rd

1B (x1 + x2) d (µ1 ⊗ µ2) (x1, x2)

and moreover if X1, X2 : Ω → Rd are independent random vectors with
LawP (Xi) = µi, then LawP (X1 +X2) = µ1 ∗ µ2.

Exercise 15.4. Suppose that X
d
= N

(
0, a2

)
and Y

d
= N

(
0, b2

)
and X and

Y are independent. Show by direct computation using the formulas for the
distributions of X and Y that X + Y = N

(
0, a2 + b2

)
.
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Exercise 15.5. Show that the sum, N1 +N2, of two independent Poisson ran-
dom variables, N1 and N2, with parameters λ1 and λ2 respectively is again a
Poisson random variable with parameter λ1 + λ2. (You could use generating

functions or do this by hand.) In short Poi (λ1)
⊥⊥
+ Poi (λ2)

d
= Poi (λ1 + λ2) .

Recall from Definition 10.61 that T ≥ 0 is an exponential with parame-
ter λ ∈ [0,∞) provided, P (T > x) = e−λx for all x ≥ 0 or equivalently,

P (T ∈ (x, x+ dx]) = 1x≥0λe
−λxdx,

i.e. for all bounded measurable functions, f : R+ → R we have

E [f (T )] =

∫ ∞
0

f (x)λe−λxdx.

[We will write T
d
= E (λ) for short.] Taking f (x) = e−tx above shows

E
[
e−tT

]
=

∫ ∞
0

λe−λxe−txdx =
λ

λ+ t
for t+ λ > 0.

If we write λ = 1/θ, then

E
[
e−tT

]
=

1

θ

∫ ∞
0

e−x/θe−txdx =
1

1 + tθ
for tθ + 1 > 0. (15.13)

Theorem 15.31. Let θ > 0. If {Tj}kj=1 are i.i.d. E (1/θ) - random variables,
then

P (T1 + · · ·+ Tk ∈ (x, x+ dx]) = xk−1 e−x/θ

θkΓ (k)
dx, (15.14)

where

Γ (k) :=

∫ ∞
0

xk−1e−xdx for all k > 0.

Proof. From Eq. (15.13) and independence it directly follows that

E
[
e−t(T1+···+Tk)

]
=

(
1

1 + tθ

)k
for tθ + 1 > 0.

On the other hand if we differentiate Eq. (15.13) (k − 1)-times with respect to
t it follows that

E
[
T k−1e−tT

]
=

(
− d

dt

)k−1

E
[
e−tT

]
=

1

θ

∫ ∞
0

xk−1e−x/θe−txdx

= (k − 1)! · θk−1 (1 + tθ)
−k

= (k − 1)! · θk−1E
[
e−t(T1+···+Tk)

]
.

Fig. 15.1. Here are some plots of
√
k
(
k +
√
kx
)k−1

e
−(k+

√
kx)

Γ (k)
for k = 10, 50 and

100. These plots indicate how appropriately scaled and translated sums of independent
E (1)− random variables converge in law to a standard normal.

In particular, it follows that

E
[
e−t(T1+···+Tk)

]
=

1

θk
1

Γ (k)

∫ ∞
0

xk−1e−x/θe−txdx

which holds for all t ≥ 0 and this suffices to prove Eq. (15.14).

Exercise 15.6 (Gamma Distributions). Let X be a positive random vari-

able. For1 k, θ > 0, we say that X
d
=Gamma(k, θ) if

(X∗P ) (dx) = f (x; k, θ) dx for x > 0,

where

f (x; k, θ) := xk−1 e−x/θ

θkΓ (k)
for x > 0, and k, θ > 0.

Find the moment generating function (see Definition 10.58), MX (t) = E
[
etX
]

for t < θ−1. Differentiate your result in t to show

E [Xm] = k (k + 1) . . . (k +m− 1) θm for all m ∈ N0.

In particular, E [X] = kθ and Var (X) = kθ2. (Notice that when k = 1 and

θ = λ−1, X
d
= E (λ) .)

Example 15.32 (Gamma Distribution Sums). We will show here that

Gamma(k, θ)
⊥⊥
+ Gamma(l, θ) =Gamma(k + l, θ) . In Exercise 15.6 you

showed if k, θ > 0 then

1 We now no longer assume k is an integer.
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E
[
etX
]

= (1− θt)−k for t < θ−1

where X is a positive random variable with X
d
=Gamma(k, θ) , i.e.

(X∗P ) (dx) = xk−1 e−x/θ

θkΓ (k)
dx for x > 0.

Suppose that X and Y are independent Random variables with

X
d
=Gamma(k, θ) and Y

d
=Gamma(l, θ) for some l > 0. It now follows

that

E
[
et(X+Y )

]
= E

[
etXetY

]
= E

[
etX
]
E
[
etY
]

= (1− θt)−k (1− θt)−l = (1− θt)−(k+l)
.

Therefore it follows from Exercise 12.3 that X + Y
d
=Gamma(k + l, θ) .

Example 15.33 (Exponential Distribution Sums). If {Tk}nk=1 are independent

random variables such that Tk
d
= E (λk) for all k, then

T1

⊥⊥
+ T2

⊥⊥
+ . . .

⊥⊥
+ Tn = Gamma

(
n, λ−1

)
.

This follows directly from Example 15.32 using E (λ) =Gamma
(
1, λ−1

)
and

induction. We will verify this directly later on in Corollary 16.9.

Example 15.32 may also be verified using brute force. To this end, suppose
that f : R+ → R+ is a measurable function, then

E [f (X + Y )] =

∫
R2

+

f (x+ y)xk−1 e−x/θ

θkΓ (k)
yl−1 e

−y/θ

θlΓ (l)
dxdy

=
1

θk+lΓ (k)Γ (l)

∫
R2

+

f (x+ y)xk−1yl−1e−(x+y)/θdxdy.

Let us now make the change of variables, x = x and z = x+ y, so that dxdy =
dxdz, to find,

E [f (X + Y )] =
1

θk+lΓ (k)Γ (l)

∫
10≤x≤z<∞f (z)xk−1 (z − x)

l−1
e−z/θdxdz.

(15.15)
To finish the proof we must now do that x integral and show,∫ z

0

xk−1 (z − x)
l−1

dx = zk+l−1Γ (k)Γ (l)

Γ (k + l)
.

(In fact we already know this must be correct from our Laplace transform
computations above.) First make the change of variable, x = zt to find,∫ z

0

xk−1 (z − x)
l−1

dx = zk+l−1B (k, l)

where B (k, l) is the beta – function defined by;

B (k, l) :=

∫ 1

0

tk−1 (1− t)l−1
dt for Re k,Re l > 0. (15.16)

Combining these results with Eq. (15.15) then shows,

E [f (X + Y )] =
B (k, l)

θk+lΓ (k)Γ (l)

∫ ∞
0

f (z) zk+l−1e−z/θdz. (15.17)

Since we already know that∫ ∞
0

zk+l−1e−z/θdz = θk+lΓ (k + l)

it follows by taking f = 1 in Eq. (15.17) that

1 =
B (k, l)

θk+lΓ (k)Γ (l)
θk+lΓ (k + l)

which implies,

B (k, l) =
Γ (k)Γ (l)

Γ (k + l)
. (15.18)

Therefore, using this back in Eq. (15.17) implies

E [f (X + Y )] =
1

θk+lΓ (k + l)

∫ ∞
0

f (z) zk+l−1e−z/θdz

from which it follows that X + Y
d
=Gamma(k + l, θ) .

Let us pause to give a direct verification of Eq. (15.18). By definition of the
gamma function,

Γ (k)Γ (l) =

∫
R2

+

xk−1e−xyl−1e−ydxdy =

∫
R2

+

xk−1yl−1e−(x+y)dxdy.

=

∫
0≤x≤z<∞

xk−1 (z − x)
l−1

e−zdxdz

Making the change of variables, x = x and z = x+ y it follows,
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Γ (k)Γ (l) =

∫
0≤x≤z<∞

xk−1 (z − x)
l−1

e−zdxdz.

Now make the change of variables, x = zt to find,

Γ (k)Γ (l) =

∫ ∞
0

dze−z
∫ 1

0

dt (zt)
k−1

(z − tz)l−1
z

=

∫ ∞
0

e−zzk+l−1dz ·
∫ 1

0

tk−1 (1− t)l−1
dt

= Γ (k + l)B (k, l) .

Definition 15.34 (Beta distribution). The β – distribution is

dµx,y (t) =
tx−1 (1− t)y−1

dt

B (x, y)
.

Observe that∫ 1

0

tdµx,y (t) =
B (x+ 1, y)

B (x, y)
=

Γ (x+1)Γ (y)
Γ (x+y+1)

Γ (x)Γ (y)
Γ (x+y)

=
x

x+ y

and ∫ 1

0

t2dµx,y (t) =
B (x+ 2, y)

B (x, y)
=

Γ (x+2)Γ (y)
Γ (x+y+2)

Γ (x)Γ (y)
Γ (x+y)

=
(x+ 1)x

(x+ y + 1) (x+ y)
.

15.4 A Strong Law of Large Numbers

Theorem 15.35 (A simple form of the strong law of large numbers).

If {Xn}∞n=1 is a sequence of i.i.d. random variables such that E
[
|Xn|4

]
< ∞,

then

lim
n→∞

Sn
n

= µ a.s.

where Sn :=
∑n
k=1Xk and µ := EXn = EX1.

Exercise 15.7. Use the following outline to give a proof of Theorem 15.35.

1. First show that xp ≤ 1 + x4 for all x ≥ 0 and 1 ≤ p ≤ 4. Use this to
conclude;

E |Xn|p ≤ 1 + E |Xn|4 <∞ for 1 ≤ p ≤ 4.

Thus γ := E
[
|Xn − µ|4

]
and the standard deviation

(
σ2
)

of Xn defined by,

σ2 := E
[
X2
n

]
− µ2 = E

[
(Xn − µ)

2
]
<∞,

are finite constants independent of n.

2. Show for all n ∈ N that

E

[(
Sn
n
− µ

)4
]

=
1

n4

(
nγ + 3n(n− 1)σ4

)
=

1

n2

[
n−1γ + 3

(
1− n−1

)
σ4
]
.

(Thus Sn
n → µ in L4 (P ) .)

3. Use item 2. and Chebyshev’s inequality to show

P

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
≤
n−1γ + 3

(
1− n−1

)
σ4

ε4n2
.

4. Use item 3. and the first Borel Cantelli Lemma 10.15 to conclude
limn→∞

Sn
n = µ a.s.

15.5 A Central Limit Theorem

In this section we will give a preliminary a couple versions of the central limit
theorem following [28, Chapter 2.14]. If {Xk}nk=1 is a sequence of real or vector
valued random variables we let

SXn := X1 + · · ·+Xn.

We will also use the following notation throughout this section.

Remark 15.36. If f ∈ C3 (R) with M := supx∈R
∣∣f (3) (x)

∣∣ < ∞, then by Tay-

lor’s theorem |f (x)| ≤ C
(

1 + |x|3
)
, |f ′ (x)| ≤ C

(
1 + |x|2

)
, and |f ′′ (x)| ≤

C (1 + |x|) for some C < ∞. This remark will be used in the computations
below in order to see that f (U) , f ′ (U) , and f ′′ (U) are all integrable random
variables for U ∈ L3 (P ) .

The next lemma contains the key to the results in this section.

Lemma 15.37. Suppose that {U,X, Y } are independent random variables such

that E
[
|U |3 + |X|3 + |Y |3

]
< ∞, EX = EY, and EX2 = EY 2. Then for every

function, f ∈ C3 (R) with M := supx∈R
∣∣f (3) (x)

∣∣ <∞,
|E [f (U +X)− f (U + Y )]| ≤ M

3!
· E
[
|X|3 + |Y |3

]
.

[This lemma has a natural extension to a similar statement when {U,X, Y } are
independent random vectors.]
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Proof. By Taylor’s theorem for u,∆ ∈ R there exists c (u,∆) between u
and ∆ so that

f (u+∆) = f (u) + f ′ (u)∆+
1

2
f ′′ (u)∆2 + r (u,∆) (15.19)

where

|r (u,∆)| =
∣∣∣∣ 1

3!
f (3) (c (u,∆))∆3

∣∣∣∣ ≤ M

3!
|∆|3 .

Using Eq. (15.19) with u = U and ∆ = X and u = U and ∆ = Y shows,

f (U +X)−f (U + Y ) = f ′ (U) [X − Y ]+
1

2
f ′′ (U)

[
X2 − Y 2

]
+r (U,X)−r (U, Y ) .

Taking expectations of this equation making use of the independence of
{U,X, Y } and the assumptions that EX = EY and EX2 = EY 2 shows,

|E [f (U +X)− f (U + Y )]| = |E [r (U,X)− r (U, Y )]| ≤ M

3!
· E
[
|X|3 + |Y |3

]
.

Corollary 15.38. Suppose that {Xk}nk=1 and {Yk}nk=1 are independent L3 (P )-
random variables such that EXk = EYk and EX2

k = EY 2
k for all k. If f ∈ C3 (R)

with M := supx∈R
∣∣f (3) (x)

∣∣ <∞, then

∣∣E [f (SXn )− f (SYn )]∣∣ ≤ M

3!

n∑
k=1

E
[
|Xk|3 + |Yk|3

]
.

Proof. For k ∈ {0, 1, 2, . . . , n} let

Vk := X1 + · · ·+Xk−1 +Xk + Yk+1 + · · ·+ Yn

with the convention that

V0 = SYn = Y1 + · · ·+ Yn, and Vn = SXn = X1 + · · ·+Xn.

Further let

Uk := Vk −Xk = X1 + · · ·+Xk−1 + Yk+1 + · · ·+ Yn

so that
Vk = Uk +Xk and Vk−1 = Uk + Yk.

By a telescoping series argument along with the triangle inequality and Lemma
15.37 we find,

∣∣E [f (SXn )− f (SYn )]∣∣ =

∣∣∣∣∣
n∑
k=1

E [f (Vk)− f (Vk−1)]

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

E [f (Uk +Xk)− f (Uk + Yk)]

∣∣∣∣∣
≤

n∑
k=1

|E [f (Uk +Xk)− f (Uk + Yk)]|

≤ M

3!

n∑
k=1

E
[
|Xk|3 + |Yk|3

]
.

Corollary 15.39. Suppose that {Xk}∞k=1 and {Yk}∞k=1 are i.i.d. L3 (P )-random
variables with EXk = 0 = EYk and Var (X1) = Var (Y1) . If f ∈ C3 (R) with
M := supx∈R

∣∣f (3) (x)
∣∣ <∞, then∣∣∣∣E [f ( 1√

n
SXn

)
− f

(
1√
n
SYn

)]∣∣∣∣ ≤ M

3!
·
[
E
[
|X1|3 + |Y1|3

]]
· 1√
n
→ 0 as n→∞.

[Informally this says that Law
(

1√
n
SXn

)
∼= Law

(
1√
n
SYn

)
when n is large.]

Proof. By Corollary 15.37 with Xk → 1√
n
Xk and Yk → 1√

n
Yk it follows

that ∣∣∣∣E [f ( 1√
n
SXn

)
− f

(
1√
n
SYn

)]∣∣∣∣ ≤ M

3!

n∑
k=1

E

[∣∣∣∣Xk√
n

∣∣∣∣3 +

∣∣∣∣ Yk√n
∣∣∣∣3
]

≤ M

3!
· n 1

n3/2

[
E
[
|X1|3 + |Y1|3

]]
.

Lemma 15.40. If Z
d
= N

(
0, σ2

)
, then E |Z|3 =

√
8/πσ3

Proof. if Z = N
(
0, σ2

)
, then Z

d
=
√
σN (0, 1) and so by Eq. (10.44) with

β = 3 we have,
E
∣∣Z3
∣∣ = σ3E |N (0, 1)|3 =

√
8/πσ3. (15.20)

Here is the direct computation in this case;

E |N (0, 1)|3 =
1√
2π

∫
R
|z|3 e−z

2/2dz =
2√
2π

∫ ∞
0

z3e−z
2/2dz.

Letting y = z2/2 so that dy = zdz and z2 = 2y, it follows that
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E |N (0, 1)|3 =
4√
2π

∫ ∞
0

ye−ydy =
4√
2π

=

√
16

2π
=
√

8/π.

Theorem 15.41. Suppose that {Xk}nk=1 are independent L3 (P )-random vari-
ables, µk = EXk, σ

2
k = Var (Xk) ,

µ :=

n∑
k=1

µk =

n∑
k=1

EXk, and σ2 =

n∑
k=1

σ2
k =

n∑
k=1

Var (Xk) .

If f ∈ C3 (R) with M := supx∈R
∣∣f (3) (x)

∣∣ <∞, then

∣∣E [f (SXn )− f (N (µ, σ2
))]∣∣ ≤ M

3!

n∑
k=1

E

[
|Xk − µk|3 + σ3

k

√
8

π

]
. (15.21)

Now replace f (x) by f (x+ µ) to find the better estimate which does not change
the value of M.

Proof. Let {Yk}nk=1 be independent random variables such that Yk
d
=

N (0,Var (Xk)) so that SYn
d
= N

(
0, σ2

)
. We now apply Corollary 15.38 with

Xk replaced by Xk − µk to find,∣∣E [f (SXn − µ)− f (N (0, σ2
))]∣∣ =

∣∣E [f (SXn − µ)− f (SYn )]∣∣
≤ M

3!

n∑
k=1

E
[
|Xk − µk|3 + |Yk|3

]
=
M

3!

n∑
k=1

E
[
|Xk − µk|3 +

√
8/πσ3

k

]
.

Replacing2 f in this estimate by f (x+ µ) while using µ+N
(
0, σ2

) d
= N

(
µ, σ2

)
gives Eq. (15.21).

Example 15.42. Suppose that there is a constant C <∞ such that

E |Xk − EXk|3 ≤ C Var (Xk)
3/2

for each k, (15.22)

then the estimate in Eq. (15.21) gives,

2 This does not change the bound on the third derivative.

∣∣E [f (SXn )− f (N (µ, σ2
))]∣∣ ≤ M

3!

(
C +

√
8

π

)
n∑
k=1

σ3
k

≤ M

3!

(
C +

√
8

π

)
max

k=1,...,n
σk ·

n∑
k=1

σ2
k

=
M

3!

(
C +

√
8

π

)
σ2 · max

k=1,...,n
σk.

Thus if maxk=1,...,n σk is small then SXn
d∼= N

(
µ, σ2

)
.

Note: one way to achieve Eq. (15.22) is to let {Zj}pj=1 be a fixed col-

lection of mean zero, variance one, L3 (P ) random variables and let C :=

max1≤j≤p E |Zj |3 . Then if each Xk satisfies, Xk
d
= σkZj+µk for some j = j (k) ,

then

E |Xk − EXk|3 = E |σkZj |3 = σ3
kE |Zj |

3 ≤ Cσ3
k = C Var (Xk)

3/2
.

Corollary 15.43 (Central limit theorem). Suppose that {Xk}∞k=1 are i.i.d.

L3 (P )-random variables with EXk = 0 and Var (Xk) = σ2 and Z
d
= N

(
0, σ2

)
.

If f ∈ C3 (R) with M := supx∈R
∣∣f (3) (x)

∣∣ <∞, then∣∣∣∣E [f ( 1√
n
SXn

)
− f

(
N
(
0, σ2

))]∣∣∣∣ ≤ M

3!
·
[
E |X1|3 +

√
8/πσ3

]
· 1√
n
→ 0 as n→∞.

Proof. We apply Example 15.42 with Xk replaced by 1√
n
Xk so that σk =

1√
n
σ,

C =
E
∣∣∣ 1√

n
Xk

∣∣∣3
Var

(
1√
n
Xk

)3/2
=

E |X1|3

Var (X1)
3/2

=
E |X1|3

σ3

and hence

∣∣E [f (SXn )− f (N (0, σ2
))]∣∣ ≤ M

3!

(
E |X1|3

σ3
+

√
8

π

)
σ2 · σ√

n

which gives the desired estimate.

Notation 15.44 Given a square integrable random variable Y, let

Ȳ :=
Y − EY
σ (Y )

where σ (Y ) :=

√
E (Y − EY )

2
=
√

Var (Y ).
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Example 15.45. Suppose that 0 < p < 1 and {Yn}∞n=1 are i.i.d. random variables
with P (Yn = 1) = p and P (Yn = 0) = 1 − p, then EYn = p = EY 2

n so that
Var (Yn) = p− p2 = p (1− p) . Then with f as above we know that

lim
n→∞

E
[
f
(
S̄Yn
)]

= lim
n→∞

E

[
f

(
SYn − np√
np (1− p)

)]
= E [f (N (0, 1))] . (15.23)

Note that in general we can not expect that Eq. (15.23) holds for all bounded
measurable functions f. Indeed if we let

D := ∪∞n=1

{
k − np√
np (1− p)

: 0 ≤ k ≤ n

}

then 1Dc
(
S̄Yn
)
≡ 0 and m (D) = 0 and therefore,

lim
n→∞

E
[
f
(
S̄Yn
)]

= 0 6= 1 =
1√
2π

∫
R

1Dc (y) e−y
2/2dy.

Lemma 15.46. Suppose that {Vn,Wn}∞n=1 is a collection of random vari-
ables such that limn→∞ E [f (Vn)− f (Wn)] = 0 for all f ∈ C∞c (R) , then
limn→∞ E [f (Vn)− f (Wn)] = 0 for all f ∈ Cc (R) , for all bounded continu-
ous functions, f : R→ R.

Proof. For such a function, f ∈ Cc (R) , we may find3 fk ∈ C∞c (R)
with all supports being contained in a compact subset of R such that εk :=
supx∈R |f (x)− fk (x)| → 0 as k →∞. We then have,

|Ef (Vn)− Ef (Wn)| ≤ |Ef (Vn)− Efk (Vn)|
+ |Efk (Vn)− Efk (Wn)|+ |Efk (Wn)− Ef (Wn)|

≤E |f (Vn)− fk (Vn)|
+ |Efk (Vn)− Efk (Wn)|+ E |fk (Wn)− f (Wn)|

≤2εk + |Efk (Vn)− Efk (Wn)| .

Therefore it follows that

lim sup
n→∞

|Ef (Vn)− Ef (Wn)| ≤ 2εk + lim sup
n→∞

|Efk (Vn)− Efk (Wn)|

= 2εk → 0 as k →∞.

3 We will eventually prove this standard real analysis fact later in the course.

Corollary 15.47. Suppose that {W} ∪ {Wn}∞n=1 is a collection of random
variables such that limn→∞ Ef (Wn) = Ef (W ) for all f ∈ C∞c (R) , then
Wn =⇒ W as n→∞ where “ =⇒ ” is used to denote weak convergence, i.e.
limn→∞ Ef (Wn) = Ef (W ) for all bounded continuous functions, f : R→ R.

Proof. By Lemma 15.46 with Vn = W for all n, we know that
limn→∞ Ef (Wn) = Ef (W ) for all f ∈ Cc (R) . According to Theorem 26.32
below this suffices to conclude the result of the theorem.

Example 15.48 (A rare event limit theorem). In this example let n ∈ N (n >>
1), σ > 0, and 1

4 ≥ σk > 0 be given such that σ2 =
∑n
k=1 σ

2
k. Further

suppose that {Zk}nk=1 are independent Bernoulli random variables such that
P (Zk = 1) = pk = 1− P (Zk = 0) where pk is chosen so that

σ2
k = Var (Zk) = pk − p2

k,

i.e.

pk =
1

2

(
1−

√
1− 4σ2

k

)
, ( pk ∼= σ2

k when σk << 1).

We then let Xk := Zk − pk and note that in this case,

E |Xk|3 = pk · (1− pk)
3

+ (1− pk) p3
k

= pk (1− pk)
[
(1− pk)

2
+ p2

k

]
= σ2

k

[
1 + 2

(
p2
k − pk

)]
= σ2

k

[
1 + 2σ2

k

] ∼= σ2
k

and so E |Xk|3 ∼ σ2
k rather than σ3

k. The error estimate in Eq. (15.21) is no
longer small and in fact SXn is not close in distribution to N

(
0, σ2

)
. Indeed,

if we let p =
∑n
k=1 pk, then SXn = SZn − p ∈ N0 − p and no such highly

discrete random variable can approximate a distribution which is a density times
Lebesgue measure. [Construct a continuous function which well approximates
the characteristic function of the range of SXn .]

As a special cases, if pk = λ
n for 1 ≤ k ≤ n, then by Exercise 10.15,

P
(
SXn + λ = SZn = k

) ∼= 1

k!
λke−λ for k << n

and so SXn + λ
d∼= Poi (λ) when n is large. We will revisit this example in more

generality later in Theorem 26.10.

Remark 15.49 (Moral of the story). Let µ ∈ R and σ2 > 0 be given and suppose
that means ({µk}∞k=1) and variances

({
σ2
k

}n
k=1

)
have been chosen so that µ =∑n

k=1 µk and σ2 =
∑n
k=1 σ

2
k. In the discussion above we have been considering

what the distribution of SXn may look like when {Xk}nk=1 if independent random
variables with EXk = µk and Var (Xk) = σ2

k. Here is a summary of what we
have found.
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1. If E |Xk − µk|3 ≤ Cσ3
k and maxk σk is small, then SXn

d∼= N
(
µ, σ2

)
which is

a form of the central limit theorem. So informally, the central limit theorem
says the result of adding lots of independent noises which are in some sense
“small in height” is a normal distribution.

2. On the other hand if we take Xk = Zk − pk where P (Zk = 1) = pk =
1 − P (Zk = 0) and the pk are chosen so that σ2

k = Var (Xk) . Then is this

case what typically happens is that SZn
d∼= Poi (p) where p =

∑n
k=1 pk

∼=
σ2. So informally, the law of rare events says the result of adding lots of
independent “rare” Bernoulli noises (so not small in height) is a Poisson
distribution.

3. In particular, the limiting distribution of random independent sums is not
uniquely determined by specifying the means and the variances of the sum-
mands.

Advice: Skip to Section 15.6

15.5.1 * More central limit theorem results

We end this section with a few more central limit theorem variants.

Theorem 15.50 (A CLT proof w/o Fourier). Suppose that {Xk}∞k=1 ⊂
L3 (P ) is a sequence of independent random variables such that

C := sup
k
E |Xk − EXk|3 <∞

Then for every function, f ∈ C3 (R) with M := supx∈R
∣∣f (3) (x)

∣∣ <∞ we have∣∣Ef (N)− Ef
(
S̄n
)∣∣ ≤ M

3!

(
1 +

√
8/π

) C

σ (Sn)
3 · n, (15.24)

where

S̄n :=
1

σ (Sn)
[Sn − ESn] with Sn := X1 + · · ·+Xn,

and N
d
= N (0, 1) . In particular, if we further assume that

δ := lim inf
n→∞

1

n
σ (Sn)

2
= lim inf

n→∞

1

n

n∑
i=1

Var (Xi) > 0, (15.25)

then ∣∣Ef (N)− Ef
(
S̄n
)∣∣ = O

(
1√
n

)
as n→∞ (15.26)

which is to say, S̄n is “close” in distribution to N, which we abbreviate by

S̄n
d∼= N for large n. (It should be noted that the estimate in Eq. (15.24) is valid

for any finite collection of random variables, {Xk}nk=1 .)

Proof. Let Yk = Xk−EXk
σ(Sn) so that

EYk = 0, σ2
k = Var (Yk) =

Var (Xk)

σ2 (Sn)
,

ESYn = 0, and Var
(
SYn
)

= 1.

Then according to Theorem 15.41,

∣∣E [f (SYn )− f (N (0, 1))
]∣∣ ≤ M

3!

n∑
k=1

E

[∣∣∣∣Xk − EXk

σ (Sn)

∣∣∣∣3 + σ3
k

√
8

π

]

≤ M

3!

n∑
k=1

E

[
C

σ3 (Sn)
+ σ3

k

√
8

π

]

=
M

3!

[
nC

σ3 (Sn)
+

√
8

π

n∑
k=1

σ3
k

]
.

By Jensen’s (or Hölder’s) inequality (see Chapter 17 below),

σ3
k =

(
E |Yk|2

)3/2

≤ E |Yk|3 = E
∣∣∣∣Xk − EXk

σ (Sn)

∣∣∣∣3 ≤ C

σ3 (Sn)

which combined with the previous inequality gives Eq. (15.24).

By a slight modification of the proof of Theorem 15.50 we have the following
central limit theorem.

Theorem 15.51 (A CLT proof w/o Fourier). Suppose that {Xn}∞n=1 is a

sequence of i.i.d. random variables in L2 (P ) , Sn := X1 + · · · + Xn, and N
d
=

N (0, 1) . Then for every function, f ∈ C2 (R) with M := supx∈R
∣∣f (2) (x)

∣∣ <∞
and f ′′ being uniformly continuous on R we have,

lim
n→∞

Ef
(
S̄n
)

= Ef (N) .

Proof. In this proof we use the following form of Taylor’s theorem;

f (x+∆)− f (x) = f ′ (x)∆+
1

2
f ′′ (x)∆2 + r (x,∆)∆2 (15.27)

where

r (x,∆) =

∫ 1

0

[f ′′ (x+ t∆)− f ′′ (x)] (1− t) dt.

Taking Eq. (15.27) with ∆ replaced by δ and subtracting the results then implies
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f (x+∆)− f (x+ δ) = f ′ (x) (∆− δ) +
1

2
f ′′ (x)

(
∆2 − δ2

)
+ ρ (x,∆, δ)

where now,
ρ (x,∆, δ) = r (x,∆)∆2 − r (x, δ) δ2.

Since f ′′ is uniformly continuous it follows that

ε (∆) :=
1

2
sup {|f ′′ (x+ t∆)− f (x)| : x ∈ R and 0 ≤ t ≤ 1} → 0

Thus we may conclude that

|r (x,∆)| ≤
∫ 1

0

|f ′′ (x+ t∆)− f ′′ (x)| (1− t) dt ≤
∫ 1

0

2ε (∆) (1− t) dt = ε (∆) .

and therefore that
|ρ (x,∆, δ)| ≤ ε (∆)∆2 + ε (δ) δ2.

So working just as in the proof of Theorem 15.50 we may conclude,∣∣Ef (N)− Ef
(
S̄n
)∣∣ ≤ n∑

k=1

E |Rk|

where now,
|Rk| = ε (Nk)N2

k + ε (Yk)Y 2
k .

Since the {Yk}nk=1 and the {Nk}nk=1 are i.i.d. now it follows that∣∣Ef (N)− Ef
(
S̄n
)∣∣ ≤ n · E [ε (N1)N2

1 + ε (Y1)Y 2
1

]
.

Since Var (Sn) = n ·Var (X1) , we have Y1 = X1−EX1√
nσ(X1)

, Var (N1) = Var (Y1) = 1
n

and therefore N1
d
=
√

1
nN. Combining these observations shows,

∣∣Ef (N)− Ef
(
S̄n
)∣∣ ≤ E[ε(√ 1

n
N

)
N2 + ε

(
X1 − EX1√
nσ (X1)

)
(X1 − EX1)

2

σ2 (X1)

]
which goes to zero as n→∞ by the DCT.

Corollary 15.52. Suppose that {Xn}∞n=1 is a sequence of independent random
variables, then under the hypothesis on this sequence in either of Theorem
15.50 or Theorem 15.51 we have S̄n =⇒ N (0, 1) , i.e. limn→∞ Ef

(
S̄n
)

=
Ef (N (0, 1)) for all f : R→ R which are bounded and continuous.

Proof. This result follows directly from Theorem 15.50 or Theorem 15.51
along with Corollary 15.47.

For more on the methods employed in this section the reader is advised
to look up “Stein’s method.” In Chapters 27 and 28 below, we will relax
the assumptions in the above theorem. The proofs later will be based in the
characteristic functional or equivalently the Fourier transform.

Corollary 15.53 (Bone Yard?). Suppose that {Xn}∞n=1 is a sequence of

i.i.d. random variables in L3 (P ) , C := E |X1 − EX1|3 < ∞, Sn := X1 +

· · · + Xn, and N
d
= N (0, 1) . Then for every function, f ∈ C3 (R) with

M := supx∈R
∣∣f (3) (x)

∣∣ < ∞ we have [BRUCE: which formula below is cor-
rect?] ∣∣Ef (N)− Ef

(
S̄n
)∣∣ ≤ M

3!
√
n

(
1 +

√
8/π

) C

Var (X1)
3/2

(15.28)

≤ M

3!

(
C

Var (X1)
3/2

+
√

8/π

)
1√
n
. (15.29)

(This is a specialized form of the “Berry–Esseen theorem.”) If µ = EX1 and
σ2 = Var (X1) , then

S̄n =
Sn − nµ√

nσ
=⇒ Sn = nµ+

√
nσS̄n

d∼= nµ+
√
nσN (0, 1) .

That is we should have Sn
d∼= N

(
nµ, nσ2

)
.

Proof. Applying Corollary 15.43 with Xk replaced by X̄k gives,∣∣E [f (S̄Xn )− f (N)
]∣∣ ≤ M

3!
·
[
E
∣∣X̄1

∣∣3 +
√

8/π
]
· 1√

n

where

E
∣∣X̄1

∣∣3 = E

∣∣∣∣∣ X1 − EX1√
Var (X1)

∣∣∣∣∣
3

=
C

Var (X1)
3/2

.

15.5.2 *Why not Poisson limits

In this subsection we wish to better understand the special nature of normal
random variables in the central limit theorem by showing how we can not make
use of Poisson random variables in this context. Recall that a N0-valued random

variable is Poisson with parameter λ > 0 (written X
d
= Poi (λ)) provided

P (X = k) =
λk

k!
e−λ for k ∈ N0.

From Exercise 10.14, if X
d
= Poi (λ) then
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EX = λ = Var (X) and

E
[
zX
]

=

∞∑
k=0

zk
λk

k!
e−λ = eλ(z−1).

Using EXk =
(
z d
dz

)k |z=1e
λ(z−1), we learn(

z
d

dz

)
eλ(z−1) = λzeλ(z−1) =⇒ EX = λ,(

z
d

dz

)2

eλ(z−1) =
(
λ2z2 + λz

)
eλ(z−1) =⇒ EX2 = λ2 + λ(

z
d

dz

)3

eλ(z−1) =
[(
λ2z2 + λz

)
λz + 2λ2z2 + λz

]
eλ(z−1)

=⇒ EX3 = λ3 + 3λ2 + λ.

Proposition 15.54. If Xλ
d
= Poi (λ) , then

E |Xλ − λ|3 = E |Xλ − EXλ|3 = λ+O
(
λ2
)

as λ ↓ 0. (15.30)

Proof. Let us first observe that (by Jensen’s inequality – a forward refer-
ence) that

|E [X − λ]|3 ≤ E |X − λ|3 ≤ E (X + λ)
3
.

Since

E (X ± λ)
3

= E
[
X3 ±

(
3

2

)[
λX2 ± λ2X

]
± λ3

]
= λ+O

(
λ2
)
,

we conclude that Eq. (15.30) holds.

So if X
d
= Poi

(
σ2
)
− σ2 and Y

d
= N

(
0, σ2

)
then EX = 0 = EY and

Var (X) = σ2 = Var (Y ) . On the other hand,

E |Y |3 = cσ3/2 while E |X|3 = O
(
σ2
)
.

Thus we see the third moments of a Poi
(
σ2
)
− σ2 random variable with small

variance are very large compared to the third moments of a N
(
0, σ2

)
random

variable. So large in fact that we can not use the Poisson random variables in
place of normal random variables to arrive at Poisson laws being the limits in
the central limit theorem.

Example 15.55. Recall from Exercise 15.5, if {Xi}ni=1 are i.i.d. with Xi
d
=

Poi (λ/n) , then X = Sn =
∑n
i=1Xi

d
= Poi (λ) . From Exercise 10.14 we know

that

EX = λ = Var (X)

and so we might expect from Corollary 15.53 that X−λ√
λ

= Sn should be close to

the standard normal and in fact by letting n→∞ we might errantly conclude

that X−λ√
λ

d
= N (0, 1) . To see what is going on let us consider the estimate in

Eq. (15.28) which states,∣∣∣∣Ef (N)− Ef
(
X − λ√

λ

)∣∣∣∣ ≤ M

3!
√
n

(
1 +

√
8/π

) E |X1 − EX1|3

Var (X1)
3/2

=
M

3!
√
n

(
1 +

√
8/π

) E |X1 − EX1|3(
λ
n

)3/2
=

M

3!λ3/2

(
1 +

√
8/π

)(
E |X1 − EX1|3

)
n. (15.31)

[Recall that X1
d
= Poi (λ/n) so that E |X1 − EX1|3 is still a function of

λ/n.] Using Proposition (with λ → λ/n) in Eq. (15.31) then shows with

K = M
3!

(
1 +

√
8/π

)
that∣∣∣∣Ef (N)− Ef

(
X − λ√

λ

)∣∣∣∣ ≤ K

λ3/2
n ·
[
λ

n
+O

(
(λ/n)

2
)]
.

Letting n→∞ implies ∣∣∣∣Ef (N)− Ef
(
X − λ√

λ

)∣∣∣∣ ≤ K√
λ
. (15.32)

We certainly can not conclude from this estimate that X is Gaussian which is

good as it is not. On the other hand if Xλ
d
= Poi (λ) , then Eq. (15.32) does

imply
Xλ − λ√

λ
=⇒ N (0, 1) as λ→∞,

where the convergence “ =⇒ ” is weak convergence as described in Lemma
15.46 below.

15.6 Renyi Theorem (an Examples of Independence)

Definition 15.56 (Ranks). For n ∈ N, let Rn∗ denote those (x1, x2, . . . , xn) ∈
Rn for which each entry is distinct, i.e. # {x1, x2, . . . , xn} = n. We further
define, for 1 ≤ k ≤ n, Rk : Rn∗ → {1, 2, . . . , n} by
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Rk (x1, x2, . . . , xn) =

k∑
j=1

1xj≥xk

so that Rk (x1, x2, . . . , xn) is the rank of xk among (x1, x2, . . . , xk) . [We clearly
may view Rk as functions on infinite lists, (x1, x2, . . . ) , of distinct numbers as
well.]

For n ∈ N, let Sn denote the collection of permutations, σ, of {1, 2, . . . , n} ,
i.e. σ ∈ Sn iff σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a bijection.

Definition 15.57 (Rank order). For (x1, x2, . . . , xn) ∈ Rn∗ there is a unique
permutation, σ ∈ Sn, such that xσ(1) < xσ(2) < · · · < xσ(n). We refer to(

xσ(1), xσ(2), . . . , xσ(n)

)
as the rank order of (x1, x2, . . . , xn) .4 The rank order can be described by
the unique permutation, σ ∈ Sn, so that Rk

((
xσ(1), xσ(2), . . . , xσ(n)

))
= 1 for

1 ≤ k ≤ n.

Example 15.58. If (x1, x2, x3, x4, x5, x6, x7, . . . ) = (9,−8, 3, 7, 23, 0,−11, . . . ) ,
then R1 = 1 (which is always true), R2 = 2, R3 = 2, R4 = 2, R5 = 1,
R6 = 5, and R7 = 7. Observe that rank order, from lowest to highest, of
(x1, x2, x3, x4, x5) is (x2, x3, x4, x1, x5) so that

σ =

(
1 2 3 4 5
2 3 4 1 5

)
.

Given the rank ordered list, (−8, 3, 7, 9, 23) , and the ranks R1 = 1, R2 = 2,
R3 = 2, R4 = 2, R5 = 1 we may recover the original ordering working backwards
as follows;

R5 = 1 =⇒ (∗, ∗, ∗, ∗, 23) , leaving (−8, 3, 7, 9)

R4 = 2 =⇒ (∗, ∗, ∗, 7, 23) , leaving (−8, 3, 9)

R3 = 2 =⇒ (∗, ∗, 3, 7, 23) , leaving (−8, 9)

R2 = 2 =⇒ (∗,−8, 3, 7, 23) , leaving (9)

R1 = 1 =⇒ (9,−8, 3, 7, 23) .

In the first line we had R5 = 1 and so we needed to take x5 = 23 (the largest el-
ement from (−8, 3, 7, 9, 23)) leaving (−8, 3, 7, 9) for the remaining entries. Since
R4 = 2 we had to take x4 = 7 (the second largest element from (−8, 3, 7, 9))
leaving (−8, 3, 9) for the remaining entries, etc. etc.

4 See Definition 16.11 below for an extension of these notions where repetitions in
the list are allowed.

We have

σ−1 =

(
1 2 3 4 5
4 1 2 3 5

)
and the ranks of

(
4 1 2 3 5

)
are (R1, R2, . . . , R5) = (1, 2, 2, 2, 1) which are the

same as the ranks of (9,−8, 3, 7, 23) . This is not an accident.

Proposition 15.59. Given (x1, x2, . . . , xn) ∈ Rn∗ , let σ ∈ Sn be chosen so that
yj := xσ(j) is increasing in j and let εk := Rk (x1, x2, . . . , xn) ∈ {1, 2, . . . , k} for
each 1 ≤ k ≤ n. Then we may recover (x1, x2, . . . , xn) (hence σ) from knowing
the unordered list {x1, . . . , xn} and the ranks (ε1, . . . , εn) . Moreover

Rk (x1, x2, . . . , xn) = Rk
(
σ−1 (1) , . . . , σ−1 (n)

)
for 1 ≤ k ≤ n. (15.33)

Proof. The argument in Example 15.58 can be extended to prove the first
assertion of the proposition. So I will only concentrate on proving Eq. (15.33).
To this end, let yj = xσ(j) so that yj is increasing in j and xk = yσ−1(k). We
then have

Rk (x1, x2, . . . , xn) =

k∑
j=1

1xj≥xk =

k∑
j=1

1yσ−1(j)≥yσ−1(k)

=

k∑
j=1

1σ−1(j)≥σ−1(k) = Rk
(
σ−1 (1) , . . . , σ−1 (n)

)
,

wherein the third equality we have used yσ−1(j) ≥ yσ−1(k) iff σ−1 (j) ≥ σ−1 (k) .

Lemma 15.60 (No Ties). Suppose that X and Y are independent random
variables on a probability space (Ω,B, P ) . If F (x) := P (X ≤ x) is continuous,
then P (X = Y ) = 0.

Proof. Let µ (A) := P (X ∈ A) and ν (A) = P (Y ∈ A) . Because F is con-
tinuous, µ ({y}) = F (y)− F (y−) = 0, and hence

P (X = Y ) = E
[
1{X=Y }

]
=

∫
R2

1{x=y}d (µ⊗ ν) (x, y)

=

∫
R
dν (y)

∫
R
dµ (x) 1{x=y} =

∫
R
µ ({y}) dν (y)

=

∫
R

0 dν (y) = 0.
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Lemma 15.61. If {Xk}nk=1 are i.i.d. random variables and f : Rn → R is a
bounded measurable function, then

Ef
(
Xα(1), . . . , Xα(n)

)
= Ef (X1, . . . , Xn) for all α ∈ Sn.

Proof. Let µ = LawXj (P ) , then by Fubini’s theorem,

Ef
(
Xα(1), . . . , Xα(n)

)
=

∫
Rn
f
(
xα(1), . . . , xα(n)

)
dµ (x1) . . . dµ (xn)

=

∫
R
dµ
(
xα(n)

) ∫
R
dµ
(
xα(n−1)

)
· · ·
∫
R
dµ
(
xα(1)

)
f
(
xα(1), . . . , xα(n)

)
=

∫
R
dµ (yn)

∫
R
dµ (yn−1)· · ·

∫
R
dµ (y1) f (y1, . . . , yn)

= Ef (X1, . . . , Xn) .

Theorem 15.62. Let {Xk}∞k=1 be i.i.d. and assume that F (x) := P (Xk ≤ x)
is continuous so by Lemma 15.60 we know that

P (Xi = Xj) = 0 for all i 6= j.

Fixing an n ∈ N, let σ ∈ Sn be the random permutation (defined almost surely)
such that

Xσ(1) < Xσ(2) < · · · < Xσ(n)
.

Then Lawσ (P ) is the uniform distribution on Sn, i.e.

P ({σ = α}) =
1

n!
for all α ∈ Sn. (15.34)

We also have Lawσ−1 (P ) is the uniform distribution on Sn

Proof. Let α ∈ Sn, then

{σ = α} =
{
Xα(1) < Xα(2) < · · · < Xα(n)

}
and so

P ({σ = α}) = E
[
1Xα(1)<Xα(2)<···<Xα(n)

]
= E [1X1<X2<···<Xn ] =: cn (15.35)

Since
1 =

∑
α∈Sn

P ({σ = α}) = cn ·# (Sn) = cn · n!,

we have cn = 1/n! and hence Eq. (15.34) follows from Eq. (15.35).

Lemma 15.63. Let S be a finite set and µ be the uniform probability on S, i.e.
µ ({ω}) = 1/ |S| for all ω ∈ S. Further suppose that for each 1 ≤ j ≤ n, there
is a function, Rj : S → Ej , where Ej is a finite set. If

S 3 ω → R (ω) := (R1 (ω) , . . . , Rn (ω)) ∈ E1 × · · · × En (15.36)

is a bijection, then {Rj}nj=1 are µ-independent and Lawµ (Rj) = µj where µj
is the uniform measure on Ej for each 1 ≤ j ≤ n.

Proof. Given ε = (ε1, . . . , εn) ∈ E1 × · · · × En we know that {R = ε} is a
one point subset of S and hence

P (R = ε) =
1

|S|
=

n∏
j=1

1

|Ej |
=

n∏
j=1

µj ({εj})

= µ1 ⊗ · · · ⊗ µn ({ε1} × · · · × {εn})
= µ1 ⊗ · · · ⊗ µn ({(ε1, . . . , εn)}) .

This shows Lawµ (R) = µ1⊗ · · · ⊗µn and the result now follows by the general
equivalence of independence with product measures.

Corollary 15.64. If Rj : Sn → Ej := {1, . . . , j} are the rank functions for
1 ≤ j ≤ n and Sn is equipped with the uniform distribution, then {Rj}nj=1 are

µ-independent µ (Rj = k) = 1
j for 1 ≤ j, k ≤ n.

Theorem 15.65 (Renyi Theorem). Let {Xj}∞j=1 be i.i.d. and assume that

F (x) := P (Xj ≤ x) is continuous and Rj := Rj (X1, . . . , Xj) be the rank of
Xj among (X1, . . . , Xj) . Then {Rj}∞j=1 is an independent sequence with

P (Rj = k) =
1

j
for k = 1, 2, . . . , j.

In particular, if we let

Aj = {Xj is a record} = {Rj = 1} = {Xj = max (X1, . . . , Xj)} ,

then

P (Aj) = P (Rj = 1) =
1

j
.

Proof. Fixing n ∈ N and let σ be the random permutation such that such
that Xσ1 < Xσ2 < · · · < Xσn. Then we have seen that σ and hence σ−1 are
uniformly distributed on Sn and that

Rj = Rj
(
σ−1 (1) , . . . , σ−1 (n)

)
.

The result is now a direct consequence of Corollary 15.64.
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15.7 The Second Borel-Cantelli Lemma

Lemma 15.66. The following two estimates hold;

1− x ≤ e−x for all x ∈ R, and

− ln (1− x) ≤ 2x for 0 ≤ x ≤ 1

2
.

[The second inequality may be written as ln (1− x) ≥ −2x or equivalently,
1− x ≥ e−2x for x ≤ 1/2.]

Proof. The first bound follows by the convexity of e−x, see Figure 15.2. For

Fig. 15.2. A graph of 1− x and e−x showing that 1− x ≤ e−x for all x.

the second bound we use

− ln (1− x) =

∫ x

0

1

1− y
dy ≤

∫ x

0

2dy = 2x.

For {an}∞n=1 ⊂ [0, 1] and N ∈ N, let

∞∏
n=N

(1− an) := lim
M→∞

M∏
n=N

(1− an) .

The limit exists since
∏M
n=N (1− an) decreases as M increases.

Proposition 15.67. Let {an}∞n=1 ⊂ [0, 1] then;

∞∑
n=1

an <∞ =⇒ lim
N→∞

∞∏
n=N

(1− an) = 1, and

∞∑
n=1

an =∞ =⇒
∞∏
n=N

(1− an) = 0 for all N ∈ N.

In particular,

lim
N→∞

∞∏
n=N

(1− an) =

{
1 if

∑∞
n=1 an <∞

0 if
∑∞
n=1 an =∞ .

Proof. Case 1 where
∑∞
n=1 an <∞. In this case limn→∞ an = 0 and hence

if N is sufficiently large we know that 0 ≤ an ≤ 1/2 for all n ≥ N and hence

0 ≤
∞∑
n=N

− ln (1− an) ≤
∞∑
n=N

2an → 0 as N →∞.

Therefore,

∞∏
n=N

(1− an) = lim
M→∞

M∏
n=N

(1− an) = lim
M→∞

e−
∑M

n=N
ln(1−an)

= e−
∑∞

n=N
ln(1−an) → e−0 = 1 as N →∞.

[Alternatively,

M∏
n=N

(1− an) ≥
M∏
n=N

e−2an = e−2
∑M

n=N
an

and so

1 ≥
∞∏
n=N

(1− an) ≥ e−2
∑∞

n=N
an

which again gives the same result as

lim
N→∞

e−2
∑∞

n=N
an = e−2 limN→∞

∑∞
n=N

an = e−2·0 = e0 = 1.]

Case 2 where
∑∞
n=1 an =∞. Since 1− an ≤ e−an it follows that

∞∏
n=N

(1− an) = lim
M→∞

M∏
n=N

(1− an)

≤ lim
M→∞

M∏
n=N

e−an = lim
M→∞

e−
∑M

n=N
an = 0.
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Lemma 15.68 (Second Borel-Cantelli Lemma). Suppose that {An}∞n=1 are
independent sets. If

∞∑
n=1

P (An) =∞, (15.37)

then
P ({An i.o.}) = 1. (15.38)

Combining this with the first Borel Cantelli Lemma 10.15 gives the (Borel)
Zero-One law,

P (An i.o.) =

0 if
∑∞
n=1 P (An) <∞

1 if
∑∞
n=1 P (An) =∞

.

Proof. Recall that

{An i.o.} = ∩∞N=1 ∪n≥N An ⇐⇒ {An i.o.}c = ∪∞N=1 ∩n≥N Acn

and hence by Proposition 15.67,

P ({An i.o.}c) = P (∪∞N=1 ∩n≥N Acn) = lim
N→∞

P (∩n≥NAcn)

= lim
N→∞

lim
M→∞

P
(
∩Mn=NA

c
n

)
= lim
N→∞

lim
M→∞

M∏
n=N

(1− P (An))

= lim
N→∞

∞∏
n=N

(1− P (An)) =

{
1 if

∑∞
n=1 P (An) <∞

0 if
∑∞
n=1 P (An) =∞

from which the result follows.

Example 15.69 (Example 10.16 continued). Suppose that {Xn} are now
independent Bernoulli random variables with P (Xn = 1) = pn and
P (Xn = 0) = 1 − pn. Then P (limn→∞Xn = 0) = 1 iff

∑
pn < ∞. In-

deed, P (limn→∞Xn = 0) = 1 iff P (Xn = 0 a.a.) = 1 iff P (Xn = 1 i.o.) = 0 iff∑
pn =

∑
P (Xn = 1) <∞.

Proposition 15.70 (Extremal behaviour of iid random variables). Sup-
pose that {Xn}∞n=1 is a sequence of i.i.d. random variables and cn is an increas-
ing sequence of positive real numbers. If

∞∑
n=1

P (X1 > αcn) =∞ for all 0 < α < 1 and (15.39)

∞∑
n=1

P (X1 > αcn) <∞ for all 1 < α <∞, (15.40)

then

lim sup
n→∞

Xn

cn
= 1 a.s. (15.41)

Proof. By Borel zero-one law, Eqs. (15.39) and (15.40) imply

P (Xn > αcn i.o. n) = 1 for all α < 1

and for all α > 1,

P (Xn > αcn i.o. n) = 0 ⇐⇒ P (Xn ≤ αcn a.a. n) = 1.

Thus if we let

Ωk :=

{
Xn >

(
1− 1

k

)
cn i.o.

}
∩
{
Xn ≤

(
1 +

1

k

)
cn a.a. n

}
,

then P (Ωk) = 1 and on Ωk,

lim sup
n→∞

Xn

cn
≥
(

1− 1

k

)
and lim sup

n→∞

Xn

cn
≤
(

1 +
1

k

)
. (15.42)

So if we let Ω0 := ∩∞k=1Ωk, then P (Ω0) = 1 and and on Ω0,

lim sup
n→∞

Xn

cn
≥
(

1− 1

k

)
and lim sup

n→∞

Xn

cn
≤
(

1 +
1

k

)
∀ k ∈ N.

Letting k →∞ in the previous inequalities shows

lim sup
n→∞

Xn

cn
≥ 1 and lim sup

n→∞

Xn

cn
≤ 1 on Ω0.

Example 15.71. Let {En}∞n=1 be a sequence of i.i.d. random variables with ex-
ponential distributions determined by

P (En > x) = e−(x∨0) or P (En ≤ x) = 1− e−(x∨0).

(Observe that P (En ≤ 0) = 0) so that En > 0 a.s.) Then for cn > 0 and α > 0,
we have

∞∑
n=1

P (En > αcn) =

∞∑
n=1

e−αcn =

∞∑
n=1

(
e−cn

)α
.

Hence if we choose cn = lnn so that e−cn = 1/n, then we have

∞∑
n=1

P (En > α lnn) =

∞∑
n=1

(
1

n

)α
which is convergent iff α > 1. So by Proposition 15.70, it follows that

lim sup
n→∞

En
lnn

= 1 a.s.
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Example 15.72. Let {Xn}∞n=1 be i.i.d. standard normal random variables. Then
by Mills’ ratio (see Lemma 10.65),

P (Xn ≥ αcn) ∼ 1√
2παcn

e−α
2c2n/2.

Now, suppose that we take cn so that

e−c
2
n/2 =

1

n
=⇒ cn =

√
2 ln (n).

It then follows that

P (Xn ≥ αcn) ∼ 1√
2πα

√
2 ln (n)

e−α
2 ln(n) =

1

2α
√
π ln (n)

1

n−α2

and therefore
∞∑
n=1

P (Xn ≥ αcn) =∞ if α < 1

and
∞∑
n=1

P (Xn ≥ αcn) <∞ if α > 1.

Hence an application of Proposition 15.70 shows

lim sup
n→∞

Xn√
2 lnn

= 1 a.s..

Example 15.73. * Suppose now that {Xn}∞n=1 are i.i.d. distributed by the Pois-
son distribution with intensity, λ, i.e.

P (X1 = k) =
λk

k!
e−λ.

In this case we have

P (X1 ≥ n) = e−λ
∞∑
k=n

λk

k!
≥ λn

n!
e−λ

and

∞∑
k=n

λk

k!
e−λ =

λn

n!
e−λ

∞∑
k=n

n!

k!
λk−n

=
λn

n!
e−λ

∞∑
k=0

n!

(k + n)!
λk ≤ λn

n!
e−λ

∞∑
k=0

1

k!
λk =

λn

n!
.

Thus we have shown that

λn

n!
e−λ ≤ P (X1 ≥ n) ≤ λn

n!
.

Thus in terms of convergence issues, we may assume that

P (X1 ≥ x) ∼ λx

x!
∼ λx√

2πxe−xxx

wherein we have used Stirling’s formula,

x! ∼
√

2πxe−xxx.

Now suppose that we wish to choose cn so that

P (X1 ≥ cn) ∼ 1/n.

This suggests that we need to solve the equation, xx = n. Taking logarithms of
this equation implies that

x =
lnn

lnx

and upon iteration we find,

x =
lnn

ln
(

lnn
ln x

) =
lnn

`2 (n)− `2 (x)
=

lnn

`2 (n)− `2
(

lnn
ln x

)
=

lnn

`2 (n)− `3 (n) + `3 (x)
.

where `k =

k - times︷ ︸︸ ︷
ln ◦ ln ◦ · · · ◦ ln. Since, x ≤ ln (n) , it follows that `3 (x) ≤ `3 (n) and

hence

x =
ln (n)

`2 (n) +O (`3 (n))
=

ln (n)

`2 (n)

(
1 +O

(
`3 (n)

`2 (n)

))
.

Thus we are lead to take cn := ln(n)
`2(n) . We then have, for α ∈ (0,∞) that

(αcn)
αcn = exp (αcn [lnα+ ln cn])

= exp

(
α

ln (n)

`2 (n)
[lnα+ `2 (n)− `3 (n)]

)
= exp

(
α

[
lnα− `3 (n)

`2 (n)
+ 1

]
ln (n)

)
= nα(1+εn(α))

where
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εn (α) :=
lnα− `3 (n)

`2 (n)
.

Hence we have

P (X1 ≥ αcn) ∼ λαcn√
2παcne−αcn (αcn)

αcn ∼
(λ/e)

αcn

√
2παcn

1

nα(1+εn(α))
.

Since

ln (λ/e)
αcn = αcn ln (λ/e) = α

lnn

`2 (n)
ln (λ/e) = lnn

α
ln(λ/e)
`2(n) ,

it follows that

(λ/e)
αcn = n

α
ln(λ/e)
`2(n) .

Therefore,

P (X1 ≥ αcn) ∼ n
α

ln(λ/e)
`2(n)√
ln(n)
`2(n)

1

nα(1+εn(α))
=

√
`2 (n)

ln (n)

1

nα(1+δn(α))

where δn (α)→ 0 as n→∞. From this observation, we may show,

∞∑
n=1

P (X1 ≥ αcn) <∞ if α > 1 and

∞∑
n=1

P (X1 ≥ αcn) =∞ if α < 1

and so by Proposition 15.70 we may conclude that

lim sup
n→∞

Xn

ln (n) /`2 (n)
= 1 a.s.

15.8 Kolmogorov and Hewitt-Savage Zero-One Laws

Definition 15.74. Let (Ω,B, P ) be a probability space. A σ – field, F ⊂ B is
almost trivial iff P (F) = {0, 1} , i.e. P (A) ∈ {0, 1} for all A ∈ F .

The following conditions on a sub-σ-algebra, F ⊂ B are equivalent; 1) F
is almost trivial, 2) P (A) = P (A)

2
for all A ∈ F , and 3) F is independent

of itself. For example if F is independent of itself, then P (A) = P (A ∩A) =
P (A)P (A) for all A ∈ F which implies P (A) = 0 or 1. If F is almost trivial
and A,B ∈ F , then P (A ∩B) = 1 = P (A)P (B) if P (A) = P (B) = 1 and
P (A ∩B) = 0 = P (A)P (B) if either P (A) = 0 or P (B) = 0. Therefore F is
independent of itself.

Lemma 15.75. Suppose that X : Ω → R̄ is a random variable which is F
measurable, where F ⊂ B is almost trivial. Then there exists c ∈ R̄ such that
X = c a.s.

Proof. Since {X =∞} and {X = −∞} are in F , if P (X =∞) > 0 or
P (X = −∞) > 0, then P (X =∞) = 1 or P (X = −∞) = 1 respectively.
Hence, it suffices to finish the proof under the added condition that P (X ∈ R) =
1.

For each x ∈ R, {X ≤ x} ∈ F and therefore, P (X ≤ x) is either 0 or 1. Since
the function, F (x) := P (X ≤ x) ∈ {0, 1} is right continuous, non-decreasing
and F (−∞) = 0 and F (+∞) = 1, there is a unique point c ∈ R where F (c) = 1
and F (c−) = 0. At this point, we have P (X = c) = 1.

Alternatively if X : Ω → R is an integrable F measurable random vari-
able, we know that X is independent of itself and therefore X2 is integrable

and EX2 = (EX)
2

=: c2. Thus it follows that E
[
(X − c)2

]
= 0, i.e. X = c

a.s. For general X : Ω → R, let XM := (M ∧X) ∨ (−M) , then XM = EXM

a.s. For sufficiently large M we know by MCT that P (|X| < M) > 0 and since
X = XM = EXM a.s. on {|X| < M} , it follows that c = EXM is constant in-

dependent of M for M large. Therefore, X = limM→∞XM
a.s.
= limM→∞ c = c.

Lemma 15.76. Suppose (Y, ρ) is a separable metric space, f : Ω → Y is F/BY
- measurable, where F ⊂ B is almost trivial. Then there exists c ∈ Y such that
f = c a.s.

Proof. Let D ⊂ Y be a countable dense set. Since Y = ∪y∈DB (y, 1) there
must exists a y1 ∈ D so that P

(
f−1 (B (y1, 1))

)
> 0 and since F is almost

trivial we must in fact have P
(
f−1 (B (y1, 1))

)
= 1. Similarly, since B (y1, 1) =

∪y∈DB (y1, 1) ∩ B (y, 1/2) , the same logic shows there exists y2 ∈ D so that
P
(
f−1 (B (y1, 1)) ∩B (y2, 1/2)

)
= 1. Continuing this way inductively allows

us to find {yn}∞n=1 ⊂ D so that 1 = P
(
f−1 (Qn)

)
for all n where Qn =

∩nj=1 (B (yj , 1/j)) . Since

1 = lim
n→∞

P
(
f−1 (Qn)

)
= P

(
f−1 (∩∞n=1Qn)

)
it follows that ∩∞n=1Qn 6= ∅. Since diam (∩∞n=1Qn) ≤ diamQn ≤ 2/n → 0 as
n → ∞, it follows that ∩∞n=1Qn can contain at most one point and hence in
this case ∩∞n=1Qn = {c} for some point in Y. We then have P

(
f−1 ({c})

)
= 1,

i.e. f = c a.s.
Let {Xn}∞n=1 be a sequence of random variables on a measur-

able space, (Ω,B) . Let Bn := σ (X1, . . . , Xn) ,B∞ := σ (X1, X2, . . . ) ,
Tn := σ (Xn+1, Xn+2, . . . ) , and T := ∩∞n=1Tn ⊂ B∞. We call T the tail σ –
field and events, A ∈ T , are called tail events.
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214 15 Independence

Proposition 15.77 (Kolmogorov’s Zero-One Law). Suppose that P is a
probability measure on (Ω,B) such that {Xn}∞n=1 are independent random vari-
ables. Then T is almost trivial, i.e. P (A) ∈ {0, 1} for all A ∈ T . In particular
the tail events in Example 15.78 have probability either 0 or 1.

Proof. For each n ∈ N, T ⊂ σ (Xn+1, Xn+2, . . . ) which is independent of
Bn := σ (X1, . . . , Xn) . Therefore T is independent of ∪Bn which is a multi-
plicative system. Therefore T and is independent of B∞ = σ (∪Bn) = ∨∞n=1Bn.
As T ⊂ B∞ it follows that T is independent of itself, i.e. T is almost trivial.

Example 15.78. Let {Xn}∞n=1 be independent random variables as above, Sn :=
X1 + · · ·+Xn and {bn}∞n=1 ⊂ (0,∞) such that bn ↑ ∞. Here are some example
of tail events and tail measurable random variables:

1. {
∑∞
n=1Xn converges} ∈ T . Indeed,{ ∞∑

k=1

Xk converges

}
=

{ ∞∑
k=n+1

Xk converges

}
∈ Tn

for all n ∈ N. Hence P ({
∑∞
n=1Xn converges}) = 0 or 1.

2. Both lim sup
n→∞

Xn and lim infn→∞Xn are T – measurable.

3. For any k ∈ N,

lim
n→∞

Sn
bn

= lim
n→∞

(Xk+1 + · · ·+Xn)

bn

from which it follows that
{

limn→∞
Sn
bn

= 0
}
∈ Tk for all k. Similarly one

shows that lim sup
n→∞

Sn
bn

and lim infn→∞
Sn
bn

are tail measurable random vari-

ables and hence lim sup
n→∞

Sn
bn

= c+ and lim infn→∞
Sn
bn

= c− a.s. for some

c± ∈ R̄.

4.
{

limXn exists in R̄
}

=

{
lim sup
n→∞

Xn = lim infn→∞Xn

}
∈ T and similarly,

{
lim

Sn
bn

exists in R̄
}

=

{
lim sup
n→∞

Sn
bn

= lim inf
n→∞

Sn
bn

}
∈ T

and{
lim

Sn
bn

exists in R
}

=

{
−∞ < lim sup

n→∞

Sn
bn

= lim inf
n→∞

Sn
bn

<∞
}
∈ T .

All of these sets have probability 0 or 1.

Example 15.79. Suppose that {An}∞n=1 are independent sets and let Xn := 1An
for all n and T = ∩n≥1σ (Xn, Xn+1, . . . ) . Then {An i.o.} ∈ T and therefore
by the Kolmogorov 0-1 law, P ({An i.o.}) = 0 or 1. Of course, in this case the
Borel zero - one law (Lemma 15.68) tells when P ({An i.o.}) is 0 and when it
is 1 depending on whether

∑∞
n=1 P (An) is finite or infinite respectively.

15.8.1 Hewitt-Savage Zero-One Law

In this subsection, let Ω := R∞ = RN and Xn (ω) = ωn for all ω ∈ Ω and n ∈ N,
and B := σ (X1, X2, . . . ) be the product σ – algebra on Ω. We say a permutation
(i.e. a bijective map on N), π : N→ N is finite if π (n) = n for a.a. n. Define
Tπ : Ω → Ω by Tπ (ω) = (ωπ1, ωπ2, . . . ) . Since Xi ◦ Tπ (ω) = ωπi = Xπi (ω) for
all i, it follows that Tπ is B/B – measurable.

Let us further suppose that µ is a probability measure on (R,BR) and let
P = ⊗∞n=1µ be the infinite product measure on

(
Ω = RN,B

)
. Then {Xn}∞n=1

are i.i.d. random variables with LawP (Xn) = µ for all n. If π : N→ N is a finite
permutation and Ai ∈ BR for all i, then

T−1
π (A1 ×A2 ×A3 × . . . ) = Aπ−11 ×Aπ−12 × . . . .

Since sets of the form, A1×A2×A3× . . . , form a π – system generating B and

P ◦ T−1
π (A1 ×A2 ×A3 × . . . ) =

∞∏
i=1

µ (Aπ−1i)

=

∞∏
i=1

µ (Ai) = P (A1 ×A2 ×A3 × . . . ) ,

we may conclude that P ◦ T−1
π = P.

Definition 15.80. The permutation invariant σ – field, S ⊂ B, is the col-
lection of sets, A ∈ B such that T−1

π (A) = A for all finite permutations π. (You
should check that S is a σ – field!)

Proposition 15.81 (Hewitt-Savage Zero-One Law). Let µ be a probabil-
ity measure on (R,BR) and P = ⊗∞n=1µ be the infinite product measure on(
Ω = RN,B

)
so that {Xn}∞n=1 (recall that Xn (ω) = ωn) is an i.i.d. sequence

with LawP (Xn) = µ for all n. Then S is P – almost trivial.

Proof. Let B ∈ S, f = 1B , and g = G (X1, . . . , Xn) be a σ (X1, X2, . . . , Xn)
– measurable function such that supω∈Ω |g (ω)| ≤ 1. Further let π be a finite
permutation such that {π1, . . . , πn} ∩ {1, 2, . . . , n} = ∅ – for example we could
take π (j) = j + n, π (j + n) = j for j = 1, 2, . . . , n, and π (j + 2n) = j + 2n for
all j ∈ N. Then g ◦ Tπ = G (Xπ1, . . . , Xπn) is independent of g and therefore,
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(Eg)
2

= Eg · E [g ◦ Tπ] = E [g · g ◦ Tπ] .

Since f ◦ Tπ = 1T−1
π (B) = 1B = f, it follows that Ef = Ef2 = E [f · f ◦ Tπ] and

therefore,∣∣∣Ef − (Eg)
2
∣∣∣ = |E [f · f ◦ Tπ − g · g ◦ Tπ]|

≤ E |[f − g] f ◦ Tπ|+ E |g [f ◦ Tπ − g ◦ Tπ]|
≤ E |f − g|+ E |f ◦ Tπ − g ◦ Tπ| = 2E |f − g| . (15.43)

According to Corollary 12.20 (or see Corollary 7.19 or Theorem 7.7 or Exercise
12.6)), we may choose g = gk as above with E |f − gk| → 0 as n → ∞ and so
passing to the limit in Eq. (15.43) with g = gk, we may conclude,∣∣∣P (B)− [P (B)]

2
∣∣∣ =

∣∣∣Ef − (Ef)
2
∣∣∣ ≤ 0.

That is P (B) ∈ {0, 1} for all B ∈ S.
In a nutshell, here is the crux of the above proof. First off we know that

for B ∈ S ⊂ B, there exists g which is σ (X1, . . . , Xn) – measurable such that
f := 1B ∼= g. Since P ◦ T−1

π = P it also follows that f = f ◦ Tπ ∼= g ◦ Tπ. For
judiciously chosen π, we know that g and g ◦ Tπ are independent. Therefore

Ef2 = E [f · f ◦ Tπ] ∼= E [g · g ◦ Tπ] = E [g] · E [g ◦ Tπ] = (Eg)
2 ∼= (Ef)

2
.

As the approximation f by g may be made as accurate as we please, it follows
that P (B) = Ef2 = (Ef)

2
= [P (B)]

2
for all B ∈ S.

Example 15.82 (Some Random Walk 0−1 Law Results). Continue the notation
in Proposition 15.81.

1. As above, if Sn = X1 + · · · + Xn, then P (Sn ∈ B i.o.) ∈ {0, 1} for all
B ∈ BR. Indeed, if π is a finite permutation,

T−1
π ({Sn ∈ B i.o.}) = {Sn ◦ Tπ ∈ B i.o.} = {Sn ∈ B i.o.} .

Hence {Sn ∈ B i.o.} is in the permutation invariant σ – field, S. The same
goes for {Sn ∈ B a.a.}

2. If P (X1 6= 0) > 0, then lim sup
n→∞

Sn =∞ a.s. or lim sup
n→∞

Sn = −∞ a.s. Indeed,

T−1
π

{
lim sup
n→∞

Sn ≤ x
}

=

{
lim sup
n→∞

Sn ◦ Tπ ≤ x
}

=

{
lim sup
n→∞

Sn ≤ x
}

which shows that lim sup
n→∞

Sn is S – measurable. Therefore, lim sup
n→∞

Sn = c a.s.

for some c ∈ R̄. Since (X2, X3, . . . )
d
= (X1, X2, . . . ) it follows (see Corollary

12.31 and Exercise 12.9) that

c = lim sup
n→∞

Sn
d
= lim sup

n→∞
(X2 +X3 + · · ·+Xn+1)

= lim sup
n→∞

(Sn+1 −X1) = lim sup
n→∞

Sn+1 −X1 = c−X1.

By Exercise 15.8 below we may now conclude that c = c − X1 a.s. which
is possible iff c ∈ {±∞} or X1 = 0 a.s. Since the latter is not allowed,
lim sup
n→∞

Sn =∞ or lim sup
n→∞

Sn = −∞ a.s.

3. Now assume that P (X1 6= 0) > 0 and X1
d
= −X1, i.e. P (X1 ∈ A) =

P (−X1 ∈ A) for all A ∈ BR. By 2. we know lim sup
n→∞

Sn = c a.s. with

c ∈ {±∞} . Since {Xn}∞n=1 and {−Xn}∞n=1 are i.i.d. and −Xn
d
= Xn, it

follows that {Xn}∞n=1
d
= {−Xn}∞n=1 .The results of Exercises 12.9 and 15.8

then imply that c
d
= lim sup

n→∞
Sn

d
= lim sup

n→∞
(−Sn) and in particular

c
a.s.
= lim sup

n→∞
(−Sn) = − lim inf

n→∞
Sn ≥ − lim sup

n→∞
Sn = −c.

Since the c = −∞ does not satisfy, c ≥ −c, we must c = ∞. Hence in this
symmetric case we have shown,

lim sup
n→∞

Sn =∞ and lim inf
n→∞

Sn = −∞ a.s.

Alternatively. If lim sup
n→∞

Sn = −∞ a.s., then since Sn
d
= −Sn we would

have
−∞ = lim sup

n→∞
(−Sn) = − lim inf

n→∞
Sn

and this would imply

∞ = lim inf
n→∞

Sn ≤ lim sup
n→∞

Sn = −∞ a.s.

which is not possible.

Exercise 15.8. Suppose that (Ω,B, P ) is a probability space, Y : Ω → R̄ is a

random variable and c ∈ R̄ is a constant. Then Y = c a.s. iff Y
d
= c.

15.9 Another Construction of Independent Random
Variables*

This section may be skipped as the results are a special case of those given above.
The arguments given here avoid the use of Kolmogorov’s existence theorem for
product measures.

Page: 215 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



216 15 Independence

Example 15.83. Suppose that Ω = Λn where Λ is a finite set, B = 2Ω , P ({ω}) =∏n
j=1 qj (ωj) where qj : Λ→ [0, 1] are functions such that

∑
λ∈Λ qj (λ) = 1. Let

Ci :=
{
Λi−1 ×A× Λn−i : A ⊂ Λ

}
. Then {Ci}ni=1 are independent. Indeed, if

Bi := Λi−1 ×Ai × Λn−i, then

∩Bi = A1 ×A2 × · · · ×An

and we have

P (∩Bi) =
∑

ω∈A1×A2×···×An

n∏
i=1

qi (ωi) =

n∏
i=1

∑
λ∈Ai

qi (λ)

while

P (Bi) =
∑

ω∈Λi−1×Ai×Λn−i

n∏
i=1

qi (ωi) =
∑
λ∈Ai

qi (λ) .

Example 15.84. Continue the notation of Example 15.83 and further assume
that Λ ⊂ R and let Xi : Ω → Λ be defined by, Xi (ω) = ωi. Then {Xi}ni=1

are independent random variables. Indeed, σ (Xi) = Ci with Ci as in Example
15.83.

Alternatively, from Exercise ??, we know that

EP

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)]

for all fi : Λ → R. Taking Ai ⊂ Λ and fi := 1Ai in the above identity shows
that

P (X1 ∈ A1, . . . , Xn ∈ An) = EP

[
n∏
i=1

1Ai (Xi)

]
=

n∏
i=1

EP [1Ai (Xi)]

=

n∏
i=1

P (Xi ∈ Ai)

as desired.

Theorem 15.85 (Existence of i.i.d simple R.V.’s). Suppose that {qi}ni=0

is a sequence of positive numbers such that
∑n
i=0 qi = 1. Then there exists a se-

quence {Xk}∞k=1 of simple random variables taking values in Λ = {0, 1, 2 . . . , n}
on ((0, 1],B,m) such that

m ({X1 = i1, . . . , Xk = ii}) = qi1 . . . qik

for all i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n} and all k ∈ N. (See Example 15.19 above
and Theorem 15.89 below for the general case of this theorem.)

Proof. For i = 0, 1, . . . , n, let σ−1 = 0 and σj :=
∑j
i=0 qi and for any

interval, (a, b], let

Ti ((a, b]) := (a+ σi−1 (b− a) , a+ σi (b− a)].

Given i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n}, let

Ji1,i2,...,ik := Tik
(
Tik−1

(. . . Ti1 ((0, 1]))
)

and define {Xk}∞k=1 on (0, 1] by

Xk :=
∑

i1,i2,...,ik∈{0,1,2,...,n}

ik1Ji1,i2,...,ik ,

see Figure 15.3. Repeated applications of Corollary 9.31 shows the functions,
Xk : (0, 1]→ R are measurable.

Fig. 15.3. Here we suppose that p0 = 2/3 and p1 = 1/3 and then we construct Jl
and Jl,k for l, k ∈ {0, 1} .

Observe that

m (Ti ((a, b])) = qi (b− a) = qim ((a, b]) , (15.44)
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and so by induction,

m (Ji1,i2,...,ik) = qikqik−1
. . . qi1 .

The reader should convince herself/himself that

{X1 = i1, . . . Xk = ii} = Ji1,i2,...,ik

and therefore, we have

m ({X1 = i1, . . . , Xk = ii}) = m (Ji1,i2,...,ik) = qikqik−1
. . . qi1

as desired.

Corollary 15.86 (Independent variables on product spaces). Suppose
Λ = {0, 1, 2 . . . , n} , qi > 0 with

∑n
i=0 qi = 1, Ω = Λ∞ = ΛN, and for

i ∈ N, let Yi : Ω → R be defined by Yi (ω) = ωi for all ω ∈ Ω. Further let
B := σ (Y1, Y2, . . . , Yn, . . . ) . Then there exists a unique probability measure,
P : B → [0, 1] such that

P ({Y1 = i1, . . . , Yk = ii}) = qi1 . . . qik .

Proof. Let {Xi}ni=1 be as in Theorem 15.85 and define T : (0, 1]→ Ω by

T (x) = (X1 (x) , X2 (x) , . . . , Xk (x) , . . . ) .

Observe that T is measurable since Yi ◦T = Xi is measurable for all i. We now
define, P := T∗m. Then we have

P ({Y1 = i1, . . . , Yk = ii}) = m
(
T−1 ({Y1 = i1, . . . , Yk = ii})

)
= m ({Y1 ◦ T = i1, . . . , Yk ◦ T = ii})
= m ({X1 = i1, . . . , Xk = ii}) = qi1 . . . qik .

Theorem 15.87. Given a finite subset, Λ ⊂ R and a function q : Λ → [0, 1]
such that

∑
λ∈Λ q (λ) = 1, there exists a probability space, (Ω,B, P ) and an

independent sequence of random variables, {Xn}∞n=1 such that P (Xn = λ) =
q (λ) for all λ ∈ Λ.

Proof. Use Corollary 15.13 to shows that random variables constructed in
Example 6.26 or Theorem 15.85 fit the bill.

Proposition 15.88. Suppose that {Xn}∞n=1 is a sequence of i.i.d. random
variables with distribution, P (Xn = 0) = P (Xn = 1) = 1

2 . If we let U :=∑∞
n=1 2−nXn, then P (U ≤ x) = (0 ∨ x)∧1, i.e. U has the uniform distribution

on [0, 1] .

Proof. Let us recall that P (Xn = 0 a.a.) = 0 = P (Xn = 1 a.a.) . Hence
we may, by shrinking Ω if necessary, assume that {Xn = 0 a.a.} = ∅ =
{Xn = 1 a.a.} . With this simplification, we have{

U <
1

2

}
= {X1 = 0} ,{

U <
1

4

}
= {X1 = 0, X2 = 0} and{

1

2
≤ U <

3

4

}
= {X1 = 1, X2 = 0}

and hence that {
U <

3

4

}
=

{
U <

1

2

}
∪
{

1

2
≤ U <

3

4

}
= {X1 = 0} ∪ {X1 = 1, X2 = 0} .

From these identities, it follows that

P (U < 0) = 0, P

(
U <

1

4

)
=

1

4
, P

(
U <

1

2

)
=

1

2
, and P

(
U <

3

4

)
=

3

4
.

More generally, we claim that if x =
∑n
j=1 εj2

−j with εj ∈ {0, 1} , then

P (U < x) = x. (15.45)

The proof is by induction on n. Indeed, we have already verified (15.45) when
n = 1, 2. Suppose we have verified (15.45) up to some n ∈ N and let x =∑n
j=1 εj2

−j and consider

P
(
U < x+ 2−(n+1)

)
= P (U < x) + P

(
x ≤ U < x+ 2−(n+1)

)
= x+ P

(
x ≤ U < x+ 2−(n+1)

)
.

Since {
x ≤ U < x+ 2−(n+1)

}
=
[
∩nj=1 {Xj = εj}

]
∩ {Xn+1 = 0}

we see that
P
(
x ≤ U < x+ 2−(n+1)

)
= 2−(n+1)

and hence
P
(
U < x+ 2−(n+1)

)
= x+ 2−(n+1)

which completes the induction argument.
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Since x → P (U < x) is left continuous we may now conclude that
P (U < x) = x for all x ∈ (0, 1) and since x → x is continuous we may also
deduce that P (U ≤ x) = x for all x ∈ (0, 1) . Hence we may conclude that

P (U ≤ x) = (0 ∨ x) ∧ 1.

We may now show the existence of independent random variables with ar-
bitrary distributions.

Theorem 15.89. Suppose that {µn}∞n=1 are a sequence of probability measures
on (R,BR) . Then there exists a probability space, (Ω,B, P ) and a sequence
{Yn}∞n=1 independent random variables with Law (Yn) := P ◦ Y −1

n = µn for all
n.

Proof. By Theorem 15.87, there exists a sequence of i.i.d. random variables,
{Zn}∞n=1 , such that P (Zn = 1) = P (Zn = 0) = 1

2 . These random variables may
be put into a two dimensional array, {Xi,j : i, j ∈ N} , see the proof of Lemma

4.9. For each i, let Ui :=
∑∞
j=1 2−iXi,j – σ

(
{Xi,j}∞j=1

)
– measurable random

variable. According to Proposition 15.88, Ui is uniformly distributed on [0, 1] .

Moreover by the grouping Lemma 15.20,
{
σ
(
{Xi,j}∞j=1

)}∞
i=1

are independent

σ – algebras and hence {Ui}∞i=1 is a sequence of i.i.d.. random variables with
the uniform distribution.

Finally, let Fi (x) := µ ((−∞, x]) for all x ∈ R and let Gi (y) =
inf {x : Fi (x) ≥ y} . Then according to Theorem 9.45, Yi := Gi (Ui) has µi as

its distribution. Moreover each Yi is σ
(
{Xi,j}∞j=1

)
– measurable and therefore

the {Yi}∞i=1 are independent random variables.



16

The Standard Poisson Process

16.1 Poisson Random Variables

Recall from Exercise 10.14 that a Random variable, X, is Poisson distributed
with intensity, a, if

P (X = k) =
ak

k!
e−a for all k ∈ N0.

We will abbreviate this in the future by writing X
d
= Poi (a) . Let us also recall

that

E
[
zX
]

=

∞∑
k=0

zk
ak

k!
e−a = eaze−a = ea(z−1)

and as in Exercise 10.14 we have EX = a = Var (X) .

Lemma 16.1. If X = Poi (a) and Y = Poi (b) and X and Y are independent,
then X + Y = Poi (a+ b) .

Proof. For k ∈ N0,

P (X + Y = k) =

k∑
l=0

P (X = l, Y = k − l) =

k∑
l=0

P (X = l)P (Y = k − l)

=

k∑
l=0

e−a
al

l!
e−b

bk−l

(k − l)!
=
e−(a+b)

k!

k∑
l=0

(
k

l

)
albk−l

=
e−(a+b)

k!
(a+ b)

k
.

Alternative Proof. Notice that

E
[
zX+Y

]
= E

[
zX
]
E
[
zY
]

= ea(z−1)eb(z−1) = exp ((a+ b) (z − 1)) .

This suffices to complete the proof.

Lemma 16.2. Suppose that {Ni}∞i=1 are independent Poisson random variables
with parameters, {λi}∞i=1 such that λ :=

∑∞
i=1 λi < ∞. Then N :=

∑∞
i=1Ni is

Poisson with parameter λ.

Proof. By Lemma 16.1, for each n ∈ N,
∑n
i=1Ni

d
= Pois (

∑n
i=1 λi) . Since

for each k ∈ N0, {
∑n
i=1Ni = k} ↓ {N = k} as n ↑ ∞ we have

P (N = k) = lim
n→∞

P

(
n∑
i=1

Ni = k

)
= lim
n→∞

(
∑n
i=1 λi)

k

k!
exp

(
−

n∑
i=1

λi

)

=
λk

k!
e−λ

which shows N
d
= Pois (λ) .

Lemma 16.3. Suppose that {Ni}∞i=1 are independent Poisson random variables
with parameters, {λi}∞i=1 such that

∑∞
i=1 λi =∞. Then

∑∞
i=1Ni =∞ a.s.

Proof. From Figure 16.1 we see that 1 − e−λ ≥ 1
2 (1 ∧ λ) for all λ ≥ 0.

Therefore,

Fig. 16.1. This plot shows, 1− e−λ ≥ 1
2

(1 ∧ λ) .

∞∑
i=1

P (Ni ≥ 1) =

∞∑
i=1

(1− P (Ni = 0)) =

∞∑
i=1

(
1− e−λi

)
≥ 1

2

∞∑
i=1

λi ∧ 1 =∞
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and so by the second Borel Cantelli Lemma, P ({Ni ≥ 1 i.o.}) = 1. From this
it certainly follows that

∑∞
i=1Ni =∞ a.s.

Alternatively, let Λn = λ1 + · · ·+ λn, then

P

( ∞∑
i=1

Ni ≥ k

)
≥ P

(
n∑
i=1

Ni ≥ k

)
= 1− e−Λn

k−1∑
l=0

Λln
l!
→ 1 as n→∞.

Therefore P (
∑∞
i=1Ni ≥ k) = 1 for all k ∈ N and hence,

P

( ∞∑
i=1

Ni ≥ ∞

)
= P

(
∩∞k=1

{ ∞∑
i=1

Ni ≥ k

})
= 1.

16.2 Exponential Random Variables

Recall from Definition 10.61 that T
d
= E (λ) is an exponential random variable

with parameter λ ∈ [0,∞) provided, P (T > t) = e−λt for all t ≥ 0. We have
seen that

E
[
eaT
]

=
1

1− aλ−1
for a < λ. (16.1)

ET = λ−1 and Var (T ) = λ−2, and (see Theorem 10.62) that T being exponen-
tial is characterized by the following memoryless property;

P (T > s+ t|T > s) = P (T > t) for all s, t ≥ 0.

Theorem 16.4. Let {Tj}∞j=1 be independent random variables such that Tj
d
=

E (λj) with 0 < λj <∞ for all j. Then:

1. If
∑∞
n=1 λ

−1
n < ∞ then P (

∑∞
n=1 Tn =∞) = 0 (i.e. P (

∑∞
n=1 Tn <∞) =

1).
2. If

∑∞
n=1 λ

−1
n =∞ then P (

∑∞
n=1 Tn =∞) = 1.

(By Kolmogorov’s zero-one law (see Proposition 15.77) it follows that
P (
∑∞
n=1 Tn =∞) is always either 0 or 1. We are showing here that

P (
∑∞
n=1 Tn =∞) = 1 iff E [

∑∞
n=1 Tn] =∞.)

Proof. 1. Since

E

[ ∞∑
n=1

Tn

]
=

∞∑
n=1

E [Tn] =

∞∑
n=1

λ−1
n <∞

it follows that
∑∞
n=1 Tn <∞ a.s., i.e. P (

∑∞
n=1 Tn =∞) = 0.

2. By the DCT, independence, and Eq. (16.1) with a = −1,

E
[
e−
∑∞

n=1
Tn
]

= lim
N→∞

E
[
e−
∑N

n=1
Tn

]
= lim
N→∞

N∏
n=1

E
[
e−Tn

]
= lim
N→∞

N∏
n=1

(
1

1 + λ−1
n

)
=

∞∏
n=1

(1− an)

where

an = 1− 1

1 + λ−1
n

=
1

1 + λn
.

Hence by Exercise ??, E
[
e−
∑∞

n=1
Tn
]

= 0 iff ∞ =
∑∞
n=1 an which hap-

pens iff
∑∞
n=1 λ

−1
n = ∞ as you should verify. This completes the proof since

E
[
e−
∑∞

n=1
Tn
]

= 0 iff e−
∑∞

n=1
Tn = 0 a.s. or equivalently

∑∞
n=1 Tn =∞ a.s.

16.2.1 Appendix: More properties of Exponential random
Variables*

Theorem 16.5. Let I be a countable set and let {Tk}k∈I be independent ran-
dom variables such that Tk ∼ E (qk) with q :=

∑
k∈I qk ∈ (0,∞) . Let

T := infk Tk and let K = k on the set where Tj > Tk for all j 6= k. On the
complement of all these sets, define K = ∗ where ∗ is some point not in I. Then
P (K = ∗) = 0, K and T are independent, T ∼ E (q) , and P (K = k) = qk/q.

Proof. Let k ∈ I and t ∈ R+ and Λn ⊂f I such that Λn ↑ I \ {k} , then

P (K = k, T > t) = P (∩j 6=k {Tj > Tk} , Tk > t) = lim
n→∞

P (∩j∈Λn {Tj > Tk} , Tk > t)

= lim
n→∞

∫
[0,∞)Λn∪{k}

∏
j∈Λn

1tj>tk · 1tk>tdµn
(
{tj}j∈Λn

)
qke
−qktkdtk

where µn is the joint distribution of {Tj}j∈Λn . So by Fubini’s theorem,
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P (K = k, T > t) = lim
n→∞

∫ ∞
t

qke
−qktkdtk

∫
[0,∞)Λn

∏
j∈Λn

1tj>tk · 1tk>tdµn
(
{tj}j∈Λn

)
= lim
n→∞

∫ ∞
t

P (∩j∈Λn {Tj > tk}) qke−qktkdtk

=

∫ ∞
t

P (∩j 6=k {Tj > τ}) qke−qkτdτ

=

∫ ∞
t

∏
j 6=k

e−qjτqke
−qkτdτ =

∫ ∞
t

∏
j∈I

e−qjτqkdτ

=

∫ ∞
t

e
−
∑∞

j=1
qjτqkdτ =

∫ ∞
t

e−qτqkdτ =
qk
q
e−qt. (16.2)

Taking t = 0 shows that P (K = k) = qk
q and summing this on k shows

P (K ∈ I) = 1 so that P (K = ∗) = 0. Moreover summing Eq. (16.2) on k
now shows that P (T > t) = e−qt so that T is exponential. Moreover we have
shown that

P (K = k, T > t) = P (K = k)P (T > t)

proving the desired independence.

Theorem 16.6. Suppose that S ∼ E (λ) and R ∼ E (µ) are independent. Then
for t ≥ 0 we have

µP (S ≤ t < S +R) = λP (R ≤ t < R+ S) .

Proof. We have

µP (S ≤ t < S +R) = µ

∫ t

0

λe−λsP (t < s+R) ds

= µλ

∫ t

0

e−λse−µ(t−s)ds

= µλe−µt
∫ t

0

e−(λ−µ)sds = µλe−µt · 1− e−(λ−µ)t

λ− µ

= µλ · e
−µt − e−λt

λ− µ

which is symmetric in the interchanged of µ and λ.Alternatively:

P (S ≤ t < S +R) = λµ

∫
R2

+

1s≤t<s+re
−λse−µrdsdr

= λµ

∫ t

0

ds

∫ ∞
t−s

dre−λse−µr

= λ

∫ t

0

dse−λse−µ(t−s)

= λe−µt
∫ t

0

dse−(λ−µ)s

= λe−µt
1− e−(λ−µ)t

λ− µ

= λ
e−µt − e−λt

λ− µ
.

Therefore,

µP (S ≤ t < S +R) = µλ
e−µt − e−λt

λ− µ
which is symmetric in the interchanged of µ and λ and hence

λP (R ≤ t < S +R) = µλ
e−µt − e−λt

λ− µ
.

Example 16.7. Suppose T is a positive random variable such that
P (T ≥ t+ s|T ≥ s) = P (T ≥ t) for all s, t ≥ 0, or equivalently

P (T ≥ t+ s) = P (T ≥ t)P (T ≥ s) for all s, t ≥ 0,

then P (T ≥ t) = e−at for some a > 0. (Such exponential random variables
are often used to model “waiting times.”) The distribution function for T is
FT (t) := P (T ≤ t) = 1 − e−a(t∨0). Since FT (t) is piecewise differentiable, the
law of T, µ := P ◦ T−1, has a density,

dµ (t) = F ′T (t) dt = ae−at1t≥0dt.

Therefore,

E
[
eiaT

]
=

∫ ∞
0

ae−ateiλtdt =
a

a− iλ
= µ̂ (λ) .

Since
µ̂′ (λ) = i

a

(a− iλ)
2 and µ̂′′ (λ) = −2

a

(a− iλ)
3

it follows that

ET =
µ̂′ (0)

i
= a−1 and ET 2 =

µ̂′′ (0)

i2
=

2

a2

and hence Var (T ) = 2
a2 −

(
1
a

)2
= a−2.
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16.3 The Standard Poisson Process

Let {Tk}∞k=1 be an i.i.d. sequence of random exponential times with parameter
λ, i.e. P (Tk ∈ [t, t+ dt]) = λe−λtdt. For each n ∈ N let Wn := T1 + · · ·+ Tn be
the “waiting time” for the nth event to occur. Because of Theorem 16.4 we
know that limn→∞Wn =∞ a.s.

Definition 16.8 (Poisson Process I). For any subset A ⊂ R+ let N (A) :=∑∞
n=1 1A (Wn) count the number of waiting times which occurred in A. When

A = (0, t] we will write, Nt := N ((0, t]) for all t ≥ 0 and refer to {Nt}t≥0 as
the Poisson Process with intensity λ. (Observe that {Nt = n} = Wn ≤ t <
Wn+1.)

The next few results summarize a number of the basic properties of this
Poisson process. Many of the proofs will be left as exercises to the reader. We
will use the following notation below; for each n ∈ N and T ≥ 0 let

∆n (T ) := {(w1, . . . , wn) ∈ Rn : 0 < w1 < w2 < · · · < wn < T}

and let

∆n := ∪T>0∆n (T ) = {(w1, . . . , wn) ∈ Rn : 0 < w1 < w2 < · · · < wn <∞} .

(We equip each of these spaces with their Borel σ – algebras.)

Exercise 16.1. Show mn (∆n (T )) = Tn/n! where mn is Lebesgue measure on
BRn .

Exercise 16.2. If n ∈ N and g : ∆n → R bounded (non-negative) measurable,
then

E [g (W1, . . . ,Wn)] =

∫
∆n

g (w1, w2, . . . , wn)λne−λwndw1 . . . dwn. (16.3)

As a simple corollary we have the following direct proof of Theorem 15.31
or Example 15.33.

Corollary 16.9. If n ∈ N, then Wn
d
=Gamma

(
n, λ−1

)
.

Proof. Taking g (w1, w2, . . . , wn) = f (wn) in Eq. (16.3) we find with the
aid of Exercise 16.1 that

E [f (Wn)] =

∫
∆n

f (wn)λne−λwndw1 . . . dwn

=

∫ ∞
0

f (w)λn
wn−1

(n− 1)!
e−λwdw

which shows that Wn
d
=Gamma

(
n, λ−1

)
.

Corollary 16.10. If t ∈ R+ and f : ∆n (t)→ R is a bounded (or non-negative)
measurable function, then

E [f (W1, . . . ,Wn) : Nt = n]

= λne−λt
∫
∆n(t)

f (w1, w2, . . . , wn) dw1 . . . dwn. (16.4)

Proof. Making use of the observation that {Nt = n} = {Wn ≤ t < Wn+1} ,
we may apply Eq. (16.3) at level n+ 1 with

g (w1, w2, . . . , wn+1) = f (w1, w2, . . . , wn) 1wn≤t<wn+1

to learn

E [f (W1, . . . ,Wn) : Nt = n]

=

∫
0<w1<···<wn<t<wn+1

f (w1, w2, . . . , wn)λn+1e−λwn+1dw1 . . . dwndwn+1

=

∫
∆n(t)

f (w1, w2, . . . , wn)λne−λtdw1 . . . dwn.

Exercise 16.3. Show Nt
d
= Poi (λt) for all t > 0.

Definition 16.11 (Order Statistics). Suppose that X1, . . . , Xn are non-
negative random variables such that P (Xi = Xj) = 0 for all i 6= j. The order

statistics of X1, . . . , Xn are the random variables, X̃1, X̃2, . . . , X̃n defined by

X̃k = min
#(Λ)=k

max {Xi : i ∈ Λ} (16.5)

where Λ always denotes a subset of {1, 2, . . . , n} in Eq. (16.5).

The reader should verify that X̃1 ≤ X̃2 ≤ · · · ≤ X̃n, {X1, . . . , Xn} ={
X̃1, X̃2, . . . , X̃n

}
with repetitions, and that X̃1 < X̃2 < · · · < X̃n if

Xi 6= Xj for all i 6= j. In particular if P (Xi = Xj) = 0 for all i 6= j then

P (∪i6=j {Xi = Xj}) = 0 and X̃1 < X̃2 < · · · < X̃n a.s.

Exercise 16.4. Suppose that X1, . . . , Xn are non-negative1 random variables
such that P (Xi = Xj) = 0 for all i 6= j. Show;

1 The non-negativity of the Xi are not really necessary here but this is all we need
to consider.
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1. If f : ∆n → R is bounded (non-negative) measurable, then

E
[
f
(
X̃1, . . . , X̃n

)]
=
∑
σ∈Sn

E [f (Xσ1, . . . , Xσn) : Xσ1 < Xσ2 < · · · < Xσn] ,

(16.6)
where Sn is the permutation group on {1, 2, . . . , n} .

2. If we further assume that {X1, . . . , Xn} are i.i.d. random variables, then

E
[
f
(
X̃1, . . . , X̃n

)]
= n! · E [f (X1, . . . , Xn) : X1 < X2 < · · · < Xn] .

(16.7)

(It is not important that f
(
X̃1, . . . , X̃n

)
is not defined on the null set,

∪i6=j {Xi = Xj} .)
3. f : Rn+ → R is a bounded (non-negative) measurable symmetric function

(i.e. f (wσ1, . . . , wσn) = f (w1, . . . , wn) for all σ ∈ Sn and (w1, . . . , wn) ∈
Rn+) then

E
[
f
(
X̃1, . . . , X̃n

)]
= E [f (X1, . . . , Xn)] .

4. Suppose that Y1, . . . , Yn is another collection of non-negative random vari-
ables such that P (Yi = Yj) = 0 for all i 6= j such that

E [f (X1, . . . , Xn)] = E [f (Y1, . . . , Yn)]

for all bounded (non-negative) measurable symmetric functions from Rn+ →
R. Show that

(
X̃1, . . . , X̃n

)
d
=
(
Ỹ1, . . . , Ỹn

)
.

Hint: if g : ∆n → R is a bounded measurable function, define f : Rn+ → R
by;

f (y1, . . . , yn) =
∑
σ∈Sn

1yσ1<yσ2<···<yσng (yσ1, yσ2, . . . , yσn)

and then show f is symmetric.

Exercise 16.5. Let t ∈ R+ and {Ui}ni=1 be i.i.d. uniformly distributed random

variables on [0, t] . Show that the order statistics,
(
Ũ1, . . . , Ũn

)
, of (U1, . . . , Un)

has the same distribution as (W1, . . . ,Wn) given Nt = n. (Thus, given Nt =
n, the collection of points, {W1, . . . ,Wn} , has the same distribution as the
collection of points, {U1, . . . , Un} , in [0, t] .)

Theorem 16.12 (Joint Distributions). If {Ai}ki=1 ⊂ B[0,t] is a partition

of [0, t] , then {N (Ai)}ki=1 are independent random variables and N (A)
d
=

Poi (λm (A)) for all A ∈ B[0,t] with m (A) < ∞. In particular, if 0 < t1 <

t2 < · · · < tn, then
{
Nti −Nti−1

}n
i=1

are independent random variables and

Nt − Ns
d
= Poi (λ (t− s)) for all 0 ≤ s < t < ∞. (We say that {Nt}t≥0 is a

stochastic process with independent increments.)

Proof. If z ∈ C and A ∈ B[0,t], then

zN(A) = z
∑n

i=1
1A(Wi) on {Nt = n} .

Let n ∈ N, zi ∈ C, and define

f (w1, . . . , wn) = z

∑n

i=1
1A1

(wi)

1 . . . z

∑n

i=1
1Ak (wi)

k

which is a symmetric function. On Nt = n we have,

z
N(A1)
1 . . . z

N(Ak)
k = f (W1, . . . ,Wn)

and therefore,

E
[
z
N(A1)
1 . . . z

N(Ak)
k |Nt = n

]
= E [f (W1, . . . ,Wn) |Nt = n]

= E [f (U1, . . . , Un)]

= E
[
z

∑n

i=1
1A1

(Ui)

1 . . . z

∑n

i=1
1Ak (Ui)

k

]
=

n∏
i=1

E
[(
z

1A1
(Ui)

1 . . . z
1Ak (Ui)

k

)]
=
(
E
[(
z

1A1
(U1)

1 . . . z
1Ak (U1)

k

)])n
=

(
1

t

k∑
i=1

m (Ai) · zi

)n
,

wherein we have made use of the fact that {Ai}ni=1 is a partition of [0, t] so that

z
1A1

(U1)
1 . . . z

1Ak (U1)

k =

k∑
i=1

zi1Ai (Ui) .

Thus it follows that
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E
[
z
N(A1)
1 . . . z

N(Ak)
k

]
=

∞∑
n=0

E
[
z
N(A1)
1 . . . z

N(Ak)
k |Nt = n

]
P (Nt = n)

=

∞∑
n=0

(
1

t

k∑
i=1

m (Ai) · zi

)n
(λt)

n

n!
e−λt

=

∞∑
n=0

1

n!

(
λ

k∑
i=1

m (Ai) · zi

)n
e−λt

= exp

(
λ

[
k∑
i=1

m (Ai) zi − t

])

= exp

(
λ

[
k∑
i=1

m (Ai) (zi − 1)

])
.

From this result it follows that {N (Ai)}ni=1 are independent random variables
and N (A) = Poi (λm (A)) for all A ∈ BR with m (A) <∞.

Alternatively; suppose that ai ∈ N0 and n := a1 + · · ·+ ak, then

P [N (A1) = a1, . . . , N (Ak) = ak|Nt = n] = P

[
n∑
i=1

1Al (Ui) = al for 1 ≤ l ≤ k

]

=
n!

a1! . . . ak!

k∏
l=1

[
m (Al)

t

]al
=
n!

tn
·
k∏
l=1

[m (Al)]
al

al!

and therefore,

P [N (A1) = a1, . . . , N (Ak) = ak]

= P [N (A1) = a1, . . . , N (Ak) = ak|Nt = n] · P (Nt = n)

=
n!

tn
·
k∏
l=1

[m (Al)]
al

al!
· e−λt (λt)

n

n!

=

k∏
l=1

[m (Al)]
al

al!
· e−λtλn

=

k∏
l=1

[m (Al)λ]
al

al!
e−λal

which shows that {N (Al)}kl=1 are independent and that N (Al)
d
= Poi (λm (Al))

for each l.

Remark 16.13. If A ∈ B[0,∞) with m (A) = ∞, then N (A) = ∞ a.s. To prove
this observe that N (A) =↑ limn→∞N (A ∩ [0, n]) . Therefore for any k ∈ N, we
have

P (N (A) ≥ k) ≥ P (N (A ∩ [0, n]) ≥ k)

= 1− e−λm(A∩[0,n])
∑

0≤l<k

(λm (A ∩ [0, n]))
l

l!
→ 1 as n→∞.

This shows that N (A) ≥ k a.s. for all k ∈ N, i.e. N (A) =∞ a.s.

Exercise 16.6 (A Generalized Poisson Process I). Suppose that (S,BS , µ)
is a finite measure space with µ (S) <∞. Define Ω =

∑∞
n=0 S

n where S0 = {∗} ,
were ∗ is some arbitrary point. Define BΩ to be those sets, B =

∑∞
n=0Bn where

Bn ∈ BSn := B⊗nS – the product σ – algebra on Sn. Now define a probability
measure, P, on (Ω,BΩ) by

P (B) := e−µ(S)
∞∑
n=0

1

n!
µ⊗n (Bn)

where µ⊗0 ({∗}) = 1 by definition. (We denote P schematically by P :=
e−µ(S)eµ⊗.) Finally for ever ω ∈ Ω, let Nω, be the point measure on (S,BS)
defined by; N∗ = 0 and

Nω =

n∑
i=1

δsi if ω = (s1, . . . , sn) ∈ Sn for n ≥ 1.

So for A ∈ BS , we have N∗ (A) = 0 and Nω (A) =
∑n
i=1 1A (si) . Show;

1. For each A ∈ BS , ω → Nω (A) is a Poisson random variable with intensity
µ (A) , i.e. N (A) = Poi (µ (A)) .

2. If {Ak}mk=1 ⊂ BS are disjoint sets, the {ω → Nω (Ak)}mk=1 are independent
random variables.

An integer valued random measure on (S,BS) (Ω 3 ω → Nω) satisfying
properties 1. and 2. of Exercise 16.6 is called a Poisson process on (S,BS)
with intensity measure µ. For more motivation as to why Poisson processes
are important see Proposition 26.11 and/or Remark 26.12 below.

Exercise 16.7 (A Generalized Poisson Process II). Let (S,BS , µ) be as in
Exercise 16.6, {Yi}∞i=1 be i.i.d. S – valued Random variables with LawP (Yi) =
µ (·) /µ (S) and ν be a Poi (µ (S)) – random variable which is independent of
{Yi} . Show N :=

∑ν
i=1 δYi is a Poisson process on (S,BS) with intensity mea-

sure, µ. Hints:
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16.4 Poission Process Extras* 225

1. Assume that {Ak}mk=1 ⊂ BS is a measurable partition of S and show
{N (Ak)}mk=1 are i.i.d. with N (Ak) = Poi (µ (Ak)) for each k.

2. Model your proof of item 1. on either of the proofs of Theorem 16.12.

Exercise 16.8 (A Generalized Poisson Process III). Suppose now that
(S,BS , µ) is a σ – finite measure space and S =

∑∞
l=1 Sl is a partition of S such

that 0 < µ (Sl) < ∞ for all l. For each l ∈ N, using either of the construction
above we may construct a Poisson point process, Nl, on (S,BS) with intensity
measure, µl where µl (A) := µ (A ∩ Sl) for all A ∈ BS . We do this in such a
what that {Nl}∞l=1 are all independent. Show that N :=

∑∞
l=1Nl is a Poisson

point process on (S,BS) with intensity measure, µ. To be more precise observe
that N is a random measure on (S,BS) which satisfies (as you should show);

1. For each A ∈ BS with µ (A) < ∞, show N (A)
d
= Poi (µ (A)) . Also show

N (A) =∞ a.s. if µ (A) =∞.
2. If {Ak}mk=1 ⊂ BS are disjoint sets with µ (Ak) <∞, show {N (Ak)}mk=1 are

independent random variables.

16.4 Poission Process Extras*

(This subsection still needs work!) In Definition 16.8 we really gave a construc-
tion of a Poisson process as defined in Definition 16.14. The goal of this section
is to show that the Poisson process, {Nt}t≥0 , as defined in Definition 16.14 is
uniquely determined and is essentially equivalent to what we have already done
above.

Definition 16.14 (Poisson Process II). Let (Ω,B, P ) be a probability space
and Nt : Ω → N0 be a random variable for each t ≥ 0. We say that {Nt}t≥0 is a

Poisson process with intensity λ if; 1) N0 = 0, 2) Nt −Ns
d
= Poi (λ (t− s)) for

all 0 ≤ s < t <∞, 3) {Nt}t≥0 has independent increments, and 4) t→ Nt (ω)
is right continuous and non-decreasing for all ω ∈ Ω.

Let N∞ (ω) :=↑ limt↑∞Nt (ω) and observe that N∞ =∑∞
k=0 (Nk −Nk−1) = ∞ a.s. by Lemma 16.3. Therefore, we may and do

assume that N∞ (ω) =∞ for all ω ∈ Ω.

Lemma 16.15. There is zero probability that {Nt}t≥0 makes a jump greater
than or equal to 2.

Proof. Suppose that T ∈ (0,∞) is fixed and ω ∈ Ω is sample point where
t → Nt (ω) makes a jump of 2 or more for t ∈ [0, T ] . Then for all n ∈ N we

must have ω ∈ ∪nk=1

{
N k
nT
−N k−1

n T ≥ 2
}
. Therefore,

P ∗ ({ω : [0, T ] 3 t→ Nt (ω) has jump ≥ 2})

≤
n∑
k=1

P
(
N k
nT
−N k−1

n T ≥ 2
)

=

n∑
k=1

O
(
T 2/n2

)
= O (1/n)→ 0

as n → ∞. I am leaving open the possibility that the set of ω where a jump
size 2 or larger is not measurable.

Theorem 16.16. Suppose that {Nt}t≥0 is a Poisson process with intensity λ
as in Definition 16.14,

Wn := inf {t : Nt = n} for all n ∈ N0

be the first time Nt reaches n. (The {Wn}∞n=0 are well defined off a set of
measure zero and Wn < Wn+1 for all n by the right continuity of {Nt}t≥0 .)

Then the {Tn := Wn −Wn−1}∞n=1 are i.i.d. E (λ) – random variables. Thus the
two descriptions of a Poisson process given in Definitions 16.8 and 16.14 are
equivalent.

Proof. Suppose that Ji = (ai, bi] with bi ≤ ai+1 < ∞ for all i. We will
begin by showing

P (∩ni=1 {Wi ∈ Ji}) = λn
n−1∏
i=1

m (Ji) ·
∫
Jn

e−λwndwn (16.8)

= λn
∫
J1×J2×···×Jn

e−λwndw1 . . . dwn. (16.9)

To show this let Ki := (bi−1, ai] where b0 = 0. Then

∩ni=1 {Wi ∈ Ji} = ∩ni=1 {N (Ki) = 0} ∩ ∩n−1
i=1 {N (Ji) = 0} ∩ {N (Jn) ≥ 2}

and therefore,

P (∩ni=1 {Wi ∈ Ji}) =

n∏
i=1

e−λm(Ki) ·
n−1∏
i=1

e−λm(Ji)λm (Ji) ·
(

1− e−λm(Jn)
)

= λn−1
n−1∏
i=1

m (Ji) ·
[
e−λan − e−λbn

]
= λn−1

n−1∏
i=1

m (Ji) ·
∫
Jn

λe−λwndwn.

We may now apply a π – λ – argument, using σ ({J1 × · · · × Jn}) = B∆n ,
to show
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E [g (W1, . . . ,Wn)] =

∫
∆n

g (w1, . . . , wn)λne−λwndw1 . . . dwn

holds for all bounded B∆n/BR measurable functions, g : ∆n → R. Undoing
the change of variables you made in Exercise 16.2 allows us to conclude that
{Tn}∞n=1 are i.i.d. E (λ) – distributed random variables.



17

Lp – spaces

Let (Ω,B, µ) be a measure space and for 0 < p < ∞ and a measurable
function f : Ω → C let

‖f‖p :=

(∫
Ω

|f |p dµ
)1/p

(17.1)

and when p =∞, let

‖f‖∞ = inf {a ≥ 0 : µ(|f | > a) = 0} (17.2)

For 0 < p ≤ ∞, let

Lp(Ω,B, µ) = {f : Ω → C : f is measurable and ‖f‖p <∞}/ ∼

where f ∼ g iff f = g a.e. Notice that ‖f − g‖p = 0 iff f ∼ g and if f ∼ g then
‖f‖p = ‖g‖p. In general we will (by abuse of notation) use f to denote both
the function f and the equivalence class containing f.

Remark 17.1. Suppose that ‖f‖∞ ≤M, then for all a > M, µ(|f | > a) = 0 and
therefore µ(|f | > M) = limn→∞ µ(|f | > M + 1/n) = 0, i.e. |f(ω)| ≤ M for µ -
a.e. ω. Conversely, if |f | ≤ M a.e. and a > M then µ(|f | > a) = 0 and hence
‖f‖∞ ≤M. This leads to the identity:

‖f‖∞ = inf {a ≥ 0 : |f(ω)| ≤ a for µ – a.e. ω} .

17.1 Modes of Convergence

Let {fn}∞n=1 ∪ {f} be a collection of complex valued measurable functions on
Ω. We have the following notions of convergence and Cauchy sequences.

Definition 17.2. 1. fn → f a.e. if there is a set E ∈ B such that µ(E) = 0
and limn→∞ 1Ecfn = 1Ecf.

2. fn → f in µ – measure if limn→∞ µ(|fn − f | > ε) = 0 for all ε > 0. We

will abbreviate this by saying fn → f in L0 or by fn
µ→ f.

3. fn → f in Lp iff f ∈ Lp and fn ∈ Lp for all n, and limn→∞ ‖fn − f‖p = 0.

Definition 17.3. 1. {fn} is a.e. Cauchy if there is a set E ∈ B such that
µ(E) = 0 and{1Ec fn} is a pointwise Cauchy sequences.

2. {fn} is Cauchy in µ – measure (or L0 – Cauchy) if limm,n→∞ µ(|fn−fm| >
ε) = 0 for all ε > 0.

3. {fn} is Cauchy in Lp if limm,n→∞ ‖fn − fm‖p = 0.

When µ is a probability measure, we describe, fn
µ→ f as fn converging

to f in probability. If a sequence {fn}∞n=1 is Lp – convergent, then it is Lp

– Cauchy. For example, when p ∈ [1,∞] and fn → f in Lp, we have (using
Minkowski’s inequality of Theorem 17.23 below)

‖fn − fm‖p ≤ ‖fn − f‖p + ‖f − fm‖p → 0 as m,n→∞.

The case where p = 0 will be handled in Theorem 17.9 below.

Lemma 17.4 (Lp – convergence implies convergence in measure). Let
p ∈ [1,∞). If {fn} ⊂ Lp is Lp – convergent (Cauchy) then {fn} is also conver-
gent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (10.2),

µ (|f | ≥ ε) = µ (|f |p ≥ εp) ≤ 1

εp

∫
Ω

|f |p dµ =
1

εp
‖f‖pp

and therefore if {fn} is Lp – Cauchy, then

µ (|fn − fm| ≥ ε) ≤
1

εp
‖fn − fm‖pp → 0 as m,n→∞

showing {fn} is L0 – Cauchy. A similar argument holds for the Lp – convergent
case.

Example 17.5. Let us consider a number of examples here to get a feeling for
these different notions of convergence. In each of these examples we will work
in the measure space,

(
R+,B = BR+

,m
)
.

1. Let fn = 1
n1[0,n] as in Figure 17.1. In this case fn 9 0 in L1 but fn → 0

a.e.,fn → 0 in Lp for all p > 1 and fn
m→ 0.
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Fig. 17.1. Graphs of fn = 1
n

1[0,n] for n = 1, 2, 3, 4.

2. Let fn = 1[n−1,n] as in the figure below. Then fn → 0 a.e., yet fn 9 0 in
any Lp –space or in measure.

3. Now suppose that fn = n · 1[0,1/n] as in Figure 17.2. In this case fn → 0

a.e., fn
m→ 0 but fn 9 0 in L1 or in any Lp for p ≥ 1. Observe that

‖fn‖p = n1−1/p for all p ≥ 1.

Fig. 17.2. Graphs of fn = n · 1[0,n] for n = 1, 2, 3, 4.

4. For n ∈ N and 1 ≤ k ≤ n, let gn,k := 1( k−1
n , kn ]. Then define {fn} as

(f1, f2, f3, . . . ) = (g1,1, g2,1, g2,2, g3,1, g3,2, g3,3, g4,1, g4,2, g4,3, g4,4, . . . )

as depicted in the figures below.

For this sequence of functions we have fn → 0 in Lp for all 1 ≤ p <∞ and

fn
m→ 0 but fn 9 0 a.e. and fn 9 0 in L∞. In this case, ‖gn,k‖p =

(
1
n

)1/p
for 1 ≤ p <∞ while ‖gn,k‖∞ = 1 for all n, k.

17.2 Almost Everywhere and Measure Convergence

Theorem 17.6 (Egorov: a.s. =⇒ convergence in probability). Suppose
µ(Ω) = 1 and fn → f a.s. Then for all ε > 0 there exists E = Eε ∈ B such

that µ(E) < ε and fn → f uniformly on Ec. In particular fn
µ−→ f as n→∞.

Proof. Let fn → f a.e. Then for all ε > 0,

0 = µ({|fn − f | > ε i.o. n})

= lim
N→∞

µ

 ⋃
n≥N

{|fn − f | > ε}

 (17.3)

≥ lim sup
N→∞

µ ({|fN − f | > ε})

from which it follows that fn
µ−→ f as n→∞.

We now prove that the convergence is uniform off a small exceptional set.
By Eq. (17.3), there exists an increasing sequence {Nk}∞k=1 , such that µ(Ek) <
ε2−k, where
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Ek :=
⋃

n≥Nk

{
|fn − f | >

1

k

}
.

If we now set E := ∪∞k=1Ek, then µ(E) <
∑
k ε2

−k = ε and for ω /∈ E we have
|fn (ω)− f (ω)| ≤ 1

k for all n ≥ Nk and k ∈ N. That is fn → f uniformly on
Ec.

Lemma 17.7. Suppose an ∈ C and |an+1 − an| ≤ εn and
∞∑
n=1

εn < ∞. Then

lim
n→∞

an = a ∈ C exists and |a− an| ≤ δn :=
∞∑
k=n

εk.

Proof. Let m > n then

|am − an| =
∣∣∣∣m−1∑
k=n

(ak+1 − ak)

∣∣∣∣ ≤ m−1∑
k=n

|ak+1 − ak| ≤
∞∑
k=n

εk := δn . (17.4)

So |am − an| ≤ δmin(m,n) → 0 as ,m, n → ∞, i.e. {an} is Cauchy. Let m → ∞
in (17.4) to find |a− an| ≤ δn.

Remark 17.8 (Basic Trick). A basic “trick” we will use repeatedly below is that
if ε > 0 and a, b ≥ 0 such that a + b ≥ ε, then either a ≥ ε/2 or b ≥ ε/2. A
variant of this idea if that if εn > 0 and ε :=

∑∞
n=1 εn < ∞, then if an ≥ 0

satisfies
∑∞
n=1 an > ε we must have an > εn for at least one n.

Theorem 17.9. Let (Ω,B, µ) be a measure space and {fn}∞n=1 be a sequence
of measurable functions on Ω.

1. If f and g are measurable functions and fn
µ→ f and fn

µ→ g then f = g
a.e.

2. If fn
µ→ f and gn

µ→ g then λfn → λf for all λ ∈ C and fn + gn
µ→ f + g.

3. If fn
µ→ f then {fn}∞n=1 is Cauchy in measure.

4. If {fn}∞n=1 is Cauchy in measure, there exists a measurable function, f, and
a subsequence gj = fnj of {fn} such that limj→∞ gj := f exists a.e.

5. (Completeness of convergence in measure.) If {fn}∞n=1 is Cauchy in

measure and f is as in item 4. then fn
µ→ f.

Proof. We take each item in turn.

1. Suppose that f and g are measurable functions such that fn
µ→ g and

fn
µ→ f as n→∞ and ε > 0 is given. Since

|f − g| ≤ |f − fn|+ |fn − g| ,

if ε > 0 and |f − g| ≥ ε, then either |f − fn| ≥ ε/2 or |fn − g| ≥ ε/2. Thus
it follows

{|f − g| > ε} ⊂ {|f − fn| > ε/2} ∪ {|g − fn| > ε/2} ,

and therefore,

µ(|f − g| > ε) ≤ µ(|f − fn| > ε/2) + µ(|g − fn| > ε/2)→ 0 as n→∞.

Hence

µ(|f − g| > 0) = µ

(
∪∞n=1

{
|f − g| > 1

n

})
≤
∞∑
n=1

µ

(
|f − g| > 1

n

)
= 0,

i.e. f = g a.e.
2. The first claim is easy and the second follows similarly to the proof of the

first item.
3. Suppose fn

µ→ f, ε > 0 and m,n ∈ N, then |fn − fm| ≤ |f − fn|+ |fm − f | .
So by the basic trick in Remark 17.8,

µ (|fn − fm| > ε) ≤ µ (|fn − f | > ε/2)+µ (|fm − f | > ε/2)→ 0 as m,n→∞.

4. Suppose {fn} is L0 (µ) – Cauchy and choose a nj ∈ N so that nj is strictly
increasing to ∞ and gj = fnj satisfies,

µ(
{
|gj+1 − gj | > 2−j

}
) ≤ 2−j .

Since
∑∞
j=1 µ(

{
|gj+1 − gj | > 2−j

}
) < ∞ it follows by the first Borel-

Cantelli lemma it follows that, µ-a.e., |gj+1 − gj | ≤ 2−j for a.a. j and hence,
µ-a.e.,

gN+1 = g1 +

N∑
j=1

(gj+1 − gj)→ f := g1 +

∞∑
j=1

(gj+1 − gj) .

We define f ≡ 0 on the exceptional set coming from the first Borel-Cantelli
lemma.

5. If |f − gN+1| >
∑∞
j=N+1 2−j = 2−N then

∑∞
j=N+1 |gj+1 − gj | >∑∞

j=N+1 2−j . So by the basic trick in Remark 17.8,{
|f − gN+1| > 2−N

}
⊂ ∪∞j=N+1

{
|gj+1 − gj | > 2−j

}
,

and hence

µ
({
|f − gN+1| > 2−N

})
≤

∞∑
j=N+1

µ
({
|gj+1 − gj | > 2−j

})
≤ 2−N .

So if ε > 0 if given, we have
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µ ({|f − fn| > ε}) ≤ µ
({
|f − gN+1| >

ε

2

})
+ µ

(
|gN+1 − fn| >

ε

2

)
and hence

µ ({|f − fn| > ε}) ≤ lim sup
N→∞

µ
(
|gN+1 − fn| >

ε

2

)
→ 0 as n→∞.

Corollary 17.10 (Dominated Convergence Theorem). Let (Ω,B, µ) be a
measure space. Suppose {fn} , {gn} , and g are in L1 and f ∈ L0 are functions
such that

|fn| ≤ gn a.e., fn
µ−→ f, gn

µ−→ g, and

∫
gn →

∫
g as n→∞.

Then f ∈ L1 and limn→∞ ‖f − fn‖1 = 0, i.e. fn → f in L1. In particular
limn→∞

∫
fn =

∫
f.

Proof. First notice that |f | ≤ g a.e. and hence f ∈ L1 since g ∈ L1. To see
that |f | ≤ g, use item 4. of Theorem 17.9 to find subsequences {fnk} and {gnk}
of {fn} and {gn} respectively which are almost everywhere convergent. Then

|f | = lim
k→∞

|fnk | ≤ lim
k→∞

gnk = g a.e.

If (for sake of contradiction) limn→∞ ‖f − fn‖1 6= 0 there exists ε > 0 and a
subsequence {fnk} of {fn} such that∫

|f − fnk | ≥ ε for all k. (17.5)

Using item 4. of Theorem 17.9 again, we may assume (by passing to a further
subsequences if necessary) that fnk → f and gnk → g almost everywhere.
Noting, |f − fnk | ≤ g+ gnk → 2g and

∫
(g + gnk)→

∫
2g, an application of the

dominated convergence Theorem 10.28 implies limk→∞
∫
|f − fnk | = 0 which

contradicts Eq. (17.5).

Exercise 17.1 (Fatou’s Lemma). Let (Ω,B, µ) be a measure space. If fn ≥ 0

and fn
µ→ f, then

∫
Ω
fdµ ≤ lim infn→∞

∫
Ω
fndµ.

Lemma 17.11. Suppose 1 ≤ p < ∞, {fn}∞n=1 ⊂ Lp (µ) , and fn
µ→ f,

then ‖f‖p ≤ lim infn→∞ ‖fn‖p . Moreover if {fn}∞n=1 ∪ {f} ⊂ Lp (µ) , then

‖f − fn‖p → 0 as n→∞ iff limn→∞ ‖fn‖p = ‖f‖p <∞ and fn
µ−→ f.

Proof. Choose a subsequence, gk = fnk , such that lim infn→∞ ‖fn‖p =
limk→∞ ‖gk‖p . By passing to a further subsequence if necessary, we may further
assume that gk → f a.e. Therefore, by Fatou’s lemma,

‖f‖pp =

∫
Ω

|f |p dµ =

∫
Ω

lim
k→∞

|gk|p dµ ≤ lim inf
k→∞

∫
Ω

|gk|p dµ = lim inf
n→∞

‖fn‖pp

which proves the first assertion.
If ‖f − fn‖p → 0 as n → ∞, then by the triangle inequality,∣∣∣‖f‖p − ‖fn‖p∣∣∣ ≤ ‖f − fn‖p which shows

∫
|fn|p →

∫
|f |p if fn → f in

Lp. Chebyschev’s inequality implies fn
µ−→ f if fn → f in Lp.

Conversely if limn→∞ ‖fn‖p = ‖f‖p <∞ and fn
µ−→ f, let Fn := |f − fn|p

and Gn := 2p−1 [|f |p + |fn|p] . Then Fn
µ−→ 01, Fn ≤ Gn ∈ L1, and

∫
Gn →

∫
G

where G := 2p |f |p ∈ L1. Therefore, by Corollary 17.10,
∫
|f − fn|p =

∫
Fn →∫

0 = 0.

Exercise 17.2. Let (Ω,B, µ) be a measure space, p ∈ [1,∞), and suppose that

0 ≤ f ∈ L1 (µ) , 0 ≤ fn ∈ L1 (µ) for all n, fn
µ−→ f, and

∫
fndµ→

∫
fdµ. Then

fn → f in L1 (µ) . [In particular, if f, fn ∈ Lp (µ) and fn → f in Lp (µ) , then
|fn|p → |f |p in L1 (µ) .]

Proposition 17.12. Suppose (Ω,B, µ) is a probability space and {fn}∞n=1 be a
sequence of measurable functions on Ω. Then {fn}∞n=1 converges to f in prob-
ability iff every subsequence, {f ′n}

∞
n=1 of {fn}∞n=1 has a further subsequence,

{f ′′n}
∞
n=1 , which is almost surely convergent to f.

Proof. If {fn}∞n=1 is convergent and hence Cauchy in probability then any
subsequence, {f ′n}

∞
n=1 is also Cauchy in probability. Hence by item 4. of Theo-

rem 17.9 there is a further subsequence, {f ′′n}
∞
n=1 of {f ′n}

∞
n=1 which is convergent

almost surely.
Conversely if {fn}∞n=1 does not converge to f in probability, then there

exists an ε > 0 and a subsequence, {nk} such that infk µ (|f − fnk | ≥ ε) > 0.
Any subsequence of {fnk} would have the same property and hence can not be
almost surely convergent because of Egorov’s Theorem 17.6.

Corollary 17.13. Suppose (Ω,B, µ) is a probability space, fn
µ−→ f and gn

µ−→
g and ϕ : R→ R and ψ : R2 → R are continuous functions. Then

1. ϕ (fn)
µ−→ ϕ (f) ,

2. ψ (fn, gn)
µ−→ ψ (f, g) , and

3. fn · gn
µ−→ f · g.

1 This is becuase |Fn| ≥ ε iff |f − fn| ≥ ε1/p.
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17.3 Jensen’s, Hölder’s and Minkowski’s Inequalities 231

Proof. Item 1. and 3. follow from item 2. by taking ψ (x, y) = ϕ (x) and
ψ (x, y) = x · y respectively. So it suffices to prove item 2. To do this we will
make repeated use of Theorem 17.9.

Given any subsequence, {nk} , of N there is a subsequence, {n′k} of {nk}
such that fn′

k
→ f a.s. and yet a further subsequence {n′′k} of {n′k} such that

gn′′
k
→ g a.s. Hence, by the continuity of ψ, it now follows that

lim
k→∞

ψ
(
fn′′

k
, gn′′

k

)
= ψ (f, g) a.s.

which completes the proof.

Example 17.14. It is not possible to drop the assumption that µ (Ω) < ∞ in
Corollary 17.13. For example, let Ω = R, B = BR, µ = m be Lebesgue measure,

fn (x) = 1
n and gn (x) = x2 = g (x) . Then fn

µ→ 0, gn
µ→ g while fngn does not

converge to 0 = 0 · g in measure. Also if we let ϕ (y) = y2, fn (x) = x+ 1/n and

f (x) = x for all x ∈ R, then fn
µ→ f while

[ϕ (fn)− ϕ (f)] (x) = (x+ 1/n)
2 − x2 =

2

n
x+

1

n2

does not go to 0 in measure as n→∞.

17.3 Jensen’s, Hölder’s and Minkowski’s Inequalities

Theorem 17.15 (Jensen’s Inequality). Suppose that (Ω,B, µ) is a proba-
bility space, i.e. µ is a positive measure and µ(Ω) = 1. Also suppose that
f ∈ L1(µ), f : Ω → (a, b), and ϕ : (a, b) → R is a convex function, (i.e.
ϕ′′ (x) ≥ 0 on (a, b) .) Then

ϕ

(∫
Ω

fdµ

)
≤
∫
Ω

ϕ(f)dµ

where if ϕ ◦ f /∈ L1(µ), then ϕ ◦ f is integrable in the extended sense and∫
Ω
ϕ(f)dµ =∞.
Proof. Let t =

∫
Ω
fdµ ∈ (a, b) and let β ∈ R (β = ϕ̇ (t) when ϕ̇ (t) exists),

be such that ϕ(s) − ϕ(t) ≥ β(s − t) for all s ∈ (a, b). (See Lemma 17.64) and
Figure 17.5 when ϕ is C1 and Theorem 17.67 below for the existence of such a
β in the general case.) Then integrating the inequality, ϕ(f)−ϕ(t) ≥ β(f − t),
implies that

0 ≤
∫
Ω

ϕ(f)dµ− ϕ(t) =

∫
Ω

ϕ(f)dµ− ϕ(

∫
Ω

fdµ).

Moreover, if ϕ(f) is not integrable, then ϕ(f) ≥ ϕ(t) + β(f − t) which shows
that negative part of ϕ(f) is integrable. Therefore,

∫
Ω
ϕ(f)dµ =∞ in this case.

Example 17.16. Since ex for x ∈ R, − lnx for x > 0, and xp for x ≥ 0 and p ≥ 1
are all convex functions, we have the following inequalities

exp

(∫
Ω

fdµ

)
≤
∫
Ω

efdµ, (17.6)∫
Ω

log(|f |)dµ ≤ log

(∫
Ω

|f | dµ
)

and for p ≥ 1, ∣∣∣∣∫
Ω

fdµ

∣∣∣∣p ≤ (∫
Ω

|f | dµ
)p
≤
∫
Ω

|f |p dµ.

Example 17.17. As a special case of Eq. (17.6), if pi, si > 0 for i = 1, 2, . . . , n
and

∑n
i=1

1
pi

= 1, then

s1 . . . sn = e
∑n

i=1
ln si = e

∑n

i=1

1
pi

ln s
pi
i ≤

n∑
i=1

1

pi
eln s

pi
i =

n∑
i=1

spii
pi
. (17.7)

Indeed, we have applied Eq. (17.6) with Ω = {1, 2, . . . , n} , µ =
∑n
i=1

1
pi
δi and

f (i) := ln spii . As a special case of Eq. (17.7), suppose that s, t, p, q ∈ (1,∞)
with q = p

p−1 (i.e. 1
p + 1

q = 1) then

st ≤ 1

p
sp +

1

q
tq. (17.8)

(When p = q = 1/2, the inequality in Eq. (17.8) follows from the inequality,

0 ≤ (s− t)2
.)

As another special case of Eq. (17.7), take pi = n and si = a
1/n
i with ai > 0,

then we get the arithmetic geometric mean inequality,

n
√
a1 . . . an ≤

1

n

n∑
i=1

ai. (17.9)

Example 17.18. Let (Ω,B, µ) be a probability space, 0 < p < q < ∞, and
f : Ω → C be a measurable function. Then by Jensen’s inequality,(∫

Ω

|f |p dµ
)q/p

≤
∫
Ω

(|f |p)q/p dµ =

∫
Ω

|f |q dµ

from which it follows that ‖f‖p ≤ ‖f‖q . In particular, Lp (µ) ⊂ Lq (µ) for all
0 < p < q <∞. See Corollary 17.32 for an alternative proof.
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Theorem 17.19 (Hölder’s inequality). Suppose that 1 ≤ p ≤ ∞ and q :=
p
p−1 , or equivalently p−1 + q−1 = 1. If f and g are measurable functions then

‖fg‖1 ≤ ‖f‖p · ‖g‖q. (17.10)

Assuming p ∈ (1,∞) and ‖f‖p · ‖g‖q <∞, equality holds in Eq. (17.10) iff |f |p
and |g|q are linearly dependent as elements of L1 which happens iff

|g|q‖f‖pp = ‖g‖qq |f |
p

a.e. (17.11)

Proof. The cases p = 1 and q = ∞ or p = ∞ and q = 1 are easy to deal
with and will be left to the reader. So we now assume that p, q ∈ (1,∞) . If
‖f‖q = 0 or ∞ or ‖g‖p = 0 or ∞, Eq. (17.10) is again easily verified. So we will
now assume that 0 < ‖f‖q, ‖g‖p < ∞. Taking s = |f | /‖f‖p and t = |g|/‖g‖q
in Eq. (17.8) gives,

|fg|
‖f‖p‖g‖q

≤ 1

p

|f |p

‖f‖p
+

1

q

|g|q

‖g‖q
(17.12)

with equality iff |g/‖g‖q| = |f |p−1
/‖f‖(p−1)

p = |f |p/q /‖f‖p/qp , i.e. |g|q‖f‖pp =
‖g‖qq |f |

p
. Integrating Eq. (17.12) implies

‖fg‖1
‖f‖p‖g‖q

≤ 1

p
+

1

q
= 1

with equality iff Eq. (17.11) holds. The proof is finished since it is easily checked
that equality holds in Eq. (17.10) when |f |p = c |g|q of |g|q = c |f |p for some
constant c.

Example 17.20. Suppose that ak ∈ C for k = 1, 2, . . . , n and p ∈ [1,∞), then∣∣∣∣∣
n∑
k=1

ak

∣∣∣∣∣
p

≤ np−1
n∑
k=1

|ak|p . (17.13)

Indeed, by Hölder’s inequality applied using the measure space, {1, 2, . . . , n}
equipped with counting measure, we have∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

ak · 1

∣∣∣∣∣ ≤
(

n∑
k=1

|ak|p
)1/p( n∑

k=1

1q

)1/q

= n1/q

(
n∑
k=1

|ak|p
)1/p

where q = p
p−1 . Taking the pth – power of this inequality then gives, Eq. (17.14).

Theorem 17.21 (Generalized Hölder’s inequality). Suppose that fi : Ω →
C are measurable functions for i = 1, . . . , n and p1, . . . , pn and r are positive
numbers such that

∑n
i=1 p

−1
i = r−1, then∥∥∥∥∥

n∏
i=1

fi

∥∥∥∥∥
r

≤
n∏
i=1

‖fi‖pi . (17.14)

Proof. One may prove this theorem by induction based on Hölder’s Theo-
rem 17.19 above. Alternatively we may give a proof along the lines of the proof
of Theorem 17.19 which is what we will do here.

Since Eq. (17.14) is easily seen to hold if ‖fi‖pi = 0 for some i, we will

assume that ‖fi‖pi > 0 for all i. By assumption,
∑n
i=1

ri
pi

= 1, hence we may

replace si by sri and pi by pi/r for each i in Eq. (17.7) to find

sr1 . . . s
r
n ≤

n∑
i=1

(sri )
pi/r

pi/r
= r

n∑
i=1

spii
pi
.

Now replace si by |fi| / ‖fi‖pi in the previous inequality and integrate the result
to find

1∏n
i=1 ‖fi‖pi

∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
r

r

≤ r
n∑
i=1

1

pi

1

‖fi‖pipi

∫
Ω

|fi|pi dµ =

n∑
i=1

r

pi
= 1.

Definition 17.22. A norm on a vector space Z is a function ‖·‖ : Z → [0,∞)
such that

1. (Homogeneity) ‖λf‖ = |λ| ‖f‖ for all λ ∈ F and f ∈ Z.
2. (Triangle inequality) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ Z.
3. (Positive definite) ‖f‖ = 0 implies f = 0.

A pair (Z, ‖·‖) where Z is a vector space and ‖·‖ is a norm on Z is called a
normed vector space.

Theorem 17.23 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ Lp (µ)
then

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (17.15)

In particular,
(
Lp (µ) , ‖·‖p

)
is a normed vector space for all 1 ≤ p ≤ ∞.

Proof. When p =∞, |f | ≤ ‖f‖∞ a.e. and |g| ≤ ‖g‖∞ a.e. so that |f + g| ≤
|f |+ |g| ≤ ‖f‖∞ + ‖g‖∞ a.e. and therefore

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ .

When p <∞,

|f + g|p ≤ (2 max (|f | , |g|))p = 2p max (|f |p , |g|p) ≤ 2p (|f |p + |g|p) ,

which implies2 f + g ∈ Lp since

2 In light of Example 17.20, the last 2p in the above inequality may be replaced by
2p−1.
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‖f + g‖pp ≤ 2p
(
‖f‖pp + ‖g‖pp

)
<∞.

Furthermore, when p = 1 we have

‖f + g‖1 =

∫
Ω

|f + g|dµ ≤
∫
Ω

|f | dµ+

∫
Ω

|g|dµ = ‖f‖1 + ‖g‖1.

We now consider p ∈ (1,∞) . We may assume ‖f + g‖p, ‖f‖p and ‖g‖p are
all positive since otherwise the theorem is easily verified. Integrating

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1

and then applying Holder’s inequality with q = p/(p− 1) gives∫
Ω

|f + g|pdµ ≤
∫
Ω

|f | |f + g|p−1dµ+

∫
Ω

|g| |f + g|p−1dµ

≤ (‖f‖p + ‖g‖p) ‖ |f + g|p−1 ‖q, (17.16)

where

‖|f + g|p−1‖qq =

∫
Ω

(|f + g|p−1)qdµ =

∫
Ω

|f + g|pdµ = ‖f + g‖pp. (17.17)

Combining Eqs. (17.16) and (17.17) implies

‖f + g‖pp ≤ ‖f‖p‖f + g‖p/qp + ‖g‖p‖f + g‖p/qp (17.18)

Solving this inequality for ‖f + g‖p gives Eq. (17.15).

17.4 Completeness of Lp – spaces

Definition 17.24 (Banach space). A normed vector space (Z, ‖·‖) is a
Banach space if is is complete, i.e. all Cauchy sequences are conver-
gent. To be more precise we are assuming that if {xn}∞n=1 ⊂ Z satis-
fies, limm,n→∞ ‖xn − xm‖ = 0, then there exists an x ∈ Z such that
limn→∞ ‖x− xn‖ = 0.

Theorem 17.25. Let ‖·‖∞ be as defined in Eq. (17.2), then
(L∞(Ω,B, µ), ‖·‖∞) is a Banach space. A sequence {fn}∞n=1 ⊂ L∞ con-
verges to f ∈ L∞ iff there exists E ∈ B such that µ(E) = 0 and fn → f
uniformly on Ec. Moreover, bounded simple functions are dense in L∞.

Proof. By Minkowski’s Theorem 17.23, ‖·‖∞ satisfies the triangle inequality.
The reader may easily check the remaining conditions that ensure ‖·‖∞ is a

norm. Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such fn → f ∈ L∞, i.e.
‖f − fn‖∞ → 0 as n→∞. Then for all k ∈ N, there exists Nk <∞ such that

µ
(
|f − fn| > k−1

)
= 0 for all n ≥ Nk.

Let
E = ∪∞k=1 ∪n≥Nk

{
|f − fn| > k−1

}
.

Then µ(E) = 0 and for x ∈ Ec, |f(x)− fn(x)| ≤ k−1 for all n ≥ Nk. This
shows that fn → f uniformly on Ec. Conversely, if there exists E ∈ B such that
µ(E) = 0 and fn → f uniformly on Ec, then for any ε > 0,

µ (|f − fn| ≥ ε) = µ ({|f − fn| ≥ ε} ∩ Ec) = 0

for all n sufficiently large. That is to say lim sup
j→∞

‖f − fn‖∞ ≤ ε for all ε > 0.

The density of simple functions follows from the approximation Theorem 9.41.
So the last item to prove is the completeness of L∞.

Suppose εm,n := ‖fm − fn‖∞ → 0 as m,n → ∞. Let Em,n =
{|fn − fm| > εm,n} and E := ∪Em,n, then µ(E) = 0 and

sup
x∈Ec

|fm (x)− fn (x)| ≤ εm,n → 0 as m,n→∞.

Therefore, f := limn→∞ fn exists on Ec and the limit is uniform on Ec. Letting
f = limn→∞ 1Ecfn, it then follows that limn→∞ ‖fn − f‖∞ = 0.

Theorem 17.26 (Completeness of Lp(µ)). For 1 ≤ p ≤ ∞, Lp(µ) equipped
with the Lp – norm, ‖·‖p (see Eq. (17.1)), is a Banach space.

Proof. By Minkowski’s Theorem 17.23, ‖·‖p satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure ‖·‖p
is a norm. So we are left to prove the completeness of Lp(µ) for 1 ≤ p <∞, the
case p =∞ being done in Theorem 17.25.

Let {fn}∞n=1 ⊂ Lp(µ) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma 17.4), {fn} is L0-Cauchy (i.e. Cauchy in measure) and by Theorem
17.9 there exists a subsequence {gj} of {fn} such that gj → f a.e. By Fatou’s
Lemma,

‖gj − f‖pp =

∫
lim
k→∞

inf |gj − gk|pdµ ≤ lim
k→∞

inf

∫
|gj − gk|pdµ

= lim
k→∞

inf ‖gj − gk‖pp → 0 as j →∞.

In particular, ‖f‖p ≤ ‖gj − f‖p + ‖gj‖p <∞ so the f ∈ Lp and gj
Lp−→ f. The

proof is finished because,
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‖fn − f‖p ≤ ‖fn − gj‖p + ‖gj − f‖p → 0 as j, n→∞.

Alternative method of constructing {gj} . Choose
{
gj = fnj

}∞
j=1

where

{nj}∞j=1 is an increasing subsequence so that
∑∞
j=1 ‖gj+1 − gj‖p < ∞ and let

U :=
∑∞
j=0 |gj+1 − gj | where g0 ≡ 0. Then

‖U‖p
MCT
= lim

N→∞

∥∥∥∥∥∥
N∑
j=0

|gj+1 − gj |

∥∥∥∥∥∥
p

≤ lim
N→∞

N∑
j=0

‖gj+1 − gj‖p =

∞∑
j=0

‖gj+1 − gj‖p <∞

and therefore U < ∞ a.e. But on the set {U <∞} of full measure, the sum∑∞
j=0 (gj+1 − gj) is absolutely convergent and therefore

f := lim
N→∞

N∑
j=0

(gj+1 − gj) = lim
N→∞

gN+1 exists a.e.

See Definition 19.2 for a very important example of where completeness is
used. To end this section we are going to record a few results we will need later
regarding subspace of Lp (µ) which are induced by sub – σ – algebras, B0 ⊂ B.

Lemma 17.27. Let (Ω,B, µ) be a measure space and B0 be a sub – σ – algebra
of B. Then for 1 ≤ p < ∞, the map i : Lp (Ω,B0, µ) → Lp (Ω,B, µ) defined by
i ([f ]0) = [f ] is a well defined linear isometry. Here we are writing,

[f ]0 = {g ∈ Lp (Ω,B0, µ) : g = f a.e.} and

[f ] = {g ∈ Lp (Ω,B, µ) : g = f a.e.} .

Moreover the image of i, i (Lp (Ω,B0, µ)) , is a closed subspace of Lp (Ω,B, µ) .

Proof. This is proof is routine and most of it will be left to the reader. Let us
just check that i (Lp (Ω,B0, µ)) , is a closed subspace of Lp (Ω,B, µ) . To this end,
suppose that i ([fn]0) = [fn] is a convergent sequence in Lp (Ω,B, µ) . Because,
i, is an isometry it follows that {[fn]0}

∞
n=1

is a Cauchy and hence convergent
sequence in Lp (Ω,B0, µ) . Letting f ∈ Lp (Ω,B0, µ) such that ‖f − fn‖Lp(µ) →
0, we will have, since i is isometric, that [fn]→ [f ] = i ([f ]0) ∈ i (Lp (Ω,B0, µ))
as desired.

Exercise 17.3. (In this exercise the reader should refer to Lemma 17.27 for
context and the notation used here.) Let (Ω,B, µ) be a measure space and B0

be a sub – σ – algebra of B. Further suppose that to every B ∈ B there
exists A ∈ B0 such that µ (B∆A) = 0. Show for all 1 ≤ p < ∞ that
i (Lp (Ω,B0, µ)) = Lp (Ω,B, µ) , i.e. to each f ∈ Lp (Ω,B, µ) there exists a
g ∈ Lp (Ω,B0, µ) such that f = g a.e. Hints: 1. verify the last assertion for
simple functions in Lp (Ω,B0, µ) . 2. then make use of Theorem 9.41 and Exer-
cise 9.6.

Exercise 17.4. Suppose that 1 ≤ p <∞, (Ω,B, µ) is a σ – finite measure space
and B0 is a sub – σ – algebra of B. Show that i (Lp (Ω,B0, µ)) = Lp (Ω,B, µ)
implies; to every B ∈ B there exists A ∈ B0 such that µ (B∆A) = 0.

Convention: From now on we will drop the cumbersome notation and
simply identify [f ] with f and Lp (Ω,B0, µ) with its image, i (Lp (Ω,B0, µ)) , in
Lp (Ω,B, µ) .

17.5 Density Results

Theorem 17.28 (Density Theorem). Let p ∈ [1,∞), (Ω,B, µ) be a measure
space and M be an algebra of bounded R – valued measurable functions such
that

1. M ⊂ Lp (µ,R) and σ (M) = B.
2. There exists ψk ∈M such that ψk → 1 boundedly.

Then to every function f ∈ Lp (µ,R) , there exist ϕn ∈ M such that
limn→∞ ‖f − ϕn‖Lp(µ) = 0, i.e. M is dense in Lp (µ,R) .

Proof. Fix k ∈ N for the moment and let H denote those bounded B –
measurable functions, f : Ω → R, for which there exists {ϕn}∞n=1 ⊂ M such
that limn→∞ ‖ψkf − ϕn‖Lp(µ) = 0. A routine check shows H is a subspace of
the bounded measurable R – valued functions on Ω, 1 ∈ H, M ⊂ H and H
is closed under bounded convergence. To verify the latter assertion, suppose
fn ∈ H and fn → f boundedly. Then, by the dominated convergence theorem,
limn→∞ ‖ψk (f − fn)‖Lp(µ) = 0.3 (Take the dominating function to be g =

[2C |ψk|]p where C is a constant bounding all of the {|fn|}∞n=1 .) We may now
choose ϕn ∈M such that ‖ϕn − ψkfn‖Lp(µ) ≤

1
n then

lim sup
n→∞

‖ψkf − ϕn‖Lp(µ) ≤ lim sup
n→∞

‖ψk (f − fn)‖Lp(µ)

+ lim sup
n→∞

‖ψkfn − ϕn‖Lp(µ) = 0 (17.19)

which implies f ∈ H.
3 It is at this point that the proof would break down if p =∞.
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An application of Dynkin’s Multiplicative System Theorem 12.24, now shows
H contains all bounded measurable functions on Ω. Let f ∈ Lp (µ) be given. The
dominated convergence theorem implies limk→∞

∥∥ψk1{|f |≤k}f − f
∥∥
Lp(µ)

= 0.

(Take the dominating function to be g = [2C |f |]p where C is a bound on all of
the |ψk| .) Using this and what we have just proved, there exists ϕk ∈ M such
that ∥∥ψk1{|f |≤k}f − ϕk

∥∥
Lp(µ)

≤ 1

k
.

The same line of reasoning used in Eq. (17.19) now implies
limk→∞ ‖f − ϕk‖Lp(µ) = 0.

Example 17.29. Let µ be a measure on (R,BR) such that µ ([−M,M ]) < ∞
for all M < ∞. Then, Cc (R,R) (the space of continuous functions on R with
compact support) is dense in Lp (µ) for all 1 ≤ p < ∞. To see this, apply
Theorem 17.28 with M = Cc (R,R) and ψk being the function which is 1 on
[−k, k] , 0 on R \ (− (k + 1) , k + 1) , interpolates linearly between 0 and 1 on
[− (k + 1) ,−k] and on [k, k + 1] .

Theorem 17.30. Suppose p ∈ [1,∞), A ⊂ B ⊂ 2Ω is an algebra such that
σ(A) = B and µ is σ – finite on A. Let S(A, µ) denote the measurable simple
functions, ϕ : Ω → R such {ϕ = y} ∈ A for all y ∈ R and µ ({ϕ 6= 0}) < ∞.
Then S(A, µ) is dense subspace of Lp(µ).

Proof. Let M := S(A, µ). By assumption there exists Ωk ∈ A such that
µ(Ωk) <∞ and Ωk ↑ Ω as k →∞. If A ∈ A, then Ωk∩A ∈ A and µ (Ωk ∩A) <
∞ so that 1Ωk∩A ∈ M. Therefore 1A = limk→∞ 1Ωk∩A is σ (M) – measurable
for every A ∈ A. So we have shown that A ⊂ σ (M) ⊂ B and therefore B =
σ (A) ⊂ σ (M) ⊂ B, i.e. σ (M) = B. The theorem now follows from Theorem
17.28 after observing ψk := 1Ωk ∈M and ψk → 1 boundedly.

Theorem 17.31 (Separability of Lp – Spaces). Suppose, p ∈ [1,∞), A ⊂ B
is a countable algebra such that σ(A) = B and µ is σ – finite on A. Then Lp(µ)
is separable and

D = {
∑

aj1Aj : aj ∈ Q+ iQ, Aj ∈ A with µ(Aj) <∞}

is a countable dense subset.

Proof. It is left to reader to check D is dense in S(A, µ) relative to the Lp(µ)
– norm. Once this is done, the proof is then complete since S(A, µ) is a dense
subspace of Lp (µ) by Theorem 17.30.

17.6 Relationships between different Lp – spaces

The Lp(µ) – norm controls two types of behaviors of f, namely the “behavior
at infinity” and the behavior of “local singularities.” So in particular, if f blows
up at a point x0 ∈ Ω, then locally near x0 it is harder for f to be in Lp(µ)
as p increases. On the other hand a function f ∈ Lp(µ) is allowed to decay
at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect Lp(µ) ⊂ Lq(µ) or Lq(µ) ⊂ Lp(µ). However,
there are two notable exceptions. (1) If µ(Ω) <∞, then there is no behavior at
infinity to worry about and Lq(µ) ⊂ Lp(µ) for all q ≥ p as is shown in Corollary
17.32 below. (2) If µ is counting measure, i.e. µ(A) = #(A), then all functions
in Lp(µ) for any p can not blow up on a set of positive measure, so there are no
local singularities. In this case Lp(µ) ⊂ Lq(µ) for all q ≥ p, see Corollary 17.37
below.

Corollary 17.32 (Example 17.18 revisited). If µ(Ω) < ∞ and 0 < p ≤
q ≤ ∞, then Lq(µ) ⊂ Lp(µ), the inclusion map is bounded and in fact

‖f‖p ≤ [µ(Ω)](
1
p−

1
q ) ‖f‖q .

Proof. Take a ∈ [1,∞] such that

1

p
=

1

a
+

1

q
, i.e. a =

pq

q − p
.

Then by Theorem 17.21,

‖f‖p = ‖f · 1‖p ≤ ‖f‖q · ‖1‖a = µ(Ω)1/a‖f‖q = µ(Ω)( 1
p−

1
q )‖f‖q.

The reader may easily check this final formula is correct even when q = ∞
provided we interpret 1/p− 1/∞ to be 1/p.

The rest of this section may be skipped.

Example 17.33 (Power Inequalities). Let a := (a1, . . . , an) with ai > 0 for i =
1, 2, . . . , n and for p ∈ R \ {0} , let

‖a‖p :=

(
1

n

n∑
i=1

api

)1/p

.

Then by Corollary 17.32, p→ ‖a‖p is increasing in p for p > 0. For p = −q < 0,
we have
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‖a‖p :=

(
1

n

n∑
i=1

a−qi

)−1/q

=

 1

1
n

∑n
i=1

(
1
ai

)q
1/q

=

∥∥∥∥1

a

∥∥∥∥−1

q

where 1
a := (1/a1, . . . , 1/an) . So for p < 0, as p increases, q = −p decreases, so

that
∥∥ 1
a

∥∥
q

is decreasing and hence
∥∥ 1
a

∥∥−1

q
is increasing. Hence we have shown

that p→ ‖a‖p is increasing for p ∈ R \ {0} .
We now claim that limp→0 ‖a‖p = n

√
a1 . . . an. To prove this, write api =

ep ln ai = 1 + p ln ai +O
(
p2
)

for p near zero. Therefore,

1

n

n∑
i=1

api = 1 + p
1

n

n∑
i=1

ln ai +O
(
p2
)
.

Hence it follows that

lim
p→0
‖a‖p = lim

p→0

(
1

n

n∑
i=1

api

)1/p

= lim
p→0

(
1 + p

1

n

n∑
i=1

ln ai +O
(
p2
))1/p

= e
1
n

∑n

i=1
ln ai = n

√
a1 . . . an.

So if we now define ‖a‖0 := n
√
a1 . . . an, the map p ∈ R→‖a‖p ∈ (0,∞) is

continuous and increasing in p.
We will now show that limp→∞ ‖a‖p = maxi ai =: M and limp→−∞ ‖a‖p =

mini ai =: m. Indeed, for p > 0,

1

n
Mp ≤ 1

n

n∑
i=1

api ≤M
p

and therefore, (
1

n

)1/p

M ≤ ‖a‖p ≤M.

Since
(

1
n

)1/p → 1 as p→∞, it follows that limp→∞ ‖a‖p = M. For p = −q < 0,
we have

lim
p→−∞

‖a‖p = lim
q→∞

(
1∥∥ 1
a

∥∥
q

)
=

1

maxi (1/ai)
=

1

1/m
= m = min

i
ai.

Conclusion. If we extend the definition of ‖a‖p to p = ∞ and p = −∞
by ‖a‖∞ = maxi ai and ‖a‖−∞ = mini ai, then R̄ 3p → ‖a‖p ∈ (0,∞) is a
continuous non-decreasing function of p.

Proposition 17.34. Suppose that 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈
(p0, p1) be defined by

1

pλ
=

1− λ
p0

+
λ

p1
(17.20)

with the interpretation that λ/p1 = 0 if p1 = ∞.4 Then Lpλ ⊂ Lp0 + Lp1 , i.e.
every function f ∈ Lpλ may be written as f = g + h with g ∈ Lp0 and h ∈ Lp1 .
For 1 ≤ p0 < p1 ≤ ∞ and f ∈ Lp0 + Lp1 let

‖f‖ := inf
{
‖g‖p0

+ ‖h‖p1
: f = g + h

}
.

Then (Lp0 + Lp1 , ‖·‖) is a Banach space and the inclusion map from Lpλ to
Lp0 + Lp1 is bounded; in fact ‖f‖ ≤ 2 ‖f‖pλ for all f ∈ Lpλ .

Proof. Let M > 0, then the local singularities of f are contained in the
set E := {|f | > M} and the behavior of f at “infinity” is solely determined by
f on Ec. Hence let g = f1E and h = f1Ec so that f = g + h. By our earlier
discussion we expect that g ∈ Lp0 and h ∈ Lp1 and this is the case since,

‖g‖p0

p0
=

∫
|f |p0 1|f |>M = Mp0

∫ ∣∣∣∣ fM
∣∣∣∣p0

1|f |>M

≤Mp0

∫ ∣∣∣∣ fM
∣∣∣∣pλ 1|f |>M ≤Mp0−pλ ‖f‖pλpλ <∞

and

‖h‖p1

p1
=
∥∥f1|f |≤M

∥∥p1

p1
=

∫
|f |p1 1|f |≤M = Mp1

∫ ∣∣∣∣ fM
∣∣∣∣p1

1|f |≤M

≤Mp1

∫ ∣∣∣∣ fM
∣∣∣∣pλ 1|f |≤M ≤Mp1−pλ ‖f‖pλpλ <∞.

Moreover this shows

‖f‖ ≤M1−pλ/p0 ‖f‖pλ/p0

pλ
+M1−pλ/p1 ‖f‖pλ/p1

pλ
.

Taking M = λ ‖f‖pλ then gives

‖f‖ ≤
(
λ1−pλ/p0 + λ1−pλ/p1

)
‖f‖pλ

and then taking λ = 1 shows ‖f‖ ≤ 2 ‖f‖pλ . The proof that (Lp0 + Lp1 , ‖·‖) is
a Banach space is left as Exercise 17.12 to the reader.

4 A little algebra shows that λ may be computed in terms of p0, pλ and p1 by

λ =
p0
pλ
· p1 − pλ
p1 − p0

.
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Corollary 17.35 (Interpolation of Lp – norms). Suppose that 0 < p0 <
p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) be defined as in Eq. (17.20), then Lp0 ∩
Lp1 ⊂ Lpλ and

‖f‖pλ ≤ ‖f‖
λ
p0
‖f‖1−λp1

. (17.21)

Further assume 1 ≤ p0 < pλ < p1 ≤ ∞, and for f ∈ Lp0 ∩ Lp1 let

‖f‖ := ‖f‖p0
+ ‖f‖p1

.

Then (Lp0 ∩Lp1 , ‖·‖) is a Banach space and the inclusion map of Lp0 ∩Lp1 into
Lpλ is bounded, in fact

‖f‖pλ ≤ max
(
λ−1, (1− λ)−1

) (
‖f‖p0

+ ‖f‖p1

)
. (17.22)

The heuristic explanation of this corollary is that if f ∈ Lp0 ∩ Lp1 , then f
has local singularities no worse than an Lp1 function and behavior at infinity
no worse than an Lp0 function. Hence f ∈ Lpλ for any pλ between p0 and p1.

Proof. Let λ be determined as above, a = p0/λ and b = p1/(1 − λ), then
by Theorem 17.21,

‖f‖pλ =
∥∥∥|f |λ |f |1−λ∥∥∥

pλ
≤
∥∥∥|f |λ∥∥∥

a

∥∥∥|f |1−λ∥∥∥
b

= ‖f‖λp0
‖f‖1−λp1

.

It is easily checked that ‖·‖ is a norm on Lp0 ∩ Lp1 . To show this space is
complete, suppose that {fn} ⊂ Lp0 ∩ Lp1 is a ‖·‖ – Cauchy sequence. Then
{fn} is both Lp0 and Lp1 – Cauchy. Hence there exist f ∈ Lp0 and g ∈ Lp1 such
that limn→∞ ‖f − fn‖p0

= 0 and limn→∞ ‖g − fn‖pλ = 0. By Chebyshev’s
inequality (Lemma 17.4) fn → f and fn → g in measure and therefore by
Theorem 17.9, f = g a.e. It now is clear that limn→∞ ‖f − fn‖ = 0. The
estimate in Eq. (17.22) is left as Exercise 17.11 to the reader.

Remark 17.36. Combining Proposition 17.34 and Corollary 17.35 gives

Lp0 ∩ Lp1 ⊂ Lpλ ⊂ Lp0 + Lp1

for 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) as in Eq. (17.20).

Corollary 17.37. Suppose now that µ is counting measure on Ω. Then Lp(µ) ⊂
Lq(µ) for all 0 < p < q ≤ ∞ and ‖f‖q ≤ ‖f‖p .

Proof. Suppose that 0 < p < q =∞, then

‖f‖p∞ = sup {|f(x)|p : x ∈ Ω} ≤
∑
x∈Ω
|f(x)|p = ‖f‖pp ,

i.e. ‖f‖∞ ≤ ‖f‖p for all 0 < p <∞. For 0 < p ≤ q ≤ ∞, apply Corollary 17.35
with p0 = p and p1 =∞ to find

‖f‖q ≤ ‖f‖
p/q
p ‖f‖1−p/q∞ ≤ ‖f‖p/qp ‖f‖1−p/qp = ‖f‖p .

17.6.1 Summary:

1. Lp0 ∩ Lp1 ⊂ Lq ⊂ Lp0 + Lp1 for any q ∈ (p0, p1).
2. If p ≤ q, then `p ⊂ `q and ‖f‖q ≤ ‖f‖p .
3. Since µ(|f | > ε) ≤ ε−p ‖f‖pp , Lp – convergence implies L0 – convergence.

4. L0 – convergence implies almost everywhere convergence for some subse-
quence.

5. If µ(Ω) < ∞ then almost everywhere convergence implies uniform con-
vergence off certain sets of small measure and in particular we have L0 –
convergence.

6. If µ(Ω) < ∞, then Lq ⊂ Lp for all p ≤ q and Lq – convergence implies Lp

– convergence.

17.7 Uniform Integrability

Let (Ω,B, µ) be a probability space, 1 ≤ p < ∞, and {f} ∪ {fn}∞n=1 be a
collection of random variables. The goal of this section is to find necessary and
sufficient conditions on {fn}∞n=1 such that fn → f in Lp (µ) .

Notation 17.38 For f ∈ L1(µ) and E ∈ B, let

µ(f : E) :=

∫
E

fdµ.

and more generally if A,B ∈ B let

µ(f : A,B) :=

∫
A∩B

fdµ.

When µ is a probability measure, we will often write E [f : E] for µ(f : E) and
E [f : A,B] for µ(f : A,B).

Definition 17.39. A collection of functions, Λ ⊂ L1(µ) is said to be uni-
formly integrable (U.I.) if,

lim
a→∞

sup
f∈Λ

µ (|f | : |f | ≥ a) = 0. (17.23)

In words, Λ ⊂ L1 (µ) is uniformly integrable if “tail expectations” can be made
uniformly small.

Example 17.40. If Λ ⊂ L1 (µ) and there exists a dominating function, g ∈
L1 (µ) , such that |f | ≤ g for all f ∈ Λ, then Λ is uniformly integrable. In-
deed,

sup
f∈Λ

µ (|f | : |f | ≥ a) ≤ µ (g : g ≥ a)→ 0 as a ↑ ∞

by the dominated convergence theorem.

Page: 237 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



238 17 Lp – spaces

Corollary 17.41. If Λ = {f1, . . . , fn} ⊂ L1 (µ) is a finite set then Λ is uni-
formly integrable.

Proof. Let g =
∑n
i=1 |fi| ∈ L1 (µ) so that |f | ≤ g for all f ∈ Λ. The result

now follows from the previous example.

Example 17.42. Suppose that Λ := {Xn}∞n=1 ⊂ L1 (µ) is a sequence of random
variables which all have the same law, then Λ is uniformly integrable. This is
because, µ (|Xn| : |Xn| ≥ a) = µ (|X1| : |X1| ≥ a) , and so

sup
n
µ (|Xn| : |Xn| ≥ a) = µ (|X1| : |X1| ≥ a)→ 0 as a ↑ ∞.

This example illustrates the fact that uniform integrability is really is a condi-
tion on the collection of measures, {Lawµ (X) : X ∈ Λ} , on (C,BC) .

Example 17.43 (U.I. Example). If for some 1 < p <∞, M := supX∈Λ E |X|
p
<

∞, then Λ ⊂ L1 (P ) is U.I. Indeed,

E [|X| : |X| ≥ a] ≤ E

[
|X|

(
|X|
a

)p−1

: |X| ≥ a

]
≤ 1

ap−1
E |X|p

and so

sup
X∈Λ

E [|X| : |X| ≥ a] ≤ M

ap−1
→ 0 as a→∞.

Example 17.44. Suppose that Λ := {Xn}∞n=1 ⊂ L1 (µ) is a sequence of i.i.d.
random variables such that µ (|X1| ≥ a) > 0 for all a ∈ (0,∞) , i.e. Xn is not
essentially bounded. The smallest dominating function for all of the |Xn| is
Y := supn |Xn| . However, since

∞∑
n=1

µ (|Xn| ≥ a) =

∞∑
n=1

µ (|X1| ≥ a) =∞,

the second Borel Cantelli lemma implies that µ ({|Xn| ≥ a i.o.}) = 1 from which
it follows that Y ≥ a a.s. Since a > 0 was arbitrary we conclude that Y = ∞
a.s. Thus we can not use Example 17.40 to show Λ is uniformly integrable. Of
course we do know by Example 17.42 that Λ is uniformly integrable.

Exercise 17.5. Suppose A is an index set, {fα}α∈A and {gα}α∈A are two col-
lections of random variables and C ∈ (0,∞) . If {gα}α∈A is uniformly integrable
and |fα| ≤ C |gα| for all α ∈ A, show {fα}α∈A is uniformly integrable as well.
[An an example which occurs in the dominated convergence theorem is when
gα = g ∈ L1 (µ) for all α ∈ A.]

Lemma 17.45. If Λ ⊂ L1 (µ) is uniformly integrable, then supf∈Λ ‖f‖1 <∞.5

Proof. Choose a ∈ (0,∞) sufficiently large so that supf∈Λ µ (|f | : |f | ≥ a) ≤
1. Then for f ∈ Λ,

‖f‖1 = µ (|f | : |f | ≥ a) + µ (|f | : |f | < a) ≤ 1 + aµ (Ω) .

Lemma 17.46. If Let {fn}∞n=1 is a collection of random variables such that

fn
µ→ 0. Then for every a ∈ (0,∞) , gn := fn1|fn|≤a → 0 in Lp (µ) for all

1 ≤ p <∞.

Proof. As |gn| ≤ |fn| it follows that gn
µ→ 0 as n → ∞. Since |gn| ≤ a, we

now apply the dominated convergence theorem (Corollary 17.10) to conclude
limn→∞ ‖gn‖p = 0.

Proposition 17.47. If {fn}∞n=1 is a sequence of random variables, then

limn→∞ ‖fn‖1 = 0 iff fn
µ→ 0 and {fn}∞n=1 is uniformly integrable.

Proof. ( =⇒ ) Suppose that limn→∞ ‖fn‖1 = 0. By Chebyschev’s inequal-
ity,

µ (|fn| ≥ ε) ≤
1

ε
‖fn‖1 → 0 as n→∞,

i.e. fn
µ→ 0 as n→∞. If N ∈ N, then

sup
n
µ (|fn| : |fn| ≥ a) ≤

[
sup
n<N

µ (|fn| : |fn| ≥ a)

]
∨ sup
n≥N
‖fn‖1

and since by Corollary 17.41,

lim
a↑∞

sup
n<N

µ (|fn| : |fn| ≥ a) = 0

we conclude that

lim
a↑∞

[
sup
n
µ (|fn| : |fn| ≥ a)

]
≤ sup
n≥N
‖fn‖1 ∀ N ∈ N.

As the right side of this inequality goes to zero in the limit as N →∞ it follows
that {fn}∞n=1 is uniformly integrable.

5 This is not necessarily the case if µ (Ω) = ∞. Indeed, if Ω = R and µ = m is
Lebesgue measure, the sequences of functions,

{
fn := 1[−n,n]

}∞
n=1

are uniformly

integrable but not bounded in L1 (m) .
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(⇐=) Now suppose that fn
µ→ 0 and {fn}∞n=1 is uniformly integrable. Then

given any a ∈ (0,∞) ,

‖fn‖1 = µ (|fn|) = µ
(
|fn| 1|fn|<a

)
+ µ (|fn| : |fn| ≥ a)

≤ µ
(
|fn| 1|fn|<a

)
+ sup

k
µ (|fk| : |fk| ≥ a) .

From Lemma 17.46, limn→∞ µ
(
|fn| 1|fn|<a

)
= 0 and therefore,

lim sup
n→∞

‖fn‖1 ≤ sup
k
µ (|fk| : |fk| ≥ a)→ 0 as a ↑ ∞.

Definition 17.48. A collection of functions, Λ ⊂ L1(µ) is said to be uni-
formly absolutely continuous (UAC) if for all ε > 0 there exists δ > 0
such that

sup
f∈Λ

µ (|f | : E) < ε whenever µ (E) < δ. (17.24)

Equivalently put,

lim
δ↓0

sup {µ (|f | : E) : f ∈ Λ and µ (E) < δ} = 0. (17.25)

Example 17.49 (Optional). I claim that Λ = {f} with f ∈ L1 (µ) is uniformly
absolutely continuous. If not there would exist and ε > 0 and En ∈ B such that

µ (|f | : En) ≥ ε while limn→∞ µ (En) = 0. But this is not possible since 1Enf
µ→

0 as n → ∞ and |1Enf | ≤ |f | ∈ L1 (µ) and so by dominated convergence
theorem (Corollary 17.10),

ε ≤ lim
n→∞

µ (|f | : En) = lim
n→∞

µ (|1Enf |) = 0.

Remark 17.50 (Optional). It is not in general true that if {fn} ⊂ L1(µ) is
uniformly absolutely continuous implies supn ‖fn‖1 < ∞. For example take
Ω = {∗} and µ({∗}) = 1. Let fn(∗) = n. Since for δ < 1 a set E ⊂ Ω such that
µ(E) < δ is in fact the empty set and hence {fn}∞n=1 is uniformly absolutely
continuous. However, for finite measure spaces without “atoms”, for every δ > 0
we may find a finite partition of Ω by sets {E`}k`=1 with µ(E`) < δ, see Lemma
17.59 below. If Eq. (17.24) holds with ε = 1, then

µ(|fn|) =

k∑
`=1

µ(|fn| : E`) ≤ k

showing that µ(|fn|) ≤ k for all n.

Proposition 17.51. A subset Λ ⊂ L1 (µ) is uniformly integrable iff Λ ⊂ L1 (µ)
is bounded and uniformly absolutely continuous.

Proof. ( =⇒ ) We have already seen that uniformly integrable subsets, Λ,
are bounded in L1 (µ) . Moreover, for f ∈ Λ, and E ∈ B,

µ(|f | : E) = µ(|f | : |f | ≥M,E) + µ(|f | : |f | < M,E)

≤ µ(|f | : |f | ≥M) +Mµ(E).

Therefore,

lim
δ↓0

sup {µ (|f | : E) : f ∈ Λ and µ (E) < δ} ≤ sup
f∈Λ

µ(|f | : |f | ≥M)→ 0 as M →∞

which verifies that Λ is uniformly absolutely continuous.
(⇐=) Let K := supf∈Λ ‖f‖1 <∞. Then for f ∈ Λ, we have

µ (|f | ≥ a) ≤ ‖f‖1 /a ≤ K/a for all a > 0.

Hence given ε > 0 and δ > 0 as in the definition of uniform absolute continuity,
we may choose a = K/δ in which case

sup
f∈Λ

µ (|f | : |f | ≥ a) < ε.

Since ε > 0 was arbitrary, it follows that lima→∞ supf∈Λ µ (|f | : |f | ≥ a) = 0 as
desired.

Definition 17.52 (Generalized UAC). A collection of functions, Λ ⊂ L1(µ)
is said to be generalized uniformly absolutely continuous (GUAC) if
for all ε > 0 there exists δ > 0 such that supf∈Λ µ (|f |h) < ε for all random
variables, h, such that 0 ≤ h ≤ 1 and µ (h) < δ.

Exercise 17.6. Prove that a subset Λ ⊂ L1 (µ) is uniformly integrable iff Λ ⊂
L1 (µ) is bounded and is GUAC. Hint: modify the proof of Proposition 17.51.

Corollary 17.53. Suppose {fα}α∈A and {gα}α∈A are two uniformly integrable
collections of functions, then {fα + gα}α∈A is also uniformly integrable.

Proof. By Proposition 17.51, {fα}α∈A and {gα}α∈A are both bounded
in L1 (µ) and are both uniformly absolutely continuous. Since ‖fα + gα‖1 ≤
‖fα‖1 + ‖gα‖1 it follows that {fα + gα}α∈A is bounded in L1 (µ) as well.
Moreover, for ε > 0 we may choose δ > 0 such that µ (|fα| : E) < ε and
µ (|gα| : E) < ε whenever µ (E) < δ. For this choice of ε and δ, we then have

µ (|fα + gα| : E) ≤ µ (|fα|+ |gα| : E) < 2ε whenever µ (E) < δ,

showing {fα + gα}α∈A uniformly absolutely continuous. Another application of
Proposition 17.51 completes the proof.
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Corollary 17.54. If 1 ≤ p <∞ and {fn}∞n=1 ∪ {f} ⊂ Lp (µ) , then {|fn|p}
∞
n=1

is uniformly integrable iff {|fn − f |p}
∞
n=1 is uniformly integrable.

Proof. ( =⇒ ) By Hölder’s inequality,

|fn − f |p ≤ 2
p
q [|fn|p + |f |p]

and so by Corollary 17.53 and Exercise 17.5 it follows that {|fn − f |p}
∞
n=1 is

uniformly integrable.
(⇐=) The proof here is similar but now based on

|fn|p ≤ [|fn − f |+ |f |]p ≤ 2
p
q [|fn − f |p + |f |p] .

Exercise 17.7 (Problem 5 on p. 196 of Resnick generalized). Suppose
that {Xn}∞n=1 is a sequence of integrable and random variables which are

identically distributed. Show
{
Sn
n

}∞
n=1

is uniformly integrable where, as usual,
Sn := X1 + · · ·+Xn for all n ∈ N.

Suggestions:

1. First show {Xn}∞n=1 are U.I. using the direct definition and the identically
distributed assumption.

2. Use the results of item 1. along with Proposition 17.51 to show
{
Sn
n

}∞
n=1

is

uniformly integrable. [Via this method you will actually show; if {Xn}∞n=1

is U.I. then so is
{
Sn
n

}∞
n=1

.]

Theorem 17.55 (Vitali Convergence Theorem). Let 1 ≤ p <∞, (Ω,B, µ)
be a finite measure space,Λ := {fn}∞n=1 be a sequence of functions in Lp (µ) ,
and f : Ω → C be a measurable function. Then f ∈ Lp (µ) and ‖f − fn‖p → 0

as n→∞ iff fn
µ→ f and {|fn|p}

∞
n=1 is uniformly integrable.

Proof. ( =⇒ ) If fn → f in Lp (µ) then by Chebyschev’s inequality fn
µ→ f,

Lemma 17.4. By assumption |f − fn|p → 0 in L1 (µ) and so, by Proposition
17.47, {|f − fn|p}

∞
n=1 is uniformly integrable. It then follows by Corollary 17.54

that {|fn|p}
∞
n=1 is uniformly integrable.

(⇐=) Assume fn
µ→ f as n → ∞ and {|fn|p}

∞
n=1 is uniformly integrable.

Then6 by Fatou’s Lemma (Exercise 17.1) and Lemma 17.45,∫
Ω

|f |p dµ ≤ lim inf
n→∞

∫
Ω

|fn|p dµ ≤ sup
n

∫
Ω

|fn|p dµ <∞,

i.e. f ∈ Lp (µ) . From Corollary 17.54 we now know that {|f − fn|p}
∞
n=1 is

uniformly integrable. As fn
µ→ f is equivalent to |fn − f |p

µ→ 0 we may apply
Proposition 17.51 to show |f − fn|p → 0 in L1 (µ) , i.e. fn → f in Lp (µ) .

6 We are actually reproving Lemma 17.11 here.

Example 17.56. Let Ω = [0, 1] , B = B[0,1] and P = m be Lebesgue measure on

B. Then the collection of functions, fε := 1
ε1[0,ε] for ε ∈ (0, 1) is bounded in

L1 (P ) , fε → 0 a.e. as ε ↓ 0 but

0 =

∫
Ω

lim
ε↓0

fεdP 6= lim
ε↓0

∫
Ω

fεdP = 1.

This is a typical example of a bounded and pointwise convergent sequence in L1

which is not uniformly integrable. This is easy to check directly as well since,

sup
ε∈(0,1)

m (|fε| : |fε| ≥ a) = 1 for all a > 0.

Example 17.57. Let Ω = [0, 1] , P be Lebesgue measure on B = B[0,1], and for
ε ∈ (0, 1) let aε > 0 with limε↓0 aε = ∞ and let fε := aε1[0,ε]. Then Efε = εaε
and so supε>0 ‖fε‖1 =: K <∞ iff εaε ≤ K for all ε. Since

sup
ε
E [fε : fε ≥M ] = sup

ε
[εaε · 1aε≥M ] ,

if {fε} is uniformly integrable and δ > 0 is given, for large M we have εaε ≤ δ for
ε small enough so that aε ≥M. From this we conclude that lim supε↓0 (εaε) ≤ δ
and since δ > 0 was arbitrary, limε↓0 εaε = 0 if {fε} is uniformly integrable. By
reversing these steps one sees the converse is also true.

Alternatively. No matter how aε > 0 is chosen, limε↓0 fε = 0 a.s.. So from
Theorem 17.55, if {fε} is uniformly integrable we would have to have

lim
ε↓0

(εaε) = lim
ε↓0
Efε = E0 = 0.

The following Lemma gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly integrable.

Lemma 17.58. Suppose that µ(Ω) < ∞, and Λ ⊂ L0(Ω) is a collection of
functions.

1. If there exists a measurable function ϕ : R+ → R+ such that
limx→∞ ϕ(x)/x =∞ and

K := sup
f∈Λ

µ(ϕ(|f |)) <∞, (17.26)

then Λ is uniformly integrable. (A typical example for ϕ in item 1. is ϕ (x) =
xp for some p > 1.)

2. *(Skip this if you like.) Conversely if Λ is uniformly integrable, there exists
a non-decreasing continuous function ϕ : R+ → R+ such that ϕ(0) = 0,
limx→∞ ϕ(x)/x =∞ and Eq. (17.26) is valid.
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Proof. 1. Let ϕ be as in item 1. above and set εa := supx≥a
x

ϕ(x) → 0 as

a→∞ by assumption. Then for f ∈ Λ

µ(|f | : |f | ≥ a) = µ

(
|f |

ϕ (|f |)
ϕ (|f |) : |f | ≥ a

)
≤ µ(ϕ (|f |) : |f | ≥ a)εa

≤ µ(ϕ (|f |))εa ≤ Kεa

and hence
lim
a→∞

sup
f∈Λ

µ
(
|f | 1|f |≥a

)
≤ lim
a→∞

Kεa = 0.

2. *(Skip this if you like.) By assumption, εa := supf∈Λ µ
(
|f | 1|f |≥a

)
→ 0 as

a→∞. Therefore we may choose an ↑ ∞ such that

∞∑
n=0

(n+ 1) εan <∞

where by convention a0 := 0. Now define ϕ so that ϕ(0) = 0 and

ϕ′(x) =

∞∑
n=0

(n+ 1) 1(an,an+1](x),

i.e.

ϕ(x) =

∫ x

0

ϕ′(y)dy =

∞∑
n=0

(n+ 1) (x ∧ an+1 − x ∧ an) .

By construction ϕ is continuous, ϕ(0) = 0, ϕ′(x) is increasing (so ϕ is convex)
and ϕ′(x) ≥ (n+ 1) for x ≥ an. In particular

ϕ(x)

x
≥ ϕ(an) + (n+ 1)x

x
≥ n+ 1 for x ≥ an

from which we conclude limx→∞ ϕ(x)/x =∞. We also have ϕ′(x) ≤ (n+ 1) on
[0, an+1] and therefore

ϕ(x) ≤ (n+ 1)x for x ≤ an+1.

So for f ∈ Λ,

µ (ϕ(|f |)) =

∞∑
n=0

µ
(
ϕ(|f |)1(an,an+1](|f |)

)
≤
∞∑
n=0

(n+ 1)µ
(
|f | 1(an,an+1](|f |)

)
≤
∞∑
n=0

(n+ 1)µ
(
|f | 1|f |≥an

)
≤
∞∑
n=0

(n+ 1) εan

and hence

sup
f∈Λ

µ (ϕ(|f |)) ≤
∞∑
n=0

(n+ 1) εan <∞.

Exercise 17.8. Show directly that if µ (Ω) < ∞, ϕ is as in Lemma 17.58,

and {fn} ⊂ L1 (Ω) such that fn
µ→ f and K := supn E [ϕ (|fn|)] < ∞, then

‖f − fn‖1 → 0 as n→∞.

17.7.1 Uniform Integrability Summary

Let (Ω,B, P ) be a probability space, 1 ≤ p <∞, and {Xn}∞n=1 ⊂ Lp (P ) . Using
the theorems in the previous section one may verify the following assertions.

• The following are equivalent;

1. {|Xn|p}
∞
n=1 is uniformly integrable.

2. {Xn}∞n=1 is bounded in Lp (P ) , and {|Xn|p}
∞
n=1 is uniformly absolutely

continuous.

• Either of the three following conditions are sufficient to show {|Xn|p}
∞
n=1 is

uniformly integrable;

1. There exists Y ∈ L1 (P ) such that |Xn|p ≤ Y a.s. for all n.
2. There exists Y ∈ L1 (P ) such that |Xn|p → Y in L1 (P ) as n→∞.
3. There exists p < p̃ <∞ such that supn E |Xn|p̃ <∞.

• If {Xn}∞n=1 and {Yn}∞n=1 ⊂ Lp (P ) are two sequences such that both
{|Xn|p}

∞
n=1 and {|Yn|p}

∞
n=1 are uniformly integrable, then {|Xn + λYn|p}

∞
n=1

is also uniformly integrable for all λ ∈ C.
• Let X : Ω → C be a random variable. Then the following are equivalent;

1. X ∈ Lp (P ) and Xn
Lp→ X as n→∞.

2. Xn
µ→ X and {|Xn|p}

∞
n=1 is uniformly integrable.

3. Xn
µ→ X, {Xn}∞n=1 is bounded in Lp (P ) , and {|Xn|p}

∞
n=1 is uniformly

absolutely continuous.

17.7.2 Atoms

Lemma 17.59 (Saks’ Lemma [10, Lemma 7 on p. 308]). Suppose that
(Ω,B, P ) is a probability space such that P has no atoms. (Recall that A ∈ B is
an atom if P (A) > 0 and for any B ⊂ A with B ∈ B we have either P (B) = 0
or P (B) = P (A) .) Then for every δ > 0 there exists a partition {E`}n`=1 of
Ω with µ(E`) < δ. (For related results along this line also see [9, 13, 20, 24] to
name a few.)
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Proof. For any A ∈ B let

β (A) := sup {P (B) : B ⊂ A and P (B) ≤ δ} .

We begin by showing if µ (A) > 0 then β (A) > 0. As there are no atoms there
exists A1 ⊂ A such that 0 < P (A1) < P (A) . Similarly there exists A2 ⊂ A\A1

such that 0 < P (A2) < P (A \A1) and continuing inductively we find {An}∞n=1

disjoint subsets of A such that An ⊂ A \ (A1 ∪ · · · ∪An−1) and

0 < P (An) < P (A \ (A1 ∪ · · · ∪An−1)) .

As
∑∞
n=1An ⊂ A we must have

∑∞
n=1 P (An) ≤ P (A) < ∞ and therefore

limn→∞ P (An) = 0. Thus for sufficiently large n we have 0 < P (An) ≤ δ and
therefore β (A) ≥ P (An) > 0.

Now to construct the desired partition. Choose A1 ⊂ Ω such that δ ≥
P (A1) ≥ 1

2β (Ω) . If P (Ω \A1) > 0 we may then choose A2 ⊂ Ω \A1 such that
δ ≥ P (A2) ≥ 1

2β (Ω \ [A1 ∪A2]) . We may continue on this way inductively to
find disjoint subsets {Ak}nk=1 of Ω

δ ≥ P (Ak) ≥ 1

2
β (Ω \ [A1 ∪ · · · ∪Ak−1])

with either P (Ω \ [A1 ∪ · · · ∪An−1]) > 0. If it happens that
P (Ω \ [A1 ∪ · · · ∪An]) = 0 it is easy to see we are done. So we may as-
sume that process can be carried on indefinitely. We then let F := Ω \ ∪∞k=1Ak
and observe that

β (F ) ≤ β (Ω \ [A1 ∪ · · · ∪An−1]) ≤ 2P (An)→ 0 as n→∞

as
∞∑
n=1

P (An) ≤ P (Ω) <∞.

But by the first paragraph this implies that P (F ) = 0. Hence there exists
n < ∞ such that P

(
Ω \ ∪n−1

k=1Ak
)
≤ δ. We may then define Ek = Ak for

1 ≤ k ≤ n−1 and En = Ω \∪n−1
k=1Ak in order to construct the desired partition.

Corollary 17.60. Suppose that (Ω,B, P ) is a probability space such that P has
no atoms. Then for any α ∈ (0, 1) there exists A ∈ B with P (A) = α.

Proof. We may assume the α ∈ (0, 1/2) . By dividing Ω into a partition

{El}Nl=1 with P (El) ≤ α/2 we may let A1 := ∪kl=1El with k chosen so that
P (A1) ≤ α but

α < P (A1 ∪ Ek+1) ≤ 3

2
α.

Notice that α/2 ≤ P (A1) ≤ α. Apply this procedure to Ω \A1 in order to find
A2 ⊃ A1 such that α/4 ≤ P (A2) ≤ α. Continue this way inductively to find
An ↑ A such that P (An) ↑ α = P (A) . (BRUCE: clean this proof up.)

17.8 Exercises

Exercise 17.9. Let f ∈ Lp∩L∞ for some p <∞. Show ‖f‖∞ = limq→∞ ‖f‖q .
If we further assume µ(X) < ∞, show ‖f‖∞ = limq→∞ ‖f‖q for all mea-
surable functions f : X → C. In particular, f ∈ L∞ iff limq→∞ ‖f‖q < ∞.
Hints: Use Corollary 17.35 to show lim supq→∞ ‖f‖q ≤ ‖f‖∞ and to show
lim infq→∞ ‖f‖q ≥ ‖f‖∞ , let M < ‖f‖∞ and make use of Chebyshev’s in-
equality.

Exercise 17.10. Let ∞ > a, b > 1 with a−1 + b−1 = 1. Give a calculus proof
of the inequality

st ≤ sa

a
+
tb

b
for all s, t ≥ 0.

Hint: by taking s = xtb/a, show that it suffices to prove

x ≤ xa

a
+

1

b
for all x ≥ 0.

and then maximize the function f (x) = x− xa/a for x ∈ [0,∞).

Exercise 17.11. Prove Eq. (17.22) in Corollary 17.35. (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a, b ≥ 1 with a−1 + b−1 = 1 chosen
appropriately,

st ≤ sa

a
+
tb

b

applied to the right side of Eq. (17.21).

Exercise 17.12. Complete the proof of Proposition 17.34 by showing (Lp +
Lr, ‖·‖) is a Banach space.

Exercise 17.13. Let (Ω,B, µ) be a probability space. Show directly that for
any g ∈ L1(µ), Λ = {g} is uniformly absolutely continuous. (We already know
this is true by combining Example 17.40 with Proposition 17.51.)

Exercise 17.14. Suppose that (Ω,B, P ) is a probability space and {Xn}∞n=1 is
a sequence of uncorrelated (i.e. Cov (Xn, Xm) = 0 if m 6= n) square integrable
random variables such that µ = EXn and σ2 = Var (Xn) for all n. Let Sn :=

X1 + · · ·+Xn. Show
∥∥Sn
n − µ

∥∥2

2
= σ2

n → 0 as n→∞.

Exercise 17.15. Suppose that {Xn}∞n=1 are i.i.d. integrable random variables
and Sn := X1 + · · · + Xn and µ := EXn. Show, Sn

n → µ in L1 (P ) as n →
∞. (Incidentally, this shows that

{
Sn
n

}∞
n=1

is U.I. Hint: for M ∈ (0,∞) , let

XM
i := Xi · 1|Xi|≤M and SMn := XM

1 + · · ·+XM
n and use Exercise 17.14 to see

that
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SMn
n
→ EXM

1 in L2 (P ) ⊂ L1 (P ) for all M.

Using this to show limn→∞
∥∥Sn
n − EX1

∥∥
1

= 0 by getting good control on∥∥∥Snn − SMn
n

∥∥∥
1

and
∣∣EXn − EXM

n

∣∣ .
Exercise 17.16. Suppose 1 ≤ p < ∞, {Xn}∞n=1 are i.i.d. random variables
such that E |Xn|p < ∞, Sn := X1 + · · · + Xn and µ := EXn. Show, Sn

n → µ
in Lp (P ) as n→∞. Hint: explain why 1

n

∑n
i=1 |Xi|p → E |X1|p in L1 (P ) and

then use this show
{∣∣Sn

n

∣∣p}∞
n=1

is U.I. – this is not meant to be hard!

17.9 Appendix: Convex Functions

Reference; see the appendix (page 500) of Revuz and Yor.

Definition 17.61. Given any function, ϕ : (a, b)→ R, we say that ϕ is convex
if for all a < x0 ≤ x1 < b and t ∈ [0, 1] ,

ϕ (xt) ≤ ht := (1− t)ϕ(x0) + tϕ(x1) for all t ∈ [0, 1] , (17.27)

where
xt := x0 + t (x1 − x0) = (1− t)x0 + tx1, (17.28)

see Figure 17.3 below.

Fig. 17.3. A convex function along with three cords corresponding to x0 = −5 and
x1 = −2 x0 = −2 and x1 = 5/2, and x0 = −5 and x1 = 5/2 with slopes, m1 = −15/3,
m2 = 15/6 and m3 = −1/2 respectively. Notice that m1 ≤ m3 ≤ m2.

Fig. 17.4. A convex function with three cords. Notice the slope relationships; m1 ≤
m3 ≤ m2.

Lemma 17.62. Let ϕ : (a, b)→ R be a function and

F (x0, x1) :=
ϕ (x1)− ϕ (x0)

x1 − x0
for a < x0 < x1 < b.

Then the following are equivalent;

1. ϕ is convex,
2. F (x0, x1) is non-decreasing in x0 for all a < x0 < x1 < b, and
3. F (x0, x1) is non-decreasing in x1 for all a < x0 < x1 < b.

Proof. Let xt and ht be as in Eq. (17.27), then (xt, ht) is on the line segment
joining (x0, ϕ (x0)) to (x1, ϕ (x1)) and the statement that ϕ is convex is then
equivalent to the assertion that ϕ (xt) ≤ ht for all 0 ≤ t ≤ 1. Since (xt, ht) lies
on a straight line we always have the following three slopes are equal;

ht − ϕ (x0)

xt − x0
=
ϕ (x1)− ϕ (x0)

x1 − x0
=
ϕ (x1)− ht
x1 − xt

.

In light of this identity, it is now clear that the convexity of ϕ is equivalent to
either,

F (x0, xt) =
ϕ (xt)− ϕ (x0)

xt − x0
≤ ht − ϕ (x0)

xt − x0
=
ϕ (x1)− ϕ (x0)

x1 − x0
= F (x0, x1)
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or

F (x0, x1) =
ϕ (x1)− ϕ (x0)

x1 − x0
=
ϕ (x1)− ht
x1 − xt

≤ ϕ (x1)− ϕ (xt)

x1 − xt
= F (xt, x1)

holding for all x0 < xt < x1.

Lemma 17.63 (A generalized FTC). If ϕ ∈ PC1 ((a, b)→ R)7, then for all
a < x < y < b,

ϕ (y)− ϕ (x) =

∫ y

x

ϕ′ (t) dt.

Proof. Let b1, . . . , bl−1 be the points of non-differentiability of ϕ in (x, y)
and set b0 = x and bl = y. Then

ϕ (y)− ϕ (x) =

l∑
k=1

[ϕ (bk)− ϕ (bk−1)]

=

l∑
k=1

∫ bk

bk−1

ϕ′ (t) dt =

∫ y

x

ϕ′ (t) dt.

Figure 17.5 below serves as motivation for the following elementary lemma
on convex functions.

Lemma 17.64 (Convex Functions). Let ϕ ∈ PC1 ((a, b)→ R) and for x ∈
(a, b) , let

ϕ′ (x+) := lim
h↓0

ϕ (x+ h)− ϕ (x)

h
and

ϕ′ (x−) := lim
h↑0

ϕ (x+ h)− ϕ (x)

h
.

(Of course, ϕ′ (x±) = ϕ′ (x) at points x ∈ (a, b) where ϕ is differentiable.)

1. If ϕ′ (x) ≤ ϕ′ (y) for all a < x < y < b with x and y be points where ϕ is
differentiable, then for any x0 ∈ (a, b) , we have ϕ′ (x0−) ≤ ϕ′ (x0+) and
for m ∈ (ϕ′ (x0−) , ϕ′ (x0+)) we have,

ϕ (x0) +m (x− x0) ≤ ϕ (x) ∀ x0, x ∈ (a, b) . (17.29)
7 PC1 denotes the space of piecewise C1 – functions, i.e. ϕ ∈ PC1 ((a, b)→ R) means

the ϕ is continuous and there are a finite number of points,

{a = a0 < a1 < a2 < · · · < an−1 < an = b} ,

such that ϕ|[aj−1,aj ]∩(a,b) is C1 for all j = 1, 2, . . . , n.

Fig. 17.5. A convex function, ϕ, along with a cord and a tangent line. Notice that
the tangent line is always below ϕ and the cord lies above ϕ between the points of
intersection of the cord with the graph of ϕ.

2. If ϕ ∈ PC2 ((a, b)→ R)8 with ϕ′′ (x) ≥ 0 for almost all x ∈ (a, b) , then Eq.
(17.29) holds with m = ϕ′ (x0) .

3. If either of the hypothesis in items 1. and 2. above hold then ϕ is convex.

(This lemma applies to the functions, eλx for all λ ∈ R, |x|α for α > 1,
and − lnx to name a few examples. See Appendix 17.9 below for much more on
convex functions.)

Proof. 1. If x0 is a point where ϕ is not differentiable and h > 0 is small, by
the mean value theorem, for all h > 0 small, there exists c+ (h) ∈ (x0, x0 + h)
and c− (h) ∈ (x0 − h, x0) such that

ϕ (x0 − h)− ϕ (x0)

−h
= ϕ′ (c− (h)) ≤ ϕ′ (c+ (h)) =

ϕ (x0 + h)− ϕ (x0)

h
.

Letting h ↓ 0 in this equation shows ϕ′ (x0−) ≤ ϕ′ (x0+) . Furthermore if
x < x0 < y with x and y being points of differentiability of ϕ, the for small
h > 0,

ϕ′ (x) ≤ ϕ′ (c− (h)) ≤ ϕ′ (c+ (h)) ≤ ϕ′ (y) .

Letting h ↓ 0 in these inequalities shows,

8 PC2 denotes the space of piecewise C2 – functions, i.e. ϕ ∈ PC2 ((a, b)→ R) means
the ϕ is C1 and there are a finite number of points,

{a = a0 < a1 < a2 < · · · < an−1 < an = b} ,

such that ϕ|[aj−1,aj ]∩(a,b) is C2 for all j = 1, 2, . . . , n.
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ϕ′ (x) ≤ ϕ′ (x0−) ≤ ϕ′ (x0+) ≤ ϕ′ (y) . (17.30)

Now let m ∈ (ϕ′ (x0−) , ϕ′ (x0+)) . By the fundamental theorem of calculus in
Lemma 17.63 and making use of Eq. (17.30), if x > x0 then

ϕ (x)− ϕ (x0) =

∫ x

x0

ϕ′ (t) dt ≥
∫ x

x0

m dt = m (x− x0)

and if x < x0, then

ϕ (x0)− ϕ (x) =

∫ x0

x

ϕ′ (t) dt ≤
∫ x0

x

m dt = m (x0 − x) .

These two equations implies Eq. (17.29) holds.
2. Notice that ϕ′ ∈ PC1 ((a, b)) and therefore,

ϕ′ (y)− ϕ′ (x) =

∫ y

x

ϕ′′ (t) dt ≥ 0 for all a < x ≤ y < b

which shows that item 1. may be used.
Alternatively; by Taylor’s theorem with integral remainder (see Eq.

(10.59) with F = ϕ, a = x0, and b = x) implies

ϕ (x) = ϕ (x0) + ϕ′ (x0) (x− x0) + (x− x0)
2
∫ 1

0

ϕ′′ (x0 + τ (x− x0)) (1− τ) dτ

≥ ϕ (x0) + ϕ′ (x0) (x− x0) .

3. For any ξ ∈ (a, b) , let hξ (x) := ϕ (x0) + ϕ′ (x0) (x− x0) . By Eq. (17.29)
we know that hξ (x) ≤ ϕ (x) for all ξ, x ∈ (a, b) with equality when ξ = x and
therefore,

ϕ (x) = sup
ξ∈(a,b)

hξ (x) .

Since hξ is an affine function for each ξ ∈ (a, b) , it follows that

hξ (xt) = (1− t)hξ (x0) + thξ (x1) ≤ (1− t)ϕ (x0) + tϕ (x1)

for all t ∈ [0, 1] . Thus we may conclude that

ϕ (xt) = sup
ξ∈(a,b)

hξ (xt) ≤ (1− t)ϕ (x0) + tϕ (x1)

as desired.
*For fun, here are three more proofs of Eq. (17.27) under the hypothesis of

item 2. Clearly these proofs may be omitted.
3a. By Lemma 17.62 below it suffices to show either

d

dx

ϕ (y)− ϕ (x)

y − x
≥ 0 or

d

dy

ϕ (y)− ϕ (x)

y − x
≥ 0 for a < x < y < b.

For the first case,

d

dx

ϕ (y)− ϕ (x)

y − x
=
ϕ (y)− ϕ (x)− ϕ′ (x) (y − x)

(y − x)
2

=

∫ 1

0

ϕ′′ (x+ t (y − x)) (1− t) dt ≥ 0.

Similarly,
d

dy

ϕ (y)− ϕ (x)

y − x
=
ϕ′ (y) (y − x)− [ϕ (y)− ϕ (x)]

(y − x)
2

where we now use,

ϕ (x)− ϕ (y) = ϕ′ (y) (x− y) + (x− y)
2
∫ 1

0

ϕ′′ (y + t (x− y)) (1− t) dt

so that

ϕ′ (y) (y − x)− [ϕ (y)− ϕ (x)]

(y − x)
2 = (x− y)

2
∫ 1

0

ϕ′′ (y + t (x− y)) (1− t) dt ≥ 0

again.
3b. Let

f (t) := ϕ (u) + t (ϕ (v)− ϕ (u))− ϕ (u+ t (v − u)) .

Then f (0) = f (1) = 0 with f̈ (t) = − (v − u)
2
ϕ′′ (u+ t (v − u)) ≤ 0 for almost

all t. By the mean value theorem, there exists, t0 ∈ (0, 1) such that ḟ (t0) = 0
and then by the fundamental theorem of calculus it follows that

ḟ (t) =

∫ t

t0

f̈ (τ) dt.

In particular, ḟ (t) ≤ 0 for t > t0 and ḟ (t) ≥ 0 for t < t0 and hence f (t) ≥
f (1) = 0 for t ≥ t0 and f (t) ≥ f (0) = 0 for t ≤ t0, i.e. f (t) ≥ 0.

3c. Let h : [0, 1]→ R be a piecewise C2 – function. Then by the fundamental
theorem of calculus and integration by parts,

h (t) = h (0) +

∫ t

0

h (τ) dτ = h (0) + th (t)−
∫ t

0

h (τ) τdτ

and
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h (1) = h (t) +

∫ 1

t

h (τ) d (τ − 1) = h (t)− (t− 1)h (t)−
∫ 1

t

h (τ) (τ − 1) dτ.

Thus we have shown,

h (t) = h (0) + th (t)−
∫ t

0

h (τ) τdτ and

h (t) = h (1) + (t− 1)h (t) +

∫ 1

t

h (τ) (τ − 1) dτ.

So if we multiply the first equation by (1− t) and add to it the second equation
multiplied by t shows,

h (t) = (1− t)h (0) + th (1)−
∫ 1

0

G (t, τ) ḧ (τ) dτ, (17.31)

where

G (t, τ) :=

{
τ (1− t) if τ ≤ t
t (1− τ) if τ ≥ t .

(The function G (t, τ) is the “Green’s function” for the operator −d2/dt2 on
[0, 1] with Dirichlet boundary conditions. The formula in Eq. (17.31) is a stan-
dard representation formula for h (t) which appears naturally in the study of
harmonic functions.)

We now take h (t) := ϕ (x0 + t (x1 − x0)) in Eq. (17.31) to learn

ϕ (x0 + t (x1 − x0)) = (1− t)ϕ (x0) + tϕ (x1)

− (x1 − x0)
2
∫ 1

0

G (t, τ) ϕ̈ (x0 + τ (x1 − x0)) dτ

≤ (1− t)ϕ (x0) + tϕ (x1) ,

because ϕ̈ ≥ 0 and G (t, τ) ≥ 0.

Example 17.65. The functions exp(x) and − log(x) are convex and |x|p is
convex iff p ≥ 1 as follows from Lemma 17.64.

Example 17.66 (Proof of Lemma ??). Taking ϕ (x) = e−x in Lemma 17.64, Eq.
(17.29) with x0 = 0 implies (see Figure 15.2),

1− x ≤ ϕ (x) = e−x for all x ∈ R.

Taking ϕ (x) = e−2x in Lemma 17.64, Eq. (17.27) with x0 = 0 and x1 = 1
implies, for all t ∈ [0, 1] ,

e−t ≤ ϕ
(

(1− t) 0 + t
1

2

)
≤ (1− t)ϕ (0) + tϕ

(
1

2

)
= 1− t+ te−1 ≤ 1− 1

2
t,

wherein the last equality we used e−1 < 1
2 . Taking t = 2x in this equation then

gives (see Figure ??)

e−2x ≤ 1− x for 0 ≤ x ≤ 1

2
. (17.32)

Theorem 17.67. Suppose that ϕ : (a, b) → R is convex and for x, y ∈ (a, b)
with x < y, let9

F (x, y) :=
ϕ (y)− ϕ (x)

y − x
.

Then;

1. F (x, y) is increasing in each of its arguments.
2. The following limits exist,

ϕ′+ (x) := F (x, x+) := lim
y↓x

F (x, y) <∞ and (17.33)

ϕ′− (y) := F (y−, y) := lim
x↑y

F (x, y) > −∞. (17.34)

3. The functions, ϕ′± are both increasing functions and further satisfy,

−∞ < ϕ′− (x) ≤ ϕ′+ (x) ≤ ϕ′− (y) <∞ ∀ a < x < y < b. (17.35)

4. For any t ∈
[
ϕ′− (x) , ϕ′+ (x)

]
,

ϕ (y) ≥ ϕ (x) + t (y − x) for all x, y ∈ (a, b) . (17.36)

5. For a < α < β < b, let K := max
{∣∣ϕ′+ (α)

∣∣ , ∣∣ϕ′− (β)
∣∣} . Then

|ϕ (y)− ϕ (x)| ≤ K |y − x| for all x, y ∈ [α, β] .

That is ϕ is Lipschitz continuous on [α, β] .
6. The function ϕ′+ is right continuous and ϕ′− is left continuous.
7. The set of discontinuity points for ϕ′+ and for ϕ′− are the same as the set of

points of non-differentiability of ϕ. Moreover this set is at most countable.

9 The same formula would define F (x, y) for x 6= y. However, since F (x, y) =
F (y, x) , we would gain no new information by this extension.
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Proof. BRUCE: The first two items are a repetition of Lemma 17.62.
1. and 2. If we let ht = tϕ(x1) + (1 − t)ϕ(x0), then (xt, ht) is on the line

segment joining (x0, ϕ (x0)) to (x1, ϕ (x1)) and the statement that ϕ is convex
is then equivalent of ϕ (xt) ≤ ht for all 0 ≤ t ≤ 1. Since

ht − ϕ (x0)

xt − x0
=
ϕ (x1)− ϕ (x0)

x1 − x0
=
ϕ (x1)− ht
x1 − xt

,

the convexity of ϕ is equivalent to

ϕ (xt)− ϕ (x0)

xt − x0
≤ ht − ϕ (x0)

xt − x0
=
ϕ (x1)− ϕ (x0)

x1 − x0
for all x0 ≤ xt ≤ x1

and to

ϕ (x1)− ϕ (x0)

x1 − x0
=
ϕ (x1)− ht
x1 − xt

≤ ϕ (x1)− ϕ (xt)

x1 − xt
for all x0 ≤ xt ≤ x1.

Convexity also implies

ϕ (xt)− ϕ (x0)

xt − x0
=
ht − ϕ (x0)

xt − x0
=
ϕ (x1)− ht
x1 − xt

≤ ϕ (x1)− ϕ (xt)

x1 − xt
.

These inequalities may be written more compactly as,

ϕ (v)− ϕ (u)

v − u
≤ ϕ (w)− ϕ (u)

w − u
≤ ϕ (w)− ϕ (v)

w − v
, (17.37)

valid for all a < u < v < w < b, again see Figure 17.4. The first (second)
inequality in Eq. (17.37) shows F (x, y) is increasing y (x). This then implies
the limits in item 2. are monotone and hence exist as claimed.

3. Let a < x < y < b. Using the increasing nature of F,

−∞ < ϕ′− (x) = F (x−, x) ≤ F (x, x+) = ϕ′+ (x) <∞

and
ϕ′+ (x) = F (x, x+) ≤ F (y−, y) = ϕ′− (y)

as desired.
4. Let t ∈

[
ϕ′− (x) , ϕ′+ (x)

]
. Then

t ≤ ϕ′+ (x) = F (x, x+) ≤ F (x, y) =
ϕ (y)− ϕ (x)

y − x

or equivalently,
ϕ (y) ≥ ϕ (x) + t (y − x) for y ≥ x.

Therefore Eq. (17.36) holds for y ≥ x. Similarly, for y < x,

t ≥ ϕ′− (x) = F (x−, x) ≥ F (y, x) =
ϕ (x)− ϕ (y)

x− y

or equivalently,

ϕ (y) ≥ ϕ (x)− t (x− y) = ϕ (x) + t (y − x) for y ≤ x.

Hence we have proved Eq. (17.36) for all x, y ∈ (a, b) .
5. For a < α ≤ x < y ≤ β < b, we have

ϕ′+ (α) ≤ ϕ′+ (x) = F (x, x+) ≤ F (x, y) ≤ F (y−, y) = ϕ′− (y) ≤ ϕ′− (β)
(17.38)

and in particular,

−K ≤ ϕ′+ (α) ≤ ϕ (y)− ϕ (x)

y − x
≤ ϕ′− (β) ≤ K.

This last inequality implies, |ϕ (y)− ϕ (x)| ≤ K (y − x) which is the desired
Lipschitz bound.

6. For a < c < x < y < b, we have ϕ′+ (x) = F (x, x+) ≤ F (x, y) and letting
x ↓ c (using the continuity of F ) we learn ϕ′+ (c+) ≤ F (c, y) . We may now let
y ↓ c to conclude ϕ′+ (c+) ≤ ϕ′+ (c) . Since ϕ′+ (c) ≤ ϕ′+ (c+) , it follows that
ϕ′+ (c) = ϕ′+ (c+) and hence that ϕ′+ is right continuous.

Similarly, for a < x < y < c < b, we have ϕ′− (y) ≥ F (x, y) and letting
y ↑ c (using the continuity of F ) we learn ϕ′− (c−) ≥ F (x, c) . Now let x ↑ c to
conclude ϕ′− (c−) ≥ ϕ′− (c) . Since ϕ′− (c) ≥ ϕ′− (c−) , it follows that ϕ′− (c) =
ϕ′− (c−) , i.e. ϕ′− is left continuous.

7. Since ϕ± are increasing functions, they have at most countably many
points of discontinuity. Letting x ↑ y in Eq. (17.35), using the left continuity
of ϕ′−, shows ϕ′− (y) = ϕ′+ (y−) . Hence if ϕ′− is continuous at y, ϕ′− (y) =
ϕ′− (y+) = ϕ′+ (y) and ϕ is differentiable at y. Conversely if ϕ is differentiable
at y, then

ϕ′+ (y−) = ϕ′− (y) = ϕ′ (y) = ϕ′+ (y)

which shows ϕ′+ is continuous at y. Thus we have shown that set of discontinuity
points of ϕ′+ is the same as the set of points of non-differentiability of ϕ. That
the discontinuity set of ϕ′− is the same as the non-differentiability set of ϕ is
proved similarly.

Corollary 17.68. If ϕ : (a, b) → R is a convex function and D ⊂ (a, b) is a
dense set, then

ϕ (y) = sup
x∈D

[
ϕ (x) + ϕ′± (x) (y − x)

]
for all x, y ∈ (a, b) .
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Proof. Let ψ± (y) := supx∈D [ϕ (x) + ϕ± (x) (y − x)] . According to Eq.
(17.36) above, we know that ϕ (y) ≥ ψ± (y) for all y ∈ (a, b) . Now suppose that
x ∈ (a, b) and xn ∈ Λ with xn ↑ x. Then passing to the limit in the estimate,
ψ− (y) ≥ ϕ (xn) + ϕ′− (xn) (y − xn) , shows ψ− (y) ≥ ϕ (x) + ϕ′− (x) (y − x) .
Since x ∈ (a, b) is arbitrary we may take x = y to discover ψ− (y) ≥ ϕ (y) and
hence ϕ (y) = ψ− (y) . The proof that ϕ (y) = ψ+ (y) is similar.

Lemma 17.69. Suppose that ϕ : (a, b) → R is a non-decreasing function such
that

ϕ

(
1

2
(x+ y)

)
≤ 1

2
[ϕ (x) + ϕ (y)] for all x, y ∈ (a, b) , (17.39)

then ϕ is convex. The result remains true if ϕ is assumed to be continuous
rather than non-decreasing.

Proof. Let x0, x1 ∈ (a, b) and xt := x0 + t (x1 − x0) as above. For n ∈ N let
Dn =

{
k
2n : 1 ≤ k < 2n

}
. We are going to being by showing Eq. (17.39) implies

ϕ (xt) ≤ (1− t)ϕ (x0) + tϕ (x1) for all t ∈ D := ∪nDn. (17.40)

We will do this by induction on n. For n = 1, this follows directly from Eq.
(17.39). So now suppose that Eq. (17.40) holds for all t ∈ Dn and now suppose
that t = 2k+1

2n ∈ Dn+1. Observing that

xt =
1

2

(
x k

2n−1
+ x k+1

2n

)
we may again use Eq. (17.39) to conclude,

ϕ (xt) ≤
1

2

(
ϕ
(
x k

2n−1

)
+ ϕ

(
x k+1

2n−1

))
.

Then use the induction hypothesis to conclude,

ϕ (xt) ≤
1

2

( (
1− k

2n−1

)
ϕ (x0) + k

2n−1ϕ (x1)
+
(
1− k+1

2n−1

)
ϕ (x0) + k+1

2n−1ϕ (x1)

)
= (1− t)ϕ (x0) + tϕ (x1)

as desired.
For general t ∈ (0, 1) , let τ ∈ D such that τ > t. Since ϕ is increasing and

by Eq. (17.40) we conclude,

ϕ (xt) ≤ ϕ (xτ ) ≤ (1− τ)ϕ (x0) + τϕ (x1) .

We may now let τ ↓ t to complete the proof. This same technique clearly also
works if we were to assume that ϕ is continuous rather than monotonic.
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Hilbert Space Basics

Definition 18.1 (Inner Product Space). Let H be a complex vector space.
An inner product on H is a function, 〈·|·〉 : H ×H → C, such that

1. 〈ax+ by|z〉 = a〈x|z〉+ b〈y|z〉 i.e. x→ 〈x|z〉 is linear.
2. 〈x|y〉 = 〈y|x〉.
3. ‖x‖2 := 〈x|x〉 ≥ 0 with ‖x‖2 = 0 iff x = 0.

Notice that combining properties (1) and (2) that x → 〈z|x〉 is conjugate
linear for fixed z ∈ H, i.e.

〈z|ax+ by〉 = ā〈z|x〉+ b̄〈z|y〉.

The following identity will be used frequently in the sequel without further
mention,

‖x+ y‖2 = 〈x+ y|x+ y〉 = ‖x‖2 + ‖y‖2 + 〈x|y〉+ 〈y|x〉
= ‖x‖2 + ‖y‖2 + 2Re〈x|y〉. (18.1)

Theorem 18.2 (Schwarz Inequality). Let (H, 〈·|·〉) be an inner product
space, then for all x, y ∈ H

|〈x|y〉| ≤ ‖x‖‖y‖

and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y 6= 0 and observe;
if x = αy for some α ∈ C, then 〈x|y〉 = ᾱ ‖y‖2 and hence

|〈x|y〉| = |α| ‖y‖2 = ‖x‖‖y‖.

Now suppose that x ∈ H is arbitrary, let z := x−‖y‖−2〈x|y〉y. (So ‖y‖−2〈x|y〉y
is the “orthogonal projection” of x along y, see Figure 18.1.) Then

0 ≤ ‖z‖2 =

∥∥∥∥x− 〈x|y〉‖y‖2
y

∥∥∥∥2

= ‖x‖2 +
|〈x|y〉|2

‖y‖4
‖y‖2 − 2Re〈x| 〈x|y〉

‖y‖2
y〉

= ‖x‖2 − |〈x|y〉|
2

‖y‖2

from which it follows that 0 ≤ ‖y‖2‖x‖2 − |〈x|y〉|2 with equality iff z = 0 or
equivalently iff x = ‖y‖−2〈x|y〉y.

z = x− 〈x|y〉‖y‖2 y

〈x|y〉
‖y‖2 y

x

y

0

Fig. 18.1. The picture behind the proof of the Schwarz inequality.

Corollary 18.3. Let (H, 〈·|·〉) be an inner product space and ‖x‖ :=
√
〈x|x〉.

Then the Hilbertian norm, ‖ ·‖, is a norm on H. Moreover 〈·|·〉 is continuous
on H ×H, where H is viewed as the normed space (H, ‖·‖).

Proof. If x, y ∈ H, then, using Schwarz’s inequality,

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x|y〉
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

Taking the square root of this inequality shows ‖·‖ satisfies the triangle inequal-
ity.

Checking that ‖·‖ satisfies the remaining axioms of a norm is now routine
and will be left to the reader. If x, y,∆x,∆y ∈ H, then

|〈x+∆x|y +∆y〉 − 〈x|y〉| = |〈x|∆y〉+ 〈∆x|y〉+ 〈∆x|∆y〉|
≤ ‖x‖‖∆y‖+ ‖y‖‖∆x‖+ ‖∆x‖‖∆y‖
→ 0 as ∆x,∆y → 0,

from which it follows that 〈·|·〉 is continuous.

Definition 18.4. Let (H, 〈·|·〉) be an inner product space, we say x, y ∈ H are
orthogonal and write x ⊥ y iff 〈x|y〉 = 0. More generally if A ⊂ H is a set,
x ∈ H is orthogonal to A (write x ⊥ A) iff 〈x|y〉 = 0 for all y ∈ A. Let
A⊥ = {x ∈ H : x ⊥ A} be the set of vectors orthogonal to A. A subset S ⊂ H
is an orthogonal set if x ⊥ y for all distinct elements x, y ∈ S. If S further
satisfies, ‖x‖ = 1 for all x ∈ S, then S is said to be an orthonormal set.
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Proposition 18.5. Let (H, 〈·|·〉) be an inner product space then

1. (Parallelogram Law)

‖a+ b‖2 + ‖a− b‖2 = 2‖a‖2 + 2‖b‖2 (18.2)

for all a, b ∈ H.
2. (Pythagorean Theorem) If S ⊂f H is a finite orthogonal set, then∥∥∥∥∥∑

x∈S
x

∥∥∥∥∥
2

=
∑
x∈S
‖x‖2. (18.3)

3. If A ⊂ H is a set, then A⊥ is a closed linear subspace of H.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;

‖a+ b‖2 + ‖a− b‖2

= ‖a‖2 + ‖b‖2 + 2Re〈a|b〉+ ‖a‖2 + ‖b‖2 − 2Re〈a|b〉
= 2‖a‖2 + 2‖b‖2,

and ∥∥∥∥∥∑
x∈S

x

∥∥∥∥∥
2

= 〈
∑
x∈S

x|
∑
y∈S

y〉 =
∑
x,y∈S

〈x|y〉

=
∑
x∈S
〈x|x〉 =

∑
x∈S
‖x‖2.

Item 3. is a consequence of the continuity of 〈·|·〉 and the fact that

A⊥ = ∩x∈A Nul(〈·|x〉)

where Nul(〈·|x〉) = {y ∈ H : 〈y|x〉 = 0} – a closed subspace of H. Alternatively,
if xn ∈ A⊥ and xn → x in H, then

0 = lim
n→∞

0 = lim
n→∞

〈xn|a〉 =
〈

lim
n→∞

xn|a
〉

= 〈x|a〉 ∀ a ∈ A

which shows that x ∈ A⊥.

Definition 18.6. A Hilbert space is an inner product space (H, 〈·|·〉) such
that the induced Hilbertian norm is complete.

Example 18.7. For any measure space, (Ω,B, µ) , H := L2 (µ) with inner prod-
uct,

〈f |g〉 =

∫
Ω

f (ω) ḡ (ω) dµ (ω)

is a Hilbert space – see Theorem 17.26 for the completeness assertion.

Definition 18.8. A subset C of a vector space X is said to be convex if for all
x, y ∈ C the line segment [x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 18.9 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M ⊂ H is a closed convex subset of H. Then for any x ∈ H
there exists a unique y ∈M such that

‖x− y‖ = d(x,M) = inf
z∈M
‖x− z‖.

Moreover, if M is a closed vector subspace of H, then the point y may also be
characterized as the unique point in M such that (x− y) ⊥M.

Proof. Let x ∈ H, δ := d(x,M), and y, z ∈M. Noting that

‖z − y‖2 = ‖(z − x)− (y − x)‖2 ,

it follows by the parallelogram law (Eq. (18.2) that

‖z − y‖2 + ‖(z − x) + (y − x)‖2 = 2 ‖z − x‖2 + 2 ‖y − x‖2 .

Since c = z+y
2 ∈M (see Figure 18.2), we further have

‖(z − x) + (y − x)‖2 = ‖z + y − 2x‖2 = 4 ‖c− x‖2 ≥ 4δ2.

Combining the previous two displayed equations implies,

‖z − y‖2 + 4δ2 ≤ 2 ‖z − x‖2 + 2 ‖y − x‖2 . (18.4)

Uniqueness. If y, z ∈ M minimize the distance to x, then ‖y − x‖ = δ =
‖z − x‖ and it follows from Eq. (18.4) that y = z.

Existence. Let yn ∈M be chosen such that ‖yn−x‖ = δn → δ = d(x,M).
Taking y = ym and z = yn in Eq. (18.4) shows

‖yn − ym‖2 ≤ 2δ2
m + 2δ2

n − 4δ2 → 0 as m,n→∞.

Therefore, by completeness of H, {yn}∞n=1 is convergent. Because M is closed,
y := lim

n→∞
yn ∈M and because the norm is continuous,
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x

y

z

w

c

M

Fig. 18.2. In this figure y, z ∈M and by convexity, c = (z + y) /2 ∈M.

‖y − x‖ = lim
n→∞

‖yn − x‖ = δ = d(x,M).

So y is the desired point in M which is closest to x.
Orthogonality property. Now suppose M is a closed subspace of H and

x ∈ H. Let y ∈M be the closest point in M to x. Then for w ∈M, the function

g(t) := ‖x− (y + tw)‖2 = ‖x− y‖2 − 2tRe〈x− y|w〉+ t2‖w‖2

has a minimum at t = 0 and therefore 0 = g′(0) = −2Re〈x − y|w〉. Since
w ∈ M is arbitrary, this implies that (x− y) ⊥ M, see Figure 18.3. Finally

x− (y + tw)

tw

x− y

x

y

0 M

Fig. 18.3. The orthogonality relationships of closest points.

suppose y ∈ M is any point such that (x− y) ⊥ M. Then for z ∈ M, by
Pythagorean’s theorem,

‖x− z‖2 = ‖x− y + y − z‖2 = ‖x− y‖2 + ‖y − z‖2 ≥ ‖x− y‖2

which shows d(x,M)2 ≥ ‖x− y‖2. That is to say y is the point in M closest to
x.

Remark 18.10. If M is a finite dimensional subspace of H and and {ei}ni=1 is
an orthonormal basis for M, then (w := x−

∑n
i=1 〈x|ei〉 ei) ⊥M. Therefore,

‖x‖2 = ‖w‖2 +

∥∥∥∥∥
n∑
i=1

〈x|ei〉 ei

∥∥∥∥∥ = d2 (x,M) +
n∑
i=1

|〈x|ei〉|2 (18.5)

and

d2 (x,M) =
∥∥x2
∥∥− n∑

i=1

|〈x|ei〉|2 . (18.6)

Suppose u ∈ H \ {0} , M = span {u} , and û := u/ ‖u‖ . Then from Eq. (18.6),

0 ≤ d2 (x,M) =
∥∥x2
∥∥− |〈x|û〉|2 =

∥∥x2
∥∥− |〈x|u〉|2 / ‖u‖2

from which the Cauchy-Schwarz inequality,

|〈x|u〉|2 ≤ ‖x‖2
∥∥u2
∥∥

follows. Moreover the proof shows that equality holds iff x ∈M, i.e. x = λu for
some λ ∈ C.

Corollary 18.11. If M ⊂ H is a proper closed subspace of a Hilbert space H,
then H = M ⊕M⊥.

Proof. If x ∈ M ∩M⊥, then x ⊥ x, i.e. ‖x‖2 = 〈x|x〉 = 0. So M ∩M⊥ =
{0} . Given x ∈ H, let m ∈ M be the closest point in M to x in which case
x−m ∈M⊥, i.e. x = m+ (x−m) ∈M +M⊥.

Definition 18.12 (Orthogonal Projection). H be a Hilbert space and M ⊂
H be a closed subspace. The orthogonal projection of H onto M (denoted
by PM ) is the projection map associated to the direct sum decomposition, H =
M ⊕M⊥, i.e. PM

(
m+m⊥

)
= m for all m ∈M and m⊥ ∈M⊥. Alternatively

we may describe PM by either, 1) PMx is the unique element in M closest to
x or 2) PMx is the unique element in M such that (x − PMx) ⊥ M, i.e. such
that

〈x|m〉 = 〈PM (x)|m〉 for all m ∈M. (18.7)

Notation 18.13 (Range and Null Space) Given a linear transformation
A : V → W, we will let Ran (A) = {Av ∈W : v ∈ V } and Nul (A) =
{v ∈ V : Av − 0 ∈W} denote the range and the null-space of A respectively.

Theorem 18.14 (Projection Theorem). Let H be a Hilbert space and M ⊂
H be a closed subspace. The orthogonal projection PM satisfies:

1. PM is linear projection, i.e. P 2
M = PM .

2. Ran(PM ) = M and Nul(PM ) = M⊥.
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3. PM is self-adjoint, i.e. 〈PMx|y〉 = 〈x|PMy〉 for all x, y ∈ H.
4. If N ⊂ M ⊂ H is another closed subspace, the PNPM = PMPN = PN .

(Smallest subspace wins.)

Proof. Items 1. and 2. are standard facts of any projection associated to a
direct sum decomposition which in our case is H = M ⊕M⊥.

For item 3. Let x, y ∈ H, then since (x− PMx) and (y − PMy) are in M⊥,

〈PMx|y〉 = 〈PMx|PMy + y − PMy〉 = 〈PMx|PMy〉
= 〈PMx+ (x− PMx)|PMy〉 = 〈x|PMy〉.

Item 4. If N ⊂ M ⊂ H it is clear that PMPN = PN since PM = Id on
N = Ran(PN ) ⊂ M. To see that PNPM = PN , let x, y ∈ H and use item 3. to
find,

〈PNPMx, y〉 = 〈x, PMPNy〉 = 〈x, PNy〉 = 〈PNx, y〉 .

Since this holds for all y ∈ H we conclude that PNPMx = PNx for all x ∈ H.

Exercise 18.1. Suppose M is a subset of H, then M⊥⊥ = span(M) where (as
usual), span (M) denotes all finite linear combinations of elements from M.

Notation 18.15 If A : X → Y is a linear operator between two normed spaces,
we let

‖A‖ := sup
x∈X\{0}

‖Ax‖Y
‖x‖X

= sup
‖x‖X=1

‖Ax‖Y .

We refer to ‖A‖ as the operator norm of A and call A a bounded operator if
‖A‖ < ∞. We further let L (X,Y ) be the set of bounded operators from X to
Y.

Exercise 18.2. Show that a linear operator, A : X → Y, is a bounded iff it is
continuous.

Definition 18.16. Suppose that A : H → H is a bounded operator. The
adjoint of A, denoted A∗, is the unique operator A∗ : H → H such that
〈Ax|y〉 = 〈x|A∗y〉. (The proof that A∗ exists and is unique will be given in
Proposition 18.18 below.) A bounded operator A : H → H is self - adjoint or
Hermitian if A = A∗.

Theorem 18.17 (Riesz Theorem). Let H∗ be the dual space of H, i.e. f ∈
H∗ iff f : H → F is linear and continuous. The map

z ∈ H j−→ 〈·|z〉 ∈ H∗ (18.8)

is a conjugate linear1 isometric isomorphism, where for f ∈ H∗ we let,

‖f‖H∗ := sup
x∈H\{0}

|f (x)|
‖x‖

= sup
‖x‖=1

|f (x)| .

Proof. Let f ∈ H∗ and M =Nul(f) – a closed proper subspace of H since f
is continuous. If f = 0, then clearly f (·) = 〈·|0〉 . If f 6= 0 there exists y ∈ H\M.
Then for any α ∈ C we have e := α (y − PMy) ∈M⊥. We now choose α so that
f (e) = 1. Hence if x ∈ H,

f (x− f (x) e) = f (x)− f (x) f (e) = f (x)− f (x) = 0,

which shows x− f (x) e ∈M. As e ∈M⊥ it follows that

0 = 〈x− f (x) e|e〉 = 〈x|e〉 − f (x) ‖e‖2

which shows f (·) = 〈·|z〉 = jz where z := e/ ‖e‖2 and thus j is surjective.
The map j is conjugate linear by the axioms of the inner products. Moreover,

for x, z ∈ H,
|〈x|z〉| ≤ ‖x‖ ‖z‖ for all x ∈ H

with equality when x = z. This implies that ‖jz‖H∗ = ‖〈·|z〉‖H∗ = ‖z‖ . There-
fore j is isometric and this implies j is injective.

Proposition 18.18 (Adjoints). Let H and K be Hilbert spaces and A : H →
K be a bounded operator. Then there exists a unique bounded operator A∗ :
K → H such that

〈Ax|y〉K = 〈x|A∗y〉H for all x ∈ H and y ∈ K. (18.9)

Moreover, for all A,B ∈ L(H,K) and λ ∈ C,

1. (A+ λB)
∗

= A∗ + λ̄B∗,
2. A∗∗ := (A∗)∗ = A,
3. ‖A∗‖ = ‖A‖ and

4. ‖A∗A‖ = ‖A‖2 .
5. If K = H, then (AB)

∗
= B∗A∗. In particular A ∈ L (H) has a bounded

inverse iff A∗ has a bounded inverse and (A∗)
−1

=
(
A−1

)∗
.

1 Recall that j is conjugate linear if

j (z1 + αz2) = jz1 + ᾱjz2

for all z1, z2 ∈ H and α ∈ C.
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Proof. For each y ∈ K, the map x→ 〈Ax|y〉K is in H∗ and therefore there
exists, by Theorem 18.17, a unique vector z ∈ H (we will denote this z by
A∗ (y)) such that

〈Ax|y〉K = 〈x|z〉H for all x ∈ H.

This shows there is a unique map A∗ : K → H such that 〈Ax|y〉K = 〈x|A∗(y)〉H
for all x ∈ H and y ∈ K.

To see A∗ is linear, let y1, y2 ∈ K and λ ∈ C, then for any x ∈ H,

〈Ax|y1 + λy2〉K = 〈Ax|y1〉K + λ̄〈Ax|y2〉K
= 〈x|A∗(y1)〉K + λ̄〈x|A∗(y2)〉H
= 〈x|A∗(y1) + λA∗(y2)〉H

and by the uniqueness of A∗(y1 + λy2) we find

A∗(y1 + λy2) = A∗(y1) + λA∗(y2).

This shows A∗ is linear and so we will now write A∗y instead of A∗(y).
Since

〈A∗y|x〉H = 〈x|A∗y〉H = 〈Ax|y〉K = 〈y|Ax〉K
it follows that A∗∗ = A. The assertion that (A+ λB)

∗
= A∗ + λ̄B∗ is Exercise

18.3.
Items 3. and 4. Making use of Schwarz’s inequality (Theorem 18.2), we

have

‖A∗‖ = sup
k∈K:‖k‖=1

‖A∗k‖

= sup
k∈K:‖k‖=1

sup
h∈H:‖h‖=1

|〈A∗k|h〉|

= sup
h∈H:‖h‖=1

sup
k∈K:‖k‖=1

|〈k|Ah〉| = sup
h∈H:‖h‖=1

‖Ah‖ = ‖A‖

so that ‖A∗‖ = ‖A‖ . Since

‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2

and

‖A‖2 = sup
h∈H:‖h‖=1

‖Ah‖2 = sup
h∈H:‖h‖=1

|〈Ah|Ah〉|

= sup
h∈H:‖h‖=1

|〈h|A∗Ah〉| ≤ sup
h∈H:‖h‖=1

‖A∗Ah‖ = ‖A∗A‖ (18.10)

we also have ‖A∗A‖ ≤ ‖A‖2 ≤ ‖A∗A‖ which shows ‖A‖2 = ‖A∗A‖ .
Alternatively, from Eq. (18.10),

‖A‖2 ≤ ‖A∗A‖ ≤ ‖A‖ ‖A∗‖ (18.11)

which then implies ‖A‖ ≤ ‖A∗‖ . Replacing A by A∗ in this last inequality
shows ‖A∗‖ ≤ ‖A‖ and hence that ‖A∗‖ = ‖A‖ . Using this identity back in

Eq. (18.11) proves ‖A‖2 = ‖A∗A‖ .
Now suppose that K = H. Then

〈ABh|k〉 = 〈Bh|A∗k〉 = 〈h|B∗A∗k〉

which shows (AB)
∗

= B∗A∗. If A−1 exists then(
A−1

)∗
A∗ =

(
AA−1

)∗
= I∗ = I and

A∗
(
A−1

)∗
=
(
A−1A

)∗
= I∗ = I.

This shows that A∗ is invertible and (A∗)
−1

=
(
A−1

)∗
. Similarly if A∗ is

invertible then so is A = A∗∗.

Exercise 18.3. Let H,K,M be Hilbert spaces, A,B ∈ L(H,K), C ∈ L(K,M)
and λ ∈ C. Show (A+ λB)

∗
= A∗ + λ̄B∗ and (CA)

∗
= A∗C∗ ∈ L(M,H).

Exercise 18.4. Let H = Cn and K = Cm equipped with the usual inner
products, i.e. 〈z|w〉H = z · w̄ for z, w ∈ H. Let A be an m×n matrix thought of
as a linear operator from H to K. Show the matrix associated to A∗ : K → H
is the conjugate transpose of A.

Lemma 18.19. Suppose A : H → K is a bounded operator, then:

1. Nul(A∗) = Ran(A)⊥.
2. Ran(A) = Nul(A∗)⊥.
3. if K = H and V ⊂ H is an A – invariant subspace (i.e. A(V ) ⊂ V ), then
V ⊥ is A∗ – invariant.

Proof. An element y ∈ K is in Nul(A∗) iff 0 = 〈A∗y|x〉 = 〈y|Ax〉 for all
x ∈ H which happens iff y ∈ Ran(A)⊥. Because, by Exercise 18.1, Ran(A) =
Ran(A)⊥⊥, and so by the first item, Ran(A) = Nul(A∗)⊥. Now suppose A(V ) ⊂
V and y ∈ V ⊥, then

〈A∗y|x〉 = 〈y|Ax〉 = 0 for all x ∈ V

which shows A∗y ∈ V ⊥.
The next elementary theorem (referred to as the bounded linear transfor-

mation theorem, or B.L.T. theorem for short) is often useful.

Theorem 18.20 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach space, and S ⊂ Z is a dense linear subspace of Z. If T : S → X is a
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bounded linear transformation (i.e. there exists C <∞ such that ‖Tz‖ ≤ C ‖z‖
for all z ∈ S), then T has a unique extension to an element T̄ ∈ L(Z,X) and
this extension still satisfies∥∥T̄ z∥∥ ≤ C ‖z‖ for all z ∈ S̄.

Proof. Let z ∈ Z and choose zn ∈ S such that zn → z. Since

‖Tzm − Tzn‖ ≤ C ‖zm − zn‖ → 0 as m,n→∞,

it follows by the completeness of X that limn→∞ Tzn =: T̄ z exists. Moreover,
if wn ∈ S is another sequence converging to z, then

‖Tzn − Twn‖ ≤ C ‖zn − wn‖ → C ‖z − z‖ = 0

and therefore T̄ z is well defined. It is now a simple matter to check that T̄ :
Z → X is still linear and that∥∥T̄ z∥∥ = lim

n→∞
‖Tzn‖ ≤ lim

n→∞
C ‖zn‖ = C ‖z‖ for all x ∈ Z.

Thus T̄ is an extension of T to all of the Z. The uniqueness of this extension is
easy to prove and will be left to the reader.

18.1 Compactness Results for Lp – Spaces*

In this section we are going to identify the sequentially “weak” compact subsets
of Lp (Ω,B, P ) for 1 ≤ p <∞, where (Ω,B, P ) is a probability space. The key
to our proofs will be the following Hilbert space compactness result.

Theorem 18.21. Suppose {xn}∞n=1 is a bounded sequence in a Hilbert space H
(i.e. C := supn ‖xn‖ <∞), then there exists a sub-sequence, yk := xnk and an
x ∈ H such that limk→∞ 〈yk|h〉 = 〈x|h〉 for all h ∈ H. We say that yk converges

to x weakly in this case and denote this by yk
w→ x.

Proof. Let H0 := span(xk : k ∈ N). Then H0 is a closed separable Hilbert
subspace of H and {xk}∞k=1 ⊂ H0. Let {hn}∞n=1 be a countable dense subset of
H0. Since |〈xk|hn〉| ≤ ‖xk‖ ‖hn‖ ≤ C ‖hn‖ <∞, the sequence, {〈xk|hn〉}∞k=1 ⊂
C, is bounded and hence has a convergent sub-sequence for all n ∈ N. By the
Cantor’s diagonalization argument we can find a a sub-sequence, yk := xnk , of
{xn} such that limk→∞ 〈yk|hn〉 exists for all n ∈ N.

We now show ϕ (z) := limk→∞ 〈yk|z〉 exists for all z ∈ H0. Indeed, for any
k, l, n ∈ N, we have

|〈yk|z〉 − 〈yl|z〉| = |〈yk − yl|z〉| ≤ |〈yk − yl|hn〉|+ |〈yk − yl|z − hn〉|
≤ |〈yk − yl|hn〉|+ 2C ‖z − hn‖ .

Letting k, l→∞ in this estimate then shows

lim sup
k,l→∞

|〈yk|z〉 − 〈yl|z〉| ≤ 2C ‖z − hn‖ .

Since we may choose n ∈ N such that ‖z − hn‖ is as small as we please, we may
conclude that lim supk,l→∞ |〈yk|z〉 − 〈yl|z〉| , i.e. ϕ (z) := limk→∞ 〈yk|z〉 exists.

The function, ϕ̄ (z) = limk→∞ 〈z|yk〉 is a bounded linear functional on H
because

|ϕ̄ (z)| = lim inf
k→∞

|〈z|yk〉| ≤ C ‖z‖ .

Therefore by the Riesz Theorem 18.17, there exists x ∈ H0 such that ϕ̄ (z) =
〈z|x〉 for all z ∈ H0. Thus, for this x ∈ H0 we have shown

lim
k→∞

〈yk|z〉 = 〈x|z〉 for all z ∈ H0. (18.12)

To finish the proof we need only observe that Eq. (18.12) is valid for all
z ∈ H. Indeed if z ∈ H, then z = z0 + z1 where z0 = PH0

z ∈ H0 and z1 =
z − PH0z ∈ H⊥0 . Since yk, x ∈ H0, we have

lim
k→∞

〈yk|z〉 = lim
k→∞

〈yk|z0〉 = 〈x|z0〉 = 〈x|z〉 for all z ∈ H.

Since unbounded subsets of H are clearly not sequentially weakly compact,
Theorem 18.21 states that a set is sequentially precompact inH iff it is bounded.
Let us now use Theorem 18.21 to identify the sequentially compact subsets of
Lp (Ω,B, P ) for all 1 ≤ p <∞. We begin with the case p = 1.

Theorem 18.22. If {Xn}∞n=1 is a uniformly integrable subset of L1 (Ω,B, P ) ,
there exists a subsequence Yk := Xnk of {Xn}∞n=1 and X ∈ L1 (Ω,B, P ) such
that

lim
k→∞

E [Ykh] = E [Xh] for all h ∈ Bb. (18.13)

Proof. For each m ∈ N let Xm
n := Xn1|Xn|≤m. The truncated sequence

{Xm
n }
∞
n=1 is a bounded subset of the Hilbert space, L2 (Ω,B, P ) , for all m ∈ N.

Therefore by Theorem 18.21, {Xm
n }
∞
n=1 has a weakly convergent sub-sequence

for all m ∈ N. By Cantor’s diagonalization argument, we can find Y mk := Xm
nk

and Xm ∈ L2 (Ω,B, P ) such that Y mk
w→ Xm as m→∞ and in particular

lim
k→∞

E [Y mk h] = E [Xmh] for all h ∈ Bb.
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Our next goal is to show Xm → X in L1 (Ω,B, P ) . To this end, for m < M
and h ∈ Bb we have∣∣E [(XM −Xm

)
h
]∣∣ = lim

k→∞

∣∣E [(YMk − Y mk )h]∣∣ ≤ lim inf
k→∞

E
[∣∣YMk − Y mk ∣∣ |h|]

≤ ‖h‖∞ · lim inf
k→∞

E [|Yk| : M ≥ |Yk| > m]

≤ ‖h‖∞ · lim inf
k→∞

E [|Yk| : |Yk| > m] .

Taking h = sgn(XM −Xm) in this inequality shows

E
[∣∣XM −Xm

∣∣] ≤ lim inf
k→∞

E [|Yk| : |Yk| > m]

with the right member of this inequality going to zero as m,M → ∞ with
M ≥ m by the assumed uniform integrability of the {Xn} . Therefore there
exists X ∈ L1 (Ω,B, P ) such that limm→∞ E |X −Xm| = 0.

We are now ready to verify Eq. (18.13) is valid. For h ∈ Bb,

|E [(X − Yk)h]| ≤ |E [(Xm − Y mk )h]|+ |E [(X −Xm)h]|+ |E [(Yk − Y mk )h]|
≤ |E [(Xm − Y mk )h]|+ ‖h‖∞ · (E [|X −Xm|] + E [|Yk| : |Yk| > m])

≤ |E [(Xm − Y mk )h]|+ ‖h‖∞ ·
(
E [|X −Xm|] + sup

l
E [|Yl| : |Yl| > m]

)
.

Passing to the limit as k →∞ in the above inequality shows

lim sup
k→∞

|E [(X − Yk)h]| ≤ ‖h‖∞ ·
(
E [|X −Xm|] + sup

l
E [|Yl| : |Yl| > m]

)
.

Since Xm → X in L1 and supl E [|Yl| : |Yl| > m] → 0 by uniform integrability,
it follows that, lim supk→∞ |E [(X − Yk)h]| = 0.

Example 18.23. Let (Ω,B, P ) =
(
(0, 1) ,B(0,1),m

)
where m is Lebesgue measure

and let Xn (ω) = 2n10<ω<2−n . Then EXn = 1 for all n and hence {Xn}∞n=1 is
bounded in L1 (Ω,B, P ) (but is not uniformly integrable). Suppose for sake of
contradiction that there existed X ∈ L1 (Ω,B, P ) and subsequence, Yk := Xnk

such that Yk
w→ X. Then for h ∈ Bb and any ε > 0 we would have

E
[
Xh1(ε,1)

]
= lim
k→∞

E
[
Ykh1(ε,1)

]
= 0.

Then by DCT it would follow that E [Xh] = 0 for all h ∈ Bb and hence that
X ≡ 0. On the other hand we would also have

0 = E [X · 1] = lim
k→∞

E [Yk · 1] = 1

and we have reached the desired contradiction. Hence we must conclude that
bounded subset of L1 (Ω,B, P ) need not be weakly compact and thus we can
not drop the uniform integrability assumption made in Theorem 18.22.

When 1 < p <∞, the situation is simpler.

Theorem 18.24. Let p ∈ (1,∞) and q = p (p− 1)
−1 ∈ (1,∞) be its conjugate

exponent. If {Xn}∞n=1 is a bounded sequence in Lp (Ω,B, P ) , there exists X ∈
Lp (Ω,B, P ) and a subsequence Yk := Xnk of {Xn}∞n=1 such that

lim
k→∞

E [Ykh] = E [Xh] for all h ∈ Lq (Ω,B, P ) . (18.14)

Proof. Let C := supn∈N ‖Xn‖p < ∞ and recall that Lemma 17.58 guar-

antees that {Xn}∞n=1 is a uniformly integrable subset of L1 (Ω,B, P ) . There-
fore by Theorem 18.22, there exists X ∈ L1 (Ω,B, P ) and a subsequence,
Yk := Xnk , such that Eq. (18.13) holds. We will complete the proof by showing;
a) X ∈ Lp (Ω,B, P ) and b) and Eq. (18.14) is valid.

a) For h ∈ Bb we have

|E [Xh]| ≤ lim inf
k→∞

E [|Ykh|] ≤ lim inf
k→∞

‖Yk‖p · ‖h‖q ≤ C ‖h‖q .

For M <∞, taking h = sgn(X) |X|p−1
1|X|≤M in the previous inequality shows

E
[
|X|p 1|X|≤M

]
≤ C

∥∥∥sgn(X) |X|p−1
1|X|≤M

∥∥∥
q

= C
(
E
[
|X|(p−1)q

1|X|≤M

])1/q

≤ C
(
E
[
|X|p 1|X|≤M

])1/q
from which it follows that(

E
[
|X|p 1|X|≤M

])1/p ≤ (E [|X|p 1|X|≤M
])1−1/q ≤ C.

Using the monotone convergence theorem, we may let M →∞ in this equation

to find ‖X‖p = (E [|X|p])1/p ≤ C <∞.
b) Now that we know X ∈ Lp (Ω,B, P ) , in make sense to consider

E [(X − Yk)h] for all h ∈ Lp (Ω,B, P ) . For M <∞, let hM := h1|h|≤M , then

|E [(X − Yk)h]| ≤
∣∣E [(X − Yk)hM

]∣∣+
∣∣E [(X − Yk)h1|h|>M

]∣∣
≤
∣∣E [(X − Yk)hM

]∣∣+ ‖X − Yk‖p
∥∥h1|h|>M

∥∥
q

≤
∣∣E [(X − Yk)hM

]∣∣+ 2C
∥∥h1|h|>M

∥∥
q
.

Since hM ∈ Bb, we may pass to the limit k → ∞ in the previous inequality to
find,

lim sup
k→∞

|E [(X − Yk)h]| ≤ 2C
∥∥h1|h|>M

∥∥
q
.

This completes the proof, since
∥∥h1|h|>M

∥∥
q
→ 0 as M →∞ by DCT.
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18.2 Exercises

Exercise 18.5. Suppose that {Mn}∞n=1 is an increasing sequence of closed sub-
spaces of a Hilbert space, H. Let M be the closure of M0 := ∪∞n=1Mn. Show
limn→∞ PMn

x = PMx for all x ∈ H. Hint: first prove this for x ∈M0 and then
for x ∈M. Also consider the case where x ∈M⊥.

Exercise 18.6 (A “Martingale” Convergence Theorem). Suppose that
{Mn}∞n=1 is an increasing sequence of closed subspaces of a Hilbert space, H,
Pn := PMn

, and {xn}∞n=1 is a sequence of elements from H such that xn =
Pnxn+1 for all n ∈ N. Show;

1. Pmxn = xm for all 1 ≤ m ≤ n <∞,
2. (xn − xm) ⊥Mm for all n ≥ m,
3. ‖xn‖ is increasing as n increases,
4. if supn ‖xn‖ = limn→∞ ‖xn‖ < ∞, then x := limn→∞ xn exists in M and

that xn = Pnx for all n ∈ N. (Hint: show {xn}∞n=1 is a Cauchy sequence.)

Remark 18.25. Let H = `2 := L2 (N, counting measure),

Mn = {(a (1) , . . . , a (n) , 0, 0, . . . ) : a (i) ∈ C for 1 ≤ i ≤ n} ,

and xn (i) = 1i≤n, then xm = Pmxn for all n ≥ m while ‖xn‖2 = n ↑ ∞ as
n→∞. Thus, we can not drop the assumption that supn ‖xn‖ <∞ in Exercise
18.6.

The rest of this section may be safely skipped.

Exercise 18.7. *Suppose that (X, ‖·‖) is a normed space such that parallelo-
gram law, Eq. (18.2), holds for all x, y ∈ X, then there exists a unique inner
product on 〈·|·〉 such that ‖x‖ :=

√
〈x|x〉 for all x ∈ X. In this case we say that

‖·‖ is a Hilbertian norm.
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Conditional Expectation

In this section let (Ω,B, P ) be a probability space and G ⊂ B be a sub –
sigma algebra of B. We will write f ∈ Gb iff f : Ω → C is bounded and f is
(G,BC) – measurable. If A ∈ B and P (A) > 0, we will let

E [X|A] :=
E [X : A]

P (A)
and P (B|A) := E [1B |A] :=

P (A ∩B)

P (A)

for all integrable random variables, X, and B ∈ B. We will often use the fac-
torization Lemma 9.42 in this section. Because of this let us repeat it here.

Lemma 19.1. Suppose that (Y,F) is a measurable space and Y : Ω → Y is a
map. Then to every (σ(Y ),BR̄) – measurable function, H : Ω → R̄, there is a
(F ,BR̄) – measurable function h : Y→ R̄ such that H = h ◦ Y.

Proof. First suppose that H = 1A where A ∈ σ(Y ) = Y −1(F). Let B ∈ F
such that A = Y −1(B) then 1A = 1Y −1(B) = 1B ◦ Y and hence the lemma
is valid in this case with h = 1B . More generally if H =

∑
ai1Ai is a simple

function, then there exists Bi ∈ F such that 1Ai = 1Bi ◦Y and hence H = h◦Y
with h :=

∑
ai1Bi – a simple function on R̄.

For a general (F ,BR̄) – measurable function, H, from Ω → R̄, choose simple
functions Hn converging to H. Let hn : Y → R̄ be simple functions such that
Hn = hn ◦ Y. Then it follows that

H = lim
n→∞

Hn = lim sup
n→∞

Hn = lim sup
n→∞

hn ◦ Y = h ◦ Y

where h := lim sup
n→∞

hn – a measurable function from Y to R̄.

Definition 19.2 (L2 – Conditional Expectation). Let EG : L2(Ω,B, P )→
L2(Ω,G, P ) denote orthogonal projection of L2(Ω,B, P ) onto the closed sub-
space L2(Ω,G, P ). For f ∈ L2(Ω,B, P ), we say that EGf ∈ L2(Ω,G, P ) is the
conditional expectation of f given G.

Remark 19.3 (Basic Properties of EG). Some remarks on this definition are in
order. Let f ∈ L2(Ω,B, P ).

1. We are identifying L2(Ω,G, P ) with its image,

M :=
{

[g]L2(Ω,B,P ) : g ∈ L2(Ω,G, P )
}
,

in L2(Ω,B, P ). From Lemma 17.27 we know that M is a closed subspace
of L2(Ω,B, P ).

2. Thus given f ∈ L2(Ω,B, P ), we may compute the orthogonal projection
(Theorem 18.14) onto M , PM [f ]L2(Ω,B,P ) , of [f ]L2(Ω,B,P ) . By definition

of M, PM [f ]L2(Ω,B,P ) = [F ]L2(Ω,G,P ) for some F ∈ L2(Ω,G, P ) which is
uniquely determined up to sets of measure 0. We will usually abuse notation
and write F = EGf when this holds. [Please note: in general for any fixed
ω ∈ Ω, (EGf) (ω) is not well defined unless P ({ω}) > 0. It is only then that
one can guarantee that F (ω) = F̃ (ω) if F = F̃ a.s.]

3. By the orthogonal projection Theorem 18.14) we know that F ∈ L2(Ω,G, P )
is EGf a.s. iff either of the following two conditions hold;

a) ‖f − F‖2 ≤ ‖f − g‖2 for all g ∈ L2(Ω,G, P ) or
b) E [fh] = E [Fh] for all h ∈ L2(Ω,G, P ).

4. L1 (P ) – contractivity: E |EGf | ≤ E |f | for all f ∈ L2(Ω,B, P ). To prove

this, let F := EGf (i.e. F is a version of EGf) and take h := 1F 6=0
F̄
F in item

3b. above to find;

E [|F |] = E
[
F1F 6=0

F̄

F

]
= E [fh] ≤ E [|fh|] ≤ E |f | .

5. Moreover if G0 ⊂ G1 ⊂ B then L2(Ω,G0, P ) ⊂ L2(Ω,G1, P ) ⊂ L2(Ω,B, P )
and therefore by Theorem 18.14,

EG0EG1f = EG1EG0f = EG0f a.s. for all f ∈ L2 (Ω,B, P ) . (19.1)

Lemma 19.4. If f ∈ L2(Ω,B, P ) and F ∈ L2(Ω,G, P ) then the following are
equivalent;

E [f : A] = E [F : A] for all A ∈ G, (19.2)

E [fh] = E [Fh] for all h ∈ Gb, and (19.3)

F = EGf a.s.

Proof. If Eq. (19.2) holds, then by linearity we have E [fh] = E [Fh] for all
G – measurable simple functions, h and hence by the approximation Theorem
9.41 and the DCT for all h ∈ Gb. Therefore Eq. (19.2) implies Eq. (19.3). If Eq.
(19.3) holds and h ∈ L2(Ω,G, P ), we may use DCT to show
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E [fh]
DCT
= lim

n→∞
E
[
fh1|h|≤n

] (19.3)
= lim

n→∞
E
[
Fh1|h|≤n

] DCT
= E [Fh] ,

by Condition 3b of Remark 19.3 shows F = EGf a.s.. Taking h = 1A with
A ∈ G Condition 3b. or Remark 19.3, we learn that Eq. (19.2) is satisfied as
well.

Theorem 19.5. Let (Ω,B, P ) and G ⊂ B be as above and let f, g ∈ L1(Ω,B, P ).
The operator EG : L2(Ω,B, P )→ L2(Ω,G, P ) extends uniquely to a linear con-
traction from L1(Ω,B, P ) to L1(Ω,G, P ). This extension enjoys the following
properties;

1. If f ≥ 0, P – a.s. then EGf ≥ 0, P – a.s.
2. Monotonicity. If f ≥ g, P – a.s. there EGf ≥ EGg, P – a.s.
3. L∞ – contraction property. |EGf | ≤ EG |f | , P – a.s.
4. Averaging Property. If f ∈ L1(Ω,B, P ) then F = EGf iff F ∈
L1(Ω,G, P ) and

E(Fh) = E(fh) for all h ∈ Gb. (19.4)

5. Pull out property or product rule. If g ∈ Gb and f ∈ L1(Ω,B, P ), then
EG(gf) = g · EGf, P – a.s.

6. Tower or smoothing property. If G0 ⊂ G1 ⊂ B. Then

EG0
EG1

f = EG1
EG0

f = EG0
f a.s. for all f ∈ L1 (Ω,B, P ) . (19.5)

Proof. By the definition of orthogonal projection, f ∈ L2 (Ω,B, P ) and
h ∈ Gb,

E(fh) = E(f · EGh) = E(EGf · h). (19.6)

Taking

h = sgn (EGf) :=
EGf
EGf

1|EGf |>0 (19.7)

in Eq. (19.6) shows

E(|EGf |) = E(EGf · h) = E(fh) ≤ E(|fh|) ≤ E(|f |). (19.8)

It follows from this equation and the BLT (Theorem 18.20) that EG extends
uniquely to a contraction form L1(Ω,B, P ) to L1(Ω,G, P ). Moreover, by a sim-
ple limiting argument, Eq. (19.6) remains valid for all f ∈ L1 (Ω,B, P ) and
h ∈ Gb. Indeed, (without reference to Theorem 18.20) if fn := f1|f |≤n ∈
L2 (Ω,B, P ) , then fn → f in L1(Ω,B, P ) and hence

E [|EGfn − EGfm|] = E [|EG (fn − fm)|] ≤ E [|fn − fm|]→ 0 as m,n→∞.

By the completeness of L1(Ω,G, P ), F := L1(Ω,G, P )-limn→∞ EGfn exists.
Moreover the function F satisfies,

E(F · h) = E( lim
n→∞

EGfn · h) = lim
n→∞

E(fn · h) = E(f · h) (19.9)

for all h ∈ Gb and by Proposition 10.23 there is at most one, F ∈ L1(Ω,G, P ),
which satisfies Eq. (19.9). We will again denote F by EGf. This proves the
existence and uniqueness of F satisfying the defining relation in Eq. (19.4) of
item 4. The same argument used in Eq. (19.8) again shows E |F | ≤ E |f | and
therefore that EG : L1 (Ω,B, P )→ L1 (Ω,G, P ) is a contraction.

Items 1 and 2. If f ∈ L1 (Ω,B, P ) with f ≥ 0, then

E(EGf · h) = E(fh) ≥ 0 ∀ h ∈ Gb with h ≥ 0. (19.10)

An application of Lemma 10.24 then shows that EGf ≥ 0 a.s.1 The proof of
item 2. follows by applying item 1. with f replaced by f − g ≥ 0.

Item 3. If f is real, ±f ≤ |f | and so by Item 2., ±EGf ≤ EG |f | , i.e.
|EGf | ≤ EG |f | , P – a.s. For complex f, let h ≥ 0 be a bounded and G –
measurable function. Then

E [|EGf |h] = E
[
EGf · sgn (EGf)h

]
= E

[
f · sgn (EGf)h

]
≤ E [|f |h] = E [EG |f | · h] .

Since h ≥ 0 is an arbitrary G – measurable function, it follows, by Lemma 10.24,
that |EGf | ≤ EG |f | , P – a.s. Recall the item 4. has already been proved.

Item 5. If h, g ∈ Gb and f ∈ L1 (Ω,B, P ) , then

E [(gEGf)h] = E [EGf · hg] = E [f · hg] = E [gf · h] = E [EG (gf) · h] .

Thus EG (gf) = g · EGf, P – a.s.
Item 6., by the item 5. of the projection Theorem 18.14, Eq. (19.5) holds

on L2(Ω,B, P ). By continuity of conditional expectation on L1 (Ω,B, P ) and
the density of L1 probability spaces in L2 – probability spaces shows that Eq.
(19.5) continues to hold on L1(Ω,B, P ).

Second Proof. For h ∈ (G0)b , we have

E [EG0EG1f · h] = E [EG1f · h] = E [f · h] = E [EG0f · h]

which shows EG0
EG1

f = EG0
f a.s. By the product rule in item 5., it also follows

that
EG1 [EG0f ] = EG1 [EG0f · 1] = EG0f · EG1 [1] = EG0f a.s.

Notice that EG1 [EG0f ] need only be G1 – measurable. What the statement says
there are representatives of EG1 [EG0f ] which is G0 – measurable and any such
representative is also a representative of EG0

f.

1 This can also easily be proved directly here by taking h = 1EGf<0 in Eq. (19.10).
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Remark 19.6. There is another standard construction of EGf based on the char-
acterization in Eq. (19.4) and the Radon Nikodym Theorem 20.8 below. It goes
as follows, for 0 ≤ f ∈ L1 (P ) , letQ be the measure defined by dQ := fdP. Then
Q|G � P |G and hence there exists 0 ≤ g ∈ L1 (Ω,G, P ) such that dQ|G = gdP |G .
This then implies that∫

A

fdP = Q (A) =

∫
A

gdP for all A ∈ G,

i.e. g = EGf. For general real valued, f ∈ L1 (P ) , define EGf = EGf+ − EGf−
and then for complex f ∈ L1 (P ) let EGf = EG Re f + iEG Im f.

Notation 19.7 In the future, we will often write EGf as E [f |G] . Moreover,
if (X,M) is a measurable space and X : Ω → X is a measurable map.
We will often simply denote E [f |σ (X)] simply by E [f |X] . We will further
let P (A|G) := E [1A|G] be the conditional probability of A given G, and
P (A|X) := P (A|σ (X)) be conditional probability of A given X.

Exercise 19.1. Suppose f ∈ L1 (Ω,B, P ) and f > 0 a.s. Show E [f |G] > 0 a.s.
(i.e. show g > 0 a.s. for any version, g, of E [f |G] .) Use this result to conclude if
f ∈ (a, b) a.s. for some a, b such that −∞ ≤ a < b ≤ ∞, then E [f |G] ∈ (a, b) a.s.
More precisely you are to show that any version, g, of E [f |G] satisfies, g ∈ (a, b)
a.s.

19.1 Examples

Example 19.8. Suppose G is the trivial σ – algebra, i.e. G = {∅, Ω} . In this case
EGf = Ef a.s.

Example 19.9. On the opposite extreme, if G = B, then EGf = f a.s.

Exercise 19.2 (Exercise 5.13 revisited.). Suppose (Ω,B, P ) is a probability
space and P := {Ai}∞i=1 ⊂ B is a partition of Ω. (Recall this means Ω =∑∞
i=1Ai.) Let G be the σ – algebra generated by P. Show:

1. B ∈ G iff B = ∪i∈ΛAi for some Λ ⊂ N.
2. g : Ω → R is G – measurable iff g =

∑∞
i=1 λi1Ai for some λi ∈ R.

3. For f ∈ L1(Ω,B, P ), let E [f |Ai] := E [1Aif ] /P (Ai) if P (Ai) 6= 0 and
E [f |Ai] = 0 otherwise. Show

EGf =

∞∑
i=1

E [f |Ai] 1Ai a.s. (19.11)

Example 19.10. If S is a countable or finite set equipped with the σ – algebra,
2S , and X : Ω → S is a measurable map. Then

E [Z|X] =
∑
s∈S

E [Z|X = s] 1X=s a.s.

where by convention we set E [Z|X = s] = 0 if P (X = s) = 1. This is an
immediate consequence of Exercise 19.2 with G = σ (X) which is generated by
the partition, {X = s} for s ∈ S. Thus if we define F (s) := E [Z|X = s] , we
will have E [Z|X] = F (X) a.s.

Lemma 19.11. Suppose (X,M) is a measurable space, X : Ω → X is a mea-
surable function, and G is a sub-σ-algebra of B. If X is independent of G and
f : X → R is a measurable function such that f (X) ∈ L1 (Ω,B, P ) , then
EG [f (X)] = E [f (X)] a.s.. Conversely if EG [f (X)] = E [f (X)] a.s. for all
bounded measurable functions, f : X→ R, then X is independent of G.

Proof. Suppose that X is independent of G, f : X → R is a measurable
function such that f (X) ∈ L1 (Ω,B, P ) , µ := E [f (X)] , and A ∈ G. Then, by
independence,

E [f (X) : A] = E [f (X) 1A] = E [f (X)]E [1A] = E [µ1A] = E [µ : A] .

Therefore EG [f (X)] = µ = E [f (X)] a.s.
Conversely if EG [f (X)] = E [f (X)] = µ and A ∈ G, then

E [f (X) 1A] = E [f (X) : A] = E [µ : A] = µE [1A] = E [f (X)]E [1A] .

Since this last equation is assumed to hold true for all A ∈ G and all bounded
measurable functions, f : X→ R, X is independent of G.

The following remark is often useful in computing conditional expectations.
The following Exercise should help you gain some more intuition about condi-
tional expectations.

Remark 19.12 (Note well.). According to Lemma 19.1, E (f |X) = f̃ (X) a.s.
for some measurable function, f̃ : X → R. So computing E (f |X) = f̃ (X) is
equivalent to finding a function, f̃ : X→ R, such that

E [f · h (X)] = E
[
f̃ (X)h (X)

]
(19.12)

for all bounded and measurable functions, h : X → R. “The” function, f̃ :
X → R, is often denoted by writing f̃ (x) = E (f |X = x). If P (X = x) >
0, then E (f |X = x) = E (f : X = x) /P (X = x) consistent with our previous
definitions – compare with Example 19.10. If P (X = x) = 0, E (f |X = x) is not
given a value but is just a convenient notational way to denote a function f̃ :
X→ R such that Eq. (19.12) holds. (Roughly speaking, you should think that
E (f |X = x) = E [f · δx (X)] /E [δx (X)] where δx is the “Dirac delta function”
at x. If this last comment is confusing to you, please ignore it!)
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Example 19.13. Suppose that X is a random variable, t ∈ R and f : R→ R
is a measurable function such that f (X) ∈ L1 (P ) . We wish to compute
E [f (X) |X ∧ t] = h (X ∧ t) . So we are looking for a function, h : (−∞, t]→ R
such that

E [f (X)u (X ∧ t)] = E [h (X ∧ t)u (X ∧ t)] (19.13)

for all bounded measurable functions, u : (−∞, t]→ R. Taking u = 1{t} in Eq.
(19.13) implies,

E [f (X) : X ≥ t] = h (t)P (X ≥ t)

and therefore we should take,

h (t) = E [f (X) |X ≥ t]

which by convention we set to be (say) zero if P (X ≥ t) = 0. Now suppose that
u (t) = 0, then Eq. (12.6) becomes,

E [f (X)u (X) : X < t] = E [h (X)u (X) : X < t]

from which it follows that f (X) 1X<t = h (X) 1X<t a.s. Thus we can take

h (x) :=

{
f (x) if x < t

E [f (X) |X ≥ t] if x = t

and we have shown,

E [f (X) |X ∧ t] = 1X<tf (X) + 1X≥tE [f (X) |X ≥ t]
= 1X∧t<tf (X) + 1X∧t=tE [f (X) |X ≥ t] .

Exercise 19.3. Let (Ω,B, P ) be a probability space, (X,M) and (Y,N ) be
measurable spaces, X : Ω → X and Y : Ω → Y be measurable functions.
Let (X,M), (Y,N ) be measurable spaces, (Ω,F , P ) a probability space, and
X : Ω → X and Y : Ω → Y be measurable functions. Further assume that
G ⊂ F be a σ–algebra such that X is G/M – measurable and Y is independent
of G. Then for any bounded (M⊗N ,BR) – measurable function f : X×Y→ R
we have

E[f(X,Y )|G] = hf (X) = E [f (x, Y )] |x=X a.s. (19.14)

where if µ := LawP (Y ) ,

hf (x) := E [f (x, Y )] =

∫
Y
f (x, y) dµ (y) . (19.15)

[This exercise is essentially a special case of Exercise 19.5 below.]

Proposition 19.14. Suppose that (Ω,B, P ) is a probability space, (X,M, µ)
and (Y,N , ν) are two σ – finite measure spaces, X : Ω → X and Y : Ω → Y
are measurable functions, and there exists 0 ≤ ρ ∈ L1(Ω,B, µ ⊗ ν) such that
P ((X,Y ) ∈ U) =

∫
U
ρ (x, y) dµ (x) dν (y) for all U ∈M⊗N . Let

ρ̄ (x) :=

∫
Y
ρ (x, y) dν (y) (19.16)

and x ∈ X and B ∈ N , let

Q (x,B) :=

{ 1
ρ̄(x)

∫
B
ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)

δy0
(B) if ρ̄ (x) ∈ {0,∞} (19.17)

where y0 is some arbitrary but fixed point in Y. Then for any bounded (or non-
negative) measurable function, f : X× Y→ R, we have

E [f (X,Y ) |X] = Q (X, f (X, ·)) =:

∫
Y
f (X, y)Q (X, dy) = g (X) a.s. (19.18)

where,

g (x) :=

∫
Y
f (x, y)Q (x, dy) = Q (x, f (x, ·)) .

As usual we use the notation,

Q (x, v) :=

∫
Y
v (y)Q (x, dy) =

{ 1
ρ̄(x)

∫
Y v (y) ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)

δy0
(v) = v (y0) if ρ̄ (x) ∈ {0,∞} .

for all bounded measurable functions, v : Y→ R.

Proof. Our goal is to compute E [f (X,Y ) |X] . According to Remark 19.12,
we are searching for a bounded measurable function, g : X→ R, such that

E [f (X,Y )h (X)] = E [g (X)h (X)] for all h ∈Mb. (19.19)

(Throughout this argument we are going to repeatedly use the Tonelli - Fubini
theorems.) We now explicitly write out both sides of Eq. (19.19);

E [f (X,Y )h (X)] =

∫
X×Y

h (x) f (x, y) ρ (x, y) dµ (x) dν (y)

=

∫
X
h (x)

[∫
Y
f (x, y) ρ (x, y) dν (y)

]
dµ (x) (19.20)

E [g (X)h (X)] =

∫
X×Y

h (x) g (x) ρ (x, y) dµ (x) dν (y)

=

∫
X
h (x) g (x) ρ̄ (x) dµ (x) . (19.21)
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Since the right sides of Eqs. (19.20) and (19.21) must be equal for all h ∈Mb,
we must demand (see Lemma 10.24 and 10.25) that∫

Y
f (x, y) ρ (x, y) dν (y) = g (x) ρ̄ (x) for µ – a.e. x. (19.22)

There are two possible problems in solving this equation for g (x) at a particular
point x; the first is when ρ̄ (x) = 0 and the second is when ρ̄ (x) =∞. Since∫

X
ρ̄ (x) dµ (x) =

∫
X

[∫
Y
ρ (x, y) dν (y)

]
dµ (x) = 1,

we know that ρ̄ (x) < ∞ for µ – a.e. x and therefore it does not matter how g
is defined on {ρ̄ =∞} as long as it is measurable. If

0 = ρ̄ (x) =

∫
Y
ρ (x, y) dν (y) ,

then ρ (x, y) = 0 for ν – a.e. y and therefore,∫
Y
f (x, y) ρ (x, y) dν (y) = 0. (19.23)

Hence Eq. (19.22) will be valid no matter how we choose g (x) for x ∈ {ρ̄ = 0} .
So a valid solution of Eq. (19.22) is

g (x) :=

{ 1
ρ̄(x)

∫
Y f (x, y) ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)

f (x, y0) = δy0
(f (x, ·)) if ρ̄ (x) ∈ {0,∞}

and with this choice we will have E [f (X,Y ) |X] = g (X) = Q (X, f) a.s.
as desired. (Observe here that when ρ̄ (x) < ∞, ρ (x, ·) ∈ L1 (ν) and hence∫
Y f (x, y) ρ (x, y) dν (y) is a well defined integral.)

It is comforting to observe that

P (X ∈ {ρ̄ = 0}) = P (ρ̄ (X) = 0) =

∫
X

1ρ̄=0ρ̄dµ = 0

and similarly

P (X ∈ {ρ̄ =∞}) =

∫
X

1ρ̄=∞ρ̄dµ = 0.

Thus it follows that P (X ∈ {x ∈ X : ρ̄ (x) = 0 of ∞}) = 0 while the set
{x ∈ X : ρ̄ (x) = 0 of ∞} is precisely where there is ambiguity in defining g (x) .
Just for added security, let us check directly that g (X) = E [f (X,Y ) |X] a.s.
According to Eq. (19.21) we have

E [g (X)h (X)] =

∫
X
h (x) g (x) ρ̄ (x) dµ (x)

=

∫
X∩{0<ρ̄<∞}

h (x) g (x) ρ̄ (x) dµ (x)

=

∫
X∩{0<ρ̄<∞}

h (x) ρ̄ (x)

(
1

ρ̄ (x)

∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

=

∫
X∩{0<ρ̄<∞}

h (x)

(∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

=

∫
X
h (x)

(∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

= E [f (X,Y )h (X)] (by Eq. (19.20)),

wherein we have repeatedly used µ (ρ̄ =∞) = 0 and Eq. (19.23) holds when
ρ̄ (x) = 0. This completes the verification that g (X) = E [f (X,Y ) |X] a.s..

Proposition 19.14 shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables in the
integrand. Whereas to compute the expectation, one should integrate over all
of the variables. Proposition 19.14 also gives an example of regular conditional
probabilities which are explored in more detail in subsection 19.1.2 below.

19.1.1 Conditioning Gaussian Random Vectors

Theorem 19.15. Suppose that Z = (X,Y )
tr

is a mean zero Gaussian random
vector with X ∈ Rk and Y ∈ Rl. Let C = CX := E [XXtr] and then let

W := Y − E
[
Y Xtr

]
C−1X (19.24)

where C−1 = C|−1
Ran(C)P is as in Example 14.38 below. Then (X,W )

tr
is again a

Gaussian random vector and moreover W is independent of X. The covariance
matrix for W is

CW := E
[
WW tr

]
= E

[
Y Y tr

]
− E

[
Y Xtr

]
C−1E

[
XY tr

]
. (19.25)

Proof. Let A be any k × l matrix and let W := Y −AX. Since(
X
W

)
=

(
I 0
−A I

)(
X
Y

)
,

according to Lemma 14.28 (X,W )
tr

is still Gaussian. So according to Lemma
15.25, in order to make W independent of X it suffices to choose A so that W
and X are uncorrelated, i.e.
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262 19 Conditional Expectation

0 = Cov (Wj , Xi) = Cov

(
Yj −

∑
k

AjkXk, Xi

)
= E [YjXi]−

∑
k

AjkE (XkXi) .

In matrix notation, we want to choose A so that

E
[
Y Xtr

]
= AE

[
XXtr

]
. (19.26)

In the case C := E [XXtr] is non-degenerate, we see that A := E [Y Xtr]C−1 is
the desired solution. In fact this works for general C where C−1 is defined in
Example 14.38. To see this is correct, recall

v · Cv = v · E
[
XXtrv

]
= E

[
(v ·X)

2
]

from which it follows that

Nul (C) =
{
v ∈ Rk : v ·X = 0

}
.

Hence it follows that

E
[
Y Xtr

]
v = AE

[
XXtr

]
v for all v ∈ Nul (C)

no matter how A is chosen. On the other hand if v ∈ Ran (C) = Nul (C)
⊥
,

AE
[
XXtr

]
v = E

[
Y Xtr

]
C−1Cv = E

[
Y Xtr

]
v

as desired.
To prove Eq. (19.25) let B := E [Y Xtr] so that

W := Y −BC−1X.

We then have

E
[
WW tr

]
= E

[(
Y −BC−1X

) (
Y −BC−1X

)tr]
= E

[(
Y −BC−1X

) (
Y tr −XtrC−1Btr

)]
= E

[
Y Y tr − Y XtrC−1Btr −BC−1XY tr +BC−1XXtrC−1Btr

]
= E

[
Y Y tr

]
−BC−1Btr −BC−1Btr +BC−1CC−1Btr

= E
[
Y Y tr

]
−BC−1Btr

= E
[
Y Y tr

]
− E

[
Y Xtr

]
C−1E

[
XY tr

]
.

Corollary 19.16. Suppose that Z = (X,Y )
tr

is a mean zero Gaussian random
vector with X ∈ Rk and Y ∈ Rl,

A := E
[
Y Xtr

]
C−1,

CW := E
[
Y Y tr

]
− E

[
Y Xtr

]
C−1E

[
XY tr

]
,

and suppose W
d
= N (CW , 0) . If f : Rk × Rl → R is a bounded measurable

function, then
E [f (X,Y ) |X] = E [f (x,Ax+W )] |x=X .

As an important special case, if x ∈ Rk and y ∈ Rl, then

E
[
ei(x·X+y·Y )|X

]
= ei(x·X+y·AX)e−

1
2 Var(y·W ) = ei(x·X+y·AX)e−

1
2CW y·y.

(19.27)

Proof. Using the notation in Theorem 19.15,

E [f (X,Y ) |X] = E [f (X,AX +W ) |X]

where W
d
= N (CW , 0) and W is independent of X. The result now follows

by an application of Exercise 19.6. Let us now specialize to the case where
f (X,Y ) = ei(x·X+y·Y ) in which case

E
[
ei(x·X+y·Y )|X

]
= E

[
ei(x·x

′+y·(Ax′+W))|X
]
|x′=X = ei(x·X+y·AX)E

[
eiy·W

]
= ei(x·X+y·AX)e−

1
2 Var(y·W ) = ei(x·X+y·AX)e−

1
2CW y·y.

Remark 19.17. Let us go through the above calculations in the special case
where X is non-degenerate. Notice that (Y Xtr)ij = YiXj so that the the con-
dition that W := Y −AX is independent of X may be written as

0 = E
[
WXtr

]
= E

[
Y Xtr

]
−AE

[
XXtr

]
and hence

A = E
[
Y Xtr

] (
E
[
XXtr

])−1
= E

[
Y Xtr

]
C−1
X

and so W defined in Eq. (19.24) is independent of X. Since Z = (X,Y )
tr

=
(X,AX +W )

tr
it then follows that

E [f (Z) |X] = E
[
f
(

(X,AX +W )
tr
)
|X
]

= E
[
f
(

(x,Ax+W )
tr
)]
|x=X .

In particular we have,
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E
[
ei(x·X+y·Y )|X

]
= E

[
ei(x·X+y·AX+y·W )|X

]
= ei(x·X+y·AX)E

[
eiy·W |X

]
= ei(x·X+y·AX)e−

1
2 Var(y·W ) = ei(x·X+y·AX)e−

1
2CW y·y.

Here we have

CW =E
[
W W tr

]
= E

[
(Y −AX) (Y −AX)

tr
]

= E
[
(Y −AX)

[
Y tr −XtrAtr

]]
=E

[
Y Y tr − Y XtrAtr

]
−AE

[
XY tr −XXtrAtr

]
=CY − E

[
Y Xtr

]
C−1
X E

[
XY tr

]
− E

[
Y Xtr

]
C−1
X E

[
XY tr

]
+ E

[
Y Xtr

]
C−1
X CXC

−1
X E

[
XY tr

]
=CY − E

[
Y Xtr

]
C−1
X E

[
XY tr

]
− E

[
Y Xtr

]
C−1
X E

[
XY tr

]
+ E

[
Y Xtr

]
C−1
X E

[
XY tr

]
=CY − E

[
Y Xtr

]
C−1
X E

[
XY tr

]
.

Remark 19.18. Suppose that Z : Ω → RN is a mean zero Gaussian random
vector, CZ = E [ZZtr] so that

E [(Z · a) (Z · b)] = E
[
a · ZZtrb

]
= a · CZb ∀ a, b ∈ RN .

Let us assume that CZ > 0, i.e. Z is non-degenerate. Further suppose that
S : RN → Rk and T : RN → Rl are linear maps, X := SZ, and Y = TZ. We
then have

E
[
XY tr

]
= E

[
SZZtrT tr

]
= SCZT

tr

from which it follows that X is independent of Y iff SCZT
tr = 0. The above

result specialize to

CX = E
[
XXtr

]
= E

[
SZZtrStr

]
= SCZS

tr and

CY = E
[
Y Y tr

]
= E

[
TZZtrT tr

]
= TCZT

tr.

Our next goal is to find A : Rk → RN linear so that

W := Z −AX = (I −AS)Z

is independent of X = SZ which happens iff

0 = (I −AS)CZS
tr = CZS

tr −ACX ⇐⇒ ACX = CZS
tr.

Let us observe that CXx = 0 implies

0 = CXx · x = SCZS
trx · x = CZS

trx · Strx

and since CZ > 0 we may conclude that Nul (CX) = Nul (Str) = Ran (S)
⊥
.

Hence if we assume that S is surjective it will follows that CX is invertible and
we must take

A = CZS
trC−1

X .

In summary,
Z = AX +W

where W ⊥⊥ X and

CW = (I −AS)CZ (I −AS)
tr

= (I −AS)CZ
(
I − StrAtr

)
= CZ −ASCZ − CZStrAtr +ASCZS

trAtr

= CZ −ASCZ − CZStrAtr +ACXA
tr

= CZ −ASCZ − CZStrAtr + CZS
trAtr

= CZ −ASCZ = (I −AS)CZ

=
(
I − CZStrC−1

X S
)
CZ = CZ − CZStrC−1

X SCZ .

From all of this it now follows that

E [f (Z) |X] = E [f (AX +W ) |X] = E [f (Ax+W )] |x=X

= E [f (Ax+W )] |x=X

where W
d
= N (0, CW ) . In particular,

E
[
eiλ·Z |X

]
= E

[
eiλ·(AX+W )|X

]
= eiλ·AX ·E

[
eiλ·W

]
= exp

(
−1

2
CWλ · λ

)
eiλ·AX .

Exercise 19.4. Suppose now that (X,Y, Z)
tr

is a mean zero Gaussian random
vector with X ∈ Rk, Y ∈ Rl, and Z ∈ Rm. Show for all y ∈ Rl and z ∈ Rm
that

E [exp (i (y · Y + z · Z)) |X]

= exp (−Cov (y ·W1, z ·W2)) · E [exp (iy · Y ) |X] · E [exp (iz · Z) |X] .
(19.28)

In performing these computations please use the following definitions,

C := CX := E
[
XXtr

]
, (19.29)

A := E
[[
Y
Z

]
Xtr

]
C−1 =

[
E [Y Xtr]C−1

E [ZXtr]C−1

]
=:

[
A1

A2

]
, (19.30)

and

W :=

[
W1

W2

]
=

[
Y
Z

]
−AX =

[
Y −A1X
Z −A2X

]
. (19.31)
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264 19 Conditional Expectation

19.1.2 Probability Kernels and Regular Conditional Distributions

Definition 19.19. Let (X,M) and (Y,N ) be measurable spaces. A function,
Q : X×N → [0, 1] is a probability kernel on X× Y if

1. Q (x, ·) : N → [0, 1] is a probability measure on (Y,N ) for each x ∈ X and
2. Q (·, B) : X→ [0, 1] is M/BR – measurable for all B ∈ N .

If Q is a probability kernel on X × Y and f : Y → R is a bounded
measurable function or a positive measurable function, then x → Q (x, f) :=∫
Y f (y)Q (x, dy) is M/BR – measurable. This is clear for simple functions and

then for general functions via simple limiting arguments.

Definition 19.20. Let (X,M) and (Y,N ) be measurable spaces and X : Ω →
X and Y : Ω → Y be measurable functions. A probability kernel, Q, on X × Y
is said to be a regular conditional distribution of Y given X iff Q (X,B)
is a version of P (Y ∈ B|X) for each B ∈ N . Equivalently, we should have
Q (X, f) = E [f (Y ) |X] a.s. for all f ∈ Nb.

The probability kernel, Q, defined in Eq. (19.17) is an example of a regular
conditional distribution of Y given X.

Remark 19.21. Unfortunately, regular conditional distributions do not always
exists, see Doob [8, p. 624]. However, if we require Y to be a “standard Borel
space,” (i.e. Y is isomorphic to a Borel subset of R), then a conditional distribu-
tion of Y given X will always exists. See Theorem 19.41 in the appendix to this
chapter. Moreover, it is known that “reasonable” measure spaces are standard
Borel spaces, see Section 13.6 above for more details. So in most instances of
interest a regular conditional distribution of Y given X will exist.

Exercise 19.5 (Jazzed up pull out property). Let (Ω,B, P ) be a probabil-
ity space, (X,M) and (Y,N ) be measurable spaces, X : Ω → X and Y : Ω → Y
be measurable functions, and assume there exists a regular conditional distri-
bution, Q, of Y given X. Show:

1. For all bounded measurable functions, f : (X× Y,M⊗N )→ R, the func-
tion X 3 x→ Q (x, f (x, ·)) is measurable and

E [f (X,Y ) |X] (ω) = Q (X (ω) , f (X (ω) , ·)) (19.32)

=

∫
Y
Q (X (ω) , dy) f (X (ω) , y) for P – a.e. ω..

(19.33)

Hint: let H denote the set of bounded measurable functions, f, on X × Y
such that the two assertions are valid.

2. If A ∈M⊗N and µ := P ◦X−1 be the law of X, then

P ((X,Y ) ∈ A) =

∫
X
Q (x, 1A (x, ·)) dµ (x) =

∫
X
dµ (x)

∫
Y

1A (x, y)Q (x, dy) .

(19.34)

Note: If we take X = Ω, X : Ω → X = Ω to be the identity map, and M
to be a sub-sigma algebra of B, then the results above reduce to;

Q (ω, f (ω, ·)) = E [f (·, Y (·)) |M] (ω) for P – a.e. ω

and

P ({ω : (ω, Y (ω)) ∈ A}) =

∫
Ω

dP (ω)

∫
Y

1A (ω, y)Q (ω, dy) .

Exercise 19.6 (Compare with Exercise 19.3). Let (Ω,B, P ) be a probabil-
ity space, (X,M) and (Y,N ) be measurable spaces, X : Ω → X and Y : Ω → Y
be measurable functions. Further assume that X and Y are independent. Find
a regular conditional distribution of Y given X and prove

E [f (X,Y ) |X] = hf (X) a.s. ∀ bounded measurable f : X× Y→ R,

where
hf (x) := E [f (x, Y )] for all x ∈ X,

i.e.
E [f (X,Y ) |X] = E [f (x, Y )] |x=X a.s.

Exercise 19.7. Suppose (Ω,B, P ) and (Ω′,B′, P ′) are two probability spaces,
(X,M) and (Y,N ) are measurable spaces, X : Ω → X, X ′ : Ω′ → X, Y :

Ω → Y,and Y ′ : Ω → Y are measurable functions such that P ◦ (X,Y )
−1

=

P ′ ◦ (X ′, Y ′) , i.e. (X,Y )
d
= (X ′, Y ′) . If f : (X× Y,M⊗N )→ R is a bounded

measurable function and f̃ : (X,M) → R is a measurable function such that
f̃ (X) = E [f (X,Y ) |X] P - a.s. then

E′ [f (X ′, Y ′) |X ′] = f̃ (X ′) P ′ a.s.

Exercise 19.8. Let {Xn}∞n=1 be i.i.d. integrable random variables such that
EXn = 0. Further set S0 = 0 and for n ∈ N let Sn := X1 + · · · + Xn and
B−n := σ (Sn, Sn+1, Sn+2, . . . ) . Show

E [X1|B−n] = E [X1|Sn, Sn+1, Sn+2, . . . ] =
Sn
n

a.s.

[This problem will be used in Example 23.82 to give a proof of the strong law
of large numbers.]

Hint: Use Exercise 19.7 to show

E [Xj |B−n] = E [X1|B−n] a.s. for all j ≤ n. (19.35)

Page: 264 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



19.2 Additional Properties of Conditional Expectations 265

Let now suppose that G is a sub-σ-algebra of B and let PG : B → L1 (Ω,G, P )
be defined by, PG (B) = P (B|G) := EG1B ∈ L1 (Ω,B, P ) for all B ∈ B. If B =∑∞
n=1Bn with Bn ∈ B, then 1B =

∑∞
n=1 1Bn and this sum converges in L1 (P )

(in fact in all Lp (P )) by the DCT. Since EG : L1 (Ω,B, P )→ L1 (Ω,G, P ) is a
contraction and therefore continuous it follows that

PG (B) = EG1B = EG
∞∑
n=1

1Bn =

∞∑
n=1

EG1Bn =

∞∑
n=1

PG (Bn) (19.36)

where all equalities are in L1 (Ω,G, P ) . Now suppose that we have chosen a
representative, P̄G (B) : Ω → [0, 1] , of PG (B) for each B ∈ B. From Eq. (19.36)
it follows that

P̄G (B) (ω) =

∞∑
n=1

P̄G (Bn) (ω) for P -a.e. ω. (19.37)

However, note well, the exceptional set of ω’s depends on the sets B,Bn ∈
B. The goal of regular conditioning is to carefully choose the representative,
P̄G (B) : Ω → [0, 1] , such that Eq. (19.37) holds for all ω ∈ Ω and all B,Bn ∈ B
with B =

∑∞
n=1Bn.

Definition 19.22. If G is a sub-σ – algebra of B, a regular conditional dis-
tribution given G is a probability kernel on Q : (Ω,G)× (Ω,B) → [0, 1] such
that

Q (·, B) = P (B|G) (·) a.s. for every B ∈ B. (19.38)

This corresponds to the Q in Definition 19.20 provided, (X,M) = (Ω,G) ,
(Y,N ) = (Ω,B) , and X (ω) = Y (ω) = ω for all ω ∈ Ω.

19.2 Additional Properties of Conditional Expectations

The next theorem is devoted to extending the notion of conditional expectations
to all non-negative functions and to proving conditional versions of the MCT,
DCT, and Fatou’s lemma.

Remark 19.23. For the reader’s convenience let us recall Lemma 10.25 asserts
that if F and G are non-negative extended G – measurable functions on Ω such
that E [F : A] ≥ E [G : A] for all A ∈ G then F ≥ G a.s. Here is a repeat of the
proof in this case.

For each n ∈ N let An := {F < G : F ≤ n} in which case

∞ > n ≥ E [F1An ] ≥ E [G1An ]

from which it follows G1An is integrable. Therefore, we may now conclude that
E [F1An −G1An ] ≥ 0 =⇒ E [G1An − F1An ] ≤ 0. As G1An − F1An ≥ 0 and
G − F > 0 on An, it follows that P (An) = 0. Since An ↑ {F < G} , we find
P (F < G) = 0, i.e. F ≥ G a.s.

Theorem 19.24 (Extending EG). If f : Ω → [0,∞] is B – measurable, there
is a G – measurable function, F : Ω → [0,∞] , satisfying

E [f : A] = E [F : A] for all A ∈ G. (19.39)

By Lemma 10.25, the function F is uniquely determined up to sets of measure
zero and hence we denote any such version of F by EGf.

1. Properties 2., 5. (with 0 ≤ g ∈ Gb), and 6. of Theorem 19.5 still hold for
any B – measurable functions such that 0 ≤ f ≤ g. Namely;

a) Order Preserving. EGf ≤ EGg a.s. when 0 ≤ f ≤ g,
b) Pull out Property. EG [hf ] = hEG [f ] a.s. for all h ≥ 0 and G –

measurable.
c) Tower or smoothing property. If G0 ⊂ G1 ⊂ B. Then

EG0
EG1

f = EG1
EG0

f = EG0
f a.s.

2. Conditional Monotone Convergence (cMCT). Suppose that, almost
surely, 0 ≤ fn ≤ fn+1 for all n, then limn→∞ EGfn = EG [limn→∞ fn] a.s.

3. Conditional Fatou’s Lemma (cFatou). Suppose again that 0 ≤ fn ∈
L1 (Ω,B, P ) a.s., then

EG
[
lim inf
n→∞

fn

]
≤ lim inf

n→∞
EG [fn] a.s. (19.40)

Proof. Since f∧n ∈ L1 (Ω,B, P ) and f∧n is increasing, it follows that F :=↑
limn→∞ EG [f ∧ n] exists a.s. Moreover, by two applications of the standard
MCT, we have for any A ∈ G, that

E [F : A] = lim
n→∞

E [EG [f ∧ n] : A] = lim
n→∞

E [f ∧ n : A] = lim
n→∞

E [f : A] .

Thus Eq. (19.39) holds and this uniquely determines F follows from Lemma
10.25.

Item 1. a) If 0 ≤ f ≤ g, then

EGf = lim
n→∞

EG [f ∧ n] ≤ lim
n→∞

EG [g ∧ n] = EGg a.s.

and so EG still preserves order. We will prove items 1b and 1c at the end of this
proof.

Page: 265 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



266 19 Conditional Expectation

Item 2. Suppose that, almost surely, 0 ≤ fn ≤ fn+1 for all n, then EGfn
is a.s. increasing in n. Hence, again by two applications of the MCT, for any
A ∈ G, we have

E
[

lim
n→∞

EGfn : A
]

= lim
n→∞

E [EGfn : A] = lim
n→∞

E [fn : A]

= E
[

lim
n→∞

fn : A
]

= E
[
EG
[

lim
n→∞

fn

]
: A
]

which combined with Lemma 10.25 implies that limn→∞ EGfn =
EG [limn→∞ fn] a.s.

Item 3. For 0 ≤ fn, let gk := infn≥k fn. Then gk ≤ fk for all k and gk ↑
lim infn→∞ fn and hence by cMCT and item 1.,

EG
[
lim inf
n→∞

fn

]
= lim
k→∞

EGgk ≤ lim inf
k→∞

EGfk a.s.

Item 1. b) If h ≥ 0 is a G – measurable function and f ≥ 0, then by cMCT,

EG [hf ]
cMCT

= lim
n→∞

EG [(h ∧ n) (f ∧ n)]

= lim
n→∞

(h ∧ n)EG [(f ∧ n)]
cMCT

= hEGf a.s.

Item 1. c) Similarly by multiple uses of cMCT,

EG0
EG1

f = EG0
lim
n→∞

EG1
(f ∧ n) = lim

n→∞
EG0

EG1
(f ∧ n)

= lim
n→∞

EG0 (f ∧ n) = EG0f

and

EG1
EG0

f = EG1
lim
n→∞

EG0
(f ∧ n) = lim

n→∞
EG1

EG0
[f ∧ n]

= lim
n→∞

EG0
(f ∧ n) = EG0

f.

Theorem 19.25 (Conditional Dominated Convergence (cDCT)). If

fn
a.s→ f, and |fn| ≤ g ∈ L1 (Ω,B, P ) , then EGfn → EGf a.s.

Proof. From Corollary 17.10 we know that fn → f in L1 (P ) and therefore
EGfn → EGf in L1 (P ) as conditional expectation is a contraction on L1 (P ) . So
we need only prove the almost sure convergence. As usual it suffices to consider
the real case.

Following the proof of the Dominated convergence theorem, we start with
the fact that 0 ≤ g ± fn a.s. for all n. Hence by cFatou,

EG (g ± f) = EG
[
lim inf
n→∞

(g ± fn)
]

≤ lim inf
n→∞

EG (g ± fn) = EGg +

{
lim infn→∞ EG (fn) in + case
− lim supn→∞ EG (fn) in − case,

where the above equations hold a.s. Cancelling EGg from both sides of the
equation then implies

lim sup
n→∞

EG (fn) ≤ EGf ≤ lim inf
n→∞

EG (fn) a.s.

Remark 19.26. Suppose that fn
P→ f, |fn| ≤ gn ∈ L1 (Ω,B, P ) , gn

P→ g ∈
L1 (Ω,B, P ) and Egn → Eg. Then by the DCT in Corollary 17.10, we know that
fn → f in L1 (Ω,B, P ) . Since EG is a contraction, it follows that EGfn → EGf
in L1 (Ω,B, P ) and hence EGfn

P→ EGf.

The next result in Lemma 19.29 shows how to localize conditional expec-
tations. In order to state and prove the lemma we need a little ground work
first.

Definition 19.27. Suppose that F and G are sub-σ-fields of B and A ∈ B. We
say that F = G on A iff FA = GA. Recall that FA = {B ∩A : B ∈ F} .

Lemma 19.28. If A ∈ F ∩ G, then FA ∩ GA = [F ∩ G]A and FA = GA implies

FA = GA = [F ∩ G]A . (19.41)

Proof. If A ∈ F we have B ∈ FA iff there exists B′ ∈ F such that B =
A ∩B′. As A ∈ F it follows that B ∈ F and therefore we have

FA = {B ⊂ A : B ∈ F} .

Thus if A ∈ F ∩ G it follows that FA = {B ⊂ A : B ∈ F} and GA =
{B ⊂ A : B ∈ G} and therefore

FA ∩ GA = {B ⊂ A : B ∈ F ∩ G} = [F ∩ G]A .

Equation (19.41) now clearly follows from this identity when FA = GA.

Lemma 19.29 (Localizing Conditional Expectations). Let (Ω,B, P ) be
a probability space, F and G be sub-sigma-fileds of B, X, Y ∈ L1 (Ω,B, P ) or
X,Y : (Ω,B) → [0,∞] are measurable, and A ∈ F ∩ G. If F = G on A and
X = Y a.s. on A, then

EFX = EF∩GX = EF∩GY = EGY a.s. on A. (19.42)
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19.2 Additional Properties of Conditional Expectations 267

Proof. It suffices to prove, EFX = EF∩GY a.s. on A and this is equivalent
to 1AEFX = 1AEF∩GY a.s. Since

1AEF∩GY = EF∩G [1AY ] = EF∩G [1AX] = 1AEF∩G [X] a.s.

it suffices to show

EF [1AX] = 1AEFX = 1AEF∩G [X] a.s. (19.43)

For B ∈ F , we have by Lemma 19.28 that

A ∩B ∈ FA = GA = [F ∩ G]A ⊂ F ∩ G

and therefore,

E [1AEF∩G [X] : B] = E [EF∩G [X] : A ∩B] = E [X : A ∩B]

= E [1AX : B] = E [EF [1AX] : B]

from which Eq. (19.43) follows.

Example 19.30. Let us use Lemma 19.29 to show E [f (X) |X ∧ t] = f (X) =
f (X ∧ t) on {X < t} – a fact we have already seen to be true in Example 19.13.
Let us begin by observing that {X < t} = {X ∧ t < t} ∈ σ (X) ∩ σ (X ∧ t) .
Moreover, using σ (X)A = σ (X|A) for all A ∈ B,2 we see that

σ (X){X<t} = σ
(
X|{X<t}

)
= σ

(
(X ∧ t) |{X<t}

)
= σ (X ∧ t){X<t} .

Therefore it follows that

E [f (X) |X ∧ t] = E [f (X) |σ (X ∧ t)] = E [f (X) |σ (X)] = f (X) a.s. on {X < t} .

What goes wrong with the above argument if you replace {X < t} by {X ≤ t}
everywhere? (Notice that the same argument shows; if X = Y on A ∈ σ (X) ∩
σ (Y ) then E [f (X) |Y ] = f (Y ) = f (X) a.s. on A.)

Theorem 19.31 (Conditional Jensen’s inequality). Let (Ω,B, P ) be a
probability space, −∞ ≤ a < b ≤ ∞, and ϕ : (a, b) → R be a convex func-
tion. Assume f ∈ L1(Ω,B, P ;R) is a random variable satisfying, f ∈ (a, b) a.s.
and ϕ(f) ∈ L1(Ω,B, P ;R). Then ϕ(EGf) ∈ L1 (Ω,G, P ) ,

2 Here is the verification that σ (X)A = σ (X|A) . Let iA : A → Ω be the inclusion
map. Since σ (X) = X−1 (BR) and σ (X)A = i−1

A σ (X) it follows that

σ (X)A = i−1
A

(
X−1 (BR)

)
= (X ◦ iA)−1 (BR)

= σ (X ◦ iA) = σ (X|A) .

ϕ(EGf) ≤ EG [ϕ(f)] a.s. (19.44)

and
E [ϕ(EGf)] ≤ E [ϕ(f)] (19.45)

Proof. Let Λ := Q∩ (a, b) – a countable dense subset of (a, b) . By Theorem
17.67 (also see Lemma 17.64) and Figure 17.5 when ϕ is C1)

ϕ(y) ≥ ϕ(x) + ϕ′−(x)(y − x) for all for all x, y ∈ (a, b) , (19.46)

where ϕ′−(x) is the left hand derivative of ϕ at x. Taking y = f and then taking
conditional expectations imply,

EG [ϕ(f)] ≥ EG
[
ϕ(x) + ϕ′−(x)(f − x)

]
= ϕ(x) + ϕ′−(x)(EGf − x) a.s. (19.47)

Since this is true for all x ∈ (a, b) (and hence all x in the countable set, Λ) we
may conclude that

EG [ϕ(f)] ≥ sup
x∈Λ

[
ϕ(x) + ϕ′−(x)(EGf − x)

]
a.s.

By Exercise 19.1, EGf ∈ (a, b) , and hence it follows from Corollary 17.68 that

sup
x∈Λ

[
ϕ(x) + ϕ′−(x)(EGf − x)

]
= ϕ (EGf) a.s.

Combining the last two estimates proves Eq. (19.44).
From Eq. (19.44) and Eq. (19.46) with y = EGf and x ∈ (a, b) fixed we find,

ϕ(x) + ϕ′−(x) (EGf − x) ≤ ϕ(EGf) ≤ EG [ϕ(f)] . (19.48)

Therefore

|ϕ(EGf)| ≤ |EG [ϕ(f)]| ∨
∣∣ϕ(x) + ϕ′−(x)(EGf − x)

∣∣ ∈ L1 (Ω,G, P ) (19.49)

which implies that ϕ(EGf) ∈ L1 (Ω,G, P ) . Taking expectations of Eq. (19.44)
is now allowed and immediately gives Eq. (19.45).

Remark 19.32 (On Theorem 19.31 and its proof.). *

1. From Eq. (19.46),

ϕ(f) ≥ ϕ(EGf) + ϕ′−(EGf)(f − EGf). (19.50)

Therefore taking EG of this equation “implies” that

EG [ϕ(f)] ≥ϕ(EGf) + EG
[
ϕ′−(EGf)(f − EGf)

]
= ϕ(EGf) + ϕ′−(EGf)EG [(f − EGf)] = ϕ(EGf). (19.51)

The technical problem with this argument is the justification that
EG
[
ϕ′−(EGf)(f − EGf)

]
= ϕ′−(EGf)EG [(f − EGf)] since there is no rea-

son for ϕ′− to be a bounded function. The proof we give in Theorem 19.31
circumvents this technical detail.
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2. On the other hand let us now suppose that ϕ is C1 (R) is convex and for
the moment that |f | ≤ M < ∞ a.s. Then EGf ∈ [−M,M ] a.s. and hence
ϕ′−(EGf) = ϕ′ (EGf) is bounded and Eq. (19.51) is now valid. Moreover,
taking x = 0 in Eq. (19.48) shows

ϕ(0) + ϕ′(0)EGf ≤ ϕ(EGf) ≤ EG [ϕ(f)] .

If f is unbounded we may apply the above inequality with f replaced by
fM := f · 1|f |≤M in order to conclude,

ϕ(0) + ϕ′(0)EGfM ≤ ϕ(EGfM ) ≤ EG [ϕ(fM )] .

If we further assume that ϕ (fM ) ≥ 0 is increasing as M increase (for
example this is the case if ϕ (x) = |x|p for some p > 1), then by passing to
the limit (M ↑ ∞) along a nicely chosen subsequence it follows that

ϕ(0) + ϕ′(0)EGf ≤ ϕ(EGf) ≤ EG [ϕ(f)]

where we used EG [ϕ(fM )]→ EG [ϕ(f)] by cMCT.
3. Since ϕ (x) = xp is the most important case we need later let us write out the

argument for this particular case or more generally for ϕ : [0,∞)→ [0,∞),
C1 – and convex such that ϕ (0) = 0 and ϕ is increasing. Let 0 ≤ f < ∞
be a measurable function. The convexity of ϕ may be stated as,

ϕ (c) + ϕ′ (c) (x− c) ≤ ϕ (x) for all x, c ≥ 0.

So letting fn := f1f≤n, if x = fn and c = EGfn in the previous equation,
then

ϕ (EGfn) + ϕ′ (EGfn) (fn − EGfn) ≤ ϕ (fn) .

Under the given hypothesis, ϕ′ (EGfn) is bounded and G – measurable and
therefore conditioning the previous equation on G implies,

ϕ (EGfn) = EG [ϕ (EGfn) + ϕ′ (EGfn) (fn − EGfn)] ≤ EG [ϕ (fn)] .

Using cMCT we may let n ↑ ∞ in order to conclude

ϕ (EGf) = ϕ
(

lim
n→∞

EGfn
)

= lim
n→∞

ϕ (EGfn)

≤ lim
n→∞

EG [ϕ (fn)] = EG
[

lim
n→∞

ϕ (fn)
]

= EG [ϕ (f)] .

Corollary 19.33. The conditional expectation operator, EG maps Lp (Ω,B, P )
into Lp (Ω,B, P ) and the map remains a contraction for all 1 ≤ p ≤ ∞.

Proof. The case p = ∞ and p = 1 have already been covered in Theorem
19.5. So now suppose, 1 < p < ∞, and apply Jensen’s inequality with ϕ (x) =
|x|p to find |EGf |p ≤ EG |f |p a.s. Taking expectations of this inequality gives
the desired result.

Exercise 19.9 (Martingale Convergence Theorem for p = 1 and 2.”).
Let (Ω,B, P ) be a probability space and {Bn}∞n=1 be an increasing sequence of
sub-σ-algebras of B. Show;

1. The closure, M, of ∪∞n=1L
2 (Ω,Bn, P ) is L2 (Ω,B∞, P ) where B∞ =

∨∞n=1Bn := σ (∪∞n=1Bn) . Hint: make use of Theorem 17.30.
2. For every X ∈ L2 (Ω,B, P ) , Xn := E [X|Bn]→ E [X|B∞] in L2 (P ) . Hint:

see Exercise 18.5.
3. For every X ∈ L1 (Ω,B, P ) , Xn := E [X|Bn]→ E [X|B∞] in L1 (P ) . Hint:

make use of item 2. by a truncation argument using the contractive prop-
erties of conditional expectations.

(Eventually we will show that Xn = E [X|Bn]→ E [X|B∞] a.s. as well.)

Exercise 19.10 (Martingale Convergence Theorem for general p). Let
1 ≤ p < ∞, (Ω,B, P ) be a probability space, and {Bn}∞n=1 be an increas-
ing sequence of sub-σ-algebras of B. Show for all X ∈ Lp (Ω,B, P ) , Xn :=
E [X|Bn] → E [X|B∞] in Lp (P ) . (Hint: show that {|E [X|Bn]|p}∞n=1 is uni-

formly integrable and E [X|Bn]
P→ E [X|B∞] with the aid of item 3. of Exercise

19.9.)

Exercise 19.11 (Uniform Integrability). Suppose that (Ω,B, P ) is a prob-
ability space and Λ ⊂ L1 (P ) is a uniformly integrable collection of random
variables and let G ⊂ B denote a generic sub-σ-algebra of B. Show that

Λ̃ = {EGX = E [X|G] : X ∈ Λ and G ⊂ B}

is again uniformly integrable. Hint: you may find Exercise 17.6 useful here.

Theorem 19.34. Let (Ω,B, µ) be a probability space and assume that B is
countably generated.3 Then for all 1 ≤ p < ∞, Lp (µ)

∗ ∼= Lq (µ) where
q = p/ (p− 1) .

Proof. The case where 1 ≤ p ≤ 2 may be dealt with using Hilbert space
theory and the fact that L2 (µ) ⊂ Lp (µ) for p ∈ [1, 2] . So the difficult case is
where 2 < p <∞. Moreover, the hard part is to show for all ϕ ∈ Lp (µ)

∗
there

exists g ∈ Lq (µ) so that

ϕ (f) =

∫
Ω

fgdµ for all f ∈ Lp (µ) .

Using the countably generated assumption on B we may find finite subal-
gebras, Bn, of B so that Bn ⊂ Bn+1 and B = σ (∪nBn) . Given ϕ ∈ Lp (µ)

∗
we

3 This theorem is true without this assumption or the finiteness assumption on µ,
but we do not prove this here.
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let ϕn ∈ ϕ|Lp(Ω,Bn,µ) ∈ Lp (Ω,Bn, µ)
∗
. As Lp (Ω,Bn, µ) is a finite dimensional

subspace we may use finite dimensional Hilbert space theory to conclude that
there exists

gn ∈ L2 (Ω,Bn, µ) = Lp (Ω,Bn, µ) = Lq (Ω,Bn, µ)

such that

ϕ (f) = ϕn (f) =

∫
Ω

fgndµ for all f ∈ L2 (Ω,Bn, µ) = Lp (Ω,Bn, µ) .

Now taking f = sgn(gn) |gn|q−1
in the above identity shows

‖gn‖qq =

∫
Ω

|gn|q dµ = ϕ (f) ≤ ‖ϕ‖Lp(Ω,B,µ)∗ · ‖f‖p

where

‖f‖pp =

∫
Ω

|gn|(
p
p−1−1)p dµ =

∫
Ω

|gn|
p
p−1 dµ = ‖gn‖qq .

Therefore it follows that

‖gn‖qq ≤ ‖ϕ‖Lp(Ω,B,µ)∗ ·
(
‖gn‖qq

)1/p

=⇒ ∞ > ‖ϕ‖Lp(Ω,B,µ)∗ ≥
(
‖gn‖qq

)1− 1
p

= ‖gn‖q .

Moreover it is easy to check using ϕ (f) =
∫
Ω
fgndµ that {gn}∞n=1 is a

{Bn}∞n=1-martingale. Therefore by the martingale convergence theorem, g :=
Lq (µ)-limn→∞ gn exists and we have gn = E [g|Bn] for all n. That is ϕ (f) =∫
Ω
fgdµ for all f ∈ Lp (Ω,Bn, µ) for all n. Using the martingale convergence

theorem again; if f ∈ Lp (µ) , then

ϕ (f) = lim
n→∞

ϕ (E [f |Bn]) = lim
n→∞

∫
Ω

E [f |Bn] gdµ

= lim
n→∞

∫
Ω

fE [g|Bn] dµ = lim
n→∞

∫
Ω

fgdµ.

This completes the existence proof.
We could also use the multiplicative system theorem to finish off the proof

since M := ∪nLp (Ω,Bn, µ) is a multiplicative system of bounded function con-
taining 1 and hence ϕ (f) =

∫
Ω
fgdµ for all bounded measurable f. We then do

a simple cutoff argument to show the relation holds for all f ∈ Lp (µ) .

19.3 Conditional Independence

Definition 19.35 (Conditional Independence). Let (Ω,B, P ) be a proba-
bility space and Bi ⊂ B be a sub-sigma algebra of B for i = 1, 2, 3. We say that

B1 is independent of B3 conditioned on B2 (written B1

B2

⊥⊥ B3) provided,

P (A ∩B|B2) = P (A|B2) · P (B|B2) a.s.

for all A ∈ B1 and B ∈ B3. This can be equivalently stated as

E (f · g|B2) = E (f |B2) · E (g|B2) a.s.

for all f ∈ (B1)b and g ∈ (B3)b , where Bb denotes the bounded B – mea-
surable functions. If X,Y, Z are measurable functions on (Ω,B) , we say

that X is independent of Z conditioned on Y (written as X
Y

⊥⊥ Z) provided

σ (X)
σ(Y )

⊥⊥ σ (Z) .

Example 19.36. Let X and Y be two i.i.d. random variables such that
P (X = 1) = 1/2 = P (Y = 1) and P (X = 2) = 1/2 = P (Y = 2) . Then

E [Y |X = Y ] = E [X|X = Y ] =
1
4 (1 + 2)

1
4 + 1

4

=
3

2

and

E [XY |X = Y ] =
1
4 (1 + 4)

1
4 + 1

4

=
5

4
.

Notice that

E [XY |X = Y ] =
5

4
6= 9

4
= E [Y |X = Y ] · E [X|X = Y ] .

So independence does not necessarily imply conditional independence!

See Exercise 19.13 and Theorem 22.4 for a couple more examples involving
conditional independence.

Exercise 19.12. Suppose Mi ⊂ (Bi)b for i = 1 and i = 3 are multiplicative

systems such that Bi = σ (Mi) . Show B1

B2

⊥⊥ B3 iff

E (f · g|B2) = E (f |B2) · E (g|B2) a.s. ∀ f ∈M1 and g ∈M3. (19.52)

Hint: Do this by two applications of the functional form of the multiplicative
systems theorem, see Theorems 12.24 and 12.9 of Chapter 12. For the first
application, fix an f ∈M1 and let

H := {g ∈ (B3)b : E (f · g|B2) = E (f |B2) · E (g|B2) a.s.} .

(See the proof of Theorem 22.4 if you get stuck.)
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Exercise 19.13. Suppose now that (X,Y, Z)
tr

is a mean zero Gaussian random

vector with X ∈ Rk, Y ∈ Rl, and Z ∈ Rm as in Exercise 19.4. Show Y
X

⊥⊥ Z
(see Definition 19.35) iff

E
[
Y Ztr

]
= E

[
Y Xtr

]
C−1E

[
XZtr

]
.

where
C = CX := E

[
XXtr

]
.

In solving this problem, please continue to use the notation setup in Exercise
19.4.

19.4 Construction of Regular Conditional Distributions*

Lemma 19.37. Suppose that h : Q → [0, 1] is an increasing (i.e. non-
decreasing) function and H (t) := inf {h (s) : t < s ∈ Q} for all t ∈ R. Then
H : R→ [0, 1] is an increasing right continuous function.

Proof. If t1 < t2, then

{h (s) : t1 < s ∈ Q} ⊂ {h (s) : t2 < s ∈ Q}

and therefore H (t1) ≤ H (t2) . Let H (t+) := limτ↓tH (τ) . Then for any s ∈ Q
with s > t we have H (t) ≤ H (t+) ≤ h (s) and then taking the infimum over
such s we learn that H (t) ≤ H (t+) ≤ H (t) , i.e. H (t+) = H (t) .

Lemma 19.38. Suppose that (X,M) is a measurable space and F : X×R→ R
is a function such that; 1) F (·, t) : X→ R is M/BR – measurable for all t ∈ R,
and 2) F (x, ·) : R→ R is right continuous for all x ∈ X. Then F isM⊗BR/BR
– measurable.

Proof. For n ∈ N, the function,

Fn (x, t) :=

∞∑
k=−∞

F
(
x, (k + 1) 2−n

)
1(k2−n,(k+1)2−n] (t) ,

is M⊗BR/BR – measurable. Using the right continuity assumption, it follows
that F (x, t) = limn→∞ Fn (x, t) for all (x, t) ∈ X × R and therefore F is also
M⊗BR/BR – measurable.

Proposition 19.39. Let BR be the Borel σ – algebra on R. Then BR contains
a countable sub-algebra, AR ⊂ BR, which generates BR and has the amazing
property that every finitely additive probability measure on AR extends uniquely
to a countably additive probability measure on BR.

Proof. By the results in Appendix 13.6, we know that (R,BR) is measure

theoretically isomorphic to
(
{0, 1}N ,F

)
where F is the product σ – algebra. As

we saw in Section 6.3, F is generated by the countable algebra, A := ∪∞n=1An
where

An := {B ×Ω : B ⊂ {0, 1}n} for all n ∈ N.

According to the baby Kolmogorov Theorem 6.23, any finitely additive prob-
ability measure on A has a unique extension to a probability measure on F .
The algebra A may now be transferred by the measure theoretic isomorphism
to the desired sub-algebra, AR, of BR.

Theorem 19.40. Suppose that (X,M) is a measurable space, X : Ω → X is a
measurable function and Y : Ω → R is a random variable. Then there exists a
probability kernel, Q, on X×R such that E [f (Y ) |X] = Q (X, f) , P – a.s., for
all bounded measurable functions, f : R→ R.

Proof. First proof. For each r ∈ Q, let qr : X → [0, 1] be a measurable
function such that

E [1Y≤r|X] = qr (X) a.s.

Let ν := P ◦X−1 be the law of X. Then using the basic properties of conditional
expectation, qr ≤ qs ν – a.s. for all r ≤ s, limr↑∞ qr = 1 and limr↓∞ qr = 0, ν –
a.s. Hence the set, X0 ⊂ X where qr (x) ≤ qs (x) for all r ≤ s, limr↑∞ qr (x) = 1,
and limr↓∞ qr (x) = 0 satisfies, ν (X0) = P (X ∈ X0) = 1. For t ∈ R, let

F (x, t) := 1X0 (x) · inf {qr (x) : r > t}+ 1X\X0
(x) · 1t≥0.

Then F (·, t) : X→ R is measurable for each t ∈ R and by Lemma 19.37, F (x, ·)
is a distribution function on R for each x ∈ X. Hence an application of Lemma
19.38 shows F : X× R→ [0, 1] is measurable.

For each x ∈ X and B ∈ BR, let Q (x,B) = µF (x,·) (B) where µF denotes the
probability measure on R determined by a distribution function, F : R→ [0, 1] .

We will now show that Q is the desired probability kernel. To prove this, let
H be the collection of bounded measurable functions, f : R→ R, such that X 3
x→ Q (x, f) ∈ R is measurable and E [f (Y ) |X] = Q (X, f) , P – a.s. It is easily
seen that H is a linear subspace which is closed under bounded convergence.
We will finish the proof by showing that H contains the multiplicative class,
M =

{
1(−∞,t] : t ∈ R

}
so that multiplicative systems Theorem 12.5 may be

applied.
Notice that Q

(
x, 1(−∞,t]

)
= F (x, t) is measurable. Now let r ∈ Q and

g : X→ R be a bounded measurable function, then

E [1Y≤r · g (X)] = E [E [1Y≤r|X] g (X)] = E [qr (X) g (X)]

= E [qr (X) 1X0 (X) g (X)] .
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For t ∈ R, we may let r ↓ t in the above equality (use DCT) to learn,

E [1Y≤t · g (X)] = E [F (X, t) 1X0 (X) g (X)] = E [F (X, t) g (X)] .

Since g was arbitrary, we may conclude that

Q
(
X, 1(−∞,t]

)
= F (X, t) = E [1Y≤t|X] a.s.

This completes the proof.
Second proof. Let A := AR be the algebra described in Proposition 19.39.

For each A ∈ A, let µA : X→ R be a measurable function such that µA (X) =
P (Y ∈ A|X) a.s. If A = A1 ∪A2 with Ai ∈ A and A1 ∩A2 = ∅, then

µA1 (X) + µA2 (X) = P (Y ∈ A1|X) + P (Y ∈ A2|X)

= P (Y ∈ A1 ∪A2|X) = µA1+A2 (X) a.s.

Thus if ν := LawP (X) , we have µA1
(x) + µA2

(x) = µA1+A2
(x) for ν – a.e. x.

Since
µR (X) = P (Y ∈ R|X) = 1 a.s.

we know that µR (x) = 1 for ν – a.e. x.
Thus if we let X0 denote those x ∈ X such that µR (x) = 1 and µA1

(x) +
µA2

(x) = µA1+A2
(x) for all disjoint pairs, (A1, A2) ∈ A2, we have ν (X0) = 1

and A 3A → Q0 (x,A) := µA (x) is a finitely additive probability measure on
A. According to Proposition 19.39, Q0 (x, ·) extends to a probability measure,
Q (x, ·) on BR for all x ∈ X0. For x /∈ X0 we let Q0 (x, ·) = δ0 where δ0 (B) =
1B (0) for all B ∈ BR.

We will now show that Q is the desired probability kernel. To prove this,
let H be the collection of bounded measurable functions, f : R→ R, such that
X 3 x → Q (x, f) ∈ R is measurable and E [f (Y ) |X] = Q (X, f) , P – a.s. By
construction, H contains the multiplicative system, {1A : A ∈ A} . Moreover
it is easily seen that H is a linear subspace which is closed under bounded
convergence. Therefore by the multiplicative systems Theorem 12.5, H consists
of all bounded measurable functions on R.

This result leads fairly immediately to the following far reaching generaliza-
tion.

Theorem 19.41. Suppose that (X,M) is a measurable space and (Y,N ) is
a standard Borel space4, see Appendix 13.6. Suppose that X : Ω → X and
Y : Ω → Y are measurable functions. Then there exists a probability kernel, Q,
on X×Y such that E [f (Y ) |X] = Q (X, f) , P – a.s., for all bounded measurable
functions, f : Y→ R.
4 According to the counter example in Doob [8, p. 624], it is not sufficient to assume

that N is countably generated!

Proof. By definition of a standard Borel space, we may assume that Y ∈ BR
and N = BY. In this case Y may also be viewed to be a measurable map form
Ω → R such that Y (Ω) ⊂ Y. By Theorem 19.40, we may find a probability
kernel, Q0, on X× R such that

E [f (Y ) |X] = Q0 (X, f) , P – a.s., (19.53)

for all bounded measurable functions, f : R→ R.
Taking f = 1Y in Eq. (19.53) shows

1 = E [1Y (Y ) |X] = Q0 (X,Y) a.s..

Thus if we let X0 := {x ∈ X : Q0 (x,Y) = 1} , we know that P (X ∈ X0) = 1.
Let us now define

Q (x,B) := 1X0
(x)Q0 (x,B) + 1X\X0

(x) δy (B) for (x,B) ∈ X× BY,

where y is an arbitrary but fixed point in Y. Then and hence Q is a probability
kernel on X× Y. Moreover if B ∈ BY ⊂ BR, then

Q (X,B) = 1X0
(X)Q0 (X,B) = 1X0

(X)E [1B (Y ) |X] = E [1B (Y ) |X] a.s.

This shows that Q is the desired regular conditional probability.

Corollary 19.42. Suppose G is a sub-σ – algebra of B, (Y,N ) is a standard
Borel space, and Y : Ω → Y is a measurable function. Then there exists a
probability kernel, Q, on (Ω,G) × (Y,N ) such that E [f (Y ) |G] = Q (·, f) , P -
a.s. for all bounded measurable functions, f : Y→ R.

Proof. This is a special case of Theorem 19.41 applied with (X,M) = (Ω,G)
and X : Ω → Ω being the identity map which is B/G – measurable.

Corollary 19.43. Suppose that (Ω,B, P ) is a probability space such that (Ω,B)
is a standard Borel space and G is a sub-σ – algebra B. Then there exists a
probability kernel, Q on (Ω,G) × (Ω,B) such that E [Z|G] = Q (·, Z) , P - a.s.
for all bounded B – measurable random variables, Z : Ω → R.

Proof. This is a special case of Corollary 19.42 with (Y,N ) = (Ω,B) and
Y : Ω → Ω being the identity map which is B/B – measurable.

Remark 19.44. It turns out that every standard Borel space (X,M) possess a
countable sub-algebra A generating M with the property that every finitely
additive probability measure on A extends to a probability measure on M,
see [4]. With this in hand, the second proof of Theorem 19.40 extends easily to
give another proof of Theorem 19.41 all in one go. As the next example shows
it is a bit tricky to produce the algebra A.
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Example 19.45. Let Ω := {0, 1}N , πi : Ω → {0, 1} be projection onto the ith

component and B := σ (π1, π2, . . . ) be the product σ – algebra on Ω. Further
let A := ∪∞n=1An where

An := {B ×Ω : B ⊂ {0, 1}n} for all n ∈ N.

Suppose that X = {en}∞n=1 ⊂ Ω where en (i) = δin for i, n ∈ N. I now claim
that

AX = {A ⊂ X : # (A) <∞ or # (Ac) <∞} =: C

is the so called cofinite σ – algebra. To see this observe that A is generated by
sets of the form {πi = 1} for i ∈ N. Therefore AX is generated by sets of the
form {πi = 1}X = {ei} . But these one point sets are easily seen to generate C.

Now suppose that λ : X → [0, 1] is a function such that Z :=
∑
n∈N λ (en) ∈

(0, 1) and let µ (B) :=
∑
a∈B λ (a) for all B ⊂ X. Then µ is a measure on 2X

with µ (X) = Z < 1.
Using this measure µ, we may define P0 : AX = C → [0, 1] by,

P0 (A) :=

{
µ (A) if # (A) <∞

1− µ (Ac) if # (Ac) <∞ .

I claim that P0 is a finitely additive probability measure on AX = C which has
no -extension to a probability measure on 2X . To see that P0 is finitely additive,
let A,B ∈ C be disjoint sets. If both A and B are finite sets, then

P0 (A ∪B) = µ (A ∪B) = µ (A) + µ (B) = P0 (A) + P0 (B) .

If one of the sets is an infinite set, say B, then # (Bc) <∞ and # (A) <∞ for
otherwise A ∩B 6= ∅. As A ∩B = ∅ we know that A ⊂ Bc and therefore,

P0 (A ∪B) = 1− µ ([A ∪B]
c
) = 1− µ (Ac ∩Bc)

= 1− µ (Bc \A) = 1− (µ (Bc)− µ (A))

= 1− µ (Bc) + µ (A) = P0 (B) + P0 (A) .

Thus we have shown that P0 : AX → [0, 1] is a finitely additive probability
measure. If P were a countably additive extension of P0, we would have to
have,

1 = P0 (X) = P (X) =

∞∑
n=1

P ({en})

=

∞∑
n=1

P0 ({en}) =

∞∑
n=1

µ ({en}) = Z < 1

which is clearly a contradiction.

There is however a way to fix this example as shown in [4]. It is to replace
AX in this example by the algebra, A, generated by E := {{n} : n ≥ 2} . This
algebra may be described as those A ⊂ N such that either A ⊂f {2, 3, . . . } for
1 ∈ A and # (Ac) <∞. Thus if Ak ∈ A with Ak ↓ ∅ we must have that 1 /∈ Ak
for k large and therefore # (Ak) <∞ for k large. Moreover # (Ak) is decreasing
in k. If limk→∞ # (Ak) = m > 0, we must have that Ak = Al for all k, l large
and therefore ∩Ak 6= ∅. Thus we must conclude that Ak = ∅ for large k. We
therefore may conclude that any finitely additive probability measure, P0, on
A has a unique extension to a probability measure on σ (A) = 2N.
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Theorem 20.1 (A Baby Radon-Nikodym Theorem). Suppose (X,M) is
a measurable space, λ and ν are two finite positive measures on M such that
ν(A) ≤ λ(A) for all A ∈M. Then there exists a measurable function, ρ : X →
[0, 1] such that dν = ρdλ.

Proof. If f is a non-negative simple function, then

ν (f) =
∑
a≥0

aν (f = a) ≤
∑
a≥0

aλ (f = a) = λ (f) .

In light of Theorem 9.41 and the MCT, this inequality continues to hold for all
non-negative measurable functions. Furthermore if f ∈ L1 (λ) , then ν (|f |) ≤
λ (|f |) <∞ and hence f ∈ L1 (ν) and

|ν (f)| ≤ ν (|f |) ≤ λ (|f |) ≤ λ (X)
1/2 · ‖f‖L2(λ) .

Therefore, L2 (λ) 3 f → ν (f) ∈ C is a continuous linear functional on L2(λ).
By the Riesz representation Theorem 18.17, there exists a unique ρ ∈ L2(λ)
such that

ν(f) =

∫
X

fρdλ for all f ∈ L2(λ).

In particular this equation holds for all bounded measurable functions, f : X →
R and for such a function we have

ν (f) = Re ν (f) = Re

∫
X

fρdλ =

∫
X

f Re ρ dλ. (20.1)

Thus by replacing ρ by Re ρ if necessary we may assume ρ is real.
Taking f = 1ρ<0 in Eq. (20.1) shows

0 ≤ ν (ρ < 0) =

∫
X

1ρ<0ρ dλ ≤ 0,

from which we conclude that 1ρ<0ρ = 0, λ – a.e., i.e. λ (ρ < 0) = 0. Therefore
ρ ≥ 0, λ – a.e. Similarly for α > 1,

λ (ρ > α) ≥ ν (ρ > α) =

∫
X

1ρ>αρ dλ ≥ αλ (ρ > α)

which is possible iff λ (ρ > α) = 0. Letting α ↓ 1, it follows that λ (ρ > 1) = 0
and hence 0 ≤ ρ ≤ 1, λ - a.e.

Definition 20.2. Let µ and ν be two positive measure on a measurable space,
(X,M). Then:

1. µ and ν are mutually singular (written as µ ⊥ ν) if there exists A ∈ M
such that ν (A) = 0 and µ (Ac) = 0. We say that ν lives on A and µ lives
on Ac.

2. The measure ν is absolutely continuous relative to µ (written as ν �
µ) provided ν(A) = 0 whenever µ (A) = 0.

As an example, suppose that µ is a positive measure and ρ ≥ 0 is a measur-
able function. Then the measure, ν := ρµ is absolutely continuous relative to
µ. Indeed, if µ (A) = 0 then

ν (A) =

∫
A

ρdµ = 0.

We will eventually show that if µ and ν are σ – finite and ν � µ, then dν = ρdµ
for some measurable function, ρ ≥ 0.

Definition 20.3 (Lebesgue Decomposition). Let µ and ν be two positive
measure on a measurable space, (X,M). Two positive measures νa and νs form
a Lebesgue decomposition of ν relative to µ if ν = νa + νs, νa � µ, and
νs ⊥ µ.

Lemma 20.4. If µ1, µ2 and ν are positive measures on (X,M) such that µ1 ⊥
ν and µ2 ⊥ ν, then (µ1 + µ2) ⊥ ν. More generally if {µi}∞i=1 is a sequence of
positive measures such that µi ⊥ ν for all i then µ =

∑∞
i=1 µi is singular relative

to ν.

Proof. It suffices to prove the second assertion since we can then take µj ≡ 0
for all j ≥ 3. Choose Ai ∈ M such that ν (Ai) = 0 and µi (Aci ) = 0 for all i.
Letting A := ∪iAi we have ν (A) = 0. Moreover, since Ac = ∩iAci ⊂ Acm for
all m, we have µi (Ac) = 0 for all i and therefore, µ (Ac) = 0. This shows that
µ ⊥ ν.

Lemma 20.5. Let ν and µ be positive measures on (X,M). If there exists a
Lebesgue decomposition, ν = νs + νa, of the measure ν relative to µ then this
decomposition is unique. Moreover: if ν is a σ – finite measure then so are νs
and νa.
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Proof. Since νs ⊥ µ, there exists A ∈M such that µ(A) = 0 and νs (Ac) = 0
and because νa � µ, we also know that νa (A) = 0. So for C ∈M,

ν (C ∩A) = νs (C ∩A) + νa (C ∩A) = νs (C ∩A) = νs (C) (20.2)

and

ν (C ∩Ac) = νs (C ∩Ac) + νa (C ∩Ac) = νa (C ∩Ac) = νa (C) . (20.3)

Now suppose we have another Lebesgue decomposition, ν = ν̃a + ν̃s with
ν̃s ⊥ µ and ν̃a � µ. Working as above, we may choose Ã ∈ M such that
µ(Ã) = 0 and Ãc is ν̃s – null. Then B = A ∪ Ã is still a µ – null set and and
Bc = Ac ∩ Ãc is a null set for both νs and ν̃s. Therefore we may use Eqs. (20.2)
and (20.3) with A being replaced by B to conclude,

νs(C) = ν(C ∩B) = ν̃s(C) and

νa(C) = ν(C ∩Bc) = ν̃a(C) for all C ∈M.

Lastly if ν is a σ – finite measure then there exists Xn ∈ M such that
X =

∑∞
n=1Xn and ν(Xn) <∞ for all n. Since∞ > ν(Xn) = νa(Xn)+νs(Xn),

we must have νa(Xn) < ∞ and νs(Xn) < ∞, showing νa and νs are σ – finite
as well.

Lemma 20.6. Suppose µ is a positive measure on (X,M) and f, g : X → [0,∞]
are functions such that the measures, fdµ and gdµ are σ – finite and further
satisfy, ∫

A

fdµ =

∫
A

gdµ for all A ∈M. (20.4)

Then f(x) = g(x) for µ – a.e. x. (BRUCE: this lemma is very closely related
to Lemma 10.25 above.)

Proof. By assumption there exists Xn ∈ M such that Xn ↑ X and∫
Xn

fdµ < ∞ and
∫
Xn

gdµ < ∞ for all n. Replacing A by A ∩ Xn in Eq.

(20.4) implies∫
A

1Xnfdµ =

∫
A∩Xn

fdµ =

∫
A∩Xn

gdµ =

∫
A

1Xngdµ

for all A ∈M. Since 1Xnf and 1Xng are in L1(µ) for all n, this equation implies
1Xnf = 1Xng, µ – a.e. Letting n→∞ then shows that f = g, µ – a.e.

Remark 20.7. Lemma 20.6 is in general false without the σ – finiteness assump-
tion. A trivial counterexample is to takeM = 2X , µ(A) =∞ for all non-empty
A ∈M, f = 1X and g = 2 · 1X . Then Eq. (20.4) holds yet f 6= g.

Theorem 20.8 (Radon Nikodym Theorem for Positive Measures).
Suppose that µ and ν are σ – finite positive measures on (X,M). Then ν has
a unique Lebesgue decomposition ν = νa + νs relative to µ and there exists
a unique (modulo sets of µ – measure 0) function ρ : X → [0,∞) such that
dνa = ρdµ. Moreover, νs = 0 iff ν � µ.

Proof. The uniqueness assertions follow directly from Lemmas 20.5 and
20.6.

Existence when µ and ν are both finite measures. (Von-Neumann’s
Proof. See Remark 20.9 for the motivation for this proof.) First suppose that µ
and ν are finite measures and let λ = µ+ ν. By Theorem 20.1, dν = hdλ with
0 ≤ h ≤ 1 and this implies, for all non-negative measurable functions f, that

ν(f) = λ(fh) = µ(fh) + ν(fh) (20.5)

or equivalently
ν(f(1− h)) = µ(fh). (20.6)

Taking f = 1{h=1} in Eq. (20.6) shows that

µ ({h = 1}) = ν(1{h=1}(1− h)) = 0,

i.e. 0 ≤ h (x) < 1 for µ - a.e. x. Let

ρ := 1{h<1}
h

1− h

and then take f = g1{h<1}(1− h)−1 with g ≥ 0 in Eq. (20.6) to learn

ν(g1{h<1}) = µ(g1{h<1}(1− h)−1h) = µ(ρg).

Hence if we define

νa := 1{h<1}ν and νs := 1{h=1}ν,

we then have νs ⊥ µ (since νs “lives” on {h = 1} while µ (h = 1) = 0) and
νa = ρµ and in particular νa � µ. Hence ν = νa + νs is the desired Lebesgue
decomposition of ν. If we further assume that ν � µ, then µ (h = 1) = 0 implies
ν (h = 1) = 0 and hence that νs = 0 and we conclude that ν = νa = ρµ.

Existence when µ and ν are σ-finite measures. Write X =
∑∞
n=1Xn

where Xn ∈ M are chosen so that µ(Xn) < ∞ and ν(Xn) < ∞ for all n. Let
dµn = 1Xndµ and dνn = 1Xndν. Then by what we have just proved there exists
ρn ∈ L1(X,µn) ⊂ L1(X,µ) and measure νsn such that dνn = ρndµn + dνsn with
νsn ⊥ µn. Since µn and νsn “live” on Xn there exists An ∈ MXn such that
µ (An) = µn (An) = 0 and
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νsn (X \An) = νsn (Xn \An) = 0.

This shows that νsn ⊥ µ for all n and so by Lemma 20.4, νs :=
∑∞
n=1 ν

s
n is

singular relative to µ. Since

ν =

∞∑
n=1

νn =

∞∑
n=1

(ρnµn + νsn) =

∞∑
n=1

(ρn1Xnµ+ νsn) = ρµ+ νs, (20.7)

where ρ :=
∑∞
n=1 1Xnρn, it follows that ν = νa + νs with νa = ρµ. Hence this

is the desired Lebesgue decomposition of ν relative to µ.

Remark 20.9. Here is the motivation for the above construction. Suppose that
dν = dνs + ρdµ is the Radon-Nikodym decomposition and X = A

∑
B such

that νs(B) = 0 and µ(A) = 0. Then we find

νs(f) + µ(ρf) = ν(f) = λ(hf) = ν(hf) + µ(hf).

Letting f → 1Af then implies that

ν(1Af) = νs(1Af) = ν(1Ahf)

which show that h = 1, ν –a.e. on A. Also letting f → 1Bf implies that

µ(ρ1Bf) = ν(h1Bf) + µ(h1Bf) = µ(ρh1Bf) + µ(h1Bf)

which implies, ρ = ρh+ h, µ – a.e. on B, i.e.

ρ (1− h) = h, µ– a.e. on B.

In particular it follows that h < 1, µ = ν – a.e. on B and that ρ = h
1−h1h<1,

µ – a.e. So up to sets of ν – measure zero, A = {h = 1} and B = {h < 1} and
therefore,

dν = 1{h=1}dν + 1{h<1}dν = 1{h=1}dν +
h

1− h
1h<1dµ.

20.1 Proof of the Change of Variables Theorem* 14.13

*This section is still very rough.
A better proof of Theorem 14.13. Here is perhaps the proof I should

use in this book for the change of variables theorem. As usual let T : Ω → T (Ω)
be a C1 – diffeomorpshism and assume both T and T−1 have globally bounded
Lipschitz constants (this can be achieved by shrinking Ω if necessary). We will
work in the `∞ – norm on Rd.

1. If f : T (Ω)→ R and g : Ω → R we have∫
Ω

f ◦ Tdm =

∫
T (Ω)

fd
(
m ◦ T−1

)
(20.8)

and ∫
T (Ω)

g ◦ T−1dm =

∫
Ω

gd (m ◦ T ) . (20.9)

2. Referring to the math 140 notes, show |m ◦ T (A)| ≤ Km (A) and similarly∣∣m ◦ T−1 (A)
∣∣ ≤ Km (A) . Therefore by the easiest version of the the Radon

– Nykodym there are bounded non-negative functions, α and β such that

d (m ◦ T )

dm
= α : Ω → R and

d
(
m ◦ T−1

)
dm

= β : T (Ω)→ R.

In other words we now have,∫
Ω

f ◦ Tdm =

∫
T (Ω)

fβdm and (20.10)∫
T (Ω)

g ◦ T−1dm =

∫
Ω

gαdm. (20.11)

3. There is a relationship between α and β. Indeed taking g = (fβ) ◦ T shows∫
Ω

f ◦ Tdm =

∫
T (Ω)

fβdm =

∫
T (Ω)

((fβ) ◦ T ) ◦ T−1dm

=

∫
Ω

(f ◦ T ) · (β ◦ T )αdm

from which we conclude

(β ◦ T )α = 1 a.e. ⇐⇒ α =
1

β ◦ T
(20.12)

We now wish to compute the functions α and β by taking limits and for
this we will use the Lebesgue differentiation theorem or the easier fact that
δr ∗ α→ α in L1

loc as r ↓ 0 where δr (x) := 1
m(Br(0))1Br(0).

4. So fix and x ∈ Ω and consider

T ′ (x)
−1

[T (y)− T (x)] = T ′ (x)
−1

[∫ 1

0

T ′ (x+ t (y − x)) (y − x) dt

]
=

[∫ 1

0

T ′ (x)
−1
T ′ (x+ t (y − x)) (y − x) dt

]
= y − x+ ε (x, y) (y − x)
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where

ε (x, y) :=

∫ 1

0

[
T ′ (x)

−1
T ′ (x+ t (y − x))− I

]
dt

satisfies,

‖ε (x, y)‖ ≤
∫ 1

0

∥∥∥T ′ (x)
−1
T ′ (x+ t (y − x))− I

∥∥∥ dt = ε (‖y − x‖) .

From this it follows if y ∈ Br (x) = x+Br (0) , then∥∥∥T ′ (x)
−1

[T (y)− T (x)]
∥∥∥ ≤ r (1 + ε (r))

and hence
T ′ (x)

−1
[T (Br (x))− T (x)] ⊂ Br(1+ε(r)) (0)

or equivalently that

T (Br (x)) ⊂ T (x) + T ′ (x)Br(1+ε(r)) (0) . (20.13)

5. Therefore it follows that

m (T (Br (x)))

m (Br (x))
≤
m
(
T (x) + T ′ (x)Br(1+ε(r)) (0)

)
m (Br (x))

= |detT ′ (x)| · (1 + ε (r))
d
.

Letting r ↓ 0 and using the Lebesgue differentiation theorem (see Theorem
??) which is a rather deep result!)

α (x) =
d (m ◦ T )

dm
(x) ≤ |detT ′ (x)| for a.e. x ∈ Ω. (20.14)

Applying this result with T replaced by T−1 then shows,

β (y) =
d
(
m ◦ T−1

)
dm

(y) ≤
∣∣∣det

(
T−1

)′
(y)
∣∣∣ for a.e. y ∈ T (Ω) . (20.15)

Alternatively let us observe that

m (T (Br (x)))

m (Br (x))
=

1

m (Br (x))

∫
Br(0)

α (x+ y) dy = δr ∗ α (x) .

By the easier approximate identity Theorem ?? we know δr ∗α→ α in L1
loc

and so there exists rn ↓ 0 such that δrn ∗ α → α a.e. as n → ∞. Thus we
again learn that for a.e. x,

α (x) = lim
n→∞

δrn ∗ α (x) = lim
n→∞

m (T (Brn (x)))

m (Brn (x))

≤ lim
n→∞

|detT ′ (x)| · (1 + ε (rn))
d

= |detT ′ (x)| .

6. We now use α = 1
β◦T from Eq. (20.12) along with the inequality in Eq.

(20.15) to learn

α (x) =
1

β ◦ T (x)
≥ 1∣∣det (T−1)

′
(T (x))

∣∣ .
On the other hand, since T−1 ◦ T = I, it follows by the chain rule that(
T−1

)′
(T (x))T ′ (x) = I and therefore

1∣∣det (T−1)
′
(T (x))

∣∣ = |detT ′ (x)|

and we may conclude α (x) ≥ |detT ′ (x)| . This result along with the in-
equality in Eq. (20.14) shows

α (x) = |detT ′ (x)| .

7. Using this result back in Eq. (20.11) with g = f ◦ T for some function on
f : T (Ω)→ R gives,∫

T (Ω)

fdm =

∫
Ω

f ◦ T · |detT ′| dm.

Note: By working harder as in the inverse function Theorem ??, we could
have proved the stronger version of Eq. (20.13);

T (x) + T ′ (x)Br(1−ε(r)) (0) ⊂ T (Br (x)) ⊂ T (x) + T ′ (x)Br(1+ε(r)) (0) .

If we had done this we could have avoided discussing β altogether. Indeed, the
method of step 5. would then give

|detT ′ (x)| · (1− ε (r))
d ≤ m (T (Br (x)))

m (Br (x))
≤ |detT ′ (x)| · (1 + ε (r))

d

which upon letting r ↓ 0 would have shown d[m◦T ]
dm (x) = |detT ′ (x)| .
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Some Ergodic Theory

The goal of this chapter is to show (in certain circumstances) that “time
averages” are the same as “spatial averages.” We start with a “simple” Hilbert
space version of the type of theorem that we are after. For more on the following
mean Ergodic theorem, see [19] and [11].

Theorem 21.1 (Von-Neumann’s Mean Ergodic Theorem). Let U : H →
H be an isometry on a Hilbert space H, M = Nul(U−I), P = PM be orthogonal

projection onto M, and Sn =
∑n−1
k=0 U

k. Show Sn
n → PM strongly by which we

mean limn→∞
Sn
n x = PMx for all x ∈ H.

Proof. Since U is an isometry we have (Ux,Uy) = (x, y) for all x, y ∈ H
and therefore that U∗U = I. In general it is not true that UU∗ = I but instead,
UU∗ = PRan(U). Thus UU∗ = I iff U is surjective, i.e. U is unitary.

Before starting the proof in earnest we need to prove

Nul(U∗ − I) = Nul(U − I).

If x ∈ Nul (U − I) then x = Ux and therefore U∗x = U∗Ux = x, i.e. x ∈
Nul(U∗ − I). Conversely if x ∈ Nul(U∗ − I) then U∗x = x and we have

‖Ux− x‖2 = 2 ‖x‖2 − 2 Re (Ux, x)

= 2 ‖x‖2 − 2 Re (x, U∗x) = 2 ‖x‖2 − 2 Re (x, x) = 0

which shows that Ux = x, i.e. x ∈ Nul (U − I) . With this remark in hand we
can easily complete the proof.

Let us first observe that

Sn
n

(U − I) =
1

n
[Un − I]→ 0 as n→∞.

Thus if x = (U − I)y ∈ Ran(U − I), we have

Sn
n
x =

1

n
(Uny − y)→ 0 as n→∞.

More generally if x ∈ Ran(U − I) and x′ ∈ Ran(U−I), we have, since
∥∥Sn
n

∥∥ ≤ 1,
that ∥∥∥∥Snn x− Sn

n
x′
∥∥∥∥ ≤ ‖x− x′‖

and hence

lim sup
n→∞

∥∥∥∥Snn x

∥∥∥∥ = lim sup
n→∞

∥∥∥∥Snn x− Sn
n
x′
∥∥∥∥ ≤ ‖x− x′‖ .

Letting x′ ∈ Ran (U − I) tend to x ∈ Ran(U − I) allows us to conclude that
lim supn→∞

∥∥Sn
n x
∥∥ = 0.

For

x ∈ Ran(U − I)
⊥

= Ran (U − I)
⊥

= Nul (U∗ − I) = Nul (U − I) = M

we have Sn
n x = x. So for general x ∈ H, we have x = PMx+ y with y ∈M⊥ =

Ran(U − I) and therefore,

Sn
n
x =

Sn
n
PMx+

Sn
n
y = PMx+

Sn
n
y → PMx as n→∞.

For the rest of this section, suppose that (Ω,B, µ) is a σ – finite measure
space and θ : Ω → Ω is a measurable map such that θ∗µ = µ. After Theorem
21.6 we will further assume that µ = P is a probability measure. For more
results along the lines of this chapter, the reader is referred to Kallenberg [26,
Chapter 10]. The reader may also benefit from Norris’s notes in [33].

Definition 21.2. Let

Bθ :=
{
A ∈ B : θ−1 (A) = A

}
and

B′θ :=
{
A ∈ B : µ

(
θ−1 (A)∆A

)
= 0
}

be the invariant σ – field and almost invariant σ –fields respectively.

In what follows we will make use of the following easily proved set identities.
Let {An}∞n=1 , {Bn}

∞
n=1 , and A,B,C be a collection of subsets of Ω, then;

1. A4 C ⊂ [A4B] ∪ [B 4 C] ,
2. [∪∞n=1An]∆ [∪∞n=1Bn] ⊂ ∪∞n=1An∆Bn,
3. [∩∞n=1An]∆ [∩∞n=1Bn] ⊂ ∪∞n=1An∆Bn,
4. B∆ {An i.o.} ⊂ ∪∞n=1 [B∆An] .
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Lemma 21.3. The elements of B′θ are the same as the elements in Bθ modulo
null sets, i.e.

B′θ = {B ∈ B : ∃ A ∈ Bθ 3 µ (A4B) = 0} .

Moreover if B ∈ B′θ, then

A :=
{
ω ∈ Ω : θk (ω) ∈ B i.o. k

}
∈ Bθ (21.1)

and µ (A4B) = 0. (We could have just as well taken A to be equal to{
ω ∈ Ω : θk (ω) ∈ B a.a.

}
.)

Proof. If A ∈ Bθ and B ∈ B such that µ (A4B) = 0, then

µ
(
A∆θ−1 (B)

)
= µ

(
θ−1 (A)∆θ−1 (B)

)
= µθ−1 (A4B) = µ (A4B) = 0

and therefore it follows that

µ
(
B∆θ−1 (B)

)
≤ µ (B∆A) + µ

(
A∆θ−1 (B)

)
= 0.

This shows that B ∈ B′θ.
Conversely if B ∈ B′θ then by the invariance of µ under θ it follows that

µ
(
θ−l (B)∆θ−(l+1) (B)

)
= 0 for all k = 0, 1, 2, 3 . . . . In particular we learn

that

µ
(
θ−k (B)∆B

)
= µ

(∣∣1θ−k(B) − 1B
∣∣)

≤
k−1∑
l=0

µ
(∣∣∣1

θ−l(B)
− 1θ−(l+1)(B)

∣∣∣)
=

k−1∑
l=0

µ
(
θ−l (B)∆θ−(l+1) (B)

)
= 0.

Thus if A =
{
θ−k (B) i.o. k

}
as in Eq. (21.1) we have,

µ (B∆A) ≤
∞∑
k=1

µ
(
B∆θ−k (B)

)
= 0.

This completes the proof since

θ−1 (A) =
{
ω ∈ Ω : θk+1 (ω) ∈ B i.o. k

}
= A

and thus A ∈ Bθ.

Definition 21.4. A B – measurable function, f : Ω → R is (almost) invariant
iff f ◦ θ = f (f ◦ θ = f a.s.).

Lemma 21.5. A B – measurable function, f : Ω → R is (almost) invariant iff
f is Bθ (B′θ) measurable. Moreover, if f is almost invariant, then there exists
and invariant function, g : Ω → R, such that f = g, µ – a.e. (This latter
assertion has already been explained in Exercises 17.3 and 17.4.)

Proof. If f is invariant, f ◦ θ = f, then θ−1 ({f ≤ x}) = {f ◦ θ ≤ x} =
{f ≤ x} which shows that {f ≤ x} ∈ Bθ for all x ∈ R and therefore f is Bθ –
measurable. Similarly if f is almost invariant so that f ◦ θ = f (µ – a.e.), then

µ
(∣∣1θ−1({f≤x}) − 1{f≤x}

∣∣) = µ
(∣∣1{f◦θ≤x} − 1{f≤x}

∣∣)
= µ

(∣∣1(−∞,x] ◦ f ◦ θ − 1(−∞,x] ◦ f
∣∣) = 0

from which it follows that {f ≤ x} ∈ B′θ for all x ∈ R, that is f is B′θ –
measurable.

Conversely if f : Ω → R is (B′θ) Bθ -measurable, then for all −∞ < a < b <
∞, ({a < f ≤ b} ∈ B′θ) {a < f ≤ b} ∈ Bθ from which it follows that 1{a<f≤b}
is (almost) invariant. Thus for every N ∈ N the function defined by;

fN :=

N2∑
n=−N2

n

N
1{n−1

N <f≤ n
N },

is (almost) invariant. As f = limN→∞ fN, it follows that f is (almost) invariant
as well.

In the case where f is almost invariant, we can choose DN (n) ∈ Bθ such
that µ

(
DN (n)∆

{
n−1
N < f ≤ n

N

})
= 0 for all n and N and then set

gN :=

N2∑
n=−N2

n

N
1DN (n).

We then have gN = fN a.e. and gN is Bθ – measurable. We may thus conclude
that g̃ := lim supN→∞ gN is Bθ – measurable. It now follows that g := g̃1|g̃|<∞
is Bθ – measurable function such that g = f a.e.

Theorem 21.6. Suppose that (Ω,B, µ) is a σ – finite measure space and θ :
Ω → Ω is a measurable map such that θ∗µ = µ. Then;

1. U : L2 (µ)→ L2 (µ) defined by Uf := f ◦ θ is an isometry. The isometry U
is unitary if θ−1 exists as a measurable map.

2. The map,
L2 (Ω,Bθ, µ) 3 f → f ∈ Nul (U − I)

is unitary. In other words, Uf = f iff there exists g ∈ L2 (Ω,Bθ, µ) such
that f = g a.e.
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3. For every f ∈ L2 (µ) we have,

L2 (µ) – lim
n→∞

f + f ◦ θ + · · ·+ f ◦ θn−1

n
= EBθ [f ]

where EBθ denotes orthogonal projection from L2 (Ω,B, µ) onto
L2 (Ω,Bθ, µ) , i.e. EBθ is conditional expectation.

Proof. 1. To see that U is an isometry observe that

‖Uf‖2 =

∫
Ω

|f ◦ θ|2 dµ =

∫
Ω

|f |2 d (θ∗µ) =

∫
Ω

|f |2 dµ = ‖f‖2

for all f ∈ L2 (µ) .
2. f ∈ Nul (U − I) iff f ◦ θ = Uf = f a.e., i.e. iff f is almost invariant.

According to Lemma 21.5 this happen iff there exists a Bθ – measurable func-
tion, g, such that f = g a.e. Necessarily, g ∈ L2 (µ) so that g ∈ L2 (Ω,Bθ, µ) as
required.

3. The last assertion now follows from items 1. and 2. and the mean ergodic
Theorem 21.1.

Assumption 1 From now on we will assume that µ = P is a probability mea-
sure such that Pθ−1 = θ.

Exercise 21.1. For every Z ∈ L1 (P ) , show that E [Z ◦ θ|Bθ] = E [Z|Bθ] a.s.
More generally, show for sub – σ -algebra, G ⊂ B, that

E
[
Z ◦ θ|θ−1G

]
= E [Z|G] ◦ θ a.s.

Exercise 21.2. Let 1 ≤ p < ∞. Following the ideas introduced in Exercises
19.9 and 19.10, show

Lp (P )− lim
n→∞

f + f ◦ θ + · · ·+ f ◦ θn−1

n
= EBθ [f ] for all f ∈ Lp (Ω,B, P ) .

(Some of these ideas will again be used in the proof of Theorem 21.9 below.)

Definition 21.7. A sequence of random variables ξ = {ξk}∞k=1 is a stationary

if (ξ2, ξ3, , . . . )
d
= (ξ1, ξ2, . . . ) .

If we temporarily let

θ (x1, x2, x3, . . . ) = θ (x2, x3, . . . ) for (x1, x2, x3, . . . ) ∈ RN, (21.2)

the stationarity condition states that θξ
d
= ξ. Equivalently if

µ = LawP (ξ1, ξ2, . . . ) on
(
RN,B⊗NR

)
, then ξ = {ξk}∞k=1 is stationary iff

µ ◦ θ−1 = µ. Let us also observe that ξ is stationary implies θ2ξ
d
= θξ

d
= ξ

and θ3ξ
d
= θξ

d
= ξ, etc. so that θnξ

d
= ξ for all n ∈ N.1 In what follows for

x ∈ (x1, x2, x3, . . . ) ∈ RN we will let S0 (x) = 0,

Sn (x) = x1 + x2 + · · ·+ xn, and

S∗n := max (S1, S2, . . . , Sn)

for all n ∈ N.

Lemma 21.8 (Maximal Ergodic Lemma). Suppose ξ := {ξk}∞k=1 is a sta-
tionary sequence and Sn (ξ) = ξ1 + · · ·+ ξn as above, then

E
[
ξ1 : sup

n
Sn (ξ) > 0

]
≥ 0. (21.3)

Proof. In this proof, θ will be as in Eq. (21.2). If 1 ≤ k ≤ n, then

Sk (ξ) = ξ1 + Sk−1 (θξ) ≤ ξ1 + S∗k−1 (θξ) ≤ ξ1 + S∗n (θξ) = ξ1 + [S∗n (θξ)]+

and therefore, S∗n (ξ) ≤ ξ1 + [S∗n (θξ)]+ . So we may conclude that

E [ξ1 : S∗n (ξ) > 0] ≥ E
[
S∗n (ξ)− [S∗n (θξ)]+ : S∗n > 0

]
= E

[
[S∗n (ξ)]+ − [S∗n (θξ)]+ 1S∗n>0

]
≥ E

[
[S∗n (ξ)]+ − [S∗n (θξ)]+

]
= E [S∗n (ξ)]+ − E [S∗n (θξ)]+ = 0,

wherein we used ξ
d
= θξ for the last equality. Letting n → ∞ making use of

the MCT and the observation that {S∗n (ξ) > 0} ↑ {supn Sn (ξ) > 0} gives Eq.
(21.3).

Theorem 21.9 (Birkoff’s Ergodic Theorem). Suppose that f ∈
L1 (Ω,B, P ) or f ≥ 0 and is B – measurable, then

lim
n→∞

1

n

n∑
k=1

f ◦ θk−1 = E [f |Bθ] a.s.. (21.4)

Moreover if f ∈ Lp (Ω,B, P ) for some 1 ≤ p < ∞ then the convergence in Eq.
(21.4) holds in Lp as well.

1 In other words if {ξk}∞k=1 is stationary, then by lopping off the first random variable

on each side of the identity, (ξ2, ξ3, , . . . )
d
= (ξ1, ξ2, . . . ) , implies that

(ξ3, ξ4, . . . )
d
= (ξ2, ξ3, , . . . )

d
= (ξ1, ξ2, . . . ) .

Continuing this way inductively shows that stationarity is equivalent to

(ξn, ξn+1, ξn+2, . . . )
d
= (ξ1, ξ2, . . . ) for all n ∈ N.
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Proof. Let us begin with the general observation that if ξ = (ξ1, ξ2, . . . ) is
a sequence of random variables such that ξi ◦ θ = ξi+1 for i = 1, 2, . . . , then ξ
is stationary. This is because,

(ξ1, ξ2, . . . )
d
= (ξ1, ξ2, . . . ) ◦ θ = (ξ1 ◦ θ, ξ2 ◦ θ, . . . ) = (ξ2, ξ3, . . . ) .

We will first prove Eq. (21.4) under the assumption that f ∈ L1 (P ) . We
now let g := E [f |Bθ] and ξk := f ◦ θk−1 − g for all k ∈ N. Since g is Bθ –
measurable we know that g ◦ θ = g and therefore,

ξk ◦ θ =
(
f ◦ θk−1 − g

)
◦ θ = f ◦ θk − g = ξk+1

and therefore ξ = (ξ1, ξ2, . . . ) is stationary. To simplify notation let us write Sn
for Sn (ξ) = ξ1 +· · ·+ξn. To finish the proof we need to show that limn→∞

Sn
n =

0 a.s. for then,

1

n

n∑
k=1

f ◦ θk−1 =
1

n
Sn + g → g = E [f |Bθ] a.s.

In order to show limn→∞
Sn
n = 0 a.s. it suffices to show

M (ξ) := lim sup
n→∞

Sn (ξ)

n
≤ 0 a.s.

If we can do this we can also show that M (−ξ) = lim supn→∞
−Sn(ξ)

n ≤ 0, i.e.

lim inf
n→∞

Sn (ξ)

n
≥ 0 ≥ lim sup

n→∞

Sn (ξ)

n
a.s.

which shows that limn→∞
Sn
n = 0 a.s. Finally in order to prove M (ξ) ≤ 0 a.s.

it suffices to show P (M (ξ) > ε) = 0 for all ε > 0. This is what we will do now.
Since Sn ◦ θ = Sn+1 − ξ1 we have so that

M (ξ) ◦ θ = lim sup
n→∞

1

n
(Sn+1 − ξ1) = lim sup

n→∞

[
n+ 1

n
· 1

n+ 1
Sn+1

]
= M (ξ) .

Thus M (ξ) is an invariant function and therefore Aε := {M (ξ) > ε} ∈ Bθ.
Using E [ξ1|Bθ] = E [f − g|Bθ] = g − g = 0 a.s. it follows that

0 = E [E [ξ1|Bθ] : M (ξ) > ε] = E [ξ1 : M (ξ − ε) > 0]

= E [ξ1 − ε : M (ξ − ε) > 0] + εP (Aε) .

If we now define ξεn := (ξn − ε) 1Aε , which is still stationary since

ξεn ◦ θ = (ξn ◦ θ − ε) 1Aε ◦ θ = (ξn+1 − ε) 1Aε = ξεn+1,

then it is easily verified2 that

Aε = {M (ξ − ε) > 0} =

{
sup
n
Sn (ξε) > 0

}
.

Therefore by an application of the maximal ergodic Lemma 21.8 we have,

−εP (M (ξ) > ε) = E [ξ1 − ε : Aε] = E
[
ξε1 : sup

n
Sn (ξε) > 0

]
≥ 0

which shows P (M (ξ) > ε) = 0.
Now suppose that f ∈ Lp (P ) . To prove the Lp – convergence of the limit in

Eq. (21.4) it suffices by Theorem 17.55 to show
{∣∣ 1
nSn (η)

∣∣p}∞
n=1

is uniformly
integrable. This can be done as in the second solution to Exercise 17.7 (Resnick
§ 6.7, #5). Here are the details.

First observe that {|ηk|p}
∞
k=1 are uniformly integrable. Indeed, by station-

arity,
E [|ηk|p : |ηk|p ≥ a] = E [|η1|p : |η1|p ≥ a]

and therefore

sup
k
E [|ηk|p : |ηk|p ≥ a] = E [|η1|p : |η1|p ≥ a]

DCT→ 0 as a→∞.

Thus if ε > 0 is given we may find (see Proposition 17.51) δ > 0 such that
E [|ηk|p : A] ≤ ε whenever A ∈ B with P (A) ≤ δ. Then for such an A, we
have (using Jensen’s inequality relative to normalized counting measure on
{1, 2, . . . , n}),

E
[∣∣∣∣ 1nSn (η)

∣∣∣∣p : A

]
≤ E

[
1

n
Sn (|η|p) : A

]
=

1

n

n∑
k=1

E [|ηk|p : A] ≤ 1

n
nε = ε.

Another application of Proposition 17.51 shows
{∣∣ 1
nSn (η)

∣∣p}∞
n=1

is uniformly
integrable as

sup
n
E
∣∣∣∣ 1nSn (η)

∣∣∣∣p ≤ sup
n

1

n

n∑
k=1

E [|ηk|p] = E |η1|p <∞.

2 Since Aε ⊂ {supSn/n > ε} , it follows that

Aε =

{
sup

Sn
n
> ε

}
∩Aε = {supSn − nε > 0} ∩Aε

= {supSn (ξ − ε) > 0} ∩Aε = {supSn (ξ − ε) 1Aε > 0}

=

{
sup
n
Sn (ξε) > 0

}
.
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Finally we need to consider the case where f ≥ 0 but f /∈ L1 (P ) . As before,
let g = E [f |Bθ] ≥ 0. For r ∈ (0,∞) and let fr := f · 1g≤r. We then have

E [fr|Bθ] = E [f · 1g≤r|Bθ] = 1g≤rE [f · |Bθ] = 1g≤r · g

and in particular, Efr = E (1g≤rg) ≤ r < ∞. Thus by the L1 – case already
proved,

lim
n→∞

1

n

n∑
k=1

fr ◦ θk−1 = 1g≤r · g a.s.

On the other hand, since g is θ –invariant, we see that fr ◦ θk = f ◦ θk · 1g≤r
and therefore

1

n

n∑
k=1

fr ◦ θk−1 =

(
1

n

n∑
k=1

f ◦ θk−1

)
1g≤r.

Using these identities and the fact that r <∞ was arbitrary we may conclude
that

lim
n→∞

1

n

n∑
k=1

f ◦ θk−1 = g a.s. on {g <∞} . (21.5)

To take care of the set where {g =∞} , again let r ∈ (0,∞) but now take
fr = f ∧ r ≤ f. It then follows that

lim inf
n→∞

1

n

n∑
k=1

f ◦ θk−1 ≥ lim inf
n→∞

1

n

n∑
k=1

[
fr ◦ θk−1

]
= E [f ∧ r|Bθ] .

Letting r ↑ ∞ and using the cMCT implies,

lim inf
n→∞

1

n

n∑
k=1

f ◦ θk−1 ≥ E [f |Bθ] = g

and therefore lim infn→∞
1
n

∑n
k=1 f ◦ θk−1 = ∞ a.s. on {g =∞} . This then

shows that

lim
n→∞

1

n

n∑
k=1

f ◦ θk−1 =∞ = g a.s. on {g =∞} .

which combined with Eq. (21.5) completes the proof.
As a corollary we have the following version of the strong law of large num-

bers, also see Theorems 25.31 and Example 23.82 below for other proofs.

Theorem 21.10 (Kolmogorov’s Strong Law of Large Numbers). Sup-
pose that {Xn}∞n=1 are i.i.d. random variables and let Sn := X1 + · · ·+Xn. If
Xn are integrable or Xn ≥ 0, then

lim
n→∞

1

n
Sn = EX1 a.s.

and 1
nSn → EX1 in L1 (P ) when E |Xn| <∞.

Proof. We may assume that Ω = RN, B is the product σ – algebra, and
P = µ⊗N where µ = LawP (X1) . In this model, Xn (ω) = ωn for all ω ∈ Ω
and we take θ : Ω → Ω as in Eq. (21.2). Wit this notation we have Xn =
X1 ◦ θn−1 and therefore, Sn =

∑n
k=1X1 ◦ θk−1. So by Birkoff’s ergodic theorem

limn→∞
1
nSn = E [X1|Bθ] =: g a.s.

If A ∈ Bθ, then A = θ−n (A) ∈ σ (Xn+1, Xn+2, . . . ) and therefore A ∈ T =
∩nσ (Xn+1, Xn+2, . . . ) – the tail σ – algebra. However by Kolmogorov’s 0 - 1
law (Proposition 15.77), we know that T is almost trivial and therefore so is
Bθ. Hence we may conclude that g = c a.s. where c ∈ [0,∞] is a constant, see
Lemma 15.75.

If X1 ≥ 0 a.s. and EX1 = ∞ then we must c = E [X1|Bθ] = ∞ a.s. for
if c < ∞, then EX1 = E [E [X1|Bθ]] = E [c] < ∞. When X1 ∈ L1 (P ) , the
convergence in Birkoff’s ergodic theorem is also in L1 and therefore we may
conclude that

c = Ec = lim
n→∞

E
[

1

n
Sn

]
= lim
n→∞

1

n
E [Sn] = EX1.

Thus we have shown in all cases that limn→∞
1
nSn = E [X1|Bθ] = EX1 a.s.
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Part III

Stochastic Processes I





In the sequel (Ω,B, P ) will be a probability space and (S,S) will denote a
measurable space which we refer to as state space. If we say that f : Ω →
S is a function we will always assume that it is B/S – measurable. We also
let Sb denote the bounded S/BR – measurable functions from S to R. On
occasion we will assume that (S,S) is a standard Borel space in order to have
available to us the existence of regular conditional distributions (see Remark
19.21 and Theorem 19.41) and the use of Kolmogorov’s extension Theorem
22.68 for proving the existence of Markov processes.

In the rest of this book we will devote most of our time to studying stochas-
tic processes, i.e. a collection of random variables or more generally random
functions, X := {Xt : Ω → S}t∈T , indexed by some parameter space, T. The
weakest description of such a stochastic process will be through its “finite di-
mensional distributions.”

Definition 21.11. Given a stochastic process, X := {Xt : Ω → S}t∈T , and a

finite subset, Λ ⊂ T, we say that νΛ := LawP

(
{Xt}t∈Λ

)
on
(
SΛ,S⊗Λ

)
is a

finite dimensional distribution of X.

Unless T is a countable or finite set or Xt has some continuity properties
in t, knowledge of the finite dimensional distributions alone is not going to be
adequate for our purposes, however it is a starting point. For now we are going
to restrict our attention to the case where T = N0 or T = R+ := [0,∞) (t ∈ T
is typically interpreted as a time). Later in this part we will further restrict
attention to stochastic processes indexed by N0 leaving the technically more
complicated case where T = R+ to later parts of the book.

Definition 21.12. An increasing (i.e. non-decreasing) sequence {Bt}t∈T of
sub-σ-algebras of B is called a filtration. We will let B∞ := ∨t∈TBt :=
σ (∪t∈TBt) . A four-tuple,

(
Ω,B, {Bt}t∈T , P

)
, where (Ω,B, P ) is a probabil-

ity space and {Bt}t∈T is a filtration is called a filtered probability space. We
say that a stochastic process, {Xt}t∈T , of random functions from Ω → S is
adapted to the filtration if Xt is Bt/S – measurable for every t ∈ T.

A typical way to make a filtration is to start with a stochastic process
{Xt}t∈T and then define BXt := σ (Xs : s ≤ t) . Clearly {Xt}t∈T will always be
adapted to this filtration.

In this part of the book we are going to study stochastic processes with
certain dependency structures. This will take us to the notion of Markov pro-
cesses and martingales. Before starting our study of Markov processes it will be
helpful to record a few more facts about probability kernels.

Given a probability kernel, Q, on S × S (so Q : S × S → [0, 1]), we may
associate a linear transformation, T = TQ : Sb → Sb defined by

(Tf) (x) = Q (x, f) =

∫
S

Q (x, dy) f (y) for all f ∈ Sb. (21.6)

It is easy to check that T satisfies;

1. T1 = 1,
2. Tf ≥ 0 if 0 ≤ f ∈ Sb,
3. if fn ∈ Sb and fn → f boundedly then Tfn → Tf boundedly as well.

Notice that an operator T : Sb → Sb satisfying conditions 1. and 2. above
also satisfies Tf ≤ Tg and Tf is real is f. Indeed if f = f+ − f− is real then

Tf = T (f+ − f−) = Tf+ − Tf−

with 0 ≤ Tf± ∈ R and if f ≤ g then 0 ≤ f − g which implies

Tf − Tg = T (f − g) ≥ 0.

As ±f ≤ |f | when f is real, we have ±Tf ≤ T |f | and therefore |Tf | ≤ T |f | .
More generally if f is complex and x ∈ S, we may choose θ ∈ R such that
eiθ (Tf) (x) ≥ 0 and therefore,

|(Tf) (x)| = eiθ (Tf) (x) =
(
T
[
eiθf

])
(x)

=
(
T Re

[
eiθf

])
(x) + i

(
T Im

[
eiθf

])
(x) .

Furthermore we must have
(
T Im

[
eiθf

])
(x) = 0 and using Re

[
eiθf

]
≤ |f | we

find,
|(Tf) (x)| =

(
T Re

[
eiθf

])
(x) ≤ (T |f |) (x) .

As x ∈ S was arbitrary we have shown that |Tf | ≤ T |f | . Thus if |f | ≤ M for
some 0 ≤M <∞ we may conclude,

|Tf | ≤ T |f | ≤ T (M · 1) = MT1 = M.

Proposition 21.13. If T : Sb → Sb is a linear transformation satisfying the
three properties listed after Eq. (21.6), then Q (x,A) := (T1A) (x) for all A ∈ S
and x ∈ S is a probability kernel such that Eq. (21.6) holds.

The proof of this proposition is straightforward and will be left to the reader.
Let me just remark that if Q (x,A) := (T1A) (x) for all x ∈ S and A ∈ S then
Tf = Q (·, f) for all simple functions in Sb and then by approximation for all
f ∈ Sb.

Corollary 21.14. If Q1 and Q2 are two probability kernels on (S,S)× (S,S) ,
then TQ1

TQ2
= TQ where Q is the probability kernel given by

Q (x,A) = (TQ1
TQ2

1A) (x) = Q1 (x,Q2 (·, A))

=

∫
S

Q1 (x, dy)Q2 (y,A)

for all A ∈ S and x ∈ S. We will denote Q by Q1Q2.



From now on we will identify the probability kernel Q : S × S → [0, 1]
with the linear transformation T = TQ and simply write Qf for Q (·, f) . The
last construction that we need involving probability kernels is the following
extension of the notion of product measure.

Proposition 21.15. Suppose that ν is a probability measure on (S,S) and Qk :
S×S → [0, 1] are probability kernels on (S,S)×(S,S) for 1 ≤ k ≤ n. Then there

exists a probability measure µ on
(
Sn+1,S⊗(n+1)

)
such that for all f ∈ S⊗(n+1)

b

we have

µ (f) =

∫
S

dν (x0)

∫
S

Q1 (x0, dx1)

∫
S

Q2 (x1, dx2) ·

. . . ·
∫
S

Qn (xn−1, dxn) f (x0, . . . , xn) . (21.7)

Part of the assertion here is that all functions appearing are bounded and mea-
surable so that all of the above integrals make sense. We will denote µ in the
future by,

dµ (x0, . . . , xn) = dν (x0)Q1 (x0, dx1)Q2 (x1, dx2) . . . Qn (xn−1, dxn) .

Proof. The fact that all of the iterated integrals make sense in Eq. (21.7)
follows from Exercise 19.5, the measurability statements in Fubini’s theorem,
and induction. The measure µ is defined by setting µ (A) = µ (1A) for all A ∈
S⊗(n+1). It is a simple matter to check that µ is a measure on

(
Sn+1,S⊗(n+1)

)
and that

∫
S
fdµ agrees with the right side of Eq. (21.7) for all f ∈ S⊗(n+1)

b .

Remark 21.16. As usual the measure µ is determined by its value on product
functions of the form f (x0, . . . , xn) =

∏n
i=0 fi (xi) with fi ∈ Sb. For such a

function we have

µ (f) = Eν
[
f0Q1Mf1

Q2Mf2
. . . Qn−1Mfn−1

Qnfn
]

where Mf : Sb → Sb is defined by Mfg = fg, i.e. Mf is multiplication by f.



22

The Markov Property

For purposes of this section, T = N0 or R+,
(
Ω,B, {Bt}t∈T , P

)
is a filtered

probability space, and (S,S) be a measurable space. We will often write t ≥ 0
to mean that t ∈ T. Thus we will often denote a stochastic process by {Xt}t≥0

instead of {Xt}t∈T .

Definition 22.1 (The Markov Property). A stochastic process
{Xt : Ω → S}t∈T is said to satisfy the Markov property if Xt is adapted and

EBsf (Xt) := E [f (Xt) |Bs] = E [f (Xt) |Xs] a.s. for all 0 ≤ s < t (22.1)

and for every f ∈ Sb.

If Eq. (22.1) holds then by the factorization Lemma 9.42 there exists F ∈ Sb
such that F (Xs) = E [f (Xt) |Xs] . Conversely if we want to verify Eq. (22.1) it
suffices to find an F ∈ Sb such that EBsf (Xt) = F (Xs) a.s. This is because,
by the tower property of conditional expectation,

EBsf (Xt) = F (Xs) = E [F (Xs) |Xs] = E [EBsf (Xt) |Xs] = E [f (Xt) |Xs] a.s.
(22.2)

Poetically speaking as stochastic process with the Markov property is forgetful
in the sense that knowing the positions of the process up to some time s ≤ t does
not give any more information about the position of the process, Xt, at time t
than knowing where the process was at time s. We will in fact show (Theorem
22.4 below) that given Xs what the process did before time s is independent of
the what it will do after time s.

Lemma 22.2. If {Xt}t≥0 satisfies the Markov property relative to
the filtration {Bt}t≥0 it also satisfies the Markov property relative to{
BXt = σ (Xs : s ≤ t)

}
t≥0

.

Proof. It is clear that {Xt}t∈T is BXt – adapted and that σ (Xs) ⊂ BXs ⊂ Bs
for all s ∈ T. Therefore using the tower property of conditional expectation we
have,

EBXs f (Xt) = EBXs EBsf (Xt) = EBXs Eσ(Xs)f (Xt) = Eσ(Xs)f (Xt) .

Remark 22.3. If T = N0, a stochastic process {Xn}n≥0 is Markov iff for all
f ∈ Sb,

E [f (Xm+1) |Bm] = E [f (Xm+1) |Xm] a.s. for all m ≥ 0 (22.3)

Indeed if Eq. (22.3) holds for all m, we may use induction on n to show

E [f (Xn) |Bm] = E [f (Xn) |Xm] a.s. for all n ≥ m. (22.4)

It is clear that Eq. (22.4) holds for n = m and n = m+ 1. So now suppose Eq.
(22.4) holds for a given n ≥ m. Using Eq. (22.3) with m = n implies

EBnf (Xn+1) = E [f (Xn+1) |Xn] = F (Xn)

for some F ∈ Sb. Thus by the tower property of conditional expectations and
the induction hypothesis,

EBmf (Xn+1) = EBmEBnf (Xn+1) = EBmF (Xn) = E [F (Xn) |Xm]

= E [EBnf (Xn+1) |Xm] = E [f (Xn+1) |Xm] .

The next theorem and Exercise 22.1 shows that a stochastic process has the
Markov property iff it has the property that; the future of time s only depends
on the past states {Xr : 0 ≤ r ≤ s} through the state (Xs) of the process at
time s.

Theorem 22.4 (Markov Independence). Suppose that {Xt}t∈T is an
adapted stochastic process with the Markov property and let Fs := σ (Xt : t ≥ s)
be the future σ – algebra. Then for any s ∈ T ;

1. E [G|Bs] = E [G|Xs] for all G ∈ (Fs)b and
2. Bs is independent1 of Fs given Xs which we abbreviate as Bs ⊥⊥

Xs
Fs. In

more detail, we are asserting;

P (A ∩B|Xs) = P (A|Xs) · P (B|Xs) a.s.

for all A ∈ Bs and B ∈ Fs or equivalently that

E [FG|Xs] = E [F |Xs] · E [G|Xs] a.s. (22.5)

for all F ∈ (Bs)b and G ∈ (Fs)b and s ∈ T.
1 In words, the future and past are independent given the present.
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Proof. We take each item in turn.

1. Suppose first that G =
∏n
i=0 gi (Xti) with s = t0 < t1 < t2 < · · · < tn and

gi ∈ Sb. Then by the Markov property and the tower property of conditional
expectations,

EBs [G] = EBs

[
n∏
i=0

gi (Xti)

]
= EBsEBtn−1

[
n∏
i=0

gi (Xti)

]

= EBs
n−1∏
i=0

gi (Xti) · EBtn−1
gn (Xtn)

= EBs
n−1∏
i=0

gi (Xti) · E
[
gn (Xtn) |Xtn−1

]
= EBs

[
G̃
]

where

G̃ :=

(
n−2∏
i=0

gi (Xti)

)
· . (gn−1g)

(
Xtn−1

)
where g ∈ Sb is chosen so that E

[
gn (Xtn) |Xtn−1

]
= g

(
Xtn−1

)
a.s.. Con-

tinuing this way inductively we learn that EBs [G] = F (Xs) a.s. for some
F ∈ Sb and therefore,

E [G|Xs] = E [EBsG|Xs] = E [F (Xs) |Xs] = F (Xs) = EBs [G] a.s.

An application of the multiplicative system Theorem 12.5 may now be used
to show item 1. holds for G ∈ (Fs)b

2. If G ∈ (Fs) and F ∈ (Bs)b , then by item 1. and the pull out property of
conditional expectations,

EBs [FG] = FEBs [G] = F · E [G|Xs] .

Applying Eσ(Xs) to this last equation while making use of the tower and
pull out properties property of conditional expectations gives Eq. (22.5).

Exercise 22.1. Suppose that {Xt}t≥0 is an adapted stochastic process such
that Eq. (22.5) holds for all F ∈ (Bs)b and G ∈ (Fs)b and s ∈ T. Show that
{Xt}t∈T has the Markov property.

22.1 Markov Processes

If S is a standard Borel space (i.e. S is isomorphic to a Borel subset of [0, 1]), we
may a find regular conditional probability kernels, Qs,t on (S,S)×(S,S)→ [0, 1]
for all 0 ≤ s < t such that

E [f (Xt) |Xs] = Qs,t (Xs; f) = (Qs,tf) (Xs) a.s. (22.6)

Moreover by the Markov property if 0 ≤ σ < s < t, then

(Qσ,tf) (Xσ) = E [f (Xt) |Xσ] = E [EBsf (Xt) |Xσ]

= E [(Qstf) (Xs) |Xσ] = (Qσ,sQstf) (Xσ) P – a.s.

= Qσ,s (Xσ;Qs,t (·; f)) , P – a.s.

If we let µt := LawP (Xt) : S → [0, 1] for all t ∈ T, we have just shown that for
every f ∈ Sb, that

Qσ,t (·; f) = Qσ,s (·;Qs,t (·; f)) µσ – a.s. (22.7)

In the sequel we want to assume that such kernels exists and that Eq. (22.7)
holds for everywhere not just µσ – a.s. Thus we make the following definitions.

Definition 22.5 (Markov transition kernels). We say a collection of prob-
ability kernels, {Qs,t}0≤s≤t<∞ , on S × S are Markov transition kernels

if Qs,s (x, dy) = δx (dy) (as an operator Qs,s = ISb) for all s ∈ T and the
Chapmann-Kolmogorov equations hold;

Qσ,t = Qσ,sQs,t for all 0 ≤ σ ≤ s ≤ t. (22.8)

Recall that Eq. (22.8) is equivalent to

Qσ,t (x,A) =

∫
S

Qσ,s (x, dy)Qs,t (y,A) for all x ∈ S and A ∈ S (22.9)

or
Qσ,t (x; f) = Qσ,s (x;Qs,t (·; f)) for all x ∈ S and f ∈ Sb. (22.10)

Thus Markov transition kernels should satisfy Eq. (22.7) everywhere not just
almost everywhere.

The reader should keep in mind that Qσ,t (x,A) represents the jump prob-
ability of starting at x at time σ and ending up in A ∈ S at time t. With this
in mind, Qσ,s (x, dy)Qs,t (y,A) intuitively is the probability of jumping from x
at time s to y at time t followed by a jump into A at time u. Thus Eq. (22.9)
states that averaging these probabilities over the intermediate location (y) of
the particle at time t gives the jump probability of starting at x at time s and
ending up in A ∈ S at time t. This interpretation is rigorously true when S is
a finite or countable set.

Definition 22.6 (Markov process). A Markov process is an adapted
stochastic process, {Xt : Ω → S}t≥0 , with the Markov property such that there
are Markov transition kernels {Qs,t}0≤s≤t<∞ , on S × S such that Eq. (22.6)
holds.
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Definition 22.7. A stochastic process,
{
Xt : Ω → S := Rd

}
t∈T , has indepen-

dent increments if for all finite subsets, Λ = {0 ≤ t0 < t1 < · · · < tn} ⊂ T
the random variables {X0} ∪

{
Xtk −Xtk−1

}n
k=1

are independent. We refer to
Xt −Xs for s < t as an increment of X.

Exercise 22.2. Suppose that
{
Xt : Ω → S := Rd

}
t∈T is a stochastic process

with independent increments and let Bt := BXt for all t ∈ T. Show, for all
0 ≤ s < t, that (Xt −Xs) is independent of BXs and then use this to show
{Xt}t∈T is a Markov process with transition kernels defined by 0 ≤ s ≤ t,

Qs,t (x,A) := E [1A (x+Xt −Xs)] for all A ∈ S and x ∈ Rd. (22.11)

You should verify that {Qs,t}0≤s≤t are indeed Markov transition kernels, i.e.
satisfy the Chapmann-Kolmogorov equations.

Example 22.8 (Random Walks). Suppose that
{
ξn : Ω → S := Rd

}∞
n=0

are in-

dependent random vectors and Xm :=
∑m
k=0 ξk and Bm := σ (ξ0, . . . , ξm) for

each m ∈ T = N0. Then {Xm}m≥0 has independent increments and therefore
has the Markov property with Markov transition kernels being given by

Qs,t (x, f) = E [f (x+Xt −Xs)]

= E

f
x+

∑
s<k≤t

ξk


or in other words,

Qs,t (x, ·) = LawP

x+
∑
s<k≤t

ξk

 .

The one step transition kernels are determined by

(Qn,n+1f) (x) = E [f (x+ ξn+1)] for n ∈ N0.

Exercise 22.3. Let us now suppose that {ξn : Ω → S}∞n=0 are independent
random functions where (S,S) is a general a measurable space, Bn :=
σ (ξ0, ξ1, . . . , ξn) for n ≥ 0, un : S × S → S are measurable functions for n ≥ 1,
and Xn : Ω → S for n ∈ N0 are defined by X0 = ξ0 and then inductively for
n ≥ 1 by

Xn+1 = un+1 (Xn, ξn+1) for n ≥ 0.

Convince yourself that for 0 ≤ m < n there is a measurable function, ϕn,m :
Sn−m+1 → S determined by the {uk} such that Xn = ϕn,m (Xm, ξm+1, . . . , ξn) .
(You need not write the proof of this assertion in your solution.) In particular,

Xn = ϕn,0 (ξ0, . . . , ξn) is Bn/S – measurable so that X = {Xn}n≥0 is adapted.
Show {Xn}n≥0 is a Markov process with transition kernels,

Qm,n (x, ·) = LawP (ϕn,m (x, ξm+1, . . . , ξn)) for all 0 ≤ m ≤ n

where (by definition) Qm,m (x, ·) = δx (·) . Please explicitly verify that
{Qm,n}0≤m≤n are Markov transition kernels, i.e. satisfy the Chapmann-
Kolmogorov equations.

Remark 22.9. Suppose that T = N0 and {Qm,n : 0 ≤ m ≤ n} are Markov tran-
sition kernels on S × S. Since

Qm,n = Qm,m+1Qm+1,m+2 . . . Qn−1,n, (22.12)

it follows that the Qm,n are uniquely determined by knowing the one step tran-
sition kernels, {Qn,n+1}∞n=0 . Conversely if {Qn,n+1}∞n=0 are arbitrarily given
probability kernels on S × S and Qm,n are defined as in Eq. (22.12), then the
resulting {Qm,n : 0 ≤ m ≤ n} are Markov transition kernels on S×S. Moreover
if S is a countable set, then we may let

qm,n (x, y) := Qm,n (x, {y}) = P (Xn = y|Xm = x) for all x, y ∈ S (22.13)

so that
Qm,n (x,A) =

∑
y∈A

qm,n (x, y) .

In this case it is easily checked that

qm,n (x, y)

=
∑

xi∈S:m<i<n

qm,m+1 (x, xm+1) qm+1,m+2 (xm+1, xm+2) . . . qn−1,n (xn−1, y) .

(22.14)

The reader should observe that this is simply matrix multiplication!

Exercise 22.4 (Polya’s Urn). Suppose that an urn contains r red balls and
g green balls. At each time (t ∈ T = N0) we draw a ball out, then replace it and
add c more balls of the color drawn. It is reasonable to model this as a Markov
process with S := N0×N0 and Xn := (rn, gn) ∈ S being the number of red and
green balls respectively in the urn at time n. Find

qn,n+1 ((r, g) , (r′, g′)) = P (Xn+1 = (r′, g′) |Xn = (r, g))

for this model.
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Theorem 22.10 (Finite Dimensional Distributions). Suppose that X =
{Xt}t≥0 is a Markov process with Markov transition kernels {Qs,t}0≤s≤t . Fur-

ther let ν := LawP (X0) , then for all 0 = t0 < t1 < t2 < · · · < tn we have

LawP (Xt0 , Xt1 , . . . , Xtn) (dx0, dx1, . . . , dxn) = dν (x0)

n∏
i=1

Qti−1,ti (xi−1, dxi)

(22.15)
or equivalently,

E [f (Xt0 , Xt1 , . . . , Xtn)] =

∫
Sn+1

f (x0, x1, . . . , xn) dν (x0)

n∏
i=1

Qti−1,ti (xi−1, dxi)

(22.16)

for all f ∈ S⊗(n+1)
b .

Proof. Because of the multiplicative system Theorem 12.5, it suffices to
prove Eq. (22.16) for functions of the form f (x1, . . . , xn) =

∏n
i=0 fi (xi) where

fi ∈ Sb. The proof is now easily completed by induction on n. It is true for
n = 0 by definition of ν. Now assume it is true for some n − 1 ≥ 0. We then
have, making use of the inductive hypothesis, that

E [f (Xt0 , Xt1 , . . . , Xtn)]

= E EBtn−1

[
n∏
i=0

fi (Xti)

]

= E

[
Qtn−1,tn

(
Xtn−1

, fn
)
·
n−1∏
i=0

fi (Xti)

]

=

∫
Sn
Qtn−1,tn (xn−1, fn) ·

n−1∏
i=0

fi (xi) dν (x0)

n−1∏
i=1

Qti−1,ti (xi−1, dxi)

=

∫
Sn

[∫
S

Qtn−1,tn (xn−1, dxn) fn (xn)

]
·
n−1∏
i=0

fi (xi) dν (x0)

n−1∏
i=1

Qti−1,ti (xi−1, dxi)

=

∫
Sn+1

f (x0, x1, . . . , xn) dν (x0)

n∏
i=1

Qti−1,ti (xi−1, dxi)

as desired.

Theorem 22.11 (Existence of Markov processes). Suppose that
{Qs,t}0≤s≤t are Markov transition kernels on a standard Borel space,

(S,S) . Let Ω := ST , Xt : Ω → S be the projection map, Xt (ω) = ω (t) and
Bt = BXt = σ (Xs : s ≤ t) for all t ∈ T and B := S⊗T = σ (Xt : t ∈ T ) . Then to
each probability measure, ν, on (S,S) there exists a unique probability measure

Pν on (Ω,B) such that 1) LawPν (X0) = ν and 2) {Xt}t≥0 is a Markov process
having {Qs,t}0≤s≤t as its Markov transition kernels.

Proof. This is mainly an exercise in applying Kolmogorov’s extension Theo-
rem 22.68 as described in the appendix to this chapter. I will only briefly sketch
the proof here.

For each Λ = {0 = t0 < t1 < t2 < · · · < tn} ⊂ T, let PΛ be the measure on(
Sn+1,S⊗(n+1)

)
defined by

dPΛ (x0, x1, . . . , xn) = dν (x0)

n∏
i=1

Qti−1,ti (xi−1, dxi) .

Using the Chapman-Kolmogorov equations one shows that the {PΛ}Λ⊂fT (Λ ⊂f
T denotes a finite subset of T ) are consistently defined measures as described
in the statement of Theorem 22.68. Therefore it follows by an application of
that theorem that there exists a unique measure Pν on (Ω,B) such that

LawPν (X|Λ) = PΛ for all Λ ⊂f T. (22.17)

In light of Theorem 22.10, in order to finish the proof we need only show
that {Xt}t≥0 is a Markov process having {Qs,t}0≤s≤t as its Markov transition
kernels. Since if this is this case it finite dimensional distributions must be given
as in Eq. (22.17) and therefore Pν is uniquely determined. So let us now verify
the desired Markov property.

Again let Λ = {0 = t0 < t1 < t2 < · · · < tn} ⊂ T with tn−1 = s < t = tn
and suppose that f (x0, . . . , xn) = h (x0, . . . , xn−1) g (xn) with h ∈ S⊗nb and
f ∈ Sb. By the definition of Pν we then have (writing Eν for EPν ),

Eν
[
h
(
Xt0 , Xt1 , . . . , Xtn−1

)
g (Xt)

]
=

∫
Sn+1

h (x0, x1, . . . , xn−1) g (xn) dν (x0)

n∏
i=1

Qti−1,ti (xi−1, dxi)

=

∫
Sn
h (x0, x1, . . . , xn−1)Qtn−1,tn (xn−1, g) dν (x0)

n−1∏
i=1

Qti−1,ti (xi−1, dxi)

= Eν
[
h
(
Xt0 , Xt1 , . . . , Xtn−1

)
Qtn−1,tn

(
Xtn−1

, g
)]

= Eν
[
h
(
Xt0 , Xt1 , . . . , Xtn−1

)
Qs,t (Xs, g)

]
It then follows by an application of the multiplicative system theorem that

Eν [Hg (Xt)] = Eν [HQs,t (Xs, g)] for all H ∈ (Bs)b

and therefore that
Eν [g (Xt) |Bs] = Qs,t (Xs, g) a.s.
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We are now going to specialize to the more manageable class of “time ho-
mogeneous” Markov processes.

Definition 22.12. We say that a collection of Markov transition kernels,
{Qs,t}0≤s≤t are time homogeneous if Qs,t = Q0,t−s for all 0 ≤ s ≤ t. In

this case we usually let Qt := Q0,t−s. The condition that Qs,s (x, ·) = δx now
reduces to Q0 (x, ·) = δx and the Chapmann-Kolmogorov equations reduce to

QsQt = Qs+t for all s, t ≥ 0, (22.18)

i.e. ∫
S

Qs (x, dy)Qt (y,A) = Qs+t (x,A) for all s, t ≥ 0, x ∈ S, and A ∈ S.

(22.19)
A collection of operators {Qt}t≥0 with Q0 = Id satisfying Eq. (22.18) is called
a one parameter semi-group.

Definition 22.13. A Markov process is time homogeneous if it has time
homogeneous Markov transition kernels. In this case we will have,

E [f (Xt) |Bs] = Qt−s (Xs, f) = (Qt−sf) (Xs) a.s. (22.20)

for all 0 ≤ s ≤ t and f ∈ Sb.

Theorem 22.14 (The time homogeneous Markov property). Suppose
that (S,S) is a measurable space, Qt : S × S → [0, 1] are time homoge-

neous Markov transition kernels,
(
Ω,B, {Bt}t≥0

)
is a filtered measure space,

{Xt : Ω → S}t≥0 are adapted functions, and for each x ∈ S there exists a prob-
ability measure, Px on (Ω,B) such that;

1. X0 (ω) = x for Px – a.e. ω and
2. {Xt}t≥0 is a time homogeneous Markov process with transition kernels
{Qt}t≥0 relative to Px.

Under these assumptions we have the following conclusions.

1. If F ∈ S⊗Tb , then S 3 x→ ExF (X) is S/BR – measurable.
2. If P is any probability measure on (Ω,B) such that(

Ω,B, {Bt}t≥0 , {Xt}t≥0 , {Qt}t≥0 , P
)

is a time homogeneous Markov

process (with transition kernels being {Qt}), then for all t ≥ 0,

EP [F (Xt+·) |Bt] = EP [F (Xt+·) |Xt] = EXt [F (X)] P – a.s. (22.21)

Warning: In this equation EXt does not denote Eσ(Xt) = E [·|Xt] but
instead2 it means the composition of Xt with the function S 3 x→ Ex [F (X)] ∈
R. In more detail we are saying,

EP [F (Xt+·) |Bt] (ω) = EXt(ω) [F (X)]

=

∫
Ω

F (X (ω′)) PXt(ω) (dω′) .

Proof. Let F (X) := f (Xt0 , . . . , Xtn) for some f ∈ S⊗(n+1)
b .

1. For this F we have

Ex [F (X)] =

∫
Q0,t1 (x, dx1) . . . Qtn−1,tn (xn−1, dxn) f (x0, . . . , xn)

which is S/BR – measurable by a multiplicative systems theorem argument
based on taking f to be a product function. Another application of the mul-
tiplicative systems theorem then may be used to show that x→ Ex [F (X)]
is measurable in general.

2. Since F (Xt+·) ∈ (Ft)b , Theorem 22.4 already implies

EP [F (Xt+·) |Bt] = EP [F (Xt+·) |Xt] P – a.s.

To compute the last conditional expectation, let us first assume that
F (X) := f (Xt0 , . . . , Xtn) and g ∈ Sb, and let νt = LawP (Xt) = ν. Then
using Theorem 22.10 twice we learn,

EP [g (Xt)F (Xt+·)]

= EP [g (Xt) f (Xt0+t, . . . , Xtn+t)]

=

∫
g (x0) f (x0, . . . , xn) dν0 (y)Qt (y, dx0)

n∏
j=1

Qtj−tj−1
(xj−1, dxj)

=

∫
g (x0) f (x0, . . . , xn) dνt (x0)

n∏
j=1

Qtj−tj−1
(xj−1, dxj)

=

∫
dνt (x0) g (x0)Ex0 [f (Xt0 , . . . , Xtn)]

=

∫
dνt (x0) g (x0)Ex0

F (X) = EP [g (Xt)EXtF (X)] .

2 Unfortunately we now have a lot of different meanings for Eξ depending on what ξ
happens to be. So if ξ = P is a measure then EP stands for expectation relative to
P. If ξ = G is a σ – algebra it stands for conditional expectation relative to G and
a given probability measure which not indicated in the notation. Finally if x ∈ S
we are writing Ex for EPx .
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An application of the multiplicative systems Theorem 12.5 shows this equa-
tion is valid for all F ∈ S⊗Tb and this tells us that

EP [F (Xt+·) |Xt] = EXt [F (X)] Px – a.s.

for all F ∈ S⊗Tb .

Remark 22.15. Admittedly Theorem 22.14 is a bit hard to parse on first reading.
Therefore it is useful to rephrase what it says in the case that the state space,
S, is finite or countable and x ∈ S and t > 0 are such that P (Xt = x) > 0.
Under these additional hypothesis we may combine Theorems 22.4 and 22.14
to find {Xs}s≤t and {Xs}s≥t are P (·|Xt = x) – independent and moreover,

LawP (·|Xt=x) (Xt+·) = LawPx (X·) . (22.22)

Last assertion simply states that given Xt = x the process, X, after time t
behaves just like the process starting afresh from x.

22.2 Discrete Time Homogeneous Markov Processes

The proof of the following easy lemma is left to the reader.

Lemma 22.16. If Qn : S × S → [0, 1] for n ∈ N0 are time homogeneous
Markov kernels then Qn = Qn where Q := Q1 and Q0 := I. Conversely if Q is
a probability kernel on S × S then Qn := Qn for n ∈ N0 are time homogeneous
Markov kernels.

Example 22.17 (Random Walks Revisited). Suppose that ξ0 : Ω → S := Rd is
independent of

{
ξn : Ω → S := Rd

}∞
n=1

which are now assumed to be i.i.d. If

Xm =
∑m
k=0 ξk is as in Example 22.8, then {Xm}m≥0 is a time homogeneous

Markov process with

Qm (x, ·) = LawP (Xm −X0)

and the one step transition kernel, Q = Q1, is given by

Qf (x) = Q (x, f) = E [f (x+ ξ1)] =

∫
S

f (x+ y) dρ (y)

where ρ := LawP (ξ1) . For example if d = 1 and P (ξi = 1) = p and
P (ξi = −1) = q := 1 − p for some 0 ≤ p ≤ 1, then we may take S = Z
and we then have

Qf (x) = Q (x, f) = pf (x+ 1) + qf (x− 1) .

Example 22.18 (Ehrenfest Urn Model). Let a beaker filled with a particle fluid
mixture be divided into two parts A and B by a semipermeable membrane. Let
Xn = (# of particles in A) which we assume evolves by choosing a particle at
random from A ∪ B and then replacing this particle in the opposite bin from
which it was found. Modeling {Xn} as a Markov process we find,

P (Xn+1 = j | Xn = i) =


0 if j /∈ {i− 1, i+ 1}
i
N if j = i− 1
N−i
N if j = i+ 1

=: q (i, j)

As these probabilities do not depend on n, {Xn} is a time homogeneous Markov
chain.

Exercise 22.5. Consider a rat in a maze consisting of 7 rooms which is laid
out as in the following figure.  1 2 3

4 5 6
7


In this figure rooms are connected by either vertical or horizontal adjacent
passages only, so that 1 is connected to 2 and 4 but not to 5 and 7 is only
connected to 4. At each time t ∈ N0 the rat moves from her current room to
one of the adjacent rooms with equal probability (the rat always changes rooms
at each time step). Find the one step 7 × 7 transition matrix, q, with entries
given by q (i, j) := P (Xn+1 = j|Xn = i) , where Xn denotes the room the rat
is in at time n.

Exercise 22.6 (2 - step MC). Consider the following simple (i.e. no-brainer)
two state “game” consisting of moving between two sites labeled 1 and 2. At
each site you find a coin with sides labeled 1 and 2. The probability of flipping a
2 at site 1 is a ∈ (0, 1) and a 1 at site 2 is b ∈ (0, 1). If you are at site i at time n,
then you flip the coin at this site and move or stay at the current site as indicated
by coin toss. We summarize this scheme by the “jump diagram” of Figure 22.1.
It is reasonable to suppose that your location, Xn, at time n is modeled by a

11−a
22

a
++

2
b

kk 1−b
ll

Fig. 22.1. The generic jump diagram for a two state Markov chain.

Markov process with state space, S = {1, 2} . Explain (briefly) why this is a
time homogeneous chain and find the one step transition probabilities,
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q (i, j) = P (Xn+1 = j|Xn = i) for i, j ∈ S.

Use your result and basic linear (matrix) algebra to compute,
limn→∞ P (Xn = 1) . Your answer should be independent of the possible
starting distributions, ν = (ν1, ν2) for X0 where νi := P (X0 = i) .

The next exercise deals with how to describe a “lazy” Markov chain. We
will say a chain is lazy if q (x, x) > 0 for some x ∈ S. The point being that
if q (x, x) > 0, then the chain starting at x may be lazy and stay at x for
some period of time before deciding to jump to a new site. The next exercise
describes lazy chains in terms of a non-lazy chain and the random times that
the lazy chain will spend lounging at each site x ∈ S. We will refer to this as the
jump-hold description of the chain. We will give a similar description of chains
on S in the context of continuous time in Theorem 22.36 below.

Exercise 22.7 (Jump - Hold Description I). Let S be a countable
set (Ω,B, {Bn}∞n=0 , P, {Yn}

∞
n=0) be a Markov chain with transition kernel,

{q (x, y)}x,y∈S and let ν (x) := P (Y0 = x) for all x ∈ S. For simplicity let

us assume there are no absorbing states,3 (i.e. q (x, x) < 1 for all x ∈ S) and
then define,

q̃ (x, y) :=

{
q(x,y)

1−q(x,x) if x 6= y

0 if x = y
.

Let jk denote the time of the kth – jump of the chain {Yn}∞n=0 so that

j1 := inf {n > 0 : Yn 6= Y0} and

jk+1 := inf {n > jk : Yn 6= Yjk}

with the convention that j0 = 0. Further let σk := jk − jk−1 denote the time
spent between the (k − 1)

st
and kth jump of the chain {Yn}∞n=0 . Show;

1. For {xk}nk=0 ⊂ S with xk 6= xk−1 for k = 1, . . . , n and m1, . . . ,mk ∈ N,
show

P ([∩nk=0 {Yjk = xk}] ∩ [∩nk=1 {σk = mk}])

= ν (x0)

n∏
k=1

q (xk−1, xk−1)
mk−1

(1− q (xk−1, xk−1)) · q̃ (xk−1, xk) .

(22.23)

2. Summing the previous formula on m1, . . . ,mk ∈ N, conclude

3 A state x is absorbing if q (x, x) = 1 since in this case there is no chance for the
chain to leave x once it hits x.

P ([∩nk=0 {Yjk = xk}]) = ν (x0) ·
n∏
k=1

q̃ (xk−1, xk) ,

i.e. this shows {Yjk}
∞
k=0 is a Markov chain with transition kernel, q̃.

3. Conclude, relative to the conditional probability measure,
P (·| [∩nk=0 {Yjk = xk}]) , that {σk}nk=1 are independent geometric

σk
d
= Geo (1− q (xk−1, xk−1)) for 1 ≤ k ≤ n, see Exercises 10.14

and 22.8.

Exercise 22.8. Let σ be a geometric random variable with parameter p ∈ (0, 1],

i.e. P (σ = n) = (1− p)n−1
p for all n ∈ N. Show, for all n ∈ N that

P (σ > n) = (1− p)n for all n ∈ N

and then use this to conclude that

P (σ > m+ n|σ > n) = P (σ > m) ∀ m,n ∈ N.

[This shows that the geometric distributions are the discrete analogue of the
exponential distributions.]

22.3 Continuous time homogeneous Markov processes

An analogous (to Lemma 22.16) “infinitesimal description” of time homoge-
neous Markov kernels in the continuous time case can involve a considerable
number of technicalities. Nevertheless, in this section we are going to ignore
these difficulties in order to give a general impression of how the story goes. We
will cover more precisely the missing details later.

So let {Qt}t∈R+
be time homogeneous collection of Markov transition ker-

nels. We define the infinitesimal generator of {Qt}t≥0 by,

Af :=
d

dt
|0+Qtf = lim

t↓0

Qtf − f
t

. (22.24)

For now we make the (often unreasonable assumption) that the limit in Eq.
(22.24) holds for all f ∈ Sb. This assumption is OK when S is a finite (see
Remark 22.19) or sometimes even when S is a countable state space. For more
complicated states spaces we will have to restrict the set of f ∈ Sb that we
consider when computing Af by Eq. ( 22.24). You should get a feeling for this
issue by working through Exercise 22.10 which involves “Brownian motion.”

Remark 22.19 (L. G̊arding’s trick). If Qt is a Markov-Semi group on S =
{1, 2, . . . , n} depending continuously on t then for ε > 0 sufficiently small,
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Bε :=
1

ε

∫ ε

0

Qsds

is invertible. This is because

‖(I −Bε)‖ =

∥∥∥∥1

ε

∫ ε

0

(I −Qs) ds
∥∥∥∥ ≤ 1

ε

∫ ε

0

‖I −Qs‖ ds→ 0 as ε ↓ 0

and as is well know Bε = I − (I −Bε) is invertible provided ‖I −Bε‖ < 1.
Since

QtBε =
1

ε

∫ ε

0

QtQsds =
1

ε

∫ ε

0

Qt+sds =
1

ε

∫ t+ε

t

Qτdτ

we may conclude by the fundamental theorem of calculus that

d

dt
QtBε =

1

ε
[Qt+ε −Qt] .

This shows QtBε is differentiable and hence Qt = [QtBε]B
−1
ε is also differen-

tiable in t.

We now just assume that limt↓0Qtf = f and d
dt |0+Qtf exists. Under these

assumptions, if t, h > 0, then using the semi-group property we have

Qt+h −Qt = (Qh − I)Qt = Qt (Qh − I) . (22.25)

Therefore,
Qt+hf −Qtf = (Qh − I)Qtf → 0 as h ↓ 0

so that Qtf is right continuous. Similarly,

Qt−h −Qt = − (Qh − I)Qt−h = −Qt−h (Qh − I) (22.26)

and

|Qt−hf −Qtf | = |Qt−h (Qh − I) f | ≤ |Qt−h |(Qh − I) f || ≤ sup
S
|(Qh − I) f |

which will tend to zero as h ↓ 0 provided Qhf → f uniformly (another fantasy in
general). With this as “justification” we will assume that t→ Qtf is continuous
in t.

Taking Eq. (22.25) divided by h and Eq. (22.26) divided by −h and then
letting h ↓ 0 implies, (

d

dt

)
+

Qtf = AQtf = QtAf

and

(
d

dt

)
−
Qt = AQt = QtA.

where
(
d
dt

)
+

and
(
d
dt

)
− denote the right and left derivatives at t. So in principle

we can expect that {Qt}t≥0 is uniquely determined by its infinitesimal generator
A by solving the differential equation,

d

dt
Qt = AQt = QtA with Q0 = Id. (22.27)

Assuming all of this works out as sketched, it is now reasonable to denote Qt
by etA. Let us now give a few examples to illustrate the discussion above.

Example 22.20. Suppose that S = {1, 2, . . . , n} and Qt is a Markov-semi-group
with infinitesimal generator, A, so that d

dtQt = AQt = QtA. By assumption
Qt (i, j) ≥ 0 for all i, j ∈ S and

∑n
j=1Qt (i, j) = 1 for all i ∈ S. We may write

this last condition as Qt1 = 1 for all t ≥ 0 where 1 denotes the vector in Rn
with all entries being 1. Differentiating Qt1 = 1 at t = 0 shows that A1 = 0,
i.e.

∑n
j=1Aij = 0 for all i ∈ S. Since

Aij = lim
t↓0

Qt (i, j)− δij
t

if i 6= j we will have,

Aij = lim
t↓0

Qt (i, j)

t
≥ 0.

Thus we have shown the infinitesimal generator, A, of Qt must satisfy Aij ≥ 0
for all i 6= j and

∑n
j=1Aij = 0 for all i ∈ S. In words, A is an n×n – matrix with

non-negative off diagoal entries with all row sums being zero. You are asked to
prove the converse in Exercise 22.9. So an explicit example of an infinitesimal
generator when S = {1, 2, 3} is

A =

−3 1 2
4 −6 2
7 1 −8

 .

Exercise 22.9. Suppose that S = {1, 2, . . . , n} and A is a matrix such that
Aij ≥ 0 for i 6= j and

∑n
j=1Aij = 0 for all i. Show

Qt = etA :=

∞∑
n=0

tn

n!
An (22.28)

is a time homogeneous Markov kernel.
Hints: 1. To show Qt (i, j) ≥ 0 for all t ≥ 0 and i, j ∈ S, write Qt =

e−tλet(λI+A) where λ > 0 is chosen so that λI + A has only non-negative
entries. 2. To show

∑
j∈S Qt (i, j) = 1, compute d

dtQt1.
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Theorem 22.21 (Feynmann-Kac Formula). Continue the notation in Ex-

ercise 22.9 and let
(
Ω, {Bt}t≥0 , Px, {Xt}t≥0

)
be a time homogeneous Markov

process (assumed to be right continuous) with transition kernels, {Qt}t≥0 . Given

V : S → R, let Tt := TVt be defined by

(Ttg) (x) = Ex
[
exp

(∫ t

0

V (Xs) ds

)
g (Xt)

]
(22.29)

for all g : S → R. Then Tt satisfies,

d

dt
Tt = Tt (A+MV ) with T0 = I (22.30)

where MV g := V g for all g : S → R, i.e. MV is the diagonal matrix with
V (1) , . . . , V (n) being placed in the diagonal entries. We may summarize this
result as,

Ex
[
exp

(∫ t

0

V (Xs) ds

)
g (Xt)

]
=
(
et(A+MV )g

)
(x) . (22.31)

Proof. To see what is going on let us first assume that d
dtTtg exists in which

case we may compute it as, d
dt (Ttg) (x) = d

dh |0+ (Tt+hg) (x) . Then by the chain
rule, the fundamental theorem of calculus, and the Markov property, we find

d

dt
(Ttg) (x) =

d

dh
|0+Ex

[
exp

(∫ t+h

0

V (Xs) ds

)
g (Xt)

]

+
d

dh
|0+Ex

[
exp

(∫ t

0

V (Xs) ds

)
g (Xt+h)

]
= Ex

[
d

dh
|0+ exp

(∫ t+h

0

V (Xs) ds

)
g (Xt)

]

+
d

dh
|0+Ex

[
exp

(∫ t

0

V (Xs) ds

)(
ehAg

)
(Xt)

]
= Ex

[
exp

(∫ t

0

V (Xs) ds

)
V (Xt) g (Xt)

]
+ Ex

[
exp

(∫ t

0

V (Xs) ds

)
(Ag) (Xt)

]
= Tt (V g) (x) + Tt (Ag) (x)

which gives Eq. (22.30). [It should be clear that (T0g) (x) = g (x) .]
We now give a rigorous proof. For 0 ≤ τ ≤ t < ∞, let Zτ,t :=

exp
(∫ t

τ
V (Xs) ds

)
and let Zt := Z0,t. For h > 0,

(Tt+hg) (x) = Ex [Zt+hg (Xt+h)] = Ex [ZtZt,t+hg (Xt+h)]

= Ex [Ztg (Xt+h)] + Ex [Zt [Zt,t+h − 1] g (Xt+h)]

= Ex
[
Zt
(
ehAg

)
(Xt)

]
+ Ex [Zt [Zt,t+h − 1] g (Xt+h)] .

Therefore,

(Tt+hg) (x)− (Ttg) (x)

h
= Ex

[
Zt

(
ehAg

)
(Xt)− g (Xt)

h

]

+ Ex
[
Zt

[
Zt,t+h − 1

h

]
g (Xt+h)

]
and then letting h ↓ 0 in this equation implies,

d

dh
|0+ (Tt+hg) (x) = Ex [Zt (Ag) (Xt)] + Ex [ZtV (Xt) g (Xt+h)] .

This shows that Tt is one sided differentiable and this one sided derivatives is
given as in Eq. (22.30).

On the other hand for s, t > 0, using Theorem 22.14,

Tt+sg (x) = Ex [Zt+sg (Xt+s)] = Ex [ZtZt,t+sg (Xt+s)]

= Ex [ZtEBt (Zt,t+sg (Xt+s))] = Ex [ZtEXt (Z0,sg (Xs))]

= (TtTsg) (x) ,

i.e. {Tt}t>0 still has the semi-group property. So for h > 0,

Tt−h − Tt = Tt−h − Tt−hTh = Tt−h (I − Th)

and hence
Tt−h − Tt
−h

= Tt−h
Th − I
h

→ Tt (A+ V ) as h ↓ 0

using Tt is continuous in t and the result we have already proved. This shows
Tt is differentiable in t and Eq. (22.30) is valid.

Example 22.22 (Poisson Process). By Exercise 22.2, it follows that Poisson pro-
cess, {Nt ∈ S := N0}t≥0 with intensity λ has the Markov property. For all
0 ≤ s ≤ t we have,

P (Nt = y|Ns = x) = P (Ns +Nt −Ns = y|Ns = x)

= P (Ns +Nt −Ns = y|Ns = x)

= P (Nt −Ns = y − x|Ns = x)

= 1y≥x
(λ (t− s))y−x

(y − x)!
e−λ(t−s) =: qt−s (x, y) .
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With this notation it follows that

P (f (Nt) |Ns) = (Qt−sf) (Ns)

where

Qtf (x) =
∑
y∈S

qt (x, y) f (y)

=
∑
y∈S

1y≥x
(λt)

y−x

(y − x)!
e−λtf (y)

=

∞∑
n=0

(λt)
n

n!
e−λtf (x+ n) . (22.32)

In particular {Nt}t≥0 is a time homogeneous Markov process. It is easy (but
technically unnecessary) to directly verify the semi-group property;

(qtqs) (x, z) :=
∑
y∈S

qt (x, y) qs (y, z) = qs+t (x, z) . (22.33)

This can be done using the binomial theorem as follows;∑
y∈S

qt (x, y) qs (y, z) =
∑
z∈S

1y≥x
(λt)

y−x

(y − x)!
e−λt · 1z≥y

(λs)
z−y

(z − y)!
e−λs

=

∞∑
n=0

(λt)
n

n!
e−λt · 1z≥x+n

(λs)
z−x−n

(z − x− n)!
e−λs

= 1z≥xe
−λ(t+s)

z−x∑
n=0

(λt)
n

n!

(λs)
z−x−n

(z − x− n)!

= 1z≥xe
−λ(t+s) (λ (t+ s))

z−x

(z − x)!
= qs+t (x, z) .

To identify infinitesimal generator, A = d
dt |0+Qt, in this example observe

that

d

dt
Qtf (x) =

d

dt

[
e−λt

∞∑
n=0

(λt)
n

n!
f (x+ n)

]

= −λQtf (x) + λe−λt
∞∑
n=0

n (λt)
n−1

n!
f (x+ n)

= −λQtf (x) + λe−λt
∞∑
n=0

(λt)
n

n!
f (x+ n+ 1)

= −λQtf (x) + λ (Qtf) (x+ 1)

= Qt [λf (·+ 1)− λf (·)] (x)

and hence
Af (x) = λ (f (x+ 1)− f (x)) .

Finally let us try to solve Eq. (22.27) in order to recover Qt from A. Formally
we can hope that Qt = etA where etA is given as its power series expansion. To
simplify the computation it convenient to write A = λ (T − I) where If = f
and Tf = f (·+ 1) . Since I and T commute we further expect

etA = eλt(T−I) = e−λtIeλtT = e−λteλtT

where

(
eλtT f

)
(x) =

∞∑
n=0

(λt)
n

n!
(Tnf) (x)

=

∞∑
n=0

(λt)
n

n!
f (x+ n) .

Putting this all together we find

(
etAf

)
(x) = e−λt

∞∑
n=0

(λt)
n

n!
f (x+ n)

which is indeed in agreement with Qtf (x) as we saw in Eq. (22.32).

Remark 22.23 (Convolution Semi-Groups). Here is an alternative explanation

of Eq. (22.33). Let µt :=
∑
n∈N0

(λt)n

n! e−λtδn and notice that

µ̃t (z) :=
∑
n∈Z

znµt ({n}) =

∞∑
n=0

zn
(λt)

n

n!
e−λt = eλt(1−z)

and

µ̃t ∗ µs (z) =

∞∑
n=0

znµt ∗ µs ({n}) =

∞∑
n=0

zn
∞∑
k=0

µt (n− k)µs (k)

=
∑

0≤k≤n<∞

zn−kµt (n− k) zkµs (k) =
∑

0≤k<∞

µ̃t (z) zkµs (k)

= µ̃t (z) µ̃s (z) = eλt(1−z)eλs(1−z) = eλ(s+t)(1−z)

= µ̃s+t (z)

from which it follows that {µt}t>0 is a convolution semi - group, i.e. µt ∗ µs =

µs+t for all s, ṫ > 0. Using
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(qtf) (x) =

∞∑
n=0

µt (n) f (x+ n) =
∑
n∈Z

µt (n) f (x+ n) ,

it follows that

(qsqtf) (x) =
∑
k∈Z

µs (k)
∑
n∈Z

µt (n) f (x+ k + n)

=
∑
k∈Z

µs (k − n)
∑
n∈Z

µt (n) f (x+ k)

=
∑
k∈Z

(µs ∗ µt) (k) f (x+ k) =
∑
k

µs+t (k) f (x+ k)

= (qs+tf) (x) .

Definition 22.24 (Brownian Motion). Let
(
Ω,B, {Bt}t∈R+

, P
)

be a fil-

tered probability space. A real valued adapted process, {Bt : Ω → S = R}t∈R+
,

is called a Brownian motion if;

1. {Bt}t∈R+
has independent increments with increments Bt −Bs being inde-

pendnet of Bs for all 0 ≤ s < t <∞.
2. for 0 ≤ s < t, Bt − Bs

d
= N (0, t− s) , i.e. Bt − Bs is a normal mean zero

random variable with variance (t− s) ,
3. t→ Bt (ω) is continuous for all ω ∈ Ω.

Exercise 22.10 (Brownian Motion). Assuming a Brownian motion {Bt}t≥0

exists as described in Definition 22.24 show;

1. The process is a time homogeneous Markov process with transition kernels
given by;

Qt (x, dy) = qt (x, y) dy (22.34)

where

qt (x, y) =
1√
2πt

e−
1
2t |y−x|

2

. (22.35)

2. Show by direct computation that QtQs = Qt+s for all s, t > 0. Hint: one of
the many ways to do this it to use basic facts you have already proved about
sums of independent Gaussian random variables along with the identity,

(Qtf) (x) = E
[
f
(
x+
√
tZ
)]
,

where Z
d
= N (0, 1) .

3. Show by direct computation that qt (x, y) satisfies the heat equation,

d

dt
qt (x, y) =

1

2

d2

dx2
qt (x, y) =

1

2

d2

dy2
qt (x, y) for t > 0.

4. Suppose that f : R→ R is a twice continuously differentiable function with
compact support. Show

d

dt
Qtf = AQtf = QtAf for all t > 0,

where

Af (x) =
1

2
f ′′ (x) .

By combining Exercise 22.10 with Theorem 22.11 proves the following corol-
lary.

Corollary 22.25. There exits a Markov process {Bt}t≥0 satisfying properties
1. and 2. of Definition 22.24.

To get the path continuity property of Brownian motion requires additional
arguments which we will do in a number of ways later, see Theorems 31.3,

31.7, and ??. Modulo technical details, Exercise 22.10 shows that A = 1
2
d2

dx2 is
the infinitesimal generator of Brownian motion, i.e. of Qt in Eqs. (22.34) and
(22.35). The technical details we have ignored involve the proper function spaces
in which to carry out these computations along with a proper description of the
domain of the operator A. We will have to postpone these somewhat delicate
issues until later. By the way, it is no longer necessarily a good idea to try to
recover Qt as

∑∞
n=0

tn

n!A
n in this example since in order for

∑∞
n=0

tn

n!A
nf to

make sense one needs to assume that f is a least C∞ and even this will not
guarantee convergence of the sum!

Remark 22.26. A Lévy process is a general class of processes which contains
both Brownian motions and Poisson processes as example. A Lévy process is
a process with independent stationary increments which has right continuous
paths. For a Levy process we must have (Qtf) (x) = (µt ∗ f) (x) where {µt}t>0

is a one parameter convolution semi-group which is necessarily satisfies, µ̂t (λ) =
etψ(λ), where ψ (λ) is a Levy exponent as described in Eq. (28.4) of Theorem
28.7 below. In more detail ψ (λ) is any one of the functions of the form,

ψ (λ) = iλb− 1

2
aλ2 +

∫
R\{0}

(
eiλx − 1− iλx · 1|x|≤1

)
dν (x) ,

where b ∈ R, a ≥ 0, and ν is a measure on R \ {0} such that∫
R\{0}

(
x2 ∧ 1

)
dν (x) <∞.

Example 22.27. If {Nt}t≥0 is a Poisson process and {Bt}t≥0 is a Brownian mo-
tion which is independent of {Nt}t≥0 , then Xt = Bt + Nt is a Lévy process,
i.e. has independent stationary increments and is right continuous. The process
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X is a time homogeneous Markov process with Markov transition kernels given
by;

(Qtf) (x) = Ef (x+Nt +Bt) =

∫
R

1√
2πt

e−
1
2t |y|

2

E [f (x+ y +Nt)] dy

=
e−λt√

2πt

∞∑
n=0

∫
R
e−

1
2t |y|

2 (λt)
n

n!
f (x+ y + n) dy

=
e−λt√

2πt

∞∑
n=0

∫
R
e−

1
2t |y−n|

2 (λt)
n

n!
f (x+ y) dy

=

∫
R
qt (y − x) f (y) dy

where

qt (y) :=
e−λt√

2πt

∞∑
n=0

(λt)
n

n!
e−

1
2t |y−n|

2

.

The infinitesimal generator, A = d
dt |0+Qt of this process satisfies,

(Af) (x) =
1

2
f ′′ (x) + λ (f (x+ 1)− f (x))

at least for all f ∈ C2
c (R) . This example will be significantly generalized in

Theorem 22.30 below.

In order to continue with giving examples in the continuous time case we
will need a simple measure theoretic result.

Lemma 22.28. If Ω is a set, Ω0 ⊂ Ω, and B0 is a σ – algebra on Ω0, then
B̃0 := {A ⊂ Ω : A ∩Ω0 ∈ B0} is a σ – algebra on Ω. Moreover, f : Ω → R is
B̃0 – measurable iff f |Ω0

is B0 measurable.

Proof. It is clear that ∅, Ω ∈ B̃0 and that B̃0 is closed under countable unions
since An ∈ B̃0 iff An ∩ Ω0 ∈ B0 which implies [∪An] ∩ Ω0 = ∪ [An ∩Ω0] ∈ B0

and this implies that [∪An] ∈ B̃0. Lastly if A ∈ B̃0 then A ∩ Ω0 ∈ B̃0 implies
that

Ac ∩Ω0 = Ω0 \A = Ω0 \ [A ∩Ω0] ∈ B0

and therefore A ∈ B̃0.
For the second assertion, let us observe that for W ∈ BR we have

f−1 (W ) ∩Ω0 = f |−1
Ω0

(W )

so that f−1 (W ) ∈ B̃0 iff f−1 (W ) ∩ Ω0 ∈ B0 iff f |−1
Ω0

(W ) ∈ B0. It now clearly

follows that f : Ω → R is B̃0 – measurable iff f |Ω0
is B0 measurable.

Definition 22.29. Suppose that Ω =
∑∞
n=0Ωn and Bn is a σ – algebra on

Ωn for all n. Then we let ⊕∞n=0Bn =: B be the σ – algebra on Ω such that
A ⊂ Ω is measurable iff A∩Ωn ∈ Bn for all n. That is to say B = ∩∞n=0B̃n with
B̃n = {A ⊂ Ω : A ∩Ωn ∈ Bn} .

From Lemma 22.28 it follows that f : Ω → R is ⊕∞n=0Bn – measurable iff
f−1 (W ) ∈ B̃n for all n iff f |−1

Ωn
(W ) ∈ Bn for all n iff f |Ωn is Bn – measurable

for all n. We in fact do not really use any properties of Ωn for these statements
it is not even necessary for n to run over a countable index set!

The compound Poisson process in the next theorem gives another example
of a Lévy process an example of the construction in Theorem 22.32. (The reader
should compare the following result with Theorem 28.39 below.)

Theorem 22.30 (Compound Poisson Process). Suppose that {Zi}∞i=1 are
i.i.d. random vectors in Rd and {Nt}t≥0 be an independent Poisson process with

intensity λ. Further let Z0 : Ω → Rd be independent of {Nt}t≥0 and the {Zi}∞i=1

and then define, for t ∈ R+,

Bt = ⊕∞n=0 [σ (Ns : s ≤ t, Z0, . . . , Zn)]
{Nt=n}

and Xt := SNt where Sn := Z0 +Z1 + · · ·+Zn. Then {Bt}t≥0 is a filtration (i.e.
it is increasing), {Xt}t≥0 is a Bt – adapted process such that for all 0 ≤ s < t,
Xt − Xs is independent of Bs. The increments are stationary and therefore
{Xt}t≥0 is a Lévy process. The time homogeneous transition kernel is given by

(Qtf) (x) = E [f (x+ Z1 + · · ·+ ZNt)]

=

∞∑
n=0

(λt)
n

n!
e−λtE [f (x+ Z1 + · · ·+ Zn)] .

If we define
(
Q̃f
)

(x) := E [f (x+ Z1)] , the above equation may be written as,

Qt = e−λt
∞∑
n=0

(λt)
n

n!
Q̃n = eλt(Q̃−I).

Proof. Let us begin by showing that Bt is increasing. First observe that

[σ (Ns : s ≤ t, Z0, . . . , Zn)]
{Nt=n}

= {A ⊂ {Nt = n} : A ∈ σ (Ns : s ≤ t, Z0, . . . , Zn)} .

If 0 ≤ s < t and A ∈ Bs then A ∩ {Ns = m} ∈ σ (Nr : r ≤ s, Z0, . . . , Zm)
therefore, for n ≥ m, we have

A∩{Ns = m}∩{Nt = n} ∈ σ (Nr : r ≤ t, Z0, . . . , Zm) ⊂ σ (Nr : r ≤ t, Z0, . . . , Zn)
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and we may conclude that

A ∩ {Nt = n} = ∪m≤n [A ∩ {Ns = m} ∩ {Nt = n}] ∈ σ (Nr : r ≤ t, Z0, . . . , Zn)

for all n ∈ N0. Thus we have shown A ∈ Bt and therefore Bs ⊂ Bt for all s ≤ t.
Since

Xt|Nt=n = [Z0 + Z1 + · · ·+ Zn] |Nt=n
is [σ (Ns : s ≤ t, Z0, . . . , Zn)]{Nt=n} – measurable for all n ∈ N0, it follows by
Lemma 22.28 that Xt is Bt – measurable.

We now show that Xt −Xs is independent of Bs for all t ≥ s. To this end,
let f ∈ (BRd)b and g ∈ (Bs)b . Then for each n ∈ N0, we have

g|Ns=n = Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
while

(Xt −Xs) |Ns=n = Zn+1 + · · ·+ ZNt .

Therefore we have,

E [f (Xt −Xs) · g] =

∞∑
m,n=0

E [f (Xt −Xs) · g : Ns = n, Nt −Ns = m]

and if we let am,n be the summand on the right side of this equation we have,

am,n = E
[
f (Zn+1 + · · ·+ Zn+m) ·Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
: Ns = n, Nt −Ns = m

]
= E

[
f (Zn+1 + · · ·+ Zn+m) 1Nt−Ns=m ·Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
1Ns=n

]
= E [f (Zn+1 + · · ·+ Zn+m) 1Nt−Ns=m] · E

[
Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
1Ns=n

]
= e−λ(t−s) (λ (t− s))m

m!
E [f (Z1 + · · ·+ Zm)] · E

[
Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
1Ns=n

]
.

Therefore it follows that

E [f (Xt −Xs) · g] =

∞∑
m,n=0

am,n =

∞∑
n=0

∞∑
m=0

am,n

= (Qt−sf) (0) ·
∞∑
n=0

E
[
Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
1Ns=n

]
= (Qt−sf) (0) · E [g]

from which it follows that Xt −Xs is independent of Bs and

E [f (Xt −Xs)] = (Qt−sf) (0) .

(This equation shows that the distribution of the increments is stationary.) We
now know by Exercise 22.2 that {Xt} is a Markov process and the transition
kernel is given by

(Qt−sf) (x) = E [f (x+Xt −Xs)] = (Qt−sf (x+ ·)) (0)

as described above.

Remark 22.31. If Qtf is as in Theorem 22.30, then (formally),

d

dt
Qt =

d

dt
eλt(Q̃−I) = λ

(
Q̃− I

)
Qt = Qtλ

(
Q̃− I

)
where

λ
(
Q̃− I

)
f (x) = λE [f (x+ Z1)− f (x)] = λ

∫
Rd

[f (x+ ξ)− f (x)] dµ (ξ)

and µ = Law (Z1) . This a process which jumps at rate λ from position x to
position x+ ξ with distribution µ.

22.4 Continuous Time Markov Chains on Denumerable
State Spaces

Our goal in this section is to give an introduction to the general story of contin-
uous time homogeneous Markov chains on countable state spaces, S. For this
section and the rest of this chapter we will be assuming that S is now at most
countable.

Theorem 22.32. Suppose that

(
Ω,
{
B̃n
}
n∈N0

,B, P, {Yn : Ω → S}n∈N0

)
is a

time homogeneous Markov chain with one step transition kernel, Q̃. Further
suppose that {Nt}t≥0 is a Poisson process with parameter λ which is independent

of B̃∞ := ∨nB̃n. Let Bs be the σ – algebra on Ω such that

[Bs]Ns=n :=
[
σ
(
Nr : r ≤ s & B̃n

)]
Ns=n

.

To be more explicit, A ⊂ Ω is in Bs iff

A ∩ {Ns = n} ∈ σ
(
Nr : r ≤ s & B̃n

)
for all n ∈ N0.

Alternatively, we may describe Bs as the σ – algebra generated by sets of the
form

A = B ∩ C 3 B := [∩ni=1 {Nsi = ki}] and C ∈ B̃kn (22.36)
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where n ∈ N, 0 = s0 < s1 < · · · < sn = s, ki ∈ N are such that k1 ≤ k2 ≤ · · · ≤
kn.

If Xt := YNt for t ∈ R+, then {Bt}t∈R+
is a filtration, {Xt}t≥0 is adapted to

this filtration and is a time homogeneous Markov process with transition semi-
group given by

Qt = e−λt
∞∑
n=0

(λt)
n

n!
Q̃n = e−λteλtQ̃ = etλ(Q̃−I). (22.37)

Proof. Let us begin by showing that Bt is increasing. If 0 ≤ s < t and

A ∈ Bs then A ∩ {Ns = m} ∈ σ
(
Nr : r ≤ s & B̃m

)
therefore, for n ≥ m, we

have

A ∩ {Ns = m} ∩ {Nt = n} ∈ σ
(
Nr : r ≤ t & B̃m

)
⊂ σ

(
Nr : r ≤ t & B̃n

)
and therefore,

A ∩ {Nt = n} = ∪m≤n [A ∩ {Ns = m} ∩ {Nt = n}] ∈ σ
(
Nr : r ≤ t & B̃n

)
for all n ∈ N0. Thus we have shown A ∈ Bt and therefore Bs ⊂ Bt for all s ≤ t.
Since Xt|Nt=n = Yn|Nt=n is σ

(
Nr : r ≤ t & B̃n

)
– measurable for all n ∈ N0,

it follows by Lemma 22.28 that Xt is Bt – measurable.
We now need to show that Markov property. To this end let t ≥ s, f ∈ Sb

and g ∈ (Bs)b . Then for each n ∈ N0, we have g|Ns=n ∈ σ
(
Nr : r ≤ s & B̃n

)
and therefore,

E [f (Xt) g] =

∞∑
m,n=0

E [f (Xt) · g : Ns = n, Nt −Ns = m]

=

∞∑
m,n=0

E [f (Yn+m) 1Nt−Ns=m · g · 1Ns=n]

=

∞∑
m,n=0

P (Nt −Ns = m)E [f (Yn+m) · g · 1Ns=n]

=

∞∑
m,n=0

e−λ(t−s) (λ (t− s))m

m!
E
[(
Q̃mf

)
(Yn) · g · 1Ns=n

]
=

∞∑
n=0

E [(Qt−sf) (Yn) · g · 1Ns=n] = E [(Qt−sf) (YNs) · g]

= E [(Qt−sf) (Xs) · g] .

This shows that

E [f (Xt) |Bs] = (Qt−sf) (Xs) P – a.s. (22.38)

which completes the proof.
Second proof using Eq. (22.36). If A = B∩C ∈ Bs be as in Eq. (22.36),

f ∈ Sb, and t > s, then

E [f (Xt) : A] =
∑
m≥kn

E [f (Ym) : A,Nt = m]

=

∞∑
m=0

E [f (Ykn+m) : B ∩ C ∩ {Nt −Ns = m}]

=

∞∑
m=0

E [f (Ykn+m) : C]P (B)P (Nt −Ns = m)

=

∞∑
m=0

E
[(
Q̃mf

)
(Ykn) : C

]
P (B) e−λ(t−s) (λ (t− s))m

m!

= e−λ(t−s)E

[ ∞∑
m=0

(λ (t− s))m

m!

(
Q̃mf

)
(Xs) : B ∩ C

]
= E

[(
eλ(t−s)(Q̃−I)f

)
(Xs) : A

]
.

Since this equation holds for a multiplicative system of sets, A of the form in
Eq. (22.36) which generate Bs, we may conclude again that Eq. (22.38) holds.

Suppose S is countable or finite set and a : S × S → R is a function such
that

a (x, y) ≥ 0 ∀ x 6= y and
∑
y∈S

a (x, y) = 0 ∀ x ∈ S. (22.39)

We further set and

ax :=
∑
y 6=x

a (x, y) = −a (x, x) ∈ [0,∞) and λ := sup
x∈S

ax. (22.40)

Given a bounded function f on S we let

Af (x) =
∑
y∈S

a (x, y) f (y) =
∑
y 6=x

a (x, y) [f (y)− f (x)] ∀ x ∈ S.

Notice that

|Af (x)| ≤
∑
y∈S
|a (x, y)| |f (y)| ≤

∑
y∈S
|a (x, y)| ‖f‖∞ = 2ax ‖f‖∞ ≤ 2λ ‖f‖∞ .
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Thus we see that A takes bounded functions to bounded functions provided
λ <∞. If λ <∞ it is readily verified that

Qt := etA =

∞∑
n=0

tnAn

n!

is a well defined operator on Sb for all t ∈ R.
We would now like to apply Theorem 22.32 in order to construct an associ-

ated time homogeneous Markov process with generator A. To do this we must

find a Markov matrix, Q̃, on S such that A = λ
(
Q̃− I

)
for some λ > 0. If this

is going to work we must take

Q̃ := I +
1

λ
A. (22.41)

Notice that no matter how we choose λ, Q̃ (x, y) ≥ 0 for x 6= y and∑
y∈S

Q̃ (x, y) =
∑
y∈S

[
δx (y) +

1

λ
a (x, y)

]
= 1 + 0 = 1.

So it only remains to check Q̃ (x, x) ≥ 0 for all x and this will be the case iff

0 ≥ 1 +
1

λ
a (x, x) = 1− 1

λ
ax ⇐⇒ ax ≤ λ for all x.

Thus the λ we have defined in Eq. (22.40) will do the trick provided it is finite.
We summarize the result in the next corollary.

Corollary 22.33. Let S be a countable or finite set and a : S × S → R be a
function satisfying Eq. (22.39) and λ := supx∈S ax < ∞, see Eq. (22.40). Let

Q̃ = I + 1
λA be the Markov matrix as in Eq. (22.41) so that Q̃ has matrix

elements,

q̃ (x, y) :=

{
λ−1a (x, y) if x 6= y
1− λ−1ax if x = y.

If {Yn}∞n=0 is a Markov chain with one step transition kernel, Q̃ and {Nt}t≥0

is an independent Poisson process with intensity λ, then Xt := YNt is a time
homogeneous Markov process with transition kernels,

Qt = etA = e−tλetλQ̃.

In particular, A is the infinitesimal generator of a Markov transition semi-
group.

Remark 22.34. As in Exercise 22.9 we may directly show Qt (x, y) ≥ 0 for all
x, y ∈ S and that

∑
y∈S Qt (x, y) = 1. [It is not really necessary to do this here

since we have already constructed the process.] Indeed,

etλQ̃ (x, y) =

∞∑
n=0

(tλ)
n

n!
Q̃n (x, y) ≥ 0

and ∑
y∈S

etλQ̃ (x, y) =
∑
y∈S

∞∑
n=0

(tλ)
n

n!
Q̃n (x, y)

=

∞∑
n=0

(tλ)
n

n!

∑
y∈S

Q̃n (x, y) =

∞∑
n=0

(tλ)
n

n!
1 = etλ.

Therefore Qt (x, y) = etA (x, y) = e−tλetλQ̃ (x, y) ≥ 0 and∑
y∈S

Qt (x, y) =
∑
y∈S

e−tλetλQ̃ (x, y) = e−tλetλ = 1.

Remark 22.35. Let us pause to describe paths of the Markov process constructed
in Corollary 22.33. To do this let {Tk}∞k=1 be i.i.d. exponential random variables
with intensity λ such that {Tk} are independent of the chain {Yn}∞n=0 . We may
then (see Definition 16.8) realize the Poisson process {Nt}t≥0 with intensity λ
as the counting process,

Nt =

∞∑
k=1

1[0,t] (Wk)

where
W0 := 0 and Wk := T1 + · · ·+ Tk ∀ k ∈ N.

Further let {jk}∞k=0 be the jump times of the lazy chain {Yn}∞n=0 as described
in Exercise 22.7. Then Jk := Wjk is the time of the kth – jump of the
{Xt := YNt}t≥0, see Figure 22.2 below. We further let Sk := Jk − Jk−1 for
k ∈ N which denote the sojourn time that the process {Xt} “lounges” at
location XJk−1

. It is now clear that the {Xt}t≥0 may be reconstructed from the

non - lazy chains {Yjk}
∞
k=0 and the corresponding “sojourn” times {Sk}∞k=1 .

The next theorem describes the joint distributions {Y0} ∪ {Yjk , Sk}
∞
k=1 .

Theorem 22.36 (Jump-Hold Description II). Let {Xt}t≥0 be the Markov
process as constructed in Theorem 22.32 and Corollary 22.33. To avoid inessen-
tial notational complications, let us further suppose that ax > 0 for all x ∈ S,
i.e. no sites of S are absorbing. As in Remark 22.35, let J0 = 0 and for k ∈ N
let Jk be the time of the kth jump of {Xt}t≥0 and Sk := Jk − Jk−1 be the kth

“sojourn” time of the process. Then;
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Fig. 22.2. Typical sample paths of a continuous time Markov chain in a discrete state
space.

1. {XJk}
∞
k=0 is a discrete time Markov chain with Markov transition matrix,

q̃ (x, y) defined by

q̃ (x, y) :=

{
a (x, y) /ax if y 6= x

0 if y = x
. (22.42)

2. If {xk}nk=0 ⊂ S with xk−1 6= xk for 1 ≤ k ≤ n, then relative to
P (·| ∩nk=0 {XJk = xk}) the sojourn times, {Sk}nk=1 , are independent ex-

ponential random variables with Sk
d
= exp

(
axk−1

)
.

Proof. Recall that {Yn}∞n=0 was the Markov chain with transition kernels
defined by (for some sufficiently large λ > 0)

q̂ (x, y) :=

{
λ−1a (x, y) if x 6= y
1− λ−1ax if x = y

.

We also continue the notation set up in Remark 22.35.

1. By Exercise 22.7, {XJk = Yjk}
∞
k=0 is a Markov chain with Markov transition

kernel given by q̃ (x, x) = 0 for all x ∈ S and for x 6= y,

q̃ (x, y) :=
q̂ (x, y)

1− q̂ (x, x)
=
λ−1a (x, y)

λ−1ax
=
a (x, y)

ax
.

2. For k ≥ 1, let σk := jk − jk−1 and given {xk}nk=0 ⊂ S with xk−1 6= xk for
1 ≤ k ≤ n, let

A := ∩nk=0 {XJk = xk} = ∩nk=0 {Yjk = xk} .

According to Exercise 22.7, relative to the probability measure P (·|A) =
P (·| [∩nk=0 {Yjk = xk}]) the random N – valued times, {σk}nk=1 , are inde-

pendent with σk
d
= Geo (1− q̂ (xk−1, xk−1)) for 1 ≤ k ≤ n. Combining this

result with Exercise 22.11 below shows
{
Sk = Wjk −Wjk−1

}n
k=1

are are in-
dependent exponential random variables with

Sk
d
= exp ((1− q̂ (xk−1, xk−1))λ)

d
= exp

(
axk−1

)
.

Exercise 22.11. Let {Tk}∞k=1 be i.i.d. exponential random variables with in-
tensity λ and {σ`}n`=1 be independent geometric random variables with σ` =
Geo (b`) for some b` ∈ (0, 1]. Further assume that {σ`}n`=1 ∪ {Tk}

∞
k=1 are inde-

pendent. We also let

W0 = 0, Wn := T1 + . . .+ Tn,

j0 = 0, j` := σ1 + · · ·+ σ`,

S` := Wj` −Wj`−1
for 1 ≤ ` ≤ n.

Show {S`}n`=1 are independent exponential random variables with S`
d
=

exp (b`λ) for all 1 ≤ ` ≤ n.

22.5 First Step Analysis and Hitting Probabilities

In this section we suppose that T = N0,
(
Ω,B, {Bt}t∈T

)
is a filtered measures

space, Xt : Ω → S is a Bt/S – measurable function for all t ∈ T, Q : S × S →
[0, 1] is a Markov-transition kernel, and for each x ∈ S there exists a probability,
Px, on (Ω,B) such that Px (X0 = x) = 1 and {Xt}t≥0 is a time homogenous
Markov process with Q as its one step Markov transition kernel. To shorten
notation we will write Ex for the expectation relative to the measure Px.

Definition 22.37 (Hitting times). For B ∈ S, let

TB (X) := min {n ≥ 0 : Xn ∈ B}

with the convention that min ∅ = ∞. We call TB (X) = TB (X0, X1, . . . ) the
first hitting time of B by X = {Xn}n .

Notation 22.38 For A ∈ S, let QA : A×SA → [0, 1] be the restriction of Q to
A, so that QA (x,C) := Q (x,C) for all x ∈ A and C ∈ SA. As with probability
kernels we may identify QA with an operator from (SA)b to itself via,

(QAf) (x) =

∫
A

Q (x, dy) f (y) for all x ∈ A and f ∈ (SA)b .
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Lemma 22.39 (A TB <∞ criteria). Let B ∈ S, A := Bc, and

α := sup
y∈A

Py (TB =∞) . (22.43)

Then
Px (TB =∞) = lim

n→∞
(QnA1) (x) ∀ x ∈ A (22.44)

and if α < 1, then Px (TB = 0) = 0 for all x ∈ A. [This lemma is generalized in
Theorem 22.52 below.]

Proof. Let u (x) := Px (TB =∞) for x ∈ A := Bc, and observe that

Px (TB > n) = Px (X1 ∈ A, . . . ,Xn ∈ A) = (QnA1) (x) . (22.45)

Letting n ↑ ∞ shows that

u (x) := Px (TB =∞) = lim
n→∞

(QnA1) (x)

which proves Eq. (22.44). Passing to the limit as n→∞ in the identity,

(QnA1) (x) =

∫
A

Q (x, dy)
(
Qn−1
A 1

)
(y)

shows (using DCT) that

u (x) = lim
n→∞

(QnA1) (x) =

∫
A

Q (x, dy) lim
n→∞

(
Qn−1
A 1

)
(y) =

∫
A

Q (x, dy)u (y) ,

i.e. u = QAu. Iterating the equation u = QAu then implies, u = QnAu. However
this then implies

u (x) =

∫
A

QnA (x, dy)u (y) ≤
∫
A

QnA (x, dy)α = α (QnA1) (x) .

Letting n→∞ then shows u (x) ≤ αu (x) from which it follows that u (x) = 0
if α < 1.

Exercise 22.12. Suppose that T is a N0 – valued random variable and n ∈ N.
Show

ET ≤ n
∞∑
k=0

P (T > nk) . (22.46)

Lemma 22.40 (An ETB <∞ criteria). Let B ∈ S, A := Bc, and for n ∈ N
let

αn := sup
y∈A

Py (TB > n) . (22.47)

Then
ExTB ≤

n

1− αn
∀ x ∈ A (22.48)

and in particular ExTB <∞ for all x ∈ A if αn < 1 for some n ∈ N.

Proof. From Eq. (22.45), we have

αn = sup
y∈A

Py (TB > n) = sup
y∈A

(QnA1) (y) .

For k ∈ N0,

QnkA 1 = [QnA]
k−1

QnA1 ≤ [QnA]
k−1

αn

≤ [QnA]
k−2

α2
n ≤ · · · ≤ αkn.

Therefore, using Eq. (22.46),

ExTB ≤ n
∞∑
k=0

Px (TB > nk) = n

∞∑
k=0

(
QnkA 1

)
(x)

≤ n
∞∑
k=0

αkn =
n

1− αn
∀ x ∈ A.

Theorem 22.41. Let n denote a non-negative integer, B ∈ S, and A := Bc. If
h : B → R is measurable and either bounded or non-negative, then

Ex [h (Xn) : TB = n] =
(
Qn−1
A Q [1Bh]

)
(x)

and

Ex [h (XTB ) : TB <∞] =

( ∞∑
n=0

QnAQ [1Bh]

)
(x) . (22.49)

If g : A→ R+ is a measurable function, then for all x ∈ A and n ∈ N0,

Ex [g (Xn) 1n<TB ] = (QnAg) (x) .

In particular we have

Ex

[ ∑
n<TB

g (Xn)

]
=

∞∑
n=0

(QnAg) (x) =: u (x) , (22.50)

where by convention,
∑
n<TB

g (Xn) = 0 when TB = 0.

Proof. Let x ∈ A. In computing each of these quantities we will use;

{TB > n} = {Xi ∈ A for 0 ≤ i ≤ n} and

{TB = n} = {Xi ∈ A for 0 ≤ i ≤ n− 1} ∩ {Xn ∈ B} .

From the second identity above it follows that for
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Ex [h (Xn) : TB = n] = Ex
[
h (Xn) : (X1, . . . , Xn−1) ∈ An−1, Xn ∈ B

]
=

∞∑
n=1

∫
An−1×B

n∏
j=1

Q (xj−1, dxj)h (xn)

=
(
Qn−1
A Q [1Bh]

)
(x)

and therefore

Ex [h (XTB ) : TB <∞] =

∞∑
n=1

Ex [h (Xn) : TB = n]

=

∞∑
n=1

Qn−1
A Q [1Bh] =

∞∑
n=0

QnAQ [1Bh] .

Similarly,

Ex [g (Xn) 1n<TB ] =

∫
An

Q (x, dx1)Q (x1, dx2) . . . Q (xn−1, dxn) g (xn)

= (QnAg) (x)

and therefore,

Ex

[ ∞∑
n=0

g (Xn) 1n<TB

]
=

∞∑
n=0

Ex [g (Xn) 1n<TB ]

=

∞∑
n=0

(QnAg) (x) .

In practice it is not so easy to sum the series in Eqs. (22.49) and (22.50).
Thus we would like to have another way to compute these quantities. Since∑∞
n=0Q

n
A is a geometric series, we expect that

∞∑
n=0

QnA = (I −QA)
−1

which is basically correct at least when (I −QA) is invertible. This suggests
that if u (x) = Ex [h (XTB ) : TB <∞] , then (see Eq. (22.49))

u = QAu+Q [1Bh] on A, (22.51)

and if u (x) = Ex
[∑

n<TB
g (Xn)

]
, then (see Eq. (22.50))

u = QAu+ g on A. (22.52)

That these equations are valid is the content of Corollaries 22.44 and 22.45
below which we will prove using the “first step” analysis in the next theorem.
We will give another direct proof in Theorem 22.52 below as well.

Theorem 22.42 (First step analysis). Let us keep the assumptions in The-
orem 22.14 and add the further assumption that T = N0. Then for all F ∈ S⊗Nb
or F : SN0 → [0,∞] measurable;

Ex [F (X0, X1, . . . )] =

∫
S

Q (x, dy)EyF (x,X0, X1, . . . ) . (22.53)

This equation can be iterated to show more generally that

Ex [F (X0, X1, . . . )] =

∫
Sn

n∏
j=1

Q (xj−1, dxj)Exn [F (x0, x1, . . . , xn−1, X0, X1, . . . )]

(22.54)
where x0 := x.

Proof. Since X0 (ω) = x for Px – a.e. ω, we have F (X0, X1, . . . ) =
F (x,X1, X2, . . . ) a.s. Therefore by Theorem 22.14 we know that

Ex [F (X0, X1, . . . ) |B1] = Ex [F (x,X1, X2, . . . ) |B1] = EX1F (x,X0, X1, . . . ) .

Taking expectations of this equation shows,

Ex [F (X0, X1, . . . )] = Ex [EX1
F (x,X0, X1, . . . )]

=

∫
S

Q (x, dy)EyF (x,X0, X1, . . . ) .

Remark 22.43. Let TB (x0, x1, x2, . . . ) be the first hitting time of B of
the sequence (x0, x1, x2, . . . ) and when when TB (x0, x1, x2, . . . ) < ∞, let
LB (x0, x1, x2, . . . ) = xTB(x0,x1,x2,... ) be the hitting location. In more de-
tail, TB (x0, x1, x2, . . . ) = n and LB (x0, x1, x2, . . . ) = xn iff xn ∈ B while
xk ∈ A = Bc for 0 ≤ k < n. As usual we say TB (x0, x1, x2, . . . ) = ∞ if
xk ∈ A for all k and in this case we leave LB (x0, x1, x2, . . . ) undefined. In
using Theorem 22.42 we will often implicitly make use of the following two
simple observations.

1. If x0 ∈ A and TB (x0, x1, x2, . . . ) <∞ then

LB (x0, x1, x2, . . . ) = LB (x1, x2, . . . ) .

2. If x0 ∈ A, then

TB (x0, x1, x2, . . . ) = 1 + 1A (x1)TB (x1, x2, . . . ) .

Page: 304 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



22.5 First Step Analysis and Hitting Probabilities 305

3. More generally if g : A→ [0,∞] is a function,

F (x0, x1, x2, . . . ) =
∑

0≤n<TB(x0,x1,x2,... )

g (xn) , (22.55)

and x0 ∈ A, then

F (x0, x1, x2, . . . ) = g (x0) + 1A (x1)F (x1, x2, . . . ) .

[Taking g = 1 gives item 2.]

The reader might interpret F (x0, x1, x2, . . . ) in Eq. (22.55) as money col-
lected in A by a traveler on the path (x0, x1, x2, . . . ) up to its first exit from A
where g (x) is the amount of money at location x ∈ A.

Corollary 22.44. Suppose that B ∈ S, A := Bc ∈ S, h : B → R is a measur-
able function which is either bounded or non-negative, and

u (x) := Ex [h (XTB ) : TB <∞] for x ∈ S.

Then u : S → R satisfies u = h on B and

u = Qu = QAu+QBh on A

as in Eq. (22.51). In more detail

u (x) =

∫
A

Q (x, dy)u (y) +

∫
B

Q (x, dy)h (y) for all x ∈ A.

In particular, when h ≡ 1, u (x) = Px (TB <∞) is a solution to the equation,

u = QAu+Q1B on A. (22.56)

Proof. To shorten the notation we will use the convention that h (XTB ) = 0
if TB =∞ so that we may simply write u (x) := Ex [h (XTB )] . Let

F (X0, X1, . . . ) = h
(
XTB(X)

)
= h

(
XTB(X)

)
1TB(X)<∞,

then for x ∈ A we have F (x,X0, X1, . . . ) = F (X0, X1, . . . ) , see Remark 22.43.
Therefore by the first step analysis (Theorem 22.42) we learn for x ∈ A that

u (x) = Exh
(
XTB(X)

)
= ExF (x,X1, . . . ) =

∫
S

Q (x, dy)EyF (x,X0, X1, . . . )

=

∫
S

Q (x, dy)EyF (X0, X1, . . . ) =

∫
S

Q (x, dy)u (y)

=

∫
A

Q (x, dy)u (y) +

∫
B

Q (x, dy)h (y) ,

i.e.
u = Qu = QAu+QBh on A.

Corollary 22.45. Suppose that B ∈ S, A := Bc ∈ S, g : A → [0,∞] is a
measurable function. Further let

u (x) := Ex

 ∑
0≤n<TB

g (Xn)

 for x ∈ S.

Then u (x) = 0 if x ∈ B and u (x) satisfies Eq. (22.52), i.e.

u = Qu+ g = QAu+ g on A

or in more detail,

u (x) =

∫
A

Q (x, dy)u (y) + g (x) for all x ∈ A.

In particular if we take g ≡ 1 in this equation we learn that

ExTB =

∫
A

Q (x, dy)EyTB + 1 for all x ∈ A.

Proof. Let

F (X0, X1, . . . ) =
∑

0≤n<TB(X0,X1,... )

g (Xn)

be the sum of the values of g along the chain before its first exit from A, i.e.
entrance into B. With this interpretation in mind, if x ∈ A, it is easy to see
that

F (x,X0, X1, . . . ) =

{
g (x) if X0 ∈ B

g (x) + F (X0, X1, . . . ) if X0 ∈ A
= g (x) + 1X0∈A · F (X0, X1, . . . ) .

Therefore by the first step analysis (Theorem 22.42) it follows that

u (x) = ExF (X0, X1, . . . ) =

∫
S

Q (x, dy)EyF (x,X0, X1, . . . )

=

∫
S

Q (x, dy)Ey [g (x) + 1X0∈A · F (X0, X1, . . . )]

= g (x) +

∫
A

Q (x, dy)Ey [F (X0, X1, . . . )]

= g (x) +

∫
A

Q (x, dy)u (y) .
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The next corollary is hybrid of the previous two scenarios. You might
envision a game show where you win money along the way determined by
g : A → [0,∞] with the possibility of keeping or loosing some portion of it
which is determined by a function h : B → [0,∞] .

Corollary 22.46. If B ∈ S, A := Bc ∈ S, h : B → [0,∞] and g : A → [0,∞]
are measurable functions, then Let

Ex

h (XTB )
∑

0≤m<TB

g (Xm) : TB <∞

 = u (x) for x ∈ S,

where u : S → R satisfies u = 0 on B and

u = (IA −QA)
−1
g (IA −QA)

−1
QBh on A

where (if there is any ambiguity),

(IA −QA)
−1

:=

∞∑
n=0

QnA. (22.57)

Proof. If we let

F (X0, X1, . . . ) = 1TB(X)<∞ · h (XTB )
∑

0≤m<TB

g (Xm) ,

then for x ∈ A we have by Remark 22.43 that

F (x,X0, X1, . . . ) = 1TB(X)<∞ · h (XTB )

g (x) +
∑

0≤m<TB

g (Xm)


= g (x) 1TB(X)<∞ · h (XTB ) + F (X0, X1, . . . ) .

Therefore by the first step analysis (Theorem 22.42) we learn for x ∈ A that

u (x) = ExF (x,X1, . . . ) =

∫
S

Q (x, dy)EyF (x,X0, X1, . . . )

=

∫
S

Q (x, dy)Ey
[
g (x) 1TB(X)<∞ · h (XTB ) + F (X0, X1, . . . )

]
=

∫
S

g (x)Q (x, dy)Ey
[
1TB(X)<∞ · h (XTB )

]
+

∫
S

Q (x, dy)u (y)

= g (x) (Qv) (x) +Qu (x) = g (x) (Qv) (x) +QAu (x)

where

v (x) := Ex
[
1TB(X)<∞ · h (XTB )

]
= 1A (x)

(
(I −QA)

−1
QBh

)
(x) + 1B (x)h (x)

and we have used u = 0 on B. Putting this all together shows,

u = g
[
QA (I −QA)

−1
QBh+QBh

]
+QAu

= g (I −QA)
−1
QBh+QAu

or in other words,

u = (I −QA)
−1
[
g (I −QA)

−1
QBh

]
.

Alternatively, we may work from first principles,

u (x) = Ex

h (XTB )
∑

0≤m<TB

g (Xm) : TB <∞


=

∞∑
n=1

Ex

h (Xn)
∑

0≤m<n

g (Xm) : TB = n


=

∑
0≤m<n<∞

Ex [g (Xm)h (Xn) : X1, . . . , Xn−1 ∈ A,Xn ∈ B]

=
∑

0≤m<n<∞

[
QmA gQ

n−m−1
A QBh

]
(x)

=
∑

0≤m<∞

[
QmA g (IA −QA)

−1
QBh

]
(x)

=
[
(IA −QA)

−1
g (IA −QA)

−1
QBh

]
(x) .

which is the same result as above. Moreover, this method shows that Eq. (22.57)

is the correct way to interpret (IA −QA)
−1

whenever there is any ambiguity in
its meaning.

The problem with Corollaries 22.44 and 22.45 is that the solutions to Eqs.
(22.51) and (22.52) may not be unique as we will see in the next examples.
Theorem 22.52 below will explain when these ambiguities may occur and how
to deal with them when they do.

Example 22.47 (Biased random walks 0). Let p ∈ (1/2, 1) and consider the
biased random walk {Sn}n≥0 on the S = Z where Sn = X0 + X1 + · · · + Xn,

{Xi}∞i=1 are i.i.d. with P (Xi = 1) = p ∈ (0, 1) and P (Xi = −1) = q := 1 − p,
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and X0 = x for some x ∈ Z. This is time homogeneous Markov chain with
transition matrix,

Q (x, y) = p1y=x+1 + q1y=x−1.

For any a ∈ Z let Ta be the first hitting time of a. Given a < 0 < b we would
like to compute P0 (Tb < Ta) = E0h

(
XT{a,b}

)
where h (b) = 1 and h (a) = 0. To

do this we will compute

u (x) := Px (Tb < Ta) = Exh
(
XT{a,b}

)
for a ≤ x ≤ b

where u (b) = 1 and u (a) = 0. By the first step analysis (using A = (a, b) ∩ Z
and QA (x, y) = (p1y=x+1 + q1y=x−1) 1a<y<b) shows4

u (x) = pu (x+ 1) + qu (x− 1) for a < x < b with

u (a) = 0 and u (b) = 1.

From Exercise 22.15 below, we know that the general solution to Eq. (22.59) is
of the form

u (x) = aλx+ + bλx−

where λ± are the roots for the characteristic polynomial, pλ2−λ+ q = 0. since
constants solve Eq. (22.59) we know that one root is 1 as is easily verified.
The other root5 is ρ := q/p < 1. Thus the general solution is of the form,
u (x) = α + βρ(x−a). We now need to choose α and β so that the boundary
conditions u (a) = 0 and u (b) = 1 are satisfied, i.e. α+ β = 0 or β = −α and

1 = α+ βρ(b−a) = α
(

1− ρ(b−a)
)

=⇒ α =
1

1− ρ(b−a)
.

Thus we have

Px (Tb < Ta) =
1− ρ(x−a)

1− ρ(b−a)
=⇒ P0 (Tb < Ta) =

1− ρ−a

1− ρ(b−a)
.

Letting a ↓ −∞ (keep in mind ρ ∈ (0, 1)) then shows,

Px (Tb <∞) = 1 for all x < b.

Also as b ↑ ∞ {Tb < Ta} ↓ {Ta =∞} and so

4 For x = b − 1, we have (QAu) (x) = qu (x− 1) while (QBh) (x) = ph (x+ 1) = p
and so (QAu) (x)+(QBh) (x) = qu (x− 1)+pu (x+ 1) provided we remember that
u (x+ 1) = h (b) = 1 when x = b− 1.

5 Indeed,

p

(
q

p

)2

− q

p
+ q =

q

p
[q − 1 + p] = 0.

P0 (Ta =∞) = lim
b↑∞

P0 (Tb < Ta) = lim
b↑∞

1− ρ−a

1− ρ(b−a)
= 1−

(
q

p

)−a
.

Next let us try to find u (x) := Ex
[
T{a,b}

]
which we know to be finite by

Lemma 22.40. By the first step analysis we have,

u (x) = p [u (x+ 1) + 1] + q [u (x− 1) + 1]

= pu (x+ 1) + qu (x− 1) + 1 for a < x < b (22.58)

u (a) = 0 = u (b) .

A particular solution to Eq. (22.58) may be found by trying u (x) = cx. Plugging
this into Eq. (22.58) then shows,

cx = cx+ c (p− q) + 1 =⇒ c =
1

q − p
.

Let us notice that v (x) = ρ(x−a)−1 and w (x) = ρ(x−b)−1 are solutions to the
homogeneous equations such that v (a) = 0 and w (b) = 0 and so in general

u (x) =
x

q − p
+ α

(
ρ(x−a) − 1

)
+ β

(
ρ(x−b) − 1

)
.

The coefficients α and β are found by requiring

0 = u (a) =
a

q − p
+ β

(
ρ(a−b) − 1

)
=⇒ β =

a

p− q
1

ρ(a−b) − 1

0 = u (b) =
b

q − p
+ α

(
ρ(b−a) − 1

)
=⇒ α =

b

p− q
1

ρ(b−a) − 1

and so we have shown,

ExT{a,b} =
1

p− q

[
ρ(x−a) − 1

ρ(b−a) − 1
b+

ρ(x−b) − 1

ρ(a−b) − 1
a− x

]
.

Letting b ↑ ∞ shows ExTa =∞ and letting a ↓ −∞ shows

ExTb =
1

p− q
[b− x] for x < b.

Example 22.48 (Biased random walks I). Let p ∈ (1/2, 1) and consider the bi-
ased random walk {Sn}n≥0 on the S = Z where Sn = X0 + X1 + · · · + Xn,

{Xi}∞i=1 are i.i.d. with P (Xi = 1) = p ∈ (0, 1) and P (Xi = −1) = q := 1 − p,
and X0 = x for some x ∈ Z. Let B := {0} and u (x) := Px (TB <∞) . Clearly
u (0) = 0 and by the first step analysis,

u (x) = pu (x+ 1) + qu (x− 1) for x 6= 0. (22.59)
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From Exercise 22.15 below, we know that the general solution to Eq. (22.59) is
of the form

u (x) = aλx+ + bλx−

where λ± are the roots for the characteristic polynomial, pλ2−λ+ q = 0. since
constants solve Eq. (22.59) we know that one root is 1 as is easily verified. The
other root6 is q/p. Thus the general solution is of the form, w (x) = a+b (q/p)

x
.

In all case we are going to choose a and b so that 0 = u (0) = w (0) (i.e. a+b = 0)
so that w (x) = a + (1− a) (q/p)

x
. For x > 0 we choose a = a+ so that

w+ (x) := a+ + (1− a+) (q/p)
x

satisfies w+ (1) = u (1) and for x < 0 we choose
a = a− so that w− (x) := a− + (1− a−) (q/p)

x
satisfies w− (−1) = u (−1) .

With these choice we will have u (x) = w+ (x) for x ≥ 0 and u (x) = w− (x) for
x ≤ 0 – see Exercise 22.15 and Remark 22.50. Observe that

u (1) = a+ + (1− a+) (q/p) =⇒ a+ =
u (1)− (q/p)

1− (q/p)

and

u (−1) = a− + (1− a−) (p/q) =⇒ a− =
(p/q)− u (−1)

(p/q)− 1
.

Case 1. x < 0 : As x→ −∞, we will have |u (x)| → ∞ unless a− = 1. Thus
we must take a− = 1 and we have shown,

Px (T0 <∞) = w− (x) = 1 for all x < 0.

Case 2. x > 0 : For n ∈ N0, let Tn = min {m : Xm = n} be the first time
X hits n. By the MCT we have,

Px (T0 <∞) = lim
n→∞

Px (T0 < Tn) .

So we will now try to compute u (x) = Px (T0 < Tn). By the first step analysis
(take B = {0, n} and h (0) = 1 and h (n) = 0 in Corollary 22.44) we will
still have that u (x) satisfies Eq. (22.59) for 0 < x < n but now the boundary
conditions are u (0) = 1 and u (n) = 0. Accordingly u (x) for 0 ≤ x ≤ n is still
of the form given in Eq. (22.59) but we may now determine a = an using the
boundary condition

0 = u (n) = a+ (1− a) (q/p)
n

= (q/p)
n

+ a (1− (q/p)
n
)

from which it follows that

6 Indeed,

p

(
q

p

)2

− q

p
+ q =

q

p
[q − 1 + p] = 0.

an =
(q/p)

n

(q/p)
n − 1

→ 0 as n→∞.

Thus we have shown

Px (T0 < Tn) =
(q/p)

n

(q/p)
n − 1

+

(
1− (q/p)

n

(q/p)
n − 1

)
(q/p)

x

=
(q/p)

n − (q/p)
x

(q/p)
n − 1

=
(q/p)

x − (q/p)
n

1− (q/p)
n → (q/p)

x
as n→∞

and therefore, since Tn ↑ ∞ Px – a.s. as n ↑ ∞,

Px (T0 <∞) = (q/p)
x

for all x > 0.

Example 22.49 (Biased random walks II). Continue the notation in Example
22.48. Let us now try to compute ExT0. Since Px (T0 =∞) > 0 for x > 0 we
already know that ExT0 = ∞ for all x > 0. Nevertheless we will deduce this
fact again here.

Letting u (x) = ExT0 it follows by the first step analysis that, for x 6= 0,

u (x) = p [1 + u (x+ 1)] + q [1 + u (x− 1)]

= pu (x+ 1) + qu (x− 1) + 1 (22.60)

with u (0) = 0. Notice u (x) =∞ is a solution to this equation while if u (a) <∞
for some a 6= 0 then Eq. (22.60) implies that u (x) < ∞ for all x 6= 0 with the
same sign as a.

A particular solution to this equation may be found by trying u (x) = αx
to learn,

αx = pα (x+ 1) + qα (x− 1) + 1 = αx+ α (p− q) + 1

which is valid for all x provided α = (q − p)−1
. The general finite solution to

Eq. (22.60) is therefore,

u (x) = (q − p)−1
x+ a+ b (q/p)

x
. (22.61)

Using the boundary condition, u (0) = 0 allows us to conclude that a + b = 0
and therefore,

u (x) = ua (x) = (q − p)−1
x+ a [1− (q/p)

x
] . (22.62)

Notice that ua (x)→ −∞ as x→ +∞ no matter how a is chosen and therefore
we must conclude that the desired solution to Eq. (22.60) is u (x) =∞ for x > 0
as we already mentioned.
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The question now is for x < 0. Is it again the case that u (x) = ∞ or is
u (x) = ua (x) for some a ∈ R. Since limx→∞ ua (x) = −∞ unless a ≤ 0, we
may restrict our attention to a ≤ 0. To work out which a ≤ 0 is correct observe
by MCT that

ExT0 = lim
n→−∞

Ex [Tn ∧ T0] = lim
n→−∞

Ex
[
T{n,0}

]
.

So let n ∈ Z with n < 0 be fixed for the moment. By item 8. of Theorem
22.52 we may conclude that u (x) := Ex

[
T{n,0}

]
< ∞ for all n ≤ x ≤ 0.

Then by the first step analysis, u (x) satisfies Eq. (22.60) for n < x < 0 and has
boundary conditions u (n) = 0 = u (0) . Using the boundary condition u (n) = 0
to determine a = an in Eq. (22.62) implies,

0 = ua (n) = (q − p)−1
n+ a [1− (q/p)

n
]

so that
a = an =

n

(1− (q/p)
n
) (p− q)

→ 0 as n→ −∞.

Thus we conclude that

ExT0 = lim
n→−∞

Ex [Tn ∧ T0] = lim
n→−∞

uan (x)

=
x

q − p
=
|x|
p− q

for x < 0.

Remark 22.50 (More on the boundary conditions). If we were to use Corollary
22.45 directly to derive Eq. (22.60) in the case that u (x) := Ex

[
T{n,0}

]
< ∞

we for all 0 ≤ x ≤ n. we would find, for x 6= 0, that

u (x) =
∑

y/∈{n,0}

q (x, y)u (y) + 1

which implies that u (x) satisfies Eq. (22.60) for n < x < 0 provided u (n) and
u (0) are taken to be equal to zero. Let us again choose a and b

w (x) := (q − p)−1
x+ a+ b (q/p)

x

satisfies w (0) = 0 and w (−1) = u (−1) . Then both w and u satisfy Eq. (22.60)
for n < x ≤ 0 and agree at 0 and −1 and therefore are equal7 for n ≤ x ≤ 0
and in particular 0 = u (n) = w (n) . Thus correct boundary conditions on w in
order for w = u are w (0) = w (n) = 0 as we have used above.
7 Observe from Eq. (22.60) we have for x 6= 0 that,

u (x− 1) = q−1 [u (x)− pu (x+ 1)− 1] .

From this equation it follows easily that u (x) for x ≤ 0 is determined by its values
at x = 0 and x = −1.

Definition 22.51. Suppose (A,A) is a measurable space. A sub-probability
kernel on (A,A) is a function ρ : A ×A → [0, 1] such that ρ (·, C) is A/BR –
measurable for all C ∈ A and ρ (x, ·) : A → [0, 1] is a measure for all x ∈ A.

As with probability kernels we will identify ρ with the linear map, ρ : Ab →
Ab given by

(ρf) (x) = ρ (x, f) =

∫
A

f (y) ρ (x, dy) .

Of course we have in mind that A = SA and ρ = QA. In the following lemma
let ‖g‖∞ := supx∈A |g (x)| for all g ∈ Ab.

Theorem 22.52. Let ρ be a sub-probability kernel on a measurable space (A,A)
and define un (x) := (ρn1) (x) for all x ∈ A and n ∈ N0. Then;

1. un is a decreasing sequence so that u := limn→∞ un exists and is in Ab.
(When ρ = QA, un (x) = Px (TB > n) ↓ u (x) = P (TB =∞) as n→∞.)

2. The function u satisfies ρu = u.
3. If w ∈ Ab and ρw = w then |w| ≤ ‖w‖∞ u. In particular the equation,
ρw = w, has a non-zero solution w ∈ Ab iff u 6= 0.

4. If u = 0 and g ∈ Ab, then there is at most one w ∈ Ab such that w = ρw+g.
5. Let

U :=

∞∑
n=0

un =

∞∑
n=0

ρn1 : A→ [0,∞] (22.63)

and suppose that U (x) <∞ for all x ∈ A. Then for each g ∈ Sb,

w =

∞∑
n=0

ρng (22.64)

is absolutely convergent,
|w| ≤ ‖g‖∞ U, (22.65)

ρ (x, |w|) < ∞ for all x ∈ A, and w solves w = ρw + g. Moreover if v also
solves v = ρv + g and |v| ≤ CU for some C <∞ then v = w.
Observe that when ρ = QA,

U (x) =

∞∑
n=0

Px (TB > n) =

∞∑
n=0

Ex (1TB>n) = Ex

( ∞∑
n=0

1TB>n

)
= Ex [TB ] .

6. If g : A→ [0,∞] is any measurable function then

w :=

∞∑
n=0

ρng : A→ [0,∞]

is a solution to w = ρw + g. (It may be that w ≡ ∞ though!) Moreover if
v : A → [0,∞] satisfies v = ρv + g then w ≤ v. Thus w is the minimal
non-negative solution to v = ρv + g.
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7. If there exists α < 1 such that u ≤ α on A then u = 0. (When ρ = QA, this
state that Px (TB =∞) ≤ α for all x ∈ A implies Px (TA =∞) = 0 for all
x ∈ A.)

8. If there exists an α < 1 and an n ∈ N such that un = ρn1 ≤ α on A, then
there exists C <∞ such that

uk (x) =
(
ρk1
)

(x) ≤ Cβk for all x ∈ A and k ∈ N0

where β := α1/n < 1. In particular, U ≤ C (1− β)
−1

and u = 0 under this
assumption.
(When ρ = QA this assertion states; if Px (TB > n) ≤ α for all α ∈ A, then

Px (TB > k) ≤ Cβk and ExTB ≤ C (1− β)
−1

for all k ∈ N0.)

Proof. We will prove each item in turn.

1. First observe that u1 (x) = ρ (x,A) ≤ 1 = u0 (x) and therefore,

un+1 = ρn+11 = ρnu1 ≤ ρn1 = un.

We now let u := limn→∞ un so that u : A→ [0, 1] .
2. Using DCT we may let n→∞ in the identity, ρun = un+1 in order to show
ρu = u.

3. If w ∈ Ab with ρw = w, then

|w| = |ρnw| ≤ ρn |w| ≤ ‖w‖∞ ρn1 = ‖w‖∞ · un.

Letting n→∞ shows that |w| ≤ ‖w‖∞ u.
4. If wi ∈ Ab solves wi = ρwi + g for i = 1, 2 then w := w2 − w1 satisfies
w = ρw and therefore |w| ≤ Cu = 0.

5. Let U :=
∑∞
n=0 un =

∑∞
n=0 ρ

n1 : A → [0,∞] and suppose U (x) < ∞ for
all x ∈ A. Then un (x)→ 0 as n→∞ and so bounded solutions to ρu = u
are necessarily zero. Moreover we have, for all k ∈ N0, that

ρkU =

∞∑
n=0

ρkun =

∞∑
n=0

un+k =

∞∑
n=k

un ≤ U. (22.66)

Since the tails of convergent series tend to zero it follows that limk→∞ ρkU =
0.
Now if g ∈ Sb, we have

∞∑
n=0

|ρng| ≤
∞∑
n=0

ρn |g| ≤
∞∑
n=0

ρn ‖g‖∞ = ‖g‖∞ · U <∞ (22.67)

and therefore
∑∞
n=0 ρ

ng is absolutely convergent. Making use of Eqs. (22.66)
and (22.67) we see that

∞∑
n=1

ρ |ρng| ≤ ‖g‖∞ · ρU ≤ ‖g‖∞ U <∞

and therefore (using DCT),

w =

∞∑
n=0

ρng = g +

∞∑
n=1

ρng

= g + ρ

∞∑
n=1

ρn−1g = g + ρw,

i.e. w solves w = g + ρw.
If v : A → R is measurable such that |v| ≤ CU and v = g + ρv, then
y := w − v solves y = ρy with |y| ≤ (C + ‖g‖∞)U. It follows that

|y| = |ρny| ≤ (C + ‖g‖∞) ρnU → 0 as n→∞,

i.e. 0 = y = w − v.
6. If g ≥ 0 we may always define w by Eq. (22.64) allowing for w (x) =∞ for

some or even all x ∈ A. As in the proof of the previous item (with DCT
being replaced by MCT), it follows that w = ρw + g. If v ≥ 0 also solves
v = g + ρv, then

v = g + ρ (g + ρv) = g + ρg + ρ2v

and more generally by induction we have

v =

n∑
k=0

ρkg + ρn+1v ≥
n∑
k=0

ρkg.

Letting n→∞ in this last equation shows that v ≥ w.
7. If u ≤ α < 1 on A, then by item 3. with w = u we find that

u ≤ ‖u‖∞ · u ≤ αu

which clearly implies u = 0.
8. If un ≤ α < 1, then for any m ∈ N we have,

un+m = ρmun ≤ αρm1 = αum.

Taking m = kn in this inequality shows, u(k+1)n ≤ αukn. Thus a simple

induction argument shows ukn ≤ αk for all k ∈ N0. For general l ∈ N0 we
write l = kn+ r with 0 ≤ r < n. We then have,

ul = ukn+r ≤ ukn ≤ αk = α
l−r
n = Cαl/n

where C = α−
n−1
n .
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Corollary 22.53. If h : B → [0,∞] is measurable, then u (x) :=
Ex [h (XTB ) : TB <∞] is the unique minimal non-negative solution to Eq.
(22.51) while if g : A→ [0,∞] is measurable, then u (x) = Ex

[∑
n<TB

g (Xn)
]

is the unique minimal non-negative solution to Eq. (22.52).

Exercise 22.13. Keeping the notation of Example 22.48 and 22.49. Use Corol-
lary 22.53 to show again that Px (TB <∞) = (q/p)

x
for all x > 0 and

ExT0 = x/ (q − p) for x < 0. You should do so without making use of the
extraneous hitting times, Tn for n 6= 0.

Corollary 22.54. If Px (TB =∞) = 0 for all x ∈ A and h : B → R is a
bounded measurable function, then u (x) := Ex [h (XTB )] is the unique solution
to Eq. (22.51).

Corollary 22.55. Suppose now that A = Bc is a finite subset of S and there
exists an α ∈ (0, 1) such that Px (TB =∞) ≤ α for all x ∈ A. Then there exists
C < ∞ and β ∈ (0, 1) such that Px (TB > n) ≤ Cβn. In particular ExTB < ∞
for all x ∈ A.

Proof. We know that

lim
n→∞

Px (TB > n) = Px (TB =∞) ≤ α for all x ∈ A.

Therefore if α̃ ∈ (α, 1) , using the fact that A is a finite set, there exists an
n sufficiently large such that Px (TB > n) ≤ α̃ for all x ∈ A. The result now
follows from item 8. of Theorem 22.52.

Definition 22.56 (First return time). For any x ∈ S, let τx :=
min {n ≥ 1 : Xn = x} where the minimum of the empty set is defined to
be ∞.

On the event {X0 6= x} we have τx = Tx := min {n ≥ 0 : Xn = x} – the first
hitting time of x. So τx is really manufactured for the case where X0 = x in
which case Tx = 0 while τx is the first return time to x.

Exercise 22.14. Let x ∈ X. Show;

a for all n ∈ N0,

Px (τx > n+ 1) ≤
∑
y 6=x

p (x, y)Py (Tx > n) . (22.68)

b Use Eq. (22.68) to conclude that if Py (Tx =∞) = 0 for all y 6= x then
Px (τx =∞) = 0, i.e. {Xn} will return to x when started at x.

c Sum Eq. (22.68) on n ∈ N0 to show

Ex [τx] ≤ Px (τx > 0) +
∑
y 6=x

p (x, y)Ey [Tx] . (22.69)

d Now suppose that S is a finite set and Py (Tx =∞) < 1 for all y 6= x, i.e.
there is a positive chance of hitting x from any y 6= x in S. Explain how
Eq. (22.69) combined with Corollary 22.55 shows that Ex [τx] <∞.

22.6 Finite state space chains

In this subsection I would like to write out the above theorems in the special
case where S is a finite set. In this case we will let q (x, y) := Q (x, {y}) so that

(Qf) (x) =
∑
y∈S

q (x, y) f (y) .

Thus if we view f : S → R as a column vector and Q to be the matrix with
q (x, y) in the xth – row and yth – column, then Qf is simply matrix multiplica-
tion. As above we now suppose that S is partitioned into two nonempty subsets
B and A = Bc. We further assume that Px (TB <∞) > 0 for all x ∈ A, i.e.
it is possible with positive probability for the chain {Xn}∞n=0 to visit B when
started from any point in A. Because of Corollary 22.55 we know that in fact
there exists C <∞ and β ∈ (0, 1) such that Px (TB > n) ≤ Cβn for all n ∈ N0.
In particular it follows that ExTB <∞ and Px (TB <∞) = 1 for all x ∈ A.

If we let QA = QA,A be the matrix with entries, QA = (q (x, y))x,y∈A
and I be the corresponding identity matrix, then (QA − I)

−1
exits according

to Theorem 22.52. Let us further let R = QA,B be the matrix with entries,
(q (x, y))x∈A and y∈B . Thus Q decomposes as

Q =

A B[
QA R
∗ ∗

]
A
B
.

To summarize, QA is Q with the rows and columns indexed by B deleted and R
is the Q – matrix with the columns indexed by A deleted and rows indexed by
B being deleted. Given a function h : B → R let (Rh) (x) =

∑
y∈B q (x, y)h (y)

for all x ∈ A which again may be thought of as matrix multiplication.

Theorem 22.57. Let us continue to use the notation and assumptions as de-
scribed above. If h : B → R and g : A → R are given functions, then for all
x ∈ A we have;
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Ex [h (XTB )] =
[
(I −QA)

−1
Rh
]

(x) and

Ex

[ ∑
n<TB

g (Xn)

]
=
[
(I −QA)

−1
g
]

(x) .

Remark 22.58. Here is a story to go along with the above scenario. Suppose
that g (x) is the toll you have to pay for visiting a site x ∈ A while h (y)
is the amount of prize money you get when landing on a point in B. Then

Ex
[∑

0≤n<T g(Xn)
]

is the expected toll you have to pay before your first exit

from A while Ex [h (XT )] is your expected winnings upon exiting B.

Here are some typical choices for h and g.

1. If y ∈ B and h = δy, then

Px (XTB = y) =
[
(I −QA)

−1
Rδy

]
(x) =

[
(I −QA)

−1
R
]
x,y

.

2. If y ∈ A and g = δy, then∑
n<TB

g (Xn) =
∑
n<TB

δy (Xn) = # visits to before hitting B

and hence

Ex (# visits to before hitting B) =
[
(I −QA)

−1
δy

]
(x)

= (I −QA)
−1
xy .

3. If g = 1, i.e. g (y) = 1 for all y ∈ A, then
∑
n<TB

g (Xn) = TB and we find,

ExTB =
[
(I −QA)

−1
1
]
x

=
∑
y∈A

(I −QA)
−1
xy ,

where ExTB is the expected hitting time of B when starting from x.

Example 22.59. Let us continue the rat in the maze Exercise 22.5 and now
suppose that room 3 contains food while room 7 contains a mouse trap. 1 2 3 (food)

4 5 6
7 (trap)

 .
We would like to compute the probability that the rat reaches the food before
he is trapped. To answer this question we let A = {1, 2, 4, 5, 6} , B = {3, 7} ,

and T := TB be the first hitting time of B. Then deleting the 3 and 7 rows of
q in Eq. (??) leaves the matrix,

1 2 3 4 5 6 7
0 1/2 0 1/2 0 0 0

1/3 0 1/3 0 1/3 0 0
1/3 0 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0


1
2
4
5
6

.

Deleting the 3 and 7 columns from this matrix gives

QA =

1 2 4 5 6
0 1/2 1/2 0 0

1/3 0 0 1/3 0
1/3 0 0 1/3 0
0 1/3 1/3 0 1/3
0 0 0 1/2 0


1
2
4
5
6

and deleting the 1, 2, 4, 5, and 6 columns gives

R = QA,B =

3 7
0 0

1/3 0
0 1/3
0 0

1/2 0


1
2
4
5
6

.

Therefore,

I −QA =


1 − 1

2 −
1
2 0 0

− 1
3 1 0 − 1

3 0
− 1

3 0 1 − 1
3 0

0 − 1
3 −

1
3 1 − 1

3
0 0 0 − 1

2 1

 ,
and using a computer algebra package we find

(I −QA)
−1

=

1 2 4 5 6
11
6

5
4

5
4 1 1

3
5
6

7
4

3
4 1 1

3
5
6

3
4

7
4 1 1

3
2
3 1 1 2 2

3
1
3

1
2

1
2 1 4

3


1
2
4
5
6

.

In particular we may conclude,
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E1T
E2T
E4T
E5T
E6T

 = (I −QA)
−1

1 =


17
3
14
3
14
3
16
3
11
3

 ,
and


P1 (XT = 3) P1 (XT = 7)
P2 (XT = 3) P2 (XT = 3)
P4 (XT = 3) P4 (XT = 3)
P5 (XT = 3) P5 (XT = 3)
P6 (XT = 3) P6 (XT = 7)

 = (I −QA)
−1
R =

3 7
7
12

5
12

3
4

1
4

5
12

7
12

2
3

1
3

5
6

1
6


1
2
4
5
6

.

.

Since the event of hitting 3 before 7 is the same as the event {XT = 3} , the
desired hitting probabilities are

P1 (XT = 3)
P2 (XT = 3)
P4 (XT = 3)
P5 (XT = 3)
P6 (XT = 3)

 =


7
12
3
4
5
12
2
3
5
6

 .
We can also derive these hitting probabilities from scratch using the first

step analysis. In order to do this let

hi = Pi (XT = 3) = Pi (Xn hits 3 (food) before 7(trapped)) .

By the first step analysis we will have,

hi =
∑
j

Pi (XT = 3|X1 = j)Pi (X1 = j)

=
∑
j

q (i, j)Pi (XT = 3|X1 = j)

=
∑
j

q (i, j)Pj (XT = 3)

=
∑
j

q (i, j)hj

where h3 = 1 and h7 = 0. Looking at the jump diagram (Figure 22.3) we easily
find

1

1/2

��

1/2
++

2

1/3
,,

1/3

��

1/3

kk
3

food

1/2

��

1/2

kk

4

1/3

SS

1/3

��

1/3
++

5
1/3

kk

1/3
++

1/3

SS

6

1/2

RR

1/2

kk

7
trap

1

SS

Fig. 22.3. The jump diagram for our proverbial rat in the maze.

h1 =
1

2
(h2 + h4)

h2 =
1

3
(h1 + h3 + h5) =

1

3
(h1 + 1 + h5)

h4 =
1

3
(h1 + h5 + h7) =

1

3
(h1 + h5)

h5 =
1

3
(h2 + h4 + h6)

h6 =
1

2
(h3 + h5) =

1

2
(1 + h5)

and the solutions to these equations are (as seen before) given by[
h1 =

7

12
, h2 =

3

4
, h4 =

5

12
, h5 =

2

3
, h6 =

5

6

]
. (22.70)

Similarly, if

ki := Pi (XT = 7) = Pi (Xn is trapped before dinner) ,

we need only use the above equations with h replaced by k and now taking
k3 = 0 and k7 = 1 to find,
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k1 =
1

2
(k2 + k4)

k2 =
1

3
(k1 + k5)

k4 =
1

3
(k1 + k5 + 1)

k5 =
1

3
(k2 + k4 + k6)

k6 =
1

2
k5

and then solve to find,[
k1 =

5

12
, k2 =

1

4
, k4 =

7

12
, k5 =

1

3
, k6 =

1

6

]
. (22.71)

Notice that the sum of the hitting probabilities in Eqs. (22.70) and (22.71) add
up to 1 as they should.

22.6.1 Invariant distributions and return times

For this subsection suppose that S = {1, 2, . . . , n} and Qij is a Markov matrix.
To each state i ∈ S, let

τi := min{n ≥ 1 : Xn = i} (22.72)

be the first passage time of the chain to site i.

Proposition 22.60. The Markov matrix Q has an invariant distribution.

Proof. If 1 :=
[
1 1 . . . 1

]tr
, then Q1 = 1 from which it follows that

0 = det (Q− I) = det
(
Qtr − I

)
.

Therefore there exists a non-zero row vector ν such that Qtrνtr = νtr or equiv-
alently that νQ = ν. At this point we would be done if we knew that νi ≥ 0 for
all i – but we don’t. So let πi := |νi| and observe that

πi = |νi| =

∣∣∣∣∣
n∑
k=1

νkQki

∣∣∣∣∣ ≤
n∑
k=1

|νk|Qki ≤
n∑
k=1

πkQki.

We now claim that in fact π = πQ. If this were not the case we would have
πi <

∑n
k=1 πkQki for some i and therefore

0 <

n∑
i=1

πi <

n∑
i=1

n∑
k=1

πkQki =

n∑
k=1

n∑
i=1

πkQki =

n∑
k=1

πk

which is a contradiction. So all that is left to do is normalize πi so
∑n
i=1 πi = 1

and we are done.
We are now going to assume that Q is irreducible which means that for all

i 6= j there exists n ∈ N such that Qnij > 0. Alternatively put this implies that
Pi (Tj <∞) = Pi (τj <∞) > 0 for all i 6= j. By Corollary 22.55 we know that
Ei [τj ] = EiTj < ∞ for all i 6= j and it is not too hard to see that Eiτi < ∞
also holds. The fact that Eiτi < ∞ for all i ∈ S will come out of the proof of
the next proposition as well.

Proposition 22.61. If Q is irreducible, then there is precisely one invariant
distribution, π, which is given by πi = 1/ (Eiτi) > 0 for all i ∈ S.

Proof. We begin by using the first step analysis to write equations for Ei [τj ]
as follows:

Ei [τj ] =

n∑
k=1

Ei [τj |X1 = k]Qik =
∑
k 6=j

Ei [τj |X1 = k]Qik +Qij1

=
∑
k 6=j

(Ek [τj ] + 1)Qik +Qij1 =
∑
k 6=j

Ek [τj ]Qik + 1.

and therefore,

Ei [τj ] =
∑
k 6=j

QikEk [τj ] + 1. (22.73)

Now suppose that π is any invariant distribution for Q, then multiplying Eq.
(22.73) by πi and summing on i shows

n∑
i=1

πiEi [τj ] =

n∑
i=1

πi
∑
k 6=j

QikEk [τj ] +

n∑
i=1

πi1

=
∑
k 6=j

πkEk [τj ] + 1.

Since
∑
k 6=j πkEk [τj ] <∞ we may cancel it from both sides of this equation in

order to learn πjEj [τj ] = 1.
We may use Eq. (22.73) to compute Ei [τj ] in examples. To do this, fix j and

set vi := Eiτj . Then Eq. (22.73) states that v = Q(j)v + 1 where Q(j) denotes
Q with the jth – column replaced by all zeros. Thus we have

(Eiτj)ni=1 =
(
I −Q(j)

)−1

1, (22.74)

i.e. E1τj
...

Enτj

 =
(
I −Q(j)

)−1

1
...
1

 . (22.75)
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22.6.2 Some worked examples

Example 22.62. Let S = {1, 2} and Q =

[
0 1
1 0

]
with jump diagram in Figure

22.4. In this case Q2n = I while Q2n+1 = Q and therefore limn→∞Qn does not

1

1
))

2
1

ii

Fig. 22.4. A non-random chain.

exist. On the other hand it is easy to see that the invariant distribution, π, for
Q is π =

[
1/2 1/2

]
and, moreover,

Q+Q2 + · · ·+QN

N
→ 1

2

[
1 1
1 1

]
=

[
π
π

]
.

Let us compute [
E1τ1
E2τ1

]
=

([
1 0
0 1

]
−
[

0 1
0 0

])−1 [
1
1

]
=

[
2
1

]
and [

E1τ2
E2τ2

]
=

([
1 0
0 1

]
−
[

0 0
1 0

])−1 [
1
1

]
=

[
1
2

]
so that indeed, π1 = 1/E1τ1 and π2 = 1/E2τ2. Of course τ1 = 2 (P1 -a.s.) and
τ2 = 2 (P2 -a.s.) so that it is obvious that E1τ1 = E2τ2 = 2.

Example 22.63. Again let S = {1, 2} and Q =

[
1
0

0
1

]
with jump diagram in

Figure 22.5. In this case the chain is not irreducible and every π = [a b] with

11
66 2 1

hh

Fig. 22.5. A simple non-irreducible chain.

a+ b = 1 and a, b ≥ 0 is an invariant distribution.

Example 22.64. Suppose that S = {1, 2, 3} , and

Q =

1 2 3 0 1 0
1/2 0 1/2
1 0 0

1
2
3

has the jump graph given by 22.6. Notice that Q2
11 > 0 and Q3

11 > 0 that Q is

1

1
,,

2

1
2yy

1
2

ll

3

1

YY

Fig. 22.6. A simple 3 state jump diagram.

“aperiodic.” We now find the invariant distribution,

Nul (Q− I)
tr

= Nul

−1 1
2 1

1 −1 0
0 1

2 −1

 = R

2
2
1

 .
Therefore the invariant distribution is given by

π =
1

5

[
2 2 1

]
.

Let us now observe that

Q2 =

 1
2 0 1

2
1
2

1
2 0

0 1 0


Q3 =

 0 1 0
1/2 0 1/2
1 0 0

3

=

 1
2

1
2 0

1
4

1
2

1
4

1
2 0 1

2


Q20 =

 409
1024

205
512

205
1024

205
512

409
1024

205
1024

205
512

205
512

51
256

 =

0.399 41 0.400 39 0.200 20
0.400 39 0.399 41 0.200 20
0.400 39 0.400 39 0.199 22

 .
Let us also compute E2τ3 via,E1τ3

E2τ3
E3τ3

 =

1 0 0
0 1 0
0 0 1

−
 0 1 0

1/2 0 0
1 0 0

−1 1
1
1

 =

4
3
5
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316 22 The Markov Property

so that
1

E3τ3
=

1

5
= π3.

Example 22.65. The transition matrix,

Q =

1 2 31/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

1
2
3

is represented by the jump diagram in Figure 22.7. This chain is aperiodic. We

1
1
4

��

1
2

##

2
1
2

��

1
2oo

3

1
3

YY

1
3

EE

Fig. 22.7. In the above diagram there are jumps from 1 to 1 with probability 1/4
and jumps from 3 to 3 with probability 1/3 which are not explicitly shown but must
be inferred by conservation of probability.

find the invariant distribution as,

Nul (Q− I)
tr

= Nul

1/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

−
 1 0 0

0 1 0
0 0 1

tr

= Nul

− 3
4

1
2

1
3

1
2 −1 1

3
1
4

1
2 −

2
3

 = R

 1
5
6
1

 = R

6
5
6


π =

1

17

[
6 5 6

]
=
[

0.352 94 0.294 12 0.352 94
]
.

In this case

Q10 =

1/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

10

=

0.352 98 0.294 04 0.352 98
0.352 89 0.294 23 0.352 89
0.352 95 0.294 1 0.352 95

 .

Let us also computeE1τ2
E2τ2
E3τ2

 =

1 0 0
0 1 0
0 0 1

−
1/4 0 1/4

1/2 0 1/2
1/3 0 1/3

−1 1
1
1

 =

 11
5
17
5
13
5


so that

1/E2τ2 = 5/17 = π2.

Example 22.66. Consider the following Markov matrix,

Q =

1 2 3 4
1/4 1/4 1/4 1/4
1/4 0 0 3/4
1/2 1/2 0 0
0 1/4 3/4 0


1
2
3
4

with jump diagram in Figure 22.8. Since this matrix is doubly stochastic (i.e

1
1
4

��

1
4 //

1
4

��

2
3
4

��

1
4

{{

4

1
4

EE

3
4

��

3

1
2

LL

1
2

RR

Fig. 22.8. The jump diagram for Q.

∑4
i=1Qij = 1 for all j as well as

∑4
j=1Qij = 1 for all i), it is easy to check that

π = 1
4

[
1 1 1 1

]
. Let us compute E3τ3 as follows
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E1τ3
E2τ3
E3τ3
E4τ3

 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


1/4 1/4 0 1/4
1/4 0 0 3/4
1/2 1/2 0 0
0 1/4 0 0



−1 

1
1
1
1



=


50
17
52
17
4
30
17


so that E3τ3 = 4 = 1/π4 as it should be. Similarly,

E1τ2
E2τ2
E3τ2
E4τ2

 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


1/4 0 1/4 1/4
1/4 0 0 3/4
1/2 0 0 0
0 0 3/4 0



−1 

1
1
1
1



=


54
17
4
44
17
50
17


and again E2τ2 = 4 = 1/π2.

22.6.3 Exercises

Exercise 22.15 (2nd order recurrence relations). Let a, b, c be real num-
bers with a 6= 0 6= c, α, β ∈ Z∪{±∞} with α < β, and suppose
{u (x) : x ∈ [α, β] ∩ Z} solves the second order homogeneous recurrence rela-
tion:

au (x+ 1) + bu (x) + cu (x− 1) = 0 (22.76)

for α < x < β. Show:

1. for any λ ∈ C,
aλx+1 + bλx + cλx−1 = λx−1p (λ) (22.77)

where p (λ) = aλ2 + bλ + c is the characteristic polynomial associated
to Eq. (22.76).

Let λ± = −b±
√
b2−4ac

2a be the roots of p (λ) and suppose for the moment that
b2− 4ac 6= 0. From Eq. (22.76) it follows that for any choice of A± ∈ R, the
function,

w (x) := A+λ
x
+ +A−λ

x
−,

solves Eq. (22.76) for all x ∈ Z.

2. Show there is a unique choice of constants, A± ∈ R, such that the function
u (x) is given by

u (x) := A+λ
x
+ +A−λ

x
− for all α ≤ x ≤ β.

3. Now suppose that b2 = 4ac and λ0 := −b/ (2a) is the double root of p (λ) .
Show for any choice of A0 and A1 in R that

w (x) := (A0 +A1x)λx0

solves Eq. (22.76) for all x ∈ Z. Hint: Differentiate Eq. (22.77) with respect
to λ and then set λ = λ0.

4. Again show that any function u solving Eq. (22.76) is of the form u (x) =
(A0 +A1x)λx0 for α ≤ x ≤ β for some unique choice of constants A0, A1 ∈
R.

In the next couple of exercises you are going to use first step analysis to show
that a simple unbiased random walk on Z is null recurrent. We let {Xn}∞n=0 be
the Markov chain with values in Z with transition probabilities given by

P (Xn+1 = x± 1|Xn = x) = 1/2 for all n ∈ N0 and x ∈ Z.

Further let a, b ∈ Z with a < 0 < b and

Ta,b := min {n : Xn ∈ {a, b}} and Tb := inf {n : Xn = b} .

We know by Corollary8 22.55 that E0 [Ta,b] < ∞ from which it follows that
P (Ta,b <∞) = 1 for all a < 0 < b.

Exercise 22.16. Let wx := Px
(
XTa,b = b

)
:= P

(
XTa,b = b|X0 = x

)
.

1. Use first step analysis to show for a < x < b that

wx =
1

2
(wx+1 + wx−1) (22.78)

provided we define wa = 0 and wb = 1.
2. Use the results of Exercise 22.15 to show

Px
(
XTa,b = b

)
= wx =

1

b− a
(x− a) . (22.79)

3. Let

Tb :=

{
min {n : Xn = b} if {Xn} hits b

∞ otherwise

be the first time {Xn} hits b. Explain why,
{
XTa,b = b

}
⊂ {Tb <∞} and

use this along with Eq. (22.79) to conclude9 that Px (Tb <∞) = 1 for all
x < b. (By symmetry this result holds true for all x ∈ Z.)

8 Apply this corollary to finite walk in [a, b] ∩ Z.
9 The fact that Pj (Tb <∞) = 1 is also follows from Example 15.82 above.
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Exercise 22.17. The goal of this exercise is to give a second proof of the fact
that Px (Tb <∞) = 1. Here is the outline:

1. Let wx := Px (Tb <∞) . Again use first step analysis to show that wx
satisfies Eq. (22.78) for all x with wb = 1.

2. Use Exercise 22.15 to show that there is a constant, c, such that

wx = c (x− b) + 1 for all x ∈ Z.

3. Explain why c must be zero to again show that Px (Tb <∞) = 1 for all
x ∈ Z.

Exercise 22.18. Let T = Ta,b and ux := ExT := E [T |X0 = x] .

1. Use first step analysis to show for a < x < b that

ux =
1

2
(ux+1 + ux−1) + 1 (22.80)

with the convention that ua = 0 = ub.
2. Show that

ux = A0 +A1x− x2 (22.81)

solves Eq. (22.80) for any choice of constants A0 and A1.
3. Choose A0 and A1 so that ux satisfies the boundary conditions, ua = 0 = ub.

Use this to conclude that

ExTa,b = −ab+ (b+ a)x− x2 = −a (b− x) + bx− x2. (22.82)

Remark 22.67. Notice that Ta,b ↑ Tb = inf {n : Xn = b} as a ↓ −∞, and so
passing to the limit as a ↓ −∞ in Eq. (22.82) shows

ExTb =∞ for all x < b.

Combining the last couple of exercises together shows that {Xn} is “null -
recurrent.”

Exercise 22.19. Let T = Tb. The goal of this exercise is to give a second
proof of the fact and ux := ExT = ∞ for all x 6= b. Here is the outline. Let
ux := ExT ∈ [0,∞] = [0,∞) ∪ {∞} .

1. Note that ub = 0 and, by a first step analysis, that ux satisfies Eq. (22.80)
for all x 6= b – allowing for the possibility that some of the ux may be
infinite.

2. Argue, using Eq. (22.80), that if ux < ∞ for some x < b then uy < ∞ for
all y < b. Similarly, if ux <∞ for some x > b then uy <∞ for all y > b.

3. If ux <∞ for all x > b then ux must be of the form in Eq. (22.81) for some
A0 and A1 in R such that ub = 0. However, this would imply, ux = ExT →
−∞ as x → ∞ which is impossible since ExT ≥ 0 for all x. Thus we must
conclude that ExT = ux = ∞ for all x > b. (A similar argument works if
we assume that ux <∞ for all x < b.)

22.7 Appendix: Kolmogorov’s extension theorem II

The Kolmogorov extension Theorem 13.22 generalizes to the case where N is
replaced by an arbitrary index set, T. Let us set up the notation for this theorem.
Let T be an arbitrary index set, {(St,St)}t∈T be a collection of standard Borel
spaces, S =

∏
t∈T St, S := ⊗t∈TSt, and for Λ ⊂ T let(

SΛ :=
∏
t∈Λ

St,SΛ := ⊗t∈ΛSt

)
and XΛ : S → SΛ be the projection map, XΛ (x) := x|Λ. If Λ ⊂ Λ′ ⊂ T, also
let XΛ,Λ′ : SΛ′ → SΛ be the projection map, XΛ,Λ′ (x) := x|Λ for all x ∈ SΛ′ .

Theorem 22.68 (Kolmogorov). For each Λ ⊂f T (i.e. Λ ⊂ T and # (Λ) <
∞), let µΛ be a probability measure on (SΛ,SΛ) . We further suppose {µΛ}Λ⊂fT
satisfy the following compatibility relations;

µΛ′ ◦X−1
Λ,Λ′ = µΛ for all Λ ⊂ Λ′ ⊂f T. (22.83)

Then there exists a unique probability measure, P, on (S,S) such that P ◦X−1
Λ =

µΛ for all Λ ⊂f T.

Proof. (For slight variation on the proof of this theorem given here, see
Exercise 22.21.) Let

A := ∪Λ⊂fTX
−1
Λ (SΛ)

and for A = X−1
Λ (A′) ∈ A, let P (A) := µΛ (A′) . The compatibility conditions

in Eq. (22.83) imply P is a well defined finitely additive measure on the algebra,
A. We now complete the proof by showing P is continuous on A.

To this end, suppose An := X−1
Λn

(A′n) ∈ A with An ↓ ∅ as n → ∞. Let
Λ := ∪∞n=1Λn – a countable subset of T. Owing to Theorem 13.22, there is a
unique probability measure, PΛ, on (SΛ,SΛ) such that PΛ

(
X−1
Γ (A)

)
= µΓ (A)

for all Γ ⊂f Λ and A ∈ SΓ . Hence if we let Ãn := X−1
Λ,Λn

(An) , we then have

P (An) = µΛn (A′n) = PΛ

(
Ãn

)
with Ãn ↓ ∅ as n→∞. Since PΛ is a measure, we may conclude

lim
n→∞

P (An) = lim
n→∞

PΛ

(
Ãn

)
= 0.

Exercise 22.20. Let us write Λ ⊂c T to mean Λ ⊂ T and Λ is at most count-
able. Show

S = ∪Λ⊂cTX−1
Λ (SΛ) . (22.84)

Hint: Verify Eq. (22.84) by showing S0 := ∪Λ⊂cTX−1
Λ (SΛ) is a σ – algebra.
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Exercise 22.21. For each Λ ⊂ T, let S ′Λ := X−1
Λ (SΛ) = σ (Xi : i ∈ Λ) ⊂ S.

Show;

1. if U, V ⊂ T then S ′U ∩ S ′V = S ′U∩V .
2. By Theorem 13.22, if U, V ⊂c T, there exists unique probability measures,
PU and PV on S ′U and S ′V respectively such that PU ◦ X−1

Λ = µΛ for all
Λ ⊂f U and PV ◦X−1

Λ = µΛ for all Λ ⊂f V. Show PU = PV on S ′U ∩ S ′V .
Hence for any A ∈ S we may define P (A) := PU (A) provided A ∈ S ′U .

3. Show P defined in the previous item is a countably additive measure on S.

22.8 Removing the standard Borel restriction

Theorem 22.69. Let {(Sn,Sn)}n∈N0 be a collection of measurable spaces, S =∏∞
n=0 Sn and S := ⊗∞n=0Sn. Moreover for each n ∈ N0 let Sn := S0 × · · · × Sn

and Sn := S0 ⊗ · · · ⊗ Sn. We further suppose that µ0 is a given probability
measure on (S0,S0) and Tn : Sn−1 × Sn → [0, 1] for n = 1, 2, . . . are give
probability kernels on Sn−1 × Sn. Finally let µn be the probability measure on
(Sn,Sn) defined inductively by,

µn (dx0, . . . , dxn) = µn−1 (dx0, . . . , dxn−1)Tn (x0, . . . , xn−1, dxn) ∀ n ∈ N.
(22.85)

Then there exists a unique probability measure, P on (S,S) such that

P (f) =

∫
Sn
Fdµn

whenever f (x) = F (x0, . . . , xn) for some F ∈ (Sn)b .

Remark 22.70 (Heuristic proof). Before giving the formal proof of this theorem
let me indicate the main ideas. Let Xi : S → Si be the projection maps and
Bn := σ (X0, . . . , Xn) . If P exists, then

P [F (X0, . . . , Xn+1) |Bn] = Tn (X0, . . . , Xn;F (X0, . . . , Xn, ·))
= (TF (X0, . . . , Xn, ·)) (X0, . . . , Xn) .

Indeed,

E [Tn (X0, . . . , Xn;F (X0, . . . , Xn, ·))G (X0, . . . , Xn)]

=

∫
Tn (x0, . . . , xn, dxn+1)F (x0, . . . , xn, xn+1)G (x0, . . . , xn) dµn (x0, . . . , xn)

=

∫
F (x0, . . . , xn, xn+1)G (x0, . . . , xn) dµn+1 (x0, . . . , xn, xn+1)

= E [F (X0, . . . , Xn+1)G (X0, . . . , Xn)] .

Now suppose that fn = Fn (X0, . . . , Xn) is a decreasing sequence of func-
tions such that limn→∞ P (fn) =: ε > 0. Letting f∞ := limn→∞ fn we would
have fn ≥ f∞ for all n and therefore fn ≥ E [f∞|Bn] := f̄n. We also use

f̄n (X0, X1, . . . , Xn)

= E [f∞|Bn] = E [E [f∞|Bn+1] |Bn]

= E
[
f̄n+1|Bn

]
=

∫
f̄n+1 (X0, X1, . . . , xn+1)Tn+1 (X0, . . . , Xn, dxn+1)

and P
(
f̄n
)

= P (f∞) = limm→∞ P (fm) = ε > 0 (we only use the case where

n = 0 here). Since P
(
f̄0 (X0)

)
= ε > 0, there exists x0 ∈ S0 such that

ε ≤ f̄0 (x0) = E
[
f̄1|B0

]
=

∫
f̄1 (x0, x1)T1 (x0, dx1)

and so similarly there exists x1 ∈ S1 such that

ε ≤ f̄1 (x0, x1) =

∫
f̄2 (x0, x1, x2)T2 (x0, x1, dx2) .

Again it follows that there must exists an x2 ∈ S2 such that ε ≤ f̄2 (x0, x1, x2) .
We continue on this way to find and x ∈ S such that

fn (x) ≥ f̄n (x0, . . . , xn) ≥ ε for all n.

Thus if P (fn) ↓ ε > 0 then limn→∞ fn (x) ≥ ε 6= 0 as desired.

Proof. Now onto the formal proof. Let S denote the space of finitely
based bounded cylinder functions on S, i.e. functions of the form f (x) =
F (x0, . . . , xn) with F ∈ Snb . For such an f we define

I (f) := Pn (F ) .

It is easy to check that I is a well defined positive linear functional on S.
Now suppose that 0 ≤ fn ∈ S are forms a decreasing sequence of functions

such that limn→∞ I (fn) = ε > 0. We wish to show that limn→∞ fn (x) 6= 0
for every x ∈ S. By assumption, fn (x) = Fn (x0, . . . , xNn) for some Nn ∈ N of
which we may assume N0 < N1 < N2 < . . . . Moreover if N0 = 2 < N1 = 5 <
N2 = 7 < . . . , we may replace (f0, f1, . . . ) by

(g0, g1, g2, . . . ) = (1, 1, f0, f0, f0, f1, f1, f2, . . . ) .

Noting that limn→∞ gn = limn→∞ fn, limn→∞ I (gn) = I (fn) , and gn (x) =
Gn (x0, . . . , xn) for some Gn ∈ Snb , we may now assume that fn (x) =
Fn (x0, . . . , xn) with Fn ∈ Snb .
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For any k ≤ n let

F kn (x0, . . . , xk) :=

∫
· · ·
∫
Fn (x0, . . . , xn)

n−1∏
l=k

Tl (x0, . . . , xl, dxl+1)

which is an explicit version of Pn [Fn (x0, . . . , xn) |x0, . . . , xk]“=”E [fn|Bk] (x) .
By construction of the measures Pn it follows that

PkF
k
n = PnFn = I (fn) for all k ≤ n. (22.86)

Since

Fn (x0, . . . , xn) = fn (x) ≤ fn+1 (x) = Fn+1 (x0, . . . , xn, xn+1) ,

it follows that

F kn (x0, . . . , xk) =

∫
Fn (x0, . . . , xn)

n∏
l=k

Tl (x0, . . . , xl, dxl+1)

≤
∫
Fn+1 (x0, . . . , xn, xn+1)

n∏
l=k

Tl (x0, . . . , xl, dxl+1)

= F kn+1 (x0, . . . , xk) .

Thus we may define F k (x0, . . . , xk) :=↓ limn→∞ F kn (x0, . . . , xk) which is for-
mally equal to E [f |Bk] (x) . Hence we expect that

F k (x0, . . . , xk) =

∫
F k+1 (x0, . . . , xk, xk+1)Tk (x0, . . . , xk, dxk+1) (22.87)

by the tower property for conditional expectations. This is indeed that case
since, ∫

F k+1 (x0, . . . , xk, xk+1)Tk (x0, . . . , xk, dxk+1)

= lim
n→∞

∫
F k+1
n (x0, . . . , xk, xk+1)Tk (x0, . . . , xk, dxk+1)

while∫
F k+1
n (x0, . . . , xk, xk+1)Tk (x0, . . . , xk, dxk+1)

=

∫ [∫
· · ·
∫
Fn (x0, . . . , xn)

n∏
l=k+1

Tl (x0, . . . , xl, dxl+1)

]
Tk (x0, . . . , xk, dxk+1)

=

∫
· · ·
∫
Fn (x0, . . . , xn)

n∏
l=k

Tl (x0, . . . , xl, dxl+1)

= F kn (x0, . . . , xk) .

We may now pass to the limit as n→∞ in Eq. (22.86) to find

Pk
(
F k
)

= ε > 0 for all k.

For k = 0 it follows that F 0 (x0) ≥ ε > 0 for some x0 ∈ S0 for otherwise
P0 (F0) < ε. But

ε ≤ F 0 (x0) =

∫
F 1 (x0, x1)T1 (x0, dx1)

and so there exists x1 such that

ε ≤ F 1 (x0, x1) =

∫
F 2 (x0, x1, x2)T2 (x0, x1, dx2)

and hence there exists x2 such that ε ≤ F 2 (x0, x1, x2) , etc. etc. Thus in the
end we find an x = (x0, x1, . . . ) ∈ S such that F k (x0, . . . , xn) ≥ ε for all k.
Finally recall that

F kn (x0, . . . , xk) ≥ F k (x0, . . . , xk) ≥ ε for all k ≤ n.

Taking k = n then implies,

fn (x) = Fnn (x0, . . . , xn) ≥ Fn (x0, . . . , xn) ≥ ε for all n.

Therefore we have constructed a x ∈ S such that f (x) = limn→∞ fn (x) ≥ ε >
0.

We may now use the Caratheodory extension theorem to show that P
extends to a countably additive measure on (S,S) . Indeed suppose An ∈
A (Xi : i ∈ N0) . If An ↓ ∅ then 1An ↓ 0 and by what we have just proved,

P (An) = P (1An) ↓ 0 as n→∞.

Corollary 22.71 (Infinite Product Measures). Let {(Sn,Sn, µn)}n∈N0
be

a collection of measurable spaces, then there exists P on (S,S) such that

P (f) = P (f) =

∫
Sn
F (x0, . . . , xn) dν0 (x0) . . . dνn (xn)

whenever f (x) = F (x0, . . . , xn) for some F ∈ (Sn)b .

Proof. Let µ0 = ν0 and

Tn (x0, . . . , xn−1, dxn+1) = vn (dxn) .

Then in this case we will have

µn (dx0, . . . , dxn) = dν0 (x0) dν1 (dx1) . . . νn (dxn)

as desired.
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22.9 *Appendix: More Probability Kernel Constructions

Lemma 22.72. Suppose that (X,M) , (Y,F) , and (Z,B) are measurable spaces
and Q : X ×F → [0, 1] and R : Y ×B → [0, 1] are probability kernels. Then for
every bounded measurable function, F : (Y × Z,F ⊗ B)→ (R,BR) , the map

y →
∫
Z

R (y, dz)F (y, z)

is measurable. Moreover, if we define P (x;A) for A ∈ F ⊗ B and x ∈ X by

P (x,A) =

∫
Y

Q (x, dy)

∫
Z

R (y, dz) 1A (y, z) ,

then P : X ×F ⊗ B → [0, 1] is a probability kernel such that

P (x, F ) =

∫
Y

Q (x, dy)

∫
Z

R (y, dz)F (y, z)

for all bounded measurable functions, F : (Y × Z,F ⊗ B) → (R,BR) . We will
denote the kernel P by Q⊗R and write

(Q⊗R) (x, dy, dz) = Q (x, dy)R (y, dz) .

Moreover if S (z, dw) is another probability kernel, then ((Q⊗R)⊗ S) =
(Q⊗ (R⊗ S)) .

Proof. A routine exercise in using the multiplicative systems theorem. To
verify the last assertion it suffices to consider the kernels on sets of the form
A×B × C in which case,

(Q⊗ (R⊗ S)) (x,A×B × C)

=

∫
Y

Q (x, dy)

∫
Z×W

RS (y, dz, dw) 1A×B×C (y, z, w)

=

∫
Y

Q (x, dy) 1A (y)

∫
Z×W

RS (y;B × C)

=

∫
Y

Q (x, dy) 1A (y)

∫
Z×W

R (y, dz)S (z, dw) 1B×C (z, w)

=

∫
Y

Q (x, dy) 1A (y)

∫
Z

R (y, dz)S (z, C) 1B (z)

while

((Q⊗R)⊗ S) (x,A×B × C)

=

∫
Y×Z

QR (x, dy, dz)

∫
Z×W

S (z, dw) 1A×B×C (y, z, w)

=

∫
Y×Z

QR (x, dy, dz) 1A×B (y, z)S (z, C)

=

∫
Y

Q (x, dy)

∫
Z

R (y, dz) 1A×B (y, z)S (z, C)

=

∫
Y

Q (x, dy) 1A (y)

∫
Z

R (y, dz)S (z, C) 1B (z) .

Corollary 22.73. Keeping the notation in Lemma 22.72, let QR be the proba-
bility kernel given by QR (x, dz) =

∫
Y
Q (x, dy)R (y, dz) so that

QR (x;B) = Q⊗R (x;Y ×B) .

Then we have Q (RS) = (QR)S.

Proof. Let C ∈ BW , then

Q (RS) (x;C) = Q⊗ (RS) (x;Y × C) =

∫
Y

Q (x, dy) (RS) (y;C)

=

∫
Y

Q (x, dy) (R⊗ S) (y;Z × C) = [Q⊗ (R⊗ S)] (Y × Z × C) .

Similarly one shows that

(QR)S (x;C) = [(Q⊗R)⊗ S] (Y × Z × C)

and then the result follows from Lemma 22.72.
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(Sub and Super) Martingales

Let us start with a reminder of a few key notions that were already intro-
duced in Chapter 22. As usual we will let (S,S) denote a measurable space
called state space. (Often in this chapter we will take (S,S) = (R,BR) .) As
in Chapter 22, we will fix a filtered probability space,

(
Ω,B, {Bn}n∈N0

, P
)
,

i.e. Bn ⊂ Bn+1 ⊂ B for all n = 0, 1, 2 . . . . We further define

B∞ := ∨∞n=0Bn := σ (∪∞n=0Bn) ⊂ B. (23.1)

Also recall that a sequence of random functions, Yn : Ω → S for n ∈ N0, are
said to be adapted to the filtration if Yn is Bn/S – measurable for all n.

Definition 23.1. Let X := {Xn}∞n=0 is a be an adapted sequence of integrable
random variables. Then;

1. X is a {Bn}∞n=0 – martingale if E [Xn+1|Bn] = Xn a.s. for all n ∈ N0.
2. X is a {Bn}∞n=0 – submartingale if E [Xn+1|Bn] ≥ Xn a.s. for all n ∈ N0.
3. X is a {Bn}∞n=0 – supermartingale if E [Xn+1|Bn] ≤ Xn a.s. for all
n ∈ N0.

It is often fruitful to view Xn as your earnings at time n while playing some
game of chance. In this interpretation, your expected earnings at time n + 1
given the history of the game up to time n is the same, greater than, less than
your earnings at time n if X = {Xn}∞n=0 is a martingale, submartingale or
supermartingale respectively. In this interpretation, martingales are fair games,
submartingales are games which are favorable to the gambler (unfavorable to the
casino), and supermartingales are games which are unfavorable to the gambler
(favorable to the casino), see Example 23.4.

By induction one shows that X is a supermartingale, martingale, or sub-
martingale iff

E [Xn|Bm]
≤
=
≥
Xm a.s for all n ≥ m, (23.2)

to be read from top to bottom respectively. This last equation may also be
expressed as

E [Xn|Bm]
≤
=
≥
Xn∧m a.s for all m,n ∈ N0. (23.3)

The reader should also note that E [Xn] is decreasing, constant, or increasing
respectively. The next lemma shows that we may shrink the filtration, {Bn}∞n=0 ,

within limits and still have X retain the property of being a supermartingale,
martingale, or submartingale.

Lemma 23.2 (Shrinking the filtration). Suppose that X is a {Bn}∞n=0 –
supermartingale, martingale, submartingale respectively and {B′n}

∞
n=0 is another

filtration such that σ (X0, . . . , Xn) ⊂ B′n ⊂ Bn for all n. Then X is a {B′n}
∞
n=0

– supermartingale, martingale, submartingale respectively.

Proof. Since {Xn}∞n=0 is adapted to {Bn}∞n=0 and σ (X0, . . . , Xn) ⊂ B′n ⊂
Bn, for all n,

EB′nXn+1 = EB′nEBnXn+1

≤
=
≥
EB′nXn = Xn,

when X is a {Bn}∞n=0 – supermartingale, martingale, submartingale respectively
– read from top to bottom.

Enlarging the filtration is another matter all together. In what follows we
will simply say X is a supermartingale, martingale, submartingale if it is a
{Bn}∞n=0 – supermartingale, martingale, submartingale.

23.1 (Sub and Super) Martingale Examples

Example 23.3. Suppose that {Zn}∞n=0 are independent integrable random vari-
ables such that EZn = 0 for all n ≥ 1. Then Sn :=

∑n
k=0 Zk is a martingale

relative to the filtration, BZn := σ (Z0, . . . , Zn) . Indeed,

E [Sn+1 − Sn|Bn] = E [Zn+1|Bn] = EZn+1 = 0.

This same computation also shows that {Sn}n≥0 is a submartingale if EZn ≥ 0
and supermartingale if EZn ≤ 0 for all n.

Exercise 23.1. Construct an example of a martingale, {Mn}∞n=0 such that
E |Mn| → ∞ as n → ∞. [In particular, {Mn}∞n=1 will be a martingale which
is not of the form Mn = EBnX for some X ∈ L1 (P ) .] Hint: try taking
Mn =

∑n
k=0 Zk for a judicious choice of {Zk}∞k=0 which you should take to

be independent, mean zero, and having E |Zn| growing rather rapidly.
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Example 23.4 (Setting the odds). Let S be a finite set (think of the outcomes
of a spinner, or dice, or a roulette wheel) and p : S → (0, 1) be a probability
function1. Let {Zn}∞n=1 be random functions with values in S such that p (s) :=
P (Zn = s) for all s ∈ S. (Zn represents the outcome of the nth – game.) Also
let α : S → [0,∞) be the house’s payoff function, i.e. for each dollar you (the
gambler) bets on s ∈ S, the house will pay α (s) dollars back if s is rolled.
Further let W : Ω → W be measurable function into some other measure
space, (W,F) which is to represent your random (or not so random) “whims.”.
We now assume that Zn is independent of (W,Z1, . . . , Zn−1) for each n, i.e.
the dice are not influenced by the previous plays or your whims. If we let
Bn := σ (W,Z1, . . . , Zn) with B0 = σ (W ) , then we are assuming the Zn is
independent of Bn−1 for each n ∈ N.

As a gambler, you are allowed to choose before the nth – game is played, the
amounts

(
{Cn (s)}s∈S

)
that you want to bet on each of the possible outcomes

of the nth – game. Assuming that you are not clairvoyant (i.e. can not see the
future), these amounts may be random but must be Bn−1 – measurable, that is
Cn (s) = Cn (W,Z1, . . . , Zn−1, s) , i.e. {Cn (s)}∞n=1 is “previsible” process (see
Definition 23.5 below). Thus if X0 denotes your initial wealth (assumed to be
a non-random quantity) and Xn denotes your wealth just after the nth – game
is played, then

Xn −Xn−1 = −
∑
s∈S

Cn (s) + Cn (Zn)α (Zn)

where −
∑
s∈S Cn (s) is your total bet on the nth – game and Cn (Zn)α (Zn)

represents the house’s payoff to you for the nth – game. Therefore it follows
that

Xn = X0 +

n∑
k=1

[
−
∑
s∈S

Ck (s) + Cn (Zk)α (Zk)

]
,

Xn is Bn – measurable for each n, and

EBn−1
[Xn −Xn−1] = −

∑
s∈S

Cn (s) + EBn−1
[Cn (Zn)α (Zn)]

= −
∑
s∈S

Cn (s) +
∑
s∈S

Cn (s)α (s) p (s)

=
∑
s∈S

Cn (s) (α (s) p (s)− 1) .

1 To be concrete, take S = {2, . . . , 12} representing the possible values for the sums
of the upward pointing faces of two dice. Assuming the dice are independent and
fair then determines p : S → (0, 1) . For example p (2) = p (12) = 1/36, p (3) =
p (11) = 1/18, p (7) = 1/6, etc.

Thus it follows, that no matter the choice of the betting “strategy,”
{Cn (s) : s ∈ S}∞n=1 , we will have

EBn−1 [Xn −Xn−1] =

≥ 0 if α (·) p (·) ≥ 1
= 0 if α (·) p (·) = 1
≤ 0 if α (·) p (·) ≤ 1

,

that is {Xn}n≥0 is a sub-martingale, martingale, or supermartingale depending
on whether α · p ≥ 1, α · p = 1, or α · p ≤ 1.

Moral: If the Casino wants to be guaranteed to make money on average, it
had better choose α : S → [0,∞) such that α (s) < 1/p (s) for all s ∈ S. In this
case the expected earnings of the gambler will be decreasing which means the
expected earnings of the Casino will be increasing.

Definition 23.5. We say {Cn : Ω → S}∞n=1 is predictable or previsible if
each Cn is Bn−1/S – measurable for all n ∈ N.

A typical example is when {Xn : Ω → S}∞n=0 is a sequence of measurable
functions on a probability space (Ω,B, P ) and Bn := σ (X0, . . . , Xn) . An ap-
plication of Lemma 19.1 shows that a sequence of random variables, {Yn}∞n=0 ,
is adapted to the filtration iff there are S⊗(n+1)/BR – measurable functions,
fn : Sn+1 → R, such that Yn = fn (X0, . . . , Xn) for all n ∈ N0 and a se-
quence of random variables, {Zn}∞n=1 , is predictable iff there exists, there are
measurable functions, fn : Rn → R such that Zn = fn (X0, . . . , Xn−1) for all
n ∈ N.

Example 23.6 (Regular martingales). Suppose that (Ω,B, {Bn}∞n=0 , P ) is a fil-
tered probability space and X ∈ L1 (Ω,B, P ) . Then Xn := E [X|Bn] is a mar-
tingale. Indeed, by the tower property of conditional expectations,

E [Xn+1|Bn] = E [E [X|Bn+1] |Bn] = E [X|Bn] = Xn a.s.

When Xn := E [X|Bn] for some X ∈ L1 (P ) we say that {Xn}∞n=1 is a regular
martingale.

Example 23.7. Suppose that Ω = (0, 1], B = B(0,1], and P = m – Lebesgue

measure. Let Pn =
{(

k
2n ,

k+1
2n

]}2n−1

k=0
and Bn := σ (Pn) for each n ∈ N. Then

Mn := 2n1(0,2−n] for n ∈ N is a martingale (Exercise 23.2) such that E |Mn| = 1
for all n. However, there is no X ∈ L1 (Ω,B, P ) such that Mn = E [X|Bn] . To
verify this last assertion, suppose such an X existed. We would then have for
2n > k > 0 and any m > n, that

E
[
X :

(
k

2n
,
k + 1

2n

]]
= E

[
EBmX :

(
k

2n
,
k + 1

2n

]]
= E

[
Mm :

(
k

2n
,
k + 1

2n

]]
= 0.
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Using E [X : A] = 0 for all A in the π – system, Q :=
∪∞n=1

{(
k
2n ,

k+1
2n

]
: 0 ≤ k < 2n

}
, an application of the π – λ theorem shows

E [X : A] = 0 for all A ∈ σ (Q) = B. Therefore X = 0 a.s. by Proposition 10.23.
But this is impossible since 1 = EMn = EX.

Moral: not all L1 – bounded martingales are regular, i.e. as in Example
23.6. Proposition 23.8 shows what is missing from this martingale in order for
it to be of the form in Example 23.6. See the comments after Example 23.11
for another L1 – bounded martingale which is not of the form in example 23.6.

Exercise 23.2. Show that Mn := 2n1(0,2−n] for n ∈ N as defined in Example
23.7 is a martingale.

Proposition 23.8. Suppose 1 ≤ p < ∞ and X ∈ Lp (Ω,B, P ) . Then the col-
lection of random variables, Γ := {E [X|G] : G ⊂ B} is a bounded subset of
Lp (Ω,B, P ) which is also uniformly integrable.

Proof. Since EG is a contraction on all Lp – spaces it follows that Γ is
bounded in Lp with

sup
G⊂B
‖E [X|G]‖p ≤ ‖X‖p .

For the p > 1 the uniform integrability of Γ follows directly from Lemma 17.58.
We now concentrate on the p = 1 case. Recall that |EGX| ≤ EG |X| a.s. and

therefore,

E [|EGX| : |EGX| ≥ a] ≤ E [|X| : |EGX| ≥ a] for all a > 0.

But by Chebyshev’s inequality,

P (|EGX| ≥ a) ≤ 1

a
E |EGX| ≤

1

a
E |X| .

Since {|X|} is uniformly integrable, it follows from Proposition 17.51 that, by
choosing a sufficiently large, E [|X| : |EGX| ≥ a] is as small as we please uni-
formly in G ⊂ B and therefore,

lim
a→∞

sup
G⊂B

E [|EGX| : |EGX| ≥ a] = 0.

Example 23.9. This example generalizes Example 23.7. Suppose
(Ω,B, {Bn}∞n=0 , P ) is a filtered probability space and Q is another probability
measure on (Ω,B) . Let us assume that Q|Bn � P |Bn for all n, which by the
Raydon-Nikodym Theorem 20.8, implies there exists 0 ≤ Xn ∈ L1 (Ω,Bn, P )
with EXn = 1 such that dQ|Bn = XndP |Bn , or equivalently put, for any
B ∈ Bn we have

Q (B) =

∫
B

XndP = E [Xn : B] .

Since B ∈ Bn ⊂ Bn+1, we also have E [Xn+1 : B] = Q (B) = E [Xn : B] for
all B ∈ Bn and hence E [Xn+1|Bn] = Xn a.s., i.e. X = {Xn}∞n=0 is a positive
martingale.

Example 23.7 is of this form with Q = δ0. Notice that δ0|Bn � m|Bn for all
n <∞ while δ0 ⊥ m on B[0,1] = B∞. See Section 24.4 for more in the direction
of this example.

Lemma 23.10. Let X := {Xn}∞n=0 be an adapted process of integrable random
variables on a filtered probability space, (Ω,B, {Bn}∞n=0 , P ) and let dn := Xn −
Xn−1 with X−1 := EX0. Then X is a martingale (respectively submartingale
or supermartingale) iff E [dn+1|Bn] = 0 (E [dn+1|Bn] ≥ 0 or E [dn+1|Bn] ≤ 0
respectively) for all n ∈ N0.

Conversely if {dn}∞n=1 is an adapted sequence of integrable random vari-
ables and X0 is a B0 -measurable integrable random variable. Then Xn =
X0 +

∑n
j=1 dj is a martingale (respectively submartingale or supermartingale)

iff E [dn+1|Bn] = 0 (E [dn+1|Bn] ≥ 0 or E [dn+1|Bn] ≤ 0 respectively) for all
n ∈ N.

Proof. We prove the assertions for martingales only, the other all being
similar. Clearly X is a martingale iff

0 = E [Xn+1|Bn]−Xn = E [Xn+1 −Xn|Bn] = E [dn+1|Bn] .

The second assertion is an easy consequence of the first assertion.

Example 23.11. Suppose that {Zn}∞n=0 is a sequence of independent integrable
random variables, Xn = Z0 . . . Zn, and Bn := σ (Z0, · · · , Zn) . (Observe that
E |Xn| =

∏n
k=0 E |Zk| <∞.) Since

E [Xn+1|Bn] = E [XnZn+1|Bn] = XnE [Zn+1|Bn] = Xn · E [Zn+1] a.s.,

it follows that {Xn}∞n=0 is a martingale if EZn = 1. If we further assume,
for all n, that Zn ≥ 0 so that Xn ≥ 0, then {Xn}∞n=0 is a supermartingale
(submartingale) provided EZn ≤ 1 (EZn ≥ 1) for all n.

Let us specialize the above example even more by taking Zn
d
= p+U where

p ≥ 0 and U is the uniform distribution on [0, 1] . In this case we have by the
strong law of large numbers that

1

n
lnXn =

1

n

n∑
k=0

lnZk → E [ln (p+ U)] a.s. (23.4)

An elementary computation shows
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E [ln (p+ U)] =

∫ 1

0

ln (p+ x) dx =

∫ p+1

p

ln (p+ x) dx

= (x lnx− x)
x=p+1
x=p = (p+ 1) ln (p+ 1)− p ln p− 1

The function f (p) := E [ln (p+ U)] satisfies has a zero at p = pc ∼= 0.542 21

Fig. 23.1. The graph of E [ln (p+ U)] as a function of p. This function has a zero at
p = pc ∼= 0.542 21.

and f (p) < 0 for p < pc while f (p) > 0 for p > pc, see Figure 23.1. Combining
these observations with Eq. (23.4) implies,

Xn → lim
n→∞

exp (nE [ln (p+ U)]) =

 0 if p < pc
? if p = pc
∞ if p > pc

a.s.

Notice that EZn = p + 1/2 and therefore Xn is a martingale precisely when
p = 1/2 and is a sub-martingale for p > 1/2. So for 1/2 < p < pc, {Xn}∞n=1 is

a positive sub-martingale, EXn = (p+ 1/2)
n+1 → ∞ yet limn→∞Xn = 0 a.s.

Have a look at the excel file (Product positive-(sub)martingales.xls) in order to
construct sample paths for the {Xn}∞n=0 .

Proposition 23.12. Suppose that X = {Xn}∞n=0 is a martingale and ϕ is a
convex function such that ϕ (Xn) ∈ L1 for all n. Then ϕ (X) = {ϕ (Xn)}∞n=0

is a submartingale. If ϕ is also assumed to be increasing, it suffices to assume
that X is a submartingale in order to conclude that ϕ (X) is a submartingale.
(For example if X is a positive submartingale, p ∈ (1,∞) , and EXp

n < ∞ for
all n, then Xp := {Xp

n}
∞
n=0 is another positive submartingale.

Proof. When X is a martingale, by the conditional Jensen’s inequality
19.31,

ϕ (Xn) = ϕ (EBnXn+1) ≤ EBn [ϕ (Xn+1)]

which shows ϕ (X) is a submartingale. Similarly, if X is a submartingale and ϕ
is convex and increasing, then ϕ preserves the inequality, Xn ≤ EBnXn+1, and
hence

ϕ (Xn) ≤ ϕ (EBnXn+1) ≤ EBn [ϕ (Xn+1)]

so again ϕ (X) is a submartingale.

Proposition 23.13 (Markov Chains and Martingales). Suppose that(
Ω,B, {B}n∈N0

, {Xn : Ω → S}n≥0 , Q, P
)

is a time homogeneous Markov chain

and f : N0×S → R be measurable function which is either non-negative or sat-
isfies E [|f (n,Xn)|] < ∞ for all n and let Zn := f (n,Xn) . Then {Zn}∞n=0 is
a (sub-martingale) martingale if (Qf (n+ 1, ·) ≤ f (n·)) Qf (n+ 1, ·) = f (n, ·)
for all n ≥ 0. In particular if f : S → R is a function such that (Qf ≤ f)
Qf = f then Zn = f (Xn) is a (sub-martingale) martingale. (Also see Exercise
23.5 below.)

Proof. Using the Markov property and the definition of Q, we have

E [Zn+1|Bn] = E [f (n+ 1, Xn+1) |Bn] = [Qf (n+ 1, ·)] (Xn) .

The latter expression is (less than or equal) equal to Zn if
(Qf (n+ 1, ·) ≤ f (n·)) Qf (n+ 1, ·) = f (n, ·) for all n ≥ 0.

One way to find solutions to the equation Qf (n+ 1, ·) = f (n, ·) at least for
a finite number of n is to let g : S → R be an arbitrary function and T ∈ N be
given and then define

f (n, y) :=
(
QT−ng

)
(y) for 0 ≤ n ≤ T.

Then Qf (n+ 1, ·) = Q
(
QT−n−1g

)
= QT−ng = f (n, ·) and we will have that

Zn = f (n,Xn) =
(
QT−ng

)
(Xn)

is a Martingale for 0 ≤ n ≤ T. If f (n, ·) satisfies Qf (n+ 1, ·) = f (n, ·) for all
n then we must have, with f0 := f (0, ·) ,

f (n, ·) = Q−nf0

where Q−1g denotes a function h solving Qh = g. In general Q is not invertible
and hence there may be no solution to Qh = g or there might be many solutions.

Example 23.14. In special cases one can often make sense of these expressions
(see Exercise 23.5). Let S = Z, Sn = X0 + X1 + · · · + Xn, where {Xi}∞i=1 are
i.i.d. with P (Xi = 1) = p ∈ (0, 1) and P (Xi = −1) = q := 1− p, and X0 is S –
valued random variable independent of {Xi}∞i=1 as in Exercise 22.48. Recall that
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{Sn}∞n=0 is a time homogeneous Markov chain with transition kernel determined
by Qf (x) = pf (x+ 1) + qf (x− 1) . As we have seen if f (x) = a + b (q/p)

x
,

then Qf = f and therefore

Mn = a+ b (q/p)
Sn

is a martingale for all a, b ∈ R. This is easily verified directly as well;

EBn
(
q

p

)Sn+1

= EBn
(
q

p

)Sn+Xn+1

=

(
q

p

)Sn
EBn

(
q

p

)Xn+1

=

(
q

p

)Sn
E
(
q

p

)Xn+1

=

(
q

p

)Sn
·

[(
q

p

)1

p+

(
q

p

)−1

q

]

=

(
q

p

)Sn
· [q + p] =

(
q

p

)Sn
.

Now suppose that λ 6= 0 and observe that Qλx =
(
pλ+ qλ−1

)
λx. Thus

it follows that we may set Q−1λx =
(
pλ+ qλ−1

)−1
λx and therefore conclude

that
f (n, x) := Q−nλx =

(
pλ+ qλ−1

)−n
λx

satisfies Qf (n+ 1, ·) = f (n, ·) . So if we suppose that X0 is a bounded so

that Sn is bounded for all n, we will have
{
Mn =

(
pλ+ qλ−1

)−n
λSn

}
n≥0

is a

martingale for all λ 6= 0.

Exercise 23.3. For θ ∈ R let

fθ (n, x) := Q−neθx =
(
peθ + qe−θ

)−n
eθx

so that Qfθ (n+ 1, ·) = fθ (n, ·) for all θ ∈ R. Compute;

1. f
(k)
θ (n, x) :=

(
d
dθ

)k
fθ (n, x) for k = 1, 2.

2. Use your results to show,

M (1)
n := Sn − n (p− q)

and

M (2)
n := (Sn − n (p− q))2 − 4npq

are martingales.

(If you are ambitious you might also find M
(3)
n .)

Remark 23.15. If {Mn (θ)}∞n=0 is a martingale depending differentiability on a
parameter θ ∈ R. Then for all A ∈ Bn,

E
[
d

dθ
Mn+1 (θ) : A

]
=

d

dθ
E [Mn+1 (θ) : A] =

d

dθ
E [Mn (θ) : A] = E

[
d

dθ
Mn (θ) : A

]
provided it is permissible to interchange d

dθ with the expectations in this equa-

tion. Thus under “suitable” hypothesis, we will have
{
d
dθMn (θ)

}
n≥0

is another

martingale.

23.2 Decompositions

Notation 23.16 Given a sequence {Zk}∞k=0 , let ∆kZ := Zk − Zk−1 for k =
1, 2, . . . .

Lemma 23.17 (Doob Decomposition). Each adapted sequence, {Zn}∞n=0 ,
of integrable random variables has a unique decomposition,

Zn = Mn +An (23.5)

where {Mn}∞n=0 is a martingale and An is a predictable process such that A0 =
0. Moreover this decomposition is given by A0 = 0,

An :=

n∑
k=1

EBk−1
[∆kZ] for n ≥ 1 (23.6)

and

Mn = Zn −An = Zn −
n∑
k=1

EBk−1
[∆kZ] (23.7)

= Z0 +

n∑
k=1

(
Zk − EBk−1

Zk
)
. (23.8)

In particular, {Zn}∞n=0 is a submartingale (supermartingale) iff An is increasing
(decreasing) almost surely.

Proof. Assuming Zn has a decomposition as in Eq. (23.5), then

EBn [∆n+1Z] = EBn [∆n+1M +∆n+1A] = ∆n+1A (23.9)

wherein we have used M is a martingale and A is predictable so that
EBn [∆n+1M ] = 0 and EBn [∆n+1A] = ∆n+1A. Hence we must define, for
m ≥ 1,
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An :=

n∑
k=1

∆kA =

n∑
k=1

EBk−1
[∆kZ]

which is a predictable process. This proves the uniqueness of the decomposition
and the validity of Eq. (23.6).

For existence, from Eq. (23.6) it follows that

EBn [∆n+1Z] = ∆n+1A = EBn [∆n+1A] .

Hence, if we define Mn := Zn −An, then

EBn [∆n+1M ] = EBn [∆n+1Z −∆n+1A] = 0

and hence {Mn}∞n=0 is a martingale. Moreover, Eq. (23.8) follows from Eq.
(23.7) since,

Mn = Z0 +

n∑
k=1

(
∆kZ − EBk−1

[∆kZ]
)

and

∆kZ − EBk−1
[∆kZ] = Zk − Zk−1 − EBk−1

[Zk − Zk−1]

= Zk − Zk−1 −
(
EBk−1

Zk − Zk−1

)
= Zk − EBk−1

Zk.

Remark 23.18. Suppose that X = {Xn}∞n=0 is a submartingale and Xn = Mn+
An is it Doob decomposition. Then A∞ =↑ limn→∞An exists a.s.,

EAn = E [Xn −Mn] = EXn − EM0 = E [Xn −X0] (23.10)

and hence by MCT,
EA∞ =↑ lim

n→∞
E [Xn −X0] . (23.11)

Hence if limn→∞ E [Xn −X0] = supn E [Xn −X0] <∞, then EA∞ <∞ and so
by DCT, An → A∞ in L1 (Ω,B, P ) . In particular if supn E |Xn| <∞, we may
conclude that {Xn}∞n=0 is L1 (Ω,B, P ) convergent iff {Mn}∞n=0 is L1 (Ω,B, P )
convergent. (We will see below in Corollary 23.56 that X∞ := limn→∞Xn

and M∞ := limn→∞Mn exist almost surely under the assumption that
supn E |Xn| <∞.)

Example 23.19. Suppose that N = {Nn}∞n=0 is a square integrable martingale,

i.e. EN2
n < ∞ for all n. Then from Proposition 23.12, X :=

{
Xn = N2

n

}∞
n=0

is
a positive submartingale. In this case

EBk−1
∆kX = EBk−1

(
N2
k −N2

k−1

)
= EBk−1

[(Nk −Nk−1) (Nk +Nk−1)]

= EBk−1
[(Nk −Nk−1) (Nk −Nk−1)]

= EBk−1
(Nk −Nk−1)

2

wherein the second to last equality we have used

EBk−1
[(Nk −Nk−1)Nk−1] = Nk−1EBk−1

(Nk −Nk−1) = 0 a.s.

in order to change (Nk +Nk−1) to (Nk −Nk−1) . Hence the increasing pre-
dictable process, An, in the Doob decomposition may be written as

An =
∑
k≤n

EBk−1
∆kX =

∑
k≤n

EBk−1
(∆kN)

2
. (23.12)

Exercise 23.4 (Very similar to above example?). Suppose {Mn}∞n=0 is a
square integrable martingale. Show;

1. E
[
M2
n+1 −M2

n|Bn
]

= E
[
(Mn+1 −Mn)

2 |Bn
]
. Conclude from this that the

Doob decomposition of M2
n is of the form,

M2
n = Nn +An

where
An :=

∑
1≤k≤n

E
[
(Mk −Mk−1)

2 |Bk−1

]
.

2. If we further assume that Mk −Mk−1 is independent of Bk−1 for all k =
1, 2, . . . , explain why,

An =
∑

1≤k≤n

E (Mk −Mk−1)
2
.

The next exercise shows how to characterize Markov processes via martin-
gales.

Exercise 23.5 (Martingale problem I). Suppose that {Xn}∞n=0 is an (S,S)
– valued adapted process on some filtered probability space

(
Ω,B, {Bn}n∈N0

, P
)

and Q is a probability kernel on S. To each f : S → R which is bounded and
measurable, let

Mf
n := f (Xn)−

∑
k<n

(Qf (Xk)− f (Xk)) = f (Xn)−
∑
k<n

((Q− I) f) (Xk) .

Show;
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1. If {Xn}n≥0 is a time homogeneous Markov chain with transition kernel, Q,

then
{
Mf
n

}
n≥0

is a martingale for each f ∈ Sb.
2. Conversely if

{
Mf
n

}
n≥0

is a martingale for each f ∈ Sb, then {Xn}n≥0 is a

time homogeneous Markov chain with transition kernel, Q.

Remark 23.20. If X is a real valued random variable, then X = X+ − X−,
|X| = X+ +X−, X+ ≤ |X| = 2X+ −X, so that

EX+ ≤ E |X| = 2EX+ − EX.

Hence if {Xn}∞n=0 is a submartingale then

EX+
n ≤ E |Xn| = 2EX+

n − EXn ≤ 2EX+
n − EX0

from which it follows that

sup
n
EX+

n ≤ sup
n
E |Xn| ≤ 2 sup

n
EX+

n − EX0. (23.13)

In particular, an integrable submartingale {Xn}∞n=0 is L1 (P ) bounded iff
{X+

n }
∞
n=0 is L1 (P ) bounded.

Theorem 23.21 (Krickeberg Decomposition). Suppose that X is an in-
tegrable submartingale such that C := supn E [X+

n ] < ∞ or equivalently
supn E |Xn| <∞, see Eq. (23.13). Then

Mn :=↑ lim
p→∞

E
[
X+
p |Bn

]
exists a.s.,

M = {Mn}∞n=0 is a positive martingale, Y = {Yn}∞n=0 with Yn := Xn −Mn is
a positive supermartingale, and hence Xn = Mn−Yn. So X can be decomposed
into the difference of a positive martingale and a positive supermartingale.

Proof. From Proposition 23.12 we know thatX+ = {X+
n } is a still a positive

submartingale. Therefore for each n ∈ N, and p ≥ n,

EBn
[
X+
p+1

]
= EBnEBp

[
X+
p+1

]
≥ EBnX+

p a.s.

Therefore EBnX+
p is increasing in p for p ≥ n and therefore, Mn :=

limp→∞ EBn
[
X+
p

]
exists in [0,∞] . By Fatou’s lemma, we know that

EMn ≤ lim inf
p→∞

E
[
EBn

[
X+
p

]]
≤ lim inf

p→∞
E
[
X+
p

]
= C <∞

which shows M is integrable. By cMCT and the tower property of conditional
expectation,

EBnMn+1 = EBn lim
p→∞

EBn+1

[
X+
p

]
= lim
p→∞

EBnEBn+1

[
X+
p

]
= lim
p→∞

EBn
[
X+
p

]
= Mn a.s.,

which shows M = {Mn} is a martingale.
We now define Yn := Mn − Xn. Using the submartingale property of X+

implies,

Yn = Mn −Xn = lim
p→∞

EBn
[
X+
p

]
−Xn = lim

p→∞
EBn

[
X+
p

]
−X+

n +X−n

= lim
p→∞

EBn
[
X+
p −X+

n

]
+X−n ≥ 0 a.s..

Moreover,

E [Yn+1|Bn] = E [Mn+1 −Xn+1|Bn] = Mn − E [Xn+1|Bn] ≥Mn −Xn = Yn

wherein we have use M is a martingale in the second equality and X is sub-
martingale the last inequality.

23.3 Stopping Times

Definition 23.22. Again let {Bn}∞n=0 be a filtration on (Ω,B) and assume that
B = B∞ := ∨∞n=0Bn := σ (∪∞n=0Bn) . A function, τ : Ω → N̄ := N ∪ {0,∞} is
said to be a stopping time if {τ ≤ n} ∈ Bn for all n ∈ N̄. Equivalently put,
τ : Ω → N̄ is a stopping time iff the process, n→ 1τ≤n is adapted.

Lemma 23.23. Let {Bn}∞n=0 be a filtration on (Ω,B) and τ : Ω → N̄ be a
function. Then the following are equivalent;

1. τ is a stopping time.
2. {τ ≤ n} ∈ Bn for all n ∈ N0.
3. {τ > n} = {τ ≥ n+ 1} ∈ Bn for all n ∈ N0.
4. {τ = n} ∈ Bn for all n ∈ N0.

Moreover if any of these conditions hold for n ∈ N0 then they also hold for
n =∞.

Proof. (1.⇐⇒ 2.) Observe that if {τ ≤ n} ∈ Bn for all n ∈ N0, then
{τ <∞} = ∪∞n=1 {τ ≤ n} ∈ B∞ and therefore {τ =∞} = {τ <∞}c ∈ B∞
and hence {τ ≤ ∞} = {τ <∞}∪{τ =∞} ∈ B∞. Hence in order to check that
τ is a stopping time, it suffices to show {τ ≤ n} ∈ Bn for all n ∈ N0.

The equivalence of 2., 3., and 4. follows from the identities
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{τ > n}c = {τ ≤ n} ,
{τ = n} = {τ ≤ n} \ {τ ≤ n− 1} , and

{τ ≤ n} = ∪nk=0 {τ = k}

from which we conclude that 2. =⇒ 3. =⇒ 4. =⇒ 1.
Clearly any constant function, τ : Ω → N̄, is a stopping time. The reader

should also observe that if Bn = σ (X0, . . . , Xn) , then τ : Ω → N̄ is a stopping
time iff, for each n ∈ N0 there exists a measurable function, fn : Rn+1 → R
such that 1{τ=n} = fn (X0, . . . , Xn) . In other words, if τ (ω) = n and ω′ is any
other point in Ω such that Xk (ω) = Xk (ω′) for k ≤ n then τ (ω′) = n. Here is
another common example of a stopping time.

Example 23.24 (Hitting times). Let (S,S) be a state space, X :=
{Xn : Ω → S}∞n=0 be an adapted process on the filtered space, (Ω,B, {Bn}∞n=0)
and A ∈ S. Then the first hitting time of A,

τ := inf {n ∈ N0 : Xn ∈ A} ,

(with convention that inf ∅ =∞) is a stopping time. To see this, observe that

{τ = n} = {X0 ∈ Ac, . . . , Xn−1 ∈ Ac, Xn ∈ A} ∈ σ (X0, . . . , Xn) ⊂ Bn.

More generally if σ is a stopping time, then the first hitting time after σ,

τ := inf {k ≥ σ : Xk ∈ A} ,

is also a stopping time. Indeed,

{τ = n} = {σ ≤ n} ∩ {Xσ /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A}
= ∪0≤k≤n {σ = k} ∩ {Xk /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A}

which is in Bn for all n. Here we use the convention that

{Xk /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A} = {Xn ∈ A} if k = n.

On the other hand the last hitting time, τ = sup {n ∈ N0 : Xn ∈ A} , of a
set A is typically not a stopping time. Indeed, in this case

{τ = n} = {Xn ∈ A,Xn+1 /∈ A,Xn+2 /∈ A, . . . } ∈ σ (Xn, Xn+1, . . . )

which typically will not be in Bn.

Proposition 23.25 (New Stopping Times from Old). Let (Ω,B, {Bn}∞n=0)
be a filtered measure space and suppose σ, τ, and {τn}∞n=1 are all stopping times.
Then

1. τ ∧ σ, τ ∨ σ, τ + σ are all stopping times.
2. If τk ↑ τ∞ or τk ↓ τ∞, then τ∞ is a stopping time.
3. In general, supk τk = limk→∞max {τ1, . . . , τk} and infk τk =

limk→∞min {τ1, . . . , τk} are also stopping times.

Proof.

1. Since {τ ∧ σ > n} = {τ > n} ∩ {σ > n} ∈ Bn, {τ ∨ σ ≤ n} = {τ ≤ n} ∩
{σ ≤ n} ∈ Bn for all n, and

{τ + σ = n} = ∪nk=0 {τ = k, σ = n− k} ∈ Bn

for all n, τ ∧ σ, τ ∨ σ, τ + σ are all stopping times.
2. If τk ↑ τ∞, then {τ∞ ≤ n} = ∩k {τk ≤ n} ∈ Bn and so τ∞ is a stopping

time. Similarly, if τk ↓ τ∞, then {τ∞ > n} = ∩k {τk > n} ∈ Bn and so τ∞
is a stopping time. (Recall that {τ∞ > n} = {τ∞ ≥ n+ 1} .)

3. This follows from items 1. and 2.

Lemma 23.26. If τ is a stopping time, then the processes, fn := 1{τ≤n}, and
fn := 1{τ=n} are adapted and fn := 1{τ<n} is predictable. Moreover, if σ and
τ are two stopping times, then fn := 1σ<n≤τ is predictable.

Proof. These are all trivial to prove. For example, if fn := 1σ<n≤τ , then fn
is Bn−1 measurable since,

{σ < n ≤ τ} = {σ < n} ∩ {n ≤ τ} = {σ < n} ∩ {τ < n}c ∈ Bn−1.

Notation 23.27 (Stochastic intervals) If σ, τ : Ω → N̄, let

(σ, τ ] :=
{

(ω, n) ∈ Ω × N̄ : σ (ω) < n ≤ τ (ω)
}

and we will write 1(σ,τ ] for the process, 1σ<n≤τ .

Our next goal is to define the “stopped” σ – algebra, Bτ . To motivate the
upcoming definition, suppose Xn : Ω → R are given functions for all n ∈ N0,
Bn := σ (X0, . . . , Xn) , and τ : Ω → N0 is a B· – stopping time. Recalling that
a function Y : Ω → R is Bn measurable iff Y (ω) = fn (X0 (ω) , . . . Xn (ω)) for
some measurable function, fn : Rn+1 → R, it is reasonable to suggest that Y
is Bτ measurable iff Y (ω) = fτ(ω)

(
X0 (ω) , . . . Xτ(ω) (ω)

)
, where fn : Rn+1 →

R are measurable random variables. If this is the case, then we would have
1τ=nY = fn (X0, . . . , Xn) is Bn – measurable for all n. Hence we should define
A ⊂ Ω to be in Bτ iff 1A is Bτ measurable iff 1τ=n1A is Bn measurable for all
n which happens iff {τ = n} ∩A ∈ Bn for all n.
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Definition 23.28 (Stopped σ – algebra). Given a stopping time τ on a
filtered measure space (Ω,B, {Bn}∞n=0) with B∞ := ∨∞n=0Bn := σ (∪∞n=0Bn) , let

Bτ := {A ⊂ Ω : {τ = n} ∩A ∈ Bn for all n ≤ ∞} . (23.14)

Lemma 23.29. Suppose σ and τ are stopping times.

1. A set, A ⊂ Ω is in Bτ iff A ∩ {τ ≤ n} ∈ Bn for all n ≤ ∞.
2. Bτ is a sub-σ-algebra of B∞.
3. τ is Bτ – measurable.
4. For all n ∈ N̄0, {τ = n} ∈ Bτ ∩ Bn and Bτ = Bn on {τ = n} .
5. If σ ≤ τ, then Bσ ⊂ Bτ .

Proof. We take each item in turn.

1. Since

A ∩ {τ ≤ n} = ∪k≤n [A ∩ {τ ≤ k}] and

A ∩ {τ = n} = [A ∩ {τ ≤ n}] \ [A ∩ {τ ≤ n− 1}] ,

it easily follows that A ⊂ Ω is in Bτ iff A ∩ {τ ≤ n} ∈ Bn for all n ≤ ∞.
2. 2. Since Ω ∩ {τ ≤ n} = {τ ≤ n} ∈ Bn for all n, it follows that Ω ∈ Bτ . If
A ∈ Bτ , then, for all n ∈ N0,

Ac ∩ {τ ≤ n} = {τ ≤ n} \A = {τ ≤ n} \ [A ∩ {τ ≤ n}] ∈ Bn.

This shows Ac ∈ Bτ . Similarly if {Ak}∞k=1 ⊂ Bτ , then

{τ ≤ n} ∩ (∩∞k=1Ak) = ∩∞k=1 ({τ ≤ n} ∩Ak) ∈ Bn
and hence ∩∞k=1Ak ∈ Bτ . This completes the proof the Bτ is a σ – algebra.
Since A = A ∩ {τ ≤ ∞} , it also follows that Bτ ⊂ B∞.

3. For n, k ∈ N̄0 we have

{τ = n} ∩ {τ = k} =

{
∅ if k 6= n

{τ = k} if k = n

and so in any case {τ = n} ∩ {τ = k} ∈ Bk. This show {τ = n} ∈ Bτ for all
n ∈ N̄0 and therefore τ is Bτ – measurable.

4. For all n ∈ N̄0, {τ = n} ∈ Bn as τ is a stopping time and {τ = n} ∈ Bτ as
τ is Bτ – measurable and so {τ = n} ∈ Bτ ∩ Bn. For the second assertion,
if A ∈ (Bτ ){τ=n} , then A ∈ Bτ and A ⊂ {τ = n} which implies A =

A ∩ {τ = n} ∈ Bn and so A ∈ (Bn){τ=n} . Conversely, if A ∈ (Bn){τ=n} ,

then A ∈ Bn and A ⊂ {τ = n} . Thus if k ∈ N̄0 we have

A ∩ {τ = k} =

{
∅ if k 6= n
A if k = n

from which it follows that A ∩ {τ = k} ∈ Bk for all k ∈ N̄0, i.e. A ∈
[Bτ ]{τ=n} .

5. Now suppose σ ≤ τ and A ∈ Bσ. Since A ∩ {σ ≤ n} and {τ ≤ n} are in Bn
for all n ≤ ∞, we find

A ∩ {τ ≤ n} = [A ∩ {σ ≤ n}] ∩ {τ ≤ n} ∈ Bn ∀ n ≤ ∞

which shows A ∈ Bτ .

Proposition 23.30 (Bτ – measurable random variables). Let
(Ω,B, {Bn}∞n=0) be a filtered measure space. Let τ be a stopping time
and Z : Ω → R be a function. Then the following are equivalent;

1. Z is Bτ – measurable,
2. 1{τ≤n}Z is Bn – measurable for all n ≤ ∞,
3. 1{τ=n}Z is Bn – measurable for all n ≤ ∞.
4. There exists, Yn : Ω → R which are Bn – measurable for all n ≤ ∞ such

that
Z = Yτ =

∑
n∈N̄

1{τ=n}Yn.

Proof. 1. =⇒ 2. By definition, if A ∈ Bτ , then 1{τ≤n}1A = 1{τ≤n}∩A
is Bn – measurable for all n ≤ ∞. Consequently any simple Bτ – measurable
function, Z, satisfies 1{τ≤n}Z is Bn – measurable for all n. So by the usual
limiting argument (Theorem 9.41), it follows that 1{τ≤n}Z is Bn – measurable
for all n for any Bτ – measurable function, Z.

2. =⇒ 3. This property follows from the identity,

1{τ=n}Z = 1{τ≤n}Z − 1{τ<n}Z.

3. =⇒ 4. Simply take Yn = 1{τ=n}Z.
4. =⇒ 1. Since Z =

∑
n∈N̄ 1{τ=n}Yn, it suffices to show 1{τ=n}Yn is Bτ –

measurable if Yn is Bn – measurable. Further, by the usual limiting arguments
using Theorem 9.41, it suffices to assume that Yn = 1A for some A ∈ Bn. In
this case 1{τ=n}Yn = 1A∩{τ=n}. Hence we must show A ∩ {τ = n} ∈ Bτ which
indeed is true because

A ∩ {τ = n} ∩ {τ = k} =

{
∅ ∈ Bk if k 6= n

A ∩ {τ = n} ∈ Bk if k = n
.

Alternatively proof for 1. =⇒ 2. If Z is Bτ measurable, then {Z ∈ B}∩
{τ ≤ n} ∈ Bn for all n ≤ ∞ and B ∈ BR. Hence if B ∈ BR with 0 /∈ B, then{

1{τ≤n}Z ∈ B
}

= {Z ∈ B} ∩ {τ ≤ n} ∈ Bn for all n

and similarly,
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1{τ≤n}Z = 0

}c
=
{

1{τ≤n}Z 6= 0
}

= {Z 6= 0} ∩ {τ ≤ n} ∈ Bn for all n.

From these two observations, it follows that
{

1{τ≤n}Z ∈ B
}
∈ Bn for all B ∈ BR

and therefore, 1{τ≤n}Z is Bn – measurable.

Exercise 23.6. Suppose τ is a stopping time, (S,S) is a measurable space,
and Z : Ω → S is a function. Show that Z is Bτ/S measurable iff Z|{τ=n} is
(Bn){τ=n} /S – measurable for all n ∈ N̄0.

Lemma 23.31 (Bσ – conditioning). Suppose σ is a stopping time and Z ∈
L1 (Ω,B, P ) or Z ≥ 0, then

E [Z|Bσ] =
∑
n≤∞

1σ=nE [Z|Bn] = Yσ (23.15)

where
Yn := E [Z|Bn] for all n ∈ N̄. (23.16)

Proof. From Lemma 23.29 we know Bσ = Bn on {σ = n} and therefore by
the localization Lemma 19.29,

1{σ=n}EBσZ = 1{σ=n}EBnZ a.s.

Summing this equation on n shows

EBσZ =
∑
n≤∞

1{σ=n}EBnZ = Yσ.

Alternative direct proof. By Proposition 23.30, Yσ is Bσ – measurable.
Moreover if Z is integrable, then∑

n≤∞

E
[
1{σ=n} |Yn|

]
=
∑
n≤∞

E1{σ=n} |E [Z|Bn]|

≤
∑
n≤∞

E
[
1{σ=n}E [|Z| |Bn]

]
=
∑
n≤∞

E
[
E
[
1{σ=n} |Z| |Bn

]]
=
∑
n≤∞

E
[
1{σ=n} |Z|

]
= E |Z| <∞ (23.17)

and therefore

E |Yσ| = E

∣∣∣∣∣∣
∑
n≤∞

[
1{σ=n}Yn

]∣∣∣∣∣∣
≤
∑
n≤∞

E
[
1{σ=n} |Yn|

]
≤ E |Z| <∞.

Furthermore if A ∈ Bσ, then

E [Z : A] =
∑
n≤∞

E [Z : A ∩ {σ = n}] =
∑
n≤∞

E [Yn : A ∩ {σ = n}]

=
∑
n≤∞

E
[
1{σ=n}Yn : A

]
= E

∑
n≤∞

1{σ=n}Yn : A


= E [Yσ : A] ,

wherein the interchange of the sum and the expectation in the second to last
equality is justified by the estimate in 23.17 or by the fact that everything in
sight is positive when Z ≥ 0.

Theorem 23.32 extends the tower property of conditional expectations to
conditioning relative to stopped σ – algebras. Some of the results of the next
exercise are useful in the proof of this theorem.

Exercise 23.7. Suppose σ and τ are two stopping times. Show;

1. {σ < τ} , {σ = τ} , and {σ ≤ τ}∗ are all in Bσ ∩ Bτ ,
2. Bσ∧τ = Bσ ∩ Bτ ,
3. Bσ∨τ = Bσ ∨ Bτ := σ (Bσ ∪ Bτ ) ,2 and
4. Bσ = Bσ∧τ on C where C is any one of the following three sets; {σ ≤ τ} ,
{σ < τ} , or {σ = τ} .

*As an example, since

{σ ≤ τ} ∩ {σ ∧ τ = n} = {σ ≤ τ} ∩ {σ = n} = {n ≤ τ} ∩ {σ = n} ∈ Bn

for all n ∈ N0, it follows that {σ ≤ τ} ∈ Bσ ∩ Bτ .

Theorem 23.32 (Tower Property II). Let X ∈ L1 (Ω,B, P ) or X : Ω →
[0,∞] be a B – measurable function. If σ and τ are any two stopping times,
then

1τ≤σEBτ = 1τ≤σEBσ∧τ , 1τ>σEBσ = 1τ>σEBσ∧τ , and (23.18)

EBσEBτX = EBτEBσX = EBσ∧τX. (23.19)

Proof. As usual it suffices to consider the case where X ≥ 0 and this case
there will be now convergence issues to worry about. Equation 23.18 follows from
the localization Lemma 19.29 as explained in the second proof. Nevertheless let
us first give a self-contained proof.

First Proof. Notice that

2 In fact, you will likely show in your proof that every set in Bσ ∨Bτ may be written
as a disjoint union of a set from Bσ with a set from Bτ .
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1τ≤σEBτ =
∑
n≤∞

1τ≤σ1τ=nEBn = 1τ≤σ
∑
n≤∞

1τ∧σ=nEBn = 1τ≤σEBσ∧τ

and similarly,

1τ>σEBσ = 1τ>σ
∑
n≤∞

1σ=nEBn = 1τ>σ
∑
n≤∞

1τ∧σ=nEBn = 1τ>σEBσ∧τ .

Using these remarks and the fact that {τ ≤ σ} and {τ > σ} are both in Bσ∧τ =
Bσ ∩ Bτ we find;

EBσEBτ = EBσ (1τ≤σ + 1τ>σ)EBτ = EBσ1τ≤σEBτ∧σ + 1τ>σEBσEBτ
= 1τ≤σEBσEBτ∧σ + 1τ>σEBσ∧τEBτ
= 1τ≤σEBτ∧σ + 1τ>σEBσ∧τ= EBσ∧τ .

Second Proof. In this proof we are going to make use of the localization
Lemma 19.29. Since Bσ∧τ ⊂ Bσ, it follows by item 4. of Exercise 23.7 that
Bσ = Bσ∧τ on {σ ≤ τ} and on {σ < τ} . We will actually use the first statement
in the form, Bτ = Bσ∧τ on {τ ≤ σ} . From Lemma 23.31, we have

1τ≤σEBτ = 1τ≤σEBτ∧σ and

1τ>σEBσ = 1τ>σEBσ∧τ .

Using these relations and the basic properties of conditional expectation we
arrive at,

EBσEBτX = EBσEBτ [1τ≤σX + 1τ>σX]

= EBσ [1τ≤σEBτX] + 1τ>σEBσEBτX
= EBσ [1τ≤σEBτ∧σX] + 1τ>σEBσ∧τEBτX
= 1τ≤σEBσ [EBτ∧σX] + 1τ>σEBσ∧τX
= 1τ≤σEBτ∧σX + 1τ>σEBσ∧τX = EBσ∧τX a.s.

Exercise 23.8. Show, by example, that it is not necessarily true that

EG1
EG2

= EG1∧G2

for arbitrary G1 and G2 – sub-sigma algebras of B.
Hint: it suffices to take (Ω,B, P ) with Ω = {1, 2, 3} , B = 2Ω , and P ({j}) =

1
3 for j = 1, 2, 3.

Exercise 23.9 (Geometry of commuting projections). Suppose that H is
a Hilbert space and Hi ⊂ H for i = 1, 2 are two closed subspaces. Let Pi = PHi
denote orthogonal projection onto Hi and P = PM be orthogonal projection
onto M := H1 ∩H2. Show;

1. Suppose there exists M0 ⊂ H1 ∩ H2 such that M1 ⊥ M2 where Mi =

{h ∈ Hi : h ⊥M0} so that H1 = M0

⊥
⊕ M1 and H2 = M0

⊥
⊕ M2. Then

M0 = H1 ∩H2 and P1P2 = P = P2P1.
2. If P1P2 = P2P1, then P1P2 = P = P2P1. Moreover if we let M0 = H1 ∩H2

and Mi be as above, then M1 ⊥M2.

Exercise 23.10. Let σ and τ be stopping times and apply the results of Ex-
ercise 23.9 with M0 := L2 (Ω,Bσ∧τ , P ) , H1 := L2 (Ω,Bσ, P ) , and H2 =
L2 (Ω,Bτ , P ) to give another proof of Theorem 23.32.

23.3.1 Summary of some of the more notable Chapter 23
convergence results

As a guide to the reader, let us pause to summarize some of the key convergence
results which are going to be proved in the remainder of this chapter. Suppose
that {Mn}∞n=1 is a martingale. Recall that {Mn} is a regular martingale
if Mn = E [X|Bn] for some X ∈ L1 (P ) . Here is a list of some of the key
convergence results to come.

1. If M := {Mn}∞n=0 is an L1 – bounded martingale (i.e. C := supn E |Mn| <
∞), then M∞ := limn→∞Mn exists a.s. and satisfies, E |M∞| < ∞, see
Corollary 23.56.

2. Suppose X = {Xn}∞n=0 is a supermartingale, martingale, or submartingale
with either E |Xn| <∞ for all n or Xn ≥ 0 for all n. Then for every stopping
time, τ, Xτ is a {Bn}∞n=0 – supermartingale, martingale, or submartingale
respectively, see the optional stopping Theorem 23.39.

3. Suppose that σ and τ are two stopping times and τ is bounded, i.e. there
exists N ∈ N such that τ ≤ N <∞ a.s. If X = {Xn}∞n=0 is a supermartin-
gale, martingale, or submartingale, with either E |Xn| < ∞ of Xn ≥ 0 for
all 0 ≤ n ≤ N, then

E [Xτ |Bσ]
≤
=
≥
Xσ∧τ a.s.

respectively from top to bottom, see the optional stopping Theorem 23.40.
4. Suppose that M := {Mn}∞n=0 is an L1 – bounded martingale then (see

Theorem 23.67) the following are equivalent;

a) M := {Mn}∞n=0 is a regular martingale.
b) Mn = E [M∞|Bn] for n ∈ N.
c) Mn →M∞ in L1 (Ω,B, P ) .
d) {Mn}∞n=0 is uniformly integrable.

5. If 1 < p < ∞ and M := {Mn}∞n=0 is an Lp – bounded martingale. Then
Mn →M∞ almost surely and in Lp. In particular, {Mn} is a regular mar-
tingale, see Theorem 23.69.
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6. Suppose that M = {Mn}∞n=0 is a regular martingale, σ and τ are arbitrary
stopping times, then (see the optional stopping Theorem 23.70)

Mτ = E [M∞|Bτ ] , E |Mτ | ≤ E |M∞| <∞ and E [Mτ |Bσ] = Mσ∧τ a.s..

7. Let {Bn : n ≤ 0} be a reverse filtration (still have Bm ⊂ Bn if m ≤ n) and
{Xn}n≤0 be a backwards submartingale, i.e. E [Xn|Bm] ≥ Xm if m ≤ n. The
Backwards (or reverse) submartingale convergence theorem 23.79 asserts
X−∞ = limn→−∞Xn exists a.s. in {−∞} ∪ R and X+

−∞ ∈ L1 (Ω,B, P ) . If
we further assume that

C := lim
n→−∞

EXn = inf
n≤0

EXn > −∞,

then Xn = Mn +An where

a) {Mn}−∞<n≤0 is a martingale, {An}−∞<n≤0 is a predictable process
such that A−∞ = limn→−∞An = 0,

b) {Xn}n≤0 is uniformly integrability,

c) X−∞ ∈ L1 (Ω,B, P ) , and
d) limn→−∞ E |Xn −X−∞| = 0.

23.4 Stochastic Integrals and Optional Stopping

Notation 23.33 Suppose that {cn}∞n=1 and {xn}∞n=0 are two sequences of num-
bers, let c · ∆x = {(c ·∆x)n}n∈N0

denote the sequence of numbers defined by
(c ·∆x)0 = 0 and

(c ·∆x)n =

n∑
j=1

cj (xj − xj−1) =

n∑
j=1

cj∆jx for n ≥ 1.

(For convenience of notation later we will interpret
∑0
j=1 cj∆jx = 0.)

For a gambling interpretation of (c ·∆x)n , let xj represent the price of a
stock at time j. Suppose that you, the investor, buys cj shares at time j−1 and
then sells these shares back at time j. With this interpretation, cj∆jx represents
your profit (or loss if negative) in the time interval from j−1 to j and (c ·∆x)n
represents your profit (or loss) from time 0 to time n. By the way, if you want
to buy 5 shares of the stock at time n = 3 and then sell them all at time 9, you
would take ck = 5 · 13<k≤9 so that

(c ·∆x)9 = 5 ·
∑

3<k≤9

∆kx = 5 · (x9 − x3)

would represent your profit (loss) for this transaction. The next example for-
malizes this observation.

Example 23.34. Suppose that 0 ≤ σ ≤ τ where σ, τ ∈ N̄0 and let cn := 1σ<n≤τ .
Then

(c ·∆x)n =

n∑
j=1

1σ<j≤τ (xj − xj−1) =

∞∑
j=1

1σ<j≤τ∧n (xj − xj−1)

=

∞∑
j=1

1σ∧n<j≤τ∧n (xj − xj−1) = xτ∧n − xσ∧n.

More generally if σ, τ ∈ N̄0 are arbitrary and cn := 1σ<n≤τ we will have cn :=
1σ∧τ<n≤τ and therefore

(c ·∆x)n = xτ∧n − xσ∧τ∧n.

Proposition 23.35 (The Discrete Stochastic Integral). Let X = {Xn}∞n=0

be an adapted integrable process, i.e. E |Xn| < ∞ for all n. If X is a martin-
gale and {Cn}∞n=1 is a predictable sequence of bounded random variables, then
{(C ·∆X)n}

∞
n=1

is still a martingale. If X := {Xn}∞n=0 is a submartingale (su-
permartingale) (necessarily real valued) and Cn ≥ 0, then {(C ·∆X)n}

∞
n=1

is a
submartingale (supermartingale).

Conversely if X is an adapted process of integrable functions such that
E [(C ·∆X)n] = 0 for all bounded predictable processes, {Cn}∞n=1 , then X is
a martingale. Similarly if X is real valued adapted process such that

E [(C ·∆X)n]
≤
=
≥

0 (23.20)

for all n and for all bounded, non-negative predictable processes, C, then X is
a supermartingale, martingale, or submartingale respectively. (In other words,
X is a sub-martingale if no matter what your (non-negative) betting strategy is
you will make money on average.)

Proof. For any adapted process X, we have

E
[
(C ·∆X)n+1 |Bn

]
= E [(C ·∆X)n + Cn+1 (Xn+1 −Xn) |Bn]

= (C ·∆X)n + Cn+1E [(Xn+1 −Xn) |Bn] . (23.21)

The first assertions easily follow from this identity.
Now suppose that X is an adapted process of integrable functions such

that E [(C ·∆X)n] = 0 for all bounded predictable processes, {Cn}∞n=1 . Taking
expectations of Eq. (23.21) then allows us to conclude that

E [Cn+1E [(Xn+1 −Xn) |Bn]] = 0

for all bounded Bn – measurable random variables, Cn+1. Taking Cn+1 :=
sgn(E [(Xn+1 −Xn) |Bn]) shows |E [(Xn+1 −Xn) |Bn]| = 0 a.s. and hence X is
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a martingale. Similarly, if for all non-negative, predictable C, Eq. (23.20) holds
for all n ≥ 1, and Cn ≥ 0, then taking A ∈ Bn and Ck = δk,n+11A in Eq. (23.13)
allows us to conclude that

E [Xn+1 −Xn : A] = E
[
(C ·∆X)n+1

] ≤
=
≥

0,

i.e. X is a supermartingale, martingale, or submartingale respectively.

Example 23.36. Suppose that {Xn}∞n=0 are mean zero independent integrable
random variables and fk : Rk → R are bounded measurable functions for k ∈ N.
Then {Yn}∞n=0 , defined by Y0 = 0 and

Yn :=

n∑
k=1

fk (X0, . . . , Xk−1) (Xk −Xk−1) for n ∈ N, (23.22)

is a martingale sequence relative to
{
BXn
}
n≥0

.

Notation 23.37 Given an adapted process, X, and a stopping time τ, let
Xτ
n := Xτ∧n. We call Xτ := {Xτ

n}
∞
n=0 the process X stopped by τ.

Observe that

|Xτ
n | = |Xτ∧n| =

∣∣∣∣∣∣
∑

0≤k≤n

1τ=kXk

∣∣∣∣∣∣ ≤
∑

0≤k≤n

1τ=k |Xk| ≤
∑

0≤k≤n

|Xk| ,

so that Xτ
n ∈ L1 (P ) for all n provided Xn ∈ L1 (P ) for all n.

Example 23.38. Suppose that X = {Xn}∞n=0 is a supermartingale, martingale,
or submartingale, with E |Xn| < ∞ and let σ and τ be stopping times. Then
for any A ∈ Bσ, the process Cn := 1A · 1σ<n≤τ is predictable since for all n ∈ N
we have

A ∩ {σ < n ≤ τ} = (A ∩ {σ < n}) ∩ {n ≤ τ}
= (A ∩ {σ ≤ n− 1}) ∩ {τ ≤ n− 1}c ∈ Bn−1.

Therefore by Proposition 23.35, {(C ·∆X)n}
∞
n=0

is a supermartingale, martin-
gale, or submartingale respectively where

(C ·∆X)n =
n∑
k=1

1A · 1σ<k≤τ∆kX = 1A ·
n∑
k=1

1σ∧τ<k≤τ∆kX

=

∞∑
k=1

1A · 1σ∧τ∧n<k≤τ∧n∆kX = 1A (Xτ
n −Xσ∧τ

n ) .

Theorem 23.39 (Optional stopping theorem). Suppose X = {Xn}∞n=0 is
a supermartingale, martingale, or submartingale with either E |Xn| <∞ for all
n or Xn ≥ 0 for all n. Then for every stopping time, τ, Xτ is a {Bn}∞n=0 –
supermartingale, martingale, or submartingale respectively.

Proof. When E |Xn| < ∞ for all n ≥ 0 we may take σ = 0 and
A = Ω in Example 23.38 in order to learn that {Xτ

n −X0}∞n=0 is a su-
permartingale, martingale, or submartingale respectively and therefore so is
{Xτ

n = X0 +Xτ
n −X0}∞n=0 . When Xn is only non-negative we have to give a

different proof which does not involve any subtractions (which might be unde-
fined).

For the second proof we simply observe that 1τ≤nXτ =
∑n
k=0 1τ=kXk is Bn

measurable, {τ > n} ∈ Bn, and

Xτ∧(n+1) = 1τ≤nXτ + 1τ>nXn+1.

Therefore

EBn
[
Xτ

(n+1)

]
= EBn

[
Xτ∧(n+1)

]
=1τ≤nXτ + 1τ>nEBnXn+1{
≤
=
≥

}
1τ≤nXτ + 1τ>nXn = Xτ∧n,

where the top, middle, bottom (in)equality holds depending on whether X is a
supermartingale, martingale, or submartingale respectively. (This second proof
works for both cases at once. For another proof see Remark 23.41.)

Theorem 23.40 (Optional sampling theorem I). Suppose that σ and τ are
two stopping times and τ is bounded, i.e. there exists N ∈ N such that τ ≤ N <
∞ a.s. If X = {Xn}∞n=0 is a supermartingale, martingale, or submartingale,
with either E |Xn| <∞ of Xn ≥ 0 for all 0 ≤ n ≤ N, then

E [Xτ |Bσ]
≤
=
≥
Xσ∧τ a.s. (23.23)

respectively3 from top to bottom.

Proof. First suppose that E |Xn| <∞ for 0 ≤ n ≤ N and let A ∈ Bσ. From
Example 23.38 we know that 1A (Xτ

n −Xσ∧τ
n ) is a supermartingale, martingale,

or submartingale respectively and in particular for all n ∈ N0 we have

E [1A (Xτ
n −Xσ∧τ

n )]
≤
=
≥

0 respectively.

3 This is the natural generalization of Eq. (23.3) to the stopping time setting.
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Taking n = N in this equation using σ∧τ ≤ τ ≤ N then implies, for all A ∈ Bσ,
that

E [(Xτ −Xσ∧τ ) : A]
≤
=
≥

0 respectively

and this is equivalent to Eq. (23.23).
When we only assume that Xn ≥ 0 for all n we again have to give a different

proof which avoids subtractions which may be undefined. One way to do this
is to use Theorem 23.39 in order to conclude that Xτ is a supermartingale,
martingale, or submartingale respectively and in particular that

E [Xτ |Bn] = E [Xτ
N |Bn]

≤
=
≥
Xτ
n∧N for all n ≤ ∞.

Combining this result with Lemma 23.31 then implies

E [Xτ |Bσ] =
∑
n≤∞

1σ=nE [Xτ |Bn]
≤
=
≥

∑
n≤∞

1σ=nX
τ
n∧N = Xτ

σ∧N = Xσ∧τ . (23.24)

(This second proof again covers both cases at once!)

Exercise 23.11. Give another proof of Theorem 23.40 when E |Xn| < ∞ by
using the tower property in Theorem 23.32 along with the Doob decomposition
of Lemma 23.17.

Exercise 23.12. Give yet another (full) proof of Theorem 23.40 using the fol-
lowing outline;

1. Show by induction on n starting with n = N that

E [Xτ |Bn]
≤
=
≥
Xτ∧n a.s. for all 0 ≤ n ≤ N. (23.25)

2. Observe the above inequality holds as an equality for n > N as well.
3. Combine this result with Lemma 23.17 to complete the proof.

This argument makes it clear why we must at least initially assume that
τ ≤ N for some N ∈ N. To relax this restriction will require a limiting argument
which will be the topic of Section 23.8 below.

Remark 23.41. Theorem 23.40 can be used to give a simple proof of the Optional
stopping Theorem 23.39. For example, if X = {Xn}∞n=0 is a submartingale and
τ is a stopping time, then

EBnXτ∧(n+1) ≥ X[τ∧(n+1)]∧n = Xτ∧n,

i.e. Xτ is a submartingale.

23.5 Submartingale Maximal Inequalities

Notation 23.42 (Running Maximum) If X = {Xn}∞n=0 is a sequence of
(extended) real numbers, we let

X∗N := max {X0, . . . , XN} . (23.26)

Proposition 23.43 (Maximal Inequalities of Bernstein and Lévy). Let
{Xn} be a submartingale on a filtered probability space, (Ω,B, {Bn}∞n=0 , P ) .
Then4 for any a ≥ 0 and N ∈ N,

aP (X∗N ≥ a) ≤ E [XN : X∗N ≥ a] ≤ E
[
X+
N

]
, (23.27)

aP

(
min
n≤N

Xn ≤ −a
)
≤ E

[
XN : min

k≤N
Xk > −a

]
− E [X0] (23.28)

≤ E
[
X+
N

]
− E [X0] , (23.29)

and
aP
(
|X|∗N ≥ a

)
≤ 2E

[
X+
N

]
− E [X0] . (23.30)

Proof. Let τ := inf {n : Xn ≥ a} and observe that

X∗N ≥ Xτ ≥ a on {τ ≤ N} = {X∗N ≥ a} (23.31)

and (by the optional sampling Theorem 23.40) E [XN |Bτ ] ≥ XN∧τ . Since
{τ ≤ N} ∈ Bτ∧N ⊂ Bτ , we learn

E [Xτ : τ ≤ N ] = E [Xτ∧N : τ ≤ N ] ≤ E [E [XN |Bτ ] : τ ≤ N ] = E [XN : τ ≤ N ]

which combined with Eq. (23.31) implies,

a · P (X∗N ≥ a) = E [a : X∗N ≥ a] = E [a : τ ≤ N ]

≤ E [Xτ : τ ≤ N ] ≤ E [XN : τ ≤ N ] = E [XN : X∗N ≥ a]

≤ E
[
X+
N : X∗N ≥ a

]
≤ E

[
X+
N

]
,

i.e. Eq. (23.27) holds.
More generally if X is any integrable process and τ is the random time

defined by, τ := inf {n : Xn ≥ a} we still have Eq. (23.31) and

aP (X∗N ≥ a) =E [a : τ ≤ N ]

≤E [Xτ : τ ≤ N ] (23.32)

= E [XN : τ ≤ N ]− E [XN −Xτ : τ ≤ N ]

= E [XN : τ ≤ N ]− E [XN −Xτ∧N ] . (23.33)

4 The first inequality is the most important.
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Let me emphasize again that in deriving Eq. (23.33), we have not used any
special properties (not even adaptedness) of X. If X is now assumed to be a
submartingale, by the optional sampling Theorem 23.40, EBτ∧NXN ≥ Xτ∧N
and in particular E [XN −Xτ∧N ] ≥ 0. Combining this observation with Eq.
(23.33) and Eq. (23.31) again gives Eq. (23.27).

Secondly we may apply Eq. (23.33) with Xn replaced by −Xn to find

aP

(
min
n≤N

Xn ≤ −a
)

= aP

(
−min
n≤N

Xn ≥ a
)

= aP

(
max
n≤N

(−Xn) ≥ a
)

≤ −E [XN : τ ≤ N ] + E [XN −Xτ∧N ] (23.34)

where now,
τ := inf {n : −Xn ≥ a} = inf {n : Xn ≤ −a} .

By the optional sampling Theorem 23.40, E [Xτ∧N −X0] ≥ 0 and adding this
to right side of Eq. (23.34) gives the estimate

aP

(
min
n≤N

Xn ≤ −a
)
≤ −E [XN : τ ≤ N ] + E [XN −Xτ∧N ] + E [Xτ∧N −X0]

≤ E [XN −X0]− E [XN : τ ≤ N ]

= E [XN : τ > N ]− E [X0]

= E
[
XN : min

k≤N
Xk > −a

]
− E [X0]

which proves Eq. (23.28) and hence Eq. (23.29). Adding Eqs. (23.27) and (23.29)
gives the estimate in Eq. (23.30) since{

|X|∗N ≥ a
}

= {X∗N ≥ a} ∪
{

min
n≤N

Xn ≤ −a
}
.

Remark 23.44. It is of course possible to give a direct proof of Proposition 23.43.
For example,

E
[
XN : max

n≤N
Xn ≥ a

]
=

N∑
k=1

E [XN : X1 < a, . . . ,Xk−1 < a,Xk ≥ a]

≥
N∑
k=1

E [Xk : X1 < a, . . . ,Xk−1 < a,Xk ≥ a]

≥
N∑
k=1

E [a : X1 < a, . . . ,Xk−1 < a,Xk ≥ a]

= aP

(
max
n≤N

Xn ≥ a
)

which proves Eq. (23.27).

Corollary 23.45. Suppose that {Yn}∞n=1 is a non-negative supermartingale,
a > 0 and N ∈ N, then

aP

(
max
n≤N

Yn ≥ a
)
≤ E [Y0 ∧ a]− E

[
YN : max

n≤N
Yn < a

]
≤ E [Y0 ∧ a] . (23.35)

Proof. Let Xn := −Yn in Eq. (23.28) to learn

aP

(
min
n≤N

(−Yn) ≤ −a
)
≤ E

[
−YN : min

n≤N
(−Yn) > −a

]
+ E [Y0]

or equivalently that

aP

(
max
n≤N

Yn ≥ a
)
≤ E [Y0]− E

[
YN : max

n≤N
Yn < a

]
≤ E [Y0] . (23.36)

Since ϕa (x) := a ∧ x is concave and nondecreasing, it follows by Jensen’s
inequality that

E [ϕa (Yn) |Bm] ≤ ϕa (E [Yn|Bm]) ≤ ϕa (Yn) for all n ≥ m.

In this way we see that ϕa (Yn) = Yn ∧a is a supermartingale as well. Applying
Eq. (23.36) with Yn replaced by Yn ∧ a proves Eq. (23.35).

Lemma 23.46. Suppose that X and Y are two non-negative random variables
such that P (Y ≥ y) ≤ 1

yE [X : Y ≥ y] for all y > 0. Then for all p ∈ (1,∞) ,

EY p ≤
(

p

p− 1

)p
EXp. (23.37)

Proof. We will begin by proving Eq. (23.37) under the additional assump-
tion that Y ∈ Lp (Ω,B, P ) . Since

EY p = pE
∫ ∞

0

1y≤Y · yp−1dy = p

∫ ∞
0

E [1y≤Y ] · yp−1dy

= p

∫ ∞
0

P (Y ≥ y) · yp−1dy ≤ p
∫ ∞

0

1

y
E [X : Y ≥ y] · yp−1dy

= pE
∫ ∞

0

X1y≤Y · yp−2dy =
p

p− 1
E
[
XY p−1

]
.

Now apply Hölder’s inequality, with q = p (p− 1)
−1
, to find

E
[
XY p−1

]
≤ ‖X‖p ·

∥∥Y p−1
∥∥
q

= ‖X‖p · [E |Y |
p
]
1/q

.
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Combining thew two inequalities shows and solving for ‖Y ‖p shows ‖Y ‖p ≤
p
p−1 ‖X‖p which proves Eq. (23.37) under the additional restriction of Y being

in Lp (Ω,B, P ) .
To remove the integrability restriction on Y, for M > 0 let Z := Y ∧M and

observe that

P (Z ≥ y) = P (Y ≥ y) ≤ 1

y
E [X : Y ≥ y] =

1

y
E [X : Z ≥ y] if y ≤M

while

P (Z ≥ y) = 0 =
1

y
E [X : Z ≥ y] if y > M.

Since Z is bounded, the special case just proved shows

E [(Y ∧M)
p
] = EZp ≤

(
p

p− 1

)p
EXp.

We may now use the MCT to pass to the limit, M ↑ ∞, and hence conclude
that Eq. (23.37) holds in general.

Corollary 23.47 (Doob’s Inequality). If X = {Xn}∞n=0 be a non-negative
submartingale and 1 < p <∞, then

EX∗pN ≤
(

p

p− 1

)p
EXp

N . (23.38)

Proof. Equation 23.38 follows by applying Lemma 23.46 with the aid of
Proposition 23.43.

Corollary 23.48 (Doob’s Inequality). If {Mn}∞n=0 is a martingale and 1 <
p <∞, then for all a > 0,

P
(
|M |∗N ≥ a

)
≤ 1

a
E [|M |N : M∗N ≥ a] ≤ 1

a
E [|MN |] (23.39)

and

E |M |∗pN ≤
(

p

p− 1

)p
E |MN |p . (23.40)

Proof. By the conditional Jensen’s inequality, it follows that Xn := |Mn|
is a submartingale. Hence Eq. (23.39) follows from Eq. (23.27) and Eq. (23.40)
follows from Eq. (23.38).

Example 23.49. Let {Xn} be a sequence of independent integrable random
variables with mean zero, S0 = 0, Sn := X1 + · · · + Xn for n ∈ N, and
|S|∗n = maxj≤n |Sj | . Since {Sn}∞n=0 is a martingale, by cJensen’s inequality,

{|Sn|p}
∞
n=1 is a (possibly extended) submartingale for any p ∈ [1,∞). There-

fore an application of Eq. (23.27) of Proposition 23.43 show

P
(
|S|∗N ≥ α

)
= P

(
|S|∗pN ≥ α

p
)
≤ 1

αp
E [|SN |p : S∗N ≥ α] .

(When p = 2, this is Kolmogorov’s inequality in Theorem 25.46 below.) From
Corollary 23.48 we also know that

E |S|∗pN ≤
(

p

p− 1

)p
E |SN |p .

In particular when p = 2, this inequality becomes,

E |S|∗2N ≤ 4 · E |SN |2 = 4 ·
N∑
n=1

E |Xn|2 .

23.6 Submartingale Upcrossing Inequality and
Convergence Theorems

The main results of this section are consequences of the following example and
lemma which say that the optimal strategy for betting on a sub-martingale is
to go “all in.” Any other strategy, including buy low and sell high, will not fare
better (on average) than going all in.

Example 23.50. Suppose that {Xn}∞n=0 represents the value of a stock which is
known to be a sub-martingale. At time n − 1 you are allowed buy Cn ∈ [0, 1]
shares of the stock which you will then sell at time n. Your net gain (loss) in
this transaction is CnXn − CnXn−1 = Cn∆nX and your wealth at time n will
be

Wn = W0 +

n∑
k=1

Ck∆kX.

The next lemma asserts that the way to maximize your expected gain is to
choose Ck = 1 for all k, i.e. buy the maximum amount of stock you can at each
stage. We will refer to this as the all in strategy..

Lemma 23.51 (“All In”). If {Xn}∞n=0 is a sub-martingale and {Ck}∞k=1 is a
previsible process with values in [0, 1] , then

E

(
n∑
k=1

Ck∆kX

)
≤ E [Xn −X0]

with equality when Ck = 1 for all k, i.e. the optimal strategy is to go all in.
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Proof. Notice that {1− Ck}∞k=1 is a previsible non-negative process and
therefore by Proposition 23.35,

E

(
n∑
k=1

(1− Ck)∆kX

)
≥ 0.

Since

Xn −X0 =

n∑
k=1

∆kX =

n∑
k=1

Ck∆kX +

n∑
k=1

(1− Ck)∆kX,

it follows that

E [Xn −X0] = E

(
n∑
k=1

Ck∆kX

)
+E

(
n∑
k=1

(1− Ck)∆kX

)
≥ E

(
n∑
k=1

Ck∆kX

)
.

We are now going to apply Lemma 23.51 to the time honored gambling strat-
egy of buying low and selling high in order to prove the important “upcross-
ing” inequality of Doob, see Theorem 23.53. To be more precise, suppose that
{Xn}∞n=0 is a sub-martingale representing a stock price and −∞ < a < b <∞
are given numbers. The (sub-optimal) strategy we wish to employ is to buy the
stock when it first drops below a and then sell the first time it rises above b
and then repeat this strategy over and over again.

Given a function, N0 3 n→ Xn ∈ R and −∞ < a < b <∞, let

τ0 = inf {n ≥ 0 : Xn ≤ a} , τ1 = inf {n ≥ τ0 : Xn ≥ b}
τ2 = inf {n ≥ τ1 : Xn ≤ a} , τ3 := inf {n ≥ τ2 : Xn ≥ b}

...

τ2k = inf {n ≥ τ2k−1 : Xn ≤ a} , τ2k+1 := inf {n ≥ τ2k : Xn ≥ b} (23.41)

...

with the usual convention that inf ∅ =∞ in the definitions above, see Figures
23.2 and 23.3.

In terms of these stopping time our betting strategy may be describe as,

Cn =

∞∑
k=0

1τ2k<n≤τ2k+1
for n ∈ N, (23.42)

see Figure 23.3 for a more intuitive description of {Cn}∞n=1 .
Observe that τ0 ≥ 0 and τn+1 ≥ τn + 1 for all n ≥ 1 and hence τn ≥ n for

all n ≥ 0. Further, for each N ∈ N̄ let

time(n)

τ0 τ5τ1 τ3 τ7 τ9
τ2 τ4 τ6 τ8 τ100 20 40 60 80 100

0

2

4

6

8

10

12

14

Xn

Fig. 23.2. A sample path or the positive part of a random walk with level crossing
of a = 1 and b = 2 being marked off.

UXN (a, b) = max {k ≥ 1 : τ2k−1 ≤ N} (23.43)

be the number of upcrossings of X across [a, b] in the time interval, [0, N ] .
In Figure 23.3 you will notice that there are two upcrossings and at the end

we are holding a stock for a loss of no more than (a−XN )+ . In this example
X0 = 0.90 and we do not purchase a stock until time 1, i.e. Cn = 1 for the first
time at n = 2. On the other hand if X0 < a, then on the first upcrossing we
would be guaranteed to make at least

b−X0 = b− a+ a−X0 = b− a+ (a−X0)+ .

With these observations in mind, if there is at least one upcrossing, then

WN :=

N∑
k=1

Ck∆kX ≥ (b− a)UXN (a, b) + (a−X0)+ − (a−XN )+ (23.44)

= (b− a)UXN (a, b) + (X0 − a)− − (XN − a)− . (23.45)

In words the inequality in Eq. (23.45) states that our net gain in buying at
or below a and selling at or above b is at least equal to (b− a) times the number
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Xn

time(n)

Cn

0.0

τ1 τ2 τ3 τ4
10 20 30 40 500

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

τ0

Fig. 23.3. In this figure we are taking a = 0.85 and b = 1.20. There are two upcross-
ings and we imaging buying below 0.85 and selling above 1.20. The graph of Cn is
given in blue in the above figure.

of times we buy low and sell high plus a possible bonus for buying below a at
time 0 and a penalty for holding the stock below a at the end of the day. The
key inequality in Eq. (23.45) may also be verified when no upcrossings occur.
Here are the three case to consider.

1. If Xn > a for all 0 ≤ n ≤ N, then Cn = 0 for all n so WN = 0 while
(X0 − a)− − (XN − a)− = 0− 0 = 0 as well.

2. If X0 ≤ a and Xn < b for all 0 ≤ n ≤ N, then Cn = 1 for all n so that

WN = XN −X0 = (XN − a)− (X0 − a)

= (XN − a) + (X0 − a)− ≥ − (XN − a)− + (X0 − a)− .

3. If X0 > a, but τ1 ≤ N and Xn < b for all 0 ≤ n ≤ N, then

WN = XN −Xτ1 ≥ XN − a ≥ − (XN − a)− = − (XN − a)− + (X0 − a)− .

Lemma 23.52. If {Xn}∞n=0 is a submartingale, then {X+
n = max (Xn, 0)}∞n=0

is a submartingale.

Proof. This follows by an application of the conditional Jensen’s inequality
applied with ϕ (x) = x+ which is convex and increasing. We may also, however,
easily give a direct proof. Indeed, Xn+1 ≤ X+

n+1 and 0 ≤ X+
n+1 and therefore,

Xn ≤ EBnXn+1 ≤ EBnX+
n+1 and 0 ≤ EBnX+

n+1

and therefore X+
n = max {0, Xn} ≤ EBnX+

n+1.

Theorem 23.53 (Doob’s Upcrossing Inequality). If {Xn}∞n=0 is a sub-
martingale and −∞ < a < b <∞, then for all N ∈ N,

E
[
UXN (a, b)

]
≤ 1

b− a
[
E (XN − a)+ − E (X0 − a)+

]
.

First Proof. Let {Ck}∞k=1 be the buy low sell high strategy defined in Eq.
(23.42). Taking expectations of the inequality in Eq. (23.45) making use of
Lemma 23.51 implies,

E [XN − a− (X0 − a)] = E [XN −X0] ≥ E [(C ·∆X)N ]

≥ (b− a)EUXN (a, b) + E (X0 − a)− − E (XN − a)− .

The result follows from this inequality and the fact that (Xn − a) =
(Xn − a)+ − (Xn − a)− .

Second Proof. It is easily verified that {Xn − a}∞n=0 is still a sub-

martingale and then by Lemma 23.52 it follows that
{

(Xn − a)+

}∞
n=0

is still a

sub-martingale.5 We also note

UXN (a, b) = U
(X−a)+

N (0, b− a)

and if {Wn}∞n=0 are the winnings of the buy at 0 and sell above b− a strategy

for
{

(Xn − a)+

}∞
n=0

then it is easily6 seen that

WN −W0 ≥ (b− a)U
(X−a)+

N (0, b− a) = (b− a)UXN (a, b) .

Therefore it follows from Lemma 23.51 that

(b− a)E
[
UXN (a, b)

]
≤ E [WN −W0] ≤ E (XN − a)+ − E (X0 − a)+ .

5 Alternatively use Jensen’s inequality with ϕ (x) = (x− a)+ which is convex and
increasing.

6 This is where this proof is conceptually a bit simpler than the first proof.
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Remark 23.54 (*Third Proof). Here is a variant on the above proof which may
safely be skipped. We first suppose that Xn ≥ 0, a = 0 and b > 0. Let

τ0 = inf {n ≥ 0 : Xn = 0} , τ1 = inf {n ≥ τ0 : Xn ≥ b}
τ2 = inf {n ≥ τ1 : Xn = 0} , τ3 := inf {n ≥ τ2 : Xn ≥ b}

...

τ2k = inf {n ≥ τ2k−1 : Xn = 0} , τ2k+1 := inf {n ≥ τ2k : Xn ≥ b}
...

a sequence of stopping times. Suppose that N is given and we choose k such
that 2k ≥ N in which case τ2k ≥ 2k ≥ N. Thus if τ ′n := τn ∧N, then τ ′n = N
for all n ≥ 2k. Therefore,

XN −X0 =

2k∑
n=1

(
Xτ ′n
−Xτ ′

n−1

)
=

k∑
n=1

(
Xτ ′

2n−1
−Xτ ′

2n−2

)
+

k∑
n=1

(
Xτ ′2n

−Xτ ′
2n−1

)
≥ bUXN (0, b) +

k∑
n=1

(
Xτ ′2n

−Xτ ′
2n−1

)
, (23.46)

wherein we have used Xτ ′
2n−1

− Xτ ′
2n−2

≥ b if there were an upcrossing in the

interval
[
τ ′2n−2, τ

′
2n−1

]
and Xτ ′

2n−1
− Xτ ′

2n−2
≥ 0 otherwise, see Figure 23.4.

Taking expectations of Eq. (23.46) implies

EXN − EX0 ≥ bEUXN (0, b) +

k∑
n=1

E
(
Xτ ′2n

−Xτ ′
2n−1

)
≥ bEUXN (0, b)

wherein we have used the optional sampling theorem to guarantee,

E
(
Xτ ′2n

−Xτ ′
2n−1

)
≥ 0.

Following the second proof of Theorem 23.53,
{

(Xn − a)+

}∞
n=0

is still a
sub-martingal and

UXN (a, b) = U
(X−a)+

N (0, b− a)

and therefore

(b− a)E
[
UXN (a, b)

]
= (b− a)E

[
U

(X−a)+

N (0, b− a)
]

≤ E (XN − a)+ − E (X0 − a)+ .

The third proof is now complete, nevertheless it is worth contemplating a bit

how is that E
(
Xτ ′2n

−Xτ ′
2n−1

)
≥ 0 given that are strategy being employed here

is to buy high and sell low. On {τ2n ≤ N} , Xτ2n −Xτ2n−1
= 0−Xτ2n−1

≤ −b
and therefore,

0 ≤E
(
Xτ ′2n

−Xτ ′
2n−1

)
= E

(
Xτ2n −Xτ2n−1 : τ2n ≤ N

)
+ E

(
Xτ ′2n

−Xτ ′
2n−1

: τ2n > N
)

≤− bP (τ2n ≤ N) + E
(
XN −Xτ ′

2n−1
: τ2n > N

)
.

Therefore we must have

E
(
XN −Xτ2n−1∧N : τ2n > N

)
≥ bP (τ2n ≤ N)

so that XN must be sufficiently large sufficiently often on the set where τ2n > N.

Xn

time(n)
τ5τ1 τ3 τ7 τ9

τ0 τ2 τ4 τ6 τ8
0 20 40 60 80 100

1

2

4

6

3

7

5

0

Fig. 23.4. A sample path of a positive submartingale along with stopping times τ2j
and τ2j+1 which are the successive hitting times of 0 and 2 respectively. If we take
N = 70 in this case, then observe that Xτ7∧70−Xτ6∧70 ≥ 2 while Xτ9∧70−Xτ8∧70 = 0.
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Lemma 23.55. Suppose X = {Xn}∞n=0 is a sequence of extended real numbers
such that UX∞ (a, b) < ∞ for all a, b ∈ Q with a < b. Then X∞ := limn→∞Xn

exists in R̄.

Proof. If limn→∞Xn does not exists in R̄, then there would exists a, b ∈ Q
such that

lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

and for this choice of a and b, we must have Xn < a and Xn > b infinitely
often. Therefore, UX∞ (a, b) =∞.

Corollary 23.56. Suppose {Xn}∞n=0 is an integrable submartingale such that
supn EX+

n < ∞ (or equivalently C := supn E |Xn| < ∞, see Remark 23.20),
then X∞ := limn→∞Xn exists in R a.s. and X∞ ∈ L1 (Ω,B, P ) . Moreover
{Xn}n∈N̄0

is a submartingale (that is we also have Xn ≤ E [X∞|Bn] a.s. for all

n), iff {X+
n }
∞
n=1 is uniformly integrable.

Proof. For any −∞ < a < b <∞, by Doob’s upcrossing inequality (Theo-
rem 23.53) and the MCT,

E
[
UX∞ (a, b)

]
≤ 1

b− a

[
sup
N
E (XN − a)+ − E (X0 − a)+

]
<∞

where
UX∞ (a, b) := lim

N→∞
UXN (a, b)

is the total number of upcrossings of X across [a, b].7 In particular it follows
that

Ω0 := ∩
{
UX∞ (a, b) <∞ : a, b ∈ Q with a < b

}
has probability one. Hence by Lemma 23.55, for ω ∈ Ω0 we have X∞ (ω) :=
limn→∞Xn (ω) exists in R̄. By Fatou’s lemma we know that

E [|X∞|] = E
[
lim inf
n→∞

|Xn|
]
≤ lim inf

n→∞
E [|Xn|] ≤ C <∞ (23.47)

and therefore that X∞ ∈ R a.s.
Since (as we have already shown) X+

n → X+
∞ a.s., if {X+

n }
∞
n=1 is uniformly

integrable, then X+
n → X+

∞ in L1 (P ) by Vitalli’s convergence Theorem 17.55.
Thus if A ∈ Bn,then using EBnXm ≥ Xn a.s. for m ≥ n it follows that

7 Notice that (XN − a)+ ≤ |XN − a| ≤ |XN |+a so that supN E (XN − a)+ ≤ C+a <
∞.

E [Xn1A] ≤ lim sup
m→∞

E [Xm1A] = lim sup
m→∞

(
E
[
X+
m1A

]
− E

[
X−m1A

])
= E

[
X+
∞1A

]
− lim inf

m→∞
E
[
X−m1A

]
≤ E

[
X+
∞1A

]
− E

[
lim inf
m→∞

X−m1A

]
= E

[
X+
∞1A

]
− E

[
X−∞1A

]
= E [X∞1A] ,

wherein Fatou’s lemma for the second inequality above. As A ∈ Bn was arbi-
trary, it now follows that Xn ≤ E [X∞|Bn] a.s. for n.

Conversely if we suppose that Xn ≤ E [X∞|Bn] a.s. for n, then by Lemma
23.52 (or cJensen’s inequality with ϕ (x) = x ∨ 0 being an increasing convex
function),

X+
n ≤ (E [X∞|Bn])

+ ≤ E
[
X+
∞|Bn

]
a.s. for all n

and therefore {X+
n }
∞
n=1 is uniformly integrable by Proposition 23.8 and Exercise

17.5.
Second Proof. We may also give another proof of the first assertion based

on the Krickeberg decomposition Theorem 23.21 and the supermartingale con-
vergence Corollary 23.65 below. Indeed, by the Krickeberg decomposition The-
orem 23.21, Xn = Mn−Yn where M is a positive martingale and Y is a positive
supermartingale. Hence by two applications of Corollary 23.65 we may conclude
that

X∞ = lim
n→∞

Xn = lim
n→∞

Mn − lim
n→∞

Yn

exists in R almost surely.

Remark 23.57. If {Xn}∞n=0 is a submartingale such that {X+
n }
∞
n=0 is uniformly

integrable, it does not necessarily follows that {Xn}∞n=0 is uniformly integrable.
Indeed, let Xn = −Mn where Mn is the non-uniformly integrable martingale
in Example 23.7. Then Xn is a negative (sub)martingale and hence X+

n ≡ 0 is
uniformly integrable but {Xn}∞n=0 is not uniformly integrable. This also shows
that assuming the positive part of a martingale is uniformly integrable is not
sufficient to show the martingale itself is uniformly integrable. Keep in mind in
this example that limn→∞Xn = 0 a.s. while EXn = 1 for all n and so clearly
limn→∞ EXn = 1 6= 0 = E [limn→∞Xn] in this case.

Notation 23.58 Given a probability space, (Ω,B, P ) and A,B ∈ B, we say
A = B a.s. iff P (A4B) = 0 or equivalently iff 1A = 1B a.s.

Corollary 23.59 (Localizing Corollary 23.56). Suppose M = {Mn}∞n=0 is
a martingale and c <∞ such that ∆nM := Mn−Mn−1 ≤ c a.s. for all n. Then{

lim
n→∞

Mn exists in R
}

=

{
sup
n
Mn <∞

}
a.s.
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Proof. For any a ∈ N, let τa := inf {n : Mn ≥ a} . Then by the optional
stopping theorem, n→Mτa

n is still a martingale. Since Mτa
n ≤ a+ c,8 it follows

that E (Mτa
n )+ ≤ a + c < ∞ for all n. Hence we may apply Corollary 23.56 to

conclude, limn→∞Mτa
n = Mτa

∞ exists in R almost surely. Therefore n→ Mn is
convergent in R almost surely on the set

∪a {Mτa = M} =

{
sup
n
Mn <∞

}
.

Conversely if n→Mn is convergent in R, then supnMn <∞.

Corollary 23.60. Suppose M = {Mn}∞n=0 is a martingale, and c < ∞ such
that |∆nM | ≤ c a.s. for all n. Let

C :=
{

lim
n→∞

Mn exists in R
}

and

D :=

{
lim sup
n→∞

Mn =∞ and lim inf
n→∞

Mn = −∞
}
.

Then, P (C ∪D) = 1. (In words, either limn→∞Mn exists in R or {Mn}∞n=1 is
“wildly” oscillating as n→∞.)

Proof. Since both M and −M satisfy the hypothesis of Corollary 23.59, we
may conclude that (almost surely),

C =

{
sup
n
Mn <∞

}
=
{

inf
n
Mn > −∞

}
a.s.

and hence almost surely,

Cc =

{
sup
n
Mn =∞

}
=
{

inf
n
Mn = −∞

}
=

{
sup
n
Mn =∞

}
∩
{

inf
n
Mn = −∞

}
= D.

Corollary 23.61. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space
and An ∈ Bn for all n. Then{∑

n

1An =∞

}
= {An i.o.} =

{∑
n

E [1An |Bn−1] =∞

}
a.s. (23.48)

8 If n < τa then Mn < a and if n ≥ τa then Mτa
n = Mτa ≤Mτa−1 + c < a+ c.

Proof. Let ∆nM := 1An − E [1An |Bn−1] so that E [∆nM |Bn−1] = 0 for all
n. Thus if

Mn :=
∑
k≤n

∆nM =
∑
k≤n

(1An − E [1An |Bn−1]) ,

then M is a martingale with |∆nM | ≤ 1 for all n. Let C and C be as in Corollary
23.60. Since {An i.o.} = {

∑
n 1An =∞} , it follows that

{An i.o.} =

{∑
n

E [1An |Bn−1] =∞

}
a.s. on C.

Moreover, on {supnMn =∞} we must have
∑
n 1An = ∞ and on

{infnMn = −∞} that
∑
n E [1An |Bn−1] =∞ and so∑

n

1An =∞ and
∑
n

E [1An |Bn−1] =∞ a.s. on D.

Thus it follows that Eq. (23.48) holds on C ∪D a.s. which completes the proof
since Ω = C ∪D a.s..

See Durrett [12, Chapter 4.3] for more in this direction.

23.7 *Supermartingale inequalities

As the optional sampling theorem was our basic tool for deriving submartingale
inequalities, the following optional switching lemma will be our basic tool for
deriving positive supermartingale inequalities.

Lemma 23.62 (Optional switching lemma). Suppose that X and Y are
two supermartingales and τ is a stopping time such that Xτ ≥ Yτ on {τ <∞} .
Then

Zn = 1n<τXn + 1n≥τYn =

{
Xn if n < τ
Yn if n ≥ τ

is again a supermartingale. (In short we can switch from X to Y at time, τ,
provided Y ≤ X at the switching time, τ.) This lemma is valid if Xn, Yn ∈
L1 (Ω,Bn, P ) for all n or if both Xn, Yn ≥ 0 for all n. In the latter case, we
should be using the extended notion of conditional expectations.

Proof. We begin by observing,

Zn+1 = 1n+1<τXn+1 + 1n+1≥τYn+1

= 1n+1<τXn+1 + 1n≥τYn+1 + 1τ=n+1Yn+1

≤ 1n+1<τXn+1 + 1n≥τYn+1 + 1τ=n+1Xn+1

= 1n<τXn+1 + 1n≥τYn+1.
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Since {n < τ} and {n ≥ τ} are Bn – measurable, it now follows from the super-
martingale property of X and Y that

EBnZn+1 ≤ EBn [1n<τXn+1 + 1n≥τYn+1]

= 1n<τEBn [Xn+1] + 1n≥τEBn [Yn+1]

≤ 1n<τXn + 1n≥τYn = Zn.

23.7.1 Maximal Inequalities

Theorem 23.63 (Supermartingale maximal inequality). Let X be a pos-
itive supermartingale (in the extended sense) and a ∈ B0 with a ≥ 0, then

aP

[
sup
n
Xn ≥ a|B0

]
≤ a ∧X0 (23.49)

and moreover

P

[
sup
n
Xn =∞|B0

]
= 0 on {X0 <∞} . (23.50)

In particular if X0 <∞ a.s. then supnXn <∞ a.s.

Proof. Simply apply Corollary 23.45 with Yn = ((2a) ∧Xn) · 1A where
A ∈ B0 to find

aE
(
P

[
sup
n
Xn ≥ a|B0

]
: A

)
= aP

[
sup
n
Xn ≥ a : A

]
≤ E [a ∧X0 : A] .

Since this holds for all A ∈ B0, Eq. (23.49) follows.
Second Proof. Let τ := inf {n : Xn ≥ a} which is a stopping time since,

{τ ≤ n} = {Xn ≥ a} ∈ Bn for all n.

Since Xτ ≥ a on {τ <∞} and Yn := a is a supermartingale, it follows by the
switching Lemma 23.62 that

Zn := 1n<τXn + a1n≥τ

is a supermartingale (in the extended sense). In particular it follows

aP (τ ≤ n|B0) = EB0
[a1n≥τ ] ≤ EB0

Zn ≤ Z0,

and
Z0 = 10<τ X0 + a1τ=0 = 1X0<aX0 + 1X0≥aa = a ∧X0.

Therefore, using the cMCT,

aP

[
sup
n
Xn ≥ a|B0

]
= aP [τ <∞|B0] = lim

n→∞
aP (τ ≤ n|B0)

≤ Z0 = a ∧X0

which proves Eq. (23.49).
For the last assertion, take a > 0 to be constant in Eq. (23.49) and then use

the cDCT to let a ↑ ∞ to conclude

P

[
sup
n
Xn =∞|B0

]
= lim
a↑∞

P

[
sup
n
Xn ≥ a|B0

]
≤ lim
a↑∞

1 ∧ X0

a
= 1X0=∞.

Multiplying this equation by 1X0<∞ and then taking expectations implies

E
[
1supnXn=∞1X0<∞

]
= E [1X0=∞1X0<∞] = 0

which implies 1supnXn=∞1X0<∞ = 0 a.s., i.e. supnXn <∞ a.s. on {X0 <∞} .

23.7.2 The upcrossing inequality and convergence result

Theorem 23.64 (Dubin’s Upcrossing Inequality). Suppose X = {Xn}∞n=0

is a positive supermartingale and 0 < a < b <∞. Then

P
(
UX∞ (a, b) ≥ k|B0

)
≤
(a
b

)k (
1 ∧ X0

a

)
, for k ≥ 1 (23.51)

and U∞ (a, b) <∞ a.s. and in fact

E
[
UX∞ (a, b)

]
≤ 1

b/a− 1
=

a

b− a
<∞.

Proof. Since
UXN (a, b) = U

X/a
N (1, b/a) ,

it suffices to consider the case where a = 1 and b > 1. Let τn be the stopping
times defined in Eq. (23.41) with a = 1 and b > 1, i.e.

τ0 = 0, τ1 = inf {n ≥ τ0 : Xn ≤ 1}
τ2 = inf {n ≥ τ1 : Xn ≥ b} , τ3 := inf {n ≥ τ2 : Xn ≤ 1}

...

τ2k = inf {n ≥ τ2k−1 : Xn ≥ b} , τ2k+1 := inf {n ≥ τ2k : Xn ≤ 1} ,
...
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see Figure 23.2.
Let k ≥ 1 and use the switching Lemma 23.62 repeatedly to define a new

positive supermatingale Yn = Y
(k)
n (see Exercise 23.13 below) as follows,

Y (k)
n = 1n<τ1 + 1τ1≤n<τ2Xn

+ b1τ2≤n<τ3 + bXn1τ3≤n<τ4

+ b21τ4≤n<τ5 + b2Xn1τ5≤n<τ6
...

+ bk−11τ2k−2≤n<τ2k−1
+ bk−1Xn1τ2k−1≤n<τ2k

+ bk1τ2k≤n. (23.52)

Since E [Yn|B0] ≤ Y0 a.s., Yn ≥ bk1τ2k≤n, and

Y0 = 10<τ1 + 1τ1=0X0 = 1X0>1 + 1X0≤1X0 = 1 ∧X0,

we may infer that

bkP (τ2k ≤ n|B0) = E
[
bk1τ2k≤n|B0

]
≤ E [Yn|B0] ≤ 1 ∧X0 a.s.

Using cMCT, we may now let n→∞ to conclude

P
(
UX (1, b) ≥ k|B0

)
≤ P (τ2k <∞|B0) ≤ 1

bk
(1 ∧X0) a.s.

which is Eq. (23.51). Using cDCT, we may let k ↑ ∞ in this equation to discover
P
(
UX∞ (1, b) =∞|B0

)
= 0 a.s. and in particular, UX∞ (1, b) < ∞ a.s. In fact we

have

E
[
UX∞ (1, b)

]
=

∞∑
k=1

P
(
UX∞ (1, b) ≥ k

)
≤
∞∑
k=1

E
[

1

bk
(1 ∧X0)

]
=

1

b

1

1− 1/b
E [(1 ∧X0)] ≤ 1

b− 1
<∞.

Exercise 23.13. In this exercise you are asked to fill in the details showing Yn
in Eq. (23.52) is still a supermartingale. To do this, define Y

(k)
n via Eq. (23.52)

and then show (making use of the switching Lemma 23.62 twice) Y
(k+1)
n is a

supermartingale under the assumption that Y
(k)
n is a supermartingale. Finish

off the induction argument by observing that the constant process, Un := 1 and
Vn = 0 are supermartingales such that Uτ1 = 1 ≥ 0 = Vτ1 on {τ1 <∞} , and
therefore by the switching Lemma 23.62,

Y (1)
n = 10≤n<τ1Un + 1τ1≤nVn = 10≤n<τ1

is also a supermartingale.

Corollary 23.65 (Positive Supermartingale convergence). Suppose X =
{Xn}∞n=0 is a positive supermartingale (possibly in the extended sense), then
X∞ = limn→∞Xn exists a.s. and we have

E [X∞|Bn] ≤ Xn for all n ∈ N̄. (23.53)

In particular,
EX∞ ≤ EXn ≤ EX0 for all n <∞. (23.54)

Proof. The set,

Ω0 := ∩
{
UX∞ (a, b) <∞ : a, b ∈ Q with a < b

}
,

has full measure (P (Ω0) = 1) by Dubin’s upcrossing inequality in Theorem
23.64. So by Lemma 23.55, for ω ∈ Ω0 we have X∞ (ω) := limn→∞Xn (ω)
exists9 in [0,∞] . For definiteness, let X∞ = 0 on Ωc0. Equation (23.53) is now
a consequence of cFatou;

E [X∞|Bn] = E
[

lim
m→∞

Xm|Bn
]
≤ lim inf

m→∞
E [Xm|Bn] ≤ lim inf

m→∞
Xn = Xn a.s.

The supermartingale property guarantees that EXn ≤ EX0 for all n <∞ while
taking expectations of Eq. (23.53) implies EX∞ ≤ EXn.

Theorem 23.66 (Optional sampling II – Positive supermartingales).
Suppose that X = {Xn}∞n=0 is a positive supermartingale, X∞ := limn→∞Xn

(which exists a.s. by Corollary 23.65), and σ and τ are arbitrary stopping
times. Then Xτ

n := Xτ∧n is a positive {Bn}∞n=0 – super martingale, Xτ
∞ =

limn→∞Xτ
τ∧n, and

E [Xτ |Bσ] ≤ Xσ∧τ a.s. (23.55)

Moreover, if EX0 <∞, then E [Xτ ] = E [Xτ
∞] <∞.

Proof. We already know that Xτ is a positive supermatingale by optional
stopping Theorem 23.39. Hence an application of Corollary 23.65 implies that
limn→∞Xτ

n = limn→∞Xτ∧n is convergent and

E
[

lim
n→∞

Xτ
n |Bm

]
≤ Xτ

m = Xτ∧m for all m <∞. (23.56)

On the set {τ <∞} , limn→∞Xτ∧n = Xτ and on the set {τ =∞} ,
limn→∞Xτ∧n = limn→∞Xn = X∞ = Xτ a.s. Therefore it follows that
limn→∞Xτ

n = Xτ and Eq. (23.56) may be expressed as

E [Xτ |Bm] ≤ Xτ∧m for all m <∞. (23.57)

An application of Lemma 23.31 now implies

E [Xτ |Bσ] =
∑
m≤∞

1σ=mE [Xτ |Bm] ≤
∑
m≤∞

1σ=mXτ∧m = Xτ∧σ a.s.

9 If EX0 <∞, this may also be deduced by applying Corollary 23.56 to {−Xn}∞n=0 .
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23.8 Martingale Closure and Regularity Results

We are now going to give a couple of theorems which have already been alluded
to in Exercises 18.6, 19.9, and 19.10.

Theorem 23.67. Let M := {Mn}∞n=0 be an L1 – bounded martingale, i.e. C :=
supn E |Mn| < ∞ and let M∞ := limn→∞Mn which exists a.s. and satisfies,
E |M∞| <∞ by Corollary 23.56. Then the following are equivalent;

1. There exists X ∈ L1 (Ω,B, P ) such that Mn = E [X|Bn] for all n.
2. {Mn}∞n=0 is uniformly integrable.
3. Mn →M∞ in L1 (Ω,B, P ) .

Moreover, if any of the above equivalent conditions hold we may take X =
M∞, i.e. Mn = E [M∞|Bn] .

Proof. 1. =⇒ 2. This was already proved in Proposition 23.8.
2. =⇒ 3. The knowledge that M∞ := limn→∞Mn exists a.s. along with the

assumed uniform integrability implies L1 – convergence by Vitali convergence
Theorem 17.55.

3. =⇒ 1. If Mn → M∞ in L1 (Ω,B, P ) , then by the martingale property
and the L1 (P ) – continuity of conditional expectation we find,

Mn = E [Mm|Bn]→ E [M∞|Bn] as m→∞,

and thus, Mn = E [M∞|Bn] a.s.

Definition 23.68. A martingale satisfying any and all of the equivalent state-
ments in Theorem 23.67 is said to be regular.

Exercise 23.14 (Rademacher’s theorem). Let Ω := (0, 1],
B := B(0,1], P = m be Lebesgue measure, and f ∈ L1 (P ) . To
each partition Π := {0 = x0 < x1 < x2 < · · · < xn = 1} of (0, 1] we let
BΠ := σ (Ji := (xi−1, xi] : 1 ≤ i ≤ n) .

1. Show E [f |BΠ ] (x) =
∑n
i=1

1
xi−xi−1

[∫ xi
xi−1

f (s) ds
]
· 1(xi−1,xi] (x) for a.e. x ∈

Ω.
2. For f ∈ C ([0, 1] ,R) , let

fΠ (x) :=

n∑
i=1

∆if

∆i
1Ji (x) (23.58)

where ∆if := f (xi)− f (xi−1) and ∆i := xi − xi−1. Show if Π ′ is another
partition of Ω which refines Π, i.e. Π ⊂ Π ′, then

fΠ = E [fΠ′ |BΠ ] a.s.

3. Show for any a, b ∈ Π with a < b that

f (b)− f (a)

b− a
=

1

b− a

∫ b

a

fΠ (x) dx. (23.59)

Hint: consider the partition Π0 := {0 < a < b < 1} .
Now let Bn := BΠn and where Πn :=

{
k
2n

}2n

k=0
an observe your have now

shown gn := fΠn is a martingale.
4. Let us now further suppose that |f (y)− f (x)| ≤ K |y − x| for all x, y ∈

[0, 1] , i.e. f is Lipschitz. From Eq. (23.58) it follows that |gn| := |fΠn | ≤ K
so that {gn}∞n=1 is a bounded martingale. Use this along with Eq. (23.59)
and Theorem 23.67 to conclude there exists g ∈ L∞ (P ) such that

f (b)− f (a) =

∫ b

a

g (x) dx for all 0 ≤ a < b ≤ 1.

[You may be interested to know that under these hypothesis, f ′ (x) exists
a.e. and g (x) = f ′ (x) a.e.. Thus this a version of the fundamental theorem
of calculus.]

Theorem 23.69. Suppose 1 < p <∞ and M := {Mn}∞n=0 is an Lp – bounded
martingale. Then Mn → M∞ almost surely and in Lp. In particular, {Mn} is
a regular martingale.

Proof. The almost sure convergence follows from Corollary 23.56. So, be-
cause of Theorem 17.55, to finish the proof it suffices to show {|Mn|p}

∞
n=0 is

uniformly integrable. But by Doob’s inequality, Corollary 23.48, and the MCT,
we find

E
[
sup
k
|Mk|p

]
≤
(

p

p− 1

)p
sup
k
E [|Mk|p] <∞.

As |Mn|p ≤ supk |Mk|p ∈ L1 (P ) for all n ∈ N, it follows by Example 17.40 and
Exercise 17.5 that {|Mn|p}

∞
n=0 is uniformly integrable.

Theorem 23.70 (Optional sampling III – regular martingales). Suppose
that M = {Mn}∞n=0 is a regular martingale, σ and τ are arbitrary stopping
times. Define M∞ := limn→∞Mn which exists a.s.. Then M∞ ∈ L1 (P ) ,

Mτ = E [M∞|Bτ ] , E |Mτ | ≤ E |M∞| <∞ (23.60)

and
E [Mτ |Bσ] = Mσ∧τ a.s. (23.61)

Proof. By Theorem 23.67, M∞ ∈ L1 (Ω,B, P ) and Mn := EBnM∞ a.s. for
all n ≤ ∞. By Lemma 23.31,
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23.8 Martingale Closure and Regularity Results 347

EBτM∞ =
∑
n≤∞

1τ=nEBnM∞ =
∑
n≤∞

1τ=nMn = Mτ .

Hence we have |Mτ | = |EBτM∞| ≤ EBτ |M∞| a.s. and E |Mτ | ≤ E |M∞| < ∞.
An application of Theorem 23.32 now concludes the proof;

EBσMτ = EBσEBτM∞ = EBσ∧τM∞ = Mσ∧τ .

Definition 23.71. Let M = {Mn}∞n=0 be a martingale. We say that τ is a
regular stopping time for M if Mτ is a regular martingale.

Example 23.72. Every bounded martingale is regular. More generally if τ is a
stopping time such that Mτ is bounded, then τ is a regular stopping time for
M.

Remark 23.73. If τ is regular for M, then limn→∞Mτ
n := Mτ

∞ exists a.s. and in
L1 (P ) and hence

Mτ
n = E [Mτ

∞|Bn] for all n ≤ ∞ (23.62)

and
lim
n→∞

Mn = Mτ
∞ a.s. on {τ =∞} . (23.63)

Definition 23.74. If τ is regular stopping time for M, then we define Mτ as,

Mτ := Mτ
∞ = lim

n→∞
Mn∧τ =

{
Mτ if τ <∞
M∞ if τ =∞ . (23.64)

From Eq. (23.62) and the definition of Mτ we have

Mτ∧n = Mτ
n = E [Mτ

∞|Bn] = E [Mτ |Bn] for all n ≤ ∞ (23.65)

and further note that

E |Mτ | = lim
n→∞

E |Mτ
n | ≤ sup

n
E |Mτ

n | <∞.

Theorem 23.75. Suppose M = {Mn}∞n=0 is a martingale and σ, τ, are stopping
times such that τ is a regular stopping time for M. Then

EBσMτ = Mτ∧σ. (23.66)

If we further assume that σ ≤ τ a.s. then

Mσ
n = EBn [EBσMτ ] (23.67)

and σ is also regular for M.

Proof. By assumption, Mτ = limn→∞Mn∧τ exists almost surely and in
L1 (P ) and Mτ

n = E [Mτ |Bn] for n ≤ ∞.
1. Equation (23.66) is a consequence of;

EBσMτ =
∑
n≤∞

1σ=nEBnMτ =
∑
n≤∞

1σ=nM
τ
n = Mσ∧τ ,

wherein Lemma 23.31 was used for the first equality.
2. Applying EBσ to Eq. (23.65) using the optional sampling Theorem 23.40

and the tower property of conditional expectation (see Theorem 23.32) shows

Mσ
n = Mσ∧n = EBσMτ∧n = EBσEBnMτ = EBn [EBσMτ ] .

The regularity of Mσ now follows by item 1. of Theorem 23.67.

Proposition 23.76. Suppose that M is a martingale and τ is a stopping time.
Then τ is regular for M iff;

1. E [|Mτ | : τ <∞] <∞ and
2. {Mn1n<τ}∞n=0 is a uniformly integrable sequence of random variables.

Moreover, condition 1. is automatically satisfied if M is L1 – bounded, i.e.
if C := supn E |Mn| <∞.

Proof. ( =⇒ ) If τ is regular for M, Mτ ∈ L1 (P ) and Mτ
n = EBnMτ so that

Mn = EBnMτ a.s. on {n ≤ τ} . In particular it follows that

E [|Mτ | : τ <∞] ≤ E |Mτ | <∞

and
|Mn1n<τ | = |EBnMτ1n<τ | ≤ EBn |Mτ | a.s.

from which it follows that {Mn1n<τ}∞n=0 is uniformly integrable.
(⇐= ) Our goal is to show {Mτ

n}
∞
n=0 is uniformly integrable. We begin with

the identity;

E [|Mτ
n | : |Mτ

n | ≥ a] =E [|Mτ
n | : |Mτ

n | ≥ a, τ ≤ n]

+ E [|Mτ
n | : |Mτ

n | ≥ a, n < τ ] .

Since

E [|Mτ
n | : |Mτ

n | ≥ a, τ ≤ n] = E [|Mτ | : |Mτ | ≥ a, τ ≤ n]

≤ E [|Mτ1τ<∞| : |Mτ1τ<∞| ≥ a] ,

if follows (by assumption 1. that E [|Mτ1τ<∞|] <∞) that
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lim
a→∞

sup
n
E [|Mτ

n | : |Mτ
n | ≥ a, τ ≤ n] = 0.

Moreover for any a > 0,

sup
n
E [|Mτ

n | : |Mτ
n | ≥ a, n < τ ] = sup

n
E [|Mτ

n1n<τ | : |Mτ
n1n<τ | ≥ a]

and the latter term goes to zero as a → ∞ by assumption 2. Hence we have
shown,

lim
a→∞

sup
n
E [|Mτ

n | : |Mτ
n | ≥ a] = 0

as desired.
Now to prove the last assertion. If C := supn E |Mn| <∞, the (by Corollary

23.56) M∞ := limn→∞Mn a.s. and E |M∞| <∞. Therefore,

E [|Mτ | : τ <∞] ≤ E |Mτ | = E
[

lim
n→∞

|Mτ∧n|
]

≤ lim inf
n→∞

E |Mτ∧n| ≤ lim inf
n→∞

E |Mn| <∞

wherein we have used Fatou’s lemma, the optional sampling theorem to conclude
Mτ∧n = EBτ∧nMn, cJensen to conclude |Mτ∧n| ≤ EBτ∧n |Mn| , and the tower
property of conditional expectation to conclude E |Mτ∧n| ≤ E |Mn| .

Corollary 23.77. Suppose that M is an L1 – bounded martingale and J ∈ BR
is a bounded set, then τ = inf {n : Mn /∈ J} is a regular stopping time for M.

Proof. According to Proposition 23.76, it suffices to show {Mn1n<τ}∞n=0

is a uniformly integrable sequence of random variables. However, if we choose
A < ∞ such that J ⊂ [−A,A] , since Mn1n<τ ∈ J we have |Mn1n<τ | ≤ A
which is sufficient to complete the proof.

23.9 Backwards (Reverse) Submartingales

In this section we will consider submartingales indexed by Z− :=
{. . . ,−n,−n+ 1, . . . ,−2,−1, 0} . So again we assume that we have an
increasing filtration, {Bn : n ≤ 0} , i.e. · · · ⊂ B−2 ⊂ B−1 ⊂ B0 ⊂ B. As
usual, we say an adapted process {Xn}n≤0 is a submartingale (martingale)
provided E [Xn −Xm|Bn] ≥ 0 (= 0) for all m ≤ n. Observe that EXn ≥ EXm

for n ≥ m, so that EX−n decreases as n increases. Also observe that(
X−n, X−(n−1), . . . , X−1, X0

)
is a “finite string” submartingale relative to the

filtration, B−n ⊂ B−(n−1) ⊂ · · · ⊂ B−1 ⊂ B0.

Fig. 23.5. A sample path of a backwards martingale on [−100, 0] indicating the
down crossings of X0, X−1, . . . , X−100 and the upcrossings of X−100, X−99, . . . , X0.
The total number of each is the same.

Remark 23.78. For all n ∈ Z− we have Xn ≤ E [X0|Bn] and therefore by
the same argument in Lemma 23.52 we have X+

n ≤ E
[
X+

0 |Bn
]
. In partic-

ular we conclude that {X+
n }n∈Z− is uniformly integrable. In general, back-

wards submartingales are even better behaved than forward submartingales.
To see this even more clearly notice if {Mn}n≤0 is a backwards martingale,
then E [Mn|Bm] = Mm∧n for all m,n ≤ 0. Taking n = 0 in this equation im-
plies that Mm = E [M0|Bm] and so the only backwards martingales are of the
form Mm = E [M0|Bm] for some M0 ∈ L1 (P ) . We have seen in Example 23.7
that this need not be the case for forward martingales.

Theorem 23.79 (Backwards (or reverse) submartingale convergence).
Let {Bn : n ≤ 0} be a reverse filtration, {Xn}n≤0 is a backwards submartingale.

Then X−∞ = limn→−∞Xn exists a.s. in {−∞} ∪ R and X+
−∞ ∈ L1 (Ω,B, P ) .

If we further assume that10

10 Since X−n = X+
n −Xn, it follows from Remark 23.78 that
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C := lim
n→−∞

EXn = inf
n≤0

EXn > −∞, (23.68)

then 1) Xn = Mn+An where {Mn}−∞<n≤0 is a martingale, {An}−∞<n≤0 is a
predictable process such that A−∞ = limn→−∞An = 0, 2) {Xn}n≤0 is uniformly

integrability, 3) X−∞ ∈ L1 (Ω,B, P ) , and 4) limn→−∞ E |Xn −X−∞| = 0.

Proof. The number of downcrossings of
(
X0, X−1, . . . , X−(n−1), X−n

)
across [a, b] , (denoted by Dn (a, b)) is equal to the number of upcross-
ings,

(
X−n, X−(n−1), . . . , X−1, X0

)
across [a, b] , see Figure 23.5. Since(

X−n, X−(n−1), . . . , X−1, X0

)
is a B−n ⊂ B−(n−1) ⊂ · · · ⊂ B−1 ⊂ B0 sub-

martingale, we may apply Doob’s upcrossing inequality (Theorem 23.53) to
find;

(b− a)E [Dn (a, b)] ≤ E (X0 − a)+ − E (X−n − a)+

≤ E (X0 − a)+ <∞. (23.69)

Letting D∞ (a, b) :=↑ limn→∞Dn (a, b) be the total number of downcrossing of
(X0, X−1, . . . , X−n, . . . ) , using the MCT to pass to the limit in Eq. (23.69), we
have

(b− a)E [D∞ (a, b)] ≤ E (X0 − a)+ <∞.

In particular it follows that D∞ (a, b) <∞ a.s. for all a < b.
As in the proof of Corollary 23.56 (making use of the obvious downcrossing

analogue of Lemma 23.55), it follows that X−∞ := limn→−∞Xn exists in R̄
a.s. At the end of the proof, we will show that X−∞ takes values in {−∞} ∪R
almost surely, i.e. X−∞ <∞ a.s.

Now suppose that C > −∞. We begin by computing the Doob decom-
position of Xn as Xn = Mn + An with An being predictable, increasing and
satisfying, A−∞ = limn→−∞An = 0. If such an A is to exist, following Lemma
23.17, we should define

An =
∑
k≤n

E [∆kX|Bk−1] where ∆kX := Xk −Xk−1.

This is a well defined increasing predictable process since the submartingale
property implies E [∆kX|Bk−1] ≥ 0. Moreover we have

EX−n = EX+
n − EXn ≤ EX+

0 − inf
n≤0

EXn = EX+
0 − C

and
E |Xn| ≤ EX+

n + EX−n ≤ 2EX+
0 − C.

Therefore C > −∞ iff supn≤∞ E |Xn| <∞.

EA0 =
∑
k≤0

E [E [∆kX|Bk−1]] =
∑
k≤0

E [∆kX]

= lim
N→∞

(EX0 − EX−N ) = EX0 − inf
n≤0

EXn = EX0 − C <∞.

As 0 ≤ An ≤ A∗n = A0 ∈ L1 (P ) , it follows that {An}n≤0 is uniformly inte-
grable. Moreover if we define Mn := Xn −An, then

E [∆nM |Bn−1] = E [∆nX −∆nA|Bn−1] = E [∆nX|Bn−1]−∆nA = 0 a.s.

Thus M is a martingale and therefore, Mn = E [M0|Bn] with M0 = X0 −
A0 ∈ L1 (P ) . An application of Proposition 23.8 implies {Mn}n≤0 is uniformly
integrable and henceXn = Mn+An is uniformly integrable as well. (See Remark
23.80 for an alternate proof of the uniform integrability of X.) Therefore X−∞ ∈
L1 (Ω,B, P ) and Xn → X−∞ in L1 (Ω,B, P ) as n→∞.

To finish the proof we must show without assuming C > −∞ that X+
−∞ ∈

L1 (Ω,B, P ) which will then also imply P (X−∞ =∞) = 0. To prove this, notice
that X+

−∞ = limn→−∞X+
n and that (by Jensen’s inequality) {X+

n }
∞
n=1 is a

non-negative backwards submartingale. Since inf EX+
n ≥ 0 > −∞, it follows by

what we have just proved that X+
−∞ ∈ L1 (Ω,B, P ) .

Remark 23.80 (*Not necessary to read.). Let us give a direct proof of the fact
that X is uniformly integrable if C > −∞. We begin with Jensen’s inequality;

E |Xn| = 2EX+
n − EXn ≤ 2EX+

0 − EXn ≤ 2EX+
0 − C = K <∞, (23.70)

which shows that {Xn}∞n=1 is L1 - bounded. For uniform integrability we will
use the following identity;

E [|X| : |X| ≥ λ] = E [X : X ≥ λ]− E [X : X ≤ −λ]

= E [X : X ≥ λ]− (EX−E [X : X > −λ])

= E [X : X ≥ λ] + E [X : X > −λ]− EX.

Taking X = Xn and k ≥ n, we find

E [|Xn| : |Xn| ≥ λ] =E [Xn : Xn ≥ λ] + E [Xn : Xn > −λ]− EXn

≤E [Xk : Xn ≥ λ] + E [Xk : Xn > −λ]

− EXk + (EXk − EXn)

=E [Xk : Xn ≥ λ]− E [Xk : Xn ≤ −λ] + (EXk − EXn)

=E [|Xk| : |Xn| ≥ λ] + (EXk − EXn) .

Given ε > 0 we may choose k = kε < 0 such that if n ≤ k, 0 ≤ EXk −EXn ≤ ε
and hence
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lim sup
λ↑∞

sup
n≤k

E [|Xn| : |Xn| ≥ λ] ≤ lim sup
λ↑∞

E [|Xk| : |Xn| ≥ λ] + ε ≤ ε

wherein we have used Eq. (23.70), Chebyschev’s inequality to conclude
P (|Xn| ≥ λ) ≤ K/λ and then the uniform integrability of the singleton set,
{|Xk|} ⊂ L1 (Ω,B, P ) . From this it now easily follows that {Xn}n≤0 is a uni-
formly integrable.

Corollary 23.81. Suppose 1 ≤ p <∞ and Xn = Mn in Theorem 23.79, where
Mn is an Lp – bounded martingale on −N∪{0} . Then M−∞ := limn→∞Mn ex-
ists a.s. and in Lp (P ) . Moreover M−∞ = E [M0|B−∞] , where B−∞ = ∩n≤0Bn.

Proof. Since Mn = E [M0|Bn] for all n, it follows by cJensen that |Mn|p ≤
E [|M0|p |Bn] for all n. By Proposition 23.8, {E [|M0|p |Bn]}n≤0 is uniformly

integrable and so is {|Mn|p}n≤0 . By Theorem 23.79, Mn → M−∞ a.s.. Hence
we may now apply Theorem 17.55 to see that Mn →M−∞ in Lp (P ) .

Example 23.82 (Kolmogorov’s SLLN). In this example we are going to give
another proof of the strong law of large numbers in Theorem 21.10, also
see Theorem 25.31 below for a third proof. Let {Xn}∞n=1 be i.i.d. random
variables such that EXn = 0 and let S0 = 0, Sn := X1 + · · · + Xn and
B−n = σ (Sn, Sn+1, Sn+2, . . . ) so that Sn is B−n measurable for all n ≥ 0.
[The first three items below give a solution to Exercise 19.8.]

1. For any permutation σ of the set {1, 2, . . . , n} ,

(X1, . . . , Xn, Sn, Sn+1, Sn+2, . . . )
d
= (Xσ1, . . . , Xσn, Sn, Sn+1, Sn+2, . . . )

and in particular

(Xj , Sn, Sn+1, Sn+2, . . . )
d
= (X1, Sn, Sn+1, Sn+2, . . . ) for all j ≤ n.

2. By Exercise 19.7 we may conclude that

E [Xj |B−n] = E [X1|B−n] a.s. for all j ≤ n. (23.71)

To see this directly notice that if σ is any permutation of N leaving
{n+ 1, n+ 2, . . . } fixed, then

E [g (X1, . . . , Xn) · f (Sn, Sn+1, . . . )] = E [g (Xσ1, . . . , Xσn) · f (Sn, Sn+1, . . . )]

for all bounded measurable f and g such that g (X1, . . . , Xn) ∈ L1 (P ) .
From this equation it follows that

E [g (X1, . . . , Xn) |B−n] = E [g (Xσ1, . . . , Xσn) |B−n] a.s.

and then taking g (x1, . . . , xn) = x1 give the desired result. The point is

that (X1, X2, . . . )
d
= (Xσ1, Xσ2, . . . ) and

Sσk :=

k∑
`=1

Xσ` =

k∑
`=1

X` = Sk for all k ≥ n.

This argument generalizes to {Xj}∞j=1 which are exchangeable, i.e. we

only need (X1, X2, . . . )
d
= (Xσ1, Xσ2, . . . ) for all permutations σ such that

σ (k) = k for a.a. k.
3. Summing Eq. (23.71) over j = 1, 2, . . . , n gives,

Sn = E [Sn|Sn, Sn+1, Sn+2, . . . ] = nE [X1|Sn, Sn+1, Sn+2, . . . ]

from which it follows that

M−n :=
Sn
n

:= E [X1|Sn, Sn+1, Sn+2, . . . ] (23.72)

and hence
{
M−n = 1

nSn
}

is a backwards martingale.
4. By Theorem 23.79 we know;

lim
n→∞

Sn
n

= lim
n→−∞

M−n =: M−∞ exists a.s. and in L1 (P ) .

5. Since M−∞ = limn→∞
Sn
n is a {σ (X1, . . . , Xn)}∞n=1 – tail random variable

it follows by Example 15.78 (basically by Kolmogorov’s zero one law of
Proposition 15.77) that limn→∞

Sn
n = c a.s. for some constant c.

6. Since Sn
n → c in L1 (P ) we may conclude that

c = lim
n→∞

E
Sn
n

= EX1.

Thus we have given another proof of Kolmogorov’s strong law of large num-
bers.

The next Hilbert space exercise could be used as the basis of a proof the L2

and then L1 – convergence of backwards martingales.

Exercise 23.15. Suppose that {Mn}∞n=1 is a decreasing sequence of closed sub-
spaces of a Hilbert space, H. Let M∞ := ∩∞n=1Mn. Show limn→∞ PMn

x =
PM∞x for all x ∈ H. [Hint: you might make use of Exercise 18.5.]
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23.10 Some More Martingale Exercises

(The next four problems were taken directly from
http://math.nyu.edu/˜sheff/martingalenote.pdf.)

Exercise 23.16. Suppose Harriet has 7 dollars. Her plan is to make one dollar
bets on fair coin tosses until her wealth reaches either 0 or 50, and then to go
home. What is the expected amount of money that Harriet will have when she
goes home? What is the probability that she will have 50 when she goes home?

Exercise 23.17. Consider a contract that at time N will be worth either 100
or 0. Let Sn be its price at time 0 ≤ n ≤ N . If Sn is a martingale, and S0 = 47,
then what is the probability that the contract will be worth 100 at time N?

Exercise 23.18. Pedro plans to buy the contract in the previous problem at
time 0 and sell it the first time T at which the price goes above 55 or below 15.
What is the expected value of ST ? You may assume that the value, Sn, of the
contract is bounded – there is only a finite amount of money in the world up
to time N. Also note, by assumption, T ≤ N.

Exercise 23.19. Suppose SN is with probability one either 100 or 0 and that
S0 = 50. Suppose further there is at least a 60% probability that the price will
at some point dip to below 40 and then subsequently rise to above 60 before
time N . Prove that Sn cannot be a martingale. (I don’t know if this problem
is correct! but if we modify the 40 to a 30 the buy low sell high strategy will
show that {Sn} is not a martingale.)

Exercise 23.20. Let (Mn)∞n=0 be a martingale with M0 = 0 and E[M2
n] < ∞

for all n. Show that for all λ > 0,

P

(
max

1≤m≤n
Mm ≥ λ

)
≤ E[M2

n]

E[M2
n] + λ2

.

Hints: First show that for any c > 0 that
{
Xn := (Mn + c)2

}∞
n=0

is a
submartingale and then observe,{

max
1≤m≤n

Mm ≥ λ
}
⊂
{

max
1≤m≤n

Xn ≥ (λ+ c)2

}
.

Now use Doob’ Maximal inequality (Proposition 23.43) to estimate the proba-
bility of the last set and then choose c so as to optimize the resulting estimate
you get for P (max1≤m≤nMm ≥ λ) . (Notice that this result applies to −Mn as
well so it also holds that;

P

(
min

1≤m≤n
Mm ≤ −λ

)
≤ E[M2

n]

E[M2
n] + λ2

for all λ > 0.

Exercise 23.21. Let {Zn}∞n=1 be independent random variables, S0 = 0 and

Sn := Z1 + · · · + Zn, and fn (λ) := E
[
eiλZn

]
. Suppose EeiλSn =

∏N
n=1 fn (λ)

converges to a continuous function, F (λ) , as N → ∞. Show for each λ ∈ R
that

P
(

lim
n→∞

eiλSn exists
)

= 1. (23.73)

Hints:

1. Show it is enough to find an ε > 0 such that Eq. (23.73) holds for |λ| ≤ ε.
2. Choose ε > 0 such that |F (λ)− 1| < 1/2 for |λ| ≤ ε. For |λ| ≤ ε, show

Mn (λ) := eiλSn

EeiλSn is a bounded complex11 martingale relative to the filtra-
tion, Bn = σ (Z1, . . . , Zn) .

Lemma 23.83 (Protter [36, See the lemma on p. 22.]). Let {xn}∞n=1 ⊂ R
such that

{
eiuxn

}∞
n=1

is convergent for Lebesgue almost every u ∈ R. Then
limn→∞ xn exists in R.

Proof. Let U be a uniform random variable with values in [0, 1] . By as-
sumption, for any t ∈ R, limn→∞ eitUxn exists a.s. Thus if nk and mk are any
increasing sequences we have

lim
k→∞

eitUxnk = lim
n→∞

eitUxn = lim
k→∞

eitUxmk a.s.

and therefore,

eit(Uxnk−Uxmk) =
eitUxnk

eitUxmk
→ 1 a.s. as k →∞.

Hence by DCT it follows that

E
[
eit(Uxnk−Uxmk)

]
→ 1 as k →∞

and therefore
(xnk − xmk) · U = Uxnk − Uxmk → 0

in distribution and hence in probability. But his can only happen if
(xnk − xmk)→ 0 as k →∞. As {nk} and {mk} were arbitrary, this suffices to
show {xn} is a Cauchy sequence.

Exercise 23.22 (Continuation of Exercise 23.21 – See Doob [8, Chap-
ter VII.5]). Let {Zn}∞n=1 be independent random variables. Use Exercise 23.21

an Lemma 23.83 to prove the series,
∑∞
n=1 Zn, converges in R a.s. iff

∏N
n=1 fn (λ)

converges to a continuous function, F (λ) as N →∞. Conclude from this that∑∞
n=1 Zn is a.s. convergent iff

∑∞
n=1 Zn is convergent in distribution.

11 Please use the obvious generalization of a martingale for complex valued processes.
It will be useful to observe that the real and imaginary parts of a complex martin-
gales are real martingales.
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23.10.1 More Random Walk Exercises

For the next four exercises, let {Zn}∞n=1 be a sequence of Bernoulli random
variables with P (Zn = ±1) = 1

2 and let S0 = 0 and Sn := Z1 + · · ·+Zn. Then
S becomes a martingale relative to the filtration, Bn := σ (Z1, . . . , Zn) with
B0 := {∅, Ω} – of course Sn is the (fair) simple random walk on Z. For any
a ∈ Z, let

σa := inf {n : Sn = a} .

Exercise 23.23. For a < 0 < b with a, b ∈ Z, let τ = σa ∧ σb. Explain why τ
is regular for S. Use this to show P (τ =∞) = 0. Hint: make use of Remark
23.73 and the fact that |Sn − Sn−1| = |Zn| = 1 for all n.

Exercise 23.24. In this exercise, you are asked to use the central limit Theorem
15.50 to prove again that P (τ =∞) = 0, Exercise 23.23. Hints: Use the central
limit theorem to show

1√
2π

∫
R
f (x) e−x

2/2dx ≥ f (0)P (τ =∞) (23.74)

for all f ∈ C3 (R→ [0,∞)) with M := supx∈R
∣∣f (3) (x)

∣∣ <∞. Use this inequal-
ity to conclude that P (τ =∞) = 0.

Exercise 23.25. Show

P (σb < σa) =
|a|

b+ |a|
(23.75)

and use this to conclude P (σb <∞) = 1, i.e. every b ∈ N is almost surely visited
by Sn. (This last result also follows by the Hewitt-Savage Zero-One Law, see
Example 15.82 where it is shown b is visited infinitely often.)

Hint: Using properties of martingales and Exercise 23.23, compute
limn→∞ E [Sσa∧σbn ] in two different ways.

Exercise 23.26. Let τ := σa ∧ σb. In this problem you are asked to show
E [τ ] = |a| b with the aid of the following outline.

1. Use Exercise 23.4 above to conclude Nn := S2
n − n is a martingale.

2. Now show
0 = EN0 = ENτ∧n = ES2

τ∧n − E [τ ∧ n] . (23.76)

3. Now use DCT and MCT along with Exercise 23.25 to compute the limit as
n→∞ in Eq. (23.76) to find

E [σa ∧ σb] = E [τ ] = b |a| . (23.77)

4. By considering the limit, a→ −∞ in Eq. (23.77), show E [σb] =∞.

For the next group of exercise we are now going to suppose that
P (Zn = 1) = p > 1

2 and P (Zn = −1) = q = 1 − p < 1
2 . As before let

Bn = σ (Z1, . . . , Zn) , S0 = 0 and Sn = Z1 + · · · + Zn for n ∈ N. Let us
review the method above and what you did in Exercise 22.15 above.

In order to follow the procedures above, we start by looking for a function,
ϕ, such that ϕ (Sn) is a martingale. Such a function must satisfy,

ϕ (Sn) = EBnϕ (Sn+1) = ϕ (Sn + 1) p+ ϕ (Sn − 1) q,

and this then leads us to try to solve the following difference equation for ϕ;

ϕ (x) = pϕ (x+ 1) + qϕ (x− 1) for all x ∈ Z. (23.78)

Similar to the theory of second order ODE’s this equation has two linearly
independent solutions which could be found by solving Eq. (23.78) with initial
conditions, ϕ (0) = 1 and ϕ (1) = 0 and then with ϕ (0) = 0 and ϕ (1) =
0 for example. Rather than doing this, motivated by second order constant
coefficient ODE’s, let us try to find solutions of the form ϕ (x) = λx with λ
to be determined. Doing so leads to the equation, λx = pλx+1 + qλx−1, or
equivalently to the characteristic equation,

pλ2 − λ+ q = 0.

The solutions to this equation are

λ =
1±
√

1− 4pq

2p
=

1±
√

1− 4p (1− p)
2p

=
1±

√
4p2 − 4p+ 1

2p
=

1±
√

(2p− 1)
2

2p
= {1, (1− p) /p} = {1, q/p} .

The most general solution to Eq. (23.78) is then given by

ϕ (x) = A+B (q/p)
x
.

Below we will take A = 0 and B = 1. As before let σa = inf {n ≥ 0 : Sn = a} .

Exercise 23.27. Let a < 0 < b and τ := σa ∧ σb.

1. Apply the method in Exercise 23.23 with Sn replaced by Mn := (q/p)
Sn to

show P (τ =∞) = 0. [Recall that {Mn}∞n=1 is a martingale as explained in
Example 23.14.]

2. Now use the method in Exercise 23.25 to show

P (σa < σb) =
(q/p)

b − 1

(q/p)
b − (q/p)

a
. (23.79)
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3. By letting a→ −∞ in Eq. (23.79), conclude P (σb =∞) = 0.

4. By letting b→∞ in Eq. (23.79), conclude P (σa <∞) = (q/p)
|a|
.

Exercise 23.28. Verify,

Mn := Sn − n (p− q)

and
Nn := M2

n − σ2n

are martingales, where σ2 = 1 − (p− q)2
. (This should be simple; see either

Exercise 23.4 or Exercise 23.3.)

Exercise 23.29. Using exercise 23.28, show

E (σa ∧ σb) =

b [1− (q/p)
a
] + a

[
(q/p)

b − 1
]

(q/p)
b − (q/p)

a

 (p− q)−1
. (23.80)

By considering the limit of this equation as a→ −∞, show

E [σb] =
b

p− q

and by considering the limit as b→∞, show E [σa] =∞.

23.11 Appendix: Some Alternate Proofs

This section may be safely omitted (for now).

Proof. Alternate proof of Theorem 23.40. Let A ∈ Bσ. Then

E [Xτ −Xσ : A] = E

[
N−1∑
k=0

1σ≤k<τ∆k+1X : A

]

=

N∑
k=1

E [∆kX : A ∩ {σ ≤ k < τ}] .

Since A ∈ Bσ, A ∩ {σ ≤ k} ∈ Bk and since {k < τ} = {τ ≤ k}c ∈ Bk, it follows
that A ∩ {σ ≤ k < τ} ∈ Bk. Hence we know that

E [∆k+1X : A ∩ {σ ≤ k < τ}]
≤
=
≥

0 respectively.

and hence that

E [Xτ −Xσ : A]
≤
=
≥

0 respectively.

Since this true for all A ∈ Bσ, Eq. (23.23) follows.

Lemma 23.84. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space, 1 ≤
p < ∞, and let B∞ := ∨∞n=1Bn := σ (∪∞n=1Bn) . Then ∪∞n=1L

p (Ω,Bn, P ) is
dense in Lp (Ω,B∞, P ) .

Proof. Let Mn := Lp (Ω,Bn, P ) , then Mn is an increasing sequence of
closed subspaces of M∞ = Lp (Ω,B∞, P ) . Further let A be the algebra of func-
tions consisting of those f ∈ ∪∞n=1Mn such that f is bounded. As a consequence
of the density Theorem 17.28, we know that A and hence ∪∞n=1Mn is dense in
M∞ = Lp (Ω,B∞, P ) . This completes the proof. However for the readers con-
venience let us quickly review the proof of Theorem 17.28 in this context.

Let H denote those bounded B∞ – measurable functions, f : Ω → R, for
which there exists {ϕn}∞n=1 ⊂ A such that limn→∞ ‖f − ϕn‖Lp(P ) = 0. A rou-
tine check shows H is a subspace of the bounded B∞ –measurable R – valued
functions on Ω, 1 ∈ H, A ⊂ H and H is closed under bounded convergence. To
verify the latter assertion, suppose fn ∈ H and fn → f boundedly. Then, by the
dominated (or bounded) convergence theorem, limn→∞ ‖(f − fn)‖Lp(P ) = 0.12

We may now choose ϕn ∈ A such that ‖ϕn − fn‖Lp(P ) ≤
1
n then

lim sup
n→∞

‖f − ϕn‖Lp(P ) ≤ lim sup
n→∞

‖(f − fn)‖Lp(P )

+ lim sup
n→∞

‖fn − ϕn‖Lp(P ) = 0,

which implies f ∈ H.
An application of Dynkin’s Multiplicative System Theorem 12.24, now shows

H contains all bounded σ (A) = B∞ – measurable functions on Ω. Since for any
f ∈ Lp (Ω,B, P ) , f1|f |≤n ∈ H there exists ϕn ∈ A such that ‖fn − ϕn‖p ≤ n−1.
Using the DCT we know that fn → f in Lp and therefore by Minkowski’s
inequality it follows that ϕn → f in Lp.

Theorem 23.85. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space,
1 ≤ p < ∞, and let B∞ := ∨∞n=1Bn := σ (∪∞n=1Bn) . Then for every
X ∈ Lp (Ω,B, P ) , Xn = E [X|Bn] is a martingale and Xn → X∞ := E [X|B∞]
in Lp (Ω,B∞, P ) as n→∞.

Proof. We have already seen in Example 23.6 that Xn = E [X|Bn] is always
a martingale. Since conditional expectation is a contraction on Lp it follows that
E |Xn|p ≤ E |X|p < ∞ for all n ∈ N∪{∞} . So to finish the proof we need to
show Xn → X∞ in Lp (Ω,B, P ) as n→∞.

Let Mn := Lp (Ω,Bn, P ) and M∞ = Lp (Ω,B∞, P ) . If X ∈ ∪∞n=1Mn, then
Xn = X for all sufficiently large n and for n =∞. Now suppose that X ∈M∞
and Y ∈ ∪∞n=1Mn. Then

12 It is at this point that the proof would break down if p =∞.
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‖EB∞X − EBnX‖p ≤ ‖EB∞X − EB∞Y ‖p + ‖EB∞Y − EBnY ‖p + ‖EBnY − EBnX‖p
≤ 2 ‖X − Y ‖p + ‖EB∞Y − EBnY ‖p

and hence
lim sup
n→∞

‖EB∞X − EBnX‖p ≤ 2 ‖X − Y ‖p .

Using the density Lemma 23.84 we may choose Y ∈ ∪∞n=1Mn as close to X ∈
M∞ as we please and therefore it follows that lim supn→∞ ‖EB∞X − EBnX‖p =
0.

For general X ∈ Lp (Ω,B, P ) it suffices to observe that X∞ := E [X|B∞] ∈
Lp (Ω,B∞, P ) and by the tower property of conditional expectations,

E [X∞|Bn] = E [E [X|B∞] |Bn] = E [X|Bn] = Xn.

So again Xn → X∞ in Lp as desired.
We are now ready to prove the converse of Theorem 23.85.

Theorem 23.86. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space,
1 ≤ p < ∞, B∞ := ∨∞n=1Bn := σ (∪∞n=1Bn) , and {Xn}∞n=1 ⊂ Lp (Ω,B, P )
is a martingale. Further assume that supn ‖Xn‖p < ∞ and that {Xn}∞n=1 is
uniformly integrable if p = 1. Then there exists X∞ ∈ Lp (Ω,B∞, P ) such that
Xn := E [X∞|B∞] . Moreover by Theorem 23.85 we know that Xn → X∞ in
Lp (Ω,B∞, P ) as n→∞ and hence X∞ is uniquely determined by {Xn}∞n=1 .

Proof. By Theorems 18.22 and 18.24 exists X∞ ∈ Lp (Ω,B∞, P ) and a
subsequence, Yk = Xnksuch that

lim
k→∞

E [Ykh] = E [X∞h] for all h ∈ Lq (Ω,B∞, P )

where q := p (p− 1)
−1
. Using the martingale property, if h ∈ (Bn)b for some n,

it follows that E [Ykh] = E [Xnh] for all large k and therefore that

E [X∞h] = E [Xnh] for all h ∈ (Bn)b .

This implies that Xn = E [X∞|Bn] as desired.

Theorem 23.87 (Almost sure convergence). Suppose (Ω,B, {Bn}∞n=0 , P )
is a filtered probability space, 1 ≤ p < ∞, and let B∞ := ∨∞n=1Bn :=
σ (∪∞n=1Bn) . Then for every X ∈ L1 (Ω,B, P ) , the martingale, Xn = E [X|Bn] ,
converges almost surely to X∞ := E [X|B∞] .

Before starting the proof, recall from Proposition 1.5, if {an}∞n=1 and
{bn}∞n=1 are two bounded sequences, then

lim sup
n→∞

(an + bn)− lim inf
n→∞

(an + bn)

≤ lim sup
n→∞

an + lim sup
n→∞

bn −
(

lim inf
n→∞

an + lim inf
n→∞

bn

)
= lim sup

n→∞
an − lim inf

n→∞
an + lim sup

n→∞
bn − lim inf

n→∞
bn. (23.81)

Proof. Since

Xn = E [X|Bn] = E [E [X|B∞] |Bn] = E [X∞|Bn] ,

there is no loss in generality in assuming X = X∞. If X ∈Mn := L1 (Ω,Bn, P ) ,
then Xm = X∞ a.s. for all m ≥ n and hence Xm → X∞ a.s. Therefore the
theorem is valid for any X in the dense (by Lemma 23.84) subspace ∪∞n=1Mn

of L1 (Ω,B∞, P ) .
For general X ∈ L1 (Ω,B∞, P ) , let Yj ∈ ∪Mn such that Yj → X ∈

L1 (Ω,B∞, P ) and let Yj,n := E [Yj |Bn] and Xn := E [X|Bn] . We know that
Yj,n → Yj,∞ a.s. for each j ∈ N and our goal is to show Xn → X∞ a.s. By
Doob’s inequality in Corollary 23.48 and the L1 - contraction property of con-
ditional expectation we know that

P (X∗N ≥ a) ≤ 1

a
E |XN | ≤

1

a
E |X|

and so passing to the limit as N →∞ we learn that

P

(
sup
n
|Xn| ≥ a

)
≤ 1

a
E |X| for all a > 0. (23.82)

Letting a ↑ ∞ then shows P (supn |Xn| =∞) = 0 and hence supn |Xn| < ∞
a.s. Hence we may use Eq. (23.81) with an = Xn − Yj,n and bn := Yj,n to find

D = lim sup
n→∞

Xn − lim inf
n→∞

Xn

≤ lim sup
n→∞

an − lim inf
n→∞

an + lim sup
n→∞

bn − lim inf
n→∞

bn

= lim sup
n→∞

an − lim inf
n→∞

an ≤ 2 sup
n
|an|

= 2 sup
n
|Xn − Yj,n| ,

wherein we have used lim supn→∞ bn− lim infn→∞ bn = 0 a.s. since Yj,n → Yj,∞
a.s.

We now apply Doob’s inequality one more time, i.e. use Eq. (23.82) with
Xn being replaced by Xn − Yj,n and X by X − Yj , to conclude,

P (D ≥ a) ≤ P
(

sup
n
|Xn − Yj,n| ≥

a

2

)
≤ 2

a
E |X − Yj | → 0 as j →∞.
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Since a > 0 is arbitrary here, it follows that D = 0 a.s., i.e. lim supn→∞Xn =
lim infn→∞Xn and hence limn→∞Xn exists in R almost surely. Since we already
know that Xn → X∞ in L1 (Ω,B, P ) , we may conclude that limn→∞Xn = X∞
a.s.

Alternative proof – see Stroock [43, Corollary 5.2.7]. Let H denote those
X ∈ L1 (Ω,Bn, P ) such that Xn := E [X|Bn] → X∞ a.s. As we saw above H
contains the dense subspace ∪∞n=1Mn. It is also easy to see that H is a linear
space. Thus it suffices to show that H is closed in L1 (P ) . To prove this let

X(k) ∈ H with X(k) → X in L1 (P ) and let X
(k)
n := E

[
X(k)|Bn

]
. Then by the

maximal inequality in Eq. (23.82),

P

(
sup
n

∣∣∣Xn −X(k)
n

∣∣∣ ≥ a) ≤ 1

a
E
∣∣∣X −X(k)

∣∣∣ for all a > 0 and k ∈ N.

Therefore,

P

(
sup
n≥N
|X −Xn| ≥ 3a

)
≤ P

(∣∣∣X −X(k)
∣∣∣ ≥ a)+ P

(
sup
n≥N

∣∣∣X(k) −X(k)
n

∣∣∣ ≥ a)
+ P

(
sup
n≥N

∣∣∣X(k)
n −Xn

∣∣∣ ≥ a)
≤ 2

a
E
∣∣∣X −X(k)

∣∣∣+ P

(
sup
n≥N

∣∣∣X(k) −X(k)
n

∣∣∣ ≥ a)
and hence

lim sup
N→∞

P

(
sup
n≥N
|X −Xn| ≥ 3a

)
≤ 2

a
E
∣∣∣X −X(k)

∣∣∣→ 0 as k →∞.

Thus we have shown

lim sup
N→∞

P

(
sup
n≥N
|X −Xn| ≥ 3a

)
= 0 for all a > 0.

Since {
lim sup
n→∞

|X −Xn| ≥ 3a

}
⊂
{

sup
n≥N
|X −Xn| ≥ 3a

}
for all N,

it follows that

P

(
lim sup
n→∞

|X −Xn| ≥ 3a

)
= 0 for all a > 0

and therefore lim supn→∞ |X −Xn| = 0 (P a.s.) which shows that X ∈ H.
(This proof works equally as well in the case that X is a Banach valued random
variable. One only needs to replace the absolute values in the proof by the
Banach norm.)





24

Some Martingale Examples and Applications

Exercise 24.1. Let Sn be the total assets of an insurance company in year
n ∈ N0. Assume S0 > 0 is a constant and that for all n ≥ 1 that Sn =
Sn−1 + ξn, where ξn = c− Zn and {Zn}∞n=1 are i.i.d. random variables having
the normal distribution with mean µ < c and variance σ2. (The number c is
to be interpreted as the yearly premium.) Let R = {Sn ≤ 0 for some n} be the
event that the company eventually becomes bankrupt, i.e. is Ruined. Show

P (Ruin) = P (R) ≤ e−2(c−µ)S0/σ
2

.

Outline:

1. Show that λ = −2 (c− µ) /σ2 < 0 satisfies, E
[
eλξn

]
= 1.

2. With this λ show

Yn := exp (λSn) = eλS0

n∏
j=1

eλξj (24.1)

is a non-negative Bn = σ(Z1, . . . , Zn) – martingale.
3. Use a martingale convergence theorem to argue that limn→∞ Yn = Y∞

exists a.s. and then use Fatou’s lemma to show EYτ ≤ eλS0 .
4. Finally conclude that

P (R) ≤ E [Yτ : τ <∞] ≤ EYτ ≤ eλS0 = e−2(c−µ)S0/σ
2

.

Observe that by the strong law of large numbers that limn→∞
Sn
n = Eξ1 =

c − µ > 0 a.s. Thus for large n we have Sn ∼ n (c− µ) → ∞ as n → ∞.
The question we have addressed is what happens to the Sn for intermediate
values – in particular what is the likelyhood that Sn makes a sufficiently “large
deviation” from the “typical” value of n (c− µ) in order for the company to go
bankrupt.

24.1 Aside on Large Deviations

The goal of this short section is to give a prototypical method of estimating
the probabilities of unlikely events, i.e. of “large deviations” from the typical
behaviors. For the example give here we are going to consider events of the form

{Sn ≥ n`} where Sn := Z1+· · ·+Zn with {Zn}∞n=1 being i.i.d. random variables.
By the law of large numbers this event should be rare whenever ` > EZ1. We
begin with some basic notation.

Definition 24.1. A real valued random variable, Z, is said to be exponentially
integrable if M (θ) := E

[
eθZ
]
<∞ for all θ ∈ R. The function M is called the

moment generating function of Z and we further let ψ (θ) := lnM (θ) =
lnE

[
eθZ
]

be the log-moment generating function of Z.

Theorem 24.2 (Large Deviation Upper Bound). Let, for n ∈ N, Sn :=
Z1 + · · ·+Zn where {Zn}∞n=1 be i.i.d. exponentially integrable random variables

such that EZ = 0 where Z
d
= Zn. Then for all ` > 0,

P (Sn ≥ n`) ≤ e−nI(`) (24.2)

where I (`) is the “Legendre transformation” of the log-moment generating
function, ψ (θ) = lnE

[
eθZ
]
, defined by

I (`) = sup
θ≥0

(θ`− ψ (θ)) = sup
θ∈R

(θ`− ψ (θ)) ≥ 0. (24.3)

In particular,

lim sup
n→∞

lnP (Sn ≥ n`) ≤ −I (`) for all ` > 0. (24.4)

Proof. Let {Zn}∞n=1 be i.i.d. exponentially integrable random variables such

that EZ = 0 where Z
d
= Zn. Then for ` > 0 we have for any θ ≥ 0 that

P (Sn ≥ n`) = P
(
eθSn ≥ eθn`

)
≤ e−θn`E

[
eθSn

]
=
(
e−θ`E

[
eθZ
])n

=
(
e−[θ`−ψ(θ)]

)n
= exp (−n (θ`− ψ (θ))) .

Minimizing the far right member of this inequality over θ ≥ 0 gives the
upper bound in Eq. (24.2) where I (`) is given as in the first equality in Eq.
(24.3).

To prove the second equality in Eq. (24.3), we use the fact that eθx is a
convex function in x for all θ ∈ R and therefore by Jensen’s inequality,
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M (θ) = E
[
eθZ
]
≥ eθEX = eθ0 = 1 for all θ ∈ R.

This then implies that ψ (θ) = lnM (θ) ≥ 0 for all θ ∈ R. In particular, θ` −
ψ (θ) < 0 for θ < 0 while [θ`− ψ (θ)] |θ=0 = 0 and therefore

sup
θ∈R

(θ`− ψ (θ)) = sup
θ≥0

(θ`− ψ (θ)) ≥ 0.

This completes the proof as Eq. (24.4) easily follows from Eq. (24.2).

Theorem 24.3 (Large Deviation Lower Bound). If there is a maximizer,
θ0, for the the function θ → θ`− ψ (θ) , then

lim inf
n→∞

1

n
lnP (Sn ≥ n`) ≥ −I (`) = θ0`− ψ (θ0) . (24.5)

Combining this result with Eq. (24.4) then implies,

lim
n→∞

1

n
lnP (Sn ≥ n`) = −I (`) = θ0`− ψ (θ0) .

Proof. If there is a maximizer, θ0, for the the function θ → θ`−ψ (θ) , then

0 = `− ψ′ (θ0) = `− M ′ (θ0)

M (θ0)
= `−

E
[
Zeθ0Z

]
M (θ0)

.

Thus if W is a random variable with law determined by

E [f (W )] = M (θ0)
−1 E

[
f (Z) eθ0Z

]
for all non-negative functions f : R→ [0,∞] then E [W ] = `.

Suppose that {Wn}∞n=1 has been chosen to be a sequence of i.i.d. random

variables such that Wn
d
= W for all n. Then, for all non-negative functions

f : Rn → [0,∞] we have

E [f (W1, . . . ,Wn)] = M (θ0)
−n E

[
f (Z1, . . . , Zn)

n∏
i=1

eθ0Zi

]
= M (θ0)

−n E
[
f (Z1, . . . , Zn) eθ0Sn

]
.

This is easily verified by showing the right side of this equation gives the cor-
rect expectations when f is a product function. Replacing f (z1, . . . , zn) by
M (θ0)

n
e−θ0(z1+...zn)f (z1, . . . , zn) in the previous equation then shows

E [f (Z1, . . . , Zn)] = M (θ0)
n E
[
f (W1, . . . ,Wn) e−θ0Tn

]
(24.6)

where Tn := W1 + · · ·+Wn.

Taking δ > 0 and f (z1, . . . , zn) = 1z1+···+zn≥n` in Eq. (24.6) shows

P (Sn ≥ n`) = M (θ0)
n E
[
e−θ0Tn : n` ≤ Tn

]
≥M (θ0)

n E
[
e−θ0Tn : n` ≤ Tn ≤ n (`+ δ)

]
≥M (θ0)

n
e−nθ0(`+δ)P [n` ≤ Tn ≤ n (`+ δ)]

= e−nI(`)e−nθ0δP [n` ≤ Tn ≤ n (`+ δ)] .

Taking logarithms of this equation, then dividing by n, then letting n→∞ we
learn

lim inf
n→∞

1

n
lnP (Sn ≥ n`) ≥ −I (`)− θ0`δ + lim

n→∞

1

n
lnP [n` ≤ Tn ≤ n (`+ δ)]

= −I (`)− θ0`δ + 0 (24.7)

wherein have used the central limit theorem to argue that

P [n` ≤ Tn ≤ n (`+ δ)] = P [0 ≤ Tn − n` ≤ nδ]

= P

[
0 ≤ Tn − n`√

n
≤
√
nδ

]
→ 1

2
as n→∞.

Equation (24.5) now follows from Eq. (24.7) as δ > 0 was arbitrary.

Example 24.4. Suppose that Z
d
= N

(
0, σ2

) d
= σN where N

d
= N (0, 1) , then

M (θ) = E
[
eθZ
]

= E
[
eθσN

]
= exp

(
1

2
(σθ)

2

)
and therefore ψ (θ) = lnM (θ) = 1

2σ
2θ2. Moreover for ` > 0,

` = ψ′ (θ) =⇒ ` = σ2θ =⇒ θ0 =
`

σ2
.

Thus it follows that

I (`) = θ0`− ψ (θ0) =
`2

σ2
− 1

2
σ2

(
`

σ2

)2

=
1

2

`2

σ2
.

In this Gaussian case we actually know that Sn
d
= N

(
0, nσ2

)
and therefore by

Mill’s ratio (see Lemma 10.65),

P (Sn ≥ n`) = P
(√
nσN ≥ n`

)
= P

(
N ≥

√
n
`

σ

)
∼ 1√

2πn `σ
e−n

1
2
`2

σ2 =
σ√

2πn`
e−nI(`) as n→∞.
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Remark 24.5. The technique used in the proof of Theorem 24.3 was to make a
change of measure so that the large deviation (from the usual) event with small
probability became typical behavior with substantial probability. One could
imaging making other types of change of distribution of the form

E [f (W )] =
E [f (Z) ρ (Z)]

E [ρ (Z)]

where ρ is some positive function. Under this change of measure the analogue
of Eq. (24.6) is

E [f (Z1, . . . , Zn)] = (E [ρ (Z)])
n · E

f (W1, . . . ,Wn)

n∏
j=1

1

ρ (Wi)

 .
However to make this change of variable easy to deal with in the setting at
hand we would like to further have

n∏
j=1

1

ρ (Wj)
= fn (Tn) = fn (W1 + · · ·+Wn)

for some function fn. Equivalently we would like, for some function gn, that

n∏
j=1

ρ (wj) = gn (w1 + · · ·+ wn)

for all wi. Taking logarithms of this equation and differentiating in the wj and
wk variables shows,

ρ′ (wj)

ρ (wj)
= (ln gn)

′
(w1 + · · ·+ wn) =

ρ′ (wk)

ρ (wk)
.

From the extremes of this last equation we conclude that ρ′ (wj) /ρ (wj) = c
(for some constant c) and therefore ρ (w) = Kecw for some constant K. This
helps to explain why the exponential function is used in the above proof.

24.2 A Polya Urn Model

In this section we are going to analyze the long run behavior of the Polya urn
Markov process which was introduced in Exercise 22.4. Recall that if the urn
contains r red balls and g green balls at a given time we draw one of these balls
at random and replace it and add c more balls of the same color drawn. Let
(rn, gn) be the number of red and green balls in the earn at time n. Then we
have

P ((rn+1, gn) = (r + c, g) | (rn, gn) = (r, g)) =
r

r + g
and

P ((rn+1, gn) = (r, g + c) | (rn, gn) = (r, g)) =
g

r + g
.

Let us observe that rn+gn = r0 +g0 +nc and hence if we let Xn be the fraction
of green balls in the urn at time n,

Xn :=
gn

rn + gn
,

then
Xn :=

gn
rn + gn

=
gn

r0 + g0 + nc
.

We now claim that {Xn}∞n=0 is a martingale relative to

Bn := σ ((rk, gk) : k ≤ n) = σ (Xk : k ≤ n) .

Indeed,

E [Xn+1|Bn] = E [Xn+1|Xn]

=
rn

rn + gn
· gn
rn + gn + c

+
gn

rn + gn
· gn + c

rn + gn + c

=
gn

rn + gn
· rn + gn + c

rn + gn + c
= Xn.

Since Xn ≥ 0 and EXn = EX0 <∞ for all n it follows by Corollary 23.56 that
X∞ := limn→∞Xn exists a.s. The distribution of X∞ is described in the next
theorem.

Theorem 24.6. Let γ := g/c and ρ := r/c and µ := LawP (X∞) . Then µ is
the beta distribution on [0, 1] with parameters, γ, ρ, i.e.

dµ (x) =
Γ (ρ+ γ)

Γ (ρ)Γ (γ)
xγ−1 (1− x)

ρ−1
dx for x ∈ [0, 1] . (24.8)

Proof. We will begin by computing the distribution of Xn. As an example,
the probability of drawing 3 greens and then 2 reds is

g

r + g
· g + c

r + g + c
· g + 2c

r + g + 2c
· r

r + g + 3c
· r + c

r + g + 4c
.

More generally, the probability of first drawing m greens and then n−m reds
is

g · (g + c) · · · · · (g + (n− 1) c) · r · (r + c) · · · · · (r + (n−m− 1) c)

(r + g) · (r + g + c) · · · · · (r + g + (n− 1) c)
.
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Since this is the same probability for any of the
(
n
m

)
– ways of drawing m greens

and n−m reds in n draws we have

P (Draw m – greens)

=

(
n

m

)
g · (g + c) · · · · · (g + (m− 1) c) · r · (r + c) · · · · · (r + (n−m− 1) c)

(r + g) · (r + g + c) · · · · · (r + g + (n− 1) c)

=

(
n

m

)
γ · (γ + 1) · · · · · (γ + (m− 1)) · ρ · (ρ+ 1) · · · · · (ρ+ (n−m− 1))

(ρ+ γ) · (ρ+ γ + 1) · · · · · (ρ+ γ + (n− 1))
.

(24.9)

Before going to the general case let us warm up with the special case, g = r =
c = 1. In this case Eq. (24.9) becomes,

P (Draw m – greens) =

(
n

m

)
1 · 2 · · · · ·m · 1 · 2 · · · · · (n−m)

2 · 3 · · · · · (n+ 1)
=

1

n+ 1
.

On the set, {Draw m – greens} , we have Xn = 1+m
2+n and hence it follows that

for any f ∈ C ([0, 1]) that

E [f (Xn)] =

n∑
m=0

f

(
m+ 1

n+ 2

)
· P (Draw m – greens)

=

n∑
m=0

f

(
m+ 1

n+ 2

)
1

n+ 1
.

Therefore

E [f (X)] = lim
n→∞

E [f (Xn)] =

∫ 1

0

f (x) dx (24.10)

and hence we may conclude that X∞ has the uniform distribution on [0, 1] .
For the general case, recall from Example 10.46 that n! = Γ (n + 1),

Γ (t+ 1) = tΓ (t) , and therefore for m ∈ N,

Γ (x+m) = (x+m− 1) (x+m− 2) . . . (x+ 1)xΓ (x) . (24.11)

Also recall Stirling’s formula in Eq. (10.57) (also see Theorem 10.66) that

Γ (x) =
√

2πxx−1/2e−x [1 + r (x)] (24.12)

where |r (x)| → 0 as x → ∞. To finish the proof we will follow the strategy of
the proof of Eq. (24.10) using Stirling’s formula to estimate the expression for
P (Draw m – greens) in Eq. (24.9).

On the set, {Draw m – greens} , we have

Xn =
g +mc

r + g + nc
=

γ +m

ρ+ γ + n
=: xm,

where ρ := r/c and γ := g/c. For later notice that ∆mx = γ
ρ+γ+n .

Using this notation we may rewrite Eq. (24.9) as

P (Draw m – greens)

=

(
n

m

) Γ (γ+m)
Γ (γ) · Γ (ρ+n−m)

Γ (ρ)

Γ (ρ+γ+n)
Γ (ρ+γ)

=
Γ (ρ+ γ)

Γ (ρ)Γ (γ)
· Γ (n+ 1)

Γ (m+ 1)Γ (n−m+ 1)

Γ (γ +m)Γ (ρ+ n−m)

Γ (ρ+ γ + n)
. (24.13)

Now by Stirling’s formula,

Γ (γ +m)

Γ (m+ 1)
=

(γ +m)
γ+m−1/2

e−(γ+m) [1 + r (γ +m)]

(1 +m)
m+1−1/2

e−(m+1) [1 + r (1 +m)]

= (γ +m)
γ−1 ·

(
γ +m

m+ 1

)m+1/2

e−(γ−1) 1 + r (γ +m)

1 + r (m+ 1)
.

= (γ +m)
γ−1 ·

(
1 + γ/m

1 + 1/m

)m+1/2

e−(γ−1) 1 + r (γ +m)

1 + r (m+ 1)

We will keep m fairly large, so that(
1 + γ/m

1 + 1/m

)m+1/2

= exp

(
(m+ 1/2) ln

(
1 + γ/m

1 + 1/m

))
∼= exp ((m+ 1/2) (γ/m− 1/m)) ∼= eγ−1.

Hence we have
Γ (γ +m)

Γ (m+ 1)
� (γ +m)

γ−1
.

Similarly, keeping n−m fairly large, we also have

Γ (ρ+ n−m)

Γ (n−m+ 1)
� (ρ+ n−m)

ρ−1
and

Γ (ρ+ γ + n)

Γ (n+ 1)
� (ρ+ γ + n)

ρ+γ−1
.

Combining these estimates with Eq. (24.13) gives,
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P (Draw m – greens)

� Γ (ρ+ γ)

Γ (ρ)Γ (γ)
· (γ +m)

γ−1 · (ρ+ n−m)
ρ−1

(ρ+ γ + n)
ρ+γ−1

=
Γ (ρ+ γ)

Γ (ρ)Γ (γ)
·

(
γ+m
ρ+γ+n

)γ−1

·
(
ρ+n−m
ρ+γ+n

)ρ−1

(ρ+ γ + n)
ρ+γ−1

=
Γ (ρ+ γ)

Γ (ρ)Γ (γ)
· (xm)

γ−1 · (1− xm)
ρ−1

∆mx.

Therefore, for any f ∈ C ([0, 1]) , it follows that

E [f (X∞)] = lim
n→∞

E [f (Xn)]

= lim
n→∞

n∑
m=0

f (xm)
Γ (ρ+ γ)

Γ (ρ)Γ (γ)
· (xm)

γ−1 · (1− xm)
ρ−1

∆mx

=

∫ 1

0

f (x)
Γ (ρ+ γ)

Γ (ρ)Γ (γ)
xγ−1 (1− x)

ρ−1
dx.

24.3 Galton Watson Branching Process

This section is taken from [12, p. 245 –249]. Let {ξni : i, n ≥ 1} be a sequence
of i.i.d. non-negative integer valued random variables. Suppose that Zn is the
number of people in the nth – generation and ξn+1

1 , . . . , ξn+1
Zn

are the number of
off spring of the Zn people of generation n. Then

Zn+1 = ξn+1
1 + · · ·+ ξn+1

Zn

=

∞∑
k=1

(
ξn+1
1 + · · ·+ ξn+1

k

)
1Zn=k. (24.14)

represents the number of people present in generation, n+ 1. We complete the
description of the process, Zn by setting Z0 = 1 and Zn+1 = 0 if Zn = 0,
i.e. once the population dies out it remains extinct forever after. The process
{Zn}n≥0 is called a Galton-Watson Branching process, see Figure 24.1.

To understand Zn a bit better observe that

Z0 = 1

Z1 = 3

Z2 = 5

Z3 = 4

Fig. 24.1. A possible realization of a Galton Watson “tree.”

Z0 = 1,

Z1 = ξ1
Z0

= ξ1
1 ,

Z2 = ξ2
1 + · · ·+ ξ2

ξ1
1
,

Z3 = ξ3
1 + · · ·+ ξ3

Z2
,

...

The sample path in Figure 24.1 corresponds to

ξ1
1 = 3,

ξ2
1 = 2, ξ2

2 = 0, ξ2
3 = 3,

ξ3
1 = ξ3

2 = ξ3
3 = ξ3

4 = 0, ξ3
5 = 4, and

ξ4
1 = ξ4

2 = ξ4
3 = ξ4

4 = 0.

We will use later the intuitive fact that the different branches of the Galton-
Watson tree evolve independently of one another – you will be asked to make
this precise Exercise 24.4.

Let ξ
d
= ξmi , pk := P (ξ = k) be the off-spring distribution,

µ := Eξ =

∞∑
k=0

kpk,

which we assume to be finite.
Let B0 = {∅, Ω} and

Bn := σ (ξmi : i ≥ 1 and 1 ≤ m ≤ n) .
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Notation 24.7 Given a bounded function f : S = N0 → C, let Qf : S → C be
defined by bounded or non-negative let

Qf (0) := f (0) and

Qf (k) := E [f (Y1 + · · ·+ Yk)] for all k ≥ 1.

where {Yi}∞i=1 are i.i.d. with P (Yi = k) = pk for all k ∈ S. Also, for λ ∈ C with
|λ| ≤ 1 let

ϕ (λ) := E
[
λY1
]

=
∑
k≥0

pkλ
k (24.15)

be the moment generating function of {pk}∞k=0 .

Let us evaluate Qf for a couple of f. If f (k) = k, then

Qf (k) = E [Y1 + · · ·+ Yk] = k · µ =⇒ Qf = µf. (24.16)

Iff (k) = λk for some |λ| ≤ 1, then(
Qλ(·)

)
(k) = E

[
λY1+···+Yk

]
= ϕ (λ)

k
. (24.17)

Remark 24.8. Notice that

Qf (k) =
∑
l∈S

f (l) p∗kl

where
p∗kl := P (Y1 + · · ·+ Yk = l) =

∑
l1+···+lk=l

pl1 . . . plk

with the convention that p∗0n = δ0,n. For example

Exercise 24.2. Show that {Zn}∞n=0 is a time homogeneous Markov process
with one step transition kernel being Q, i.e. show

E [f (Zn+1) |Bn] = (Qf) (Zn) (24.18)

for all bounded or non-negative functions f : S = N0 → C. In particular verify
that

P (Zn = j|Zn−1 = k) = p∗kj for all j, k ∈ S and n ≥ 1

and
E
[
λZn |Bn−1

]
= ϕ (λ)

Zn−1 a.s. (24.19)

for all λ ∈ C with |λ| ≤ 1.

Corollary 24.9. Continuing the notation used above, Mn := Zn/µ
n is a posi-

tive martingale and in particular

EZn = µn <∞ for all n ∈ N0. (24.20)

Proof. If f (n) = n for all n, then Qf = µf by Eq. (24.16) and therefore

E [Zn+1|Bn] = Qf (Zn) = µ · f (Zn) = µZn.

Dividing this equation by µn+1 then shows E [Mn+1|Bn] = Mn as desired. As
M0 = 1 it then follows that EMn = 1 for all n and this gives Eq. (24.20).

Theorem 24.10. If µ < 1, then, almost surely, Zn = 0 for a.a. n.

Proof. When µ < 1, we have

E
∞∑
n=0

Zn =

∞∑
n=0

µn =
1

1− µ
<∞

and therefore
∑∞
n=0 Zn <∞ a.s. As Zn ∈ N0 for all n, this can only happen if

Zn = 0 for almost all n a.s.

Theorem 24.11. If µ = 1 and P (ξmi = 1) < 1,1 then again, almost surely,
Zn = 0 for a.a. n.

Proof. In this case {Zn}∞n=1 is a martingale which, being positive, is L1 –
bounded. Therefore, limn→∞ Zn =: Z∞ exists with EZ∞ ≤ 1 <∞. Because Zn
is integer valued, it must happen that Zn = Z∞ a.a. If k ∈ N, Since

{Z∞ = k} = {Zn = k a.a. n} = ∪∞N=1 {Zn = k for all n ≥ N} ,

we have
P (Z∞ = k) = lim

N→∞
P (Zn = k for all n ≥ N) .

However, if Zn−1 = k then

Zn = ξn1 + · · ·+ ξnZn−1
= ξn1 + · · ·+ ξnk

and so

P (Zn = k for all n ≥ N − 1) ≤ P (ξn1 + · · ·+ ξnk = k for all n ≥ N)

= [P (ξn1 + · · ·+ ξnk = k)]
∞

= 0,

because, P (ξn1 + · · ·+ ξnk = k) < 1. Indeed, since p1 = P (ξ = 1) < 1 and µ = 1,
it follows that p0 = P (ξ = 0) > 0 and therefore

1 The assumption here is equivalent to p0 > 0 and µ = 1.
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P (ξn1 + · · ·+ ξnk = 0) =

k∏
i=1

P (ξni = 0) = pk0 > 0.

which then implies P (ξn1 + · · ·+ ξnk = k) < 1. Therefore we have shown
P (Z∞ = k) = 0 for all k > 0 and therefore, Z∞ = 0 a.s. and hence almost
surely, Zn = 0 for a.a. n.

[What if k = 0, what goes wrong in the argument. Answer, now we have
empty sums which are taken to be zero by definition of the process {Zn}∞n=0 .]

Remark 24.12. By the way, the branching process, {Zn}∞n=0 with µ = 1 and
P (ξ = 1) < 1 gives a nice example of a non regular martingale. Indeed, if Z
were regular, we would have

Zn = E
[

lim
m→∞

Zm|Bn
]

= E [0|Bn] = 0

which is clearly false.

We now wish to consider the case where µ := E [ξmi ] > 1. Let ϕ (λ) be
as in Eq. (24.15) be the moment generating function for {pk}∞k=0 . Notice that
ϕ (1) = 1 and for λ = s ∈ (−1, 1) we have

ϕ′ (s) =
∑
k≥0

kpks
k−1 and ϕ′′ (s) =

∑
k≥0

k (k − 1) pks
k−2 ≥ 0

with

lim
s↑1

ϕ′ (s) =
∑
k≥0

kpk = E [ξ] =: µ and

lim
s↑1

ϕ′′ (s) =
∑
k≥0

k (k − 1) pk = E [ξ (ξ − 1)] .

Therefore ϕ is convex with ϕ (0) = p0, ϕ (1) = 1 and ϕ′ (1) = µ.

Lemma 24.13. If µ = ϕ′ (1) > 1, there exists a unique ρ < 1 so that ϕ (ρ) = ρ.

Proof. See Figure 24.2 below.

Theorem 24.14 (See Durrett [12], p. 247-248.). If µ > 1, then

P (Extinction) = P
({

lim
n→∞

Zn = 0
})

= P ({Zn = 0 for some n}) = ρ.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 24.2. Figure associated to ϕ (s) = 1
8

(
1 + 3s+ 3s2 + s3

)
which is relevant for

Exercise 3.13 of Durrett on p. 249. In this case ρ ∼= 0.236 07.

Proof. Since {Zm = 0} ⊂ {Zm+1 = 0} , it follows that {Zm = 0} ↑
{Zn = 0 for some n} and therefore if

θm := P (Zm = 0) ,

then
P ({Zn = 0 for some n}) = lim

m→∞
θm.

We now show; θm = ϕ (θm−1) . To see this, conditioned on the set {Z1 = k} ,
Zm = 0 iff all k – families die out in the remaining m−1 time units. Since each
family evolves independently, the probability2 of this event is θkm−1. Combining
this with, P ({Z1 = k}) = P

(
ξ1
1 = k

)
= pk, allows us to conclude,

θm = P (Zm = 0) =

∞∑
k=0

P (Zm = 0, Z1 = k)

=

∞∑
k=0

P (Zm = 0|Z1 = k)P (Z1 = k) =

∞∑
k=0

θkm−1pk = ϕ (θm−1) .

It is now easy to see that θm ↑ ρ as m ↑ ∞, again see Figure 24.3.

Exercise 24.3. In the notation used in this section (Section 24.3), show for all
n ∈ N and λi ∈ C with |λi| ≤ 1 that

E

 n∏
j=1

λZii

 = ϕ (λ1ϕ (. . . λn−2ϕ (λn−1ϕ (λn)))) .

2 This argument is made precise with the aid of Exercise 24.4.
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Fig. 24.3. The graphical interpretation of θm = ϕ (θm−1) starting with θ0 = 0.

For example you should show,

E
[
λZ1

1 λZ2
2 λZ3

3

]
= ϕ (λ1ϕ (λ2ϕ (λ3)))

and
E
[
λZ1

1 λZ2
2 λZ3

3 λZ4
4

]
= ϕ (λ1ϕ (λ2ϕ (λ3ϕ (λ4)))) .

Exercise 24.4. Suppose that n ≥ 2 and f : Nn−1
0 → C is a bounded function

or a non-negative function. Show for all k ≥ 1 that

E [f (Z2, . . . , Zn) |Z1 = k] = E

[
f

(
k∑
l=1

(
Zl1, . . . , Z

l
n−1

))]
(24.21)

where
{
Zln
}∞
n=0

for 1 ≤ l ≤ k are i.i.d. Galton-Watson Branching processes

such that
{
Zln
}∞
n=0

d
= {Zn}∞.n=0 for each l.

Suggestion: it suffices to prove Eq. (24.21) for f of the form,

f (k2, . . . , kn) =

n∏
j=2

λkii . (24.22)

24.4 Kakutani’s Theorem

For broad generalizations of the results in this section, see [21, Chapter IV.]
or [22].

Proposition 24.15. Suppose that µ and ν are σ – finite positive measures on
(X,M), ν = νa + νs is the Lebesgue decomposition of ν relative to µ, and
ρ : X → [0,∞) is a measurable function such that dνa = ρdµ so that

dν = dνa + dνs = ρdµ+ dνs.

If g : X → [0,∞) is another measurable function such that gdµ ≤ dν, (i.e.∫
B
gdµ ≤ ν (B) for all B ∈M), then g ≤ ρ, µ – a.e.

Proof. Let A ∈ M be chosen so that µ (Ac) = 0 and νs (A) = 0. Then, for
all B ∈M,∫

B

gdµ =

∫
B∩A

gdµ ≤ ν (B ∩A) =

∫
B∩A

ρdµ =

∫
B

ρdµ.

So by the comparison Lemma 10.25, g ≤ ρ.

Example 24.16. This example generalizes Example 23.9. Suppose
(Ω,B, {Bn}∞n=0 , P ) is a filtered probability space and Q is any another
probability measure on (Ω,B) . By the Raydon-Nikodym Theorem 20.8, for
each n ∈ N̄ we may write

dQ|Bn = XndP |Bn + dRn (24.23)

where Rn is a measure on (Ω,Bn) which is singular relative to P |Bn and 0 ≤
Xn ∈ L1 (Ω,Bn, P ) . In this case the most we can say in general is that X :=
{Xn}n≤∞ is a positive supermartingale. To verify this assertion, for B ∈ Bn
and n ≤ m ≤ ∞, we have

Q (B) = E [Xm : B] +Rm (B) ≥ E [Xm : B] = E [EBn (Xm) : B]

from which it follows that EBn (Xm) · dP |Bn ≤ dQ|Bn . So according to Propo-
sition 24.15,

EBn (Xm) ≤ Xn (P – a.s.) for all n ≤ m ≤ ∞. (24.24)
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24.4 Kakutani’s Theorem 365

Proposition 24.17. Keeping the assumptions and notation used in Example
24.16, then limn→∞Xn = X∞ a.s. and in particular the Lebesgue decomposition
of Q|B∞ relative to P |B∞ may be written as

dQ|B∞ =
(

lim
n→∞

Xn

)
· dP |B∞ + dR∞. (24.25)

Proof. By Example 24.16, we know that {Xn}n≤∞ is a positive super-
martingale and by letting m =∞ in Eq. (24.24), we know

EBnX∞ ≤ Xn a.s. (24.26)

By the supermartingale convergence Corollary 23.65 or by the submartingale
convergence Corollary 23.56 applied to −Xn we know that Y := limn→∞Xn

exists almost surely. To finish the proof it suffices to show that Y = X∞ a.s.
where X∞ is defined so that Eq. (24.23) holds for n =∞.

From the regular martingale convergence Theorem 23.67 we also know that
limn→∞ EBnX∞ = X∞ a.s. as well. So passing to the limit in Eq. (24.26) implies
X∞ ≤ Y a.s. To prove the reverse inequality, Y ≤ X∞ a.s., let B ∈ Bm and
n ≥ m. Then

Q (B) = E [Xn : B] +Rn (B) ≥ E [Xn : B]

and so by Fatou’s lemma,

E [Y : B] = E
[
lim inf
n→∞

Xn : B
]
≤ lim inf

n→∞
E [Xn : B] ≤ Q (B) . (24.27)

Since m ∈ N was arbitrary, we have proved E [Y : B] ≤ Q (B) for all B in the
algebra, A := ∪m∈NBm. As a consequence of the regularity Theorem 7.7 or of
the monotone class Lemma 7.6, or of Theorem3 6.20, it follows that E [Y : B] ≤
Q (B) for all B ∈ σ (A) = B∞. An application of Proposition 24.15 then implies
Y ≤ X∞ a.s.

Theorem 24.18. (Ω,B, {Bn}∞n=0 , P ) be a filtered probability space and Q be
a probability measure on (Ω,B) such that Q|Bn � P |Bn for all n ∈ N. Let

Mn :=
dQ|Bn
dP |Bn

be a version of the Raydon-Nikodym derivative of Q|Bn relative to

P |Bn , see Theorem 20.8. Recall from Example 23.9 that {Mn}∞n=1 is a positive
martingale and let M∞ = limn→∞Mn which exists a.s. Then the following are
equivalent;

3 This theorem implies that for B ∈ B,

E [X0 : B] = inf {E [X0 : A] : A ∈ Aσ} and

Q (B) = inf {Q (A) : A ∈ Aσ}

and since, by MCT, E [X0 : A] ≤ Q (A) for all A ∈ Aσ it follows that Eq. (24.27)
holds for all B ∈ B.

1. Q|B∞ � P |B∞,
2. EPM∞ = 1,
3. Mn →M∞ in L1 (P ) , and
4. {Mn}∞n=1 is uniformly integrable.

Proof. Recall from Proposition 24.17 (where Xn is now Mn) that in general,

dQ|B∞ = M∞ · dP |B∞ + dR∞ (24.28)

where R∞ is singular relative to P |B∞ . Therefore, Q|B∞ � P |B∞ iff R∞ = 0
which happens iff R∞ (Ω) = 0, i.e. iff

1 = Q (Ω) =

∫
Ω

M∞ · dP |B∞ = EPM∞.

This proves the equivalence of items 1. and 2. If item 2. holds, then Mn →M∞
by the DCT, Corollary 17.10, with gn = fn = Mn and g = f = M∞ and so
item 3. holds. The implication of 3. =⇒ 2. is easy and the equivalence of items
3. and 4. follows from Theorem 17.55 for simply see Theorem 23.67.

Remark 24.19. Recall from Exercise ??, that if 0 < an ≤ 1,
∏∞
n=1 an > 0 iff∑∞

n=1 (1− an) <∞. Indeed,
∏∞
n=1 an > 0 iff

−∞ < ln

( ∞∏
n=1

an

)
=

∞∑
n=1

ln an =

∞∑
n=1

ln (1− (1− an))

and
∑∞
n=1 ln (1− (1− an)) > −∞ iff

∑∞
n=1 (1− an) < ∞. Recall that

ln (1− (1− an)) ∼= (1− an) for an near 1.

Theorem 24.20 (Kakutani’s Theorem). Let {Xn}∞n=1 be independent non-
negative random variables with EXn = 1 for all n. Further, let M0 = 1 and
Mn := X1 · X2 · · · · · Xn – a martingale relative to the filtration, Bn :=
σ (X1, . . . , Xn) as was shown in Example 23.11. According to Corollary 23.65,
M∞ := limn→∞Mn exists a.s. and EM∞ ≤ 1. The following statements are
equivalent;

1. EM∞ = 1,
2. Mn →M∞ in L1 (Ω,B, P ) ,
3. {Mn}∞n=1 is uniformly integrable,
4.
∏∞
n=1 E

(√
Xn

)
> 0,

5.
∑∞
n=1

(
1− E

(√
Xn

))
<∞.

Moreover, if any one, and hence all of the above statements, fails to hold,
then P (M∞ = 0) = 1.

Page: 365 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



366 24 Some Martingale Examples and Applications

Proof. If an := E
(√
Xn

)
, then 0 < an and a2

n ≤ EXn = 1 with equality iff
Xn = 1 a.s. So Remark 24.19 gives the equivalence of items 4. and 5.

The equivalence of items 1., 2. and 3. follow by the same techniques used in
the proof of Theorem 24.18 above. We will now complete the proof by showing
4. =⇒ 3. and not(4.) =⇒ P (M∞ = 0) = 1 which clearly implies not(1.) .
For both pars of the argument, let N0 = 1 and Nn be the martingale (again see
Example 23.11) defined by

Nn :=

n∏
k=1

√
Xk

ak
=

√
Mn∏n

k=1 ak
. (24.29)

Further observe that, in all cases, N∞ = limn→∞Nn exists in [0,∞) µ – a.s.,
see Corollary 23.56 or Corollary 23.65.

4. =⇒ 3. Since

N2
n =

n∏
k=1

Xk

a2
k

=
Mn

(
∏n
k=1 ak)

2 ,

E
[
N2
n

]
=

EMn

(
∏n
k=1 ak)

2 =
1

(
∏n
k=1 ak)

2 ≤
1

(
∏∞
k=1 ak)

2 <∞,

and hence {Nn}∞n=1 is bounded in L2. Therefore, using

Mn =

(
n∏
k=1

ak

)2

N2
n ≤ N2

n (24.30)

and Doob’s inequality in Corollary 23.48, we find

E
[
sup
n
Mn

]
= E

[
sup
n
N2
n

]
≤ 4 sup

n
E
[
N2
n

]
<∞. (24.31)

Equation Eq. (24.31) certainly implies {Mn}∞n=1 is uniformly integrable, see
Proposition 17.51.

Not(4.) =⇒ P (M∞ = 0) = 1. If

∞∏
n=1

E
(√

Xn

)
= lim
n→∞

n∏
k=1

ak = 0,

we may pass to the limit in Eq. (24.30) to find

M∞ = lim
n→∞

Mn = lim
n→∞

( n∏
k=1

ak

)2

·N2
n

 = 0 ·
(

lim
n→∞

Nn

)2

= 0 a.s..

Lemma 24.21. Given two probability measures, µ and ν on a measurable space,

(Ω,B) , there exists a a positive measure ρ such that dρ :=
√

dµ
dλ ·

dν
dλdλ, where

λ is any other σ – finite measure on (Ω,B) such that µ � λ and ν � λ. We
will write

√
dµ · dν for dρ in the future.

Proof. The main point is to show that ρ is well defined. So suppose λ1 and
λ2 are two σ – finite measures such that µ� λi and ν � λi for i = 1, 2. Further
let λ := λ1 + λ2 so that λi � λ for i = 1, 2. Observe that

dλ1 =
dλ1

dλ
dλ,

dµ =
dµ

dλ1
dλ1 =

dµ

dλ1

dλ1

dλ
dλ, and

dν =
dν

dλ1
dλ1 =

dν

dλ1

dλ1

dλ
dλ.

So √
dµ

dλ
· dν
dλ
dλ =

√
dµ

dλ1

dλ1

dλ
· dν
dλ1

dλ1

dλ
dλ

=

√
dµ

dλ1
· dν
dλ1

dλ1

dλ
dλ =

√
dµ

dλ1
· dν
dλ1

dλ1

and by symmetry, √
dµ

dλ
· dν
dλ
dλ =

√
dµ

dλ2
· dν
dλ2

dλ2.

This shows √
dµ

dλ2
· dν
dλ2

dλ2 =

√
dµ

dλ1
· dν
dλ1

dλ1

and hence dρ =
√
dµ · dν is well defined.

Definition 24.22. Two probability measures, µ and ν on a measure space,
(Ω,B) are said to be equivalent (written µ ∼ ν) if µ � ν and ν � µ, i.e.
if µ and ν are absolutely continuous relative to one another. The Hellinger
integral of µ and ν is defined as

H (µ, ν) :=

∫
Ω

√
dµ · dν =

∫
Ω

√
dµ

dλ
· dν
dλ
dλ (24.32)

where λ is any measure (for example λ = 1
2 (µ+ ν) would work) on (Ω,B) such

that there exists, dµdλ and dν
dλ in L1 (Ω,B, λ) such that dµ = dµ

dλdλ and dν = dν
dλdλ.

Lemma 24.21 guarantees that H (µ, ν) is well defined.
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Proposition 24.23. The Hellinger integral, H (µ, ν) , of two probability mea-
sures, µ and ν, is well defined. Moreover H (µ, ν) satisfies;

1. 0 ≤ H (µ, ν) ≤ 1,
2. H (µ, ν) = 1 iff µ = ν,
3. H (µ, ν) = 0 iff µ ⊥ ν, and
4. If µ ∼ ν or more generally if ν � µ, then H (µ, ν) > 0.

Furthermore4,

H (µ, ν) = inf

{
n∑
i=1

√
µ (Ai) ν (Ai) : Ω =

n∑
i=1

Ai and n ∈ N

}
. (24.33)

Proof. Items 1. and 2. are both an easy consequence of the Schwarz in-
equality and its converse. For item 3., if H (µ, ν) = 0, then dµ

dλ ·
dv
dλ = 0, λ – a.e..

Therefore, if we let

A :=

{
dµ

dλ
6= 0

}
,

then dµ
dλ = 1A

dµ
dλ – λ –a.e. and dv

dλ1Ac = dv
dλ – λ – a.e. Hence it follows that

µ (Ac) = 0 and ν (A) = 0 and hence µ ⊥ ν.
If ν ∼ µ and in particular, v � µ, then

H (µ, ν) =

∫
Ω

√
dν

dµ

dµ

dµ
dµ =

∫
Ω

√
dν

dµ
dµ.

For sake of contradiction, if H (µ, ν) = 0 then
√

dν
dµ = 0 and hence dν

dµ = 0, µ –

a.e. The later would imply ν = 0 which is impossible. Therefore, H (µ, ν) > 0
if ν � µ. The last statement is left to the reader as Exercise 24.6.

Exercise 24.5. Find a counter example to the statement that H (µ, ν) > 0
implies ν � µ.

Exercise 24.6. Prove Eq. (24.33).

Corollary 24.24 (Kakutani [25]). Let Ω = RN, Yn (ω) = ωn for all ω ∈ Ω
and n ∈ N, and B := B∞ = σ (Yn : n ∈ N) be the product σ – algebra on Ω.
Further, let µ := ⊗∞n=1µn and ν := ⊗∞n=1νn be product measures on (Ω,B∞)
associated to two sequences of probability measures, {µn}∞n=1 and {νn}∞n=1 on

(R,BR) , see Theorem 15.89 (take µ := P ◦(Y1, Y2, . . . )
−1

). Let us further assume
that νn � µn for all n so that

4 This statement and its proof may be safely omitted.

0 < H (µn, νn) =

∫
R

√
dνn
dµm

dµn ≤ 1.

Then precisely one of the two cases below hold;

1.
∑∞
n=1 (1−H (µn, νn)) < ∞ which happens iff

∏∞
n=1H (µn, νn) > 0 which

happens iff ν � µ
or

2.
∑∞
n=1 (1−H (µn, νn)) = ∞ which happens iff

∏∞
n=1H (µn, νn) = 0 which

happens iff µ ⊥ ν.

In case 1. where ν � µ we have

dν

dµ
=

∞∏
n=1

dνn
dµn

(Yn) µ-a.s. (24.34)

and in all cases we have

H (µ, ν) =

∞∏
n=1

H (µn, νn) .

Proof. Let P = µ, Q = ν, Bn := σ (Y1, . . . , Yn) , Xn := dνn
dµn

(Yn) , and

Mn := X1 . . . Xn =
dν1

dµ1
(Y1) . . .

dνn
dµn

(Yn) .

If f : Rn → R is a bounded measurable function, then

Eν (f (Y1, . . . , Yn)) =

∫
Rn
f (y1, . . . , yn) dν1 (y1) . . . dνn (yn)

=

∫
Rn
f (y1, . . . , yn)

dν1

dµ1
(y1) . . .

dνn
dµn

(yn) dµ1 (y1) . . . dµn (yn)

= Eµ
[
f (Y1, . . . , Yn)

dν1

dµ1
(Y1) . . .

dνn
dµn

(Yn)

]
= Eµ [f (Y1, . . . , Yn)Mn]

from which it follows that

dν|Bn = Mndµ|Bn .

Hence by Theorem 24.18, M∞ := limn→∞Mn exists a.s. and the Lebesgue
decomposition of ν is given by

dν = M∞dµ+ dR∞
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where R∞ ⊥ µ. Moreover ν � µ iff R∞ = 0 which happens iff EM∞ = 1 and
ν ⊥ µ iff R∞ = ν which happens iff M∞ = 0. From Theorem 24.20,

EµM∞ = 1 iff 0 <

∞∏
n=1

Eµ
(√

Xn

)
=
∞∏
n=1

∫
R

√
dνn
dµn

dµn =

∞∏
n=1

H (µn, νn)

and in this case

dν = M∞dµ =

( ∞∏
k=1

Xk

)
· dµ =

( ∞∏
n=1

dνn
dµn

(Yn)

)
· dµ.

On the other hand, if

∞∏
n=1

Eµ
(√

Xn

)
=

∞∏
n=1

H (µn, νn) = 0,

Theorem 24.20 implies M∞ = 0, µ – a.s. in which case Theorem 24.18 implies
ν = R∞ and so ν ⊥ µ.

(The rest of the argument may be safely omitted.) For the last assertion,
if
∏∞
n=1H (µn, νn) = 0 then µ ⊥ ν and hence H (µ, ν) = 0. Conversely if∏∞

n=1H (µn, νn) > 0, then Mn →M∞ in L1 (µ) and therefore

Eµ
[∣∣∣√Mn −

√
M∞

∣∣∣2] ≤ Eµ [∣∣∣√Mn −
√
M∞

∣∣∣ · ∣∣∣√Mn +
√
M∞

∣∣∣]
= Eµ [|Mn −M∞|]→ 0 as n→∞.

Since dν = M∞dµ in this case, it follows that

H (µ, ν) = Eµ
[√

M∞

]
= lim
n→∞

Eµ
[√

Mn

]
= lim
n→∞

n∏
k=1

H (µk, νk) =

∞∏
k=1

H (µk, νk) .

Example 24.25. Suppose that νn = δ1 for all n and µn =
(
1− p2

n

)
δ0 + p2

nδ1
with pn ∈ (0, 1) . Then νn � µn with

dνn
dµn

= 1{1}p
−2
n

and

H (µn, νn) =

∫
R

√
1{1}p

−2
n dµn =

√
p−2
n · p2

n = pn.

So in this case ν � µ iff
∑∞
n=1 (1− pn) <∞. Observe that µ is never absolutely

continuous relative to ν.

On the other hand; if we further assume in Corollary 24.24 that µn ∼ νn,
then either; µ ∼ ν or µ ⊥ ν depending on whether

∏∞
n=1H (µn, νn) > 0 or∏∞

n=1H (µn, νn) = 0 respectively.
In the next group of problems you will be given probability measures, µn

and νn on R and you will be asked to decide if µ := ⊗∞n=1µn and ν := ⊗∞n=1νn
are equivalent. For the solutions of these problems you will want to make use
of the following Gaussian integral formula;∫

R
exp

(
−a

2
x2 + bx

)
dx =

∫
R

exp

(
−a

2

(
x− b

a

)2

+
b2

2a

)
dx

= e
b2

2a

∫
R

exp
(
−a

2
x2
)
dx =

√
2π

a
e
b2

2a

which is valid for all a > 0 and b ∈ R.

Exercise 24.7 (A Discrete Cameron-Martin Theorem). Suppose t > 0,

{an} ⊂ R, dµn (x) = 1√
2πt

e−x
2/2tdx and dνn (x) = 1√

2πt
e−(x+an)2/2tdx . Show

µ ∼ ν iff
∑∞
k=1 a

2
k <∞.

Exercise 24.8. Suppose s, t > 0, {an} ⊂ R, dµn (x) = 1√
2πt

e−x
2/2tdx and

dνn (x) = 1√
2πs

e−(x+an)2/2sdx. Show µ ⊥ ν if s 6= t.

Exercise 24.9. Suppose {tn} ⊂ (0,∞) , dµn (x) = 1√
2π
e−x

2/2dx and dνn (x) =
1√

2πtn
e−x

2/2tndx. If
∑∞
n=1 (tn − 1)

2
<∞ then µ ∼ ν.
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Part IV

(Weak) Convergence of Random Sums





25

Random Sums

As usual let (Ω,B, P ) be a probability space. The general theme of this
chapter is to consider arrays of random variables, {Xn

k }
n
k=1 , for each n ∈ N.

We are going to look for conditions under which limn→∞
∑n
k=1X

n
k exists almost

surely or in Lp for some 0 ≤ p <∞. Typically we will start with a sequence of
random variables, {Xk}∞k=1 and consider the convergence of

Sn =
X1 + · · ·+Xn

bn
− an

for appropriate choices of sequence of numbers, {an} and {bn} . This fits into
our general scheme by taking Xn

k = Xn
k /bn − an/n.

25.1 Weak Laws of Large Numbers

Theorem 25.1 (An L2 – Weak Law of Large Numbers). Let {Xn}∞n=1 be
a sequence of uncorrelated square integrable random variables, µn = EXn and
σ2
n = Var (Xn) . If there exists an increasing positive sequence, {an} and µ ∈ R

such that

lim
n→∞

1

an

n∑
j=1

µj = µ and lim
n→∞

1

a2
n

n∑
j=1

σ2
j = 0,

then Sn
an
→ µ in L2 (P ) (and hence also in probability).

Exercise 25.1. Prove Theorem 25.1.

Example 25.2. Suppose that {Xk}∞k=1 ⊂ L2 (P ) are uncorrelated identically dis-
tributed random variables. Then

Sn
n

L2(P )→ µ = EX1 as n→∞.

To see this, simply apply Theorem 25.1 with an = n. More generally if bn ↑ ∞
such that limn→∞

(
n/b2n

)
= 0, then

Var

(
Sn
bn

)
=

1

b2n
· nVar (X1)→ 0 as n→∞

and therefore
(Sn − nµ) /bn → 0 in L2 (P ) .

Note well: since L2 (P ) convergence implies Lp (P ) – convergence for
0 ≤ p ≤ 2, where by L0 (P ) – convergence we mean convergence in prob-
ability. The remainder of this chapter is mostly devoted to proving a.s. conver-
gence for the quantities in Theorem 17.26 and Proposition 25.10 under various
assumptions. These results will be described in the next section.

Theorem 25.3 (Weak Law of Large Numbers). Suppose that {Xn}∞n=1 is
a sequence of independent random variables. Let and

Sn :=

n∑
j=1

Xj and an :=

n∑
k=1

E (Xk : |Xk| ≤ n) .

If

lim
n→∞

n∑
k=1

P (|Xk| > n) = 0 and (25.1)

lim
n→∞

1

n2

n∑
k=1

E
(
X2
k : |Xk| ≤ n

)
= 0, (25.2)

then
Sn − an

n

P→ 0. (25.3)

Proof. A key ingredient in this proof and proofs of other versions of the
law of large numbers is to introduce truncations of the {Xk} . In this case we
consider

S′n :=

n∑
k=1

Xk1|Xk|≤n.

Since {Sn 6= Sn′} ⊂ ∪nk=1 {|Xk| > n} ,

P

(∣∣∣∣Sn − ann
− S′n − an

n

∣∣∣∣ > ε

)
= P

(∣∣∣∣Sn − S′nn

∣∣∣∣ > ε

)
≤ P (Sn 6= Sn′) ≤

n∑
k=1

P (|Xk| > n)→ 0 as n→∞.



372 25 Random Sums

Hence it suffices to show
S′n−an
n

P→ 0 as n→∞ and for this it suffices to show,

S′n−an
n

L2(P )→ 0 as n→∞.
Observe that ES′n = an and therefore,

E

([
S′n − an

n

]2
)

=
1

n2
Var (S′n) =

1

n2

n∑
k=1

Var
(
Xk1|Xk|≤n

)
≤ 1

n2

n∑
k=1

E
(
X2
k1|Xk|≤n

)
→ 0 as n→∞,

wherein we have used Var (Y ) = EY 2 − (EY )
2 ≤ EY 2 in the last inequality.

We are now going to use this result to prove Feller’s weak law of large
numbers which will be valid with an assumption which is weaker than first
moments existing.

Remark 25.4. If X ∈ L1 (P ) , Chebyschev’s inequality along with the dominated
convergence theorem implies

τ (x) := xP (|X| ≥ x) ≤ E [|X| : |X| ≥ x]→ 0 as x→∞.

If X is a random variable such that τ (x) = xP (|X| ≥ x) → 0 as x → ∞, we
say that X is in “weak L1.”

Exercise 25.2. Let Ω = (0, 1], B = B(0,1] be the Borel σ – algebra, P = m be

Lebesgue measure on (Ω,B) , and X (y) := (y |ln y|)−1 · 1y≤1/2 for y ∈ Ω. Show
that X /∈ L1 (P ) yet limx→∞ xP (|X| ≥ x) = 0.

Lemma 25.5. Let X be a random variable such that τ (x) := xP (|X| ≥ x)→ 0
as x→∞, then

lim
n→∞

1

n
E
[
|X|2 : |X| ≤ n

]
= 0. (25.4)

Proof. To prove this we observe that

E
[
|X|2 : |X| ≤ n

]
= E

[
2

∫
10≤x≤|X|≤nxdx

]
= 2

∫
P (0 ≤ x ≤ |X| ≤ n)xdx

≤ 2

∫ n

0

xP (|X| ≥ x) dx = 2

∫ n

0

τ (x) dx

so that
1

n
E
[
|X|2 : |X| ≤ n

]
=

2

n

∫ n

0

τ (x) dx.

It is now easy to check (we leave it to the reader) that

lim
n→∞

1

n

∫ n

0

τ (x) dx = 0.

Corollary 25.6 (Feller’s WLLN). If {Xn}∞n=1 are i.i.d. and τ (x) :=
xP (|X1| > x) → 0 as x → ∞, then the hypothesis of Theorem 25.3 are sat-
isfied so that

Sn
n
− E (X1 : |X1| ≤ n)

P→ 0.

Proof. Since

n∑
k=1

P (|Xk| > n) = nP (|X1| > n) = τ (n)→ 0 as n→∞,

Eq. (25.1) is satisfied. Equation (25.2) follows from Lemma 25.5 and the identity,

1

n2

n∑
k=1

E
(
X2
k : |Xk| ≤ n

)
=

1

n
E
[
|X1|2 : |X1| ≤ n

]
.

As a direct corollary of Feller’s WLLN and Remark 25.4 we get Khintchin’s
weak law of large numbers.

Corollary 25.7 (Khintchin’s WLLN). If {Xn}∞n=1 are i.i.d. L1 (P ) – ran-

dom variables, then 1
nSn

P→ µ = EX1. This convergence holds in L1 (P ) as well

since
{

1
nSn

}∞
n=1

is uniformly integrable under these hypothesis.

This result is also clearly a consequence of Komogorov’s strong law of large
numbers.

25.1.1 A WLLN Example

Theorem 25.8 (Shannon’s Theorem). Let {Xi}∞i=1 be a sequence of i.i.d.
random variables with values in {1, 2, . . . , r} ⊂ N, p (k) := P (Xi = k) > 0 for
1 ≤ k ≤ r, and

H (p) := −E [ln p (X1)] = −
r∑

k=1

p (k) ln p (k)

be the entropy of p = {pk}rk=1 . If we define πn (ω) := p (X1 (ω)) . . . p (Xn (ω)) to
be the “probability of the realization” (X1 (ω) , . . . , Xn (ω)) , then for all ε > 0,

P
(
e−n(H(p)+ε) ≤ πn ≤ e−n(H(p)−ε)

)
→ 1 as n→∞.

Thus the probability, πn, that the random sample {X1, . . . , Xn} should occur
is approximately e−nH(p) with high probability. The number H (p) is called the
entropy of the distribution, {p (k)}rk=1 .
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Proof. Since {ln p (Xi)}∞i=1 are i.i.d. it follows by the weak law of large
numbers that

− 1

n
lnπn = − 1

n

n∑
i=1

ln p (Xi)
P→ −E [ln p (X1)] = −

r∑
k=1

p (k) ln p (k) =: H (p) ,

i.e. for every ε > 0,

lim
n→∞

P

(∣∣∣∣H (p) +
1

n
lnπn

∣∣∣∣ > ε

)
= 0.

Since{∣∣∣∣H (p) +
1

n
lnπn

∣∣∣∣ > ε

}
=

{
H (p) +

1

n
lnπn > ε

}
∪
{
H (p) +

1

n
lnπn < −ε

}
=

{
1

n
lnπn > −H (p) + ε

}
∪
{

1

n
lnπn < −H (p)− ε

}
=
{
πn > en(−H(p)+ε)

}
∪
{
πn < en(−H(p)−ε)

}
it follows that{∣∣∣∣H (p) +

1

n
lnπn

∣∣∣∣ > ε

}c
=
{
πn ≤ en(−H(p)+ε)

}
∩
{
πn ≥ en(−H(p)−ε)

}
=
{
e−n(H(p)+ε) ≤ πn ≤ e−n(H(p)−ε)

}
,

and therefore

P
(
e−n(H(p)+ε) ≤ πn ≤ e−n(H(p)−ε)

)
→ 1 as n→∞.

For our next example, let {Xn}∞n=1 be i.i.d. random variables with com-
mon distribution function, F (x) := P (Xn ≤ x) . For x ∈ R let Fn (x) be the
empirical distribution function defined by,

Fn (x) :=
1

n

n∑
j=1

1Xj≤x =

 1

n

n∑
j=1

δXj

 ((−∞, x]) .

Since E1Xj≤x = F (x) and
{

1Xj≤x
}∞
j=1

are Bernoulli random variables, the

weak law of large numbers implies Fn (x)
P→ F (x) as n → ∞. As usual, for

p ∈ (0, 1) let
F← (p) := inf {x : F (x) ≥ p}

and recall that F← (p) ≤ x iff F (x) ≥ p. Let us notice that

F←n (p) = inf {x : Fn (x) ≥ p} = inf

x :

n∑
j=1

1Xj≤x ≥ np


= inf {x : # {j ≤ n : Xj ≤ x} ≥ np} .

Recall from Definition 16.11 that the order statistic of (X1, . . . , Xn) is the

finite sequence,
(
X

(n)
1 , X

(n)
2 , . . . , X

(n)
n

)
, where

(
X

(n)
1 , X

(n)
2 , . . . , X

(n)
n

)
denotes

(X1, . . . , Xn) arranged in increasing order with possible repetitions. It follows

from the formula in Definition 16.11 that X
(n)
k are all random variables for

k ≤ n but it will be useful to give another proof. Indeed, X
(n)
k ≤ x iff

# {j ≤ n : Xj ≤ x} ≥ k iff
∑n
j=1 1Xj≤x ≥ k, i.e.

{
X

(n)
k ≤ x

}
=


n∑
j=1

1Xj≤x ≥ k

 ∈ B.
Moreover, if we let dxe = min {n ∈ Z : n ≥ x} , the reader may easily check that

F←n (p) = X
(n)
dnpe.

Proposition 25.9. Keeping the notation above. Suppose that p ∈ (0, 1) is a
point where

F (F← (p)− ε) < p < F (F← (p) + ε) for all ε > 0

then X
(n)
dnpe = F←n (p)

P→ F← (p) as n → ∞. Thus we can recover, with high

probability, the pth – quantile of the distribution F by observing {Xi}ni=1 .

Proof. Let ε > 0. Then

{F←n (p)− F← (p) > ε}c = {F←n (p) ≤ ε+ F← (p)} = {F←n (p) ≤ ε+ F← (p)}
= {Fn (ε+ F← (p)) ≥ p}

so that

{F←n (p)− F← (p) > ε} = {Fn (F← (p) + ε) < p}
= {Fn (ε+ F← (p))− F (ε+ F← (p)) < p− F (F← (p) + ε)} .

Letting δε := F (F← (p) + ε)− p > 0, we have, as n→∞, that

P ({F←n (p)− F← (p) > ε}) = P (Fn (ε+ F← (p))− F (ε+ F← (p)) < −δε)→ 0.

Similarly, let δε := p− F (F← (p)− ε) > 0 and observe that

{F← (p)− F←n (p) ≥ ε} = {F←n (p) ≤ F← (p)− ε} = {Fn (F← (p)− ε) ≥ p}
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and hence,

P (F← (p)− F←n (p) ≥ ε)
= P (Fn (F← (p)− ε)− F (F← (p)− ε) ≥ p− F (F← (p)− ε))
= P (Fn (F← (p)− ε)− F (F← (p)− ε) ≥ δε)→ 0 as n→∞.

Thus we have shown that X
(n)
dnpe

P→ F← (p) as n→∞.

25.2 Kolmogorov’s Convergence Criteria

Proposition 25.10 (L2 - Convergence of Random Sums). Suppose that
{Yk}∞k=1 ⊂ L2 (P ) are uncorrelated. If

∑∞
k=1 Var (Yk) <∞ then

∞∑
k=1

(Yk − µk) converges in L2 (P ) .

where µk := EYk.

Proof. Letting Sn :=
∑n
k=1 (Yk − µk) , it suffices by the completeness of

L2 (P ) (see Theorem 17.26) to show ‖Sn − Sm‖2 → 0 as m,n→∞. Supposing
n > m, we have

‖Sn − Sm‖22 = E

(
n∑

k=m+1

(Yk − µk)

)2

=

n∑
k=m+1

Var (Yk) =

n∑
k=m+1

σ2
k → 0 as m,n→∞.

Theorem 25.11 (Kolmogorov’s Convergence Criteria). Suppose
that {Yn}∞n=1 are independent square integrable random variables. If∑∞
j=1 Var (Yj) < ∞, then

∑∞
j=1 (Yj − EYj) converges a.s. In particular if∑∞

j=1 Var (Yj) < ∞ and
∑∞
j=1 EYj is convergent, then

∑∞
j=1 Yj converges a.s.

and in L2 (P ) .

Proof. This is a special case of Theorem 23.69. Indeed, let Sn :=∑n
j=1 (Yj − EYj) with S0 = 0. Then {Sn}∞n=0 is a martingale relative to the

filtration, Bn = σ (S0, . . . Sn) . By assumption we have

ES2
n =

n∑
j=1

Var (Yj) ≤
∞∑
j=1

Var (Yj) <∞

so that {Sn}∞n=0 is bounded in L2 (P ) . Therefore by Theorem 23.69,∑∞
j=1 (Yj − EYj) = limn→∞ Sn exists a.s. and in L2 (P ) .
Another way to prove this is to appeal Proposition 25.10 above and Lévy’s

Theorem 25.50 below. As second method is to make use of Kolmogorov’s in-
equality and we will give this proof below.

Exercise 25.3 (Resnik 7.1). Does
∑
n 1/n converge? Does

∑
n(−1)n/n con-

verge? Let {Xn} be iid with P [Xn = ±1] = 1/2 Does
∑
nXn/n converge? [See

Example 25.41 below for a more thorough investigation of this sort.]

Example 25.12 (Brownian Motion). Let {Nn}∞n=1 be i.i.d. standard normal ran-
dom variable, i.e.

P (Nn ∈ A) =

∫
A

1√
2π
e−x

2/2dx for all A ∈ BR.

Let {ωn}∞n=1 ⊂ R, {an}
∞
n=1 ⊂ R, and t ∈ R, then

∞∑
n=1

anNn sinωnt converges a.s.

provided
∑∞
n=1 a

2
n <∞. This is a simple consequence of Kolmogorov’s conver-

gence criteria, Theorem 25.11, and the facts that E [anNn sinωnt] = 0 and

Var (anNn sinωnt) = a2
n sin2 ωnt ≤ a2

n.

As a special case, if we take ωn = (2n− 1) π2 and an =
√

2
π(2n−1) , then it follows

that

Bt :=
2
√

2

π

∑
k=1,3,5,...

Nk
k

sin
(
k
π

2
t
)

(25.5)

is a.s. convergent for all t ∈ R. The factor 2
√

2
πk has been determined by requiring,∫ 1

0

[
d

dt

2
√

2

πk
sin (kπt)

]2

dt = 1

as seen by,∫ 1

0

[
d

dt
sin

(
kπ

2
t

)]2

dt =
k2π2

22

∫ 1

0

[
cos

(
kπ

2
t

)]2

dt

=
k2π2

22

2

kπ

[
kπ

4
t+

1

4
sin kπt

]1

0

=
k2π2

23
.

Fact: Wiener in 1923 showed the series in Eq. (25.5) is in fact almost surely
uniformly convergent. Given this, the process, t → Bt is almost surely contin-
uous. The process {Bt : 0 ≤ t ≤ 1} is Brownian Motion.
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Kolmogorov’s convergence criteria becomes a powerful tool when combined
with the following real variable lemma.

Lemma 25.13 (Kronecker’s Lemma). Suppose that {xk}∞k=1 ⊂ R1 and
{bk}∞k=1 ⊂ (0,∞) are sequences such that bk ↑ ∞ and

∑∞
k=1

xk
bk

is convergent
in R. Then

lim
n→∞

1

bn

n∑
k=1

xk = 0.

Proof. (We are going to use summation by parts.) Let yk := xk
bk
, S0 = 0,

Sn :=
∑n
k=1 yk =

∑n
k=1

xk
bk

for n ∈ N, and

s =

∞∑
k=1

yk := lim
n→∞

Sn ∈ C.

Then

n∑
k=1

xk =

n∑
k=1

bkyk =

n∑
k=1

bk (Sk − Sk−1) =

n∑
k=1

bkSk −
n−1∑
k=0

bk+1Sk

= bnSn +

n−1∑
k=1

(bk − bk+1)Sk

and hence

1

bn

n∑
k=1

xk = Sn −
1

bn

n−1∑
k=1

(bk+1 − bk)Sk

= Sn −
1

bn

n−1∑
k=1

(bk+1 − bk)s+
1

bn

n−1∑
k=1

(bk+1 − bk) (s− Sk)

= Sn −
1

bn
(bn − b1)s+Rn,

where

Rn :=
1

bn

n−1∑
k=1

(bk+1 − bk) (s− Sk) .

As

lim
n→∞

[
Sn −

1

bn
(bn − b1)s

]
= s− s = 0,

it suffices to show limn→∞Rn = 0.

1 In fact, one could replace R by any normed space in the Lemma.

To this end, for N ∈ N let εN = supn≥N |Sn − s| → 0 so that εN ↓ 0 as
N ↑ ∞. Then for n,N ∈ N with n > N we have (using bk+1 ≥ bk for all k) that

|Rn| ≤
1

bn

n−1∑
k=1

(bk+1 − bk) |s− Sk|

≤ 1

bn

N∑
k=1

(bk+1 − bk)ε1 + εN
1

bn

n−1∑
k=N+1

(bk+1 − bk)

=
1

bn
(bN+1 − b1)ε1 + εN

1

bn
(bn − bN+1).

Letting n→∞ in this last inequality then shows

lim sup
n→∞

|Rn| ≤ 0 + εN → 0 as N →∞.

Remark 25.14. Here is another proof of Lemma 25.13 when bn = nc for some
c > 0. For this proof again let yk := xk

bk
, Sn :=

∑n
k=1 yk, s :=

∑∞
k=1 yk and

further let fn (u) :=
∑

11≤k≤nuyk. Then |fn (u)| ≤M := supN∈N |SN | <∞ and
fn (u)→ s as n→∞ for all u > 0. Making use of the fundamental theorem of
calculus we learn,

Sn −
1

bn

n∑
k=1

bkyk =

n∑
k=1

(
1− bk

bn

)
yk

=

n∑
k=1

(
1−

(
k

n

)c)
yk

= c
∑[

11≤k≤n

∫ 1

k/n

uc−1du

]
yk

= c

∫ 1

0

duuc−1
∑[

11≤k≤n · 1 k
n≤u

]
yk

= c

∫ 1

0

duuc−1fn (u)→ c

∫ 1

0

duuc−1s = s as n→∞.

Since Sn → s as n→∞, the result is proved.

As an immediate corollary we have the following corollary.

Corollary 25.15 (L2 – SSLN). Let {Xn} be a sequence of independent ran-
dom variables such that σ2 = EX2

n <∞ and µ = EXn are independent of n. As
above let Sn =

∑n
k=1Xk. If {bn}∞n=1 ⊂ (0,∞) is a sequence such that bn ↑ ∞

and
∑∞
n=1

1
b2n
<∞, then
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1

bn
(Sn − nµ)→ 0 a.s. and in L2 (P ) (25.6)

We may rewrite Eq. (25.6) as

Sn = nµ+ o (1) bn or
Sn
n

= µ+ o (1)
bn
n
.

Example 25.16. For example, we could take bn = n or bn = np for an p > 1/2,

or bn = n1/2 (lnn)
1/2+ε

for any ε > 0. The idea here is that

∞∑
n=2

1(
n1/2 (lnn)

1/2+ε
)2 =

∞∑
n=2

1

n (lnn)
1+2ε

which may be analyzed by comparison with the integral∫ ∞
2

1

x ln1+2ε x
dx =

∫ ∞
ln 2

1

eyy1+2ε
eydy =

∫ ∞
ln 2

1

y1+2ε
dy <∞,

wherein we have made the change of variables, y = lnx. When bn =

n1/2 (lnn)
1/2+ε

we may conclude that

Sn
n

= µ+ o (1)
(lnn)

1/2+ε

n1/2
,

i.e. the fluctuations of Sn
n about the mean, µ, have order smaller than

n−1/2 (lnn)
1/2+ε

.

Fact 25.17 (Missing Reference) Under the hypothesis in Corollary 25.15,

lim
n→∞

Sn − nµ
n1/2 (ln lnn)

1/2
=
√

2σ a.s.

We end this section with another example of using Kolmogorov’s conver-
gence criteria in conjunction with Kronecker’s Lemma 25.13.

Lemma 25.18. Let {Xn}∞n=1 be independent square integrable random vari-
ables such that ESn ↑ ∞ as n→∞. Then

∞∑
n=1

Var

(
Xn

ESn

)
=

∞∑
n=1

Var (Xn)

(ESn)
2 <∞ =⇒ Sn

ESn
→ 1 a.s.

Proof. Kolmogorov’s convergence criteria, Theorem 25.11 we know that

∞∑
n=1

Xn − EXn

ESn
is a.s. convergent.

It then follows by Kronecker’s Lemma 25.13 that

0 = lim
n→∞

1

ESn

n∑
i=1

(Xn − EXn) = lim
n→∞

Sn
ESn

− 1 a.s.

Example 25.19. Suppose that {Xn}∞n=1 are i.i.d. square integrable random vari-
ables with µ := EXn > 0 and σ2 := Var (Xn) < ∞. Since ESn = µn ↑ ∞
and

∞∑
n=1

Var (Xn)

(ESn)
2 =

∞∑
n=1

σ2

µ2n2
<∞,

we may conclude that limn→∞
Sn
µn = 1 a.s., i.e. Sn/n → µ a.s. as we already

know.

We now assume that {Xn}∞n=1 are i.i.d. random variables with a continuous
distribution function and let Aj denote the event when Xj is a record, i.e.

Aj := {Xj > max {X1, X2, . . . , Xk−1}} .

Recall from Renyi Theorem 15.65 that {Aj}∞j=1 are independent and P (Aj) = 1
j

for all j.

Proposition 25.20. Keeping the preceding notation and let Sn :=
∑n
j=1 1Aj

denote the number of records in the first n observations. Then limn→∞
Sn
lnn = 1

a.s.

Proof. In this case

ESn =

n∑
j=1

E1Aj =

n∑
j=1

1

j
∼
∫ n

1

1

x
dx = lnn ↑ ∞

and

Var (1An) = E12
An − (E1An)

2
=

1

n
− 1

n2
=
n− 1

n2

so by that

∞∑
n=1

Var

(
1An
ESn

)
=

∞∑
n=1

(
1

n
− 1

n2

)
1(∑n

j=1
1
j

)2

≤
∞∑
n=1

1(∑n
j=1

1
j

)2

1

n

/ 1 +

∫ ∞
2

1

ln2 x

1

x
dx = 1 +

∫ ∞
ln 2

1

y2
dy <∞.
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Therefore by Lemma 25.18 we may conclude that limn→∞
Sn
ESn = 1 a.s.

So to finish the proof it only remains to show

lim
n→∞

ESn
lnn

lim
n→∞

∑n
j=1

1
j

lnn
= 1. (25.7)

To see this write

ln (n+ 1) =

∫ n+1

1

1

x
dx =

n∑
j=1

∫ j+1

j

1

x
dx

=

n∑
j=1

∫ j+1

j

(
1

x
− 1

j

)
dx+

n∑
j=1

1

j

= ρn +

n∑
j=1

1

j
(25.8)

where

|ρn| =
n∑
j=1

∣∣∣∣ln j + 1

j
− 1

j

∣∣∣∣ =

n∑
j=1

∣∣∣∣ln (1 + 1/j)− 1

j

∣∣∣∣ ∼ n∑
j=1

1

j2

and hence we conclude that limn→∞ ρn < ∞. So dividing Eq. (25.8) by lnn
and letting n→∞ gives the desired limit in Eq. (25.7).

25.3 The Strong Law of Large Numbers Revisited

Remark 25.21. Here is a brief summary of the main results of this section. Sup-
pose that {Xk}∞k=1 are i.i.d. random variables, then the following are equivalent:

1. limn→∞
Sn
n exists a.s. as an R – valued random variable

2. there exists c ∈ R such that limn→∞
Sn
n = c a.s.

3. limn→∞
Xn
n = 0 a.s.

4. E |X1| <∞.

Indeed, 1. =⇒ 2. by Kolmogorov’s zero one law, see Example 15.78 2. =⇒
3. =⇒ 4. is contained in Proposition 25.27 and Corollary 25.28. 4. =⇒ 2.( =⇒
1.) is Theorem 25.31.

Definition 25.22. Two sequences, {Xn} and {X ′n} , of random variables are
tail equivalent if

E

[ ∞∑
n=1

1Xn 6=X′n

]
=

∞∑
n=1

P (Xn 6= X ′n) <∞.

Proposition 25.23. Suppose {Xn} and {X ′n} are tail equivalent. Then

1.
∑

(Xn −X ′n) converges a.s.
2. The sum

∑
Xn is convergent a.s. iff the sum

∑
X ′n is convergent a.s. More

generally we have

P
({∑

Xn is convergent
}
4
{∑

X ′n is convergent
})

= 0

3. If there exists a random variable, X, and a sequence an ↑ ∞ such that

lim
n→∞

1

an

n∑
k=1

Xk = X a.s

then

lim
n→∞

1

an

n∑
k=1

X ′k = X a.s

Proof. If {Xn} and {X ′n} are tail equivalent, we know by the first Borel -
Cantelli Lemma 10.15 that P (Xn = X ′n for a.a. n) = 1. The proposition is an
easy consequence of this observation.

Remark 25.24. In what follows we will typically have a sequence, {Xn}∞n=1 , of
independent random variables and X ′n = fn (Xn) for some “cutoff” functions,
fn : R → R. In this case the collection of sets, {An := {Xn 6= X ′n}}

∞
n=1 are

independent and so by the Borel zero one law (Lemma 15.68) we will have

P (Xn 6= X ′n i.o. n) = 0 ⇐⇒
∞∑
n=1

P (Xn 6= X ′n) <∞.

So in this case {Xn} and {X ′n} are tail equivalent iff P (Xn = X ′n a.a. n) = 1.
For example if {kn}∞n=1 ⊂ (0,∞) and X ′n := Xn · 1|Xn|≤kn then the following
are equivalent;

1. P (|Xn| ≤ kn a.a. n) = 1,
2. P (|Xn| > kn i.o. n) = 0,
3.
∑∞
n=1 P (Xn 6= X ′n) =

∑∞
n=1 P (|Xn| > kn) <∞,

4. {Xn} and {X ′n} are tail equivalent.

Lemma 25.25. Suppose that X : Ω → R is a random variable, then

E |X|p =

∫ ∞
0

psp−1P (|X| ≥ s) ds =

∫ ∞
0

psp−1P (|X| > s) ds.
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Proof. By the fundamental theorem of calculus,

|X|p =

∫ |X|
0

psp−1ds = p

∫ ∞
0

1s≤|X| · sp−1ds = p

∫ ∞
0

1s<|X| · sp−1ds.

Taking expectations of this identity along with an application of Tonelli’s the-
orem completes the proof.

Lemma 25.26. If X is a random variable and ε > 0, then

∞∑
n=1

P (|X| ≥ nε) ≤ 1

ε
E |X| ≤

∞∑
n=0

P (|X| ≥ nε) . (25.9)

Proof. First observe that for all y ≥ 0 we have,

∞∑
n=1

1n≤y ≤ y ≤
∞∑
n=1

1n≤y + 1 =

∞∑
n=0

1n≤y. (25.10)

Taking y = |X| /ε in Eq. (25.10) and then take expectations gives the estimate
in Eq. (25.9).

Proposition 25.27. Suppose that {Xn}∞n=1 are i.i.d. random variables, then
the following are equivalent:

1. E |X1| <∞.
2. There exists ε > 0 such that

∑∞
n=1 P (|X1| ≥ εn) <∞.

3. For all ε > 0,
∑∞
n=1 P (|X1| ≥ εn) <∞.

4. {Xn}∞n=1 and
{
Xn1|Xn|≤n

}∞
n=1

are tail equivalent.

5. limn→∞
|Xn|
n = 0 a.s.

Proof. The equivalence of items 1., 2., and 3. easily follows from Lemma
25.26 and their equivalence with item 4. is explained in Remark 25.24. So to
finish the proof it suffices to show 3. is equivalent to 5. To this end we start by

noting that limn→∞
|Xn|
n = 0 a.s. iff

0 = P

(
|Xn|
n
≥ ε i.o.

)
= P (|Xn| ≥ nε i.o.) for all ε > 0. (25.11)

Because {|Xn| ≥ nε}∞n=1 are independent sets, the Borel zero-one law
(Lemma 15.68) shows the statement in Eq. (25.11) is equivalent to∑∞
n=1 P (|Xn| ≥ nε) <∞ for all ε > 0.

Corollary 25.28. Suppose that {Xn}∞n=1 are i.i.d. random variables such that
1
nSn → c ∈ R a.s., then Xn ∈ L1 (P ) and µ := EXn = c.

Proof. If 1
nSn → c a.s. then

Xn+1

n+ 1
=

1

n+ 1
Sn+1 −

n

n+ 1

1

n
Sn → c− 1 · c = 0 a.s. as n→∞.

Hence an application of Proposition 25.27 shows Xn ∈ L1 (P ) . Moreover by
Exercise 17.7,

{
1
nSn

}∞
n=1

is a uniformly integrable sequenced and therefore,

µ = E
[

1

n
Sn

]
→ E

[
lim
n→∞

1

n
Sn

]
= E [c] = c.

Lemma 25.29. For all x > 0,

ϕ (x) :=

∞∑
n=1

1

n2
1x≤n =

∑
n≥x

1

n2
≤ 2

1

x ∨ 1
= 2 ·min

(
1

x
, 1

)
.

Proof. First office notice that

∞∑
n=2

1

n2
1n≤t<n+1 ≤

1

(t− 1)
2 for t ≥ 2.

Therefore for any x > 1 we have

∑
n≥x

1

n2
≤
∫ ∞
x

dt

∞∑
n=2

1

n2
1n≤t<n+1

≤
∫ ∞
x

1

(t− 1)
2 dt ≤

1

x− 1
≤ 2

x
.

The last inequality also holds for x = 1 as∑
n≥1

1

n2
= 1 +

∑
n≥2

1

n2
≤ 1 +

2

2
= 2 =

2

1
.

Lemma 25.30. Suppose that X : Ω → R is a random variable, then

∞∑
n=1

1

n2
E
[
|X|2 : 1|X|≤n

]
≤ 2E |X| .

Proof. This is a simple application of Lemma 25.29;
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∞∑
n=1

1

n2
E
[
|X|2 : 1|X|≤n

]
= E

[
|X|2

∞∑
n=1

1

n2
1|X|≤n

]
= E

[
|X|2 ϕ (|X|)

]
≤ 2E

[
|X|2

(
1

|X|
∧ 1

)]
≤ 2E |X| .

With this as preparation we are now in a position to give another proof of
the Kolmogorov’s strong law of large numbers which has already appeared in
Theorem 21.10 and Example 23.82.

Theorem 25.31 (Kolmogorov’s Strong Law of Large Numbers). Sup-
pose that {Xn}∞n=1 are i.i.d. random variables and let Sn := X1 + · · · + Xn.
Then there exists µ ∈ R such that 1

nSn → µ a.s. iff Xn is integrable and in
which case EXn = µ.

Proof. The implication, 1
nSn → µ a.s. implies Xn ∈ L1 (P ) and EXn = µ

has already been proved in Corollary 25.28. So let us now assume Xn ∈ L1 (P )
and let µ := EXn.

Let X ′n := Xn1|Xn|≤n. By Lemma 25.26,

∞∑
n=1

P (X ′n 6= Xn) =

∞∑
n=1

P (|Xn| > n) =

∞∑
n=1

P (|X1| > n) ≤ E |X1| <∞,

and hence {Xn} and {X ′n} are tail equivalent. Therefore, by Proposition 25.23,
it suffices to show limn→∞

1
nS
′

n = µ a.s. where S′n := X ′1 + · · · + X ′n. But by
Lemma 25.30,

∞∑
n=1

Var (X ′n)

n2
≤
∞∑
n=1

E |X ′n|
2

n2
=

∞∑
n=1

E
[
|Xn|2 1|Xn|≤n

]
n2

=

∞∑
n=1

E
[
|X1|2 1|X1|≤n

]
n2

≤ 2E |X1| <∞. (25.12)

Therefore by Kolmogorov’s convergence criteria, Theorem 25.11,

∞∑
n=1

X ′n − EX ′n
n

is almost surely convergent.

Kronecker’s Lemma 25.13 then implies

lim
n→∞

1

n

n∑
k=1

(X ′k − EX ′k) = 0 a.s.

So to finish the proof, it only remains to observe

lim
n→∞

1

n

n∑
k=1

EX ′k = lim
n→∞

1

n

n∑
k=1

E
[
Xk1|Xk|≤k

]
= lim
n→∞

1

n

n∑
k=1

E
[
X11|X1|≤k

]
= µ.

Here we have used the dominated convergence theorem to see that ak :=
E
[
X11|X1|≤k

]
→ µ as k → ∞ from which it is easy (and standard) to check

that limn→∞
1
n

∑n
k=1 ak = µ.

Remark 25.32. If E |X1| =∞ but EX−1 <∞, then 1
nSn →∞ a.s. To prove this,

for M > 0 let XM
n := Xn ∧M and SMn :=

∑n
i=1X

M
i . It follows from Theorem

25.31 that 1
nS

M
n → µM := EXM

1 a.s.. Since Sn ≥ SMn , we may conclude that

lim inf
n→∞

Sn
n
≥ lim inf

n→∞

1

n
SMn = µM a.s.

Since µM → ∞ as M → ∞, it follows that lim infn→∞
Sn
n = ∞ a.s. and hence

that limn→∞
Sn
n =∞ a.s.

Exercise 25.4 (Resnik 7.9). Let {Xn}∞n=1 be i.i.d. with E |X1| < ∞ and
EX1 = 0. Following the ideas in the proof of Theorem 25.31, show for any
bounded sequence {cn}∞n=1 of real numbers that

lim
n→∞

1

n

n∑
k=1

ckXk = 0 a.s.

25.3.1 Strong Law of Large Number Examples

Example 25.33 (Renewal Theory). Let {Xi}∞i=1 be i.i.d. non-negative integrable
random variables such that P (Xi > 0) > 0. Think of the Xi as the life time
of bulb number i, µ := EXi is the mean life time of each bulb, and Sn :=
X1 + · · ·+Xn is the time that the nth – bulb burns out. (We assume the bulbs
are replaced immediately on burning out.) By convention, we set S0 = 0.

Let
Nt := sup {n ≥ 0 : Sn ≤ t}

denote the number of bulbs which have burned out up to time t. Since EXi <∞,
Xi <∞ a.s. and therefore Sn <∞ a.s. for all n. From this observation it follows
that Nt ↑ ∞ on the set, Ω1 := ∩∞i=1 {Xi <∞} – a subset of Ω with full measure.

It is reasonable to guess that Nt ∼ t/µ and indeed we will show;

lim
t↑∞

1

t
Nt =

1

µ
a.s. (25.13)
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To prove Eq. (25.13), by the SSLN, if Ω0 :=
{

limn→∞
1
nSn = µ

}
then P (Ω0) =

1. From the definition of Nt, SNt ≤ t < SNt+1 and so

SNt
Nt
≤ t

Nt
<
SNt+1

Nt
.

For ω ∈ Ω0 ∩Ω1 we have

µ = lim
t→∞

SNt(ω) (ω)

Nt (ω)
≤ lim inf

t→∞

t

Nt (ω)

≤ lim sup
t→∞

t

Nt (ω)
≤ lim
t→∞

[
SNt(ω)+1 (ω)

Nt (ω) + 1

Nt (ω) + 1

Nt (ω)

]
= µ.

Example 25.34 (Renewal Theory II). Let {Xi}∞i=1 be i.i.d. and {Yi}∞i=1 be i.i.d.
non-negative integrable random variables with {Xi}∞i=1 being independent of
the {Yi}∞i=1 and let µ = EX1 and ν = EY1. Again assume that P (Xi > 0) > 0.
We will interpret Yi to be the amount of time the ith – bulb remains out after
burning out before it is replaced by bulb number i+1. Let Rt be the amount of
time that we have a working bulb in the time interval [0, t] . We are now going
to show

lim
t↑∞

1

t
Rt =

EX1

EX1 + EY1
=

µ

µ+ ν
.

To prove this, let Sn :=
∑n
i=1 (Xi + Yi) be the time that the nth – bulb is

replaced and
Nt := sup {n ≥ 0 : Sn ≤ t}

denote the number of bulbs which have burned out up to time n. By Example
25.33 we know that

lim
t↑∞

1

t
Nt =

1

µ+ ν
a.s., i.e. Nt =

1

µ+ ν
t+ o (t) a.s.

Let us now set R̃t =
∑Nt
i=1Xi and observe that

R̃t ≤ Rt ≤ R̃t +XNt+1.

By Proposition 25.27 we know that Xn/n→ 0 a.s. and therefore,

lim
t↑∞

XNt+1

t
= lim
t↑∞

[
XNt+1

Nt + 1
· Nt + 1

t

]
= 0 · 1

µ+ ν
= 0 a.s.

Thus it follows that limt↑∞
1
tRt = limt↑∞

1
t R̃t a.s. and the latter limit may be

computed using the strong law of large numbers;

1

t
R̃t =

1

t

Nt∑
i=1

Xi =
Nt
t
· 1

Nt

Nt∑
i=1

Xi →
1

µ+ ν
· µ a.s.

Theorem 25.35 (Glivenko-Cantelli Theorem). Suppose that {Xn}∞n=1 are
i.i.d. random variables and F (x) := P (Xi ≤ x) . Further let µn := 1

n

∑n
i=1 δXi

be the empirical distribution with empirical distribution function,

Fn (x) := µn ((−∞, x]) =
1

n

n∑
i=1

1Xi≤x.

Then
lim
n→∞

sup
x∈R
|Fn (x)− F (x)| = 0 a.s.

Proof. Since {1Xi≤x}
∞
i=1 are i.i.d random variables with E1Xi≤x =

P (Xi ≤ x) = F (x) , it follows by the strong law of large numbers that

lim
n→∞

Fn (x) = F (x) a.s. for all x ∈ R. (25.14)

Our goal is to now show that this convergence is uniform.2 To do this we will
use another application of the strong law of large numbers applied to {1Xi<x}
in order to conclude that, for all x ∈ R,

lim
n→∞

Fn (x−) = F (x−) a.s. for all x ∈ R. (25.15)

Keep in mind that the exceptional set of probability zero depend on x.
Given k ∈ N, let Λk :=

{
i
k : i = 1, 2, . . . , k − 1

}
and let xi :=

inf {x : F (x) ≥ i/k} for i = 1, 2, . . . , k − 1, see Figure 25.1.Let us further
set xk = ∞ and x0 = −∞ and let Ωk denote the subset of Ω of full measure
where Eqs. (25.14) and (25.15) hold for x ∈ {xi : 1 ≤ i ≤ k − 1} . For ω ∈ Ωk
we may find N (ω) ∈ N (N is random) so that

|Fn (xi)− F (xi)| < 1/k and |Fn (xi−)− F (xi−)| < 1/k

for n ≥ N (ω) , 1 ≤ i ≤ k − 1, and ω ∈ Ωk with P (Ωk) = 1.

2 Observation. If F is continuous then, by what we have just shown, there is a set
Ω0 ⊂ Ω such that P (Ω0) = 1 and on Ω0, Fn (r) → F (r) for all r ∈ Q. Moreover
on Ω0, if x ∈ R and r ≤ x ≤ s with r, s ∈ Q, we have

F (r) = lim
n→∞

Fn (r) ≤ lim inf
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (x) ≤ lim
n→∞

Fn (s) = F (s) .

We may now let s ↓ x and r ↑ x to conclude, on Ω0, on

F (x) ≤ lim inf
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (x) ≤ F (x) for all x ∈ R,

i.e. on Ω0, limn→∞ Fn (x) = F (x) . Thus, in this special case we have shown that
off a fixed null set independent of x that limn→∞ Fn (x) = F (x) for all x ∈ R.
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xi−2 xi−1 x xi = xi+1

x

F

i−1
k

i−2
k

i+1
k

i
k

Fig. 25.1. Constructing the sequence of points {xi}ki=0 .

Observe that it is possible that xi = xi+1 for some of the i. This can occur
when F has jumps of size greater than 1/k,3 see Figure 25.1. Now suppose i has
been chosen so that xi−1 < xi and let x ∈ (xi−1, xi) .We then have for ω ∈ Ωk
and n ≥ N (ω) that

Fn (x) ≤ Fn (xi−) ≤ F (xi−) + 1/k ≤ F (x) + 2/k

and

Fn (x) ≥ Fn (xi−1) ≥ F (xi−1)− 1/k ≥ F (xi−)− 2/k ≥ F (x)− 2/k.

From this it follows on Ωk that |F (x)− Fn (x)| ≤ 2/k for n ≥ N and therefore,

sup
x∈R
|F (x)− Fn (x)| ≤ 2/k.

Hence it follows on Ω0 := ∩∞k=1Ωk (a set with P (Ω0) = 1) that

lim
n→∞

sup
x∈R
|Fn (x)− F (x)| = 0.

25.4 Kolmogorov’s Three Series Theorem

In this section, {Xk}∞k=1 be a collection of independent random variables. The
goal of this section is Theorem 25.42 which gives necessary and sufficient condi-
tions for the almost sure convergence of

∑∞
k=1Xk. We first are going to explore

3 In fact if F (x) = δ0 ((−∞, x]) = 1x≥0, then x1 = · · · = xk−1 = 0 for all k.

the special case where there exists c <∞ such that |Xk| ≤ c a.s. for all k ∈ N.
The main result here is Corollary 25.40 which states that

∑∞
k=1Xk is a.s. con-

vergent iff
∑∞
k=1 EXk and

∑∞
k=1 Var (Xk) are convergent in R. Kolmogorov’s

convergence criteria in Theorem 25.11 gives one direction. The converse direc-
tion will be based on the following (sub-martingale) inequality.

Theorem 25.36. Suppose that Sn :=
∑n
k=1Xk where {Xk}∞k=1 are indepen-

dent random variables such that |Xk| ≤ c < ∞ and EXk = 0 for all k ∈ N.
Then for all λ > 0,

P

(
sup
n
|Sn| ≤ λ

)
·
∞∑
k=1

Var (Xk) ≤ (λ+ c)
2
. (25.16)

In particular if P (supn |Sn| <∞) > 0, then
∑∞
k=1 Var (Xk) < ∞ and∑∞

k=1Xk = limn→∞ Sn exists in R a.s. and in L2 (P ) .

Proof. Let S0 = 0, Bn := σ (S0, . . . , Sn) , and τ := min {n ∈ N0 : |Sn| > λ}
Recall that {Sn}∞n=0 is a martingale and Yn := S2

n is a sub-martingale (by
conditional Jensen’s inequality) whose Doob’s decomposition is given by Yn =
Mn+An where An = ES2

n =
∑n
k=1 Var (Xk) , see Examples 23.3 and 23.19. For

completeness, here is a proof that
{
Mn := S2

n − ES2
n

}
is a martingale;

EBn [Mn+1] = EBn
[
S2
n+1 −An+1

]
= EBn

[
(Sn +Xn+1)

2
]
− ES2

n+1

= S2
n + 2SnEBnXn+1 + EBnX2

n+1 − ES2
n+1

= S2
n + 2SnEXn+1 + EX2

n+1 − ES2
n+1

= S2
n − ES2

n = Mn.

We now have

E
[
S2
τ∧N

]
= E

[
S2
N : τ > N

]
+ E

[
S2
τ : τ ≤ N

]
≤ λ2P (τ > N) + E

[
(|Sτ−1|+ c)

2
: τ ≤ N

]
≤ λ2P (τ > N) + (λ+ c)

2
λP (τ ≤ N) ≤ (λ+ c)

2
.

On the other hand, by the optional sampling theorem,

E
[
S2
τ∧N

]
= E [Mτ∧N ] + E [Aτ∧N ] = E [M0] + E [Aτ∧N ] = E [Aτ∧N ] .

Putting these together shows

A∞P (τ =∞) ≤ E [Aτ ] = lim
N↑∞

E [Aτ∧N ] ≤ (λ+ c)
2

which is equivalent to Eq. (25.16).
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If we now further assume P (supn |Sn| <∞) > 0 then P (supn |Sn| ≤ λ) > 0
for sufficiently large λ and it follows from Eq. (25.16) that

∑∞
k=1 Var (Xk) <∞.

Kolmogorov’s convergence criteria then shows
∑∞
k=1Xk = limn→∞ Sn exists in

R a.s. and in L2 (P ) .
The next theorem gives a natural generalization of this result to general

sub-martingales.

Theorem 25.37. Let {Yn}∞n=0 be a non-negative integrable submartingale such
Y0 = 0 and having the property that there exists an increasing function f :
[0,∞) → [0,∞) such that Yn+1 ≤ f (Yn) a.s. for all n ∈ N0. [Thus we are
assuming some uniform control over the jump sizes of the sequence {Yn}∞n=0 .]
If Yn = Mn +An is the Doob - decomposition of {Yn} , then

E
[
A∞ : sup

n
Yn ≤ λ

]
≤ λ ∨ f (λ) (25.17)

and in particular A∞ <∞ a.s. on {supn Yn <∞} .

Proof. Let τ := min {n ∈ N0 : Yn > λ} , then using the optional sampling
theorem,

EXτ∧N = EMτ∧N + EAτ∧N = EM0 + EAτ∧N = EAτ∧N .

Using XN ≤ λ on {τ > N} and Xτ ≤ f (Xτ−1) ≤ f (λ) on {τ ≤ N} allows us
to find the estimate,

EAτ∧N = EXτ∧N = E [Xτ : τ ≤ N ] + E [XN : τ > N ]

≤ f (λ)P (τ ≤ N) + λP (τ > N) ≤ λ ∨ f (λ) .

Letting N ↑ ∞ in this estimate the shows

E [A∞ : τ =∞] ≤ EAτ ≤ λ ∨ f (λ)

which gives Eq. (25.17) since {τ =∞} = {supn Yn ≤ λ} .

Remark 25.38. The above proof also shows

E
[
AN : max

n≤N
Yn ≤ λ

]
≤ EAτ∧N ≤ λ ∨ f (λ) ∀ N ∈ N.

Corollary 25.39. Suppose that {Xn}∞n=0 are independent random variables
which are bounded by some c < ∞ and have mean zero, EXn = 0 for all n.
Then

∑∞
k=1Xk exists a.s. iff

∑∞
k=1 Var (Xk) <∞.

Proof. We need only prove the forward direction since Theorem 25.11 proves
the converse direction. As usual let S0 = 0 and Sn =

∑n
k=1Xk and recall that

{Sn}∞n=0 is a martingale and Yn := S2
n is a sub-martingale (by conditional

Jensen’s inequality) whose Doob decomposition is given by Yn = Mn + An
where An = ES2

n =
∑n
k=1 Var (Xk) , see Examples 23.3 and 23.19.4 Moreover

Yn+1 = S2
n+1 ≤ (|Sn|+ c)

2
=
(√

Yn + c
)2

= f (Yn)

where f (y) :=
(√
y + c

)2
. Since we are assuming

lim
n→∞

Yn = lim
n→∞

S2
n =

( ∞∑
k=1

Xk

)2

exists a.s.,

it follows that P ({supn Yn <∞}) = 1 and so by Theorem 25.37, A∞ =∑∞
k=1 Var (Xk) <∞ a.s. This completes the proof since A∞ =

∑∞
k=1 Var (Xk)

is not random.

Corollary 25.40. Suppose that {Xn}∞n=0 are independent random vari-
ables which are bounded by some c < ∞. Then

∑∞
k=1Xk exists a.s. iff∑∞

k=1 Var (Xk) <∞ and
∑∞
k=1 EXk exists a.s.

Proof. As mentioned at the start of this section, in light of Theorem 25.11,
it suffices to prove the forward direction. Our goal is to make use of Corollary
25.39. In order to do this we will use the trick of doubling the probability space.
In detail, let X̂n : Ω ×Ω → R be defined by

X̂n (ω, ω′) := Xn (ω)−Xn (ω′)

thought of as random variables on (Ω ×Ω,B ⊗ B, P ⊗ P ) .We then have
∣∣∣X̂n

∣∣∣ ≤
2c, EX̂n = 0, and Var

(
X̂k

)
= 2 Var (Xn) . Moreover if

∑∞
k=1Xk exists P – a.s.

then
∑∞
k=1 X̂k exists P ⊗P – a.s. and so by Theorem 25.36 or Corollary 25.39,

∞∑
k=1

Var (Xk) =
1

2

∞∑
k=1

Var
(
X̂k

)
<∞.

4 Here is again the proof that {Mn} is a martingale;

EBn
[
S2
n+1 − S2

n

]
= EBn [(Sn+1 + Sn) (Sn+1 − Sn)]

= EBn [(Sn+1 − Sn) (Sn+1 − Sn)]

= EX2
n+1 = ES2

n+1 − ES2
n.
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We may now apply Theorem 25.11 to conclude that
∑∞
k=1 (Xk − EXk) exists

a.s. and therefore

∞∑
k=1

EXk =

∞∑
k=1

EXk −
∞∑
k=1

(Xk − EXk) exists a.s.

Example 25.41. Let {Zn}∞n=1 be i.i.d. mean zero random variables, |Zn| ≤ c <
∞ for some n. Further assume σ2 = EZ2

n = Var (Zn) > 0. We wish to decide
for which 0 < p <∞ the sum

∑∞
n=1

1
npZn is almost surely convergent. Taking

Xn := 1
npZn we have |Xn| ≤ c and EXn = 0 for all n. Moreover Var (Xn) =

1
n2pσ

2 and so
∞∑
n=1

Var (Xn) = σ2
∞∑
n=1

1

n2p

which is convergent iff 2p > 1, i.e. p > 1/2. Thus according to Corollary 25.40,∑∞
n=1

1
npZn is a.s. convergent iff p > 1/2. [The same results would hold if we

only assumed there exists c ∈ (0,∞) such that c ≤ EZ2
n ≤ c−1 for all n.]

We are now ready to state and prove Kolmogorov’s Three Series Theorem.

Theorem 25.42 (Kolmogorov’s Three Series Theorem). Suppose that
{Xn}∞n=1 are independent random variables and for c > 0 any c > 0 let
Xc
n := Xn1|Xn|≤c. Then the random series,

∑∞
n=1Xn, is almost surely con-

vergent in R iff there exists c > 0 such that following three sums converge;

1.
∑∞
n=1 P (|Xn| > c) <∞,

2.
∑∞
n=1 Var (Xc

n) <∞, and
3.
∑∞
n=1 E (Xc

n) .

Moreover, if the three series above converge for some c > 0 then they con-
verge for all values of c > 0.

Proof. Recall that {Xn}∞n=1 and {Xc
n}
∞
n=1 are tail equivalent iff 0 =

P (Xn 6= Xc
n i.o.) = P (|Xn| > c i.o.) which by the Borel Cantelli Lemma hap-

pens iff
∑∞
n=1 P (|Xn| > c) <∞.

(⇐=) Suppose that c > 0 and the three series in items 1. – 3. converge. Then
as above {Xn}∞n=1 and {Xc

n}
∞
n=1 are tail equivalent and therefore

∑∞
n=1Xn, is

almost surely convergent in R iff
∑∞
n=1X

c
n, is almost surely convergent in R

which according to Corollary 25.40 happens iff the sums in items 2. and 3. of
the theorem are convergent.

( =⇒ ) Now suppose that
∑∞
n=1Xn, is almost surely convergent in R and

c > 0 is any positive number. Since
∑∞
n=1Xn is convergent it follows that

limn→∞Xn = 0 a.s. and from this we conclude that {Xn}∞n=1 and {Xc
n}
∞
n=1

are tail equivalent and hence
∑∞
n=1 P (|Xn| > c) < ∞ as mentioned above.

Moreover the tail equivalence also implies
∑∞
n=1X

c
n is a.s. surely convergent

and therefore the sums in items 2. and 3. of the theorem are convergent as well
by Corollary 25.40. [Another proof of this direction may be found in Chapter
28, see Theorem 28.17.]

Remark 25.43. We have seen another necessary and sufficient condition in Ex-
ercise 23.22, namely

∑∞
n=1Xn, is almost surely convergent in R iff

∑∞
n=1Xn

is convergent in distribution. We will also see below that
∑∞
n=1Xn, is almost

surely convergent in R iff
∑∞
n=1Xn, is convergent in probability, see Lévy’s

Theorem 25.50 below.

Exercise 25.5 (Two Series Theorem – Resnik 7.15). Prove that the three
series theorem reduces to a two series theorem when the random variables are
positive. That is, if Xn ≥ 0 are independent, then

∑
nXn < ∞ a.s. iff for any

c > 0 we have ∑
n

P (Xn > c) <∞ and (25.18)∑
n

E[Xn1Xn≤c] <∞, (25.19)

that is it is unnecessary to verify the convergence of the second series in Theorem
25.42 involving the variances.

25.4.1 Examples

Lemma 25.44. Suppose that {Yn}∞n=1 are independent square integrable ran-

dom variables such that Yn
d
= N

(
µn, σ

2
n

)
. Then

∑∞
j=1 Yj converges a.s. iff∑∞

j=1 σ
2
j <∞ and

∑∞
j=1 µj converges.

Proof. The implication “⇐=” is true without the assumption that the Yn
are normal random variables as pointed out in Theorem 25.11. To prove the
converse directions we will make use of the Kolmogorov’s three series Theorem
25.42. Namely, if

∑∞
j=1 Yj converges a.s. then the three series in Theorem 25.42

converge for all c > 0.

1. Since Yn
d
= σnN + µn, we have for any c > 0 that

∞ >

∞∑
n=1

P (|σnN + µn| > c) . (25.20)

If limn→∞ µn 6= 0 then there is a c > 0 such that either µn ≥ 2c for infinitely
many n or µn ≤ −2c for infinitely many n. It then follows that either {N > 0} ⊂
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{|σnN + µn| > c} n i.o. or {N < 0} ⊂ {|σnN + µn| > c} n i.o. In either case we
would have P (|σnN + µn| > c) ≥ 1/2 n – i.o. which would violate Eq. (25.20)
and so we may concluded that limn→∞ µn = 0. Similarly if limn→∞ σn 6= 0,
then there exists α <∞ such that

{N ≥ α} ⊂ {|σnN + µn| > 1} n – i.o.

which would imply P (|σnN + µn| > 1) ≥ P (N ≥ α) > 0 for infinitely many n.
This again violate Eq. (25.20) and thus we may conclude that limn→∞ µn =
limn→∞ σn = 0.

2. Let χn := 1|σnN+µn|≤c ∈ {0, 1} . The convergence of the second series for
all c > 0 implies

∞ >

∞∑
n=1

Var
(
Yn1|Yn|≤c

)
=

∞∑
n=1

Var ([σnN + µn]χn) . (25.21)

If we can show

Var ([σnN + µn]χn) ≥ 1

2
σ2
n for large n, (25.22)

it would then follow from Eq. (25.21) that
∑∞
n=1 σ

2
n <∞. We may now use Kol-

mogorov’s convergence criteria (Theorem 25.11) to infer that
∑∞
n=1 (Yn − µn)

is almost surely convergent which then implies that
∑∞
n=1 µn is convergent as

µn = Yn − (Yn − µn) and
∑∞
n=1 Yn and

∑∞
n=1 (Yn − µn) are both convergent

a.s. So to finish the proof we need to prove the estimate in Eq. (25.22).
Let αn := Var (Nχn) and βn := P (χn = 1) so that Var (χn) = βn (1− βn)

and

εn := Cov (Nχn, χn) = E [Nχn · χn]− E [Nχn]E [χn] = E [Nχn] (1− βn) .

Therefore, using Var (σX + µY ) = σ2 Var (X) + µ2 Var (Y ) + 2σµCov (X,Y ) ,
we find

Var ([σnN + µn]χn) = Var (σnNχn + µnχn)

= σ2
nαn + µ2

nβn (1− βn) + 2σnµnεn.

Making use of the estimate, 2ab ≤ a2 + b2 valid for all a, b ≥ 0, it follows that

Var ([σnN + µn]χn) ≥ σ2
nαn + µ2

nβn (1− βn)− 2 |εn|σn |µn|
≥ σ2

n (αn − |εn|) + µ2
n (βn (1− βn)− |εn|)

= σ2
n (αn − |εn|) + (1− βn) (βn − |E [Nχn]|)µ2

n.

This estimate along with the observations that 1 − βn ≥ 0, limn→∞ αn =
limn→∞ βn = 1, limn→∞ E [Nχn] = 0 (use DCT) and limn→∞ εn = 0 easily
implies Eq. (25.22).

An alternative proof that
∑∞
n=1 µn is convergent using the the third

series in Theorem 25.42. For all c > 0 the third series implies

∞∑
n=1

E
(
[σnN + µn] 1|σnN+µn|≤c

)
is convergent, i.e.

∞∑
n=1

[σnδn + µnβn] is convergent.

where δn := E
(
N · 1|σnN+µn|≤c

)
and βn := E

(
1|σnN+µn|≤c

)
.With a little effort

one can show,

δn ∼ e−k/σ
2
n and 1− βn ∼ e−k/σ

2
n for large n.

Since e−k/σ
2
n ≤ Cσ2

n for large n, it follows that
∑∞
n=1 |σnδn| ≤ C

∑∞
n=1 σ

3
n <∞

so that
∑∞
n=1 µnβn is convergent. Moreover,

∞∑
n=1

|µn (βn − 1)| ≤ C
∞∑
n=1

|µn|σ2
n <∞

and hence
∞∑
n=1

µn =

∞∑
n=1

µnβn −
∞∑
n=1

µn (βn − 1)

must also be convergent.

Example 25.45. As another simple application of Theorem 25.42, let us use it
to give a proof of Theorem 25.11. We will apply Theorem 25.42 with Xn :=
Yn −EYn. We need to then check the three series in the statement of Theorem
25.42 converge. For the first series we have by the Markov inequality,

∞∑
n=1

P (|Xn| > c) ≤
∞∑
n=1

1

c2
E |Xn|2 =

1

c2

∞∑
n=1

Var (Yn) <∞.

For the second series, observe that

∞∑
n=1

Var
(
Xn1|Xn|≤c

)
≤
∞∑
n=1

E
[(
Xn1|Xn|≤c

)2] ≤ ∞∑
n=1

E
[
X2
n

]
=

∞∑
n=1

Var (Yn) <∞

and we estimate the third series as;

∞∑
n=1

∣∣E (Xn1|Xn|≤c
)∣∣ ≤ ∞∑

n=1

E
(

1

c
|Xn|2 1|Xn|≤c

)
≤ 1

c

∞∑
n=1

Var (Yn) <∞.
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25.5 Maximal Inequalities

Theorem 25.46 (Kolmogorov’s Inequality). Let {Xn} be a sequence of
independent random variables with mean zero, Sn := X1 + · · · + Xn, and
S∗n = maxj≤n |Sj | . Then for any α > 0 we have

P (S∗N ≥ α) ≤ 1

α2
E
[
S2
N : S∗N ≥ α

]
. (25.23)

Proof. First proof. As {Sn}∞n=1 is a martingale relative to the filtration,
Bn = σ (S1, . . . , Sn) , the inequality in Eq. (25.23) is a special case of Proposition
23.43 with Xn = S2

n, also see Example 23.49.
*Second direct proof. Let τ = inf {j : |Sj | ≥ α} with the infimum of the

empty set being taken to be equal to ∞. Observe that

{τ = j} = {|S1| < α, . . . , |Sj−1| < α, |Sj | ≥ α} ∈ σ (X1, . . . , Xj) .

Now

E
[
S2
N : |S∗N | > α

]
= E

[
S2
N : τ ≤ N

]
=

N∑
j=1

E
[
S2
N : τ = j

]
=

N∑
j=1

E
[
(Sj + SN − Sj)2

: τ = j
]

=

N∑
j=1

E
[
S2
j + (SN − Sj)2

+ 2Sj (SN − Sj) : τ = j
]

(∗)
=

N∑
j=1

E
[
S2
j + (SN − Sj)2

: τ = j
]

≥
N∑
j=1

E
[
S2
j : τ = j

]
≥ α2

N∑
j=1

P [τ = j] = α2P (|S∗N | > α) .

The equality, (∗) , is a consequence of the observations: 1) 1τ=jSj is
σ (X1, . . . , Xj) – measurable, 2) (Sn − Sj) is σ (Xj+1, . . . , Xn) – measurable
and hence 1τ=jSj and (Sn − Sj) are independent, and so 3)

E [Sj (SN − Sj) : τ = j] = E [Sj1τ=j (SN − Sj)]
= E [Sj1τ=j ] · E [SN − Sj ] = E [Sj1τ=j ] · 0 = 0.

Remark 25.47 (Another proof of Theorem 25.11). Suppose that {Yj}∞j=1 are

independent random variables such that
∑∞
j=1 Var (Yj) < ∞ and let Sn :=∑n

j=1Xj whereXj := Yj−EYj . According to Kolmogorov’s inequality, Theorem
25.46, for all M < N,

P

(
max

M≤j≤N
|Sj − SM | ≥ α

)
≤ 1

α2
E
[
(SN − SM )

2
]

=
1

α2

N∑
j=M+1

E
[
X2
j

]
=

1

α2

N∑
j=M+1

Var (Xj) .

Letting N →∞ in this inequality shows, with QM := supj≥M |Sj − SM | ,

P (QM ≥ α) ≤ 1

α2

∞∑
j=M+1

Var (Xj) .

Since

δM := sup
j,k≥M

|Sj − Sk| ≤ sup
j,k≥M

[|Sj − SM |+ |SM − Sk|] ≤ 2QM

we may further conclude,

P (δM ≥ 2α) ≤ 1

α2

∞∑
j=M+1

Var (Xj)→ 0 as M →∞,

i.e. δM
P→ 0 as M → ∞. Since δM is decreasing in M, it follows that

limM→∞ δM =: δ exists and because δM
P→ 0 we may concluded that δ = 0

a.s. Thus we have shown

lim
m,n→∞

|Sn − Sm| = 0 a.s.

and therefore {Sn}∞n=1 is almost surely Cauchy and hence almost surely conver-
gent. This gives a second proof of Kolmogorov’s convergence criteria in Theorem
25.11.

Corollary 25.48 (L2 – SSLN). Let {Xn} be a sequence of independent ran-
dom variables with mean zero, and σ2 = EX2

n < ∞. Letting Sn =
∑n
k=1Xk

and p > 1/2, we have
1

np
Sn → 0 a.s.

If {Yn} is a sequence of independent random variables EYn = µ and σ2 =
Var (Xn) <∞, then for any β ∈ (0, 1/2) ,

1

n

n∑
k=1

Yk − µ = O

(
1

nβ

)
.
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Proof. (The proof of this Corollary may be skipped as it has already been
proved, see Corollary 25.15.) From Theorem 25.46, we have for every ε > 0 that

P

(
S∗N
Np
≥ ε
)

= P (S∗N ≥ εNp) ≤ 1

ε2N2p
E
[
S2
N

]
=

1

ε2N2p
CN =

C

ε2N (2p−1)
.

Hence if we suppose that Nn = nα with α (2p− 1) > 1, then we have

∞∑
n=1

P

(
S∗Nn
Np
n
≥ ε
)
≤
∞∑
n=1

C

ε2nα(2p−1)
<∞

and so by the first Borel – Cantelli lemma we have

P

({
S∗Nn
Np
n
≥ ε for n i.o.

})
= 0.

From this it follows that limn→∞
S∗Nn
Npn

= 0 a.s.

To finish the proof, for m ∈ N, we may choose n = n (m) such that

nα = Nn ≤ m < Nn+1 = (n+ 1)
α
.

Since
S∗Nn(m)

Np
n(m)+1

≤ S∗m
mp
≤
S∗Nn(m)+1

Np
n(m)

and
Nn+1/Nn → 1 as n→∞,

it follows that

0 = lim
m→∞

S∗Nn(m)

Np
n(m)

= lim
m→∞

S∗Nn(m)

Np
n(m)+1

≤ lim
m→∞

S∗m
mp

≤ lim
m→∞

S∗Nn(m)+1

Np
n(m)

= lim
m→∞

S∗Nn(m)+1

Np
n(m)+1

= 0 a.s.

That is limm→∞
S∗m
mp = 0 a.s.

We are going to give three more maximal inequalities before ending this
section. In all case we will start with {Xn}∞n=1 a sequence of (possibly with
values in a separable Banach space, Y ) random variables and we will let Sn :=∑
k≤nXk and S∗n := maxk≤n ‖Sk‖ . If τ is any BXn – stopping time and f is a

non-negative function on Y, then

E [f (Sn − Sτ ) : τ ≤ n] =

n∑
k=1

E [f (Sn − Sk) : τ = k] =

n∑
k=1

E [f (Sn − Sk)]·P (τ = k) .

(25.24)

Theorem 25.49 (Skorohod’s Inequality). Suppose that {Xn}∞n=1 are inde-
pendent real or Banach valued random variables. Then for all α > 0 we have

P (‖SN‖ ≥ α) ≥ (1− cN (α))P (S∗N ≥ 2α) and (25.25)

P (‖SN‖ > α) ≥ (1− cN (α))P (S∗N > 2α) (25.26)

where
cN (α) := max

1≤k≤N
P (‖SN − Sk‖ > α) . (25.27)

Proof. We only prove Eq. (25.25) since the proof of Eq. (25.26) is similar
and in fact can be deduced from Eq. (25.25) by a simple limiting argument. If
τ = inf {n : ‖Sn‖ ≥ 2α} , then {τ ≤ N} = {S∗N ≥ 2α} and on this set,

‖SN‖ = ‖Sτ + SN − Sτ‖ ≥ ‖Sτ‖ − ‖SN − Sτ‖
≥ 2α− ‖SN − Sτ‖ .

From this it follows that

{τ ≤ N & ‖SN − Sτ‖ ≤ α} ⊂ {‖SN‖ ≥ α}

and therefore,

P (‖SN‖ ≥ α) ≥ P (τ ≤ N & ‖SN − Sτ‖ ≤ α)

=

N∑
k=1

P (τ = k) · P (‖SN − Sk‖ ≤ α)

≥ min
1≤k≤N

P (‖SN − Sk‖ ≤ α) ·
N∑
k=1

P (τ = k)

= min
1≤k≤N

[1− P (‖SN − Sk‖ > α)] ·
N∑
k=1

P (τ = k)

= [1− cN (α)] · P (S∗N ≥ 2α) .

As an application of Theorem 25.49 we have the following convergence result.

Theorem 25.50 (Lévy’s Theorem). Suppose that {Xn}∞n=1 are i.i.d. random
variables then

∑∞
n=1Xn converges in probability iff

∑∞
n=1Xn converges a.s.

Proof. Let Sn :=
∑n
k=1Xk. Since almost sure convergence implies conver-

gence in probability, it suffices to show; if Sn is convergent in probability then Sn
is almost surely convergent. Given M ∈ M, let QM := supn≥M |Sn − SM | and
for M < N, let QM,N := supM≤n≤N |Sn − SM | . Given ε ∈ (0, 1) , by assump-
tion, there exists M = M (ε) ∈ N such that maxM≤j≤N P (|SN − Sj | > ε) < ε
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for all N ≥M. An application of Skorohod’s inequality (Theorem 25.49), then
shows

P (QM,N ≥ 2ε) ≤ P (|SN − SM | > ε)

(1−maxM≤j≤N P (|SN − Sj | > ε))
≤ ε

1− ε
.

Since QM,N ↑ QM as N →∞, we may conclude

P (QM ≥ 2ε) ≤ ε

1− ε
.

Since,

δM := sup
m,n≥M

|Sn − Sm| ≤ sup
m,n≥M

[|Sn − SM |+ |SM − Sm|] = 2QM

we may further conclude, P (δM > 4ε) ≤ ε
1−ε and since ε > 0 is arbitrary, it

follows that δM
P→ 0 as M → ∞. Moreover, since δM is decreasing in M, it

follows that limM→∞ δM =: δ exists and because δM
P→ 0 we may concluded

that δ = 0 a.s. Thus we have shown

lim
m,n→∞

|Sn − Sm| = 0 a.s.

and therefore {Sn}∞n=1 is almost surely Cauchy and hence almost surely con-
vergent.

Remark 25.51 (Yet another proof of Theorem 25.11). Suppose that {Yj}∞j=1

are independent random variables such that
∑∞
j=1 Var (Yj) < ∞. By Propo-

sition 25.10, the sum,
∑∞
j=1 (Yj − EYj) , is L2 (P ) convergent and hence con-

vergent in probability. An application of Lévy’s Theorem 25.50 then shows∑∞
j=1 (Yj − EYj) is almost surely convergent which gives another proof of Kol-

mogorov’s convergence criteria in Theorem 25.11.

The next maximal inequality will be useful later in proving the “functional
central limit theorem.” It is actually a simple corollary of Skorohod’s inequality
(Theorem 25.49) along with Chebyshev’s inequality.

Corollary 25.52 (Ottaviani’s maximal ineqaulity). Suppose that {Xn}∞n=1

are independent real or Banach valued square integrable random variables. Then
for all α > 0 we have

P (‖SN‖ ≥ α) ≥
(

1− 1

α2
max

1≤k≤N
E ‖SN − Sk‖2

)
P (S∗N ≥ 2α)

and in particular if α2 > max1≤k≤N E ‖SN − Sk‖2 , then

P (S∗N ≥ 2α) ≤
(

1− 1

α2
max

1≤k≤N
E ‖SN − Sk‖2

)−1

P (‖SN‖ ≥ α) .

If we further assume that {Xn} are real (or Hilbert valued) mean zero random
variables, then

P (S∗N ≥ 2α) ≤
(

1− 1

α2
E ‖SN −X1‖2

)−1

P (‖SN‖ ≥ α) . (25.28)

Proof. The first and second inequalities follow by Chebyshev’s inequality
and Skorohod’s Theorem 25.49. When the {Xn} are real or Hilbert valued mean
zero square integrable random variables, we have

max
1≤k≤N

E ‖SN − Sk‖2 = max
1≤k≤N

N∑
j=k+1

E ‖Xj‖2 =

N∑
j=2

E ‖Xj‖2 = ‖SN −X1‖2 .

Corollary 25.53. Suppose λ > 1 and {Xn}∞n=1 are independent real square
integrable random variables with EXn = 0 and Var (Xn) = 1 for all n. Then

P
(
S∗n ≥ 2λ

√
n
)
≤
(

1− 1

λ2

)−1

· P
(
|Sn| ≥ λ

√
n
)

and if we further assume that {Xn}∞n=1 are i.i.d., then

lim
n→∞

P
(
S∗n ≥ 2λ

√
n
)
≤
√

2

π

(
1− 1

λ2

)−1
1

λ
e−λ

2/2.

Proof. The first inequality follows from Eq. (25.28) of Corollary 25.52 with
α = λ

√
n. For the second inequality we use the central limit theorem to conclude

that

P
(
|Sn| ≥ λ

√
n
)

= P

(
|Sn|√
n
≥ λ

)
→ P (|Z| ≥ λ)

where Z is a standard normal random variable. We then estimate P (|Z| ≥ λ)
using the Gaussian tail estimates in Lemma 10.65.

We can significantly improve on Corollary 25.52 if we further assume that
Xn is symmetric for n in which case the following reflection principle holds.

Theorem 25.54. Suppose that {Xn}∞n=1 are independent real or Banach

valued random variables such that Xn
d
= −Xn for all n and τ is any{

BXn = σ (X1, . . . , Xn)
}∞
n=1

stopping time. If we set
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Sτn := 1n≤τSn − 1n>τ (Sn − Sτ )

= 1n≤τSn − 1n>τ
∑

τ<k≤n

Xk,

then ({Sn}∞n=1 , τ) and ({Sτn}
∞
n=1 , τ) have the same distribution. (Notice Sτn =

Sn for n ≤ τ and Sτn is Sn “reflected about Sτ” for n > τ.)

Proof. Let N ∈ N be given and f : SN → R be a bounded measurable
function. Then, for all k ≤ N we have,

E [f (Sτ1 , . . . , S
τ
N ) : τ = k]

= E [f (S1, . . . , Sk, (Sk −Xk+1) , . . . , (Sk −Xk+1 − · · · −XN )) : τ = k]

= E [f (S1, . . . , Sk, (Sk +Xk+1) , . . . , (Sk +Xk+1 + · · ·+XN )) : τ = k]

= E [f (S1, . . . , SN ) : τ = k] ,

=

wherein we have used (Xk+1, . . . , XN )
d
= − (Xk+1, . . . , XN ) , (Xk+1, . . . , XN ) is

independent of BXk , and {τ = k} and (S1, . . . , Sk) are BXk – measurable. This
completes the proof since on {τ =∞} , {Sn}∞n=1 = {Sτn}

∞
n=1 .

In order to exploit this principle we will need to combine it with the following
simple geometric reflection property for Banach spaces; if r > 0 and x, y ∈
Y (Y is a normed space) such that ‖x‖ ≥ r while ‖x− y‖ < r, then ‖x+ y‖ > r.
This is easy to believe (draw the picture for Y = R2) and it is also easy to prove;

‖x+ y‖ = ‖2x− (x− y)‖
≥ ‖2x‖ − ‖x− y‖
≥ 2r − ‖x− y‖ > 2r − r = r.

Proposition 25.55 (Reflection Principle). Suppose that {Xn}∞n=1 are in-

dependent real or Banach valued random variables such that Xn
d
= −Xn for all

n. Then

P (S∗N ≥ r) ≤ P (‖SN‖ ≥ r) + P (‖SN‖ > r) ≤ 2P (‖SN‖ ≥ r) . (25.29)

Proof. Let τ := inf {n : ‖Sn‖ ≥ r} (a
{
BXn
}∞
n=1

– stopping time), then

P (S∗N ≥ r) = P (S∗N ≥ r, ‖SN‖ ≥ r) + P (S∗N ≥ r, ‖SN‖ < r)

= P (‖SN‖ ≥ r) + P (τ ≤ N, ‖SN‖ < r).

Moreover by the reflection principle (Theorem 25.54),

P (τ ≤ N, ‖SN‖ < r) = P (τ ≤ N, ‖SτN‖ < r)

= P (τ ≤ N, ‖Sτ − (SN − Sτ )‖ < r) .

If ‖Sτ‖ ≥ r and ‖Sτ − (SN − Sτ )‖ < r, then by the geometric reflection prop-
erty, ‖SN‖ = ‖Sτ + (SN − Sτ )‖ > r and therefore

P (τ ≤ N, ‖Sτ − (SN − Sτ )‖ < r) ≥ P (τ ≤ N, ‖SN‖ > r) = P (‖SN‖ > r) .

Combining this inequality with the first displayed inequality in the proof easily
gives the result.

Exercise 25.6 (Simple Random Walk Reflection principle ). Let
{Xn}∞n=1 be i.i.d Bernoulli random variables with P (Xn = ±1) = 1

2 for all
n and let Sn :=

∑
k≤nXk be the standard simple random walk on Z. Show for

every r ∈ N that

P

(
max
k≤n

Sk ≥ r
)

= P (Sn ≥ r) + P (Sn > r) .

25.6 Bone Yards

25.6.1 Kronecker’s Lemma

Remark 25.56. Here is a continuous version of Lemma 25.13. If a (s) ∈ (0,∞)
and x (s) ∈ R are continuous functions such that a (s) ↑ ∞ as s → ∞ and∫∞

1
x(s)
a(s)ds exists, then

lim
n→∞

1

a (n)

∫ n

1

x (s) ds = 0.

To prove this let X (s) :=
∫ s

0
x (u) du and

r (s) :=

∫ ∞
s

X ′ (u)

a (u)
du =

∫ ∞
s

x (u)

a (u)
du.

Then by assumption, r (s)→ 0 as s→ 0 and X ′ (s) = −a (s) r′ (s) . Integrating
this equation shows

X (s)−X (s0) = −
∫ s

s0

a (u) r′ (u) du = −a (u) r (u) |su=s0 +

∫ s

s0

r (u) a′ (u) du.

Dividing this equation by a (s) and then letting s→∞ gives

lim sup
s→∞

|X (s)|
a (s)

= lim sup
s→∞

[
a (s0) r (s0)− a (s) r (s)

a (s)
+

1

a (s)

∫ s

s0

r (u) a′ (u) du

]
≤ lim sup

s→∞

[
−r (s) +

1

a (s)

∫ s

s0

|r (u)| a′ (u) du

]
≤ lim sup

s→∞

[
a (s)− a (s0)

a (s)
sup
u≥s0

|r (u)|
]

= sup
u≥s0

|r (u)| → 0 as s0 →∞.
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Corollary 25.57. Let {Xn} be a sequence of independent square integrable ran-
dom variables and bn be a sequence such that bn ↑ ∞. If

∞∑
k=1

Var (Xk)

b2k
<∞

then
Sn − ESn

bn
→ 0 a.s. and in L2 (P ) .

Proof. By Kolmogorov’s convergence criteria, Theorem 25.11,

∞∑
k=1

Xk − EXk

bk
is convergent a.s. and in L2 (P ) .

Therefore an application of Kronecker’s Lemma 25.13 implies

0 = lim
n→∞

1

bn

n∑
k=1

(Xk − EXk) = lim
n→∞

Sn − ESn
bn

a.s.

Similarly by Kronecker’s Lemma 25.13 we know that

0 = lim
n→∞

1

b2n

n∑
k=1

Var (Xk) = lim
n→∞

E
(
Sn − ESn

bn

)2

which gives the L2 (P ) – convergence statement as well.

25.6.2 Older variants on the proof of Kolmogorov’s three series
Theorem

[The reader should skip this section.

Lemma 25.58. Suppose that {Yn}∞n=1 are independent random variables such
that there exists c < ∞ such that |Yn| ≤ c < ∞ a.s. and further assume
EYn = 0. If

∑∞
n=1 Yn is almost surely convergent in R then

∑∞
n=1 EY 2

n < ∞.
More precisely the following estimate holds,

∞∑
j=1

EY 2
j ≤

(λ+ c)
2

P (supn |Sn| ≤ λ)
for all λ > 0, (25.30)

where as usual, Sn :=
∑n
j=1 Yj .

Remark 25.59. It follows from Eq. (25.30) that if P (supn |Sn| <∞) > 0, then∑∞
j=1 EY 2

j < ∞ and hence by Kolmogorov’s convergence criteria (Theorem

25.11),
∑∞
j=1 Yj = limn→∞ Sn exists a.s. and in particular, P (supn |Sn| <∞) =

1. This also follows from the fact that supn |Sn| <∞ is a tail event and hence
P (supn |Sn| <∞) is either 0 or 1 and as P (supn |Sn| <∞) > 0 we must have
P (supn |Sn| <∞) = 1.

Proof. We will begin by proving that for every N ∈ N and λ > 0 that

E
[
S2
N

]
≤ (λ+ c)

2

P
(
supn≤N |Sn| ≤ λ

) ≤ (λ+ c)
2

P (supn |Sn| ≤ λ)
. (25.31)

To prove Eq. (25.31), let S0 := 0, Bn := σ (S0, . . . , Sn) , and τ be the stopping
time,

τ = τλ := inf {n ≥ 1 : |Sn| > λ} ,
where inf ∅ = ∞. Recall that {Sn}∞n=0 and

{
Mn := S2

n − ES2
n

}∞
n=0

are mar-

tingales5, see Examples 23.3 and 23.19. Simple estimates along with Theorem
23.40 then shows

E
[
S2
N

]
= E

[
S2
N : τ ≤ N

]
+ E

[
S2
N : τ > N

]
≤ E

[
EBτS2

N : τ ≤ N
]

+ λ2P (τ > N)

= E
[
Mτ + E

[
S2
N

]
: τ ≤ N

]
+ λ2P (τ > N)

= E [Mτ : τ ≤ N ] + E
[
S2
N

]
· P (τ ≤ N) + λ2P (τ > N) ,

or equivalently that

E
[
S2
N

]
· P (τ > N) ≤ E [Mτ : τ ≤ N ] + λ2P (τ > N) .

As Mn ≤ S2
n and so Mτ ≤ S2

τ ≤ (λ+ c)
2

on {τ <∞} ⊃ {τ ≤ N} , we learn
that

E
[
S2
N

]
≤ (λ+ c)

2
P (τ ≤ N) + λ2P (τ > N)

P (τ > N)

≤ (λ+ c)
2

P (τ > N)
=

(λ+ c)
2

P
(
supn≤N |Sn| ≤ λ

)
≤ (λ+ c)

2

P (supn |Sn| ≤ λ)

5 Here is the proof for {Mn} again;

EBn
[
S2
n+1 − S2

n

]
= EBn [(Sn+1 + Sn) (Sn+1 − Sn)]

= EBn [(Sn+1 − Sn) (Sn+1 − Sn)]

= EY 2
n+1 = ES2

n+1 − ES2
n.
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which proves Eq. (25.31).
Since Sn is convergent a.s., it follows that P (supn |Sn| <∞) = 1 and there-

fore,

lim
λ↑∞

P

(
sup
n
|Sn| ≤ λ

)
= 1.

Hence for λ sufficiently large, P (supn |Sn| ≤ λ) > 0 and we learn from Eq.
(25.31) that

∞∑
j=1

EY 2
j = lim

N→∞
E
[
S2
N

]
≤ (λ+ c)

2

P (supn |Sn| ≤ λ)
<∞.

Remark 25.60. For those skipping the martingale section here is another way
to estimate E

[
S2
N : τ ≤ N

]
;

E
[
S2
N : τ ≤ N

]
=

N∑
j=1

E
[
S2
N : τ = j

]
=

N∑
j=1

E
[
|Sj + SN − Sj |2 : τ = j

]

=

N∑
j=1

E
[
S2
j + 2Sj (SN − Sj) + (SN − Sj)2

: τ = j
]

=

N∑
j=1

E
[
S2
j : τ = j

]
+

N∑
j=1

E
[
(SN − Sj)2

]
P [τ = j]

≤
N∑
j=1

E
[
(Sj−1 + Yj)

2
: τ = j

]
+ E

[
S2
N

] N∑
j=1

P [τ = j]

≤
N∑
j=1

E
[
(λ+ c)

2
: τ = j

]
+ E

[
S2
N

]
P [τ ≤ N ]

=
[
(λ+ c)

2
+ E

[
S2
N

]]
P [τ ≤ N ] .

Lemma 25.61. Suppose that {Yn}∞n=1 are independent random variables such
that there exists c <∞ such that |Yn| ≤ c a.s. for all n. If

∑∞
n=1 Yn converges

in R a.s. then
∑∞
n=1 EYn converges as well.

Proof. Let (Ω0,B0, P0) be the probability space that {Yn}∞n=1 is defined on
and let

Ω := Ω0 ×Ω0, B := B0 ⊗ B0, and P := P0 ⊗ P0.

Further let Y ′n (ω1, ω2) := Yn (ω1) and Y ′′n (ω1, ω2) := Yn (ω2) and

Zn (ω1, ω2) := Y ′n (ω1, ω2)− Y ′′n (ω1, ω2) = Yn (ω1)− Yn (ω2) .

Then |Zn| ≤ 2c a.s., EZn = 0, and

∞∑
n=1

Zn (ω1, ω2) =

∞∑
n=1

Yn (ω1)−
∞∑
n=1

Yn (ω2) exists

for P a.e. (ω1, ω2) . Hence it follows from Lemma 25.58 that

∞ >

∞∑
n=1

EZ2
n =

∞∑
n=1

Var (Zn) =

∞∑
n=1

Var (Y ′n − Y ′′n )

=

∞∑
n=1

[Var (Y ′n) + Var (Y ′′n )] = 2

∞∑
n=1

Var (Yn) .

Thus by Kolmogorov’s convergence theorem, it follows that
∑∞
n=1 (Yn − EYn) is

convergent. Since
∑∞
n=1 Yn is a.s. convergent, we may conclude that

∑∞
n=1 EYn

is also convergent.
We are now ready to complete the proof of Theorem 25.42.
Proof of Theorem 25.42. Our goal is to show if {Xn}∞n=1 are independent

random variables such that
∑∞
n=1Xn, is almost surely convergent then for all

c > 0 the following three series converge;

1.
∑∞
n=1 P (|Xn| > c) <∞,

2.
∑∞
n=1 Var

(
Xn1|Xn|≤c

)
<∞, and

3.
∑∞
n=1 E

(
Xn1|Xn|≤c

)
converges.

Since
∑∞
n=1Xn is almost surely convergent, it follows that limn→∞Xn = 0

a.s. and hence for every c > 0, P ({|Xn| ≥ c i.o.}) = 0. According the Borel zero
one law (Lemma 15.68) this implies for every c > 0 that

∑∞
n=1 P (|Xn| > c) <

∞. Given this, we now know that {Xn} and
{
Xc
n := Xn1|Xn|≤c

}
are tail equiv-

alent for all c > 0 and in particular
∑∞
n=1X

c
n is almost surely convergent for

all c > 0. So according to Lemma 25.61 (with Yn = Xc
n),

∞∑
n=1

EXc
n =

∞∑
n=1

E
(
Xn1|Xn|≤c

)
converges.

Letting Yn := Xc
n −EXc

n, we may now conclude that
∑∞
n=1 Yn is almost surely

convergent. Since {Yn} is uniformly bounded and EYn = 0 for all n, an appli-
cation of Lemma 25.58 allows us to conclude

∞∑
n=1

Var
(
Xn1|Xn|≤c

)
=

∞∑
n=1

EY 2
n <∞.
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Weak Convergence Results

In this chapter we will discuss a couple of different ways to decide weather
two probability measures on (R,BR) are “close” to one another. This will arise
later as follows. Suppose {Yn}∞n=1 is a sequence of random variables and Y is
another random variable (possibly defined on a different probability space). We
would like to understand when, for large n, Yn and Y have nearly the “same”
distribution, i.e. when is µn := Law (Yn) close to µ = Law (Y ) for large n.

We will often be the case that Yn = X1 + · · · + Xn where {Xi}ni=1 are
independent random variables. For this reason it will be useful to record the
procedure for computing the law of Yn in terms of the laws of the {Xi}ni=1 . So
before going to the main theme of this chapter let us pause to introduce the
relevant notion of the convolution of probability measures on Rn.

26.1 Convolutions

Definition 26.1. Let µ and ν be two probability measure on (Rn,BRn) . The

convolution of µ and ν, denoted µ ∗ ν, is the measure, P ◦ (X + Y )
−1

where
{X,Y } are two independent random vectors such that P ◦ X−1 = µ and P ◦
Y −1 = ν.

Of course we may give a more direct definition of the convolution of µ and
ν by observing for A ∈ BRn that

(µ ∗ ν) (A) = P (X + Y ∈ A)

=

∫
Rn
dµ (x)

∫
Rn
dν (y) 1A (x+ y) (26.1)

=

∫
Rn
ν (A− x) dµ (x) (26.2)

=

∫
Rn
µ (A− x) dν (x) . (26.3)

This may also be expressed as,

(µ ∗ ν) (A) =

∫
Rn×Rn

1A (x+ y) dµ (x) dν (y) =

∫
Rn×Rn

1A (x+ y) d (µ⊗ ν) (x, y) .

(26.4)

Exercise 26.1. Let µ, ν, and γ be three probability measure on (Rn,BRn) .
Show;

1. µ ∗ ν = ν ∗ µ.
2. µ ∗ (ν ∗ γ) = (µ ∗ ν) ∗ γ. (So it is now safe to write µ ∗ ν ∗ γ for either side

of this equation.)
3. (µ ∗ δx) (A) = µ (A− x) for all x ∈ Rn where δx (A) := 1A (x) for all A ∈
BRn and in particular µ ∗ δ0 = µ.

As a consequence of item 2. of this exercise, if {Yi}ni=1 are independent
random vectors in Rn with µi = Law (Yi) , then

Law (Y1 + · · ·+ Yn) = µ1 ∗ µ2 ∗ · · · ∗ µn. (26.5)

Remark 26.2. Suppose that dµ (x) = u (x) dx where u (x) ≥ 0 and∫
Rn u (x) dx = 1. Then using the translation invariance of Lebesgue mea-

sure and Tonelli’s theorem, we have

µ ∗ ν (f) =

∫
Rn×Rn

f (x+ y)u (x) dxdν (y) =

∫
Rn×Rn

f (x)u (x− y) dxdν (y)

from which it follows that

d (µ ∗ ν) (x) =

[∫
Rn
u (x− y) dν (y)

]
dx.

If we further assume that dν (x) = v (x) dx, then we have

d (µ ∗ ν) (x) =

[∫
Rn
u (x− y) v (y) dy

]
dx.

To simplify notation we write,

u ∗ v (x) =

∫
Rn
u (x− y) v (y) dy =

∫
Rn
v (x− y)u (y) dy.

Example 26.3. Suppose that n = 1, dµ (x) = 1[0,1] (x) dx and dν (x) =
1[−1,0] (x) dx so that ν (A) = µ (−A) . In this case

d (µ ∗ ν) (x) =
(
1[0,1] ∗ 1[−1,0]

)
(x) dx
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where (
1[0,1] ∗ 1[−1,0]

)
(x) =

∫
R

1[−1,0] (x− y) 1[0,1] (y) dy

=

∫
R

1[0,1] (y − x) 1[0,1] (y) dy

=

∫
R

1[0,1]+x (y) 1[0,1] (y) dy

= m ([0, 1] ∩ (x+ [0, 1])) = (1− |x|)+ .

26.2 Total Variation Distance

Definition 26.4. Let µ and ν be two probability measure on a measurable space,
(Ω,B) . The total variation distance, dTV (µ, ν) , is defined as

dTV (µ, ν) := sup
A∈B
|µ (A)− ν (A)| , (26.6)

i.e. dTV (µ, ν) is simply the supremum norm of µ− ν as a function on B.

Notation 26.5 Suppose that X and Y are random variables, let

dTV (X,Y ) := dTV (µX , µY ) = sup
A∈BR

|P (X ∈ A)− P (Y ∈ A)| ,

where µX = P ◦X−1 and µY = P ◦ Y −1.

Example 26.6. For x ∈ Rn, let δx (A) := 1A (x) for all A ∈ BRn . Then one easily
shows that dTV (δx, δy) = 1x 6=y. Thus if x 6= y, in this metric δx and δy are one
unit apart no matter how close x and y are in Rn. (This is not always a desirable
feature and because of this will introduce shortly another notion of closeness for
measures.) More generally if µ and ν are any two singular probability measures
(i.e. there exists A ∈ B such that µ (A) = 1 = ν (Ac) , then dTV (µ, ν) = 1.

Exercise 26.2. Let P1 denote the set of probability measures on (Ω,B) . Show
dTV is a complete metric on P1.

Exercise 26.3. Suppose that µ, ν, and γ are probability measures on
(Rn,BRn) . Show dTV (µ ∗ ν, µ ∗ γ) ≤ dTV (ν, γ) . Use this fact along with
Exercise 26.2 to show,

dTV (µ1 ∗ µ2 ∗ · · · ∗ µn, ν1 ∗ ν2 ∗ · · · ∗ νn) ≤
n∑
i=1

dTV (µi, νi)

for all choices probability measures, µi and νi on (Rn,BRn) .

Remark 26.7. The function, λ : B → R defined by, λ (A) := µ (A)− ν (A) for all
A ∈ B, is an example of a “signed measure.” For signed measures, one usually
defines

‖λ‖TV := sup

{
n∑
i=1

|λ (Ai)| : n ∈ N and partitions, {Ai}ni=1 ⊂ B of Ω

}
.

You are asked to show in Exercise 26.4 below, that when λ = µ−ν, dTV (µ, ν) =
1
2 ‖µ− ν‖TV .

Lemma 26.8 (Scheffé’s Lemma). Suppose that m is another positive mea-
sure on (Ω,B) such that there exists measurable functions, f, g : Ω → [0,∞),
such that dµ = fdm and dν = gdm.1 Then

dTV (µ, ν) =
1

2

∫
Ω

|f − g| dm.

Let us now further suppose that {µn}∞n=1 ∪ {ν} are probability measures of the
form, dµn = fndm and dν = gdm with g, fn : Ω → [0,∞). If fn → g, m -
a.e. with dν = gdm still being a probability measure, then dTV (µn, ν) → 0 as
n→∞.

Proof. Let λ = µ− ν and h := f − g : Ω → R so that dλ = hdm and

dTV (µ, ν) = sup
A∈B
|µ (A)− ν (A)| = sup

A∈B
|λ (A)| .

Since
λ (Ω) = µ (Ω)− ν (Ω) = 1− 1 = 0,

if A ∈ B we have
λ (A) + λ (Ac) = λ (Ω) = 0.

In particular this shows |λ (A)| = |λ (Ac)| and therefore,

|λ (A)| = 1

2
[|λ (A)|+ |λ (Ac)|] =

1

2

[∣∣∣∣∫
A

hdm

∣∣∣∣+

∣∣∣∣∫
Ac
hdm

∣∣∣∣] (26.7)

≤ 1

2

[∫
A

|h| dm+

∫
Ac
|h| dm

]
=

1

2

∫
Ω

|h| dm.

This shows

dTV (µ, ν) = sup
A∈B
|λ (A)| ≤ 1

2

∫
Ω

|h| dm.

To prove the converse inequality, simply take A = {h > 0} (note Ac = {h ≤ 0})
in Eq. (26.7) to find

1 Fact: it is always possible to do this by taking m = µ+ ν for example.
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|λ (A)| = 1

2

[∫
A

hdm−
∫
Ac
hdm

]
=

1

2

[∫
A

|h| dm+

∫
Ac
|h| dm

]
=

1

2

∫
Ω

|h| dm.

For the second assertion, observe that |fn − g| → 0 m – a.e., |fn − g| ≤
Gn := fn + g ∈ L1 (m) , Gn → G := 2g a.e. and

∫
Ω
Gndm = 2 → 2 =

∫
Ω
Gdm

and n→∞. Therefore, by the dominated convergence Theorem 10.28,

lim
n→∞

dTV (µn, ν) =
1

2
lim
n→∞

∫
Ω

|fn − g| dm = 0.

For a concrete application of Scheffé’s Lemma 26.8, see Proposition 26.53
below.

Corollary 26.9. Let ‖h‖∞ := supω∈Ω |h (ω)| when h : Ω → R is a bounded
random variable. Continuing the notation in Scheffé’s lemma above, we have

dTV (µ, ν) =
1

2
sup

{∣∣∣∣∫
Ω

hdµ−
∫
Ω

hdν

∣∣∣∣ : ‖h‖∞ ≤ 1

}
. (26.8)

Consequently, ∣∣∣∣∫
Ω

hdµ−
∫
Ω

hdν

∣∣∣∣ ≤ 2dTV (µ, ν) · ‖h‖∞ (26.9)

and in particular, for all bounded and measurable functions, h : Ω → R,

lim
n→∞

dTV (µn, ν) = 0 =⇒ lim
n→∞

∫
Ω

hdµn =

∫
Ω

hdν. (26.10)

Proof. We begin by observing that∣∣∣∣∫
Ω

hdµ−
∫
Ω

hdν

∣∣∣∣ =

∣∣∣∣∫
Ω

h (f − g) dm

∣∣∣∣ ≤ ∫
Ω

|h| |f − g| dm

≤ ‖h‖∞
∫
Ω

|f − g| dm = 2dTV (µ, ν) ‖h‖∞ .

Moreover, from the proof of Scheffé’s Lemma 26.8, we have

dTV (µ, ν) =
1

2

∣∣∣∣∫
Ω

hdµ−
∫
Ω

hdν

∣∣∣∣
when h := 1f>g − 1f≤g. These two equations prove Eqs. (26.8) and (26.9) and
the latter implies Eq. (26.10).

Exercise 26.4. Under the hypothesis of Scheffé’s Lemma 26.8, show

‖µ− ν‖TV =

∫
Ω

|f − g| dm = 2dTV (µ, ν) .

Exercise 26.5. Suppose that Ω is a (at most) countable set, B := 2Ω , and
{µn}∞n=0 are probability measures on (Ω,B) . Show

dTV (µn, µ0) =
1

2

∑
ω∈Ω
|µn ({ω})− µ0 ({ω})|

and limn→∞ dTV (µn, µ0) = 0 iff limn→∞ µn ({ω}) = µ0 ({ω}) for all ω ∈ Ω.

Exercise 26.6. Let µp ({1}) = p and µp ({0}) = 1 − p and νλ ({n}) := e−λ λ
n

n!
for all n ∈ N0.

1. Find dTV (µp, µq) for all 0 ≤ p, q ≤ 1.
2. Show dTV (µp, νp) = p (1− e−p) for all 0 ≤ p ≤ 1. From this estimate and

the estimate,

1− e−p =

∫ p

0

e−xdx ≤
∫ p

0

1dx = p, (26.11)

it follows that dTV (µp, νp) ≤ p2 for all 0 ≤ p ≤ 1.
3. Show

dTV (νλ, νγ) ≤ |λ− γ| for all λ, γ ∈ R+. (26.12)

Hints: (Andy Parrish’s method – a former 280 student.)

a) Observe that for any n ∈ N we have νλ and νγ are equal to the n – fold
convolutions of νλ/n and νγ/n and use this to conclude

dTV (νλ, νγ) ≤ ndTV
(
νλ/n, νγ/n

)
. (26.13)

b) Using item 2. of this exercise, show∣∣dTV (νλ/n, νγ/n)− dTV (µλ/n, µγ/n)∣∣ ≤ Cn−2.

c) Finally make use of your results in item 1. part b. in order to let n→∞
in Eq. (26.13).

The next theorem should be compared with Exercise 10.15 which may
be stated as follows. If {Zi}ni=1 are i.i.d. Bernoulli random variables with
P (Zi = 1) = p = O (1/n) and S = Z1 + · · · + Zn, then P (S = k) ∼=
P (Poisson (pn) = k) which is valid for k � n.
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Theorem 26.10 (Law of rare events). Let {Zi}ni=1 be independent Bernoulli
random variables with P (Zi = 1) = pi ∈ (0, 1) and P (Zi = 0) = 1 − pi, S :=

Z1 + · · ·+ Zn, a := p1 + · · ·+ pn, and X
d
= Poi (a) . Then for any2 A ∈ BR we

have

|P (S ∈ A)− P (X ∈ A)| ≤
n∑
i=1

p2
i , (26.14)

or in short,

dTV

(
n∑
i=1

Zi, X

)
≤

n∑
i=1

p2
i .

(Of course this estimate has no content unless
∑n
i=1 p

2
i < 1.)

Proof. Let {Xi}ni=1 be independent random variables with Xi
d
= Pois (pi)

for each i. It then follows from Exercises 26.3 and 26.6 that,

dTV

(
n∑
i=1

Zi,

n∑
i=1

Xi

)
≤

n∑
i=1

dTV (Zi, Xi) =

n∑
i=1

pi
(
1− e−pi

)
≤

n∑
i=1

p2
i .

The reader should compare the proof of this theorem with the proof of the
central limit theorem in Theorem 15.51. For another less quantitative Poisson
limit theorem, see Theorem 28.23.

For the next result we will suppose that (Y,M, µ) is a finite measure space
with the following properties;

1. {y} ∈ M and µ ({y}) = 0 for all y ∈ Y,
2. to any A ∈ M and ε > 0, there exists a finite partition {An}N=N(ε)

n=1 ⊂ M
of A such that µ (An) ≤ ε for all n. (This assumption actually follows from
assumption the no-atom assumption 1. above, see Lemma 17.59.

In what follows below we will write F (A) = o (µ (A)) provided there exits
an increasing function, δ : R+ → R+, such that δ (x) → 0 as x → 0 and
|F (A)| ≤ µ (A) δ (µ (A)) for all A ∈M.

Proposition 26.11 (Why Poisson). Suppose (Y,M, µ) is finite measure
space with the properties given above and {N (A) : A ∈M} is a collection of
N0 – valued random variables with the following properties;

1. If {Aj}nj=1 ⊂ M are disjoint, then {N (Ai)}ni=1 are independent random
variables and

N

(
n∑
i=1

Ai

)
=

n∑
i=1

N (Ai) a.s.

2 Actually, since S and X are N0 – valued, we may as well assume that A ⊂ N0.

2. P (N (A) ≥ 2) = o (µ (A)) .
3. |P (N (A) ≥ 1)− µ (A)| = o (µ (A)) .

Then N (A)
d
= Poi (µ (A)) for all A ∈ M and in particular EN (A) = µ (A)

for all A ∈M.

Proof. Let A ∈M and ε > 0 be given. Choose a partition {Aεi}
N
i=1 ⊂M of

A such that µ (Aεi ) ≤ ε for all i. Let Zi := 1N(Aεi )≥1 and S :=
∑N
i=1 Zi. Using

N (A) =

N∑
i=1

N (Aεi )

and Lemma 26.13, we have

|P (N (A) = k)− P (S = k)| ≤ P (N (A) 6= S) ≤
N∑
i=1

P (Zi 6= N (Aεi )) .

Since {Zi 6= N (Aεi )} = {N (Aεi ) ≥ 2} and P (N (Aεi ) ≥ 2) = o (µ (Aεi )) , it fol-
lows that

|P (N (A) = k)− P (S = k)| ≤
N∑
i=1

µ (Aεi ) δ (µ (Aεi ))

≤
N∑
i=1

µ (Aεi ) δ (ε) = δ (ε)µ (A) . (26.15)

On the other hand, {Zi}Ni=1 are independent Bernoulli random variables with

P (Zi = 1) = P (N (Aεi ) ≥ 1) ,

and aε =
∑N
i=1 P (N (Aεi ) ≥ 1) . Then by the Law of rare events Theorem 26.10,∣∣∣∣P (S = k)− akε

k!
e−aε

∣∣∣∣ ≤ N∑
i=1

[P (N (Aεi ) ≥ 1)]
2 ≤

N∑
i=1

[µ (Aεi ) + o (µ (Aεi ))]
2

≤
N∑
i=1

µ (Aεi )
2

(1 + δ′ (ε))
2

= (1 + δ′ (ε))
2
εµ (A) .

(26.16)

Combining Eqs. (26.15) and (26.16) shows∣∣∣∣P (N (A) = k)− akε
k!
e−aε

∣∣∣∣ ≤ [δ (ε) + (1 + δ′ (ε))
2
ε
]
µ (A) (26.17)
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where aε satisfies

|aε − µ (A)| =

∣∣∣∣∣
N∑
i=1

[P (N (Aεi ) ≥ 1)− µ (Aεi )]

∣∣∣∣∣
≤

N∑
i=1

|[P (N (Aεi ) ≥ 1)− µ (Aεi )]| ≤
N∑
i=1

o (µ (Aεi ))

≤
N∑
i=1

µ (Aεi ) |δ′ (µ (Aεi ))| ≤ µ (A) δ′ (ε) .

Hence we may let ε ↓ 0 in Eq. (26.17) to find

P (N (A) = k) =
(µ (A))

k

k!
e−µ(A).

See [36, p. 13-16.] for another variant of this theorem in the case that Ω =
R+. See Theorem 16.12 and Exercises 16.6 – 16.8 for concrete constructions of
Poisson processes.

Remark 26.12. Here is the short version of the above Proposition. We are as-
suming {N (Ai)}ni=1 are independent if {Ai}ni=1 are pairwise disjoint and for
sets A such that µ (A) is small,

N (A)
d
= Bern (µ (A)) + o (µ (A)) . (26.18)

This last statement is short hand for the assumptions that

P (N (A) = 0) = 1− µ (A) + o (µ (A)) and P (N (A) = 1) = µ (A) + o (µ (A)) ,

and as a consequence,

P (N (A) ≥ 2) = 1− (P (N (A) = 0) + P (N (A) = 1)) = o (µ (A)) .

Assumption (26.18) implies

E
[
zN(A)

]
= (1− µ (A) + o (µ (A))) + (µ (A) + o (µ (A))) z + o (µ (A))

= 1 + µ (A) (z − 1) + o (µ (A))

= exp (1 + µ (A) (z − 1) + o (µ (A))) . (26.19)

Now for an arbitrary set A with µ = µ (A) <∞, we assume for any n ∈ N that
there exists a partition {Ai}ni=1 of A so that µ (Ai) = µ/n for each n. It then
follows from Eq. (26.19) and the independence of the {N (Ai)}ni=1 that

E
[
zN(A)

]
= E

[
z
∑n

i=1
N(Ai)

]
=

n∏
i=1

E
[
zN(Ai)

]
=

n∏
i=1

exp (1 + µ/n (z − 1) + o (µ/n))

= exp

(
µ (z − 1) + no

(
1

n

))
.

Letting n → ∞ in this equation shows E
[
zN(A)

]
= exp (µ (z − 1)) from which

it follows that that N (A)
d
= Poi (µ (A)) .

26.3 A Coupling Estimate

Lemma 26.13 (Coupling Estimates). Suppose X and Y are any random
variables on a probability space, (Ω,B, P ) and A ∈ BR. Then

|P (X ∈ A)− P (Y ∈ A)| ≤ P ({X ∈ A} 4 {Y ∈ A}) ≤ P (X 6= Y ) . (26.20)

Proof. The proof is simply;

|P (X ∈ A)− P (Y ∈ A)| = |E [1A (X)− 1A (Y )]|
≤ E |1A (X)− 1A (Y )| = E1{X∈A}4{Y ∈A}

≤ E1X 6=Y = P (X 6= Y ) .

Pushing the above proof a little more we have, if {Ai} is a partition of Ω,
then∑

i

|P (X ∈ Ai)− P (Y ∈ Ai)| =
∑
i

|E [1Ai (X)− 1Ai (Y )]|

≤
∑
i

E |1Ai (X)− 1Ai (Y )|

≤ E [1X 6=Y : X ∈ Ai or Y ∈ Ai]
≤ E [1X 6=Y : X ∈ Ai] + E [1X 6=Y : Y ∈ Ai]
= 2P (X 6= Y ) .

This shows
‖X∗P − Y∗P‖TV ≤ 2P (X 6= Y ) .

This is really not more general than Eq. (26.20) since the Hahn decomposition
theorem we know that in fact the signed measure, µ := X∗P − Y∗P, has total
variation given by

‖µ‖TV = µ (Ω+)− µ (Ω−)

Page: 395 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



396 26 Weak Convergence Results

where Ω = Ω+

∑
Ω− with Ω+ being a positive set and Ω− being a negative

set. Moreover, since µ (Ω) = 0 we must in fact have µ (Ω+) = −µ (Ω−) so that

‖X∗P − Y∗P‖TV = ‖µ‖TV = 2µ (Ω+) = 2 |P (X ∈ Ω+)− P (Y ∈ Ω+)|
≤ 2P (X 6= Y ) .

Here is perhaps a better way to view the above lemma. Suppose that we
are given two probability measures, µ, ν, on (R,BR) (or any other measurable
space, (S,BS)). We would like to estimate ‖µ− ν‖TV . The lemma states that
if X,Y are random variables (vectors) on some probability space such that
LawP (X) = µ and LawP (Y ) = ν, then

‖µ− ν‖TV ≤ 2P (X 6= Y ) .

Suppose that we let ρ := LawP (X,Y ) on (S × S,BS ⊗ BS), πi : S × S → S be
the projection maps for i = 1, 2, then (π1)∗ ρ = µ, (π2)∗ ρ = v, and

‖µ− ν‖TV ≤ 2P (X 6= Y ) = 2ρ (π1 6= π2) = 2ρ
(
S2 \∆

)
where ∆ = {(s, s) : s ∈ S} is the diagonal in S2. Thus finding a coupling
amounts to fining a probability measure, ρ, on

(
S2,BS ⊗ BS

)
whose marginals

are µ and ν respectively. Then we will have the coupling estimate,

‖µ− ν‖TV ≤ 2ρ
(
S2 \∆

)
.

Lemma 26.14 (Optimality of coupling). Suppose that S is a finite (or
countable) set and µ and ν are two probabilities on S. Then there exists a
coupling measure ρ on S × S such that

‖µ− ν‖TV = 2ρ
(
S2 \∆

)
.

Proof. I will assume that S is a finite set for simplicity although it has little
effect on the proof. Let U be a uniform random variable and choose disjoint
sub-intervals {Jx}x∈S of (0, 1] such that |Jx| = µ (x) ∧ ν (x) for all x ∈ S. Let

S± =

{
x ∈ S if µ (x) > ν (x)
x ∈ S if µ (x) < ν (x)

and observe that∑
x∈S
|Jx|+

∑
x∈S+

[µ (x)− ν (x)] =
∑
x∈S

µ (x) ∧ ν (x) +
∑
x∈S+

[µ (x)− ν (x)]

=
∑
x∈S

µ (x) = 1

and similarly, ∑
x∈S
|Jx|+

∑
x∈S−

[ν (x)− µ (x)] =
∑
x∈S

ν (x) = 1.

Assuming we have lined up the {Jx} in (0,
∑
x∈S |Jx|] we may choose two parti-

tions {Kx}x∈S+
and {Kx}x∈S−of (

∑
x∈S |Jx| , 1] such that |Kx| = |µ (x)− ν (x)|

for x ∈ S+ ∪ S−. If we then let

Y :=
∑
x∈S+

x1Jx∪Kx +
∑
x∈S−

x1Jx and Z :=
∑
x∈S−

x1Jx∪Kx +
∑
x∈S+

x1Jx

then P (Y = s) = µ (s) and P (Z = s) = ν (s) for all s ∈ S. Moreover (as you
should verify),

{Y 6= Z} = ∪x∈S+Kx = ∪x∈S−Kx

so that

P (Y 6= Z) =
∑
x∈S+

|Kx| =
1

2

∑
x∈S
|Kx| =

1

2

∑
x∈S
|µ (x)− ν (x)| .

Taking ρ := Law (Y,Z) as a measure on S × S then completes the proof.
As an example of how to use Lemma 26.13 let us give a coupling proof of

Theorem 26.10.
Proof. (A coupling proof of Theorem 26.10.) We are going to construct a

coupling for S∗P and X∗P. Finding such a coupling amounts to representing
X and S on the same probability space. We are going to do this by building
all random variables in site out of {Ui}ni=1 , where the {Ui}ni=1 are i.i.d. random
variables distributed uniformly on [0, 1] .

If we define,
Zi := 1(1−pi,1] (Ui) = 11−pi<Ui≤1,

then {Zi}ni=1 are independent Bernoulli random variables with P (Zi = 1) =
pi. We are now also going to construct3 out of the {Ui}ni=1 , a sequence of
independent Poisson random variables, {Xi}ni=1 with Xi = Poi (pi) . To do this
define

3 At this point we could appeal to Lemma 26.14 in order to find define Xi and Zi as
functions of Ui such that 1) {Zi}ni=1 are independent Bernoulli random variables
with P (Zi = 1) = pi, 2) {Xi}ni=1 are independent Poisson random variables with

Xi
d
= Pois (pi) , and 3)

P (Xi 6= Zi) = dTV (Bern (pi) , Pois (pi)) = pi
(
1− e−pi

)
≤ p2i .
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αi (k) := P (Poi (pi) ≤ k) = e−pi
k∑
j=0

pji
j!

with the convention that αi (−1) = 0. Notice that

e−pi ≤ αi (k) ≤ αi (k + 1) ≤ 1 for all k ∈ N0

and for pi small, we have

αi (0) = e−pi ∼= 1− pi
αi (1) = e−pi (1 + pi) ∼= 1− p2

i .

If we define (see Figure 26.1) by

Xi :=

∞∑
k=0

k1αi(k−1)<Ui≤αi(k),

then Xi = Poi (pi) since

P (Xi = k) = P (αi (k − 1) < Ui ≤ αi (k))

= αi (k)− αi (k − 1) = e−pi
pki
k!
.

1

2

3

4

Xi

Zi

Ui

αi(0) αi(2)

αi(1)

pi 1− pi 1

Fig. 26.1. Plots of Xi and Zi as functions of Ui.

It is also clear that {Xi}ni=1 are independent and hence by Lemma 16.1, it

follows that X :=
∑n
i=1Xi

d
= Poi (a) .

An application of Lemma 26.13 now shows

|P (S ∈ A)− P (X ∈ A)| ≤ P (S 6= X)

and since {S 6= X} ⊂ ∪ni=1 {Xi 6= Zi} , we may conclude

|P (S ∈ A)− P (X ∈ A)| ≤
n∑
i=1

P (Xi 6= Zi) .

As is easily seen from Figure 26.1,

P (Xi 6= Zi) = [αi (0)− (1− pi)] + 1− αi (1)

=
[
e−pi − (1− pi)

]
+ 1− e−pi (1 + pi)

= pi
(
1− e−pi

)
≤ p2

i

where we have used the estimate in Eq. (26.11) for the last inequality.

26.4 Weak Convergence

Recall that to each right continuous increasing function, F : R → R there
is a unique measure, µF , on BR such that µF ((a, b]) = F (b) − F (a) for all
−∞ < a ≤ b <∞. To simplify notation in this section we will now write F (A)
for µF (A) for all A ∈ BR and in particular F ((a, b]) := F (b) − F (a) for all
−∞ < a ≤ b <∞.

Example 26.15. Suppose that P
(
Xn = i

n

)
= 1

n for i ∈ {1, 2, . . . , n} so that
Xn is a discrete “approximation” to the uniform distribution, i.e. to U where
P (U ∈ A) = m (A ∩ [0, 1]) for all A ∈ BR. If we let An =

{
i
n : i = 1, 2, . . . , n

}
,

then P (Xn ∈ An) = 1 while P (U ∈ An) = 0. Therefore, it follows that
dTV (Xn, U) = 1 for all n.4

Nevertheless we would like Xn to be close to U in distribution. Let us observe
that if we let Fn (y) := P (Xn ≤ y) and F (y) := P (U ≤ y) , then

Fn (y) = P (Xn ≤ y) =
1

n
#

{
i ∈ {1, 2, . . . , n} :

i

n
≤ y
}

and
F (y) := P (U ≤ y) = (y ∧ 1) ∨ 0.

4 More generally, if µ and ν are two probability measure on (R,BR) such that
µ ({x}) = 0 for all x ∈ R while ν concentrates on a countable set, then dTF (µ, ν) =
1.
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From these formula, it easily follows that F (y) = limn→∞ Fn (y) for all y ∈ R,
see Figure ??. This suggest that we should say that Xn converges in distribution
to X iff P (Xn ≤ y) → P (X ≤ y) for all y ∈ R. However, the next simple
example shows this definition is also too restrictive.

Example 26.16. Suppose that P (Xn = 1/n) = 1 for all n and P (X0 = 0) = 1.
Then it is reasonable to insist that Xn converges of X0 in distribution. However,
Fn (y) = 1y≥1/n → 1y≥0 = F0 (y) for all y ∈ R except for y = 0. Observe that
y is the only point of discontinuity of F0.

Notation 26.17 Let (X, d) be a metric space, f : X → R be a function. The
set of x ∈ X where f is continuous (discontinuous) at x will be denoted by C (f)
(D (f)).

Remark 26.18. If F : R → [0, 1] is a non-decreasing function, then D := D (F )
is at most countable. To see this, suppose that ε > 0 is given and let

Dε := {y ∈ R : F (y+)− F (y−) ≥ ε} .

If y < y′ with y, y′ ∈ Dε, then F (y+) < F (y′−) and (F (y−) , F (y+)) and
(F (y′−) , F (y′+)) are disjoint intervals of length greater that ε. Hence it follows
that

1 = m ([0, 1]) ≥
∑
y∈Dε

m ((F (y−) , F (y+))) ≥ ε ·# (Dε)

and hence that # (Dε) ≤ ε−1 < ∞. Therefore D := ∪∞k=1D1/k is at most
countable.

Definition 26.19. Let {F, Fn : n = 1, 2, . . . } be a collection of right continuous
non-increasing functions from R to [0, 1] . Then

1. Fn converges to F vaguely and write, Fn
v→ F, iff Fn ((a, b]) → F ((a, b])

for all a, b ∈ C (F ) .

2. Fn converges to F weakly and write, Fn
w→ F, iff Fn (x) → F (x) for all

x ∈ C (F ) .
3. We say F is proper, if F is a distribution function of a probability measure,

i.e. if F (∞) = 1 and F (−∞) = 0.

Example 26.20. If Xn and U are as in Example 26.15 and Fn (y) := P (Xn ≤ y)

and F (y) := P (Y ≤ y) , then Fn
v→ F and Fn

w→ F.

Example 26.21. Suppose that Z is a random variable and F (x) := P (Z ≤ x) .
Let Xn = n+ Z and

Fn (x) := P (Xn ≤ x) = P (n+ Z ≤ x)

= P (Z ≤ x− n) = F (x− n)→ 0 as n→∞.

Thus it follows that Fn
w→ 0 = F∞. Notice that limit, F∞, is no longer a

distribution function, i.e. F∞ is not proper.

Lemma 26.22. Let {F, Fn : n = 1, 2, . . . } be a collection of proper distribution

functions. Then Fn
v→ F iff Fn

w→ F.

Proof. If Fn
w→ F, then Fn ((a, b]) = Fn (b) − Fn (a) → F (b) − F (a) =

F ((a, b]) for all a, b ∈ C (F ) and therefore Fn
v→ F. So now suppose Fn

v→ F
and let a < x with a, x ∈ C (F ) . Then

F (x) = F (a) + lim
n→∞

[Fn (x)− Fn (a)] ≤ F (a) + lim inf
n→∞

Fn (x) .

Letting a ↓ −∞, using the fact that F is proper, implies

F (x) ≤ lim inf
n→∞

Fn (x) .

Likewise,

F (x)−F (a) = lim
n→∞

[Fn (x)− Fn (a)] ≥ lim sup
n→∞

[Fn (x)− 1] = lim sup
n→∞

Fn (x)−1

which upon letting a ↑ ∞, (so F (a) ↑ 1) allows us to conclude,

F (x) ≥ lim sup
n→∞

Fn (x) .

Definition 26.23. In the case where Fn and F are proper and Fn
w→ F, we

will write Fn =⇒ F. Moreover if {Xn}∞n=0 is a sequence of random variables,
we say Xn converges weakly or to converges in distribution to X0 iff
Fn (y) := P (Xn ≤ y) =⇒ F (y) := P (X ≤ y) and we abbreviate this conver-
gence by writing Xn =⇒ X.

Example 26.24 (Central Limit Theorem). The central limit theorem (see The-
orems 10.68, Corollary 15.52, and Theorem 27.29) states; if {Xn}∞n=1 are i.i.d.
L2 (P ) random variables with µ := EX1 and σ2 = Var (X1) , then

Sn − nµ√
n

=⇒ N (0, σ)
d
= σN (0, 1) .

Written out explicitly we find

lim
n→∞

P

(
a <

Sn − nµ
σ
√
n
≤ b
)

= P (a < N (0, 1) ≤ b)

=
1√
2π

∫ b

a

e−
1
2x

2

dx

or equivalently put

Page: 398 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



26.4 Weak Convergence 399

lim
n→∞

P
(
nµ+ σ

√
na < Sn ≤ nµ+ σ

√
nb
)

=
1√
2π

∫ b

a

e−
1
2x

2

dx.

More intuitively, we have

Sn
d∼= nµ+

√
nσN (0, 1)

d
= N

(
nµ, nσ2

)
.

Example 26.25. Suppose that P (Xn = n) = 1 for all n, then Fn (y) = 1y≥n →
0 = F (y) as n → ∞. Notice that F is not a distribution function because all
of the mass went off to +∞. Similarly, if we suppose, P (Xn = ±n) = 1

2 for all
n, then Fn = 1

21[−n,n) + 1[n,∞) → 1
2 = F (y) as n → ∞. Again, F is not a

distribution function on R since half the mass went to −∞ while the other half
went to +∞.

Example 26.26. Suppose X is a non-zero random variables such that X
d
= −X,

then Xn := (−1)
n
X

d
= X for all n and therefore, Xn =⇒ X as n → ∞. On

the other hand, Xn does not converge to X almost surely or in probability.

Lemma 26.27. Suppose X is a random variable, {cn}∞n=1 ⊂ R, and Xn =
X + cn. If c := limn→∞ cn exists, then Xn =⇒ X + c.

Proof. Let F (x) := P (X ≤ x) and

Fn (x) := P (Xn ≤ x) = P (X + cn ≤ x) = F (x− cn) .

Clearly, if cn → c as n → ∞, then for all x ∈ C (F (· − c)) we have Fn (x) →
F (x− c) . Since F (x− c) = P (X + c ≤ x) , we see that Xn =⇒ X + c.
Observe that Fn (x)→ F (x− c) only for x ∈ C (F (· − c)) but this is sufficient
to assert Xn =⇒ X + c.

Lemma 26.28. Suppose {Xn}∞n=1 is a sequence of random variables on a com-

mon probability space and c ∈ R. Then Xn =⇒ c iff Xn
P→ c.

Proof. Recall that Xn
P→ c iff for all ε > 0, P (|Xn − c| > ε)→ 0. Since

{|Xn − c| > ε} = {Xn > c+ ε} ∪ {Xn < c− ε}

it follows Xn
P→ c iff P (Xn > x)→ 0 for all x > c and P (Xn < x)→ 0 for all

x < c. These conditions are also equivalent to P (Xn ≤ x)→ 1 for all x > c and

P (Xn ≤ x) ≤ P (Xn < x′)→ 0 for all x < c (where x < x′ < c). So Xn
P→ c iff

lim
n→∞

P (Xn ≤ x) =

{
0 if x < c
1 if x > c

= F (x)

where F (x) = P (c ≤ x) = 1x≥c. Since C (F ) = R\{c} , we have shown Xn
P→ c

iff Xn =⇒ c.
Alternative proof using Theorem 26.32 below. For the implication that

Xn
P→ c implies Xn =⇒ c, see Corollary 26.35. Conversely if Xn =⇒ c and

ε > 0 let fε ∈ C (R, [0, 1]) such that fε (c) = 0 and fε (x) = 1 for |x− c| ≥ ε.
(A simple piecewise linear function will do here.) Then

P (|Xn − c| ≥ ε) ≤ E [fε (Xn)]→ E [f (c)] = 0 as n→∞.

Notation 26.29 Given a proper distribution function, F : R→ [0, 1] , let Y =
F← : (0, 1)→ R be the function defined by

Y (x) = F← (x) = sup {y ∈ R : F (y) < x} .

Similarly, let
Y + (x) := inf {y ∈ R : F (y) > x} .

x

F

y

1

a

b

c

Y (c) = Y + (c)

Y (b) = Y + (b)

Y (a) Y + (a)

Fig. 26.2. The functions Y and Y + associated to F.

We will need the following simple observations about Y and Y + which are
easily understood from Figure 26.2.

1. Y (x) ≤ Y + (x) and Y (x) < Y + (x) iff x is the height of a “flat spot” of F.
2. The set,

E :=
{
x ∈ (0, 1) : Y (x) < Y + (x)

}
, (26.21)
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of flat spot heights is at most countable. This is because,
{(Y (x) , Y + (x))}x∈E is a collection of pairwise disjoint intervals which is
necessarily countable. (Each such interval contains a rational number.)

3. The following inequality holds,

F (Y (x)−) ≤ x ≤ F (Y (x)) for all x ∈ (0, 1) . (26.22)

Indeed, if y > Y (x) , then F (y) ≥ x and by right continuity of F it follows
that F (Y (x)) ≥ x. Similarly, if y < Y (x) , then F (y) < x and hence
F (Y (x)−) ≤ x.

4. {x ∈ (0, 1) : Y (x) ≤ y0} = (0, F (y0)] ∩ (0, 1) . To prove this assertion first
suppose that Y (x) ≤ y0, then according to Eq. (26.22) we have x ≤
F (Y (x)) ≤ F (y0) , i.e. x ∈ (0, F (y0)] ∩ (0, 1) . Conversely, if x ∈ (0, 1)
and x ≤ F (y0) , then Y (x) ≤ y0 by definition of Y.

5. As a consequence of item 4. we see that Y is B(0,1)/BR – measurable and

m ◦ Y −1 = F, where m is Lebesgue measure on
(
(0, 1) ,B(0,1)

)
.

Theorem 26.30 (Baby Skorohod Theorem). Suppose that {Fn}∞n=0 is a
collection of distribution functions such that Fn =⇒ F0. Then there ex-
ists a probability space, (Ω,B, P ) and random variables, {Yn}∞n=1 such that
P (Yn ≤ y) = Fn (y) for all n ∈ N∪{∞} and limn→∞ Yn = Y a.s..

Proof. We will take Ω := (0, 1) , B = B(0,1), and P = m – Lebesgue measure
on Ω and let Yn := F←n and Y := F←0 as in Notation 26.29. Because of the
above comments, P (Yn ≤ y) = Fn (y) and P (Y ≤ y) = F0 (y) for all y ∈ R. So
in order to finish the proof it suffices to show, Yn (x) → Y (x) for all x /∈ E,
where E is the countable null set defined as in Eq. (26.21).

We now suppose x /∈ E. If y ∈ C (F0) with y < Y (x) , we have
limn→∞ Fn (y) = F0 (y) < x and in particular, Fn (y) < x for almost all n.
This implies that Yn (x) ≥ y for a.a. n and hence that lim infn→∞ Yn (x) ≥ y.
Letting y ↑ Y (x) with y ∈ C (F0) then implies

lim inf
n→∞

Yn (x) ≥ Y (x) .

Similarly, for x /∈ E and y ∈ C (F0) with Y (x) = Y + (x) < y, we have
limn→∞ Fn (y) = F0 (y) > x and in particular, Fn (y) > x for almost all n.
This implies that Yn (x) ≤ y for a.a. n and hence that lim supn→∞ Yn (x) ≤ y.
Letting y ↓ Y (x) with y ∈ C (F0) then implies

lim sup
n→∞

Yn (x) ≤ Y (x) .

Hence we have shown, for x /∈ E, that

lim sup
n→∞

Yn (x) ≤ Y (x) ≤ lim inf
n→∞

Yn (x)

which shows

lim
n→∞

F←n (x) = lim
n→∞

Yn (x) = Y (x) = F← (x) for all x /∈ E. (26.23)

In preparation for the full version of Skorohod’s Theorem 26.86 it will be
useful to record a special case of Theorem 26.30 which has both a stronger
hypothesis and a stronger conclusion.

Theorem 26.31 (Prenatal Skorohod Theorem). Suppose S =
{1, 2, . . . ,m} ⊂ R and {µn}∞n=1 is a sequence of probabilities on S such
that µn =⇒ µ for some probability µ on S. Let P := µ⊗m on Ω := S× (0, 1],
Y (i, θ) = i for all (i, θ) ∈ Ω. Then there exists Yn : Ω → S such that
LawP (Yn) = µn for all n and Yn (i, θ) = i if θ ≤ µn (i) /µ (i) where we take
0/0 = 1 in this expression. In particular, limn→∞ Yn (i, θ) = Y (i, θ) a.s.

Proof. The main point is to show for any probability measure, ν, on S
there exists Yν : Ω → S such that Yν (i, θ) = i when θ ≤ ν (i) /µ (i) and
LawP (Yν) = ν. If we can do this then we need only take Yn = Yµn for all n to
complete the proof.

In the proof to follow we will use the simple observation that for any a ∈
(0, 1) and αi ≥ 0 with

∑m
i=1 αi = 1, then there exists a partition, {Ji}mi=1 of

(a, 1] such that m (Ji) = αim ((a, 1]) = αi (1− a) – simply take Ji = (ai−1, ai]

where a0 = a and ai =
(∑

j≤i αi

)
a for 1 ≤ i ≤ m.

Let ν be any probability on S and let

Ai := {i} ×
(

0,
ν (i)

µ (i)
∧ 1

]
and

C = Ω \

(
m∑
i=1

Ai

)
=

m∑
i=1

{i} ×
(
ν (i)

µ (i)
∧ 1, 1

]
and observe that

P (Ai) = µ (i) ·
(
ν (i)

µ (i)
∧ 1

)
= ν (i) ∧ µ (i) .

Using the observation in the previous paragraph we may write {k} ×(
ν(k)
µ(k) ∧ 1, 1

]
=
∑m
i=1 Ck,i with

P (Ck,i) = αi · P
(
{k} ×

(
ν (k)

µ (k)
∧ 1, 1

])
.

The sets Ci :=
∑m
k=1 Ck,i then form a partition of C such that P (Ci) = αiP (C)

for all i.
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We now define

Yν (i, θ) :=

m∑
i=1

i1Ai∪Ci

so that Yν = i on Ai and in particular Yν (i, θ) = i when θ ≤ v (i) /µ (i) .
To finish the proof we need only choose the {αi}mi=1 so that P (Yν = i) = ν (i)

for all i, i.e. we must require,

ν (i) = P (Yν = i) = P (Ai ∪ Ci) = P (Ai) + αiP (C)

= ν (i) ∧ µ (i) + αiP (C) (26.24)

and therefore we must define

αi = (ν (i)− ν (i) ∧ µ (i)) /P (C) ≥ 0.

To see this is an admissible choice (i.e.
∑m
i=1 αi = 1) notice that

P (C) =
∑
i

[µ (i)− ν (i) ∧ µ (i)]

=
∑

ν(i)<µ(i)

(µ (i)− ν (i)) =
∑

µ(i)≤ν(i)

(ν (i)− µ (i)) , (26.25)

wherein we have used the fact that∑
i∈S

(µ (i)− ν (i)) = 1− 1 = 0.

Making use of these identities we find,∑
i∈S

αi =
1

P (C)

∑
µ(i)≤ν(i)

(ν (i)− µ (i)) = 1.

The next theorem summarizes a number of useful equivalent characteriza-
tions of weak convergence. (The reader should compare Theorem 26.32 with
Corollary 26.9.) In this theorem we will write BC (R) for the bounded continu-
ous functions, f : R→ R (or f : R→ C) and Cc (R) for those f ∈ C (R) which
have compact support, i.e. f (x) ≡ 0 if |x| is sufficiently large.

Theorem 26.32. Suppose that {µn}∞n=0 is a sequence of probability measures
on (R,BR) and for each n, let Fn (y) := µn ((−∞, y]) be the (proper) distribution
function associated to µn. Then the following are equivalent.

1. For all f ∈ BC (R) , ∫
R
fdµn →

∫
R
fdµ0 as n→∞. (26.26)

2. Eq. (26.26) holds for all f ∈ BC (R) which are uniformly continuous.
3. Eq. (26.26) holds for all f ∈ Cc (R) .
4. Fn =⇒ F.
5. There exists a probability space (Ω,B, P ) and random variables, Yn, on this

space such that P ◦ Y −1
n = µn for all n and Yn → Y0 a.s.

Proof. Clearly 1. =⇒ 2. =⇒ 3. and 5. =⇒ 1. by the dominated
convergence theorem. Indeed, we have∫

R
fdµn = E [f (Yn)]

D.C.T.→ E [f (Y )] =

∫
R
fdµ0

for all f ∈ BC (R) . The implication that 4. =⇒ 5. is Skorohod’s Theorem
26.30 above. Therefore it suffices to prove 3. =⇒ 4.

(3. =⇒ 4.) Let −∞ < a < b < ∞ with a, b ∈ C (F0) and for ε > 0, let
fε (x) ≥ 1(a,b] and gε (x) ≤ 1(a,b] be the functions in Cc (R) pictured in Figure
26.3. Then

lim sup
n→∞

µn ((a, b]) ≤ lim sup
n→∞

∫
R
fεdµn =

∫
R
fεdµ0 (26.27)

and

lim inf
n→∞

µn ((a, b]) ≥ lim inf
n→∞

∫
R
gεdµn =

∫
R
gεdµ0. (26.28)

Since fε → 1[a,b] and gε → 1(a,b) as ε ↓ 0, we may use the dominated convergence
theorem to pass to the limit as ε ↓ 0 in Eqs. (26.27) and (26.28) to conclude,

lim sup
n→∞

µn ((a, b]) ≤ µ0 ([a, b]) = µ0 ((a, b])

and
lim inf
n→∞

µn ((a, b]) ≥ µ0 ((a, b)) = µ0 ((a, b]) ,

where the second equality in each of the equations holds because a and b are
points of continuity of F0. Hence we have shown that limn→∞ µn ((a, b]) exists
and is equal to µ0 ((a, b]) .

Example 26.33. Suppose that {µn}∞n=1 and µ are measures on (R,BR) such that
limn→∞ dTV (µn, µ) = 0, then µn =⇒ µ. To prove this simply observe that for
f ∈ BC (R) we have by Corollary 26.9 that

|µ (f)− µn (f)| ≤ 2 ‖f‖u dTV (µn, µ)→ 0 as n→∞.

Alternatively, simply note that

|Fn (x)− F (x)| = |µn ((−∞, x])− µ ((−∞, x])|
≤ dTV (µn, µ)→ 0 as n→∞

for all x ∈ R and in particular for all x ∈ C (F ) .
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gε

fε

a+ ε b− ε ba

a− ε b+ εba

1

1

Fig. 26.3. The picture definition of the trapezoidal functions, fε and gε.

Proposition 26.34. Suppose that {µn}∞n=0 are measures on (R,BR) such that
µn (Z) = 1 for all n. Then µn =⇒ µ iff limn→∞ dTV (µn, µ) = 0.

Proof. In light of Example 26.33 we need only show the forward implication.
For m ∈ Z, let fm ∈ C (R, [0, 1]) such that fm (m) = 1 and fm (x) = 0 for
|x−m| ≥ 1. Then µn =⇒ µ implies

µn ({m}) =

∫
R
fmdµn →

∫
R
fmdµ = µ ({m})

for all m ∈ Z. Now apply the results of Exercise 26.5.

Corollary 26.35. Suppose that {Xn}∞n=0 is a sequence of random variables,

such that Xn
P→ X0, then Xn =⇒ X0. (Recall that Example 26.26 shows the

converse is in general false.)

Proof. Let g ∈ BC (R) , then by Corollary 17.13, g (Xn)
P→ g (X0) and since

g is bounded, we may apply the dominated convergence theorem (see Corollary
17.10) to conclude that E [g (Xn)]→ E [g (X0)] .

We end this section with a few more equivalent characterizations of weak
convergence. The combination of Theorem 26.32 and 26.36 is often called the
Portmanteau5 Theorem. A review of the notions of closure, interior, and bound-
ary of a set A which are used in the next theorem may be bound in Subsection
26.10.1 below.

Theorem 26.36 (The Baby Portmanteau Theorem). Suppose {Fn}∞n=0

are proper distribution functions. (Recall that we are denoting µFn (A) simply
by Fn (A) for all A ∈ BR.) Then the following are equivalent.

1. Fn =⇒ F0.
2. lim infn→∞ Fn (U) ≥ F0 (U) for open subsets, U ⊂ R.
3. lim supn→∞ Fn (C) ≤ F0 (C) for all closed subsets, C ⊂ R.
4. limn→∞ Fn (A) = F0 (A) for all A ∈ BR such that F0 (bd (A)) = 0.

Proof. (1. =⇒ 2.) By Skorohod’s Theorem 26.30 we may choose random
variables, Yn, such that P (Yn ≤ y) = Fn (y) for all y ∈ R and n ∈ N and
Yn → Y0 a.s. as n→∞. Since U is open, it follows that

1U (Y ) ≤ lim inf
n→∞

1U (Yn) a.s.

and so by Fatou’s lemma,

F (U) = P (Y ∈ U) = E [1U (Y )]

≤ lim inf
n→∞

E [1U (Yn)] = lim inf
n→∞

P (Yn ∈ U) = lim inf
n→∞

Fn (U) .

(2. ⇐⇒ 3.) This follows from the observations: 1) C ⊂ R is closed iff
U := Cc is open, 2) F (U) = 1 − F (C) , and 3) lim infn→∞ (−Fn (C)) =
− lim supn→∞ Fn (C) .

(2. and 3. ⇐⇒ 4.) If F0 (bd (A)) = 0, then Ao ⊂ A ⊂ Ā with F0

(
Ā \Ao

)
=

F0 (bd (A)) = 0. Therefore

F0 (A) = F0 (Ao) ≤ lim inf
n→∞

Fn (Ao) ≤ lim sup
n→∞

Fn
(
Ā
)
≤ F0

(
Ā
)

= F0 (A) .

(4. =⇒ 1.) Let a, b ∈ C (F0) and take A := (a, b]. Then F0 (bd (A)) =
F0 ({a, b}) = 0 and therefore, limn→∞ Fn ((a, b]) = F0 ((a, b]) , i.e. Fn =⇒ F0.

Exercise 26.7. Suppose that F is a continuous proper distribution function.
Show,

1. F : R→ [0, 1] is uniformly continuous.

5 Portmanteua: 1) A new word formed by joining two others and combining their
meanings, or 2) A large travelling bag made of stiff leather.
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2. If {Fn}∞n=1 is a sequence of distribution functions converging weakly to F,
then Fn converges to F uniformly on R, i.e.

lim
n→∞

sup
x∈R
|F (x)− Fn (x)| = 0.

In particular, it follows that

sup
a<b
|µF ((a, b])− µFn ((a, b])|

= sup
a<b
|F (b)− F (a)− (Fn (b)− Fn (a))|

≤ sup
b
|F (b)− Fn (b)|+ sup

a
|Fn (a)− Fn (a)| → 0 as n→∞.

Hints for part 2. Given ε > 0, show that there exists, −∞ = α0 < α1 <
· · · < αn = ∞, such that |F (αi+1)− F (αi)| ≤ ε for all i. Now show, for
x ∈ [αi, αi+1), that

|F (x)− Fn (x)|
≤ (F (αi+1)− F (αi)) + |F (αi)− Fn (αi)|+ (Fn (αi+1)− Fn (αi)) .

Most of the results above generalize to the case where R is replaced by
a complete separable metric space as described in Section 26.10 below. The
definition of weak convergence in this generality is as follows.

Definition 26.37 (Weak convergence). Let (S, ρ) be a metric space. A se-
quence of probability measures {µn}∞n=1 is said to converge weakly to a prob-
ability µ if limn→∞ µn(f) = µ(f) for every f ∈ BC(S).6 We will write this

convergence as µn =⇒ µ or µn
w→ µ as n→∞.

As a warm up to these general results and compactness results to come, let
us consider in more detail the case where S = Rd.

Proposition 26.38. Suppose that {µn}∞n=1 ∪ {µ} are probability measures on(
S := Rd,B = BRd

)
such that µ (f) = limn→∞ µn (f) for all f ∈ C∞c (S) then

limn→∞ µn (f) = µ (f) for all f ∈ Cc (S) .

Proof. Let ρ ∈ C∞c (S) such that 0 ≤ ρ ≤ 1C1
and

∫
S
ρ (z) dz = 1. For

f ∈ Cc (S) and ε > 0, let

fε (x) :=

∫
S

f (x+ εz) ρ (z) dz. (26.29)

It then follows that

6 This is actually “weak-* convergence” when viewing µn ∈ BC(S)∗.

Mε := max
x
|f (x)− fε (x)| = max

x

∣∣∣∣∫
S

[f (x)− f (x+ εz)] ρ (z) dz

∣∣∣∣
≤ max

x

∫
S

|f (x)− f (x+ εz)| ρ (z) dz

≤ max
x

max
|z|≤ε

|f (x)− f (x+ z)|

where the latter expression goes to zero as ε ↓ 0 by the uniform continuity of f.
Thus we have shown that fε → f uniformly in x as ε ↓ 0. Making the change
of variables y = x+ εz in Eq. (26.29) shows

fε (x) :=
1

εd

∫
S

f (y) ρ

(
y − x
ε

)
dy

from which it follows that fε is smooth. Using this information we find,

lim sup
n→∞

|µ (f)− µn (f)|

≤ lim sup
n→∞

[|µ (f)− µ (fε)|+ |µ (fε)− µn (fε)|+ |µn (fε)− µn (f)|]

≤ 2Mε → 0 as ε ↓ 0.

Theorem 26.39. Suppose that {µn}∞n=1 ∪ {µ} are probability measures on(
S := Rd,B = BRd

)
(or some other locally compact Hausdorff space) such that

µ (f) = limn→∞ µn (f) for all f ∈ Cc (S) , then;

1. For all ε > 0 there exists a compact set Kε ⊂ S such that µ (Kε) ≥ 1 − ε
and µn (Kε) ≥ 1− ε for all n ∈ N.

2. If f ∈ BC (S) , then limn→∞ µn (f) = µ (f) .

Proof. For all R > 0 let CR := {x ∈ S : |x| ≤ R} and then choose ϕR ∈
Cc (S) such that ϕR = 1 on CR/2 and 0 ≤ ϕR ≤ 1CR .

1. With this notation it follows that

µn (CR) ≥ µn (ϕR)→ µ (ϕR) ≥ µ
(
CR/2

)
.

Choose R so large that µn (CR) ≥ µ
(
CR/2

)
≥ 1− ε/2. Then for n ≥ Nε we

will have µn (CR) ≥ 1− ε for all n ≥ Nε. By increasing R more if necessary
we may also assume that µn (CR) ≥ 1− ε for all n < Nε. Taking Kε := CR
for this R completes the proof of item 1.

2. Let f ∈ BC (S) and for R > 0 let fR := ϕR · f ∈ Cc (S) . Then
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lim sup
n→∞

|µ (f)− µn (f)|

≤ lim sup
n→∞

[|µ (f)− µ (fR)|+ |µ (f)− µn (fR)|+ |µn (fR)− µn (f)|]

= |µ (f)− µ (fR)|+ lim sup
n→∞

|µn (fR)− µn (f)| . (26.30)

By the dominated convergence theorem, limR→∞ |µ (f)− µ (fR)| = 0. For
the second term if M = maxx∈S |f (x)| we will have

sup
n
|µn (fR)− µn (f)| ≤ sup

n
µn (|fR − f |)

≤M · sup
n
µn (ϕR 6= 1) ≤M · sup

n
µn
(
S \ CR/2

)
.

However, by item 1. it follows that limR→∞ supn µn
(
S \ CR/2

)
= 0. There-

fore letting R→∞ in Eq. (26.30) show that lim supn→∞ |µ (f)− µn (f)| =
0.

26.5 “Derived” Weak Convergence

Lemma 26.40. Let (X, d) be a metric space, f : X → R be a function, and
D (f) be the set of x ∈ X where f is discontinuous at x. Then D (f) is a Borel
measurable subset of X.

Proof. For x ∈ X and δ > 0, let Bx (δ) = {y ∈ X : d (x, y) < δ} . Given
δ > 0, let fδ : X → R∪{∞} be defined by,

fδ (x) := sup
y∈Bx(δ)

f (y) .

We will begin by showing fδ is lower semi-continuous, i.e.
{
fδ ≤ a

}
is closed

(or equivalently
{
fδ > a

}
is open) for all a ∈ R. Indeed, if fδ (x) > a, then

there exists y ∈ Bx (δ) such that f (y) > a. Since this y is in Bx′ (δ) whenever
d (x, x′) < δ−d (x, y) (because then, d (x′, y) ≤ d (x, y)+d (x, x′) < δ) it follows
that fδ (x′) > a for all x′ ∈ Bx (δ − d (x, y)) . This shows

{
fδ > a

}
is open in

X.
We similarly define fδ : X → R∪{−∞} by

fδ (x) := inf
y∈Bx(δ)

f (y) .

Since fδ = − (−f)
δ
, it follows that

{fδ ≥ a} =
{

(−f)
δ ≤ −a

}
is closed for all a ∈ R, i.e. fδ is upper semi-continuous. Moreover, fδ ≤ f ≤
fδ for all δ > 0 and fδ ↓ f0 and fδ ↑ f0 as δ ↓ 0, where f0 ≤ f ≤ f0 and
f0 : X → R∪{−∞} and f0 : X → R∪{∞} are measurable functions. The
proof is now complete since it is easy to see that

D (f) =
{
f0 > f0

}
=
{
f0 − f0 6= 0

}
∈ BX .

Remark 26.41. Suppose that xn → x with x ∈ C (f) := D (f)
c
. Then f (xn)→

f (x) as n→∞.

Theorem 26.42 (Continuous Mapping Theorem). Let f : R→ R be a
Borel measurable function. If Xn =⇒ X0 and P (X0 ∈ D (f)) = 0, then
f (Xn) =⇒ f (X0) . If in addition, f is bounded, limn→∞ Ef (Xn) = Ef (X0) .
(This result generalizes easily to the case where f : S → T is a Borel mea-
surable function between metric spaces and Xn, X0 are not S – valued random
functions.)

Proof. Let {Yn}∞n=0 be random variables on some probability space as in
Theorem 26.30. For g ∈ BC (R) we observe that D (g ◦ f) ⊂ D (f) and there-
fore,

P (Y0 ∈ D (g ◦ f)) ≤ P (Y0 ∈ D (f)) = P (X0 ∈ D (f)) = 0.

Hence it follows that g◦f ◦Yn → g◦f ◦Y0 a.s. So an application of the dominated
convergence theorem (see Corollary 17.10) implies

E [g (f (Xn))] = E [g (f (Yn))]→ E [g (f (Y0))] = E [g (f (X0))] . (26.31)

This proves the first assertion. For the second assertion we take g (x) =
(x ∧M) ∨ (−M) in Eq. (26.31) where M is a bound on |f | .

Theorem 26.43 (Slutzky’s Theorem). Suppose that Xn =⇒ X ∈ Rm and

Yn
P→ c ∈ Rn where c ∈ Rn is constant. Assuming all random vectors are on the

same probability space we will have (Xn, Yn) =⇒ (X, c) – see Definition 26.37.
In particular if m = n, by taking f (x, y) = g (x+ y) and f (x, y) = h (x · y)
with g ∈ BC (Rn) and h ∈ BC (R) , we learn Xn + Yn =⇒ X + c and
Xn · Yn =⇒ X · c respectively. (The first part of this theorem generalizes to
metric spaces as well.)

Proof. According to Theorem 26.39 it suffices to show for

lim
n→∞

E [f (Xn, Yn)] = E [f (X, c)] (26.32)
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26.5 “Derived” Weak Convergence 405

for all f ∈ BC (Rm×n) which are uniformly continuous or even only f ∈
Cc (Rm×n) . For a uniformly continuous function we have for every ε > 0 a
δ := δ (ε) > 0 such that

|f (x, y)− f (x′, y′)| ≤ ε if ‖(x, y)− (x′, y′)‖ ≤ δ.

Then

|E [f (Xn, Yn)− f (Xn, c)]| ≤ E [|f (Xn, Yn)− f (Xn, c)| : ‖Yn − c‖ ≤ δ]
+ E [|f (Xn, Yn)− f (Xn, c)| : ‖Yn − c‖ > δ]

≤ ε+ 2MP (‖Yn − c‖ > δ)→ ε as n→∞,

where M = sup |f | . Since, Xn =⇒ X, we know E [f (Xn, c)] → E [f (X, c)]
and hence we have shown,

lim sup
n→∞

|E [f (Xn, Yn)− f (X, c)]|

≤ lim sup
n→∞

|E [f (Xn, Yn)− f (Xn, c)]|+ lim sup
n→∞

|E [f (Xn, c)− f (X, c)]| ≤ ε.

As ε > 0 was arbitrary this proves Eq. (26.32).

Theorem 26.44 (δ – method). Suppose that {Xn}∞n=1 are random variables,
b ∈ R, an ∈ R\ {0} with limn→∞ an = 0, and

Yn :=
Xn − b
an

=⇒ Z.

If g : R→ R be a measurable function which is differentiable at b, then

g (Xn)− g (b)

an
=⇒ g′ (b)Z. (26.33)

Put more informally, if

Xn
d' b+ anZ then g (Xn)

d' g (b) + g′ (b) anZ. (26.34)

Proof. Informally we have Xn = anYn + b
d∼= anZ + b and therefore

g (Xn)− g (b)

an

d∼=
g (anZ + b)− g (b)

anZ
Z → g′ (b)Z as n→∞.

We now make the proof rigorous.
By Skorohod’s Theorem 26.30 we may assume that {Yn}∞n=1 and Z are on the

same probability space and that Yn → Z a.s. and we may take Xn := anYn + b.
By the definition of the derivative of g at b, we have

g (b+∆)− g (b) = g′ (b)∆+ ε (∆)∆

where ε (∆)→ 0 as ∆→ 0. Taking ∆ = anYn in this equation shows

g (Xn)− g (b)

an
=
g (anYn + b)− g (b)

an

=
g′ (b) anYn + ε (anYn) anYn

an
→ g′ (b)Z a.s.

which implies Eq. (26.33) because of Corollary 26.35.

Example 26.45. Suppose that {Un}∞n=1 are i.i.d. random variables which are

uniformly distributed on [0, 1] and let Yn :=
∏n
j=1 U

1
n
j . Our goal is to find an

and bn such that Yn−bn
an

is weakly convergent to a non-constant random variable.
To this end, let

Xn := lnYn =
1

n

n∑
j=1

lnUj

Since

E [lnU1] =

∫ 1

0

lnxdx = −1,

E [lnU1]
2

=

∫ 1

0

ln2 xdx = 2,

Var (lnU1) = 1 and so by the central limit theorem

√
n [Xn − (−1)] =

∑n
j=1 [lnUj + 1]
√
n

=⇒ Z
d
= N (0, 1) .

In other words, lnYn = Xn
d' −1 + 1√

n
Z and so we expect,

Yn
d' e−1+ 1√

n
Z ' e−1

(
1 +

1√
n
Z + . . .

)
and thus we conjecture

√
n
[
Yn − e−1

]
=⇒ e−1Z

d
= N

(
0, e−2

)
.

To verify this is correct recall that by the δ – method if g′ (−1) exits, then

g (Xn)
d' g (−1) + g′ (−1)

1√
n
Z.

Page: 405 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32
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Taking g (x) = ex then implies Yn
d' e−1 + e−1 1√

n
Z or more precisely,

√
n

 n∏
j=1

U
1
n
j − e

−1

 =
√
n
(
Yn − e−1

)
=⇒ e−1Z = N

(
0, e−2

)
.

Exercise 26.8. Given a function, f : X → R and a point x ∈ X, let

lim inf
y→x

f (y) := lim
ε↓0

inf
y∈B′x(δ)

f (y) and (26.35)

lim sup
y→x

f (y) := lim
ε↓0

sup
y∈B′x(δ)

f (y) , (26.36)

where
B′x (δ) := {y ∈ X : 0 < d (x, y) < δ} .

Show f is lower (upper) semi-continuous iff lim infy→x f (y) ≥ f (x)(
lim supy→x f (y) ≤ f (x)

)
for all x ∈ X.

26.6 Convergence of Types

Given a sequence of random variables {Xn}∞n=1 we often look for centerings
{bn}∞n=1 ⊂ R and scalings {an > 0}∞n=1 such that there exists a non-constant
random variable Y such that

Xn − bn
an

=⇒ Y. (26.37)

Assuming this can be done it is reasonable to ask how unique are the centering,
scaling parameters, and the limiting distribution Y. To answer this question
let us suppose there exists another collection of centerings {βn}∞n=1 ⊂ R and
scalings {αn > 0}∞n=1 along with a non-constant random variable Z such that
Thus if

Xn − βn
αn

=⇒ Z. (26.38)

Working informally we expect that

Xn

d∼= αnZ + βn

and putting this expression back into Eq. (26.38) leads us to expect;

αn
an
Z +

βn − bn
an

=
αnZ + βn − bn

an
=⇒ Y.

It is reasonable to expect that this can only happen if the limits

A = lim
n→∞

αn
an
∈ (0,∞) and B := lim

n→∞

βn − bn
an

(26.39)

exist and
Y

d
= AZ +B. (26.40)

Notice that A > 0 as both Y and Z are assumed to be non-constant. That these
results are correct is the content of Theorem 26.49 below.

Let us now explain how to choose the {an} and the {bn} . Let Fn (x) :=
P (Xn ≤ x) , then Eq. (26.37) states,

Fn (any + bn) = P (Xn ≤ any + bn) = P

(
Xn − bn
an

≤ y
)

=⇒ P (Y ≤ y) .

Taking y = 0 and y = 1 in this equation leads us to expect,

lim
n→∞

Fn (bn) = P (Y ≤ 0) = γ1 ∈ (0, 1) and

lim
n→∞

Fn (an + bn) = P (Y ≤ 1) = γ2 ∈ (0, 1) .

In fact there is nothing so special about 0 and 1 in these equation for if Y
d
=

AZ +B we will have Z = A−1 (Y −B) and so

P (Y ≤ 0) = P (AZ +B ≤ 0) = P (Z ≤ −B/A) and

P (Y ≤ 1) = P (AZ +B ≤ 1) = P (Z ≤ (1−B) /A) .

Definition 26.46. Two random variables, Y and Z, are said to be of the same
type if there exists constants, A > 0 and B ∈ R such that Eq. (26.40) holds.
Alternatively put, if U (y) := P (Y ≤ y) and V (z) := P (Z ≤ z) , then U and V
should satisfy,

V (z) = P (Z ≤ z) = P (Y ≤ Az +B) = U (Az +B)

for all z ∈ R.

Remark 26.47. Suppose that Y
d
= AZ + B and Y and Z are square integrable

random variables. Then

EY = A · EZ +B and Var (Y ) = A2 Var (Z)

from which it follows that A2 = Var (Y ) /Var (Z) and B = EY − A · EZ. In
particular, given Y ∈ L2 (P ) there is a unique Z of the same type such that
EZ = 0 and Var (Z) = 1. On these grounds it is often reasonable to try to
choose {bn} and {an > 0} so that X̄n := a−1

n (Xn − bn) has mean zero and
variance one.
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We will need the following elementary observation for the proof of Theorem
26.49.

Lemma 26.48. If Y is non-constant (a.s.) random variable and U (y) :=
P (Y ≤ y) , then U← (γ1) < U← (γ2) for all γ1 sufficiently close to 0 and γ2

sufficiently close to 1 – see Notation 26.29 for the meaning of U←.

Proof. Observe that Y is constant iff U (y) = 1y≥c for some c ∈ R, i.e.
iff U only takes on the values, {0, 1} . So since Y is not constant, there exists
y ∈ R such that 0 < U (y) < 1. Hence if γ2 > U (y) then U← (γ2) ≥ y and
if γ1 < U (y) then U← (γ1) ≤ y. Moreover, if we suppose that γ1 is not the
height of a flat spot of U, then in fact, U← (γ1) < U← (γ2) . This inequality
then remains valid as γ1 decreases and γ2 increases.

Theorem 26.49 (Convergence of Types). Suppose {Xn}∞n=1 is a sequence
of random variables and an, αn ∈ (0,∞) , bn, βn ∈ R are constants and Y and
Z are non-constant random variables. Then

1. if both Eq. (26.37) and Eq. (26.38) hold then the limits, in Eq. (26.39) exists

and Y
d
= AZ +B and in particular Y and Z are of the same type.

2. If the limits in Eq. (26.39) hold then either of the convergences in Eqs.
(26.37) or (26.38) implies the others with Z and Y related by Eq. (26.40).

3. If there are some constants, an > 0 and bn ∈ R and a non-constant random
variable Y, such that Eq. (26.37) holds, then Eq. (26.38) holds using αn and
βn of the form,

αn := F←n (γ2)− F←n (γ1) and βn := F←n (γ1) (26.41)

for some 0 < γ1 < γ2 < 1. If the Fn are invertible functions, Eq. (26.41)
may be written as

Fn (βn) = γ1 and Fn (αn + βn) = γ2. (26.42)

Proof. (2) Assume the limits in Eq. (26.39) hold. If Eq. (26.37) is satisfied,
then by Slutsky’s Theorem 18.24,

Xn − βn
αn

=
Xn − bn + bn − βn

an

an
αn

=
Xn − bn
an

an
αn
− βn − bn

an

an
αn

=⇒ A−1 (Y −B) =: Z

Similarly, if Eq. (26.38) is satisfied, then

Xn − bn
an

=
Xn − βn
αn

αn
an

+
βn − bn
an

=⇒ AZ +B =: Y.

(1) If Fn (y) := P (Xn ≤ y) , then

P

(
Xn − bn
an

≤ y
)

= Fn (any + bn) and P

(
Xn − βn
αn

≤ y
)

= Fn (αny + βn) .

By assumption we have

Fn (any + bn) =⇒ U (y) and Fn (αny + βn) =⇒ V (y) .

If w := sup {y : Fn (any + bn) < x} , then anw + bn = F←n (x) and hence

sup {y : Fn (any + bn) < x} =
F←n (x)− bn

an
.

Similarly,

sup {y : Fn (αny + βn) < x} =
F←n (x)− βn

αn
.

With these identities, it now follows from the proof of Skorohod’s Theorem
26.30 (see Eq. (26.23)) that there exists an at most countable subset, Λ, of
(0, 1) such that,

F←n (x)− bn
an

= sup {y : Fn (any + bn) < x} → U← (x) and

F←n (x)− βn
αn

= sup {y : Fn (αny + βn) < x} → V← (x)

for all x /∈ Λ. Since Y and Z are not constants a.s., we can choose, by Lemma
26.48, γ1 < γ2 not in Λ such that U← (γ1) < U← (γ2) and V← (γ1) < V← (γ2) .
In particular it follows that

F←n (γ2)− F←n (γ1)

an
=
F←n (γ2)− bn

an
− F←n (γ1)− bn

an
→ U← (γ2)− U← (γ1) > 0 (26.43)

and similarly

F←n (γ2)− F←n (γ1)

αn
→ V← (γ2)− V← (γ1) > 0.

Taking ratios of the last two displayed equations shows,

αn
an
→ A :=

U← (γ2)− U← (γ1)

V← (γ2)− V← (γ1)
∈ (0,∞) .

Moreover,
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F←n (γ1)− bn
an

→ U← (γ1) and (26.44)

F←n (γ1)− βn
an

=
F←n (γ1)− βn

αn

αn
an
→ AV← (γ1)

and therefore,

βn − bn
an

=
F←n (γ1)− βn

an
− F←n (γ1)− bn

an
→ AV← (γ1)− U← (γ1) := B.

(3) Now suppose that we define αn := F←n (γ2) − F←n (γ1) and βn :=
F←n (γ1) , then according to Eqs. (26.43) and (26.44)we have

αn/an → U← (γ2)− U← (γ1) ∈ (0, 1) and

βn − bn
an

→ U← (γ1) as n→∞.

Thus we may always center and scale the {Xn} using αn and βn of the form
described in Eq. (26.41).

26.7 Weak Convergence Examples

Example 26.50. Suppose that {Xn}∞n=1 are i.i.d. exp (λ) – random variables, i.e.
Xn ≥ 0 a.s. and P (Xn ≥ x) = e−λx for all x ≥ 0. In this case

F (x) := P (X1 ≤ x) = 1− e−λ(x∨0) =
(
1− e−λx

)
+
.

Consider Mn := max (X1, . . . , Xn) . We have, for x ≥ 0 and cn ∈ (0,∞) that

Fn (x) := P (Mn ≤ x) = P
(
∩nj=1 {Xj ≤ x}

)
=

n∏
j=1

P (Xj ≤ x) = [F (x)]
n

=
(
1− e−λx

)n
.

We now wish to find an > 0 and bn ∈ R such that Mn−bn
an

=⇒ Y.
1. To this end we note that

P

(
Mn − bn

an
≤ x

)
= P (Mn ≤ anx+ bn)

= Fn (anx+ bn) = [F (anx+ bn)]
n
.

If we demand (c.f. Eq. (26.42) above)

P

(
Mn − bn

an
≤ 0

)
= Fn (bn) = [F (bn)]

n → γ1 ∈ (0, 1) ,

then bn →∞ and we find

ln γ1 ∼ n lnF (bn) = n ln
(
1− e−λbn

)
∼ −ne−λbn .

From this it follows that bn ∼ λ−1 lnn. Given this, we now try to find an by
requiring,

P

(
Mn − bn

an
≤ 1

)
= Fn (an + bn) = [F (an + bn)]

n → γ2 ∈ (0, 1) .

However, by what we have done above, this requires an + bn ∼ λ−1 lnn. Hence
we may as well take an to be constant and for simplicity we take an = 1.

2. We now compute

lim
n→∞

P
(
Mn − λ−1 lnn ≤ x

)
= lim
n→∞

(
1− e−λ(x+λ−1 lnn)

)n
= lim
n→∞

(
1− e−λx

n

)n
= exp

(
−e−λx

)
.

The function F (x) = exp
(
−e−λx

)
is the CDF for a “Gumbel distribution,” see

Figure 26.4. Thus letting Y be a random variable with this distribution (i.e.
P (Y ≤ x) = exp

(
−e−λx

)
) we have shown Mn − 1

λ lnn =⇒ Y, i.e.

max (X1, . . . , Xn)− 1

λ
lnn =⇒ Y.

Fig. 26.4. Here is a plot of the density function for Y when λ = 1.
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Example 26.51. For p ∈ (0, 1) , let Xp denote the number of trials to get
success in a sequence of independent trials with success probability p. Then
P (Xp > n) = (1− p)n and therefore for x > 0,

P (pXp > x) = P

(
Xp >

x

p

)
= (1− p)[

x
p ] = e[

x
p ] ln(1−p)

∼ e−p[
x
p ] → e−x as p→ 0.

Therefore pXp =⇒ T where T
d
= exp (1) , i.e. P (T > x) = e−x for x ≥ 0 or

alternatively, P (T ≤ y) = 1− e−y∨0.
Remarks on this example. Let us see in a couple of ways where the

appropriate centering and scaling of the Xp come from in this example. For

this let q = 1− p, then P (Xp = n) = (1− p)n−1
p = qn−1p for n ∈ N. Also let

Fp (x) = P (Xp ≤ x) = P (Xp ≤ [x]) = 1− q[x]

where [x] :=
∑∞
n=1 n · 1[n,n+1).

Method 1. Our goal is to choose ap > 0 and bp ∈ R such that
limp ↓0 Fp (apx+ bp) exists. As above, we first demand (taking x = 0) that

lim
p ↓0

Fp (bp) = γ1 ∈ (0, 1) .

Since, γ1 ∼ Fp (bp) ∼ 1− qbp we require, qbp ∼ 1− γ1 and hence, c ∼ bp ln q =
bp ln (1− p) ∼ −bpp. This suggests that we take bp = 1/p say. Having done this,
we would like to choose ap such that

F0 (x) := lim
p ↓0

Fp (apx+ bp) exists.

Since,
F0 (x) ∼ Fp (apx+ bp) ∼ 1− qapx+bp

this requires that

(1− p)apx+bp = qapx+bp ∼ 1− F0 (x)

and hence that

ln (1− F0 (x)) = (apx+ bp) ln q ∼ (apx+ bp) (−p) = −papx− 1.

From this (setting x = 1) we see that pap ∼ c > 0. Hence we might take
ap = 1/p as well. We then have

Fp (apx+ bp) = Fp
(
p−1x+ p−1

)
= 1− (1− p)[p

−1(x+1)]

which is equal to 0 if x ≤ −1, and for x > −1 we find

(1− p)[p
−1(x+1)] = exp

([
p−1 (x+ 1)

]
ln (1− p)

)
→ exp (− (x+ 1)) .

Hence we have shown,

lim
p ↓0

Fp (apx+ bp) = [1− exp (− (x+ 1))] 1x≥−1

Xp − 1/p

1/p
= pXp − 1 =⇒ T − 1

or again that pXp =⇒ T.
Method 2. (Center and scale using the first moment and the variance of

Xp.) The generating function is given by

f (z) := E
[
zXp

]
=

∞∑
n=1

znqn−1p =
pz

1− qz
.

Observe that f (z) is well defined for |z| < 1
q and that f (1) = 1, reflecting the

fact that P (Xp ∈ N) = 1, i.e. a success must occur almost surely. Moreover, we
have

f ′ (z) = E
[
Xpz

Xp−1
]
, f ′′ (z) = E

[
Xp (Xp − 1) zXp−2

]
, . . .

f (k) (z) = E
[
Xp (Xp − 1) . . . (Xp − k + 1) zXp−k

]
and in particular,

E [Xp (Xp − 1) . . . (Xp − k + 1)] = f (k) (1) =

(
d

dz

)k
|z=1

pz

1− qz
.

Since
d

dz

pz

1− qz
=
p (1− qz) + qpz

(1− qz)2 =
p

(1− qz)2

and
d2

dz2

pz

1− qz
= 2

pq

(1− qz)3

it follows that

µp := EXp =
p

(1− q)2 =
1

p
and

E [Xp (Xp − 1)] = 2
pq

(1− q)3 =
2q

p2
.
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410 26 Weak Convergence Results

Therefore,

σ2
p = Var (Xp) = EX2

p − (EXp)
2

=
2q

p2
+

1

p
−
(

1

p

)2

=
2q + p− 1

p2
=

q

p2
=

1− p
p2

.

Thus, if we had used µp and σp to center and scale Xp we would have considered,

Xp − 1
p

√
1−p
p

=
pXp − 1√

1− p
=⇒ T − 1

instead.

Theorem 26.52 (This is already done in Theorem 10.68). Let {Xn}∞n=1

be i.i.d. random variables such that P (Xn = ±1) = 1/2 and let Sn := X1 +
· · · + Xn – the position of a drunk after n steps. Observe that |Sn| is an odd
integer if n is odd and an even integer if n is even. Then Sm√

m
=⇒ N (0, 1) as

m→∞.

Proof. (Sketch of the proof.) We start by observing that S2n = 2k iff

# {i ≤ 2n : Xi = 1} = n+ k while

# {i ≤ 2n : Xi = −1} = 2n− (n+ k) = n− k

and therefore,

P (S2n = 2k) =

(
2n

n+ k

)(
1

2

)2n

=
(2n)!

(n+ k)! · (n− k)!

(
1

2

)2n

.

Recall Stirling’s formula states,

n! ∼ nne−n
√

2πn as n→∞

and therefore,

P (S2n = 2k)

∼ (2n)
2n
e−2n

√
4πn

(n+ k)
n+k

e−(n+k)
√

2π (n+ k) · (n− k)
n−k

e−(n−k)
√

2π (n− k)

(
1

2

)2n

=

√
n

π (n+ k) (n− k)

(
1 +

k

n

)−(n+k)

·
(

1− k

n

)−(n−k)

=
1√
πn

√
1(

1 + k
n

) (
1− k

n

) (1− k2

n2

)−n
·
(

1 +
k

n

)−k
·
(

1− k

n

)k
=

1√
πn

(
1− k2

n2

)−n
·
(

1 +
k

n

)−k−1/2

·
(

1− k

n

)k−1/2

.

So if we let x := 2k/
√

2n, i.e. k = x
√
n/2 and k/n = x√

2n
, we have

P

(
S2n√

2n
= x

)

∼ 1√
πn

(
1− x2

2n

)−n
·
(

1 +
x√
2n

)−x√n/2−1/2

·
(

1− x√
2n

)x√n/2−1/2

∼ 1√
πn

ex
2/2 · e

x√
2n

(
−x
√
n/2−1/2

)
· e−

x√
2n

(
x
√
n/2−1/2

)
∼ 1√

πn
e−x

2/2,

wherein we have repeatedly used

(1 + an)
bn = ebn ln(1+an) ∼ ebnan when an → 0.

We now compute

P

(
a ≤ S2n√

2n
≤ b
)

=
∑
a≤x≤b

P

(
S2n√

2n
= x

)
=

1√
2π

∑
a≤x≤b

e−x
2/2 2√

2n
(26.45)

where the sum is over x of the form, x = 2k√
2n

with k ∈ {0,±1, . . . ,±n} . Since
2√
2n

is the increment of x as k increases by 1, we see the latter expression in

Eq. (26.45) is the Riemann sum approximation to

1√
2π

∫ b

a

e−x
2/2dx.

This proves S2n√
2n

=⇒ N (0, 1) . Since

S2n+1√
2n+ 1

=
S2n +X2n+1√

2n+ 1
=

S2n√
2n

1√
1 + 1

2n

+
X2n+1√
2n+ 1

,

it follows directly (or see Slutsky’s Theorem 26.36) that S2n+1√
2n+1

=⇒ N (0, 1)

as well.

Proposition 26.53. Suppose that {Un}∞n=1 are i.i.d. random variables which
are uniformly distributed in (0, 1) . Let U(k,n) denote the position of the kth –
largest number from the list, {U1, U2, . . . , Un} . Further let k (n) be chosen so

that limn→∞ k (n) =∞ while limn→∞
k(n)
n = 0 and let
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26.7 Weak Convergence Examples 411

Xn :=
U(k(n),n) − k (n) /n

√
k(n)

n

.

Then dTV (Xn, N (0, 1))→ 0 as n→∞.

Proof. (Sketch only. See Resnick, Proposition 8.2.1 for more details.) Ob-
serve that, for x ∈ (0, 1) , that

P
(
U(k,n) ≤ x

)
= P

(
n∑
i=1

Xi ≥ k

)
=

n∑
l=k

(
n

l

)
xl (1− x)

n−l
.

From this it follows that ρn (x) := 1(0,1) (x) d
dxP

(
U(k,n) ≤ x

)
is the probability

density for U(k,n). It now turns out that ρn (x) is a Beta distribution,

ρn (x) =

(
n

k

)
k · xk−1 (1− x)

n−k
.

Giving a direct computation of this result is not so illuminating. So let us go
another route. To do this we are going to estimate, P

(
U(k,n) ∈ (x, x+∆]

)
, for

∆ ∈ (0, 1) . Observe that if U(k,n) ∈ (x, x+∆], then there must be at least one
Ui ∈ (x, x + ∆], for otherwise, U(k,n) ≤ x + ∆ would imply U(k,n) ≤ x as well
and hence U(k,n) /∈ (x, x+∆]. Let

Ωi := {Ui ∈ (x, x+∆] and Uj /∈ (x, x+∆] for j 6= i} .

Since

P (Ui, Uj ∈ (x, x+∆] for some i 6= j with i, j ≤ n) ≤
∑
i<j≤n

P (Ui, Uj ∈ (x, x+∆])

≤ n2 − n
2

∆2,

we see that

P
(
U(k,n) ∈ (x, x+∆]

)
=

n∑
i=1

P
(
U(k,n) ∈ (x, x+∆], Ωi

)
+O

(
∆2
)

= nP
(
U(k,n) ∈ (x, x+∆], Ω1

)
+O

(
∆2
)
.

Now on the set, Ω1; U(k,n) ∈ (x, x+∆] iff there are exactly k− 1 of U2, . . . , Un
in [0, x] and n− k of these in [x+∆, 1] . This leads to the conclusion that

P
(
U(k,n) ∈ (x, x+∆]

)
= n

(
n− 1

k − 1

)
xk−1 (1− (x+∆))

n−k
∆+O

(
∆2
)

and therefore,

ρn (x) = lim
∆↓0

P
(
U(k,n) ∈ (x, x+∆]

)
∆

=
n!

(k − 1)! · (n− k)!
xk−1 (1− x)

n−k
.

By Stirling’s formula,

n!

(k − 1)! · (n− k)!

∼ nne−n
√

2πn

(k − 1)
(k−1)

e−(k−1)
√

2π (k − 1) (n− k)
(n−k)

e−(n−k)
√

2π (n− k)

=

√
ne−1

√
2π

1(
k−1
n

)(k−1)
√

k−1
n

(
n−k
n

)(n−k)
√

n−k
n

=

√
ne−1

√
2π

1(
k−1
n

)(k−1/2) (
1− k

n

)(n−k+1/2)
.

Since (
k − 1

n

)(k−1/2)

=

(
k

n

)(k−1/2)

·
(
k − 1

k

)(k−1/2)

=

(
k

n

)(k−1/2)

·
(

1− 1

k

)(k−1/2)

∼ e−1

(
k

n

)(k−1/2)

we arrive at

n!

(k − 1)! · (n− k)!
∼
√
n√
2π

1(
k
n

)(k−1/2) (
1− k

n

)(n−k+1/2)
.

By the change of variables formula, with

x =
u− k (n) /n√

k(n)

n

on noting the du =

√
k(n)

n dx, x = −
√
k (n) at u = 0, and

x =
1− k (n) /n√

k(n)

n

=
n− k (n)√

k (n)

=
n√
k (n)

(
1− k (n)

n

)
=
√
n

√
n

k (n)

(
1− k (n)

n

)
=: bn,
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412 26 Weak Convergence Results

E [F (Xn)] =

∫ 1

0

ρn (u)F

u− k (n) /n√
k(n)

n

 du

=

∫ bn

−
√
k(n)

√
k (n)

n
ρn

(√
k (n)

n
x+ k (n) /n

)
F (x) du.

Using this information, it is then shown in Resnick that√
k (n)

n
ρn

(√
k (n)

n
x+ k (n) /n

)
→ e−x

2/2

√
2π

which upon an application of Scheffé’s Lemma 26.8 completes the proof.

Remark 26.54. It is possible to understand the normalization constants in the
definition of Xn by computing the mean and the variance of U(n,k). After some
computations (see Chapter ??), one arrives at

EU(k,n) =

∫ 1

0

n!

(k − 1)! · (n− k)!
xk−1 (1− x)

n−k
xdx

=
k

n+ 1
∼ k

n
,

EU2
(k,n) =

∫ 1

0

n!

(k − 1)! · (n− k)!
xk−1 (1− x)

n−k
x2dx

=
(k + 1) k

(n+ 2) (n+ 1)
and

Var
(
U(k,n)

)
=

(k + 1) k

(n+ 2) (n+ 1)
− k2

(n+ 1)
2

=
k

n+ 1

[
k + 1

n+ 2
− k

n+ 1

]
=

k

n+ 1

[
n− k + 1

(n+ 2) (n+ 1)

]
∼ k

n2
.

26.8 Compactness and tightness of measures on (R,BR)

Notation 26.55 If (Ω,B) is a measurable space let P1 (Ω,B) denote the col-
lection of probability measure on (Ω,B) .

Definition 26.56. A subset Γ ⊂ P1 (R,BR) is weakly sequentially pre-
compact iff for every sequence, {µn}∞n=1 ⊂ Γ, there exists a subsequence
{µnk}

∞
k=1 such that µnk =⇒ µ0 for some probability measure µ0 ∈ P1 (R,BR) .

Definition 26.57. A collection of probability measures, Γ, on (R,BR) is tight
iff for every ε > 0 there exists Mε <∞ such that

inf
µ∈Γ

µ ([−Mε,Mε]) ≥ 1− ε. (26.46)

We further say that a collection of random variables, {Xλ : λ ∈ Λ} is tight
iff the collection probability measures,

{
P ◦X−1

λ : λ ∈ Λ
}

is tight. Equivalently
put, {Xλ : λ ∈ Λ} is tight iff

lim
M→∞

sup
λ∈Λ

P (|Xλ| ≥M) = 0. (26.47)

Observe that the definition of uniform integrability (see Definition 17.39) is
considerably stronger than the notion of tightness. It is also worth observing
that if α > 0 and C := supλ∈Λ E |Xλ|α <∞, then by Chebyschev’s inequality,

sup
λ
P (|Xλ| ≥M) ≤ sup

λ

[
1

Mα
E |Xλ|α

]
≤ C

Mα
→ 0 as M →∞

and therefore {Xλ : λ ∈ Λ} is tight.

Proposition 26.58. If Γ ⊂ P1 (R,BR) is weakly sequentially pre-compact, then
Γ is tight.

Proof. For sake of contradiction, suppose there exists Γ ⊂ P1 (R,BR) which
is weakly sequentially pre-compact but is not tight. Since Γ is not tight, there
exists an ε > 0 such that infµ∈Γ µ ([−M,M ]) < 1 − ε for all M ∈ (0,∞) .
Hence it is possible to choose {µn}∞n=1 ⊂ Γ such that µn ([−n, n]) < 1 − ε for
all n ∈ N. Since Γ is pre-compact there exists a subsequence, {νk := µnk}

∞
k=1

and µ0 ∈ P1 (R,BR) such that νk =⇒ µ0. Hence for every M ∈ R+ such that
M ∈ C (µ0) we have

µ0 ((−M,M ]) = lim
k→∞

νk ((−M,M ]) ≤ lim inf
k→∞

νk ([−nk, nk]) ≤ 1− ε.

We may now let M ∈ C (µ0) tend to infinity in order to conclude µ0 (R) ≤
1− ε < 1 which contradicts the assumption that µ0 is a probability measure.

The goal of this section is to prove the converse of Proposition 26.58, see
Theorem 26.64. In order to do this we will need find ways to find convergence
subsequences of probability measures. The method presented here will make
heavy use of cumulative distribution functions.

Suppose that Λ ⊂ R is a dense set and F and F̃ are two right continuous
functions. If F = F̃ on Λ, then F = F̃ on R. Indeed, for x ∈ R we have

F (x) = lim
Λ3λ↓x

F (λ) = lim
Λ3λ↓x

F̃ (λ) = F̃ (x) .
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26.8 Compactness and tightness of measures on (R,BR) 413

Lemma 26.59. If G : Λ→ R is a non-decreasing function, then

F (x) := G+ (x) := inf {G (λ) : x < λ ∈ Λ} (26.48)

is a non-decreasing right continuous function.

Proof. To show F is right continuous, let x ∈ R and λ ∈ Λ such that λ > x.
Then for any y ∈ (x, λ) ,

F (x) ≤ F (y) = G+ (y) ≤ G (λ)

and therefore,
F (x) ≤ F (x+) := lim

y↓x
F (y) ≤ G (λ) .

Since λ > x with λ ∈ Λ is arbitrary, we may conclude, F (x) ≤ F (x+) ≤
G+ (x) = F (x) , i.e. F (x+) = F (x) .

Proposition 26.60. Suppose that {Fn}∞n=1 is a sequence of distribution func-
tions and Λ ⊂ R is a dense set such that G (λ) := limn→∞ Fn (λ) ∈ [0, 1] exists
for all λ ∈ Λ. If, for all x ∈ R, we define F = G+ as in Eq. (26.48), then
Fn (x) → F (x) for all x ∈ C (F ) [see Notation 26.17]. (Note well; as we have
already seen, it is possible that F (∞) < 1 and F (−∞) > 0 so that F need not
be a distribution function for a measure on (R,BR) .)

Proof. Suppose that x, y ∈ R with x < y and and s, t ∈ Λ are chosen so
that x < s < y < t. Then passing to the limit in the inequality,

Fn (s) ≤ Fn (y) ≤ Fn (t)

implies

F (x) = G+ (x) ≤ G (s) ≤ lim inf
n→∞

Fn (y) ≤ lim sup
n→∞

Fn (y) ≤ G (t) .

Taking the infimum over t ∈ Λ ∩ (y,∞) and then letting x ∈ R tend up to y,
we may conclude

F (y−) ≤ lim inf
n→∞

Fn (y) ≤ lim sup
n→∞

Fn (y) ≤ F (y) for all y ∈ R.

This completes the proof, since F (y−) = F (y) for y ∈ C (F ) .
The next theorem deals with weak convergence of measures on

(
R̄,BR̄

)
. So

as not have to introduce any new machinery, the reader should identify R̄ with
[−1, 1] ⊂ R via the map,

[−1, 1] 3 x→ tan
(π

2
x
)
∈ R̄.

Hence a probability measure on
(
R̄,BR̄

)
may be identified with a probability

measure on (R,BR) which is supported on [−1, 1] . Using this identification, we
see that a −∞ should only be considered a point of continuity of a distribution
function, F : R̄ → [0, 1] iff and only if F (−∞) = 0. On the other hand, ∞ is
always a point of continuity.

Theorem 26.61 (Helly’s Selection Theorem). Every sequence of probabil-
ity measures, {µn}∞n=1 , on

(
R̄,BR̄

)
has a sub-sequence which is weakly conver-

gent to a probability measure, µ0 on
(
R̄,BR̄

)
.

Proof. Using the identification described above, rather than viewing µn as
probability measures on

(
R̄,BR̄

)
, we may view them as probability measures

on (R,BR) which are supported on [−1, 1] , i.e. µn ([−1, 1]) = 1. As usual, let

Fn (x) := µn ((−∞, x]) = µn ((−∞, x] ∩ [−1, 1]) .

Since {Fn (x)}∞n=1 ⊂ [0, 1] and [0, 1] is compact, for each x ∈ R we may find
a convergence subsequence of {Fn (x)}∞n=1 . Hence by Cantor’s diagonalization
argument we may find a subsequence, {Gk := Fnk}

∞
k=1 of the {Fn}∞n=1 such

that G (x) := limk→∞Gk (x) exists for all x ∈ Λ := Q.
Letting F (x) := G (x+) as in Eq. (26.48), it follows from Lemma 26.59 and

Proposition 26.60 that Gk = Fnk =⇒ F0. Moreover, since Gk (x) = 0 for all
x ∈ Q∩ (−∞,−1) and Gk (x) = 1 for all x ∈ Q ∩ [1,∞). Therefore, F0 (x) = 1
for all x ≥ 1 and F0 (x) = 0 for all x < −1 and the corresponding measure, µ0

is supported on [−1, 1] . Hence µ0 may now be transferred back to a measure
on
(
R̄,BR̄

)
.

Example 26.62. Here are there simple examples showing that probabilities may
indeed transfer to the points at ±∞; 1) δ−n =⇒ δ−∞, 2) δn =⇒ δ∞ and 3)
1
2 (δn + δ−n) =⇒ 1

2 (δ∞ + δ−∞) .

Theorem 26.63 (Helly’s Selection Theorem for Rn). Every sequence of
probability measures, {µn}∞n=1 , on

(
R̄n,BR̄n

)
has a sub-sequence which is weakly

convergent to a probability measure, µ0 on
(
R̄n,BR̄n

)
.

Proof. The proof is very similar to Theorem 26.61 provided we replace
Lemma 26.59 by Lemma 6.63 and use a multi-variate version of Proposition
26.60.

The next question we would like to address is when is the limiting measure,
µ0 on

(
R̄,BR̄

)
concentrated on R.

Theorem 26.64. A subset, Γ ⊂ P1 (R,BR) ⊂ P1

(
R̄,BR̄

)
, is tight, iff every

subsequently limit measure, µ0 ∈ P1

(
R̄,BR̄

)
, is supported on R. In particular if

Γ is tight, there is a weakly convergent subsequence of Γ converging to a proba-
bility measure on (R,BR) . (This is greatly generalized in Prokhorov’s Theorem
26.89 below.) [This theorem generalizes to Rn in a fairly obvious way.]
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Proof. Suppose that Γ 3 µnk =⇒ µ0 with µ0 being a probability measure
on
(
R̄,BR̄

)
– note the bars here! As usual, let F0 (x) := µ0 ([−∞, x]) . If Γ is

tight and ε > 0 is given, we may find Mε <∞ such that Mε,−Mε ∈ C (F0) and
µ ([−Mε,Mε]) ≥ 1− ε for all µ ∈ Γ. Hence it follows that

µ0 ((−Mε,Mε]) = lim
k→∞

µnk ((−Mε,Mε]) ≥ 1− ε

and by letting ε ↓ 0 we conclude that µ0 (R) = limε↓0 µ0 ([−Mε,Mε]) = 1.
Conversely, suppose there is a subsequence {µnk}

∞
k=1 such that µnk =⇒ µ0

with µ0 being a probability measure on
(
R̄,BR̄

)
such that µ0 (R) < 1. In this

case ε0 := µ0 ({−∞,∞}) > 0 and hence for all M <∞ we have

µ0 ([−M,M ]) ≤ µ0

(
R̄
)
− µ0 ({−∞,∞}) = 1− ε0.

By choosing M so that −M and M are points of continuity of F0, it then follows
that

lim
k→∞

µnk ([−M,M ]) = µ0 ([−M,M ]) ≤ 1− ε0.

Therefore,
inf
n∈N

µn (([−M,M ])) ≤ 1− ε0 for all M <∞

and {µn}∞n=1 is not tight.

26.9 Extensions to Rn

Some of this section came out of the analysis notes and should be combined
with the previous section and sections later on weak convergence of probability
measuresSupplement: Generalizations of Theorem ?? or ?? to Rn. There is a
lot of redundancy in this section with Section 6.9. The main goal should be
Theorem 26.84.

Definition 26.65. Let µ be a probability measure on (Rn,B = BRn) and F :
Rn → [0, 1] be its cumulative distribution function (CDF for short) defined
by F (x) := µ ((−∞, x]) where

Sx := (−∞, x] := (−∞, x1]× · · · × (−∞, xn].

Since

(a, b] = Sb \
[
S(a1,b2,...,bn) ∪ S(b1,a2,...,bn) ∪ · · · ∪ S(b1,b2,...,bn−1,an)

]
,

it follows that {Sb}b∈Rn is a π – system generating the B and therefore µ is
uniquely determined by F. One of the main goals of this chapter is to charac-
terize the collection of CDF’s which appears in Theorem 26.77 at the end of
this section. Let us begin with the following basic analytic result.

Theorem 26.66. Suppose α, β ∈ Rn with α < β and µ : C := A(α,β] → [0,∞)
is a finitely additive measure. Then µ extends to a measure on B(α,β] = σ (C)
iff the function µ ((a, b]) is right continuous in each of the variables a and b
for α < a < b < β. [Kallenberg gives another interesting proof of this theorem
in Theorem 3.25 on p. 59 which goes by constructing a random vector on [0, 1]
with the correct distribution.]

Proof. Following example ?? one easily shows

E := {(a, b] : α ≤ a < b ≤ β}

is an elementary family which, by definition, generates the algebra C and the σ
– algebra B(α,β]. So according to Proposition ?? and Theorem ?? to finish the
proof we must show; α ≤ a < b ≤ β and (a, b] =

∑∞
n=1(an, bn], then

µ ((a, b]) ≤
∞∑
n=1

µ ((an, bn]) . (26.49)

Let a < ã < b and ε > 0 be given. Use the right continuity assumption of µ to
find b̃n > bn such that

µ
(

(an, b̃n ∧ b]
)
≤ µ ((an, bn]) + ε2−n for n ∈ N.

We have
[ã, b] ⊂ (a, b] ⊂ ∪n

(
an, b̃n

)
.

So by compactness there exists N <∞ such that

(ã, b] ⊂ [ã, b] ⊂ ∪Nn=1

(
an, b̃n

)
∩ (a, b] ⊂ ∪Nn=1(an, b̃n ∧ b]

By finite sub-additivity it now follows that

µ ((ã, b]) ≤
N∑
n=1

µ
(

(an, b̃n ∧ b]
)

≤
∞∑
n=1

µ
(

(an, b̃n ∧ b]
)

≤
∞∑
n=1

[
µ ((an, bn]) + ε2−n

]
≤
∞∑
n=1

µ ((an, bn]) + ε.

As ε > 0 was arbitrary we may conclude,
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µ ((ã, b]) ≤
∞∑
n=1

µ ((an, bn]) .

Then using the right continuity in the first variable we may now let ã ↓ a to
conclude that Eq. (26.49) holds.

Lemma 26.67. Let D ⊂ R be a dense set and suppose that G : Dn → R is
an increasing function in the sense that G (x) ≤ G (y) whenever x, y ∈ D with
x ≤ y. Define F : Rn → R by

F (x) := inf
y>x

G (y) . (26.50)

Then,

1. F is an increasing function,
2. F (a) ≤ G (y) ≤ F (b) whenever a < y ≤ b with y ∈ Dn,
3. F is right continuous function, and
4. for all a, b ∈ Rn with a < b we have

inf
x∈(a,b)

F (x) = F (a) = inf
y∈(a,b)∩Dn

G (y) (26.51)

sup
x∈(a,b)

F (x) = sup
y∈(a,b)∩Dn

G (y) and (26.52)

Proof. The first two items easily follow from the increasing properties of G
and the definition of F. To see that F is right continuous as x ∈ Rn, let ε > 0
be given and choose y ∈ Dn with y > x such that F (x) ≤ G (y) ≤ F (x) + ε.
Then for x ≤ x′ < y we have that

F (x) ≤ F (x′) ≤ G (y) ≤ F (x) + ε

which proves the right continuity of F. The first equality in Eq. (26.51) follows
from the right continuity of F while the second follows from the definition of F
and the fact that G is increasing. Since for every x ∈ (a, b) and y ∈ (a, b) ∩Dn

with y > x we have F (x) ≤ G (y) it follows that

F (x) ≤ sup
y∈(a,b)∩Dn

G (y) =⇒ sup
x∈(a,b)

F (x) ≤ sup
y∈(a,b)∩Dn

G (y) .

Similarly, for any y ∈ (a, b) ∩Dn and x ∈ (y, b) we have

G (y) ≤ F (x) ≤ sup
x∈(a,b)

F (x) =⇒ sup
y∈(a,b)∩Dn

G (y) ≤ sup
x∈(a,b)

F (x) .

Lemma 26.68. Let D ⊂ R be a dense set and suppose that Fk : Rn → R
is a sequence of right continuous increasing functions such that G (x) :=
limk→∞ Fk (x) exists for all x ∈ Dn. Then

lim
k→∞

Fk (x) = F (x) for all x ∈ C (F )

where F is given as in Eq. (26.50) and C (F ) are the points of continuity of F.

Proof. Let x ∈ C (F ) and ε > 0 be given. Choose a < b such that x ∈ (a, b)
and F varies by at most ε on (a, b) . By item 4. of Lemma 26.67 it that G and
F differ by at most 2ε on (a, b) ∩ Dn. Thus for any α, β ∈ (a, b) ∩ Dn with
α < x < β we have

Fk (α) ≤ Fk (x) ≤ Fk (β)

from which it follows that

G (α) = lim
k→∞

Fk (α) ≤ lim inf
k→∞

Fk (x) ≤ lim sup
k→∞

Fk (x) ≤ lim
k→∞

Fk (β) = G (β) .

Hence we conclude that lim infk→∞ Fk (x) and lim supk→∞ Fk (x) are both
within 2ε of F (x) and as ε > 0 was arbitrary the proof is complete.

Corollary 26.69. Let Fk : Rn → [0, 1] be a sequence of right continuous in-
creasing functions. Then there a right continuous increasing function F : Rn →
[0, 1] and a subsequence Λ ⊂ N such that limΛ3k→∞ Fk (x) = F (x) exists for
all x ∈ C (F ) .

Proof. Let D ⊂ R be a countalbe dense set and then use Cantor’s diago-
nalization argument to find a Λ ⊂ N such that

G (y) := lim
Λ3k→∞

Fk (y) exists for y ∈ Dn.

Now apply Lemma 26.68 to finish the proof.

26.9.1 Finitely additive measures for Rn

Suppose V is a vector space and µ : A → V is a finitely additive measure. Let
F (x) := µ (Sx) for all x ∈ R̄n. If a < b in Rn, then

1(a,b] =

n∏
i=1

1(ai,bi] =

n∏
i=1

[
1(−∞,bi] − 1(−∞,ai]

]
=

∑
y∈
∏n

i=1
{ai,bi}

sgn(y)1(−∞,y] =
∑

k∈{0,1}n
(−1)

|k|
1(−∞,yk(a,b)],
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where

sgn(y) := (−1)
#{i:yi=ai} ,

|k| := k1 + · · ·+ kn

and
{
yk (a, b)

}
k∈{0,1}n are the 2n – vertices of [a, b] indexed as;

[
yk (a, b)

]
i

:=

{
ai if ki = 1
bi if ki = 0.

Proposition 26.70. Suppose F and µ are as above, then for every a, b ∈ R̄n
with a < b,

µ ((a, b]) =
∑

y∈
∏n

i=1
{ai,bi}

sgn(y)F (y) (26.53)

=
∑

k∈{0,1}n
(−1)

|k|
F
(
yk (a, b)

)
. (26.54)

This is really a statement of the inclusion exclusion formula. For example,
when n = 2 we have

(a, b] = Sb \
[
S(a1,b2) ∪ S(b1,a2)

]
and by the inclusion exclusion formula (using S(a1,b2) ∩ S(b1,a2) = Sa) we have

µ ((a, b]) = µ (Sb)− µ
(
S(a1,b2)

)
− µ

(
S(b1,a2)

)
+ µ (Sa)

= F (b)− F (a1, b1)− F (b1, a2) + F (a) .

It will be convenient to rewrite Eq. (26.53) in another more useful way.

Notation 26.71 For i ∈ {1, 2, . . . , n} and α ∈ R let

(eαi G) (x) := G (x) |xi=α = G (x1, . . . , xi−1, α, xi+1, . . . , xn)

and for α < β in R let ∆
(α,β)
i = eβi − eαi so that(

∆
(α,β)
i G

)
(x) =G (x) |xi=βxi=α

=G (x1, . . . , xi−1, β, xi+1, . . . , xn)

−G (x1, . . . , xi−1, α, xi+1, . . . , xn) .

Since eβi e
α
j = eαj e

β
i for all i 6= j, it follows that the ∆i and ∆j also commute.

With this notation we have,

µ ((a, b]) = µ
(

(a1, b1]× (ã, b̃]
)

= ∆
(a1,b1)
1 µ

(
(−∞, x1)× (ã, b̃]

)
.

Then working inductively we find

µ ((a, b]) = ∆
(a1,b1)
1 . . . ∆(an,bn)

n µ (Sx)

= ∆
(a1,b1)
1 . . . ∆(an,bn)

n F (26.55)

This formula agrees with Eq. (26.53) since,

∆
(a1,b1)
1 . . . ∆(an,bn)

n F =

n∏
i=1

(
ebii − e

ai
i

)
F

=
∑

y∈
∏n

i=1
{ai,bi}

sgn(y)

n∏
i=1

eyii F

=
∑

y∈
∏n

i=1
{ai,bi}

sgn(y)F (y) .

If F happens to be sufficiently differentiable the fundamental theorem of calcu-
lus along with Eq. (26.55) implies

µ ((a, b]) =

(
n∏
i=1

∫ bi

ai

dxi∂i

)
F

=

∫
(a,b]

(∂1 . . . ∂nF ) (x) dx1 . . . dxn.

From this we see that if G is another function such that ∂1 . . . ∂nF = ∂1 . . . ∂nG
then

∆
(a1,b1)
1 . . . ∆(an,bn)

n F = ∆
(a1,b1)
1 . . . ∆(an,bn)

n G.

As Nul (∂1 . . . ∂n) is the linear combination of functions which depend on x in all
but one of its coordinates, the previous remarks motivate the following lemma.

Lemma 26.72. If F : Rn → V is a function such that ∆
(a1,b1)
1 . . . ∆

(an,bn)
n F =

0 for all a < b in Rn then F =
∑n
i=1 ψi where ψi : Rn → V is a function which

does not depend on xi, i.e. ∆iψi = 0 for each i.

Proof. When n = 1 the result is obvious. When n = 2, we have

∆1∆
(a2,b2)
2 F = 0 implies F (x, b2) − F (x, a2) = C (a2, b2) . Fixing a2 and then

letting b2 = y > a2 implies,

F (x, y) = F (x, a2) + C (a2, y) for all y > a2.

Page: 416 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



26.9 Extensions to Rn 417

Thus we have shown for any α > −∞ that there exists functions fα and gα on
R such that

F (x, y) = fα (x) + gα (y) for y > α.

Now suppose that α < β so that

fα (x) + gα (y) = F (x, y) = fβ (x) + gβ (y) for y > β,

i.e.
fα (x)− fβ (x) = gβ (y)− gα (y) for y > β.

From this we see that we fα (x)− fβ (x) = gβ (y)− gα (y) = C for y > β, i.e.

fα (x) = fβ (x) + C and gα (y) = gβ (y)− C for y > β.

Thus given a fixed β we may always choose fα and gα so that fα = fβ and
gα = gβ on y > β. Thus we may consistently find f and g such that F (x, y) =
f (x) + g (y) . The general case now follows by an induction argument which we
omit.

The upshot of Lemma 26.72 is that when n ≥ 2, there is considerable am-
biguity in the choice of F that we may use so that Eq. (26.55) holds. Since the
functions {ψi} are completely arbitrary they can be chosen to be highly dis-
continuous and with no monotonicity properties whatsoever. Thus if we are
trying to characterize distribution functions, F, Eq. (26.55) we have to be
careful to have chosen a good representative of F where we write F ∼ G iff

∆
(a1,b1)
1 . . . ∆

(an,bn)
n (F −G) = 0 for all a < b.

Our next goal is to prove Theorem 26.74 which shows that Eq. (26.53) or
equivalently Eq. (??) may be used to construct finitely additive measures on
A. We begin with a couple of general results which will be used in the proof.

Proposition 26.73. Suppose that A ⊂ 2X is an algebra and for each t ∈ R̄ let
B ⊂ 2R denote the algebra generated by E := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} .
Then there is a unique additive measure µ on C, the algebra generated by A×̇B
such that

µ(A× (a, b]) = µb(A)− µa(A) ∀ (a, b] ∈ E and A ∈ A.

Proof. By Proposition ??, for each A ∈ A, the function (a, b]→ µ(A×(a, b])
extends to a unique measure on B which we continue to denote by µ. Now if
B ∈ B, then B =

∑
k Ik with Ik ∈ E , then

µ(A×B) =
∑
k

µ(A× Ik)

from which we learn that A → µ(A × B) is still finitely additive. The proof is
complete with an application of Theorem ??.

Theorem 26.74. Suppose that F : R̄n → V is a function. Then there exists a
unique finitely additive measure µ : A → V such that

µ ((a, b]) = ∆
(a1,b1)
1 . . . ∆(an,bn)

n F (26.56)

for all a ≤ b in R̄n.

Proof. We will prove the result by induction. The case n = 1 has already
been carried out in Proposition ?? above. For the induction step notice that
A(Rn) = A

(
Rn−1

)
⊗A(R). For t ∈ R and A ∈ A

(
Rn−1

)
, let

µt(A) = µF (·,t)(A)

where µF (·,t) is defined by the induction hypothesis. Then

µF (A× (a, b]) = µb(A)− µa(A)

has, by Proposition 26.73, a unique extension to A
(
Rn−1

)
⊗A(R) as a finitely

additive measure. This measure has the desired properties.

Theorem 26.75. Suppose that α < β in Rn and F : [α, β] → R is right con-
tinuous and satisfies

∆
(a1,b1)
1 . . . ∆(an,bn)

n F ≥ 0

for all α ≤ a < b ≤ β. Then there exists a unique measure µ = µF on B(α,β]

such that
µ ((a, b]) = ∆

(a1,b1)
1 . . . ∆(an,bn)

n F (26.57)

for all a ≤ b with a, b ∈ (α, β].

Proof. As in Theorem 26.74, there exists a finitely additive (µ) measure on
A(α,β] such that Eq. (26.57) holds. So according to Theorem 26.66 it suffices to
show that µ satisfying Eq. (26.57) is right continuous in both a and b. However,
this follows easily from the assumed right continuity of F. Indeed using Eq.
(26.54) we have,

µ ((a, b]) =
∑

ε∈{0,1}n
(−1)

|ε|
F (yε (a, b))

where yε (a, b) satisfies, yε (a, b′) ↓ yε (a, b) as b′ ↓ b and yε (a′, b) ↓ yε (a, b) as
a′ ↓ a and therefore it follows that µ ((a, b]) is right continuous in both a and b
provided F is right continuous.

Corollary 26.76. Suppose that F : Rn → R is a right continuous and satisfies

∆
(a1,b1)
1 . . . ∆(an,bn)

n F ≥ 0

for all a < b in Rn. Then there exists a unique measure µ = µF on B such
that Eq. (26.57) holds for all a < b in Rn. Moreover this measure is finite on
compact sets.
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Proof. Let βk := (k, k, . . . , k) for k ∈ N. Then by Theorem 26.75 there
exists measure µk on B(−βk,βk] such that Eq. (26.57) holds for all a < b with
a, b ∈ (−βk, βk].We may view each of these as measure on B by setting µk (A) :=
µk (A ∩ (−βk, βk]) for all A ∈ B. With this convention, we have a sequence of
increasing measure {µk}∞k=1 . The desired measure may now be constructed as
µ := limk→∞ µk.

Theorem 26.77 (Characterizing CDF’s). If F : Rn → [0, 1] is the CDF of
a probability measure (µ) on (Rn,BRn) [i.e. F (x) = µ (Sx)] then,

1. F is right continuous,
2. F is increasing in the sense that F (a) ≤ F (b) whenever a ≤ b,
3. limxi→−∞ F (a1, . . . ai−1, xi, ai+1 . . . , an) = 0 for all i and a ∈ Rn,
4. limx→∞ F (x) = 1 where we say x→∞ if xi →∞ for all i, and

5. ∆
(a1,b1)
1 . . . ∆

(an,bn)
n F ≥ 0 for all a < b.

Conversely if F : Rn → [0, 1] is a function with the above properties then F
is the CDF of a unique probability measure (µ) on B.

Proof. It is an elementary exercise to show that every CDF must posses
properties 1. – 5. above. For the converse assertion, we let µ be the measure
given in Corollary 26.76. To see that µ is the desired measure we compute,

µ (Sb) = lim
a→−∞

µ ((a, b])

= lim
a→−∞

∑
y∈
∏n

i=1
{ai,bi}

sgn(y)F (y) = F (b)

wherein we have used that each y ∈
∏n
i=1 {ai, bi} other than y = b has at least

one coordinate tending to −∞ and therefore F (y) is converging to 0 for these
y. Also notice that

µ (Rn) = lim
b→∞

µ (Sb) = lim
b→∞

F (b) = 1

so that µ is indeed a probability measure.

Remark 26.78. One might think that item 5. of Theorem 26.77 is a consequence
of item 2. but his is not the case. For example, take F (x, y) := x + y − xy for
x, y ∈ [0, 1] . Then Fx (x, y) = 1 − y ≥ 0 and Fy (x, y) = 1 − x ≥ 0 while

Fxy (x, y) = −1 so that ∆
(a1,b1)
1 ∆

(a2,b2)
2 F = − (b1 − a1) (b2 − a2) . This remark

is not so surprising in light of Lemma 26.72.

Lemma 26.79. Suppose that F : Rn → R is continuous from above and is
increasing in each of its variables. Then the following are equivalent;

1. x ∈ C (F ) – the continuity points of F,
2. if {yn} is any sequence such that yn < x and limn→∞ yn = x, then

limn→∞ F (yn) = F (x) ,
3. limn→∞ F

(
x− 1

n1
)

= F (x) where 1 := (1, . . . , 1) , and
4. there exists yn < x such that limn→∞ F (yn) = F (x) .

Proof. The implications, 1. =⇒ 2. =⇒ 3. =⇒ 4. are obvious so
it only remains to show 4. =⇒ 1. Given ε > 0 there exists n such that
F (yn) ≤ F (x) ≤ F (yn) + ε. Moreover, since F is right continuous there exists
z > x such that F (x) ≤ F (z) ≤ F (x)+ε. So for a ∈ (yn, z) we have F (x)−ε ≤
F (yn) < F (a) < F (x) ≤ F (x) + ε which shows that F is continuous at x.

Exercise 26.9. If F (x) = µ (Sx) is a CDF then C (F ) =
{x ∈ Rn : µ (bd (Sx)) = 0} . Moreover, there exists a countable subset D ⊂ R
such that µ (πi = t) = 0 for all t /∈ D and 1 ≤ i ≤ n where πi (x) = xi. As
bd (Sx) ⊂ ∪i {πi = xi} it follows that every x ∈ Rn with xi /∈ D for all i is in
C (F ) . In particular C (F ) contains a countable dense subset of Rn.

Definition 26.80. Let {Fn}∞n=1 and F be CDF’s. We say Fn =⇒ F if
limn→∞ Fn (x) = F (x) for all x ∈ C (F ) – the continuity points of F.

Lemma 26.81 (See Lemma 26.67). Let {Fn}∞n=1 and F be CDF’s such that
there exists a dense set D ⊂ Rn with limn→∞ Fn (y) = F (y) for all y ∈ D.
Then Fn =⇒ F.

Proof. Let x ∈ C (F ) and ε > 0 be given. Choose α ∈ Rn and b ∈ D such
that α < x < b and F (α) ≤ F (b) ≤ F (α) + ε. Then for any a ∈ D with
α < a < x < b we have, Fn (a) ≤ Fn (x) ≤ Fn (b) and therefore,

F (a) = lim inf
n→∞

Fn (a) ≤ lim inf
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (b) = F (b) ≤ F (x)+ε.

Letting a ↑ x then implies,

F (x) ≤ lim inf
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (x) ≤ F (x) + ε

and as ε > 0 was arbitrary, it follows that From this it follows that F (x) ≤
lim infn→∞ Fn (x) ≤ lim supn→∞ Fn (x) = F (x) .

Lemma 26.82 (Right Continuous Versions. See Lemma 26.67). Sup-
pose G : Rn → R is increasing in each of its variables. For x ∈ Rn let
F (x) := infy>xG (y) . Then F is increasing in each of its variables and F
is right continuous.
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Proof. If a ≤ b and y > b then y > a so that F (a) ≤ G (y) . Therefore
F (a) ≤ infy>bG (y) = F (b) and so F is increasing in each of its variables. Now
suppose that ε > 0 there exists β > a such that 0 ≤ G (β) − F (a) < ε. Then
for any a < b < β, we have

0 ≤ G (y)− F (a) ≤ G (β)− F (a) < ε for all b < y < β.

From this it follows that

0 ≤ F (b)− F (a) ≤ inf
b<y<β

G (y)− F (a) ≤ G (β)− F (a) < ε

which proves the right continuity of F.

Theorem 26.83. Suppose that {µn} ∪ {µ} is a collection of probability mea-
sures on Rn with corresponding CDF’s, Fn and F respectively. The notion of
weak convergence given in Definition 26.80 agrees with that in Definition ?? of
Section ?? below.

Proof. Suppose that Fn =⇒ F and let D be a countable dense sub-
set of R such that µ (πi = t) = 0 for all t ∈ D. Then if a < b with
a, b ∈ Dn, then yε (a, b) ∈ Dn ⊂ C (F ) for all ε ∈ {0, 1}n . Therefore
limn→∞ µn ((a, b]) = µ ((a, b]) . Noting that E := {(a, b] : a < b with a, b ∈ Dn}
is closed under intersections we may use the inclusion exclusion formula to con-
clude that limn→∞ µn (A) = µ (A) for all finite unions of sets from E . Thus if V
is an open subset of Rn we can find such Ak being a finite unions of sets from
E such that Ak ↑ V as k ↑ ∞. It then follows that

µ (Ak) = lim
n→∞

µn (Ak) ≤ lim inf
n→∞

µn (V )

and then letting k ↑ ∞ we concluded that µ (V ) ≤ lim infn→∞ µn (V ) . So
according to Proposition ??, µn =⇒ µ.

Conversely if µn =⇒ µ,then, Proposition ??, µn (Sx) → µ (Sx) for all
x ∈ Dn as µ (bd (Sx)) = 0 and hence limn→∞ Fn (x) = F (x) for x in a dense
set. It now follows by an application of Lemma 26.81 that Fn =⇒ F.

Theorem 26.84 (Helly’s Selection Theorem for Rn). Every sequence of
tight probability measures, {µn}∞n=1 , on (Rn,BRn) has a sub-sequence which is
weakly convergent to a probability measure, µ0 on (Rn,BRn) .

Proof. The proof is very similar to Theorem 26.61 provided we replace
Lemma 26.59 by Lemma 26.82 and use a multi-variate version of Proposition
26.60. In a bit more detail. Choose {mk} such that G (y) := limk→∞ Fmk (y)
exists for all y ∈ Qn. To simplify notation we suppose that we have already
passed to this subsequence so that we may now assume G (y) := limk→∞ Fk (y)
exists for all y ∈ Qn. Notice that

∆(a,b]G := lim
k→∞

∆(a,b]Fk = lim
k→∞

µk ((a, b]) ≥ 0 for all a < b with a, b ∈ Qn.

We then define F (x) := inf {G (y) : y > x with y ∈ Qn} .Notice that F (x) may
also be defined as liml→∞G (yl) where {yl} is any sequence in Qn with yl > x
and yl → x as l → ∞. Therefore for a < b in Rn choose a < al < bl < b with
al, bl ∈ Qn and al ↓ a and bl ↑ b, then

∆(a,b]F =
∑
ε

(−1)
|ε|
F (yε (a, b)) =

∑
ε

(−1)
|ε|

lim
l→∞

G (yε (al, bl))

= lim
l→∞

∑
ε

(−1)
|ε|
G (yε (al, bl)) = lim

l→∞
∆(al,bl]G ≥ 0. (26.58)

In this way we see that F defines a measure µ on (Rn,BRn) .
The tightness assumption then guarantees that µ is a probability measure.

Indeed, for ε > 0 there exist a < b in Qn such that µk ((a, b]) ≥ 1− ε for all k.
It then follows that

∆(a,b]G := lim
k→∞

µk ((a, b]) ≥ 1− ε.

Therefore for any α < a < b < β it follows from the argument in Eq. (26.58)
that µ ((α, β]) = ∆(α,β]F ≥ 1− ε.

[Clean this up!] Finally I claim that Fn =⇒ F. Indeed, suppose that
x ∈ C (F ) and ε > 0 be given. Choose α ∈ Rn and b ∈ Qn such that α < x < b
and F (α) ≤ G (b) ≤ F (α) + ε. Then for any a ∈ Qn with α < a < x < b we
have, Fn (a) ≤ Fn (x) ≤ Fn (b) and therefore,

F (α) ≤ G (a) = lim inf
n→∞

Fn (a) ≤ lim inf
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (b) = G (b) ≤ F (x)+2ε.

Letting α ↑ x then implies,

F (x) ≤ lim inf
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (x) ≤ F (x) + 2ε

and as ε > 0 was arbitrary, it follows that

F (x) ≤ lim inf
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (x) = F (x) .

26.10 Metric Space Extensions

The goal of this section is to extend the notions of weak convergence when R
is replace by a metric space (S, ρ) . Standard references for the material here
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420 26 Weak Convergence Results

are [3] and [34] – also see [14] and [29]. Throughout this section, (S, ρ) will be
a metric space and BS will be the Borel σ – algebra on S, i.e. the σ – algebra
generated by the open subsets of S. Recall that V ⊂ S is open if it is the union
of open balls of the form

B (x, r) := {y ∈ S : ρ (x, y) < r}

where x ∈ S and r ≥ 0. It should be noted that if S is separable (i.e. contains
a countable dense set, Λ ⊂ S), then every open set may be written as a union
of balls with x ∈ Λ and r ∈ Q and so in the separable case

BS = σ (B (x, r) : x ∈ Λ, r ∈ Q) = σ (B (x, r) : x ∈ S, r ≥ 0) .

Let us now state the theorems of this section.

Definition 26.85. Let (S, τ) be a topological space, B := σ (τ) be the Borel σ
– algebra, and µ be a probability measure on (S,B) . We say that A ∈ B is a
continuity set for µ provided µ (bd (A)) = 0. Notice that this is equivalent to
saying that µ (A◦) = µ (A) = µ

(
Ā
)
.

Theorem 26.86 (Skorohod Theorem). Let (S, ρ) be a separable met-
ric space and {µn}∞n=0 be probability measures on (S,BS) such that
limn→∞ µn(A) = µ(A) for all A ∈ B such that µ(bd (A)) = 0.7 Then there
exists a probability space, (Ω,B, P ) and measurable functions, Yn : Ω → S,
such that µn = P ◦ Y −1

n for all n ∈ N0 := N∪{0} and limn→∞ Yn = Y a.s.

Proposition 26.87 (The Portmanteau Theorem). Suppose that S is a
complete separable metric space and {µn} ∪ {µ} are probability measure on
(S,B := BS) . Then the following are equivalent:

1. µn =⇒ µ as n→∞, i.e. µn (f)→ µ (f) for all f ∈ BC(S).
2. µn(f)→ µ(f) for every f ∈ BC(S) which is uniformly continuous.
3. lim sup

n→∞
µn(F ) ≤ µ(F ) for all F @ S.

4. lim infn→∞ µn(G) ≥ µ(G) for all G ⊂o S.
5. limn→∞ µn(A) = µ(A) for all A ∈ B such that µ(bd (A)) = 0.

Definition 26.88. Let S be a topological space. A collection of probability mea-
sures Λ on (S,BS) is said to be tight if for every ε > 0 there exists a compact
set Kε ∈ BS such that µ(Kε) ≥ 1− ε for all µ ∈ Λ.

Theorem 26.89 (Prokhorov’s Theorem). Suppose S is a separable metriz-
able space and Λ = {µn}∞n=1 is a tight sequence of probability measures on

7 In Proposition 26.87 below we will see that this assumption is equivalent to assum-
ing µn =⇒ µ.

BS1
. Then there exists a subsequence {µnk}

∞
k=1 which is weakly convergent to a

probability measure µ on BS .
Conversely, if we further assume that (S, ρ) is a complete and Λ is a se-

quentially compact subset of the probability measures on (S,BS) with the weak
topology, then Λ is tight. (The converse direction is not so important for us.)

For the next few exercises, let (S1, ρ1) and (S2, ρ2) be separable metric spaces
and BS1

and BS2
be the Borel σ – algebras on S1 and S2 respectively. Further

define a metric, ρ, on S := S1 × S2 by

ρ ((x1, x2) , (y1, y2)) = ρ1 (x1, y1) ∨ ρ2 (x2, y2)

and let BS1×S2 be the Borel σ – algebra on S1 × S2. For i = 1, 2, let πi :
S1 × S2 → Si be the projection maps and recall that

BS1 ⊗ BS2 = σ (π1, π2) = σ
(
π−1

1 (BS1) ∪ π−1
2 (BS2)

)
.

Exercise 26.10 (Continuous Mapping Theorem). Let (S1, ρ1) and
(S2, ρ2) be separable metric spaces and BS1 and BS2 be the Borel σ – algebras
on S1 and S2 respectively. Let Further suppose that {µn}∪ {µ} are probability
measures on (S1,BS1

) such that µn =⇒ µ. If f : S1 → S2 is a Borel measurable
function such that µ (D (f)) = 0 (see Notation 26.17), then f∗µn =⇒ f∗µ
where f∗µ := µ ◦ f−1.

Exercise 26.11. Prove the analogue of Lemma 9.29, namely show BS1×S2
=

BS1
⊗ BS2

. Hint: you may find Exercise 9.10 helpful.

Exercise 26.12. Let (S1, ρ1) and (S2, ρ2) be separable metric spaces and BS1

and BS2 be the Borel σ – algebras on S1 and S2 respectively. Further suppose
that {µn} ∪ {µ} and {νn} ∪ {ν} are probability measures on (S1,BS1

) and
(S2,BS2

) respectively. If µn =⇒ µ and νn =⇒ ν, then µn ⊗ νn =⇒ µ⊗ ν.

Exercise 26.11 and 26.12 have obvious generalizations to finite product

spaces. In particular, if
{
X

(i)
n

}∞
n=0

are sequences of random variables for

1 ≤ i ≤ K such that for each n,
{
X

(i)
n

}K
i=1

are independent random variables

with X
(i)
n =⇒ X

(i)
0 as n→∞ for each 1 ≤ i ≤ K, then(

X(1)
n , X(2)

n , . . . , X(K)
n

)
=⇒

(
X

(1)
0 , X

(2)
0 , . . . , X

(K)
0

)
as n→∞.

These comments will be useful for Exercise 26.13 below.

Definition 26.90 (Convergence of finite dimensional distributions). Let
{Xn (t) : t ≥ 0}∞n=0 be a collection of random processes, Xn (t) : Ω → R. We say
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26.10 Metric Space Extensions 421

that Xn converges to X0 in finite dimensional distributions and write Xn
f.d.
=⇒

X0 provided for every finite subset Λ := {0 = t0 < t1 < t2 < · · · < tK} of R+

we have

(Xn (t0) , . . . , Xn (tK)) =⇒ (X0 (t0) , . . . , X0 (tK)) as n→∞.

Exercise 26.13. Let {Xn}∞n=1 be an i.i.d. sequence of random variables with
zero mean and Var (Xn) = 1. For t ≥ 0, let Wn (t) := 1√

n
S[nt] where [nt] is

the nearest integer to nt less than or equal to nt and Sm :=
∑
k≤mXk where

S0 = 0 by definition. Show that Wn
f.d.
=⇒ B where {B (t) : t ≥ 0} is a Brownian

motion as defined in definition 22.24. You might use the following outline.

1. For any 0 ≤ s < t <∞, explain why Wn (t)−Wn (s) =⇒ N (0, (t− s)) .
2. Given Λ := {0 = t0 < t1 < t2 < · · · < tK} ⊂ R+ argue that

{Wn (ti)−Wn (ti−1)}Ki=1 are independent and then show

{Wn (ti)−Wn (ti−1)}Ki=1 =⇒ {B (ti)−B (ti−1)}Ki=1 as n→∞.

3. Now show that {Wn (ti)}Ki=1 =⇒ {B (ti)}Ki=1 as n→∞.

The rest of this section is devoted to the proofs of the results stated at the
begining of the section. (These proofs may safely be skipped on first reading.)

26.10.1 A point set topology review

Before getting down to business let me recall a few basic point set topology
results which we will need. Recall that if (S, τ) is a topological space that
Ā ⊂ S, the closure of A, is defined by

Ā := ∩{C : A ⊂ C @ S} and A◦ := ∪{V : τ 3 V ⊂ A}

and the interior of A is defined by

A◦ = ∪{V : τ 3 V ⊂ A} .

Thus Ā is the smallest closed set containing A and A◦ is the largest open set
contained in A. The relationship between the interior and closure operations is;

(A◦)
c

= ∩{V c : τ 3 V ⊂ A}
= ∩{C : Ac ⊂ C @ S} = Ac.

Finally recall that the topological boundary of a set A ⊂ S is defined by
bd (A) := Ā \A◦ which may also be expressed as

bd (A) = Ā ∩ (A◦)
c

= Ā ∩Ac (= bd (Ac)) .

In the case of a metric space we may describe Ā and bd (A) as

Ā = {x ∈ S : ∃ {xn} ⊂ A 3 x = lim
n→∞

xn} and

bd (A) = {x ∈ S : ∃ {xn} ⊂ A and {yn} ⊂ Ac 3 lim
n→∞

yn = x = lim
n→∞

xn}.

So the boundary of A consists of those points in S which are arbitrarily close to
points inside of A and outside of A. In the metric space case of most interest,
the next lemma is easily proved using this characterization.

Lemma 26.91. For any subsets, A and B, of S we have bd (A ∩B) ⊂ bd (A)∪
bd (B) , bd (A \B) ⊂ bd (A) ∪ bd (B) , and bd (A ∪B) ⊂ bd (A) ∪ bd (B) .

Proof. We begin by observing that A◦ ∩B◦ ⊂ A ∩B ⊂ Ā ∩ B̄ from which
it follows that

A◦ ∩B◦ ⊂ [A ∩B]
◦ ⊂ A ∩B ⊂ A ∩B ⊂ Ā ∩ B̄

and hence,
bd (A ∩B) ⊂

[
Ā ∩ B̄

]
\ [A◦ ∩B◦] .

Combining this inclusion with[
Ā ∩ B̄

]
\ [A◦ ∩B◦] =

[
Ā ∩ B̄

]
∩ [A◦ ∩B◦]c =

[
Ā ∩ B̄

]
∩ [(A◦)

c ∪ (B◦)
c
]

=
[
Ā ∩ B̄ ∩ (A◦)

c] ∪ [Ā ∩ B̄ ∩ (B◦)
c]

⊂
[
Ā ∩ (A◦)

c] ∪ [B̄ ∩ (B◦)
c]

= bd (A) ∪ bd (B)

completes the proof of the first assertion. The second and third assertions are
easy consequence of the first because;

bd (A \B) = bd (A ∩Bc) ⊂ bd (A) ∪ bd (Bc) = bd (A) ∪ bd (B)

and

bd (A ∪B) = bd ([A ∪B]
c
) = bd (Ac ∩Bc)

⊂ bd (Ac) ∪ bd (Bc) = bd (A) ∪ bd (B) .

26.10.2 Proof of Skorohod’s Theorem 26.86

Lemma 26.92. Let (S, ρ) be a separable metric space, B be the Borel σ – algebra
on S, and µ be a probability measure on B. Then for every ε > 0 there exists a
countable partition, {Bn}∞n=1 , of S such that Bn ∈ B, diam (Bn) ≤ ε and Bn
is a µ – continuity set (i.e. µ (bd (Bn)) = 0) for all n.
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Proof. For x ∈ S and r ≥ 0 let S (x, r) := {y ∈ S : ρ (x, y) = r} . For any
finite subset, Γ ⊂ [0,∞), we have

∑
r∈Γ S (x, r) ⊂ S and therefore,∑

r∈Γ
µ (S (x, r)) ≤ µ (S) = 1.

As Γ ⊂f [0,∞) was arbitrary we may conclude that
∑
r≥0 µ (S (x, r)) ≤ 1 <∞

and therefore the set Qx := {r ≥ 0 : µ (S (x, r)) > 0} is at most countable.
If B (x, r) := {y ∈ S : ρ (x, y) < r} and C (x, r) := {y ∈ S : ρ (x, y) ≤ r} are

the open and closed r – balls about x respectively, we have S (x, r) = C (x, r) \
B (x, r) . As

bd (B (x, r)) = B (x, r) \B (x, r) ⊂ C (x, r) \B (x, r) = S (x, r) ,

it follows that B (x, r) is a µ – continuity set for all r /∈ Qx. With these prepa-
rations in hand we are now ready to complete the proof.

Let {xn}∞n=1 be a countable dense subset of S and let Q := ∪∞n=1Qxn – a
countable subset of [0,∞). Choose r ∈ [0,∞) \ Q such that r ≤ ε/2 and then
define

Bn := B (xn, r) \ [B (x1, r) ∪ · · · ∪B (xn−1, r)] .

It is clear that {Bn}∞n=1 ⊂ B is a partition of S with diam (Bn) ≤ 2r ≤ ε.
Moreover, we know that

bd (Bn) ⊂ bd (B (xn, r)) ∪ bd (B (x1, r) ∪ · · · ∪B (xn−1, r))

⊂ ∪nk=1 bd (B (xk, r)) ⊂ ∪nk=1S (xk, r)

and therefore as r /∈ Q we have

µ (bd (Bn)) ≤
n∑
k=1

µ (S (xk, r)) = 0

so that Bn is a µ – continuity set for each n ∈ N.
We are now ready to prove Skorohod’s Theorem 26.86.
Proof. (of Skorohod’s Theorem 26.86) We will be following the proof in

Kallenberg [26, Theorem 4.30 on page 79.]. In this proof we will be using an
auxiliary probability space (Ω0,B0, P0) which is sufficiently rich so as to support
the collection of independent random variables needed in the proof.8 The final
probability space will then be given by (Ω,B, P ) = (Ω0 × S,B0 ⊗ BS , P0 ⊗ µ)
and the random variable Y will be defined by Y (ω, x) := x for all (ω, x) ∈ Ω.
Let us now start the proof.

8 An examination of the proof will show that Ω0 can be taken to be (0, 1) × SN

equipped with a well chosen infinite product measure.

Given p ∈ N, use Lemma 26.92 to construct a partition, {Bn}∞n=1 , of S such
that diam (Bn) < 2−p and µ (bd (Bn)) = 0 for all n. Choose m sufficiently large
so that µ

(∑∞
n=m+1Bn

)
< 2−p and let B0 :=

∑∞
n=m+1Bn so that {Bk}mk=0 is

a partition of S. Now define

κ :=

m∑
k=0

k1Bk (Y ) =

m∑
k=0

k1Y ∈Bk

and let Θ be a random variable on Ω which is independent of Y and has the
uniform distribution on [0, 1] . For each n ∈ N, the Prenatal Skorohod The-
orem 26.31 implies there exists κ̃n : (0, 1) × {0, . . . ,m} → {0, . . . ,m} such
that κ̃n (θ, k) = k when θ ≤ µn (Bk) /µ (Bk) and Lawm×{µ(Bk)}mk=0

(κn) =

{µn (Bk)}mk=0 . Now let κn := κ̃n (Θ, κ) so that P (κn = k) = µn (Bk) for
all n ∈ N and 0 ≤ k ≤ m and κn = k when Θ ≤ µn (Bκ) /µ (Bκ) . Since
µ (bd (Bk)) = 0 for all k it follows µn (Bk) → µ (Bk) for all 0 ≤ k ≤ m and
therefore limn→∞ κn = κ, P – a.s.

Now choose ξkn independent of everything such that P
(
ξkn ∈ A

)
= µn (A|Bk)

for all n and 0 ≤ k ≤ n. Then define

Y pn := ξκn(θ,κ)
n =

m∑
k=0

1κn(θ,κ)=k · ξkn.

Notice that

P (Y pn ∈ A) =

m∑
k=0

P
(
ξkn ∈ A & κn (θ, κ) = k

)
=

m∑
k=0

µn (A|Bk)µn (Bk) =

m∑
k=0

µn (A ∩Bk) = µn (A) ,

and {
ρ (Y pn , Y ) > 2−p

}
⊂ {Y ∈ B0} ∪ {κ 6= κn}

so that

P
(
∪n≥N

{
ρ (Y pn , Y ) > 2−p

})
≤ P (Y ∈ B0) + P (∪n≥N {κn 6= κ})
< 2−p + P (∪n≥N {κn 6= κ}) .

Since κn → κ a.s. it follows that

0 = P (κn 6= κ i.o. n) = lim
N→∞

P (∪n≥N {κn 6= κ})

and so there exists np <∞ such that

P
(
∪n≥np

{
ρ (Y pn , Y ) > 2−p

})
< 2−p.
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To finish the proof, construct {Y pn }
∞
n=1 and np ∈ N as above for each p ∈ N.

By replacing np by
∑p
i=1 ni if necessary, we may assume that n1 < n2 < n3 <

. . . . As ∑
p

P
(
∪n≥np

{
ρ (Y pn , Y ) > 2−p

})
<
∑
p

2−p <∞

it follows from the first Borel Cantelli lemma that P (N) = 0 where

N :=
{[
∪n≥np

{
ρ (Y pn , Y ) > 2−p

}]
i.o. p

}
.

So off the null set N we have ρ (Y pn , Y ) ≤ 2−p for all n ≥ np and a.a. p. We now
define {Yn}∞n=1 by

Yn := Y pn for np ≤ n < np+1 and p ∈ N.

Then by construction we have Law (Yn) = µn for all n and ρ (Yn, Y )→ 0 a.s.

26.10.3 Proof of Proposition – The Portmanteau Theorem 26.87

Proof. (of Proposition 26.87.) 1. =⇒ 2. is obvious.
For 2. =⇒ 3., let

ϕ(t) :=

 1 if t ≤ 0
1− t if 0 ≤ t ≤ 1

0 if t ≥ 1
(26.59)

and let fn(x) := ϕ(nρ(x, F )). Then fn ∈ BC(S, [0, 1]) is uniformly continuous,
0 ≤ 1F ≤ fn for all n and fn ↓ 1F as n → ∞. Passing to the limit n → ∞ in
the equation

0 ≤ µn(F ) ≤ µn(fm)

gives
0 ≤ lim sup

n→∞
µn(F ) ≤ µ(fm)

and then letting m→∞ in this inequality implies item 3.
3. ⇐⇒ 4. Assuming item 3., let F = Gc, then

1− lim inf
n→∞

µn(G) = lim sup
n→∞

(1− µn(G)) = lim sup
n→∞

µn(Gc)

≤ µ(Gc) = 1− µ(G)

which implies 4. Similarly 4. =⇒ 3.
3. ⇐⇒ 5. Recall that bd (A) = Ā \ Ao, so if µ(bd (A)) = 0 and 3. (and

hence also 4. holds) we have

lim sup
n→∞

µn(A) ≤ lim sup
n→∞

µn(Ā) ≤ µ(Ā) = µ(A) and

lim inf
n→∞

µn(A) ≥ lim inf
n→∞

µn(Ao) ≥ µ(Ao) = µ(A)

from which it follows that limn→∞ µn(A) = µ(A). Conversely, let F @ S and
set Fδ := {x ∈ S : ρ(x, F ) ≤ δ}.9 Then

bd (Fδ) ⊂ Fδ \ {x ∈ S : ρ(x, F ) < δ} = Aδ

where Aδ := {x ∈ S : ρ(x, F ) = δ} . Since {Aδ}δ>0 are all disjoint, we must have∑
δ>0

µ(Aδ) ≤ µ(S) ≤ 1

and in particular the set Λ := {δ > 0 : µ(Aδ) > 0} is at most countable. Let
δn /∈ Λ be chosen so that δn ↓ 0 as n→∞, then

µ(Fδm) = lim
n→∞

µn(Fδm) ≥ lim sup
n→∞

µn(F ).

Let m→∞ in this equation to conclude µ(F ) ≥ lim supn→∞ µn(F ) as desired.
To finish the proof it suffices to show 5. =⇒ 1. which is easily done using

Skorohod’s Theorem 26.86 just as was done in the proof of Theorem 26.32. For
those not wanting to use Skorohod’s theorem we also provide a direct proof
that 3. =⇒ 1.

Alternate finish to the proof (3. =⇒ 1.) . By an affine change of vari-
ables it suffices to consider f ∈ C(S, (0, 1)) in which case we have

k∑
i=1

(i− 1)

k
1{ (i−1)

k ≤f< i
k

} ≤ f ≤ k∑
i=1

i

k
1{ (i−1)

k ≤f< i
k

}. (26.60)

Let Fi :=
{
i
k ≤ f

}
and notice that Fk = ∅. Then for any probability µ,

k∑
i=1

(i− 1)

k
[µ(Fi−1)− µ(Fi)] ≤ µ(f) ≤

k∑
i=1

i

k
[µ(Fi−1)− µ(Fi)] . (26.61)

Since
k∑
i=1

(i− 1)

k
[µ(Fi−1)− µ(Fi)]

=

k∑
i=1

(i− 1)

k
µ(Fi−1)−

k∑
i=1

(i− 1)

k
µ(Fi)

=

k−1∑
i=1

i

k
µ(Fi)−

k∑
i=1

i− 1

k
µ(Fi) =

1

k

k−1∑
i=1

µ(Fi)

9 We let ρ (x, F ) := inf {ρ (x, y) : y ∈ F} so that ρ (x, F ) is the distance of x from F.
Recall that ρ (·, F ) : S → [0,∞) is a continuous map.
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and

k∑
i=1

i

k
[µ(Fi−1)− µ(Fi)]

=

k∑
i=1

i− 1

k
[µ(Fi−1)− µ(Fi)] +

k∑
i=1

1

k
[µ(Fi−1)− µ(Fi)]

=

k−1∑
i=1

µ(Fi) +
1

k
,

Eq. (26.61) becomes,

1

k

k−1∑
i=1

µ(Fi) ≤ µ(f) ≤ 1

k

k−1∑
i=1

µ(Fi) + 1/k.

Using this equation with µ = µn and then with µ = µ we find

lim sup
n→∞

µn(f) ≤ lim sup
n→∞

[
1

k

k−1∑
i=1

µn(Fi) + 1/k

]

≤ 1

k

k−1∑
i=1

µ(Fi) + 1/k ≤ µ(f) + 1/k.

Since k is arbitrary, lim supn→∞ µn(f) ≤ µ(f). Replacing f by 1 − f in
this inequality also gives lim infn→∞ µn(f) ≥ µ(f) and hence we have shown
limn→∞ µn(f) = µ(f) as claimed.

26.10.4 Proof of Prokhorov’s compactness Theorem 26.89

The following proof relies on results not proved in these notes up to this point.
The missing results may be found by searching for “Riesz-Markov Theorem” in
the notes at

http://www.math.ucsd.edu/˜bdriver/240A-C-03-04/240 lecture notes.htm.

Proof. (of Prokhorov’s compactness Theorem 26.89) First suppose that S
is compact. In this case C(S) is a Banach space which is separable by the
Stone – Weirstrass theorem, see Exercise ?? in the analysis notes. By the Riesz
theorem, Corollary ?? of the analysis notes, we know that C(S)∗ is in one to
one correspondence with the complex measures on (S,BS). We have also seen
that C(S)∗ is metrizable and the unit ball in C(S)∗ is weak - * compact, see
Theorem ?? of the analysis notes. Hence there exists a subsequence {µnk}

∞
k=1

which is weak -* convergent to a probability measure µ on S. Alternatively, use
the Cantor’s diagonalization procedure on a countable dense set Γ ⊂ C(S) so
find {µnk}

∞
k=1 such that Λ(f) := limk→∞ µnk(f) exists for all f ∈ Γ. Then for

g ∈ C(S) and f ∈ Γ, we have

|µnk(g)− µnl(g)| ≤ |µnk(g)− µnk(f)|+ |µnk(f)− µnl(f)|
+ |µnl(f)− µnl(g)|

≤ 2 ‖g − f‖∞ + |µnk(f)− µnl(f)|

which shows
lim sup
n→∞

|µnk(g)− µnl(g)| ≤ 2 ‖g − f‖∞ .

Letting f ∈ Λ tend to g in C(S) shows lim supn→∞ |µnk(g)− µnl(g)| = 0 and
hence Λ(g) := limk→∞ µnk(g) for all g ∈ C(S). It is now clear that Λ(g) ≥ 0
for all g ≥ 0 so that Λ is a positive linear functional on S and thus there is a
probability measure µ such that Λ(g) = µ(g).

General case. By Theorem 13.35 we may assume that S is a subset of a
compact metric space which we will denote by S̄. We now extend µn to S̄ by
setting µ̄n(A) := µ̄n(A∩S) for all A ∈ BS̄ . By what we have just proved, there
is a subsequence {µ̄′k := µ̄nk}

∞
k=1 such that µ̄′k converges weakly to a probability

measure µ̄ on S̄. The main thing we now have to prove is that “µ̄(S) = 1,” this
is where the tightness assumption is going to be used. Given ε > 0, let Kε ⊂ S
be a compact set such that µ̄n(Kε) ≥ 1− ε for all n. Since Kε is compact in S
it is compact in S̄ as well and in particular a closed subset of S̄. Therefore by
Proposition 26.87

µ̄(Kε) ≥ lim sup
k→∞

µ̄
′

k(Kε) = 1− ε.

Since ε > 0 is arbitrary, this shows with S0 := ∪∞n=1K1/n satisfies µ̄(S0) = 1.
Because S0 ∈ BS ∩ BS̄ , we may view µ̄ as a measure on BS by letting µ(A) :=
µ̄(A∩S0) for all A ∈ BS . Given a closed subset F ⊂ S, choose F̃ @ S̄ such that
F = F̃ ∩ S. Then

lim sup
k→∞

µ′k(F ) = lim sup
k→∞

µ̄′k(F̃ ) ≤ µ̄(F̃ ) = µ̄(F̃ ∩ S0) = µ(F ),

which shows µ′k =⇒ µ.
Converse direction. Suppose now that (S, ρ) is complete and Λ is a se-

quentially compact subset of the probability measures on (S,BS) . We first will
prove if {Gn}∞n=1 is a sequence of open subsets of S such that Gn ↑ S, then

c := sup
n

inf
µ∈Λ

µ (Gn) = lim
n→∞

inf
µ∈Λ

µ (Gn) = 1.

Suppose for sake of contradiction that c < 1 and let c′ ∈ (c, 1) . By our assump-
tion we have infµ∈Λ µ (Gn) ≤ c for all n therefore there exists µn ∈ Λ such that
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µn (Gn) ≤ c′ for all n ∈ N. By passing to a subsequence of {n} and correspond-
ing subsequence {G′n} of the {Gn} , we may assume that νn := µkn =⇒ µ for
some probability measure µ on S and νn (G′n) ≤ c′ for all n where G′n ↑ S as
n ↑ ∞. For fixed N ∈ N we have νn (G′N ) ≤ νn (G′n) ≤ c′ for n ≥ N. Passing to
the limit as n→∞ in these inequalities then implies

µ (G′N ) ≤ lim inf
n→∞

νn (G′N ) ≤ c′ < 1.

However this is absurd since µ (G′N ) ↑ 1 as N → ∞ since µ is a probability
measure on S and G′N ↑ S as N ↑ ∞.

We may now finish the proof as follows. Let ε > 0 be given and let
{xk}∞k=1 be a countable dense subset of S. For each m ∈ N the open sets
Gn := ∪nk=1B

(
xk,

1
m

)
↑ S and so by the above claim there exists nm such

Vm := Gnm satisfies infk µk (Vm) ≥ 1− ε2−m. We now let A := ∩mVm so that
µk (A) ≥ 1− ε for all k. As A is totally bounded and S is complete, Kε := Ā is
the desired compact subset of S such that µk (Kε) ≥ 1− ε for all k.





27

Characteristic Functions (Fourier Transform)

Notation 27.1 Given a measure µ on a measurable space, (Ω,B) and a func-
tion, f ∈ L1 (µ) , we will often write µ (f) for

∫
Ω
fdµ.

Let us recall Definition 12.16 here.

Definition 27.2. Given a probability measure, µ on (Rn,BRn) , let

µ̂ (λ) :=

∫
Rn
eiλ·xdµ (x)

be the Fourier transform or characteristic function of µ. If X =
(X1, . . . , Xn) : Ω → Rn is a random vector on some probability space (Ω,B, P ) ,
then we let f (λ) := fX (λ) := E

[
eiλ·X

]
. Of course, if µ := P ◦ X−1, then

fX (λ) = µ̂ (λ) .

From Corollary 12.17 that we know if µ and ν are two probability measures
on (Rn,BRn) such that µ̂ = ν̂ then µ = ν – i.e. the Fourier transform map
is injective. In this chapter we are going to, among other things, characterize
those functions which are characteristic functions and we will also construct an
inversion formula.

27.1 Basic Properties of the Characteristic Function

Definition 27.3. A function f : Rn → C is said to be positive definite, iff
f (−λ) = f (λ) for all λ ∈ Rn and for all m ∈ N, {λj}mj=1 ⊂ R

n the matrix,(
{f (λj − λk)}mj,.k=1

)
is non-negative. More explicitly we require,

m∑
j,k=1

f (λj − λk) ξj ξ̄k ≥ 0 for all (ξ1, . . . , ξm) ∈ Cm.

Notation 27.4 For l ∈ N∪{0} , let Cl (Rn,C) denote the vector space of func-
tions, f : Rn → C which are l - time continuously differentiable. More explicitly,
if ∂j := ∂

∂xj
, then f ∈ Cl (Rn,C) iff the partial derivatives, ∂j1 . . . ∂jkf, exist

and are continuous for k = 1, 2, . . . , l and all j1, . . . , jk ∈ {1, 2, . . . , n} .

Proposition 27.5 (Basic Properties of µ̂). Let µ and ν be two probability
measures on (Rn,BRn) , then;

1. µ̂ (0) = 1, and |µ̂ (λ)| ≤ 1 for all λ.
2. µ̂ (λ) is continuous.
3. µ̂ (λ) = µ̂ (−λ) for all λ ∈ Rn and in particular, µ̂ is real valued iff µ is

symmetric, i.e. iff µ (−A) = µ (A) for all A ∈ BRn . (If µ = P ◦ X−1 for

some random vector X, then µ is symmetric iff X
d
= −X.)

4. µ̂ is a positive definite function.
(Bochner’s Theorem 27.46 below asserts that if f is a function satisfying
properties of µ̂ in items 1 – 4 above, then f = µ̂ for some probability measure
µ.)

5. If
∫
Rn ‖x‖

l
dµ (x) <∞, then µ̂ ∈ Cl (Rn,C) and

∂j1 . . . ∂jm µ̂ (λ) =

∫
Rn

(ixj1 . . . ixjm) eiλ·xdµ (x) for all m ≤ l.

6. If X and Y are independent random vectors then

fX+Y (λ) = fX (λ) fY (λ) for all λ ∈ Rn.

This may be alternatively expressed as

µ̂ ∗ ν (λ) = µ̂ (λ) ν̂ (λ) for all λ ∈ Rn.

7. If a ∈ R, b ∈ Rn, and X : Ω → Rn is a random vector, then

faX+b (λ) = eiλ·bfX (aλ) .

Proof. The proof of items 1., 2., 6., and 7. are elementary and will be left
to the reader. It also easy to see that µ̂ (λ) = µ̂ (−λ) and µ̂ (λ) = µ̂ (−λ) if µ is
symmetric. Therefore if µ is symmetric, then µ̂ (λ) is real. Conversely if µ̂ (λ)
is real then

µ̂ (λ) = µ̂ (−λ) =

∫
Rn
eiλ·xdν (x) = ν̂ (λ)

where ν (A) := µ (−A) . The uniqueness Corollary 12.17 then implies µ = ν, i.e.
µ is symmetric. This proves item 3.
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Item 5. follows by induction using Corollary 10.31. For item 4. let m ∈ N,
{λj}mj=1 ⊂ R

n and (ξ1, . . . , ξm) ∈ Cm. Then

m∑
j,k=1

µ̂ (λj − λk) ξj ξ̄k =

∫
Rn

m∑
j,k=1

ei(λj−λk)·xξj ξ̄kdµ (x)

=

∫
Rn

m∑
j,k=1

eiλj ·xξjeiλk·xξkdµ (x)

=

∫
Rn

∣∣∣∣∣∣
m∑
j=1

eiλj ·xξj

∣∣∣∣∣∣
2

dµ (x) ≥ 0.

Example 27.6 (Example 26.3 continued.). Let dµ (x) = 1[0,1] (x) dx and ν (A) =
µ (−A) . Then

µ̂ (λ) =

∫ 1

0

eiλxdx =
eiλ − 1

iλ
,

ν̂ (λ) = µ̂ (−λ) = µ̂ (λ) =
e−iλ − 1

−iλ
, and

µ̂ ∗ ν (λ) = µ̂ (λ) ν̂ (λ) = |µ̂ (λ)|2 =

∣∣∣∣eiλ − 1

iλ

∣∣∣∣2 =
2

λ2
[1− cosλ] . (27.1)

According to Example 26.3 we also have d (µ ∗ ν) (x) = (1− |x|)+ dx and so we
may directly verify Eq. (27.1) as follows;

µ̂ ∗ ν (λ) =

∫
R
eiλx (1− |x|)+ dx =

∫
R

cos (λx) (1− |x|)+ dx

= 2

∫ 1

0

(1− x) cosλx dx = 2

∫ 1

0

(1− x) d
sinλx

λ

= −2

∫ 1

0

d (1− x)
sinλx

λ
= 2

∫ 1

0

sinλx

λ
dx = 2

− cosλx

λ2
|x=1
x=0

= 2
1− cosλ

λ2
.

For the most part we are now going to stick to the one dimensional case, i.e.
X will be a random variable and µ will be a probability measure on (R,BR) .
The following Lemma is a special case of item 4. of Proposition 27.5.

Lemma 27.7. Suppose n ∈ N and X is random variables such that E [|X|n] <
∞. If µ = P ◦ X−1 is the distribution of X, then µ̂ (λ) := E

[
eiλX

]
is Cn –

differentiable and

µ̂(l) (λ) = E
[
(iX)

l
eiλX

]
=

∫
R

(ix)
l
eiλxdµ (x) for l = 0, 1, 2, . . . , n.

In particular it follows that

E
[
X l
]

=
µ̂(l) (0)

il
.

The following theorem is a partial converse to this lemma. Hence the com-
bination of Lemma 27.7, Theorem 27.8, and Corollary 27.19 (see also Corollary
27.38 below) shows that there is a correspondence between the number of mo-
ments of X and the differentiability of fX .

Theorem 27.8 (Smoothness implies integrability I). Let X be a random
variable, m ∈ {0, 1, 2, . . . } , f (λ) = E

[
eiλX

]
. If f ∈ C2m (R,C) such that

g := f (2m) is differentiable in a neighborhood of 0 and g′′ (0) = f (2m+2) (0)
exists. Then E

[
X2m+2

]
<∞ and f ∈ C2m+2 (R,C) .

Proof. This will be proved by induction on m. Let m ∈ N0 be given and
suppose that

u (λ) = E
[
X2m cos (λX)

]
= ReE

[
X2meiλX

]
is differentiable in a neighborhood of 0 and further suppose that u′′ (0) exists.
Since u is an even function of λ, u′ is an odd function of λ near 0 and therefore
u′ (0) = 0. By the mean value theorem, to each λ > 0 with λ near 0, there exists
0 < cλ < λ such that

u (λ)− u (0)

λ
= u′ (cλ) = u′ (cλ)− u′ (0)

and so
u (0)− u (λ)

λcλ
= −u

′ (cλ)− u′ (0)

cλ
→ −u′′ (0) as λ ↓ 0. (27.2)

Using

lim
λ↓0

1− cos (λX)

λ2
=
X2

2

and Fatou’s lemma, we may pass to the limit as λ ↓ 0 in the inequality,

E
[
X2m 1− cos (λX)

λ2

]
≤ E

[
X2m 1− cos (λX)

λcλ

]
=
u (0)− u (λ)

λcλ
,

to find
1

2
E
[
X2m+2

]
≤ lim inf

λ↓0

u (0)− u (λ)

λcλ
= −u′′ (0) <∞,

where the last equality is a consequence of Eq. (27.2).
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With this result in hand, the theorem is now easily proved by induction. We
start with m = 0 and recall from Proposition 27.5 that f ∈ C (R,C)). Assuming
f is differentiable in a neighborhood of 0 and f ′′ (0) exists we may apply the
above result with u = Re f in order to learn E

[
X2
]
< ∞. An application of

Lemma 27.7 then implies that f ∈ C2 (R,C) . The induction step is handled in
much the same way upon noting,

f (2m) (λ) = (−1)
m E

[
X2meiλX

]
so that

u (λ) := (−1)
m

Re f (2m) (λ) = E
[
X2m cos (λX)

]
.

Corollary 27.9. Suppose that X is a Rd – valued random vector such that for
all λ ∈ Rd the function

fλ (t) := fX (tλ) = E
[
eitλ·X

]
is 2m – times differentiable in a neighborhood of t = 0, then E ‖X‖2m <∞ and
fX ∈ C2m

(
Rd,C

)
.

Proof. Applying Theorem 27.8 with X replaced by λ · X shows that

E
[
|λ ·X|2m

]
< ∞ for all λ ∈ Rd. In particular, taking λ = ei (the ith –

standard basis vector) implies that E
[
|Xi|2m

]
< ∞ for 1 ≤ i ≤ d. So by

Minkowski’s inequality;

‖X‖L2m(P ) =

∥∥∥∥∥
d∑
i=1

Xiei

∥∥∥∥∥
L2m(P )

≤

∥∥∥∥∥
d∑
i=1

|Xi| ‖ei‖

∥∥∥∥∥
L2m(P )

≤
d∑
i=1

‖ei‖·‖Xi‖L2m(P ) <∞,

i.e. E ‖X‖2m <∞. The fact that fX ∈ C2m
(
Rd,C

)
now follows from Proposi-

tion 27.5.

27.2 Examples

Example 27.10. If −∞ < a < b <∞ and dµ (x) = 1
b−a1[a,b] (x) dx then

µ̂ (λ) =
1

b− a

∫ b

a

eiλxdx =
eiλb − eiλa

iλ (b− a)
.

If a = −c and b = c with c > 0, then

µ̂ (λ) =
sinλc

λc
.

Observe that

µ̂ (λ) = 1− 1

3!
λ2c2 + . . .

and therefore, µ̂′ (0) = 0 and µ̂′′ (0) = − 1
3c

2 and hence it follows that∫
R
xdµ (x) = 0 and

∫
R
x2dµ (x) =

1

3
c2.

Example 27.11. Suppose Z is a Poisson random variable with mean a > 0, i.e.
P (Z = n) = e−a a

n

n! . Then

fZ (λ) = E
[
eiλZ

]
= e−a

∞∑
n=0

eiλn
an

n!
= e−a

∞∑
n=0

(
aeiλ

)n
n!

= exp
(
a
(
eiλ − 1

))
.

Differentiating this result gives,

f ′Z (λ) = iaeiλ exp
(
a
(
eiλ − 1

))
and

f ′′Z (λ) =
(
−a2ei2λ − aeiλ

)
exp

(
a
(
eiλ − 1

))
from which we conclude,

EZ =
1

i
f ′Z (0) = a and EZ2 = −f ′′Z (0) = a2 + a.

Therefore, EZ = a = Var (Z) .

Example 27.12. Suppose T
d
= exp (a), i.e. T ≥ 0 a.s. and P (T ≥ t) = e−at for

all t ≥ 0. Recall that µ = Law (T ) is given by

dµ (t) = F ′T (t) dt = ae−at1t≥0dt.

Therefore,

E
[
eiaT

]
=

∫ ∞
0

ae−ateiλtdt =
a

a− iλ
= µ̂ (λ) .

Since
µ̂′ (λ) = i

a

(a− iλ)
2 and µ̂′′ (λ) = −2

a

(a− iλ)
3

it follows that

ET =
µ̂′ (0)

i
= a−1 and ET 2 =

µ̂′′ (0)

i2
=

2

a2

and hence Var (T ) = 2
a2 −

(
1
a

)2
= a−2.
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Example 27.13. From Exercise 10.17, if dµ (x) := 1√
2π
e−x

2/2dx, then µ̂ (λ) =

e−λ
2/2 and we may deduce∫

R
xdµ (x) = 0 and

∫
R
x2dµ (x) = 1.

Recall from Section 14.5 that we have defined a random vector, X ∈ Rd, to
be Gaussian iff

E
[
eiλ·X

]
= exp

(
−1

2
Var (λ ·X) + iE (λ ·X)

)
.

We define a probability measure, µ, on
(
Rd,BRd

)
to be Gaussian iff there is

a Gaussian random vector, X, such that Law (X) = µ. This can be expressed
directly in terms of µ as; µ is Gaussian iff

µ̂ (λ) = exp

(
−1

2
q (λ, λ) + iλ ·m

)
for all λ ∈ Rd

where

m :=

∫
Rd
xdµ (x) and q (λ, λ) :=

∫
Rd

(λ · x)
2
dµ (x)− (λ ·m)

2
.

Example 27.14. If µ is a probability measure on (R,BR) and n ∈ N, then µ̂n is
the characteristic function of the probability measure, namely the measure

µ∗n :=

n times︷ ︸︸ ︷
µ ∗ · · · ∗ µ. (27.3)

Alternatively put, if {Xk}nk=1 are i.i.d. random variables with µ = P ◦ X−1
k ,

then
fX1+···+Xn (λ) = fnX1

(λ) .

Example 27.15. Suppose that {µn}∞n=0 are probability measure on (R,BR) and
{pn}∞n=0 ⊂ [0, 1] such that

∑∞
n=0 pn = 1. Then

∑∞
n=0 pnµ̂n is the characteristic

function of the probability measure,

µ :=

∞∑
n=0

pnµn.

Here is a more interesting interpretation of µ. Let {Xn}∞n=0∪{T} be independent
random variables with P ◦X−1

n = µn and P (T = n) = pn for all n ∈ N0. Then
µ (A) = P (XT ∈ A) , where XT (ω) := XT (ω) (ω) . Indeed,

µ (A) = P (XT ∈ A) =

∞∑
n=0

P (XT ∈ A, T = n) =

∞∑
n=0

P (Xn ∈ A, T = n)

=

∞∑
n=0

P (Xn ∈ A, T = n) =

∞∑
n=0

pnµn (A) .

Let us also observe that

µ̂ (λ) = E
[
eiλXT

]
=

∞∑
n=0

E
[
eiλXT : T = n

]
=

∞∑
n=0

E
[
eiλXn : T = n

]
=

∞∑
n=0

E
[
eiλXn

]
P (T = n) =

∞∑
n=0

pnµ̂n (λ) .

Example 27.16. If µ is a probability measure on (R,BR) then
∑∞
n=0 pnµ̂

n is the
characteristic function of a probability measure, ν, on (R,BR) . In this case,
ν =

∑∞
n=0 pnµ

∗n where µ∗n is defined in Eq. (27.3). As an explicit example, if

a > 0 and pn = an

n! e
−a, then

∞∑
n=0

pnµ̂
n =

∞∑
n=0

an

n!
e−aµ̂n = e−aeaµ̂ = ea(µ̂−1)

is the characteristic function of a probability measure. In other words,

fXT (λ) = E
[
eiλXT

]
= exp (a (fX1 (λ)− 1)) .

27.3 Tail Estimates

Lemma 27.17 (Tail Estimate). Let X : (Ω,B, P )→ R be a random variable
and fX (λ) := E

[
eiλX

]
be its characteristic function. Then for a > 0,

P (|X| ≥ a) ≤a
2

∫ 2/a

−2/a

(1− fX (λ)) dλ

=
a

2

∫ 2/a

−2/a

(1− Re fX (λ)) dλ = 2

∫ 1

−1

(
1− Re fX

(
2

a
λ

))
dλ.

(27.4)

Proof. Recall that the Fourier transform of the uniform distribution on
[−c, c] is sinλc

λc and hence

1

2c

∫ c

−c
fX (λ) dλ =

1

2c

∫ c

−c
E
[
eiλX

]
dλ = E

[
sin cX

cX

]
.
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Therefore,
1

2c

∫ c

−c
(1− fX (λ)) dλ = 1− E

[
sin cX

cX

]
= E [Yc] (27.5)

where

Yc := 1− sin cX

cX
.

Notice that Yc ≥ 0 (see Eq. (27.51)) and moreover, Yc ≥ 1/2 if |cX| ≥ 2
(|sin cX| / |cX| ≤ |sin cX| /2 ≤ 1/2 if |cX| ≥ 2). Hence we may conclude

E [Yc] ≥ E [Yc : |cX| ≥ 2] ≥ E
[

1

2
: |cX| ≥ 2

]
=

1

2
P (|X| ≥ 2/c) .

Combining this estimate with Eq. (27.5) shows,

1

2c

∫ c

−c
(1− fX (λ)) dλ ≥ 1

2
P (|X| ≥ 2/c) .

Taking c = 2/a in this estimate proves Eq. (27.4).

Remark 27.18. The above proof is more mysterious than it need be. To begin
with if ϕ ∈ L1

(
Rd,m

)
and µ is a probability measure on

(
Rd,BRd

)
, then by

Fubini-Tonelli,∫
Rd
ϕ (k) µ̂ (k) dk =

∫
Rd
dkϕ (k)

∫
Rd
dµ (x) eik·x =

∫
Rd
dµ (x)

∫
Rd
dkϕ (k) eik·x

=

∫
Rd
ϕ̂ (x) dµ (x)

which proves the duality relation,∫
Rd
ϕ̂ (k) dµ (k) =

∫
Rd
ϕ (k) µ̂ (k) dk.

Let us take

ϕ (x) = δε (x) :=
1

εd
δ
(x
ε

)
where δ ∈ L1

(
Rd,m

)
is non-negative and

∫
Rd δ (x) dx = 1. In this case, making

a change of variables, we find

δ̂ε (k) =

∫
Rd
δε (x) eik·xdx =

∫
Rd

1

εd
δ
(x
ε

)
eik·xdx

=

∫
Rd
δ (y) eik·εydy = δ̂ (εk) .

Thus the duality relation now becomes,

∫
Rd
δ̂ (εk) dµ (k) =

∫
Rd
δε (k) µ̂ (k) dk =

∫
Rd
δ (k) µ̂ (εk) dk.

Subtracting this equation from the simple identity,∫
Rd

1dµ (k) = µ
(
Rd
)

= 1 =

∫
Rd
δ (k) dk,

then shows, ∫
Rd

[
1− δ̂ (εk)

]
dµ (k) =

∫
Rd

[1− µ̂ (εk)] δ (k) dk

and by taking the real part of the identity,∫
Rd

[
1− Re δ̂ (εk)

]
dµ (k) =

∫
Rd

[1− Re µ̂ (εk)] δ (k) dk.

Since (by the Riemann Lebesgue lemma) lim|k|→∞ δ̂ (k) = 0, there exists M =

M (δ) <∞ such that
∣∣∣δ̂ (k)

∣∣∣ ≤ 1
2 if |k| ≥M and hence

1− Re δ̂ (εk) ≥ 1

2
if |εk| ≥M, i.e. if |k| ≥ M

ε
.

Since
∣∣∣δ̂ (k)

∣∣∣ ≤ 1 for all k it also follows that 1 − Re δ̂ (εk) ≥ 0 for all k. From

these remarks we may conclude that∫
Rd

[
1− Re δ̂ (εk)

]
dµ (k) ≥

∫
Rd

[
1− Re δ̂ (εk)

]
1|k|≥Mε

dµ (k) ≥ 1

2
µ

(
|k| ≥ M

ε

)
.

Thus we arrive at the tail estimate

µ

(
|k| ≥ M

ε

)
≤ 2

∫
Rd

[1− Re µ̂ (εk)] δ (k) dk = 2

∫
Rd

[1− Re µ̂ (k)] δε (k) dk

which is valid for all ε > 0. Specializing to the case where δ (x) = 1
21[−1,1] (x)

leads to the tail estimate from before.
Another quite reasonable choice would be to take

δ (x) = p1 (x) =

(
1

2π

)d/2
e−

1
2 |x|

2

=⇒ δ̂ (k) = e−
1
2 |k|

2

.

In this cases

1

2
= e−

1
2M

2

=⇒ ln 2 =
1

2
M2, i.e. M =

√
2 ln 2

Page: 431 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



432 27 Characteristic Functions (Fourier Transform)

and so we find

µ

(
|k| ≥

√
2 ln 2

ε

)
≤ 2

∫
Rd

[1− Re µ̂ (εk)] p1 (k) dk

= 2

∫
Rd

[1− Re µ̂ (k)] pε2 (k) dk.

or by setting a :=
√

2 ln 2
ε so that ε =

√
2 ln 2
a we find,

µ (|k| ≥ a) ≤ 2

∫
Rd

[
1− Re µ̂

(√
2 ln 2

a
k

)]
p1 (k) dk

= 2

∫
Rd

[1− Re µ̂ (k)] p2 ln 2·a−2 (k) dk.

Let us further note that if µ̂ (k) is continuously differentiable at 0, then
|µ̂ (k)− 1| ≤ C (|k| ∧ 1) and we conclude that

µ

(
|k| ≥ M

ε

)
≤ 2C

∫
Rd
|εk| ∧ 1 · δ (k) dk

and so by choosing δ to be compactly supported (say assume that δ (k) = 0 if
|k| ≥ 1) it follows for ε > 0 sufficiently small that

µ

(
|k| ≥ M

ε

)
≤ 2Cε

∫
Rd
|k| · δ (k) dk

which leads to an estimate of the form,

µ (|k| ≥ a) ≤ K

a
for some K <∞.

Exercise 27.1. Suppose now X : (Ω,B, P ) → Rd is a random vector and
fX (λ) := E

[
eiλ·X

]
is its characteristic function. Show for a > 0,

P (|X|∞ ≥ a) ≤2
(a

4

)d ∫
[−2/a,2/a]d

(1− fX (λ)) dλ

= 2
(a

4

)d ∫
[−2/a,2/a]d

(1− Re fX (λ)) dλ (27.6)

where |X|∞ = maxi |Xi| and dλ = dλ1, . . . , dλd.

Exercise 27.2 (Smoothness implies integrability II). Keeping the nota-
tion in Lemma 27.17 and letting u (λ) = Re fX (λ) = E cos (λX) . Further
suppose there exists and ε > 0 such that u′ (λ) exists for |λ| < ε. Since u is an

even function, u′ (0) = 0. Let us further suppose there exists δ > 0 and C <∞
such that |u′ (λ)| ≤ C |λ|δ for |λ| < ε. Show there exists K = K (C, δ) < ∞
such that

P (|X| ≥ a) ≤ K (C, δ)

(
1

a

)1+δ

for all a > 2/ε. (27.7)

Use this estimate to show E |X| <∞.

Corollary 27.19 (Smoothness implies integrability III). Suppose that X
is a random variable such that u (λ) = Re fX (λ) = E [cosλX] is a C2m+1 (R)
– function of λ. If there exists ε, δ, C > 0 so that∣∣∣u(2m+1) (λ)

∣∣∣ ≤ C |λ|δ for all |λ| < ε,

then E |X|2m+1
<∞.

Proof. By Theorem 27.8, we already know E |X|2m <∞ and therefore,

u(2m) (λ) = (−1)
m E

[
X2m cosλX

]
.

Now let Y be a random variable whose distribution is determined by

Eh (Y ) =
E
[
X2mh (X)

]
E [X2m]

∀ bounded h.

Then

uY (λ) := Re fY (λ) = E [cosλY ] =
E
[
X2m cosλX

]
E [X2m]

= (−1)
m u(2m) (λ)

E [X2m]

and so we see that uY (λ) satisfies the assumptions of Exercise 27.2. This allows
us to conclude that E |Y | <∞ which completes the proof since,

E |Y | =
E
[
X2m |X|

]
E [X2m]

=
E |X|2m+1

E [X2m]
.

27.4 Continuity Theorem

Theorem 27.20 (Continuity Theorem). Suppose that {µn}∞n=1 is a se-
quence of probability measure on

(
Rd,BRd

)
and suppose that f (λ) :=

limn→∞ µ̂n (λ) exists for all λ ∈ Rd. If f is continuous at λ = 0, then f
is the characteristic function of a unique probability measure, µ, on BRd and
µn =⇒ µ as n→∞.
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Proof. I will give the proof when d = 1 and leave the straight forward
extension to the d – dimensional case to the reader.

By the continuity of f at λ = 0, for ever ε > 0 we may choose aε sufficiently
large so that

1

2
aε

∫ 2/aε

−2/aε

(1− Re f (λ)) dλ ≤ ε/2.

According to Lemma 27.17 and the DCT,

µn ({x : |x| ≥ aε}) ≤
1

2
aε

∫ 2/aε

−2/aε

(1− Re µ̂n (λ)) dλ

→ 1

2
aε

∫ 2/aε

−2/aε

(1− Re f (λ)) dλ ≤ ε/2 as n→∞.

Hence µn ({x : |x| ≥ aε}) ≤ ε for all sufficiently large n, say n ≥ N. By increas-
ing aε if necessary we can assure that µn ({x : |x| ≥ aε}) ≤ ε for all n and hence
Γ := {µn}∞n=1 is tight.

By Theorem 26.64, we may find a subsequence, {µnk}
∞
k=1 and a probability

measure µ on BR such that µnk =⇒ µ as k →∞. Since x→ eiλx is a bounded
and continuous function, it follows that

µ̂ (λ) = lim
k→∞

µ̂nk (λ) = f (λ) for all λ ∈ R,

that is f is the characteristic function of a probability measure, µ.
We now claim that µn =⇒ µ as n → ∞. If not, we could find a bounded

continuous function, g, such that limn→∞ µn (g) 6= µ (g) or equivalently, there
would exists ε > 0 and a subsequence {µ′k := µnk} such that

|µ (g)− µ′k (g)| ≥ ε for all k ∈ N.

However by Theorem 26.64 again, there is a further subsequence, µ′′l = µ′kl
of µ′k such that µ′′l =⇒ ν for some probability measure ν. Since ν̂ (λ) =
liml→∞ µ̂′′l (λ) = f (λ) = µ̂ (λ) , it follows that µ = ν. This leads to a contradic-
tion since,

ε ≤ lim
l→∞

|µ (g)− µ′′l (g)| = |µ (g)− ν (g)| = 0.

Remark 27.21. One could also use Proposition 27.43 and Bochner’s Theorem
27.46 below to conclude; if f (λ) := limn→∞ µ̂n (λ) exists and is continuous
at 0, then f is the characteristic function of a probability measure. Indeed,
the condition of a function being positive definite is preserved under taking
pointwise limits.

Example 27.22 (Example 27.10 continued). For c > 0, let dµc (x) =
1
2c1[−c,c] (x) dx. As in Example 27.10, we know µ̂c (λ) = sinλc

λc . In this
case,

µ∞ (λ) := lim
c↑∞

µ̂c (λ) =

{
1 if λ = 0
0 if λ 6= 0

.

Noice that the limiting function is discontinuous and is not the characteristic
function of a measure. Moreover, since

Fc (x) := µc ((−∞, x]) =

 0 if x ≤ −c
1 if x ≥ c
x+c
2c if |x| ≤ c

→ F∞ (x) =
1

2
as c ↑ ∞.

Corollary 27.23. Suppose that {Xn}∞n=1∪{X} are random vectors in Rd, then
Xn =⇒ X iff limn→∞ E

[
eiλ·Xn

]
= E

[
eiλ·X

]
for all λ ∈ Rd.

Proof. Since f (x) := eiλ·x is in BC
(
Rd
)

for all λ ∈ Rd, if Xn =⇒ X then

limn→∞ E
[
eiλ·Xn

]
= E

[
eiλ·X

]
. Conversely if limn→∞ E

[
eiλ·Xn

]
= E

[
eiλ·X

]
for all λ ∈ Rd and µn := Law (Xn) and which is equivalent to Xn =⇒ X.

The proof of the next corollary is a straightforward consequence of Corollary
27.23 used for dimension d and dimension 1.

Corollary 27.24. Suppose that {Xn}∞n=1∪{X} are random vectors in Rd, then
Xn =⇒ X iff λ ·Xn =⇒ λ ·X for all λ ∈ Rd.

Lemma 27.25. If {µn}∞n=1 is a tight sequence of probability measures on Rd,
then the corresponding characteristic functions, {µ̂n}∞n=1 , are equicontinuous
on Rd.

Proof. By the tightness of the {µn}∞n=1 , given ε > 0 there exists Mε < ∞
such that µn

(
Rd \ [−Mε,Mε]

n) ≤ ε for all n. Let λ, h ∈ Rd, then

|µ̂n (λ+ h)− µ̂n (λ)| ≤
∫
Rd

∣∣∣eix·(λ+h) − eix·λ
∣∣∣ dµn (x)

=

∫
Rd

∣∣eix·h − 1
∣∣ dµn (x)

≤ 2ε+ sup
x∈[−Mε,Mε]

n

∣∣eix·h − 1
∣∣ .

Therefore it follows that

lim sup
h→0

sup
λ∈Rd

|µ̂n (λ+ h)− µ̂n (λ)| ≤ 2ε

and as ε > 0 was arbitrary the result follows.
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Corollary 27.26 (Uniform Convergence). If µn =⇒ µ as n → ∞ then
µ̂n (λ)→ µ̂ (λ) uniformly on compact subsets of R (Rn).

Proof. This is a consequence of Theorem 27.20, Lemma 27.25, and the
Arzela - Ascoli Theorem ??. For completeness here is a sketch of the proof.

Let K be a compact subset of R (Rn) and ε > 0 be given. Applying Lemma
27.25 to {µ} ∪ {µ̂n} we know that there exists δ > 0 such that

sup
λ
|µ̂n (λ+ h)− µ̂n (λ)| ≤ ε and sup

λ
|µ̂ (λ+ h)− µ̂ (λ)| ≤ ε (27.8)

whenever ‖h‖ ≤ δ. Let F ⊂ K be a finite set such that K ⊂ ∪ξ∈FB (ξ, δ) . Since
we already know that µ̂n → µ̂ pointwise we will have

lim
n→∞

max
ξ∈F
|µ̂n (ξ)− µ̂ (ξ)| = 0.

Since every point λ ∈ K is within δ of a point in F we may use Eq. (27.8) to
conclude that

sup
λ∈K
|µ̂n (λ)− µ̂ (λ)| ≤ 2ε+ max

ξ∈F
|µ̂n (ξ)− µ̂ (ξ)|

and therefore, lim supn→∞ supλ∈K |µ̂n (λ)− µ̂ (λ)| ≤ 2ε. As ε > 0 was arbitrary
the result follows.

The following lemma will be needed before giving our first applications of
the continuity theorem.

Lemma 27.27. Suppose that {zn}∞n=1 ⊂ C satisfies, limn→∞ nzn = ξ ∈ C,
then

lim
n→∞

(1 + zn)
n

= eξ.

Proof. Since nzn → ξ, it follows that zn ∼ ξ
n → 0 as n→∞ and therefore

by Lemma 27.48 below, (1 + zn) = eln(1+zn) and

ln (1 + zn) = zn +O
(
z2
n

)
= zn +O

(
1

n2

)
.

Therefore,

(1 + zn)
n

=
[
eln(1+zn)

]n
= en ln(1+zn) = en(zn+O( 1

n2 )) → eξ as n→∞.

Proposition 27.28 (Weak Law of Large Numbers revisited). Suppose

that {Xn}∞n=1 are i.i.d. integrable random variables. Then Sn
n

P→ EX1 =: c.

Proof. Let f (λ) := fX1
(λ) = E

[
eiλX1

]
in which case

fSn
n

(λ) =

[
f

(
λ

n

)]n
.

By Taylor’s theorem (see Appendix 27.8), f (λ) = 1 + k (λ)λ where

lim
λ→0

k (λ) = k (0) = f ′ (0) = iE [X1] .

It now follows from Lemma 27.27 that

fSn
n

(λ) =

[
1 + k

(
λ

n

)
λ

n

]n
→ eicλ as n→∞

which is the characteristic function of the constant random variable, c. By the
continuity Theorem 27.20, it follows that Sn

n =⇒ c and since c is constant we

may apply Lemma 26.28 to conclude Sn
n

P→ c = EX1.
We are now ready to continue are investigation of central limit theorems

that was begun with Theorem 15.51 above.

Theorem 27.29 (The Basic Central Limit Theorem). Suppose that
{Xn}∞n=1 are i.i.d. square integrable random variables such that EX1 = 0 and
EX2

1 = 1. Then Sn√
n

=⇒ N (0, 1) .

Proof. If f (λ) := E
[
eiλX1

]
, then by Taylor’s theorem (see Appendix 27.8),

f (λ) = f (0) + f ′ (0)λ+
1

2
k (λ)λ2 = 1 +

1

2
k (λ)λ2 (27.9)

where
lim
λ→0

k (λ) = k (0) = f ′′ (0) = −E
[
X2

1

]
= −1.

Hence, using Lemma 27.27, we find

E
[
e
iλ Sn√

n

]
=

[
f

(
λ√
n

)]n
=

[
1 +

1

2
k

(
λ√
n

)
λ2

n

]n
→ e−λ

2/2.

Since e−λ
2/2 is the characteristic function of N (0, 1) (Example 27.13), the result

now follows from the continuity Theorem 27.20.
Alternative proof. Again it suffices to show

lim
n→∞

E
[
e
iλ Sn√

n

]
= e−λ

2/2 for all λ ∈ R.
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We do this using Lemma 28.14 below as follows;∣∣∣f Sn√
n

(λ)− e−λ
2/2
∣∣∣ =

∣∣∣∣[f ( λ√
n

)]n
−
[
e−λ

2/2n
]n∣∣∣∣

≤ n
∣∣∣∣f ( λ√

n

)
− e−λ

2/2n

∣∣∣∣
= n

∣∣∣∣1− 1

2

(
1 + ε

(
λ√
n

))
λ2

n
−
(

1− λ2

2n
+O

(
1

n2

))∣∣∣∣
→ 0 as n→∞.

Corollary 27.30. If {Xn}∞n=1 are i.i.d. square integrable random variables such
that EX1 = 0 and EX2

1 = 1, then

sup
λ∈R

∣∣∣∣P ( Sn√n ≤ y
)
− P (N (0, 1) ≤ y)

∣∣∣∣→ 0 as n→∞. (27.10)

Proof. This is a direct consequence of Theorem 27.29 and Exercise 26.7.
Berry (1941) and Essen̂ (1942) showed there exists a constant, C <∞, such

that; if ρ3 := E |X1|3 <∞, then

sup
λ∈R

∣∣∣∣P ( Sn√n ≤ y
)
− P (N (0, 1) ≤ y)

∣∣∣∣ ≤ C ( ρσ)3

/
√
n.

In particular the rate of convergence is n−1/2. The exact value of the best
constant C is still unknown but it is known to be less than 1. We will not prove
this theorem here. However we have seen a hint that such a result should be
true in Theorem 15.51 above.

Remark 27.31 (Why normal?). It is now a reasonable question to ask “why” is
the limiting random variable normal in Theorem 27.29. One way to understand
this is, if under the assumptions of Theorem 27.29, we know Sn√

n
=⇒ L where

L is some random variable with EL = 0 and EL2 = 1, then

S2n√
2n

=
1√
2

(∑2n
k=1, k oddXj√

n
+

∑2n
k=1, k evenXj√

n

)
(27.11)

=⇒ 1√
2

(L1 + L2)

where L1
d
= L

d
= L2 and L1 and L2 are independent – see Exercise 26.12. In

particular this implies that

f (λ) =

[
f

(
λ√
2

)]2

for all λ ∈ R. (27.12)

We could also arrive at Eq. (27.12) by passing to the limit in the identity,

f S2n√
2n

(λ) = f Sn√
n

(
λ√
2

)
f Sn√

n

(
λ√
2

)
.

Iterating Eq. (27.12) and then Eq. (27.9) and Lemma 27.27 above we again
deduce that,

f (λ) =

[
f

(
λ(√
2
)n
)]2n

=

[
1 +

1

2
k

(
λ

2n/2

)
λ2

2n

]2n

→ e−
1
2λ

2

= fN(0,1) (λ) .

That is we must have L
d
= N (0, 1) . What we have proved is that if L is any

square integrable random variable with zero mean and variance equal to one

such that L
d
= 1√

2
(L1 + L2) where L1 and L2 are two independent copies of L,

then L
d
= N (0, 1) .

Theorem 27.32 (The multi-dimensional Central Limit Theorem). Sup-
pose that {Xn}∞n=1 are i.i.d. square integrable random vectors in Rd and let

m := EX1 and Q = E
[
(X1 −m) (X1 −m)

tr
]
, that is m ∈ Rd and Q is the

d× d matrix defined by

mj := E (X1)j and

Qij := E
[
(X1 −m)i (X1 −m)j

]
= Cov

(
(X1)i , (X)j

)
for all 1 ≤ i, j ≤ d. Then

1√
n

n∑
k=1

(Xk −m) =⇒ Z (27.13)

where Z
d
= N (0, Q) , i.e. Z is a random vector such that

E
[
eiλ·Z

]
= exp

(
−1

2
Qλ · λ

)
for all λ ∈ Rd.

Proof. Let λ ∈ Rd, then
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λ · Z d
= N (0, Qλ · λ)

d
=
√
Qλ · λ ·N (0, 1)

and {λ ·Xk}∞k=1 are i.i.d random variables with E [λ ·Xk] = λ · m and
Var (λ ·Xk) = Qλ · λ. If Qλ · λ = 0 then λ · Xk = λ · m a.s. and λ · Z = 0
a.s. and we will have

λ ·

(
1√
n

n∑
k=1

(Xk −m)

)
= 0 =⇒ 0 = λ · Z. (27.14)

If Qλ ·λ > 0 then

{
λ·Xk−λ·m√

Qλ·λ

}∞
k=1

satisfy the hypothesis of Theorem 27.29 and

therefore,

1√
Qλ · λ

λ ·

[
1√
n

n∑
k=1

(Xk −m)

]
=

1√
n

n∑
k=1

λ ·Xk − λ ·m√
Qλ · λ

=⇒ N (0, 1)

which combined with Eq. (27.14) implies, for all λ ∈ Rd we have

λ ·

[
1√
n

n∑
k=1

(Xk −m)

]
=⇒

√
Qλ · λ ·N (0, 1)

d
= λ · Z.

We may now apply Corollary 27.24 to conclude that Eq. (27.13) holds.

27.5 A Fourier Transform Inversion Formula

Corollary 12.17 guarantees the injectivity of the Fourier transform on the space
of probability measures. Our next goal is to find an inversion formula for the
Fourier transform. To motivate the construction below, let us first recall a few
facts about Fourier series. To keep our exposition as simple as possible, we now
restrict ourselves to the one dimensional case.

For L > 0, let eLn (x) := e−i
n
Lx and let

(f, g)L :=
1

2πL

∫ πL

−πL
f (x) ḡ (x) dx

for f, g ∈ L2 ([−πL, πL] , dx) . Then it is well known (and fairly elementary
to prove) that

{
eLn : n ∈ Z

}
is an orthonormal basis for L2 ([−πL, πL] , dx) . In

particular, if f ∈ Cc (R) with supp(f) ⊂ [−πL, πL] , then for x ∈ [−πL, πL] ,

f (x) =
∑
n∈Z

(
f, eLn

)
L
eLn (x) =

1

2πL

∑
n∈Z

(∫ πL

−πL
f (y) ei

n
Lydy

)
e−i

n
Lx

=
1

2πL

∑
n∈Z

f̂
(n
L

)
e−i

n
Lx (27.15)

where

f̂ (λ) =

∫ ∞
−∞

f (y) eiλydy.

Letting L→∞ in Eq. (27.15) then suggests that

1

2πL

∑
n∈Z

f̂
(n
L

)
e−i

n
Lx → 1

2π

∫ ∞
−∞

f̂ (λ) e−iλxdλ

and we are lead to expect,

f (x) =
1

2π

∫ ∞
−∞

f̂ (λ) e−iλxdλ. (27.16)

Now suppose that f (x) = ρ (x) where ρ (x) is a probability density for a
measure µ (i.e. dµ (x) := ρ (x) dx) so that ρ̂ (λ) = µ̂ (λ) . From Eq. (27.16) we
expect that

µ ((a, b]) =

∫ b

a

ρ (x) dx =

∫ b

a

(
1

2π

∫ ∞
−∞

µ̂ (λ) e−iλxdλ

)
dx

=
1

2π

∫ ∞
−∞

µ̂ (λ)

(∫ b

a

e−iλxdx

)
dλ

=
1

2π

∫ ∞
−∞

µ̂ (λ)

(
e−iλa − e−iλb

iλ

)
dλ

= lim
c→∞

1

2π

∫ c

−c
µ̂ (λ)

(
e−iλa − e−iλb

iλ

)
dλ. (27.17)

We will prove this formula is essentially correct in Theorem 27.34 below. The
following lemma is the key to computing the limit appearing in Eq. (27.17)
which will be the heart of the proof of the inversion formula.

Lemma 27.33. For c > 0, let

S (c) :=

∫ c

−c

sinλ

λ
dλ. (27.18)

Then S (c) is a continuous function such that S (c) → π boundedly as c → ∞,
see Figure 27.1. Moreover for any y ∈ R we have∫ c

−c

sinλy

λ
dλ = sgn(y)S (c |y|) (27.19)

where

sgn(y) =

 1 if y > 0
−1 if y < 0
0 if y = 0

.
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27.5 A Fourier Transform Inversion Formula 437

Fig. 27.1. The graph of S (c) in black and π in red.

Proof. The first assertion has already been dealt with in Example 13.11.
We will repeat the argument here for the reader’s convenience. By symmetry
and Fubini’s theorem,

S (c) = 2

∫ c

0

sinλ

λ
dλ = 2

∫ c

0

sinλ ·
(∫ ∞

0

e−λtdt

)
dλ

= 2

∫ ∞
0

(∫ c

0

sinλe−λtdλ

)
dt

= 2

∫ ∞
0

(
1

1 + t2
[
1− e−tc (cos c+ t sin c)

])
dt

= π − 2

∫ ∞
0

1

1 + t2
e−tc [cos c+ t sin c] dt. (27.20)

The the integral in Eq. (27.20) tends to 0 as c → ∞ by the dominated con-
vergence theorem. The second assertion in Eq. (27.19) is a consequence of the
change of variables, z = λy.

Theorem 27.34 (Fourier Inversion Formula). If µ is a probability measure
on (R,BR) and −∞ < a < b <∞, then

lim
c→∞

1

2π

∫ c

−c
µ̂ (λ)

(
e−iλa − e−iλb

iλ

)
dλ = µ ((a, b)) +

1

2
(µ ({a}) + µ ({b})) .

(27.21)
(At the end points, the limit picks up only half of the mass.)

Proof. Let I (c) denote the integral appearing in Eq. (27.21). By Fubini’s
theorem and Lemma 27.33,

I (c) :=

∫ c

−c
µ̂ (λ)

(
e−iλa − e−iλb

iλ

)
dλ (27.22)

=

∫ c

−c

(∫
R
eiλxdµ (x)

)(
e−iλa − e−iλb

iλ

)
dλ

=

∫
R
dµ (x)

∫ c

−c
dλ eiλx

(
e−iλa − e−iλb

iλ

)
=

∫
R
dµ (x)

∫ c

−c
dλ

(
e−iλ(a−x) − e−iλ(b−x)

iλ

)
.

Since
e−iλ(α−x)

iλ
= − i

λ
cos (λ (α− x))− 1

λ
sin (λ (α− x))

it follows that Im
([
e−iλ(a−x) − e−iλ(b−x)

]
/iλ
)

is an odd function of λ and

Re

(
e−iλ(a−x) − e−iλ(b−x)

iλ

)
=

1

λ
[sin (λ (x− a))− sin (λ (x− b))] ,

and therefore (using Lemma 27.33)

I (c) =

∫
R
dµ (x)

∫ c

−c
dλRe

(
e−iλ(a−x) − e−iλ(b−x)

iλ

)
=

∫
R
dµ (x)

∫ c

−c
dλ

(
sinλ (x− a)− sinλ (x− b)

λ

)
=

∫
R
dµ (x) [sgn(x− a)S (c |x− a|)− sgn(x− b)S (c |x− b|)] .

Using Lemma 27.33 again along with the DCT we may pass to the limit as
c ↑ ∞ in the previous identity to get the result;

lim
c→∞

1

2π
I (c) =

1

2

∫
R
dµ (x) [sgn(x− a)− sgn(x− b)]

=
1

2

∫
R
dµ (x)

[
2 · 1(a,b) (x) + 1{a} (x) + 1{b} (x)

]
= µ ((a, b)) +

1

2
[µ ({a}) + µ ({b})] .

Corollary 27.35. Suppose that µ is a probability measure on (R,BR) such that
µ̂ ∈ L1 (m) , then dµ = ρdm where ρ is the continuous probability density on R
given by

ρ (x) :=
1

2π

∫
R
µ̂ (λ) e−iλxdλ. (27.23)

Page: 437 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



438 27 Characteristic Functions (Fourier Transform)

Proof. The function ρ defined in Eq. (27.23) is continuous by the dominated
convergence theorem. Moreover for any −∞ < a < b <∞ we have∫ b

a

ρ (x) dx =
1

2π

∫ b

a

dx

∫
R
dλ µ̂ (λ) e−iλx

=
1

2π

∫
R
dλ µ̂ (λ)

∫ b

a

dxe−iλx

=
1

2π

∫
R
dλ µ̂ (λ)

(
e−iλa − e−iλb

iλ

)
= lim
c→∞

1

2π

∫ c

−c
µ̂ (λ)

(
e−iλa − e−iλb

iλ

)
dλ

= µ ((a, b)) +
1

2
[µ ({a}) + µ ({b})] ,

wherein we have used Theorem 27.34 to evaluate the limit. Letting a ↑ b over
a ∈ R such that µ ({a}) = 0 in this identity shows µ ({b}) = 0 for all b ∈ R.
Therefore we have shown

µ ((a, b]) =

∫ b

a

ρ (x) dx for all −∞ < a < b <∞.

Using one of the multiplicative systems theorems, it is now easy to verify that
µ (A) =

∫
A
ρ (x) dx for all A ∈ BR or

∫
R hdµ =

∫
R hρ dµ for all bounded mea-

surable functions h : R→ R. This then implies that ρ ≥ 0, m – a.e.1 and the
dµ = ρdm.

Example 27.36. Let ρ (x) = (1− |x|)+ be the triangle density in Figure 27.2

Fig. 27.2. The triangular density function.

Recall from Example 27.6 that

1 Since ρ is continuous we may further conclude that ρ (x) ≥ 0 for every x ∈ R.

∫
R
eiλx (1− |x|)+ dx = 2

1− cosλ

λ2
.

Alternatively by direct calculation,∫
R
eiλx (1− |x|)+ dx = 2 Re

∫ 1

0

eiλx (1− x) dx

= 2 Re

[(
I − 1

i

d

dλ

)∫ 1

0

eiλxdx

]
= 2 Re

[(
I − 1

i

d

dλ

)
eiλ − 1

iλ

]
= 2

1− cosλ

λ2
.

Hence it follows2 from Corollary 27.35 that

(1− |x|)+ =
1

π

∫
R

1− cosλ

λ2
e−iλxdλ. (27.24)

Evaluating Eq. (27.24) at x = 0 gives the identity

1 =
1

π

∫ ∞
−∞

1− cosλ

λ2
dλ. (27.25)

from which we deduce that

dµ (x) :=
1

π

1− cosx

x2
dx (27.26)

is a probability measure such that (from Eq. (27.24)) has characteristic function,

µ̂ (λ) = (1− |λ|)+ . (27.27)

Corollary 27.37. For all random variables, X, we have

E |X| = 1

π

∫
R

1− Re fX (λ)

λ2
dλ. (27.28)

Proof. For M ∈ R \ {0} , make the change of variables, λ → Mλ in Eq.
(27.25) for find

|M | = 1

π

∫
R

1− cos (λM)

λ2
dλ. (27.29)

2 This identity could also be verified directly using residue calculus techniques from
complex variables.

Page: 438 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



27.6 Exercises 439

Observe the identity holds for M = 0 as well. Taking M = X in Eq. (27.29)
and then taking expectations implies,

E |X| = 1

π

∫
R
E

1− cosλX

λ2
dλ =

1

π

∫
R

1− Re fX (λ)

λ2
dλ.

Suppose that we did not know the value of c :=
∫∞
−∞

1−cosλ
λ2 dλ is π, we could

still proceed as above to learn

E |X| = 1

c

∫
R

1− Re fX (λ)

λ2
dλ.

We could then evaluate c by making a judicious choice of X. For example if

X
d
= N (0, 1) , we would have on one hand

E |X| = 1√
2π

∫
R
|x| e−x

2/2dx =
2√
2π

∫ ∞
0

xe−x
2/2dx =

√
2

π
.

On the other hand, fX (λ) = e−λ
2/2 and so√

2

π
= −1

c

∫
R

(
1− e−λ

2/2
)
d
(
λ−1

)
=

1

c

∫
R
d
(

1− e−λ
2/2
) (
λ−1

)
=

1

c

∫
R
e−λ

2/2dλ =

√
2π

c

from which it follows, again, that c = π.

Corollary 27.38. Suppose X is a random variable and there exists ε > 0
such that u (λ) := Re fX (λ) = E [cosλX] is continuously differentiable for
λ ∈ (−2ε, 2ε) . If we further assume that∫ ε

0

|u′ (λ)|
λ

dλ <∞, (27.30)

then E |X| <∞ and fX ∈ C1 (R,C) . (Since u is even, u′ is odd and u′ (0) = 0.
Hence if u′ (λ) were α – Hölder continuous for some α > 0, then Eq. (27.30)
would hold.)

Proof. According to Eq. (27.28)

π · E |X| =
∫
R

1− u (λ)

λ2
dλ =

∫
|λ|≤ε

1− u (λ)

λ2
dλ+

∫
|λ|>ε

1− u (λ)

λ2
dλ.

Since 0 ≤ 1 − u (λ) ≤ 2 and 2/λ2 is integrable for |λ| > ε, to show E |X| < ∞
we must show,

∞ >

∫
|λ|≤ε

1− u (λ)

λ2
dλ = lim

δ↓0

∫
δ≤|λ|≤ε

1− u (λ)

λ2
dλ.

By an integration by parts we find∫
δ≤|λ|≤ε

1− u (λ)

λ2
dλ =

∫
δ≤|λ|≤ε

(1− u (λ)) d
(
−λ−1

)
=
u (λ)− 1

λ
|εδ +

u (λ)− 1

λ
|−δ−ε −

∫
δ≤|λ|≤ε

λ−1u′ (λ) dλ

= −
∫
δ≤|λ|≤ε

λ−1u′ (λ) dλ+
u (ε)− 1

ε
− u (−ε)− 1

−ε

+
u (−δ)− 1

−δ
− u (δ)− 1

δ
.

→ − lim
δ↓0

∫
δ≤|λ|≤ε

λ−1u′ (λ) dλ+
u (ε) + u (−ε)

ε
+ u′ (0)− u′ (0)

≤
∫
|λ|≤ε

|u′ (λ)|
|λ|

dλ+
u (ε) + u (−ε)

ε

= 2

∫ ε

0

|u′ (λ)|
λ

dλ+
u (ε) + u (−ε)

ε
<∞.

Passing the limit as δ ↓ 0 using the fact that u′ (λ) is an odd function, we learn∫
|λ|≤ε

1− u (λ)

λ2
dλ = lim

δ↓0

∫
δ≤|λ|≤ε

λ−1u′ (λ) dλ+
u (ε) + u (−ε)

ε

≤ 2

∫ ε

0

|u′ (λ)|
λ

dλ+
u (ε) + u (−ε)

ε
<∞.

27.6 Exercises

Exercise 27.3. For x, λ ∈ R, let (also see Eq. (27.33))

ϕ (λ, x) :=


eiλx−1−iλx

x2 if x 6= 0

− 1
2λ

2 if x = 0.

(27.31)

Let {xk}nk=1 ⊂ R \ {0} , {Zk}
n
k=1 ∪ {N} be independent random variables with

N
d
= N (0, 1) and Zk being Poisson random variables with mean ak > 0, i.e.

P (Zk = n) = e−ak
ank
n! for n = 0, 1, 2 . . . . With Y :=

∑n
k=1 xk (Zk − ak) + αN,

show
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440 27 Characteristic Functions (Fourier Transform)

fY (λ) := E
[
eiλY

]
= exp

(∫
R
ϕ (λ, x) dν (x)

)
where ν is the discrete measure on (R,BR) given by

ν = α2δ0 +

n∑
k=1

akx
2
kδxk . (27.32)

[Remark: It is easy to see that ϕ (λ, 0) = limx→0 ϕ (λ, x) . In fact by Taylor’s
theorem with integral remainder we have

ϕ (λ, x) = −λ2

∫ 1

0

eitλx (1− t) dt. (27.33)

From this formula it is clear that ϕ is a smooth function of (λ, x) .]

Exercise 27.4. To each finite and compactly supported measure, ν, on (R,BR)
show there exists a sequence {νn}∞n=1 of finitely supported finite measures on
(R,BR) such that νn =⇒ ν. Here we say ν is compactly supported if there
exists M <∞ such that ν ({x : |x| ≥M}) = 0 and we say ν is finitely supported
if there exists a finite subset, Λ ⊂ R such that ν (R \ Λ) = 0.

Exercise 27.5. Show that if ν is a finite measure on (R,BR) , then

f (λ) := exp

(∫
R
ϕ (λ, x) dν (x)

)
(27.34)

is the characteristic function of a probability measure on (R,BR) . Here is an
outline to follow. (You may find the calculus estimates in Section 27.8 to be of
help.)

1. Show f (λ) is continuous.
2. Now suppose that ν is compactly supported. Show, using Exercises 27.3,

27.4, and the continuity Theorem 27.20 that exp
(∫

R ϕ (λ, x) dν (x)
)

is the
characteristic function of a probability measure on (R,BR) .

3. For the general case, approximate ν by a sequence of finite measures with
compact support as in item 2.

Exercise 27.6 (Exercise 2.3 in [44]). Let µ be the probability measure on
(R,BR) , such that µ ({n}) = p (n) = c 1

n2 ln|n|1|n|≥2 with c chosen so that∑
n∈Z p (n) = 1. Show that µ̂ ∈ C1 (R,C) even though

∫
R |x| dµ (x) =∞. To do

this show,

g (t) :=
∑
n≥2

1− cosnt

n2 lnn

is continuously differentiable.

Exercise 27.7 (Polya’s Criterion [2, Problem 26.3 on p. 305.] and [12,
p. 104-107.]). Suppose ϕ (λ) is a non-negative symmetric continuous function
such that ϕ (0) = 1, ϕ (λ) is non-increasing and convex for λ ≥ 0. Show ϕ (λ) =
ν̂ (λ) for some probability measure, ν, on (R,BR) .

Fig. 27.3. Here is a piecewise linear convex function. We will assume that dn > 0 for
all n and that ϕ (λ) = 0 for λ sufficiently large. This last restriction may be removed
later by a limiting argument.

Exercise 27.8. Let dµ (x) = 1
2e
−|x|dx. Find µ̂ (λ) and use your result to con-

clude,
1

π

∫
R

1

1 + λ2
e−iλxdλ = e−|x| ∀ x ∈ R. (27.35)

Remark: Another standard way to compute this integral is to use residue
calculus from complex variable theory.

Exercise 27.9. Let

c :=

∫ ∞
−∞

(1− cosλ)
2

λ4
dλ, (27.36)

and u (λ) := Re fX (λ) where fX is the characteristic function of a random
variable X. Show, using the ideas in and after Corollary 27.37 that

E |X|3 =
1

c

∫
R

3
2 − 2u (λ) + 1

2u (2λ)

λ4
dλ. (27.37)

[If you are adventurous you might try to find a similar (but more complicated

formula) to compute E |X|2k+1
for all k ∈ N0.]
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27.7 Appendix: Bochner’s Theorem

Definition 27.39. A function f ∈ C(Rn,C) is said to have rapid decay or
rapid decrease if

sup
x∈Rn

(1 + |x|)N |f(x)| <∞ for N = 1, 2, . . . .

Equivalently, for each N ∈ N there exists constants CN <∞ such that |f(x)| ≤
CN (1 + |x|)−N for all x ∈ Rn. A function f ∈ C(Rn,C) is said to have (at
most) polynomial growth if there exists N <∞ such

sup (1 + |x|)−N |f(x)| <∞,

i.e. there exists N ∈ N and C < ∞ such that |f(x)| ≤ C(1 + |x|)N for all
x ∈ Rn.

Definition 27.40 (Schwartz Test Functions). Let S denote the space of
functions f ∈ C∞(Rn) such that f and all of its partial derivatives have rapid
decay and let

‖f‖N,α = sup
x∈Rn

∣∣(1 + |x|)N∂αf(x)
∣∣

so that
S =

{
f ∈ C∞(Rn) : ‖f‖N,α <∞ for all N and α

}
.

Also let P denote those functions g ∈ C∞(Rn) such that g and all of its deriva-
tives have at most polynomial growth, i.e. g ∈ C∞(Rn) is in P iff for all multi-
indices α, there exists Nα <∞ such

sup (1 + |x|)−Nα |∂αg(x)| <∞.

(Notice that any polynomial function on Rn is in P.)

Definition 27.41. A function χ : Rn → C is said to be positive (semi)
definite iff the matrices A := {χ(ξk − ξj)}mk,j=1 are positive definite for all

m ∈ N and {ξj}mj=1 ⊂ R
n.

Lemma 27.42. If µ is a finite positive measure on BRn , then χ := µ̂ ∈
C(Rn,C) is a positive definite function.

Proof. The dominated convergence theorem implies µ̂ ∈ C(Rn,C). Since µ
is a positive measure (and hence real),

µ̂(−ξ) =

∫
Rn
eiξ·xdµ(x) =

∫
Rn
e−iξ·xdµ(x) = µ̂(−ξ).

From this it follows that for any m ∈ N and {ξj}mj=1 ⊂ R
n, the matrix A :=

{µ̂(ξk − ξj)}mk,j=1 is self-adjoint. Moreover if λ ∈ Cm,

m∑
k,j=1

µ̂(ξk − ξj)λkλ̄j =

∫
Rn

m∑
k,j=1

e−i(ξk−ξj)·xλkλ̄jdµ(x)

=

∫
Rn

m∑
k,j=1

e−iξk·xλke−iξj ·xλjdµ(x)

=

∫
Rn

∣∣∣∣∣
m∑
k=1

e−iξk·xλk

∣∣∣∣∣
2

dµ(x) ≥ 0

showing A is positive definite.

Proposition 27.43. Suppose that χ : Rn → C is positive definite with χ (0) =
1. If χ is continuous at 0 then in fact χ is uniformly continuous on all of Rn.

Proof. Taking ξ1 = x, ξ2 = y and ξ3 = 0 in Definition 27.41 we conclude
that

A :=

 1 χ (x− y) χ (x)
χ (y − x) 1 χ (y)
χ (−x) χ (−y) 1

 =

 1 χ (x− y) χ (x)
χ̄ (x− y) 1 χ (y)
χ̄ (x) χ̄ (y) 1


is positive definite. In particular,

0 ≤ detA = 1 + χ (x− y)χ (y) χ̄ (x) + χ (x) χ̄ (x− y) χ̄ (y)

− |χ (x)|2 − |χ (y)|2 − |χ (x− y)|2 .

Combining this inequality with the identity,

|χ (x)− χ (y)|2 = |χ (x)|2 + |χ (y)|2 − χ (x) χ̄ (y)− χ (y) χ̄ (x) ,

gives

0 ≤ 1− |χ (x− y)|2 + χ (x− y)χ (y) χ̄ (x) + χ (x) χ̄ (x− y) χ̄ (y)

−
{
|χ (x)− χ (y)|2 + χ (x) χ̄ (y) + χ (y) χ̄ (x)

}
= 1− |χ (x− y)|2 − |χ (x)− χ (y)|2

+ χ (x− y)χ (y) χ̄ (x)− χ (y) χ̄ (x) + χ (x) χ̄ (x− y) χ̄ (y)− χ (x) χ̄ (y)

= 1− |χ (x− y)|2 − |χ (x)− χ (y)|2 + 2 Re ((χ (x− y)− 1)χ (y) χ̄ (x))

≤ 1− |χ (x− y)|2 − |χ (x)− χ (y)|2 + 2 |χ (x− y)− 1| .
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Hence we have

|χ (x)− χ (y)|2 ≤ 1− |χ (x− y)|2 + 2 |χ (x− y)− 1|
= (1− |χ (x− y)|) (1 + |χ (x− y)|) + 2 |χ (x− y)− 1|
≤ 4 |1− χ (x− y)|

which completes the proof.

Remark 27.44. The function f (λ) = 1{0} (λ) is positive definite since the ma-
trix, {f (λi − λj)}ni,j=1 is the n × n identity matrix for all choices of distinct

{λi}ni=1 in R. Note however that f is not continuous at λ = 0.

Lemma 27.45. If χ ∈ C(Rn,C) is a positive definite function, then

1. χ(0) ≥ 0.
2. χ(−ξ) = χ(ξ) for all ξ ∈ Rn.
3. |χ(ξ)| ≤ χ(0) for all ξ ∈ Rn.
4. If we further assume that χ is continuous, then∫

Rn×Rn
χ(ξ − η)f(ξ)f(η)dξdη ≥ 0 (27.38)

for all f ∈ S(Rd).

Proof. Taking m = 1 and ξ1 = 0 we learn χ(0) |λ|2 ≥ 0 for all λ ∈ C which
proves item 1. Taking m = 2, ξ1 = ξ and ξ2 = η, the matrix

A :=

[
χ(0) χ(ξ − η)

χ(η − ξ) χ(0)

]
is positive definite from which we conclude χ(ξ − η) = χ(η − ξ) (since A = A∗

by definition) and

0 ≤ det

[
χ(0) χ(ξ − η)

χ(η − ξ) χ(0)

]
= |χ(0)|2 − |χ(ξ − η)|2 .

and hence |χ(ξ)| ≤ χ(0) for all ξ. This proves items 2. and 3. Item 4. follows by
approximating the integral in Eq. (27.38) by Riemann sums,∫

Rn×Rn
χ(ξ − η)f(ξ)f(η)dξdη

= lim
ε↓0

ε−2n
∑

ξ,η∈(εZn)∩[−ε−1,ε−1]n

χ(ξ − η)f(ξ)f(η) ≥ 0.

The details are left to the reader keeping in mind this is where we must use the
assumption that χ is continuous.

Theorem 27.46 (Bochner’s Theorem). Suppose χ ∈ C(Rn,C) is positive
definite function which is continuous at 0, then there exists a unique positive
measure µ on BRn such that χ = µ̂.

Proof. If χ(ξ) = µ̂(ξ), then for f ∈ S we would have∫
Rn
fdµ =

∫
Rn

(f∨)
ˆ
dµ =

∫
Rn
f∨(ξ)µ̂(ξ)dξ.

This suggests that we define

I(f) :=

∫
Rn
χ(ξ)f∨(ξ)dξ for all f ∈ S.

We will now show I is positive in the sense if f ∈ S and f ≥ 0 then I(f) ≥ 0.
For general f ∈ S we have

I(|f |2) =

∫
Rn
χ(ξ)

(
|f |2

)∨
(ξ)dξ =

∫
Rn
χ(ξ)

(
f∨Ff̄∨

)
(ξ)dξ

=

∫
Rn
χ(ξ)f∨(ξ − η)f̄∨(η)dηdξ =

∫
Rn
χ(ξ)f∨(ξ − η)f∨(−η)dηdξ

=

∫
Rn
χ(ξ − η)f∨(ξ)f∨(η)dηdξ ≥ 0. (27.39)

For t > 0 let pt(x) := t−n/2e−|x|
2/2t ∈ S and define

It (x) := IFpt(x) := I(pt(x− ·)) = I(
∣∣∣√pt(x− ·)∣∣∣2)

which is non-negative by Eq. (27.39) and the fact that
√
pt(x− ·) ∈ S. Using

[pt(x− ·)]∨ (ξ) =

∫
Rn
pt(x− y)eiy·ξdy =

∫
Rn
pt(y)ei(y+x)·ξdy

= eix·ξp∨t (ξ) = eix·ξe−t|ξ|
2/2,

〈It, ψ〉 =

∫
Rn
I(pt(x− ·))ψ(x)dx

=

∫
Rn

(∫
Rn
χ(ξ) [pt(x− ·)]∨ (ξ)ψ(x)dξ

)
dx

=

∫
Rn

(∫
Rn
χ(ξ)eix·ξe−t|ξ|

2/2ψ(x)dξ

)
dx

=

∫
Rn
χ(ξ)ψ∨(ξ)e−t|ξ|

2/2dξ
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which coupled with the dominated convergence theorem shows

〈IFpt, ψ〉 →
∫
Rn
χ(ξ)ψ∨(ξ)dξ = I(ψ) as t ↓ 0.

Hence if ψ ≥ 0, then I(ψ) = limt↓0〈It, ψ〉 ≥ 0.
Let K ⊂ R be a compact set and ψ ∈ Cc(R, [0,∞)) be a function such that

ψ = 1 on K. If f ∈ C∞c (R,R) is a smooth function with supp(f) ⊂ K, then
0 ≤ ‖f‖∞ ψ − f ∈ S and hence

0 ≤ 〈I, ‖f‖∞ ψ − f〉 = ‖f‖∞ 〈I, ψ〉 − 〈I, f〉

and therefore 〈I, f〉 ≤ ‖f‖∞ 〈I, ψ〉. Replacing f by −f implies, −〈I, f〉 ≤
‖f‖∞ 〈I, ψ〉 and hence we have proved

|〈I, f〉| ≤ C(supp(f)) ‖f‖∞ (27.40)

for all f ∈ DRn := C∞c (Rn,R) where C(K) is a finite constant for each compact
subset of Rn. Because of the estimate in Eq. (27.40), it follows that I|DRn has a
unique extension I to Cc(Rn,R) still satisfying the estimates in Eq. (27.40) and
moreover this extension is still positive. So by the Riesz – Markov Theorem ??,
there exists a unique Radon – measure µ on Rn such that such that 〈I, f〉 = µ(f)
for all f ∈ Cc(Rn,R).

To finish the proof we must show µ̂(η) = χ(η) for all η ∈ Rn given

µ(f) =

∫
Rn
χ(ξ)f∨(ξ)dξ for all f ∈ C∞c (Rn,R). (27.41)

Let f ∈ C∞c (Rn,R+) be a radial function such f(0) = 1 and f(x) is decreasing
as |x| increases. Let fε(x) := f(εx), then by Theorem ??,

F−1
[
e−iηxfε(x)

]
(ξ) = ε−nf∨(

ξ − η
ε

)

and therefore, from Eq. (27.41),∫
Rn
e−iηxfε(x)dµ(x) =

∫
Rn
χ(ξ)ε−nf∨(

ξ − η
ε

)dξ. (27.42)

Because
∫
Rn f

∨(ξ)dξ = Ff∨(0) = f(0) = 1, we may apply the approximate δ
– function Theorem 27.47 below to Eq. (27.42) to find (using the continuity of
χ here!) ∫

Rn
e−iηxfε(x)dµ(x)→ χ(η) as ε ↓ 0. (27.43)

On the the other hand, when η = 0, the monotone convergence theorem implies
µ(fε) ↑ µ(1) = µ(Rn) and therefore µ(Rn) = µ(1) = χ(0) < ∞. Now knowing

the µ is a finite measure we may use the dominated convergence theorem to
concluded

µ(e−iηxfε(x))→ µ(e−iηx) = µ̂(η) as ε ↓ 0

for all η. Combining this equation with Eq. (27.43) shows µ̂(η) = χ(η) for all
η ∈ Rn.

Better proof is to use continuity Theorem 26.63 from the probability notes
which is based on Helly’s selection theorem. To this end, let

ρt (x) := (χ · p̂t)∨ (x) =

∫
Rn
χ (ξ) p̂t (ξ) eiξ·xdξ.

Notice that

p̂t (ξ) eiξ·x = eiξ·x
∫
Rn
pt (y) e−iy·ξdy

=

∫
Rn
pt (y) ei(x−y)·ξdy

=

∫
Rn
pt (x+ y) e−iy·ξdy

= [pt (x+ ·)]∧

so that

ρt (x) =
〈
χ, [pt (x+ ·)]∧

〉
=

〈
χ,

[∣∣∣√pt (x+ ·)
∣∣∣2]∧〉 ≥ 0.

This shows that ρt ≥ 0.
Claim: For all t > 0,∫

Rn
ρt (x) dx = (χ · p̂t) (0) = χ (0) <∞. (27.44)

Given the claim, we have that dµt (x) = ρt (x) dx is a finite measure such that
µ̂t = χ · p̂t → χ as t ↓ 0 so by the continuity Theorem 27.20 it follows that
χ = µ̂ for some measure µ. So it only remains to prove the claim.

Proof of claim. We start with the identity,∫
Rn
ρt (x) p̂s (x) dx =

∫
Rn

(χ · p̂t)∨ (x) p̂s (x) dx

=

∫
Rn

(χ · p̂t) (ξ) ps (ξ) dx.

We then make use of Fatou’s lemma (using ρt ≥ 0) to show,
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Rn
ρt (x) dx =

∫
Rn

lim inf
s↓0

ρt (x) p̂s (x) dx

≤ lim inf
s↓0

∫
Rn
ρt (x) p̂s (x) dx

= lim inf
s↓0

∫
Rn

(χ · p̂t) (ξ) ps (ξ) dξ

= (χ · p̂t) (0) = χ (0) <∞.

This shows ρt ∈ L1 ∩ C0 and in particular ρ̂t is continuous. Finally, by the L2

- theory of the Fourier transform, ρ̂t =
[
(χ · p̂t)∨

]ˆ
= (χ · p̂t) a.e. and as both

sides of this equation are continuous we have ρ̂t (ξ) = (χ · p̂t) (ξ) for all ξ ∈ Rn.
Taking ξ = 0 then gives Eq. (27.44).

Theorem 27.47 (Approximate δ – functions). Let p ∈ [1,∞], ϕ ∈ L1(Rd),
a :=

∫
Rd ϕ(x)dx, and for t > 0 let ϕt(x) = t−dϕ(x/t). Then

1. If f ∈ Lp with p <∞ then ϕt ∗ f → af in Lp as t ↓ 0.
2. If f ∈ BC(Rd) and f is uniformly continuous then ‖ϕt ∗ f − af‖∞ → 0 as
t ↓ 0.

3. If f ∈ L∞ and f is continuous on U ⊂o Rd then ϕt ∗ f → af uniformly on
compact subsets of U as t ↓ 0.

Proof. Making the change of variables y = tz implies

ϕt ∗ f(x) =

∫
Rd
f(x− y)ϕt(y)dy =

∫
Rd
f(x− tz)ϕ(z)dz

so that

ϕt ∗ f(x)− af(x) =

∫
Rd

[f(x− tz)− f(x)]ϕ(z)dz

=

∫
Rd

[τtzf(x)− f(x)]ϕ(z)dz. (27.45)

Hence by Minkowski’s inequality for integrals (Theorem ?? of the analysis
notes), Proposition ?? and the dominated convergence theorem,

‖ϕt ∗ f − af‖p ≤
∫
Rd
‖τtzf − f‖p |ϕ(z)| dz → 0 as t ↓ 0.

Item 2. is proved similarly. Indeed, form Eq. (27.45)

‖ϕt ∗ f − af‖∞ ≤
∫
Rd
‖τtzf − f‖∞ |ϕ(z)| dz

which again tends to zero by the dominated convergence theorem because
limt↓0 ‖τtzf − f‖∞ = 0 uniformly in z by the uniform continuity of f.

Item 3. Let BR = B(0, R) be a large ball in Rd and K @@ U, then

sup
x∈K
|ϕt ∗ f(x)− af(x)|

≤
∣∣∣∣∫
BR

[f(x− tz)− f(x)]ϕ(z)dz

∣∣∣∣+

∣∣∣∣∣
∫
Bc
R

[f(x− tz)− f(x)]ϕ(z)dz

∣∣∣∣∣
≤
∫
BR

|ϕ(z)| dz · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 ‖f‖∞
∫
Bc
R

|ϕ(z)| dz

≤ ‖ϕ‖1 · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 ‖f‖∞
∫
|z|>R

|ϕ(z)| dz

so that using the uniform continuity of f on compact subsets of U,

lim sup
t↓0

sup
x∈K
|ϕt ∗ f(x)− af(x)| ≤ 2 ‖f‖∞

∫
|z|>R

|ϕ(z)| dz → 0 as R→∞.

27.8 Appendix: Some Calculus Estimates

We end this section by gathering together a number of calculus estimates that
we will need in the future.

1. Taylor’s theorem with integral remainder states, if f ∈ Ck (R) and z,∆ ∈ R
or f be holomorphic in a neighborhood of z ∈ C and ∆ ∈ C be sufficiently
small so that f (z + t∆) is defined for t ∈ [0, 1] , then

f (z +∆) =

k−1∑
n=0

f (n) (z)
∆n

n!
+∆krk (z,∆) (27.46)

=

k−1∑
n=0

f (n) (z)
∆n

n!
+∆k

[
1

k!
f (k) (z) + ε (z,∆)

]
(27.47)

where

rk (z,∆) =
1

(k − 1)!

∫ 1

0

f (k) (z + t∆) (1− t)k−1
dt (27.48)

=
1

k!
f (k) (z) + ε (z,∆) (27.49)

and
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ε (z,∆) =
1

(k − 1)!

∫ 1

0

[
f (k) (z + t∆)− f (k) (z)

]
(1− t)k−1

dt→ 0 as ∆→ 0.

(27.50)
To prove this, use integration by parts to show,

rk (z,∆) =
1

k!

∫ 1

0

f (k) (z + t∆)

(
− d

dt

)
(1− t)k dt

= − 1

k!

[
f (k) (z + t∆) (1− t)k

]t=1

t=0
+
∆

k!

∫ 1

0

f (k+1) (z + t∆) (1− t)k dt

=
1

k!
f (k) (z) +∆rk+1 (z,∆) ,

i.e.

∆krk (z,∆) =
1

k!
f (k) (z)∆k +∆k+1rk+1 (z,∆) .

The result now follows by induction.

2. For y ∈ R, sin y = y
∫ 1

0
cos (ty) dt and hence

|sin y| ≤ |y| . (27.51)

3. For y ∈ R we have

cos y = 1 + y2

∫ 1

0

− cos (ty) (1− t) dt ≥ 1 + y2

∫ 1

0

− (1− t) dt = 1− y2

2
.

Equivalently put3,

g (y) := cos y − 1 + y2/2 ≥ 0 for all y ∈ R. (27.52)

4. Since

3 Alternatively,

|sin y| =
∣∣∣∣∫ y

0

cosxdx

∣∣∣∣ ≤ ∣∣∣∣∫ y

0

|cosx| dx
∣∣∣∣ ≤ |y|

and for y ≥ 0 we have,

cos y − 1 =

∫ y

0

− sinxdx ≥
∫ y

0

−xdx = −y2/2.

This last inequality may also be proved as a simple calculus exercise following from;
g (±∞) =∞ and g′ (y) = 0 iff sin y = y which happens iff y = 0.

|ez − 1− z| =
∣∣∣∣z2

∫ 1

0

etz (1− t) dt
∣∣∣∣

≤ |z|2
∫ 1

0

etRe z (1− t) dt

≤ |z|2
∫ 1

0

e0∨Re z (1− t) dt

we have shown

|ez − 1− z| ≤ e0∨Re z · |z|
2

2
. (27.53)

In particular if Re z ≤ 0, then

|ez − 1− z| ≤ |z|2 /2. (27.54)

5. Since eiy − 1 = iy
∫ 1

0
eitydt,

∣∣eiy − 1
∣∣ ≤ |y| and hence∣∣eiy − 1

∣∣ ≤ 2 ∧ |y| for all y ∈ R. (27.55)

Lemma 27.48. For z = reiθ with −π < θ < π and r > 0, let ln z = ln r + iθ.
Then ln : C \ (−∞, 0] → C is a holomorphic function such that eln z = z4 and
if |z| < 1 then

|ln (1 + z)− z| ≤ |z|2 1

2 (1− |z|)2 for |z| < 1. (27.56)

Proof. Clearly eln z = z and ln z is continuous. Therefore by the inverse
function theorem for holomorphic functions, ln z is holomorphic and

z
d

dz
ln z = eln z d

dz
ln z = 1.

Therefore, d
dz ln z = 1

z and d2

dz2 ln z = − 1
z2 . So by Taylor’s theorem,

4 For the purposes of this lemma it suffices to define ln (1 + z) = −
∑∞
n=1 (−z)n /n

and to then observe: 1)

d

dz
ln (1 + z) =

∞∑
n=0

(−z)n =
1

1 + z
,

and 2) the functions 1 + z and eln(1+z) both solve

f ′ (z) =
1

1 + z
f (z) with f (0) = 1

and therefore eln(1+z) = 1 + z.
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ln (1 + z) = z − z2

∫ 1

0

1

(1 + tz)
2 (1− t) dt. (27.57)

If t ≥ 0 and |z| < 1, then∣∣∣∣ 1

(1 + tz)

∣∣∣∣ ≤ ∞∑
n=0

|tz|n =
1

1− t |z|
≤ 1

1− |z|
.

and therefore, ∣∣∣∣∣
∫ 1

0

1

(1 + tz)
2 (1− t) dt

∣∣∣∣∣ ≤ 1

2 (1− |z|)2 . (27.58)

Eq. (27.56) is now a consequence of Eq. (27.57) and Eq. (27.58).
Alternative formulation and proof. For the purposes of this lemma we

could have defined ln (1 + z) by

ln (1 + z) = −
∞∑
n=1

(−z)n /n for all |z| < 1.

We then observe that ln (1 + 0) = 0 and

d

dz
ln (1 + z) =

∞∑
n=0

(−z)n =
1

1 + z
.

Using these observations and the chain rule we find that f (z) := eln(1+z) solves
the differential equation,

f ′ (z) =
1

1 + z
f (z) with f (0) = 1. (27.59)

Since this equation has a unique solution for |z| < 1 and f (z) = 1 + z also
solves the equation we may conclude that

eln(1+z) = 1 + z.

More explicitly if f solves Eq. (27.59) then

d

dz

f (z)

1 + z
=
f ′ (z) (1 + z)− f (z)

(1 + z)
2 = 0

and hence
f (z)

1 + z
=
f (0)

1 + 0
= 1 =⇒ f (z) = 1 + z.

We may now conclude that

|ln (1 + z)− z| =

∣∣∣∣∣−
∞∑
n=2

(−z)n /n

∣∣∣∣∣ ≤ 1

2

∞∑
n=2

|z|n =
1

2

|z|2

1− |z|

which is the estimate in Eq. (27.56).

Lemma 27.49. For all y ∈ R and n ∈ N∪{0} ,∣∣∣∣∣eiy −
n∑
k=0

(iy)
k

k!

∣∣∣∣∣ ≤ |y|n+1

(n+ 1)!
(27.60)

and in particular, ∣∣eiy − 1
∣∣ ≤ |y| ∧ 2 (27.61)

and ∣∣∣∣eiy − (1 + iy − y2

2!

)∣∣∣∣ ≤ y2 ∧ |y|
3

3!
. (27.62)

More generally for all n ∈ N we have∣∣∣∣∣eiy −
n∑
k=0

(iy)
k

k!

∣∣∣∣∣ ≤ |y|n+1

(n+ 1)!
∧ 2 |y|n

n!
. (27.63)

Proof. By Taylor’s theorem (see Eq. (27.46) with f (y) = eiy, x = 0 and
∆ = y) we have∣∣∣∣∣eiy −

n∑
k=0

(iy)
k

k!

∣∣∣∣∣ =

∣∣∣∣yn+1

n!

∫ 1

0

in+1eity (1− t)n dt
∣∣∣∣

≤ |y|
n+1

n!

∫ 1

0

(1− t)n dt =
|y|n+1

(n+ 1)!

which is Eq. (27.60). Using Eq. (27.60) with n = 0 and the simple estimate;∣∣eiy − 1
∣∣ ≤ 2 gives Eq. (27.61). Similarly, Eq. (27.60) follows from the estimates

coming from Eq. (27.60) with n = 1 and n = 2 respectively;∣∣∣∣eiy − (1 + iy − y2

2!

)∣∣∣∣ ≤ ∣∣eiy − (1 + iy)
∣∣+

∣∣∣∣y2

2

∣∣∣∣
≤
∣∣∣∣y2

2

∣∣∣∣+

∣∣∣∣y2

2

∣∣∣∣ = y2

and ∣∣∣∣eiy − (1 + iy − y2

2!

)∣∣∣∣ ≤ |y|33!
.

Equation (27.63) is proved similarly and hence will be omitted.

Lemma 27.50. If X is a square integrable random variable, then∣∣∣∣f (λ)−
(

1 + iλEX − λ2

2!
E
[
X2
])∣∣∣∣ ≤ E ∣∣∣∣eiλX − (1 + iλX − λ2X

2

2!

)∣∣∣∣ ≤ λ2ε (λ)

(27.64)
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where

ε (λ) := E

[
X2 ∧ |λ| |X|

3

3!

]
→ 0 as λ→ 0. (27.65)

Proof. Using Eq. (27.62) with y = λX and taking expectations gives Eq.
(27.64). The DCT, with X2 ∈ L1 (P ) being the dominating function, allows us
to conclude that limε→0 ε (λ) = 0.





28

Weak Convergence of Random Sums

Throughout this chapter, we will assume the following standing notation
unless otherwise stated. For each n ∈ N, let {Xn,k}nk=1 be independent random
variables and let

Sn :=

n∑
k=1

Xn,k and (28.1)

fnk (λ) := E
[
eiλXn,k

]
(characteristic function of Xn,k). (28.2)

The goal of this chapter is to discuss some of the possible weak limits of such
{Sn}∞.n=1 under various conditions. The first question is what sort of limiting
distributions can we expect to get. One answer is that the distribution should
be infinitely divisible.

Definition 28.1. A probability distribution, µ, on (R,BR) is infinitely di-
visible iff for all n ∈ N there exists i.i.d. nondegenerate random variables,

{Xn,k}nk=1 , such that Xn,1 + · · · + Xn,n
d
= µ. This can be formulated in

the following two equivalent ways. For all n ∈ N there should exists a non-
degenerate probability measure, µn, on (R,BR) such that µ∗nn = µ. For all n ∈ N,
µ̂ (λ) = [gn (λ)]

n
for some non-constant characteristic function, gn.

Remark 28.2. If µ, ν ∈ P1 (R,BR) are infinitely divisible then µ ∗ ν is as well.
Stated another way, if X and Y are two independent random variables with
infinitely divisible laws then X + Y is infinite divisible as well. Indeed, given
n ∈ N, we may find µn, νn ∈ P1 (R,BR) such that µ∗nn = µ and ν∗nn = ν. It then
follows that [µn ∗ νn]

∗n
= µ ∗ ν.

Theorem 28.3. Suppose that µ is a probability measure on (R,BR) and
Law (X) = µ. Then µ is infinitely divisible iff there exits an array,
{Xn,k : 1 ≤ k ≤ mn} with {Xn,k}mnk=1 being i.i.d. such that

∑mn
k=1Xn,k =⇒ X

and mn ↑ ∞ as n→∞.

Proof. The only non-trivial direction is (⇐=) . I will only prove the special
case where mn = n. [See Kallenberg [26, Lemma 15.13, p. 294] for the needed
result involving the tail bounds needed to cover the full case. ]

Given any k ∈ N we decompose Snk into k independent summands, Snk =∑k
i=1 S

i
n, where

Sin =

ki∑
j=k(i−1)+1

Xn,j .

Notice that
{
Sin
}k
i=1

are i.i.d. for each n ∈ N and since Snk =⇒ X as n→∞
we know that {Snk}∞n=1 is tight and there exists ε (r) ↓ 0 as r ↑ ∞ such that

P (|Snk| > r) ≤ ε (r) .

Since

P
(
S1
n > r

)k
= P

(
Sin > r for 1 ≤ i ≤ k

)
≤ P (Snk > kr) ≤ P (|Snk| > kr) ≤ ε (kr)

and similarly,

P
(
−S1

n > r
)k

= P
(
−Sin > r for 1 ≤ i ≤ k

)
≤ P (−Snk > kr) ≤ P (|Snk| > kr) ≤ ε (kr)

we see that P
(∣∣S1

n

∣∣ > r
)
≤ 2ε (kr)

1.k → 0 as r ↑ ∞ which shows that
{
S1
n

}∞
n=1

has tight distributions as well.
Thus there exists a subsequence {nl} such that S1

nl
=⇒ Y as l → ∞.

Let {Yi}ki=1 be i.i.d. random variables with Yi
d
= Y. Then by Exercise 26.12 it

follows that

Sknl =

k∑
i=1

Sinl =⇒ Y1 + . . . Yk

from which we conclude that X
d
= Y1 + · · ·+ Yk. Since k was arbitrary we have

shown X is infinitely divisible.

Remark 28.4. [See Theorem 28.25 and Corollary 28.27 below for a similar result
where we no longer assume that {Xn,k}mnk=1 are i.i.d. but we do require addi-
tional normalizations (Assumption 2 below) and size restrictions on Var (Xn,k)
of condition (M) of Definition 28.9 below.

The Lévy Kintchine formula of Theorem 28.7 below asserts that µ ∈
P1 (R,BR) is infinitely divisible iff µ̂ (λ) = eψ(λ) where ψ (λ) has the form given
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in Eq. (28.4) below. [A more restrictive class of distributions are the so called
stable distributions, see Definition 28.29, Lemma 28.33, and Theorem 28.34.]
Before stating Lévy Kintchine formula it is worth recording a couple of exam-
ples.

Example 28.5 (Following Theorem 22.30). Let µ ∈ P1 (R,BR) , {Zn}∞n=1 be i.i.d.

random variables with Zn
d
= µ, Nα

d
= Poi (α) , and Y

d
= σN (0, 1) + c all be

chosen so that {Zn}∞n=1 ∪{Nα, Y } are independent. Then S := Y +
∑
n≤Nα Zn

is infinitely divisible. Indeed we have

fS (λ) = E
[
eiλS

]
= E

[
eiλY

]
· E
[
e
iλ
∑

k≤Nα
Zk

]
= E

[
eiλY

]
·
∞∑
k=0

E
[
e
iλ
∑

k≤Nα
Zk |Nα = n

]
P (Nα = n)

= E
[
eiλY

]
·
∞∑
n=0

E
[
eiλ(Z1+···+Zn)

]
P (Nα = n)

= exp

(
−1

2
σ2λ2 + iλµ

) ∞∑
n=0

e−α
αn

n!
µ̂ (λ)

n

= exp

(
−1

2
σ2λ2 + iλµ+ α (µ̂ (λ)− 1)

)
= eψ(λ)

where

ψ (λ) = −1

2
σ2λ2 + icλ+

∫
R

(
eiλx − 1

)
dν (x)

and dν (x) := αdµ (x) is an arbitrary finite measure on R. As σ, c, and ν are
arbitrary it follows that etψ(λ) is the characteristic function of a probability
measure for all t > 0 and in particular of t = 1/n.

It is interesting to note that if Xα :=
∑
n≤Nα Zn and m ∈ N then the law

of the sum of m independent copies of Xα/m is the law of Xα. This explicitly
shows that Xα is infinitely divisible.

Example 28.6 (Exercise 27.5). Recall from Exercise 27.5, if ν is any finite mea-
sure (R,BR) , there exists a (necessarily unique) probability measure µ on
(R,BR) such that µ̂ = eψ where

ψ (λ) =

∫
R

eiλx − 1− iλx
x2

dν (x) . (28.3)

Again µ̂t (λ) = etψ(λ) is again of this form for all t > 0 and therefore µ is infinite
divisible. If we let dν̃ (x) := 1

x2 dν (x) , we may rewrite Eq. (28.3) as

ψ (λ) = iλb+

∫
R

(
eiλx − 1− iλx1|x|≤1

)
dν̃ (x)

where

b = −
∫
R
x1|x|>1dν̃ (x) = −

∫
|x|>1

1

|x|
dν (x) ∈ R

and ν̃ is a positive measure (perhaps infinite measure) such that∫
R
x2dν̃ (x) <∞.

Keeping these two examples in mind should make the following important
theorem plausible.

Theorem 28.7 (Lévy Kintchine formula). A probability measure µ on
(R,BR) is infinitely divisible iff µ̂ (λ) = eψ(λ) where

ψ (λ) = iλb− 1

2
aλ2 +

∫
R\{0}

(
eiλx − 1− iλx · 1|x|≤1

)
dν (x) (28.4)

for some b ∈ R, a ≥ 0, and some measure ν on R \ {0} such that∫
R\{0}

(
x2 ∧ 1

)
dν (x) <∞. (28.5)

[Note that the term − 1
2aλ

2 in Eq. (28.4) the logarithm of the characteristic
function of N (0,

√
a) .]

Proof. We will give the easy direction of this proof, namely the implication
(⇐=) . To summarize we want to show if ψ is of the form in Eq. (28.4), then
there exists a unique probability measure µ such that µ̂ = eψ. As a, b, and ν
are arbitrary it follows, for t > 0, that tψ is still of the form Eq. (28.4) and
therefore µ is infinite divisible.

If the measure ν appearing in is a finite measure then

ψ (λ) = iλb′ − 1

2
aλ2 +

∫
R

(
eiλx − 1

)
dν (x)

where

b′ = b−
∫
|x|≤1

xdν (x) .

Thus we may use Example 28.5 in order to construct a random variable with
distribution given by µ.

For general ν satisfying Eq. (28.5) let, for ε > 0, dνε (x) := 1|x|≥εdν (x) – a
finite measure on R. Thus by Example 28.5 there exits a probability measure,
µ, on (R,BR) such that µ̂ε = eψε where
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28.1 Lindeberg-Feller CLT 451

ψε (λ) := iλb− 1

2
aλ2 +

∫
R\{0}

(
eiλx − 1− iλx · 1|x|≤1

)
1|x|≥εdν (x) .

As eiλx − 1− iλx · 1|x|≤1 is bounded and less than C (λ)x2 for |x| ≤ 1, we may
use DCT to show ψε (λ) → ψ (λ) . Furthermore the DCT also shows ψ (λ) is
continuous and therefore eψ(λ) is continuous. Thus we have shown that µε → eψ

where the limit is continuous and therefore by the continuity Theorem 27.20,
there exists a probability measure µ on (R,BR) such that µ̂ = eψ.

The proof of the other implication ( =⇒ ) will be discussed in Appendix 28.4
below. For more information about Poisson processes and Lévy processes; see
Protter [36, Chapter I], [6, Chapter 9.5], and [15, Chapter XVII.2, p. 558-] for
analytic proofs. Also see http://www.math.uconn.edu/˜bass/scdp.pdf, Kallen-
berg [26, Theorem 15.13, p. 294], and [1].

We are now going to drop the assumption that the {Xn,k}nk=1 are identically
distributed but we will add some normalization conditions (see Assumption 2
below) and also impose some additional conditions on the Xn,k to assure that
each term is “small” and roughly “comparable” in size. The point is that we
do not want any one of the {Xn,k}nk=1 to dominate the sum Sn in Eq. (28.1) in
the limit as n→∞.

Assumption 2 Assume E [Xn,k] = 0, σ2
n,k = E

[
X2
n,k

]
< ∞, and Var (Sn) =∑n

k=1 σ
2
n,k = 1.

Example 28.8. Suppose {Xn}∞n=1 are mean zero square integrable random vari-
ables with σ2

k = Var (Xk) . If we let s2
n :=

∑n
k=1 Var (Xk) =

∑n
k=1 σ

2
k,

σ2
n,k := σ2

k/s
2
n, and Xn,k := Xk/sn, then {Xn,k}nk=1 satisfy the above hypothesis

and Sn = 1
sn

∑n
k=1Xk.

The next definition records some possible meanings of small and comparable
in size.

Definition 28.9. Let {Xn,k} be as above.

1. {Xn,k} satisfies the Lindeberg Condition (LC) iff

lim
n→∞

n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
= 0 for all t > 0. (28.6)

[Since
∑n
k=1 E

[
X2
n,k : |Xn,k| > t

]
is a decreasing function of t it suffices to

check (LC) along any sequence of {tn} with tn ↓ 0.]
2. {Xn,k} satisfies condition (M) if

Dn := max
{
σ2
n,k : k ≤ n

}
→ 0 as n→∞. (28.7)

3. {Xn,k} is uniformly asymptotic negligibility (UAN) if for all ε > 0,

lim
n→∞

max
k≤n

P (|Xn,k| > ε) = 0. (28.8)

Each of these conditions imposes constraints on the size of the tails of the
{Xn,k} , see Lemma 28.13 below where it is shown (LC) =⇒ (M) =⇒
(UAN) . Condition (M) asserts that all of the terms in the sum

∑n
k=1 σ

2
n,k =

Var (Sn) = 1 are small so that no one term is contributing by itself.

Remark 28.10. The reader should observe that in order for condition (M) to
hold in the setup in Example 28.8 it is necessary that limn→∞ s2

n =∞.

Example 28.11. Suppose {Xn}∞n=1 are i.i.d. with EXn = 0 and Var (Xn) = σ2.

Then
{
Xn,k := 1√

nσ
Xk

}n
k=1

satisfy (LC) . Indeed,

n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
=

1

nσ2

n∑
k=1

E
[
X2
k :

∣∣∣∣ Xk√
nσ

∣∣∣∣ > t

]
=

1

σ2
E
[
X2

1 : |X1| >
√
nσt
]

which tends to zero as n→∞ by DCT.

The last question we would like to address is when is the sequence {Sn}∞n=1

asymptotically normal, i.e. under what conditions does it happen that
Sn =⇒ N (0, 1) . Under the normalization Assumption 2, the asymptotic
normality results (proved in the next section) may be summarized as follows.

1. The Lindeberg-Feller CLT Theorem 28.15 asserts that if (LC) holds then
Sn =⇒ N (0, 1) , i.e. {Sn}∞n=1 is asymptotically normal.

2. Conversely, if the weaker condition (M) holds and Sn =⇒ N (0, 1) , then
(LC) holds, see Theorem 28.20.

28.1 Lindeberg-Feller CLT

In this section we will assume that Assumption 2 is in place, i.e. that

E [Xn,k] = 0, σ2
n,k = E

[
X2
n,k

]
<∞, and

Var (Sn) =

n∑
k=1

σ2
n,k = 1.
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Lemma 28.12. Let {Xn,k}nk=1 for n ∈ N be as in Assumption 2. If {Xn,k}nk=1
satisfy the Liapunov condition (LiapC);

lim
n→∞

n∑
k=1

E |Xn,k|α = 0 for some α > 2 (28.9)

then (LC) holds. More generally, if {Xn,k} satisfies the Liapunov condition,

lim
n→∞

n∑
k=1

E
[
X2
n,kϕ (|Xn,k|)

]
= 0

where ϕ : [0,∞) → [0,∞) is a non-decreasing function such that ϕ (t) > 0 for
all t > 0, then {Xn,k} satisfies (LC) .

Proof. Assuming Eq. (28.9), then for any t > 0,

n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
≤

n∑
k=1

E

[
X2
n,k

∣∣∣∣Xn,k

t

∣∣∣∣α−2

: |Xn,k| > t

]

≤ 1

tα−2

n∑
k=1

E [|Xn,k|α]

=
1

tα−2

n∑
k=1

E |Xn,k|α → 0 as n→∞.

The generalization is proved similarly;

n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
≤

n∑
k=1

E
[
X2
n,k

ϕ (|Xn,k|)
ϕ (t)

: |Xn,k| > t

]

≤ 1

ϕ (t)

n∑
k=1

E
[
X2
n,kϕ (|Xn,k|)

]
→ 0 as n→∞.

Lemma 28.13. Let {Xn,k : 1 ≤ k ≤ n <∞} be as above, then (LiapC) =⇒
(LC) =⇒ (M) =⇒ (UAN) . Moreover the Lindeberg Condition (LC) implies
the following strong form of (UAN) ,

n∑
k=1

P (|Xn,k| > ε) ≤ 1

ε2

n∑
k=1

E
[
|Xn,k|2 : |Xn,k| > ε

]
→ 0. (28.10)

Proof. The assertion, (LiapC) =⇒ (LC) , was proved in Lemma 28.12.
For k ≤ n,

σ2
n,k = E

[
X2
n,k

]
= E

[
X2
n,k1|Xn,k|≤t

]
+ E

[
X2
n,k1|Xn,k|>t

]
≤ t2 + E

[
X2
n,k1|Xn,k|>t

]
≤ t2 +

n∑
m=1

E
[
X2
n,m1|Xn,m|>t

]
and therefore using (LC) we find

lim
n→∞

Dn := lim
n→∞

max
k≤n

σ2
n,k ≤ t2 for all t > 0.

This clearly implies (M) holds. For ε > 0 we have by Chebyschev’s inequality
that

P (|Xn,k| > ε) ≤ 1

ε2
E
[
|Xn,k|2 : |Xn,k| > ε

]
≤ 1

ε2
σ2
n,k (28.11)

and therefore,

max
k≤n

P (|Xn,k| > ε) ≤ 1

ε2
max
k≤n

σ2
n,k =

1

ε2
Dn → 0 as n→∞

which shows (M) =⇒ (UAN) . Summing Eq. (28.11) on k gives Eq. (28.10)
and the right member of this equation tends to zero as n→∞ if (LC) holds.

We will need the following lemma for our subsequent applications of the
continuity theorem.

Lemma 28.14. Suppose that ai, bi ∈ C with |ai| , |bi| ≤ 1 for i = 1, 2, . . . , n.
Then ∣∣∣∣∣

n∏
i=1

ai −
n∏
i=1

bi

∣∣∣∣∣ ≤
n∑
i=1

|ai − bi| .

Proof. Let a :=
∏n−1
i=1 ai and b :=

∏n−1
i=1 bi and observe that |a| , |b| ≤ 1 and

that

|ana− bnb| ≤ |ana− anb|+ |anb− bnb|
= |an| |a− b|+ |an − bn| |b|
≤ |a− b|+ |an − bn| .

The proof is now easily completed by induction on n.

Theorem 28.15 (Lindeberg-Feller CLT (I)). Suppose {Xn,k} satisfies
(LC) and the hypothesis in Assumption 2, then

Sn =⇒ N (0, 1) . (28.12)

(See Theorem 28.20 for a converse to this theorem.)
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28.1 Lindeberg-Feller CLT 453

To prove this theorem we must show

E
[
eiλSn

]
→ e−λ

2/2 as n→∞. (28.13)

Before starting the formal proof, let me give an informal explanation for Eq.
(28.13). Using

fnk (λ) ∼ 1− λ2

2
σ2
nk,

we might expect

E
[
eiλSn

]
=

n∏
k=1

fnk (λ) = e
∑n

k=1
ln fnk(λ)

= e
∑n

k=1
ln(1+fnk(λ)−1)

(A)∼ e
∑n

k=1
(fnk(λ)−1)

(
=

n∏
k=1

e(fnk(λ)−1)

)
(B)∼ e

∑n

k=1
−λ2

2 σ
2
nk = e−

λ2

2 .

The question then becomes under what conditions are these approximations
valid. It turns out that approximation (A), namely that

lim
n→∞

∣∣∣∣∣
n∏
k=1

fnk (λ)− exp

(
n∑
k=1

(fnk (λ)− 1)

)∣∣∣∣∣ = 0, (28.14)

is valid if condition (M) holds, see Lemma 28.18 below and the approximation
(B) is valid, i.e.

lim
n→∞

n∑
k=1

(fnk (λ)− 1) = −1

2
λ2,

if (LC) is satisfied, see Lemma 28.16. These observations would then constitute
a proof of Theorem 28.15. The proof we give below of Theorem 28.15 will not
quite follow this route and will not use Lemma 28.18 directly. However, this
lemma will be used in the proofs of Theorems 28.20 and 28.25.

Proof. (Proof of Theorem 28.15) Since

E
[
eiλSn

]
=

n∏
k=1

fnk (λ) and e−λ
2/2 =

n∏
k=1

e−λ
2σ2
n,k/2,

we may use Lemma 28.14 to conclude,∣∣∣E [eiλSn]− e−λ2/2
∣∣∣ ≤ n∑

k=1

∣∣∣fnk (λ)− e−λ
2σ2
n,k/2

∣∣∣ =

n∑
k=1

(An,k +Bn,k)

where

An,k :=

∣∣∣∣∣fnk (λ)− 1 +
λ2σ2

n,k

2

∣∣∣∣∣ and (28.15)

Bn,k :=

∣∣∣∣∣
[

1−
λ2σ2

n,k

2

]
− e−λ

2σ2
n,k/2

∣∣∣∣∣ . (28.16)

Because of Lemma 28.16 below, to finish the proof it suffices to show
limn→∞

∑n
k=1Bn,k = 0. To estimate

∑n
k=1Bn,k, we use the estimate,

|e−u − 1 + u| ≤ u2/2 valid for u ≥ 0 (see Eq. (27.54) with z = −u). With
this estimate we find,

n∑
k=1

Bn,k =

n∑
k=1

∣∣∣∣∣
[

1−
λ2σ2

n,k

2

]
− e−λ

2σ2
n,k/2

∣∣∣∣∣
≤

n∑
k=1

1

2

[
λ2σ2

n,k

2

]2

=
λ4

8

n∑
k=1

σ4
n,k

≤ λ4

8
max
k≤n

σ2
n,k

n∑
k=1

σ2
n,k =

λ4

8
max
k≤n

σ2
n,k → 0,

wherein we have used (M) (which is implied by (LC)) in taking the limit as
n→∞.

Lemma 28.16. Let An,k be as in Eq. (28.15). If {Xn,k}nk=1 satisfies (LC), then

lim sup
n→∞

n∑
k=1

An,k = 0 and

lim
n→∞

n∑
k=1

(fnk (λ)− 1) = −λ2/2 for all λ ∈ R.

Proof. Rewriting An,k using EXn,k = 0 and then using Lemma 27.50 im-
plies for every ε > 0 that,
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An,k =

∣∣∣∣E [eiλXn,k − 1− iλXn,k +
λ2

2
X2
n,k

]∣∣∣∣
≤E

∣∣∣∣eiλXn,k − 1− iλXn,k +
λ2

2
X2
n,k

∣∣∣∣
≤λ2E

[
X2
n,k ∧

|λ| |Xn,k|3

3!

]

≤λ2E

[
X2
n,k ∧

|λ| |Xn,k|3

3!
: |Xn,k| ≤ ε

]

+ λ2E

[
X2
n,k ∧

|λ| |Xn,k|3

3!
: |Xn,k| > ε

]

≤|λ|
3

3!
ε · E

[
|Xn,k|2 : |Xn,k| ≤ ε

]
+ λ2E

[
X2
n,k : |Xn,k| > ε

]
=
|λ|3 ε

6
σ2
n,k + λ2E

[
X2
n,k : |Xn,k| > ε

]
.

Summing this equation on k and making use of (LC) gives;

lim sup
n→∞

n∑
k=1

An,k ≤
λ3ε

6
→ 0 as ε ↓ 0. (28.17)

The second limit follows from the first and the simple estimate;∣∣∣∣∣
n∑
k=1

(fnk (λ)− 1) + λ2/2

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

(
fnk (λ)− 1 +

λ2σ2
n,k

2

)∣∣∣∣∣ ≤
n∑
k=1

An,k.

As an application of Theorem 28.15 we can give half of the proof of Theorem
25.42.

Theorem 28.17 (Converse assertion in Theorem 25.42). If {Xn}∞n=1 are
independent random variables and the random series,

∑∞
n=1Xn, is almost surely

convergent, then for all c > 0 the following three series converge;

1.
∑∞
n=1 P (|Xn| > c) <∞,

2.
∑∞
n=1 Var

(
Xn1|Xn|≤c

)
<∞, and

3.
∑∞
n=1 E

(
Xn1|Xn|≤c

)
converges.

Proof. Since
∑∞
n=1Xn is almost surely convergent, it follows that

limn→∞Xn = 0 a.s. and hence for every c > 0, P ({|Xn| ≥ c i.o.}) = 0. Ac-
cording the Borel zero one law (Lemma 15.68) this implies for every c > 0 that∑∞
n=1 P (|Xn| > c) <∞. Since Xn → 0 a.s., {Xn} and

{
Xc
n := Xn1|Xn|≤c

}
are

tail equivalent for all c > 0. In particular
∑∞
n=1X

c
n is almost surely convergent

for all c > 0.
Fix c > 0, let Yn := Xc

n − E [Xc
n] and let

s2
n = Var (Y1 + · · ·+ Yn) =

n∑
k=1

Var (Yk) =

n∑
k=1

Var (Xc
k) =

n∑
k=1

Var
(
Xk1|Xk|≤c

)
.

For the sake of contradictions, suppose s2
n → ∞ as n → ∞. Since |Yk| ≤ 2c, it

follows that
∑n
k=1 E

[
Y 2
k 1|Yk|>snt

]
= 0 for all sufficiently large n and hence

lim
n→∞

1

s2
n

n∑
k=1

E
[
Y 2
k 1|Yk|>snt

]
= 0,

i.e. {Yn,k := Yk/sn}∞n=1 satisfies (LC) – see Examples 28.8 and Remark 28.10.
So by the central limit Theorem 28.15, it follows that

1

s2
n

n∑
k=1

(Xc
n − E [Xc

n]) =
1

s2
n

n∑
k=1

Yk =⇒ N (0, 1) .

On the other hand we know

lim
n→∞

1

s2
n

n∑
k=1

Xc
n =

∑∞
k=1X

c
k

limn→∞ s2
n

= 0 a.s.

and so by Slutsky’s theorem,

1

s2
n

n∑
k=1

E [Xc
n] =

1

s2
n

n∑
k=1

Xc
n −

1

s2
n

n∑
k=1

Yk =⇒ N (0, 1) .

But it is not possible for constant (i.e. non-random) variables, cn :=
1
s2n

∑n
k=1 E [Xc

n] , to converge to a non-degenerate limit. (Think about this ei-

ther in terms of characteristic functions or in terms of distribution functions.)
Thus we must conclude that

∞∑
n=1

Var
(
Xn1|Xn|≤c

)
=

∞∑
n=1

Var (Xc
n) = lim

n→∞
s2
n <∞.

An application of Kolmogorov’s convergence criteria (Theorem 25.11) im-
plies that

∞∑
n=1

(Xc
n − E [Xc

n]) is convergent a.s.

Since we already know that
∑∞
n=1X

c
n is convergent almost surely we may now

conclude
∑∞
n=1 E

(
Xn1|Xn|≤c

)
is convergent.

Let us now turn to the converse of Theorem 28.15, see Theorem 28.20 below.
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28.1 Lindeberg-Feller CLT 455

Lemma 28.18. Suppose that {Xn,k} satisfies property (M) , i.e. Dn :=
maxk≤n σ

2
n,k → 0. If we define,

ϕn,k (λ) := fn,k (λ)− 1 = E
[
eiλXn,k − 1

]
,

then;

1. limn→∞maxk≤n |ϕn,k (λ)| = 0 and
2. fSn (λ)−

∏n
k=1 e

ϕn,k(λ) → 0 as n→∞, where

fSn (λ) = E
[
eiλSn

]
=

n∏
k=1

fn,k (λ) .

Proof. For any ε > 0 we have, making use of Eq. (27.61) and Chebyschev’s
inequality, that

|ϕn,k (λ)| = |fn,k (λ)− 1| ≤ E
∣∣eiλXn,k − 1

∣∣ ≤ E [2 ∧ |λXn,k|]
≤ E [2 ∧ |λXn,k| : |Xn,k| ≥ ε] + E [2 ∧ |λXn,k| : |Xn,k| < ε]

≤ 2P [|Xn,k| ≥ ε] + |λ| ε ≤
2σ2

n,k

ε2
+ |λ| ε.

Therefore,

lim sup
n→∞

max
k≤n
|ϕn,k (λ)| ≤ lim sup

n→∞

[
2Dn

ε2
+ |λ| ε

]
= |λ| ε→ 0 as ε ↓ 0.

For the second item, observe that Reϕn,k (λ) = Re fn,k (λ) − 1 ≤ 0 and
hence

∣∣eϕn,k(λ)
∣∣ = eReϕn,k(λ) ≤ 1. Therefore by Lemma 28.14 and the estimate

(27.54) we find;∣∣∣∣∣
n∏
k=1

eϕn,k(λ) −
n∏
k=1

fn,k (λ)

∣∣∣∣∣ ≤
n∑
k=1

∣∣∣eϕn,k(λ) − fn,k (λ)
∣∣∣

=

n∑
k=1

∣∣∣eϕn,k(λ) − (1 + ϕn,k (λ))
∣∣∣

≤ 1

2

n∑
k=1

|ϕn,k (λ)|2

≤ 1

2
max
k≤n
|ϕn,k (λ)| ·

n∑
k=1

|ϕn,k (λ)| .

Since EXn,k = 0 we may write express ϕn,k as

ϕn,k (λ) = E
[
eiλXn,k − 1− iλXn,k

]

and then using estimate in Eq. (27.54) again shows

n∑
k=1

|ϕn,k (λ)| =
n∑
k=1

∣∣E [eiλXn,k − 1− iλXn,k

]∣∣
≤

n∑
k=1

∣∣∣∣E [1

2
|λXn,k|2

]∣∣∣∣ ≤ λ2

2

n∑
k=1

σ2
n,k =

λ2

2
.

Thus we have shown,∣∣∣∣∣
n∏
k=1

fn,k (λ)−
n∏
k=1

eϕn,k(λ)

∣∣∣∣∣ ≤ λ2

4
max
k≤n
|ϕn,k (λ)|

and the latter expression tends to zero by item 1.

Lemma 28.19. Let X be a random variable such that EX2 <∞ and EX = 0.
Further let f (λ) := E

[
eiλX

]
and u (λ) := Re (f (λ)− 1) . Then for all c > 0,

u (λ) +
λ2

2
E
[
X2
]
≥ E

[
X2

[
λ2

2
− 2

c2

]
: |X| > c

]
(28.18)

or equivalently

E
[
cosλX − 1 +

λ2

2
X2

]
≥ E

[
X2

[
λ2

2
− 2

c2

]
: |X| > c

]
. (28.19)

In particular if we choose |λ| ≥
√

6/ |c| , then

E
[
cosλX − 1 +

λ2

2
X2

]
≥ 1

c2
E
[
X2 : |X| > c

]
. (28.20)

Proof. For all λ ∈ R, we have (see Eq. (27.52)) cosλX − 1 + λ2

2 X
2 ≥ 0 and

cosλX − 1 ≥ −2. Therefore,

u (λ) +
λ2

2
E
[
X2
]

= E
[
cosλX − 1 +

λ2

2
X2

]
≥ E

[
cosλX − 1 +

λ2

2
X2 : |X| > c

]
≥ E

[
−2 +

λ2

2
X2 : |X| > c

]
≥ E

[
−2
|X|2

c2
+
λ2

2
X2 : |X| > c

]

which gives Eq. (28.18).
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Theorem 28.20 (Lindeberg-Feller CLT (II)). Suppose {Xn,k} satisfies
(M) and Sn =⇒ N (0, 1) (i.e. the central limit theorem in Eq. (28.12) holds),
then {Xn,k} satisfies (LC) . So under condition (M) , Sn converges to a normal
random variable iff (LC) holds.

Proof. By assumption we have

lim
n→∞

max
k≤n

σ2
n,k = 0 and lim

n→∞

n∏
k=1

fn,k (λ) = e−λ
2/2.

The second inequality combined with Lemma 28.18 implies,

lim
n→∞

e
∑n

k=1
ϕn,k(λ) = lim

n→∞

n∏
k=1

eϕn,k(λ) = e−λ
2/2.

Taking the modulus of this equation then implies,

lim
n→∞

e
∑n

k=1
Reϕn,k(λ) = lim

n→∞

∣∣∣e∑n

k=1
ϕn,k(λ)

∣∣∣ = e−λ
2/2

from which we may conclude

lim
n→∞

n∑
k=1

Reϕn,k (λ) = −λ2/2.

We may write this last limit as

lim
n→∞

n∑
k=1

E
[
cos (λXn,k)− 1 +

λ2

2
X2
n,k

]
= 0

which by Lemma 28.19 implies

lim
n→∞

n∑
k=1

E
[
X2
n,k : |Xn,k| > c

]
= 0

for all c > 0 which is (LC) .
As an application of Theorem 28.15 let us see what it has to say about

Brownian motion. In what follows we say that {Bt}t≥0 is a Gaussian process
if for all finite subsets, Λ ⊂ [0,∞) the random variables {Bt}t∈Λ are jointly
Gaussian. We will discuss Gaussian processes in more generality in Chapter 29.

Proposition 28.21. Suppose that {Bt}t≥0 is a stochastic process on some prob-
ability space, (Ω,B, P ) such that;

1. B0 = 0 a.s., EBt = 0 for all t ≥ 0,

2. E (Bt −Bs)2
= t− s for all 0 ≤ s ≤ t <∞,

3. B has independent increments, i.e. if 0 = t0 < t1 < · · · < tn < ∞, then{
Btj −Btj−1

}n
j=1

are independent random variables.

4. (Moment Condition) There exists p > 2, q > 1 and c < ∞ such that
E |Bt −Bs|p ≤ c |t− s|q for all s, t ∈ R+.

Then Bt − Bs
d
= N (0, t− s) for all 0 ≤ s < t < ∞. We call such a process

satisfying these conditions a pre-Brownian motion.

Proof. Let 0 ≤ s < t and for each n ∈ N and 1 ≤ k ≤ n let Xn,k :=
Btk−Btk−1

where {s = t0 < t1 < · · · < tn = t} is the uniform partition of [s, t] .
Under the moment condition hypothesis we find,

n∑
k=1

E
[
Xp
n,k

]
≤ c

n∑
k=1

(
t− s
n

)q
= c (t− s)q n

nq
→ 0 as n→∞.

Thus we have shown that {Xn,k} satisfies a Liapunov condition which by
Lemma 28.12 implies that {Xn,k} satisfies (LC) . Therefore, Bt − Bs =∑n
k=1Xn,k → N (0, t− s) as n → ∞ by the Lindeberg-Feller central limit

Theorem 28.15.

Remark 28.22 (Poisson Process). There certainly are other processes satisfying
items 1.-3. other than a pre-Brownian motion. Indeed, if {Nt}t≥0 is a Poisson

process with intensity λ (see Example 30.9), then Bt := λ−1Nt − t satisfies the

items 1.–3. above. Recall that Var (Nt −Ns) = (λt− λs)2
and E (Nt −Ns) =

λ (t− s) so EBt = 0 and

E (Bt −Bs)2
= Var (Bt −Bs) = Var

(
λ−1 (Nt −Ns)

)
= λ−2 Var (Nt −Ns) = λ−2 (λt− λs)2

= t− s.

In this case one can show that E [|Bt −Bs|p] ∼ |t− s| for all 1 ≤ p <∞.

This last remark leads us to our next topic.

28.2 More on Infinitely Divisible Distributions

In the this section we are going to investigate the possible limiting distributions
of the {Sn}∞n=1 when we relax the Lindeberg condition. Let us begin with a
simple example of the Poisson limit theorem.

Theorem 28.23 (A Poisson Limit Theorem). For each n ∈ N, let
{Yn,k}nk=1 be independent Bernoulli random variables with P (Yn,k = 1) = pn,k
and P (Yn,k = 0) = qn,k := 1− pn,k. Suppose;
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28.2 More on Infinitely Divisible Distributions 457

1. limn→∞
∑n
k=1 pn,k = a ∈ (0,∞) and

2. limn→∞max1≤k≤n pn,k = 0. (So no one term is dominating the sums in
item 1.)

Then Sn =
∑n
k=1 Yn,k =⇒ Z where Z is a Poisson random variable with

mean a. (See [12, Section 2.6] for more on this theorem.)

Proof. We will give two proofs of this theorem. The first proof relies on the
law of rare events in Theorem 26.10 while the second uses Fourier transform
methods.

First proof. Let Zn
d
= Poi (

∑n
k=1 pn,k) , then by Theorem 26.10, we know

that

dTV (Zn, Sn) ≤
n∑
k=1

p2
n,k ≤ max

1≤k≤n
pn,k ·

n∑
k=1

pn,k.

From the assumptions it follows that limn→∞ dTV (Zn, Sn) = 0 and from
part 3. of Exercise 26.6 we know that limn→∞ dTV (Zn, Z) = 0. Therefore,
limn→∞ dTV (Z, Sn) = 0.

Second proof. Recall from Example 27.11 that for any a > 0,

E
[
eiλZ

]
= exp

(
a
(
eiλ − 1

))
.

Since
E
[
eiλYn,k

]
= eiλpn,k + (1− pn,k) = 1 + pn,k

(
eiλ − 1

)
,

it follows that

E
[
eiλSn

]
=

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]
.

Since 1 + pn,k
(
eiλ − 1

)
lies on the line segment joining 1 to eiλ, it follows (see

Figure 28.1) that ∣∣1 + pn,k
(
eiλ − 1

)∣∣ ≤ 1.

Hence we may apply Lemma 28.14 to find

0 1

1 + pn,k
(
eiλ − 1

)
eiλ

Fig. 28.1. Simple circle geometry reflecting the convexity of the disk.

∣∣∣∣∣
n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
−

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]∣∣∣∣∣
≤

n∑
k=1

∣∣exp
(
pn,k

(
eiλ − 1

))
−
[
1 + pn,k

(
eiλ − 1

)]∣∣
=

n∑
k=1

|exp (zn,k)− [1 + zn,k]|

where
zn,k = pn,k

(
eiλ − 1

)
.

Since Re zn,k = pn,k (cosλ− 1) ≤ 0, we may use the calculus estimate in Eq.
(27.54) to conclude,∣∣∣∣∣

n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
−

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]∣∣∣∣∣
≤ 1

2

n∑
k=1

|zn,k|2 ≤
1

2
max

1≤k≤n
|zn,k|

n∑
k=1

|zn,k|

≤ 2 max
1≤k≤n

pn,k

n∑
k=1

pn,k.

Using the assumptions, we may conclude∣∣∣∣∣
n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
−

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]∣∣∣∣∣→ 0 as n→∞.

Since

n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
= exp

(
n∑
k=1

pn,k
(
eiλ − 1

))
→ exp

(
a
(
eiλ − 1

))
,

we have shown

lim
n→∞

E
[
eiλSn

]
= lim
n→∞

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]
= lim
n→∞

n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
= exp

(
a
(
eiλ − 1

))
.

The result now follows by an application of the continuity Theorem 27.20.
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Remark 28.24. Keeping the notation in Theorem 28.23, we have

E [Yn,k] = pn,k and Var (Yn,k) = pn,k (1− pn,k)

and

s2
n :=

n∑
k=1

Var (Yn,k) =

n∑
k=1

pn,k (1− pn,k) .

Under the assumptions of Theorem 28.23, we see that s2
n → a as n → ∞. Let

us now center and normalize the Yn,k by setting;

Xn,k :=
Yn,k − pn,k

sn

so that

σ2
n,k := Var (Xn,k) =

1

s2
n

Var (Yn,k) =
1

s2
n

pn,k (1− pn,k) ,

E [Xn,k] = 0, Var (
∑n
k=1Xn,k) = 1, and the {Xn,k} satisfy condition (M) . On

the other hand for small t and large n we have

E
[
X2
n,k : |Xn,k| > t

]
= E

[
X2
n,k :

∣∣∣∣Yn,k − pn,ksn

∣∣∣∣ > t

]
= E

[
X2
n,k : |Yn,k − pn,k| > snt

]
≥ E

[
X2
n,k : |Yn,k − pn,k| > 2at

]
= E

[
X2
n,k : Yn,k = 1

]
= pn,k

(
1− pn,k
sn

)2

from which it follows that

lim
n→∞

n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
= lim
n→∞

n∑
k=1

pn,k

(
1− pn,k
sn

)2

= a.

Therefore {Xn,k} do not satisfy (LC) . Nevertheless we have by Theorem 28.23
along with Slutzky’s Theorem 26.43 that

n∑
k=1

Xn,k =

∑n
k=1 Yn,k −

∑n
k=1 pn,k

sn
=⇒ Z − a

a

where Z is a Poisson random variable with mean a. Notice that the limit is not
a normal random variable in agreement with Theorem 28.20.

We are now going see that we may often drop the identically distributed
assumption of the {Xn,k}nk=1 and yet still have that the weak limit of the
sums of the form,

∑n
k=1Xn,k, are infinitely divisible distributions. In the next

theorem we are going to see this is the case for weak limits under condition
(M) .

Theorem 28.25 (Limits under (M)). Suppose {Xn,k}nk=1 satisfy property
(M) and the normalizations in Assumption 2. If Sn :=

∑n
k=1Xn,k =⇒ L for

some random variable L, then

fL (λ) := E
[
eiλL

]
= exp

(∫
R

eiλx − 1− iλx
x2

dν (x)

)
for some finite positive measure, ν, on (R,BR) with ν (R) ≤ 1.

Proof. As before, let fn,k (λ) = E
[
eiλXn,k

]
and ϕn,k (λ) := fn,k (λ)− 1. By

the continuity theorem we are assuming

lim
n→∞

fSn (λ) = lim
n→∞

n∏
k=1

fn,k (λ) = f (λ)

where f (λ) is continuous at λ = 0. We are also assuming property (M) , i.e.

lim
n→∞

max
k≤n

σ2
n,k = 0.

Under condition (M) , we expect fn,k (λ) ∼= 1 for n large. Therefore we expect

fn,k (λ) = eln fn,k(λ) = eln[1+(fn,k(λ)−1)] ∼= e(fn,k(λ)−1)

and hence that

E
[
eiλSn

]
=

n∏
k=1

fn,k (λ) ∼=
n∏
k=1

e(fn,k(λ)−1) = exp

(
n∑
k=1

(fn,k (λ)− 1)

)
. (28.21)

This is in fact correct, since Lemma 28.18 indeed implies

lim
n→∞

[
E
[
eiλSn

]
− exp

(
n∑
k=1

(fn,k (λ)− 1)

)]
= 0. (28.22)

Since E [Xn,k] = 0,

fn,k (λ)− 1 = E
[
eiλXn,k − 1

]
= E

[
eiλXn,k − 1− iλXn,k

]
=

∫
R

(
eiλx − 1− iλx

)
dµn,k (x)

where µn,k := P ◦X−1
n,k is the law of Xn,k. Therefore we have

exp

(
n∑
k=1

(fn,k (λ)− 1)

)
= exp

(
n∑
k=1

∫
R

(
eiλx − 1− iλx

)
dµn,k (x)

)

= exp

(∫
R

(
eiλx − 1− iλx

) n∑
k=1

dµn,k (x)

)

= exp

(∫
R

(
eiλx − 1− iλx

)
dν∗n (x)

)
(28.23)
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where ν∗n :=
∑n
k=1 µn,k. Let us further observe that∫
R
x2dν∗n (x) =

n∑
k=1

∫
R
x2dµn,k (x) =

n∑
k=1

σ2
n,k = 1.

Hence if we define dνn (x) := x2dν∗n (x) , then νn is a probability measure and
we have from Eqs. (28.22) and Eq. (28.23) that∣∣∣∣fSn (λ)− exp

(∫
R

eiλx − 1− iλx
x2

dνn (x)

)∣∣∣∣→ 0. (28.24)

Let

ϕ (λ, x) :=
eiλx − 1− iλx

x2
= −λ

2

2

∫ 1

0

eitλx2 (1− t) dt (28.25)

(the second equality is from Taylor’s theorem) and extend ϕ (λ, ·) to R̄ by
setting ϕ (λ,±∞) = 0. Then {ϕ (λ, ·)}λ∈R ⊂ C

(
R̄
)

and therefore by Helly’s

selection Theorem 26.61 there is a probability measure ν̄ on
(
R̄,BR̄

)
and a

subsequence, {nl} of {n} such that νnl (ϕ (λ, ·))→ ν̄ (ϕ (λ, ·)) for all λ ∈ R (in
fact νnl (h)→ ν̄ (h) for all h ∈ C

(
R̄
)
). Combining this with Eq. (28.24) allows

us to conclude,

fL (λ) = lim
l→∞

E
[
eiλSnl

]
= lim
l→∞

exp

(∫
R

(
eiλx − 1− iλx

)
dν∗nl (x)

)
= lim
l→∞

exp

(∫
R
ϕ (λ, x) dνnl (x)

)
= exp

(∫
R̄
ϕ (λ, x) dν̄ (x)

)
= exp

(∫
R
ϕ (λ, x) dν (x)

)
where ν := ν̄|BR . The last equality follows from the fact that ϕ (λ,±∞) = 0.
The measure ν now satisfies, ν (R) = ν̄ (R) ≤ ν̄

(
R̄
)

= 1.
We are now going to drop the assumption that Var (Sn) = 1 for all n and

replace it with the following property.

Definition 28.26. We say that {Xn,k}nk=1 has bounded variation (BV ) iff

sup
n

Var (Sn) = sup
n

n∑
k=1

σ2
n,k <∞. (28.26)

Corollary 28.27 (Limits under (BV )). Suppose {Xn,k}nk=1 are independent
mean zero random variables for each n which satisfy properties (M) and (BV ) .
If Sn :=

∑n
k=1Xn,k =⇒ L for some random variable L, then

fL (λ) = exp

(∫
R

eiλx − 1− iλx
x2

dν (x)

)
(28.27)

where ν – is a finite positive measure on (R,BR) .

Proof. Let s2
n := Var (Sn) . If limn→∞ sn = 0, then Sn → 0 in L2 and

hence weakly, therefore Eq. (28.27) holds with ν ≡ 0. So let us now suppose
limn→∞ sn 6= 0. Since {sn}∞n=1 is bounded, we may by passing to a subsequence
if necessary, assume limn→∞ sn = s > 0. By replacing Xn,k by Xn,k/sn and
hence Sn by Sn/sn, we then know by Slutzky’s Theorem 26.43 that Sn/sn =⇒
L/s. Hence by an application of Theorem 28.25, we may conclude

fL (λ/s) = fL/s (λ) = exp

(∫
R

eiλx − 1− iλx
x2

dν (x)

)
where ν – is a finite positive measure on (R,BR) such that ν (R) ≤ 1. Letting
λ→ sλ in this expression then implies

fL (λ) = exp

(∫
R

eiλsx − 1− iλsx
x2

dν (x)

)
= exp

(∫
R

eiλsx − 1− iλsx
(sx)

2 s2dν (x)

)

= exp

(∫
R

eiλx − 1− iλx
x2

dνs (x)

)
where νs is the finite measure on (R,BR) defined by

νs (A) := s2ν
(
s−1A

)
for all A ∈ BR.

From Eq. (28.25) we see that ϕ (λ, x) :=
(
eiλx − 1− iλx

)
/x2 is a smooth

function of (λ, x) . Moreover,

d

dλ
ϕ (λ, x) =

ixeiλx − ix
x2

= i
eiλx − 1

x

and
d2

dλ2
ϕ (λ, x) = i

ixeiλx

x
= −eiλx.

Using these remarks and the fact that ν (R) <∞, it is easy to see that

f ′L (λ) =

(∫
R
i
eiλx − 1

x
dνs (x)

)
fL (λ)

and

f ′′L (λ) =

(∫
R
−eiλxdνs (x) +

[(∫
R
i
eiλx − 1

x
dνs (x)

)2
])

fL (λ)
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and in particular, f ′L (0) = 0 and f ′′L (0) = −νs (R) . Therefore by Theorem 27.8
the probability measure µ on (R,BR) such that µ̂ (λ) = fL (λ) has mean zero
and variance, νs (R) < ∞. This later condition reflects the (BV ) assumption
that we made.

Theorem 28.28. The following class of symmetric distributions on (R,BR)
are equal;

1. C1 – all possible limiting distributions under properties (M) and (BV ) .
2. C2 – all distributions with characteristic functions of the form given in

Corollary 28.27.
3. C3 – all infinitely divisible distributions with mean zero and finite variance.

Proof. The inclusion, C1 ⊂ C2, is the content of Corollary 28.27. For C2 ⊂
C3, observe that if

µ̂ (λ) = exp

(∫
R

eiλx − 1− iλx
x2

dν (x)

)
then µ̂ (λ) = [µ̂n (λ)]

n
where µn is the unique probability measure on (R,BR)

such that

µ̂n (λ) = exp

(∫
R

eiλx − 1− iλx
x2

1

n
dν (x)

)
.

For C3 ⊂ C1, simply define {Xn,k}nk=1 to be i.i.d with E
[
eiλXn,k

]
= µ̂n (λ) . In

this case Sn =
∑n
k=1Xn,k

d
= µ.

28.3 Stable Distributions

Definition 28.29. A non-degenerate distribution µ = Law (X) on R is stable
if whenever X1 and X2 are independent copies of X, then for all a, b ∈ R there

exists c, d ∈ R such that aX1 + bX2
d
= cX + d with some constants c and d.

Example 28.30. Any Gaussian random variable is stable. Indeed if X
d
= σN +µ

where σ > 0 and µ ∈ R and N = N (0, 1) , then Xi = σNi + µ where N1 and

N2 are independent with Ni
d
= N we will have aX1 + bX2 is Gaussian mean

(a+ b)µ and variance
(
a2 + b2

)
σ2 so that

aX1 + bX2
d
=
√

(a2 + b2)σN + (a+ b)µ

d
=
√

(a2 + b2) (X − µ) + (a+ b)µ

=
√

(a2 + b2)X +
(
a+ b−

√
(a2 + b2)

)
µ.

Example 28.31. Poisson random variables are not stable. For suppose that Z =

Pois (ρ) and Z1
d
= Z2

d
= Z, then Z1 +Z2

d
= Pois (2ρ) . If we could find a, b such

that
Pois (2ρ)

d
= Z1 + Z2

d
= aZ + b

we would have

e−2ρ (2ρ)
n

n!
= P (aZ + b = n) = P

(
Z =

n− b
a

)
for all n.

In particular this implies that n−b
a = kn ∈ N0 for all n ∈ N0 and the map

n → kn must be invertible so as probabilities are conserved. This can only be

the case if a = 1 and b = 0 and we would conclude that Z
d
= Pois (2ρ) which is

absurd.

Lemma 28.32. Suppose that {Xi}ni=1 are i.i.d. random variables such that
X1 + · · ·+Xn = c a.s., then Xi = c/n a.s.

Proof. Let f (λ) := EeiλX1 , then

eiλc = E
[
eiλ(X1+···+Xn)|X1

]
= eiλX1f (λ) a.s.

from which it follows that f (λ) = eiλ(c−X1) a.s. and in particular for an ω where
this equality holds we find, f (λ) = eiλ(c−X1(ω)) = eiλc

′
. By uniqueness of the

Fourier transform it follows that X1 = c′ a.s. and therefore c = X1 + · · ·+Xn =
nc′ a.s., i.e. c′ = c/n.

Lemma 28.33. If µ is a stable distribution then it is infinitely divisible.

Proof. Let {Xn}Nn=1 be i.i.d. random variables with Law (Xn) = µ =
Law (X) . As µ is stable we know that

X1 + · · ·+XN
d
= aX + b. (28.28)

As µ is non-degenerate, it follows from Lemma 28.32 that a 6= 0, Therefore form
Eq. (28.28) we find,

X
d
=

N∑
i=1

1

a
(Xi − b/N)

and this shows that X is infinitely divisible.
The converse of this lemma is not true as is seen by considering Poisson

random variables, see Example 28.31. The following characterization of the
stable law may be found in [6, Chapter 9.9]. For a whole book about stable
laws and their properties see Samorodnitsky and Taqqu [40].
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Theorem 28.34. A probability measure µ on R is a stable distribution iff µ is
Gaussian or µ̂ (λ) = eψ(λ) where

ψ (λ) = iλb+

∫
R

(
eiλx − 1− iλx

1 + x2

)
m11x>0 −m21x<0

|x|1+α dx

for some constants, 0 < α < 2, mi ≥ 0 and b ∈ R.

To get some feeling for this theorem. Let us consider the case of a stable
random variableX which is also assumed to be symmetric. In this case ifX1, X2

are independent copies of X and a, b ∈ R and c = c (a1, a2) and d = d (a1, a2)

are then chosen so that aX1 + bX2
d
= cX+d, we must have that d = 0 and may

take c > 0 by the symmetry assumption. Letting f (λ) = E
[
eiλX

]
we may now

conclude that

f (aλ) · f (bλ) = E
[
eiλ(aX1+bX2)

]
= E

[
eiλcX

]
= f (cλ) .

It turns out the solution to these functional equation are of the form f (λ) =
e−k|λ|

α

. If f (λ) is of this form then

f (aλ) · f (bλ) = exp (−k (|a|α + |b|α) |λ|α) = f (cλ)

where c = (|a|α + |b|α)
1/α

. Moreover it turns out the f is a characteristic
function when 0 < α ≤ 2. The case α = 2 is the Gaussian case, then case α = 1
is the Cauchy distribution, for example if

dµ (x) =
1

π (1 + x2)
dx then µ̂ (λ) = e−|λ|.

For α ≤ 1 we find that we have

f ′ (λ) = −k |λ|α−1
f (λ) ≤ 0 and

f ′′ (λ) =
[
k2 |λ|2α−2 − k (α− 1) |λ|α−2

]
f (λ) ≥ 0

so that f is a decreasing convex symmetric function for λ ≥ 0. Therefore by
Polya’s criteria of Exercise 27.7 it follows that e−k|λ|

α

is the characteristic func-
tion of a probability measure for 0 ≤ α ≤ 1. The full proof is not definitely not
given here.

28.4 *Appendix: Lévy exponent and Lévy Process facts –
Very Preliminary!!

We would like to characterize all processes with independent stationary in-
crements with values in R or more generally Rd. We begin with some more
examples.

Proposition 28.35. For every finite measure ν, the function

f (λ) := exp

(∫
R

eiλx − 1− iλx
x2

dν (x)

)
is the characteristic function of a probability measure, µ = µν , on (R,BR) . The
convention here is that

eiλx − 1− iλx
x2

|x=0 := lim
x→0

eiλx − 1− iλx
x2

= −1

2
λ2.

Proof. This is the content of Exercise 27.5

1. If {Xt}t≥0 is a right continuous process with stationary and independent

increments, then let ft (λ) := E
[
eiλ(Xt+σ−Xσ)

]
for any σ ≥ 0. It then follows

that

ft+s (λ) = E
[
eiλ(Xt+s−X0)

]
= E

[
eiλ(Xt+s−Xt+Xt−X0)

]
= E

[
eiλ(Xt+s−Xt)

]
· E
[
eiλ(Xt−X0)

]
= fs (λ) · ft (λ) .

The right continuity of Xt now insures that ft is also right continuous.
The only solution to the above functional equation is therefore of the form,
ft (λ) = etψ(λ) for some function ψ (λ) . Since

etReψ(λ) = |ft (λ)| ≤ 1

it follows that Reψ (λ) ≤ 0. Let λ ∈ R be fixed and define h (t) := ft (λ) ,
then h is right continuous, h (0) = 1, and h (t+ s) = h (t)h (s) . Let ln be a
branch of the logarithm defined near 1 such that ln 1 = 0. Then there exists
ε such that for all t ≤ ε we have g (t) := lnh (t) is well defined and g (t)
satisfies, g (t+ s) = g (t) + g (s) for all 0 ≤ s, t ≤ ε. We now set gε (t) :=
g (εt) and then gε (s+ t) = gε (s)+gε (t) for all 0 ≤ s, t ≤ 1 and is still right
continuous. As usual it now follows that gε (1) = gε (n · 1/n) = n · gε (1/n)
for all n and therefore for all 0 ≤ k ≤ n, we have gε (k/n) = k

ngε (1) . Using
the right continuity of gε it now follows that gε (t) = tgε (1) for all 0 ≤ t < 1.
Thus we have shown g (εt) = tg (ε) for 0 ≤ t < 1 and therefore if we set
θ := g (ε) /ε we have shown g (t) = tθ for t ∈ [0, ε) that is ,

h (t) = etθ for 0 ≤ t < ε.

This formula is now seen to be correct for all t ≥ 0. Indeed if t = kε/2 + τ
with 0 ≤ τ < ε/2, then
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h (t) = h (ε/2)
k
h (τ) =

[
eθε/2

]k
eτθ = eθ[kε/2+τ ] = etθ.

Thus we have shown that ft (λ) = etψ(λ) for some function ψ (λ) . Let us
further observe that

ψ (λ) = lim
t↓0

ft (λ)− 1

t

from which it follows that ψ must be measurable. Furthermore,

ψ (−λ) = lim
t↓0

ft (−λ)− 1

t
= lim

t↓0

ft (λ)− 1

t
= ψ (λ).

We are going to show more.
2. Let {zi}ni=1 ⊂ C such that

∑n
i=1 zi = 1 and {λi}ni=1 ⊂ R, then

n∑
i,j=1

ψ (λi − λj) ziz̄j = lim
t↓0

n∑
i,j=1

ft (λi − λj)− 1

t
ziz̄j

= lim
t↓0

1

t

n∑
i,j=1

ft (λi − λj) ziz̄j

while for any {zi}ni=1 ⊂ C we have

n∑
i,j=1

ft (λi − λj) ziz̄j =

n∑
i,j=1

E
[
ei(λi−λj)Xt

]
ziz̄j

=

n∑
i,j=1

E
[
eiλiXtzi · e−iλjXt z̄j

]

= E

 n∑
i=1

eiλiXtzi ·
n∑
j=1

e−iλjXt z̄j


= E

∣∣∣∣∣
n∑
i=1

eiλiXtzi

∣∣∣∣∣
2
 ≥ 0.

Therefore it follows that when
∑n
i=1 zi = 1 then

∑n
i,j=1 ψ (λi − λj) ziz̄j ≥ 0.

We say the ψ is conditionally positive definite in this case.
3. The Schoenberg correspondence says (see [1, Theorem 1.1.13]) that if ψ

is continuous at zero, ψ (−λ) = ψ (λ) and ψ is conditionally positive defi-
nite, then etψ(λ) is a characteristic function. We will prove this below using
Bochner’s Theorem 27.46.

4. But first some examples;

a) Let ψ (λ) = iλa−bλ2 with a ∈ R and b ≥ 0.Then ψ (−λ) = −iλa−bλ2 =
ψ (λ) and for

∑n
i=1 zi = 1 we have

n∑
i,j=1

ψ (λi − λj) ziz̄j =
n∑

i,j=1

[
−i (λi − λj) a− b (λi − λj)2

]
ziz̄j .

Noting that

n∑
i,j=1

λiziz̄j =

n∑
i=1

λizi

n∑
j=1

z̄j =

n∑
i=1

λizi · 0 = 0

and similarly that
∑n
i,j=1

[
λ2
i

]
ziz̄j = 0, it follows that

n∑
i,j=1

ψ (λi − λj) ziz̄j =

n∑
i,j=1

[
−b (−2λiλj)

2
]
ziz̄j

= 2b

∣∣∣∣∣∣
n∑

i,j=1

λizi

∣∣∣∣∣∣
2

≥ 0.

b) Suppose that {Zi}∞i=1 are i.i.d. random variables and {N} is an inde-
pendent Poisson process with intensity λ. Let X := Z1 + · · · + ZN ,
then

fX (λ) = E
[
eiλX

]
=

∞∑
n=0

E
[
eiλX : N = n

]
=

∞∑
n=0

E
[
eiλ[Z1+···+Zn] : N = n

]
= e−λ

∞∑
n=0

λn

n!
[fZ1

(λ)]
n

= exp (λ (fZ1
(λ)− 1)) .

So in this case ψ (λ) = fZ1 (λ) − 1 and we know by the theory above
that ψ (λ) is conditionally positive definite.

Lemma 28.36. Suppose that {Aij}di,j=1 ⊂ C is a matrix such that A∗ = A

and A ≥ 0. Then for all n ∈ N0, the matrix with entries
(
Anij
)n
i,j=1

is positive

semi-definite.

Proof. Since Aij = (Aej , ei) where (v, w) :=
∑d
j=1 vjw̄j is the standard

inner product on Cd, it follows that

Anij =
(
A⊗ne⊗nj , e⊗ni

)
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and therefore,

d∑
i,j=1

Anij z̄izj =

d∑
i,j=1

(
A⊗ne⊗nj , e⊗ni

)
z̄izj =

(
A⊗nψ,ψ

)
where ψ :=

∑d
j=1 zje

⊗n
j ∈

(
Cd
)⊗n

. So it suffices to show A⊗n ≥ 0. To do this

let {ui}di=1 be an O.N. basis for Cd such that Aui = λiui for all i. Since A ≥ 0
we know that λi ≥ 0 and therefore

A⊗n (ui1 ⊗ · · · ⊗ uid) = (λi1 . . . λid) (ui1 ⊗ · · · ⊗ uid)

where (λi1 . . . λid) ≥ 0. This shows that A⊗n is unitarily equivalent to a diagonal
matrix with non-negative entries and hence is positive semi-definite.

Proposition 28.37. Suppose that {Aij}di,j=1 ⊂ C is a matrix such that A∗ = A

and A is conditionally positive definite, for example Aij := ψ (λi − λj) as above.

Then the matrix with entries,
(
eAij

)d
i,j=1

is positive definite.

Proof. Let u := (1, . . . , 1)
tr ∈ Cd. Let ξ ∈ Cd and write ξ = z + αu where

(z, u) = 0 and α := (ξ, u) /d. Letting B :=
√
A on u⊥ and 0 on C · u, we have

(Aξ, ξ) = (A (z + αu) , z + αu)

= (Az, z) + 2 Re [ᾱ (Az, u)] + |α|2 (Au, u)

= (Az, z) + 2 Re
[
ᾱ
(
B2z, u

)]
+ |α|2 (Au, u)

= (Az, z) + 2 Re [ᾱ (Bz,B∗u)] + |α|2 (Au, u)

≥ (Az, z)− 2 ‖Bz‖ · |α| ‖B∗u‖+ |α|2 (Au, u)

≥ (Az, z)−
[
‖Bz‖2 + |α|2 ‖B∗u‖2

]
+ |α|2 (Au, u)

= |α|2
[
(Au, u)− ‖B∗u‖2

]
.

Since (
u utrξ, ξ

)
= |α|2

(
u utru, u

)
= |α|2 d2,

it follows that((
A+ λu utr

)
ξ, ξ
)
≥ |α|2

[
(Au, u)− ‖B∗u‖2 + λd2

]
≥ 0

provided λd2 ≥ ‖B∗u‖2 − (Au, u) .
We now fix such a λ ∈ R so that (A+ λu utr) ≥ 0. It then follows from

Lemma 28.36 that

eλeAij = eAij+λ = e
(A+λu utr)

ij =

∞∑
n=0

(A+ λu utr)
n
ij

n!

are the matrix entries of a positive definite matrix. Scaling this matrix by e−λ >
0 then gives the result that

(
eAij

)
i,j
≥ 0.

As a consequence it follows that etψ(λ) is a positive definite function when-
ever ψ is conditionally positive definite.

Proposition 28.38. Suppose that {Zi}∞i=1 are i.i.d. random vectors in Rd with
Law (Zi) = µ and {Nt}t≥0 be an independent Poisson process with intensity λ.

Then {Xt := SNt}t≥0 is a Lévy process with E
[
eik·Xt

]
= etψ(k) where

ψ (k) = λ

∫
Rn

(
eik·x − 1

)
dµ (x) = E

[
eik·Z1

]
.

Proof. It has already been shown in Theorem 22.30 that {Xt}t≥0 has sta-
tionary independent increments and being right continuous it is a Lévy process.
It only remains to compute the Fourier transform,

E
[
eik·Xt

]
=
[
Qt
(
x→ eik·x

)]
(0)

=

∞∑
n=0

(λt)
n

n!
e−λtE

[
eik·(Z1+···+Zn)

]
=

∞∑
n=0

(λt)
n

n!
e−λtµ̂ (k)

n

= etλ(µ̂(k)−1) = exp

(
tλ

∫
Rn

(
eik·x − 1

)
dµ (x)

)
.

More generally, if we let Bt be Brownian motion in Rn with Cov
(
Bit, B

j
t

)
=

Aijt and b ∈ Rn, then assuming B and X above are independent, then Xt =
bt+Bt +Xt is again a Levy process whose Fourier transform is given by,

E
[
eik·Xt

]
= exp

(
ibt+Ak · k + λ

∫
Rn

(
eik·x − 1

)
dµ (x)

)
.

Thus

ψ (λ) = ibt+Ak · k + λ

∫
Rn

(
eik·x − 1

)
dµ (x)

is a Lévy exponent for all choice of b ∈ Rn, all λ > 0, probability measures µ
on Rn, and A ≥ 0.

Lévy proved that in general ψ (k) will be a Lévy exponent iff ψ has the form
given in Eq. (28.29) below.

Theorem 28.39 (Lévy Kintchine formula). If ψ is continuous at zero and
conditionally positive definite, then
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ψ (λ) = iλb− 1

2
aλ2 +

∫
R\{0}

(
eiλx − 1− iλx · 1|x|≤1

)
dν (x) (28.29)

for some b ∈ R, a ≥ 0, and some measure ν such that∫
R\{0}

(
x2 ∧ 1

)
dν (x) <∞.



Part V

Stochastic Processes II





We are now going to discuss continuous time stochastic processes in more
detail. We will be using Poisson processes (Definition 16.8) and Brownian mo-
tion (Definition 22.24) as our model cases. Up to now we have not proved the
existence of Brownian motion. This lapse will be remedied in the next couple of
chapters. We are going to begin by constructing a process {Bt}t≥0 satisfying all
of the properties of a Brownian motion in Definition 22.24 except for the con-
tinuity of the sample paths. We will then use Kolmogorov’s continuity criteria
(Theorem 30.8) to show we can “modify” this process in such a way so as to
produce an example of Brownian motion. We start with a class of random fields
which are relatively easy to understand. (BRUCE – metion the free Euclidean
field and its connections to SLE.)





29

Gaussian Random Fields

Recall from Section 14.5 (which the reader should review if necessary) that
a random variable, Y : Ω → R is said to be Gaussian if

EeiλY = exp

(
−1

2
λ2 Var (Y ) + iλEY

)
∀ λ ∈ R.

More generally a random vector, X : Ω → RN , is said to be Gaussian if λ ·X
is a Gaussian random variable for all λ ∈ RN . Equivalently put, X : Ω → RN
is Gaussian provided

E
[
eiλ·X

]
= exp

(
−1

2
Var (λ ·X) + iE (λ ·X)

)
∀ λ ∈ RN . (29.1)

Remark 29.1. To conclude that a random vector, X : Ω → RN , is Gaussian
it is not enough to check that each of its components are Gaussian random
variables. The following simple counter example was provided by Nate Eldredge.

Let X
d
= N(0, 1) and Y be an independent Bernoulli random variable with

P (Y = 1) = P (Y = −1) = 1/2. Then the random vector, (X,X · Y )
tr

has
Gaussian components but is not Gaussian.

Exercise 29.1 (Same as Exercise 14.9.). Prove the assertion made in Re-
mark 29.1 by computing E

[
ei(λ1X+λ2XY )

]
. (Another proof that (X,X · Y )

tr
is

not Gaussian follows from the fact that X and XY are uncorrelated but not
independent1 which would then contradict Lemma 15.25.)

29.1 Gaussian Integrals

The following theorem gives a useful way of computing Gaussian integrals of
polynomials and exponential functions.

1 To formally see that they are not independent, observe that |X| ≤ 1
2

iff |XY | ≤ 1
2

and therefore,

P

(
|X| ≤ 1

2
and |XY | ≤ 1

2

)
= P

(
|X| ≤ 1

2

)
=: α

while

P

(
|X| ≤ 1

2

)
P

(
|XY | ≤ 1

2

)
= α2 6= α.

Theorem 29.2. Suppose X
d
= N (Q, 0) where Q is a N×N symmetric positive

definite matrix. Let L = LQ := Qij∂i∂j (sum on repeated indices) where ∂i :=
∂/∂xi. Then for any polynomial function, q : RN → R,

E [q (X)] =
(
e

1
2Lq
)

(0) :=

∞∑
n=0

1

n!

((
L

2

)n
q

)
(0) (a finite sum). (29.2)

Proof. First Proof. The first proof is conceptually clear but technically
a bit more difficult. In this proof we will begin by proving Eq. (29.2) when
q (x) = eiλ·x where λ ∈ RN . The function q is not a polynomial, but never
mind. In this case,

E [q (X)] = E
[
eiλ·X

]
= e−

1
2Qλ·λ.

On the other hand,(
1

2
Lq

)
(x) =

1

2
Qij∂i∂je

iλ·x =
1

2
(Qλ · λ) eiλ·x = −1

2
(Qλ · λ) q (x) .

Therefore,

e
1
2Lq =

∞∑
n=0

1

n!

(
−1

2
Qλ · λ

)n
q = e−

1
2Qλ·λq

and hence (
e

1
2Lq
)

(0) = e−
1
2Qλ·λ.

Thus we have shown
E
[
eiλ·X

]
= e

1
2Leiλ·x|x=0.

The result now formally follows by differentiating this equation in λ and then
setting λ = 0. Indeed observe that

E [(iX)
α

] = ∂αλE
[
eiλ·X

]
|λ=0 = ∂αλ e

1
2Leiλ·x|x=0,λ=0

= e
1
2L∂αλ e

iλ·x|x=0,λ=0 = e
1
2L (ix)

α |x=0.

To justify this last equation we must show,

∂αλ e
1
2Leiλ·x = e

1
2L∂αλ e

iλ·x
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which is formally true since mixed partial derivatives commute. However there
is also an infinite sum involved so we have to be a bit more careful. To see what
is involved, on one hand

∂αλ e
1
2Leiλ·x = ∂αλ

∞∑
n=0

1

n!

(
−1

2
Qλ · λ

)n
eiλ·x

while on the other,

e
1
2L∂αλ e

iλ·x =

∞∑
n=0

1

n!

((
L

2

)n
∂αλ e

iλ·x
)

=

∞∑
n=0

1

n!
∂αλ

((
L

2

)n
eiλ·x

)

=

∞∑
n=0

∂αλ

(
1

n!

(
−1

2
Qλ · λ

)n
eiλ·x

)
.

Thus to complete the proof we must show,

∂αλ

∞∑
n=0

1

n!

(
−1

2
Qλ · λ

)n
eiλ·x =

∞∑
n=0

∂αλ

(
1

n!

(
−1

2
Qλ · λ

)n
eiλ·x

)
.

Perhaps the easiest way to do this would be to use the Cauchy estimates2

which allow one to show that if {fn (λ)}∞n=0 is a sequence of analytic func-
tions such that

∑∞
n=0 fn (λ) is uniformly convergent on compact subsets, then∑∞

n=0 ∂
α
λ fn (λ) is also uniformly convergent on compact subsets and therefore,

∂αλ

∞∑
n=0

fn (λ) =

∞∑
n=0

∂αλ fn (λ) .

Now apply this result with fn (λ) := 1
n!

(
− 1

2Qλ · λ
)n
eiλ·x to get the result. The

details are left to the reader.
This proof actually shows more than what is claimed. Namely, 1. Q may be

only non-negative definite and 2. Eq. (29.2) holds for q (x) = p (x) eiλ·x where
λ ∈ RN and p is a polynomial.

Second Proof. Let

u (t, y) := E
[
q
(
y +
√
tX
)]

= Z−1

∫
RN

q
(
y +
√
tx
)
e−Q

−1x·x/2dx (29.3)

= Z−1

∫
RN

q (y + x)
e−Q

−1x·x/2t

tn/2
dx. (29.4)

2 If you want to avoid the Cauchy estimates it would suffice to show by hand that

∞∑
n=0

sup
|λ|≤R

∣∣∣∣∂αλ ( 1

n!

(
−1

2
Qλ · λ

)n
eiλ·x

)∣∣∣∣ <∞
for all multi- indices, α.

One now verifies that

∂t
e−Q

−1x·x/2t

tn/2
=

1

2
L
e−Q

−1x·x/2t

tn/2
.

Using this result and differentiating under the integral in Eq. (29.4) then shows,

∂tu (t, y) =
1

2
Lyu (t, y) with u (0, y) = q (y) .

Moreover, from Eq. (29.3), one easily sees that u (t, y) is a polynomial in (t, y)
and the degree in y is the same as the degree of q. On the other hand,

v (t, y) :=

∞∑
n=0

tn

n!

((
L

2

)n
q

)
(y) =

(
etL/2q

)
(y)

satisfies the same equation as u in the same finite dimensional space of poly-
nomials of degree less than or equal to deg (q) . Therefore by uniqueness of
solutions to ODE we must have u (t, y) = v (t, y) . The result now follows by
taking t = 1 and y = 0 and observing that

u (1, 0) = E
[
q
(

0 +
√

1X
)]

= E [q (X)] and

v (1, 0) =
(
eL/2q

)
(0) .

Third Proof. Let u ∈ RN . Since

∂u exp

(
−1

2
Q−1x · x

)
= −

(
Q−1x · u

)
exp

(
−1

2
Q−1x · x

)
it follow by integration by parts that

E
[(
Q−1X · u

)
p (X)

]
= − 1

Z

∫
RN

p (x) ∂u exp

(
−1

2
Q−1x · x

)
dx

=
1

Z

∫
RN

(∂up) (x) exp

(
−1

2
Q−1x · x

)
dx

= E [(∂up) (X)] .

Replacing u by Qu in this equation leads to important identity,

E [(X · u) p (X)] = E [(∂Qup) (X)] . (29.5)

It is clear that using this identity and induction it would be possible to compute
E [p (X)] for any polynomial p. So to finish the proof it suffices to show

eL/2 ((x · u) p (x)) |x=0 = eL/2 ((∂Qup) (x)) |x = 0.
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29.2 Existence of Gaussian Fields 471

This is correct notice that

eL/2 ((x · u) p (x)) = eL/2
(

(x · u) e−L/2eL/2p (x)
)

= eL/2M(x·u)e
−L/2eL/2p (x)

Letting q be any polynomial and

Ft := etL/2M(x·u)e
−tL/2,

we have

d

dt
Ft = etL/2

[
L

2
,M(x·u)

]
e−tL/2 = etL/2∂Que

−tL/2 = ∂Qu

and therefore,
eL/2M(x·u)e

−L/2 = F1 = M(x·u) + ∂Qu.

Hence it follows that

eL/2 ((x · u) p (x)) |x=0 =
[(
M(x·u) + ∂Qu

)
eL/2p (x)

]
x=0

=
[
∂Que

L/2p (x)
]
x=0

=
[
eL/2∂Qup (x)

]
x=0

(29.6)

which is the same identity as in Eq. (29.5).

Example 29.3. Suppose X
d
= N (1, 0) ∈ R, then

E
[
X2n

]
=
[
e∆/2x2n

]
x=0

=
1

n! · 2n
∆n ‖x‖2n =

(2n)!

2n · n!
.

29.2 Existence of Gaussian Fields

Definition 29.4. Let T be a set. A Gaussian random field indexed by T is
a collection of random variables, {Xt}t∈T on some probability space (Ω,B, P )
such that for any finite subset, Λ ⊂f T, {Xt : t ∈ Λ} is a Gaussian random
vector.

Associated to a Gaussian random field, {Xt}t∈T , are the two functions,

c : T → R and Q : T × T → R

defined by c (t) := EXt and Q (s, t) := Cov (Xs, Xt) . By the previous results,
the functions (Q, c) uniquely determine the finite dimensional distributions
{Xt : t ∈ T} , i.e. the joint distribution of the random variables, {Xt : t ∈ Λ} ,
for all Λ ⊂f T.

Definition 29.5. Suppose T is a set and {Xt : t ∈ T} is a random field. For
any Λ ⊂ T, let BΛ := σ (Xt : t ∈ Λ) .

Proposition 29.6. Suppose T is a set and c : T → R and Q : T × T → R are
given functions such that Q (s, t) = Q (t, s) for all s, t ∈ T and for each Λ ⊂f T∑

s,t∈Λ
Q (s, t)λ (s)λ (t) ≥ 0 for all λ : Λ→ R.

Then there exists a probability space, (Ω,B, P ) , and random variables, Xt :
Ω → R for each t ∈ T such that {Xt}t∈T is a Gaussian random process with

E [Xs] = c (s) and Cov (Xs, Xt) = Q (s, t) (29.7)

for all s, t ∈ T.
Proof. Since we will construct (Ω,B, P ) by Kolmogorov’s extension Theo-

rem 22.68, let Ω := RT , B = BRT , and Xt (ω) = ωt for all t ∈ T and ω ∈ Ω.
Given Λ ⊂f T, let µΛ be the unique Gaussian measure on

(
RΛ,BΛ := BRΛ

)
such that ∫

RΛ
e
i
∑

t∈Λ
λ(t)x(t)

dµΛ (x)

= exp

−1

2

∑
s,t∈Λ

Q (s, t)λ (s)λ (t) + i
∑
s∈Λ

c (s)λ (s)

 .

The main point now is to show
{(
RΛ,BΛ, µΛ

)}
Λ⊂fT

is a consistent family of

measures. For this, suppose Λ ⊂ Γ ⊂f T and π : RΓ → RΛ is the projection

map, π (x) = x|Λ. For any λ ∈ RΛ, let λ̃ ∈ RΓ be defined so that λ̃ = λ on Λ
and λ̃ = 0 on Γ \ Λ. We then have,∫

RΛ
e
i
∑

t∈Λ
λ(t)x(t)

d
(
µΓ ◦ π−1

)
(x)

=

∫
RΓ
e
i
∑

t∈Λ
λ(t)π(x)(t)

dµΓ (x)

=

∫
RΓ
e
i
∑

t∈Γ
λ̃(t)x(t)

dµΓ (x)

= exp

−1

2

∑
s,t∈Γ

Q (s, t) λ̃ (s) λ̃ (t) + i
∑
s∈Γ

c (s) λ̃ (s)


= exp

−1

2

∑
s,t∈Λ

Q (s, t)λ (s)λ (t) + i
∑
s∈Λ

c (s)λ (s)


=

∫
RΛ
e
i
∑

t∈Λ
λ(t)x(t)

dµΛ (x) .
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472 29 Gaussian Random Fields

Since this is valid for all λ ∈ RΛ, it follows that µΓ ◦ π−1 = µΛ as desired.
Hence by Kolmogorov’s theorem, there exists a unique probability measure, P
on (Ω,B) such that ∫

Ω

f (ω|Λ) dP (ω) =

∫
RΛ
f (x) dµΛ (x)

for all Λ ⊂f T and all bounded measurable functions, f : RΛ → R. In particular,
it follows that

E
[
e
i
∑

t∈Λ
λ(t)Xt

]
=

∫
Ω

e
i
∑

t∈Λ
λ(t)ω(t)

dP (ω)

= exp

−1

2

∑
s,t∈Λ

Q (s, t)λ (s)λ (t) + i
∑
s∈Λ

c (s)λ (s)


for all λ ∈ RΛ. From this it follows that {Xt}t∈T is a Gaussian random field
satisfying Eq. (29.7).

Exercise 29.2. Suppose T = [0,∞) and {Xt : t ∈ T} is a mean zero Gaussian

random field (process). Show that B[0,σ]

Xσ
⊥⊥ B[σ,∞) for all 0 ≤ σ <∞ iff

Q (s, σ)Q (σ, t) = Q (σ, σ)Q (s, t) ∀ 0 ≤ s ≤ σ ≤ t <∞. (29.8)

Hint: see use Exercises 19.13 and 19.12.

29.3 Gaussian Field Interpretation of Pre-Brownian
Motion

Lemma 29.7. Suppose that {Bt}t≥0 is a pre-Brownian motion as described
in Proposition 28.21, also see Corollary 22.25. Then {Bt}t≥0 is a mean zero
Gaussian random process with E [BtBs] = s ∧ t for all s, t ≥ 0.

Proof. Suppose we are given 0 = t0 < t1 < · · · < tn < ∞ and recall
from Proposition 28.21 that B0 = 0 a.s. and

{
Btj −Btj−1

}n
j=1

are independent

mean zero Gaussian random variables. Hence it follows from Corollary 15.26
that

{
Btj −Btj−1

}n
j=1

is a Gaussian random vector. Since the random vector{
Btj
}n
j=0

is a linear transformation
{
Btj −Btj−1

}n
j=1

it follows from Lemma

14.28 that
{
Btj
}n
j=0

is a Gaussian random vector. Since 0 = t0 < t1 < · · · <
tn < ∞ was arbitrary, it follows that {Bt}t≥0 is a Gaussian process. Since

Bt = Bt − B0
d
= N (0, t) we see that EBt = 0 for all t. Moreover we have for

0 ≤ s < t <∞ that

E [BtBs] = E [(Bt −Bs +Bs −B0) (Bs −B0)]

= E [(Bt −Bs) (Bs −B0)] + E
[
(Bs −B0)

2
]

= E [Bt −Bs] · E [Bs −B0] + s = 0 · 0 + s

which completes the proof.

Theorem 29.8. The function Q (s, t) := s ∧ t defined on s, t ≥ 0 is positive
definite.

Proof. We are going to give a six proofs of this theorem.

1. Choose any independent square integrable random variables, {Xj}nj=1 , such

that EXj = 0 and Var (Xj) = tj − tj−1. Let Yj := X1 + · · · + Xj for
j = 1, 2, . . . , n. We then have, for j ≤ k that

Cov (Yj , Yk) =
∑

m≤j, n≤k

Cov (Xm, Xn) =
∑

m≤j, n≤k

δm,n (tm − tm−1)

=
∑
m≤j

(tm − tm−1) = tj ,

i.e. tj ∧ tk = Cov (Yj , Yk) . But such covariance matrices are always positive
definite. Indeed,∑

j,k≤n

tj ∧ tkλjλk =
∑
j,k≤n

λjλk Cov (Yj , Yk)

= Var (λ1Y1 + · · ·+ λnYn) ≥ 0

with equality holding iff λ1Y1 + · · ·+ λnYn = 0 from which it follows that

0 = E [Yj (λ1Y1 + · · ·+ λnYn)] = λj (tj − tj−1) ,

i.e. λj = 0.
2. According to Exercise 26.13 we can find stochastic processes{

Bn (t) =
√
nS[nt]

}∞
n=1

such that E [Bn (t)Bn (s)] → s ∧ t as n → ∞
and therefore∑

s,t∈Λ
(s ∧ t)λsλt = lim

n→∞

∑
s,t∈Λ

E [Bn (t)Bn (s)]λsλt

= lim
n→∞

E

(∑
t∈Λ

Bn (t)λt

)2
 ≥ 0.
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3. Appealing to Corollary 22.25, there exists a time homogeneous Markov
processes {Bt}t≥0 with Markov transition kernels given by

Qt (x, dy) =
1√
2πt

e−
1
2t |y−x|

2

dy. (29.9)

It is now easy to see that s ∧ t = Cov (Bs, Bt) which is automatically non-
negative as we saw in the proof of item 2.

4. Let Λ = {0 < t1 < · · · < tn <∞} and {λi}ni=1 ⊂ R be given. Further let
αj := λi + λi+1 + · · · + λn with the convention that αn+1 = 0. We then
have,

n∑
i=1

ti ∧ tjλi =

n∑
i=1

ti ∧ tj (αi − αi+1)

=

n∑
i=1

[ti ∧ tj − ti−1 ∧ tj ]αi =
∑

1≤i≤j

[ti − ti−1]αi

where t0 := 0. Hence it follows that

n∑
i,j=1

ti ∧ tjλiλj =

n∑
j=1

∑
1≤i≤j

[ti − ti−1]αiλj =
∑

1≤i≤j≤n

[ti − ti−1]αiλj

=
∑

1≤i≤n

[ti − ti−1]α2
i ≥ 0

with equality iff αi = 0 for all i which is equivalent to λi = 0 for all i.
5. Let ht (τ) := t ∧ τ be as after Theorem ?? below and using the results and

notation proved there we find,

∑
s,t∈Λ

(s ∧ t)λsλt =
∑
s,t∈Λ

〈ht, hs〉T λsλt =

∥∥∥∥∥∑
t∈Λ

λtht

∥∥∥∥∥
2

T

≥ 0.

This shows Q is positive semi-definite and equality holds iff
∑
t∈Λ λtht = 0.

After taking the derivative of this identity, it is not hard to see that λt = 0
for all t so that Q is positive definite.

6. The function Q (s, t) = s∧ t restricted to s, t ∈ [0, T ] for some T <∞ is the
Green’s function for the positive definite second order differential operator

− d2

dt2 which is equipped with Dirichlet boundary condition at t = 0 and
Neumann boundary conditions at t = T.

We have already given a Markov process proof of the existence of Pre-
Brownian motion in Corollary 22.25. Given Theorem 29.8 we can also give
a Gaussian process proof of the existence of pre-Brownian motion which we
summarize in the next proposition.

Proposition 29.9 (Pre-Brownian motion). Let {Bt}t≥0 be a mean zero
Gaussian process such that Cov (Bs, Bt) = s ∧ t for all s, t ≥ 0 and let
Bt := σ (Bs : s ≤ t) and Bt+ := ∩σ>tBσ Then;

1. B0 = 0 a.s.

2. {Bt}t≥0 has independent increments with Bt − Bs
d
= N (0, (t− s)) for all

0 ≤ s < t <∞.
3. For all t ≥ s ≥ 0, Bt −Bs is independent of Bs+.
4. {Bt}t≥0 is a time homogeneous Markov process with transition kernels
{Qt (x, dy)}t≥0 given as in Eq. (29.9).

Proof. See Exercise 29.3 – 29.5.

Exercise 29.3 (Independent increments). Let

P := {0 = t0 < t1 < · · · < tn = T}

be a partition of [0, T ] , ∆iB := Bti−Bti−1
and ∆it := ti−ti−1. Show {∆iB}ni=1

are independent mean zero normal random variables with Var (∆iB) = ∆it.

Exercise 29.4 (Increments independent of the past). Let
Bt := σ (Bs : s ≤ t) . For each s ∈ (0,∞) and t > s, show;

1. Bt −Bs is independent of Bs and
2. more generally show, Bt −Bs is independent of Bs+ := ∩σ>sBσ.

Exercise 29.5 (The simple Markov property). Show Bt −Bs is indepen-
dent of Bs for all t ≥ s. Use this to show, for any bounded measurable function,
f : R→ R that

E [f (Bt) |Bs+] = E [f (Bt) |Bs] = E [f (Bt) |Bs]

= (pt−s ∗ f) (Bs) =:
(
e(t−s)∆/2f

)
(Bs) a.s.,

where

pt (x) :=
1√
2πt

e−
1
2tx

2

so that pt ∗ f = Qt (·, f) . This problem verifies that {Bt}t≥0 is a “Markov

process” with transition kernels {Qt}t≥0 which have 1
2∆ = 1

2
d2

dx2 as there
“infinitesimal generator.”

Exercise 29.6. Let

P := {0 = t0 < t1 < · · · < tn = T}

and f : Rn → R be a bounded measurable function. Show
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E [f (Bt1 , . . . , Btn)] =

∫
Rn
f (x1, . . . , xn) qP (x) dx

where

qP (x) := pt1 (x1) pt2−t1 (x2 − x1) . . . ptn−tn−1 (xn − xn−1) .

Hint: Either use Exercise 29.3 by writing

f (x1, . . . , xn) = g (x1, x2 − x1, x3 − x2, . . . , xn − xn−1)

for some function, g or use Exercise 29.5 first for functions, f of the form,

f (x1, . . . , xn) =

n∏
j=1

ϕj (xj) .

Better yet, do it by both methods!



30

Versions and Modifications

We need to introduce a bit of terminology which we will use throughout this
part of the book. As before we will let T be an index space which will typically
be R+ or [0, 1] in this part of the book. We further sill suppose that (Ω,B, P )
is a given probability space, (S, ρ) is a separable (for simplicity) metric state
space, and Xt : Ω → S is a measurable stochastic processes.

Definition 30.1 (Versions). Suppose, Xt : Ω → S and X̃t : Ω → S are two
processes defined on T. We say that X̃ is a version or a modification of X
provided, for each t ∈ T, Xt = X̃t a.s.. (Notice that the null set may depend on
the parameter t in the uncountable set, T.)

Definition 30.2. We say two processes are indistinguishable iff
P ∗ (Y· 6= X·) = 0, i.e. iff there is a measurable set, E ⊂ Ω, such that
P (E) = 0 and {Y· 6= X·} ⊂ E where

{Y· 6= X·} = {ω ∈ Ω : Yt (ω) 6= Xt (ω) for some t ∈ [0,∞)}
= ∪t∈[0,∞) {ω ∈ Ω : Yt (ω) 6= Xt (ω)} . (30.1)

So Y is a modification of X iff

0 = sup
t∈T

P
(
Xt 6= X̃t

)
= sup

t∈T
P
({
ρ
(
Xt, X̃t

)
> 0
})

while Y is indistinguishable for X iff

0 = P ∗
(
Xt 6= X̃t ∀ t

)
= P ∗

({
sup
t∈T

ρ
(
Xt, X̃t

)
> 0

})
.

Thus the formal difference between the two notions is simply whether the supre-
mum is taken outside or inside the probabilities. See Exercise 33.1 for an ex-
ample of two processes which are modifications of each other but are not indis-
tinguishable.

Exercise 30.1. Suppose {Yt}t≥0 is a version of a process, {Xt}t≥0 . Further
suppose that t→ Yt (ω) and t→ Xt (ω) are both right continuous everywhere.
Show E := {Y· 6= X·} is a measurable set such that P (E) = 0 and hence X and
Y are indistinguishable. Hint: replace the union in Eq. (30.1) by an appropriate
countable union.

Exercise 30.2. Suppose that {Xt : Ω → S}t≥0 is a process such that for each

N ∈ N there is a right continuous modification,
{
X̃

(N)
t

}
0≤t<N

of {Xt}0≤t<N .

Show that X admits a right continuous modifications, X̃, defined for all t ≥ 0.

30.1 Kolmolgorov’s Continuity Criteria

Let Dn :=
{
i

2n : i ∈ Z
}

and D := ∪∞n=0Dn be the dyadic rational numbers.

Lemma 30.3. Let D+ = D ∩ [0,∞) and s ∈ D+ = D ∩ [0,∞) and n ∈ N0 be
given, then;

1. there exists a unique i = i (n, s) ∈ N0 such that i2−n ≤ s < (i+ 1) 2−n and
2. s may be uniquely written as

s =
i

2n
+

∞∑
k=1

ak
2n+k

,

where ak = ak (n, s) ∈ {0, 1} with ak = 0 for all sufficiently large k.

Example 30.4. Suppose that s = 85/32 = 85/25 ∈ D and 2 ∈ N0 are given, then
22s = 85/8 = 10 + 5/8, i.e.

s =
10

22
+

5

25
.

Similarly, 23 · 5/25 = 5/4 = 1 + 1/4 so that 5/25 = 1/23 + 1/25 and we have
expressed s as

s =
10

22
+

1

23
+

0

24
+

1

25
.

Proof. The first assertion follows from the fact that D+ is partitioned by
[{i2−n, (i+ 1) 2−n) ∩ D}i∈N0

. For the second assertion define the a1 = 1 if
i

2n + a1

2n ≤ s and 0 otherwise, then choose a2 = 1 if i
2n + a1

2n+1 + a2

2n+2 ≤ s and

0 otherwise, etc. It is easy to check that sm := i
2n +

∑m
k=1

ak
2n+k so constructed

satisfies, s − 1
2n+m < sm ≤ s for all m ∈ N. As sm ∈ Dm+n and s ∈ DN for

some N, if m+ n ≥ N then we must have sm = s because s− sm < 1
2n+m and

s, sm ∈ Dm+n.
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Suppose now that (S, ρ) is a metric space and x : Q := D∩ [0, 1] → S. For
n ∈ N0 let

∆n (x) = max
{
ρ
(
x
(
i2−n

)
, x
(
(i− 1) 2−n

))
: 1 ≤ i ≤ 2n

}
= max

{
ρ (x (t) , x (s)) : s, t ∈ Q ∩ Dn with |s− t| ≤ 1

2n

}
.

If γ ∈ (0, 1) and x : D1 := D∩ [0, 1]→ S is a γ – Hölder continuous function,
i.e.

ρ (x (t) , x (s)) ≤ K |t− s|γ

for some and K < ∞, then ∆n (x) ≤ K2−nγ for all n and in particular for all
α ∈ (0, γ) we have

∞∑
n=0

2nα∆n (x) ≤ K
∞∑
n=0

2nα2−nγ = K

(
1− 1

2γ−α

)−1

<∞.

Our next goal is to produce the following “converse” to this statement.

Lemma 30.5. Suppose α > 0 and x : Q := D∩ [0, 1] → S is a map such that∑∞
n=0 2nα∆n (x) <∞, then

ρ (x (t) , x (s)) ≤ 21+α ·

[ ∞∑
k=0

2αk∆k (x)

]
· |t− s|α for all s, t ∈ Q. (30.2)

Moreover there exists a unique continuous function x̃ : [0, 1] → S extending x
and this extension is still α – Hölder continuous. (When α > 1 it follows by
Exercise 30.3 that x (t) is constant.)

Proof. Let s, t ∈ Q with s < t and choose n so that

1

2n+1
< t− s ≤ 1

2n
(30.3)

and observe that if s ∈ [i2−n, (i+ 1) 2−n), then t ∈ [i2−n, (i+ 2) 2−n) and
therefore

s =
i

2n
+

∞∑
k=1

ak
2n+k

and t =
j

2n
+

∞∑
k=1

bk
2n+k

where j ∈ {i, i+ 1} and ak, bk ∈ {0, 1} with ak = bk = 0 for a.a. k. Letting

sm :=
i

2n
+

m∑
k=1

ak
2n+k

as above we have sN = s for large N. Since sm, sm+1 ∈ Q ∩ Dn+m+1 with
|sm − sm+1| ≤ 2−(n+m+1), it follows from the definition of ∆n+m+1 that
ρ (x (sm+1) , x (sm)) ≤ ∆n+m+1 (x) which combined with the triangle inequality
shows

ρ (x (s) , x (s0)) ≤
N∑
m=1

ρ (x (sm) , x (sm−1)) ≤
∞∑
m=1

∆n+m (x) .

Similarly ρ (x (t) , x (t0)) ≤
∑∞
m=1∆n+m (x) while ρ (x (s0) , x (t0)) ≤ ∆n (x) .

One more application of the triangle inequality now shows,

ρ (x (t) , x (s)) ≤ ∆n (x) + 2 ·
∞∑
m=1

∆n+m (x)

≤ 2 ·
∞∑
k=n

∆k (x) = 2 ·
∞∑
k=n

2−αk · 2αk∆k (x)

≤ 2 ·
(
2−n

)α ∞∑
k=n

2αk∆k (x) .

Combining this with the lower bound in Eq. (30.3) in the form(
2−n

)α
= 2α

(
2−(n+1)

)α
< 2α (t− s)α ,

gives the estimate in Eq. (30.2).
For the last assertion we define x̃ (t) := limQ3s→t x (s) . This limit ex-

ists since for any sequence {sn}∞n=1 ⊂ Q with sn → t ∈ [0, 1] , the sequence
{x (sn)}∞n=1 is Cauchy in S because of Eq. (30.2) and hence convergent in S. It
is easy to check that limn→∞ x (sn) is independent of the choice of the sequence
{sn}∞n=1 . A simple limiting argument now shows that

ρ (x̃ (t) , x̃ (s)) ≤ 21+α ·
∞∑
k=0

2αk∆k (x) · |t− s|α for all s, t ∈ [0, 1]

which shows that x̃ is Hölder continuous. As we had no choice but to define x̃
the way we did if x̃ is to be continuous, the extension is unique.

Exercise 30.3. Show; if x : Q → S is α – Hölder continuous for some α > 1,
then x is constant.

Notation 30.6 For 0 < α < 1 and x : Q→ S, let

Kα (x) := 2(1+α)
∞∑
k=0

2αk∆k (x) . (30.4)
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Theorem 30.7 (Kolmogorov’s Continuity Criteria). Let {Xt}t∈Q be an
S – valued stochastic process and suppose there exists γ, ε > 0 such that

E [ρ (Xt, Xs)
γ
] ≤ C |t− s|1+ε

for all s, t ∈ Q. (30.5)

Then for all α ∈ (0, ε/γ) ,

ρ (Xt, Xs) ≤ Kα (X) |t− s|α for all s, t ∈ Q (30.6)

where Kα (X) is as in Eq. (??) satisfies Kα (X) ∈ Lγ (P ) and in fact,

‖Kα (X)‖γ ≤
C1/γ · 2(1+α)

1− 2α−ε/γ
<∞. (30.7)

Proof. According to Exercise 30.4 below when γ < 1 or more generally
when γ < 1 + ε it actually follows that Xt = X0 a.s. and therefore Eq. (30.6)
holds for some Kα which is equal to zero almost surely.

So we may now suppose that γ ≥ 1 + ε ≥ 1 and let α ∈ (0, ε/γ) and Kα (·)
is defined as in Eq. (30.4). The estimate in Eq. (30.6) is now a consequence of
Lemma 30.5. So it only remains to verify Eq. (30.7). From the following simple
estimate,

∆k (X)
γ

= max
1≤i≤2k

ρ
(
Xi2−k , X(i−1)2−k

)γ ≤ 2k∑
i=1

ρ
(
Xi2−k , X(i−1)2−k

)γ
,

we find

E [∆k (X)
γ
] ≤

2k∑
i=1

E
[
ρ
(
Xi2−k , X(i−1)2−k

)γ] ≤ 2k ·C
(
2−k

)1+ε
= C2−kε (30.8)

and therefore ‖∆k (X)‖γ ≤ C1/γ2−kε/γ . Combining this inequality with
Minkowski’s inequality shows

‖Kα (X)‖γ = 2(1+α)

∥∥∥∥∥
∞∑
k=0

[
2αk∆k (X)

]∥∥∥∥∥
γ

≤ 2(1+α)
∞∑
k=0

2αk ‖∆k (X)‖γ

≤ 2(1+α)C1/γ
∞∑
k=0

(
2α−ε/γ

)k
=
C1/γ2(1+α)

1− 2α−ε/γ
<∞

provided α < ε/γ.

Theorem 30.8 (Kolmogorov’s Continuity Criteria). Let T ∈ N, D =
[0, T ] ⊂ R, (S, ρ) be a complete separable metric space and suppose that Xt :

Ω → S is a process for t ∈ D. Assume there exists γ,C, ε > 0 such that such
that

E [ρ (Xt, Xs)
γ
] ≤ C |t− s|1+ε

for all s, t ∈ D. (30.9)

Then there is a modification, X̃, of X which is α–Hölder continuous for all
α ∈ (0, ε/γ) and for each such α there is a random variable Kα (X) ∈ Lγ (P )
such that

ρ(X̃t, X̃s) ≤ Kα (X) |t− s|α for all s, t ∈ D. (30.10)

(Again according to Exercise 30.4, we will have Xt = X0 a.s. for all t ∈ D
unless γ ≥ 1 + ε.)

Proof. From Theorem 30.7 we know for all α ∈ (0, ε/γ) there is a random
variable Kα (X) ∈ Lγ (P ) such that

ρ(Xt, Xs) ≤ Kα (X) |t− s|α for all s, t ∈ D ∩ D.

On the set {Kα (X) <∞} , {Xt}t∈D∩D has a unique continuous extension to D

which we denote by
{
X̃t

}
t∈D

. Moroever this extenson is easily seen to satisfy

Eq. (30.10). Lastly we have for s ∈ D ∩ D and t ∈ D that

ρ
(
Xt, X̃t

)γ
≤ lim inf
D∩D3s→t

[
ρ (Xt, Xs) + ρ

(
Xs, X̃t

)]γ
= lim inf
D∩D3s→t

ρ (Xt, Xs)
γ

and so by Fatou’s lemma,

E
[
ρ
(
Xt, X̃t

)γ]
≤ lim inf
D∩D3s→t

E [ρ (Xt, Xs)
γ
] ≤ lim inf

D∩D3s→t
C |t− s|1+ε

= 0.

This certainly implies that ρ
(
Xt, X̃t

)
= 0 a.s. for every t ∈ D and therefore

that X̃ is a modification of X.
Our construction of Brownian motion in Theorem 31.3 below will give us

an opportunity to apply Theorem 30.8. At this time let us observe that it is
important that ε is greater than 0 in the previous two theorems.

Example 30.9. Recall that a Poisson process, {Nt}t≥0 , with parameter λ sat-
isfies (by definition): (i) N has independent increments, and (ii) if 0 ≤ u < v
then Nv −Nu has the Poisson distribution with parameter λ(v− u). Using the
generating function (or the Laplace or Fourier transform, see Example 27.11),
one can show that for any k ∈ N, that

E |Nt −Ns|k ∼ λ |t− s| for |t− s| small. (30.11)

Notice that we can not use Eq. (30.11) for any k ∈ N to satisfy the hypothesis
of Theorem 30.8 which is good since {Nt}t≥0 is integer value and does not have
a continuous modification. However, see Example 33.27 below where it is shown
that {Nt}t≥0 has a right continuous modification.
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Exercise 30.4. Let T ∈ N, D = [0, T ] ⊂ R, (S, ρ) be a complete separable
metric space and suppose that Xt : Ω → S is a process for t ∈ D. Assume there
exists γ > 0, C > 0, and ε > 0 such that (1 + ε) /γ > 1 and

E [ρ (Xt, Xs)
γ
] ≤ C |t− s|1+ε

for all s, t ∈ D.

Show Xt = X0 a.s. for each t ∈ D. Hint: for γ ∈ (0, 1) use the inequality1

(a+ b)
γ ≤ aγ + bγ for all a, b ≥ 0 while for γ ≥ 1 use Minkowski’s inequality.

(This Exercise was inspired by questions posed by Dennis Leung.)

30.2 Kolmolgorov’s Tightness Criteria

Before leaving this chapter let us record a couple of results pertaining to the
weak convergence of continuous processes. In this section let us suppose that
(S, ρ) is a complete metric space satisfying the Heine–Borel property2 (for ex-
ample S = Rd for some d <∞). As usual we let C ([0, 1] , S) denote the contin-
uous functions from [0, 1] into S. We make C ([0, 1] , S) into a metric space by
defininig

ρ∞ (x, y) := max
0≤t≤1

ρ (x (t) , y (t)) ∀ x, y ∈ C ([0, 1] , S) . (30.12)

It is standard and not to hard to verify that (C ([0, 1] , S) , ρ∞) is also a complete
separable metric space. Moreover the compact subset, K, of (C ([0, 1] , S) , ρ∞)
are precisely those sets which are closed, uniformly bounded, and equicontinous,
see Section ?? for more information in this regard. For our purposes here the
main thing to notice is that for each 0 < α < 1 and C <∞, the set

K (α,C) := {x ∈ C ([0, 1] , S) : ρ (x (t) , x (s)) ≤ K |t− s|α ∀ s, t ∈ [0, 1]}

is a closed, uniformly bounded, and equicontinous, subset of C ([0, 1] , S) and
hence is compact.

Exercise 30.5. Show (C ([0, 1] , S) , ρ∞) is separable. Hints:

1 If f (x) = xγ for γ ∈ (0, 1) , then f is an increasing function which is concave down,
i.e. f ′ is decreasing. For a > 0 let g (x) := f (x+ a)−f (x) . By looking at a picture
or just noting that g′ (x) ≤ 0 since f ′ is decreasing, it follows that g is a decreasing
function of x. In particular it follows that

f (b+ a)− f (b) = g (b) ≤ g (0) = f (a)− f (0) = f (a) .

2 The Heine–Borel property means that closed and bounded sets are compact.

1. Choose a countable dense subset, Λ, of S and then choose finite subset
Λn ⊂ Λ such that Λn ↑ Λ.

2. Let Dn :=
{
k
2n : 0 ≤ k ≤ 2n

}
and D = ∪∞n=0Dn. Further let Fn :=

{x : [0, 1]→ Λn} such that x|( k−1
2n , k2n ] is constant for all 1 ≤ k ≤ 2n and

further suppose that x|[0,2−n] is constant.
3. Given y ∈ C ([0, 1] , S) and ε > 0, show there exists n ∈ N and an x ∈ Fn

such that ρ∞ (y, x) ≤ ε.
4. For k, n ∈ N let

Fkn :=

{
y ∈ C ([0, 1] , S) : min

x∈Fn
ρ∞ (y, x) ≤ 1

k

}
and let Γ :=

{
(k, n) ∈ N2 : Fkn 6= ∅

}
. For each (k, n) ∈ Γ, choose a function,

yk,n ∈ Fkn .
5. Now show that {yk,n : (k, n) ∈ Γ} is a countable dense subset of

(C ([0, 1] , S) , ρ∞) .

Theorem 30.10 (Tightness Criteria). Let S be a complete metric space sat-
isfying the Heine–Borel property. Suppose that {Bn (t) : 0 ≤ t ≤ 1}∞n=1 is a se-
quence of S – valued continuous stochastic processes and suppose there exists
γ, ε > 0 and C <∞ such that

sup
n
E [ρ (Bn (t) , Bn (s))

γ
] ≤ C |t− s|1+ε

for all 0 ≤ s, t ≤ 1 (30.13)

and for some point s0 ∈ S we have

lim
N↑∞

sup
n
P [ρ (Bn (0) , s0) > N ] = 0. (30.14)

Then the collection of measures, {µn := LawP (Bn)}∞n=1 on C ([0, 1] , S) are
tight.

Proof. Let α ∈ (0, ε/γ) and for ω ∈ C ([0, 1] , S) let

Kα (ω) = 2−(1+α)γ
∞∑
k=0

2αk∆k (ω)

where

∆k (ω) := max

{
ρ

(
ω

(
j − 1

2k

)
, ω

(
j

2k

))
: 1 ≤ j ≤ 2k

}
.

The assumptions of this theorem allows us to apply Theorem 30.7 in order to
learn;

sup
n
E [Kα (Bn)

γ
] ≤M (C, γ, ε, α) <∞.
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Now let ΩN denote those ω ∈ C ([0, 1] , S) such that ρ (ω (0) , s0) ≤ N and
Kα (ω) ≤ N. We then have that

µn (ΩcN ) = P (Bn /∈ ΩN )

= P (ρ (Bn (0) , s0) > N or Kα (Bn) > N)

≤ P (ρ (Bn (0) , s0) > N) + P (Kα (Bn) > N)

≤ P [ρ (Bn (0) , s0) > N ] +
1

Nγ
EKα (Bn)

γ

≤ P [ρ (Bn (0) , s0) > N ] +
1

Nγ
M (C, γ, ε, α) .

From this inequality and the hypothesis of the theorem it follows that
limN→∞ supn µn (ΩcN ) = 0. To complete the proof it suffices to observe that
for ω ∈ ΩN we have ρ (ω (0) , s0) ≤ N and

ρ (ω (t) , ω (s)) ≤ Kα (ω) |t− s|α ≤ N |t− s|α ∀ 0 ≤ s, t ≤ 1.

Therefore by the Arzela - Ascoli Theorem ?? and Remark ??, it follows that
ΩN is precompact inside of the complete separable metric space, C ([0, 1] , S) .

This theorem is often useful for checking the tightness hypothesis of the next
theorem.

Theorem 30.11 (Weak Convergence Theorem). Keeping the notation
above and further assume {B0 (t) : 0 ≤ t ≤ 1} is another S – valued continu-

ous process. Then Bn =⇒ B0 iff {Bn}∞n=1 is tight and Bn
f.d.
=⇒ B0, i.e. Bn

converges to B0 in the sense of finite dimensional distributions.

Proof. If Bn =⇒ B0 then {Bn}∞n=1 is tight by Prokhorov’s Theorem 26.89.
Moreover if f : Sk → R is a bounded continuous function and 0 ≤ t1 < t2 <
· · · < tk ≤ 1, then

F (x) := f (x (t1) , . . . , x (tk)) for x ∈ C ([0, 1] , S) (30.15)

defines a bounded continuous (cylinder) function on C ([0, 1] , S) . Therefore
by the definition of weak convergence it follows that

lim
n→∞

E [f (Bn (t1) , . . . , Bn (tk))] = lim
n→∞

E [F (Bn (·))] = E [F (B0 (·))]

= E [f (B0 (t1) , . . . , B0 (tk))]

and we have shown Bn
f.d.
=⇒ B0.

For the converse we now suppose that {Bn}∞n=1 is tight and Bn
f.d.
=⇒ B0

and for the sake of contradiction assume that Bn does not converge weakly

to B0. This means there exists an ε > 0 and a bounded continuous function
F : C ([0, 1] , S) → R such that |E [F (Bn)]− EF (B0)| ≥ ε for infinitely many
n. Therefore there is a subsequence B′k = Bnk such that

|EF (B′k)− EF (B0)| ≥ ε > 0 for all k ∈ N. (30.16)

Moreover by the assumed tightness, Prokhorov’s Theorem 26.89 allows us to
pass to a further subsequence (still denoted by B′k) if necessary so that B′k =⇒
X for some continuous process in S, i.e. for a C ([0, 1] , S) – random variable X.
Passing to the limit as k →∞ in Eq. (30.16) then implies that

|EF (X)− EF (B0)| ≥ ε > 0. (30.17)

On the other hand Bn
f.d.
=⇒ B0 as n → ∞ and therefore X and B0 are

continuous processes on [0, 1] with the same finite dimensional distributions
and hence are indistinguishable by Exercise 30.1. However, this then implies
|EF (X)− EF (B0)| = 0 which contradicts Eq. (30.17).
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Brownian Motion I

Our next goal is to prove existence of Brownian motion and then describe
some of its basic path properties.

Definition 31.1 (Brownian Motion). A Brownian motion {Bt}t≥0 is an
adapted mean zero Gaussian random process on some filtered probability space,(
Ω,B, {Bt}t≥0 , P

)
, satisfying; 1) for each ω ∈ Ω, t → Bt (ω) is continuous,

and 2)
E [BtBs] = t ∧ s for all s, t ≥ 0. (31.1)

So a Brownian motion is a pre-Brownian motion with continuous sample paths.

Remark 31.2. If no filtration is given, we can use the process to construct one.
Namely, let B0

t := σ (Bs : s ≤ t) and replace B by ∨B0
t if necessary. We call{

B0
t

}
the raw filtration associated to {Bt} .

Theorem 31.3 (Wiener 1923). Brownian motions exists. Moreover for any
α ∈ (0, 1/2) , t→ Bt is locally α – Hölder continuous almost surely.

Proof. For 0 ≤ s < t < ∞, B̃t − B̃s is a mean zero Gaussian random
variable with

E
[(
B̃t − B̃s

)2
]

= E
[
B̃2
t + B̃2

s − 2BsB̃t

]
= t+ s− 2s = t− s.

Hence if N is a standard normal random variable, then B̃t− B̃s
d
=
√
t− sN and

therefore, for any p ∈ [1,∞),

E
∣∣∣B̃t − B̃s∣∣∣p = (t− s)p/2 E |N |p . (31.2)

Hence an application of Theorem 30.8 shows, with ε = p > 2, β = p/2 − 1,

α ∈
(

0, p/2−1
p

)
=
(
0, 1

2 − 1/p
)
, there exists a modification, B of B̃ such that

|Bt −Bs| ≤ Cα,T |t− s|α for s, t ∈ [0, T ).

By applying this result with T = N ∈ N, we find there exists a continuous
version, B, of B̃ for all t ∈ [0,∞) and this version is locally Hölder continuous
with Hölder constant α < 1/2.

For the rest of this chapter we will assume that {Bt}t≥0 is a Brownian motion

on some probability space,
(
Ω,B, {Bt}t≥0 , P

)
and Bt := σ (Bs : s ≤ t) .

31.1 Donsker’s Invariance Principle

In this section we will see that Brownian motion may be thought of as a limit
of random walks – this is the content of Donsker’s invariance principle or the
so called functional central limit theorem. The setup is to start with a random
walk, Sn := X1 + · · ·+Xn where {Xn}∞n=1 are i.i.d. random variables with zero
mean and variance one. We then define for each n ∈ N the following continuous
process,

Bn (t) :=
1√
n

(
S[nt] + (nt− [nt])X[nt]+1

)
(31.3)

where for τ ∈ R+, [τ ] is the integer part of τ, i.e. the nearest integer to τ which
is no greater than τ. The first step in this program is to prove convergence in
the sense of finite dimensional distributions.

Proposition 31.4. Let B be a standard Brownian motion, then Bn
f.d.
=⇒ B.

Proof. In Exercise 26.13 you showed that
{

1√
n
S[nt]

}
t≥0

f.d.
=⇒ B as n→∞.

Suppose that 0 < t1 < t2 < · · · < tk <∞ are given and we let

Wn :=
1√
n

(
S[nt1], . . . , S[ntk]

)
,

Yn := (Bn (t1) , . . . , Bn (tk))

and εn := Yn −Wn ∈ Rk. From Eq. (31.3) and Chebyshev’s inequality (for all
δ > 0),

P (|(εn)i| > δ) ≤ 1

δ
E
[

1√
n

(nti − [nti])
∣∣X[nt]+1

∣∣] ≤ 1√
n

E |X1|
δ
→ 0

as n → ∞. This then easily implies that εn
P→ 0 as n → ∞ and therefore by

Slutzky’s Theorem 26.43 it follows that Yn = Xn+εn =⇒ (B (t1) , . . . , B (tk)) .

Let Ω := C ([0,∞),R) which becomes a complete metric space in the metric
defined by,

ρ (ω1, ω2) :=

∞∑
n=1

1

2n
max

0≤t≤n
|ω1 (t)− ω2 (t)| ∧ 1.
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Theorem 31.5 (Donsker’s invariance principle). Let Ω, Bn, and B be as
above. Then for Bn =⇒ B, i.e.

lim
n→∞

E [F (Bn)] = E [F (B)]

for all bounded continuous functions F : Ω → R.

One method of proof, see [27] and [42], goes by the following two steps. 1)
Show that the finite dimensional distributions of Bn converge to a B as was
done in Proposition 31.4. 2) Show the distributions of Bn are tight. A proof
of the tightness may be based on Ottaviani’s maximal inequality in Corollary
25.52, [26, Corollary 16.7]. Another possible proof or this theorem is based on
“Skorokhod’s representation,” see (for example) [26, Theorem 14.9 on p. 275]
or [35]. Rather than give the full proof here I will give the proof of a slightly
weaker version of the theorem under the more stringent restriction that the Xn

posses fourth moments.

Proposition 31.6 (Random walk approximation bounds). Suppose that
{Xn}∞n=1 ⊂ L4 (P ) are i.i.d. random variables with EXn = 0, EX2

n = 1 and
γ := EX4

n <∞. Then there exists C <∞ such that

E |Bn (t)−Bn (s)|4 ≤ C |t− s|2 for all s, t ∈ R+. (31.4)

Exercise 31.1. Provide a proof of Proposition 31.6. Hints: Use the results of
Exercise 15.7, namely that

E |Sl|4 = lγ + 3l(l − 1), (31.5)

to verify that Eq. (31.4) holds for s, t ∈ Dn := 1
nN0. Take care of the case where

s, t ≥ 0 with |t− s| < 1/n by hand and finish up using these results along with
Minkowski’s inequality.

Theorem 31.7 (Baby Donsker Theorem). Continuing the notation used in
Proposition 31.6 and let T <∞ and B be a Brownian motion. Then

Bn|[0,T ] =⇒ B|[0,T ], (31.6)

i.e. Law
(
Bn|[0,T ]

)
=⇒ Law

(
B|[0,T ]

)
as distributions on ΩT = C ([0, T ] ,R) –

a complete separable metric space. (See the simulation file Random Walks to
BM.xls.)

Proof. If Eq. (31.6) fails to hold there would exists g ∈ BC (ΩT ) and a
subsequence B′k = Bnk such that

ε := inf
k

∣∣E [g (B′k|[0,T ]

)]
− Eg

(
B|[0,T ]

)∣∣ > 0. (31.7)

Since Bn (0) = 0 for all n and the estimate in Eq. (31.4) of Proposition
31.6 holds, it follows from Theorem 30.10 that

{
Bn|[0,T ]

}∞
n=1

is tight. So by
Prokhorov’s Theorem 26.89, there is a further subsequence B′′l = B′kl which is
weakly convergent to some ΩT – valued process X. Replacing B′k bit B′′l in Eq.
(31.7) and then letting l→∞ in the resulting equation shows∣∣E [g (X|[0,T ]

)]
− Eg

(
B|[0,T ]

)∣∣ ≥ ε > 0. (31.8)

On the other hand by Proposition 31.4 we know that Bn
f.d.
=⇒ B as n → ∞

and therefore X and B are continuous processes on [0, T ] with the same fi-
nite dimensional distributions and hence are indistinguishable by Exercise 30.1.
However this is in contradiction to Eq. (31.8).

31.2 Path Regularity Properties of BM

Definition 31.8. Let (V, ‖·‖) be a normed space and Z ∈ C ([0, T ] , V ) . For
1 ≤ p <∞, the p - variation of Z is;

vp (Z) := sup
Π

 n∑
j=1

∥∥Ztj − Ztj−1

∥∥p1/p

where the supremum is taken over all partitions, Π :=
{0 = t0 < t1 < · · · < tn = T} , of [0, T ] .

Lemma 31.9. The function vp (Z) is a decreasing function of p.

Proof. Let a := {aj}nj=1 be a sequence of non-negative numbers and set

‖a‖p :=

 n∑
j=1

apj

1/p

.

It will suffice to show ‖a‖p is a decreasing function of p. To see this is true,
q = p+ r. Then

‖a‖qq =

n∑
j=1

ap+rj ≤
(

max
j
aj

)r
·
n∑
j=1

apj ≤ ‖a‖
r
p · ‖a‖

p
p = ‖a‖qp ,

wherein we have used,

max
j
aj =

(
max
j
apj

)1/p

≤

 n∑
j=1

apj

1/p

= ‖a‖p .
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31.2 Path Regularity Properties of BM 483

Notation 31.10 (Partitions) Given P := {0 = t0 < t1 < · · · < tn = T} , a
partition of [0, T ] , let

∆iB := Bti −Bti−1 , and ∆it := ti − ti−1

for all i = 1, 2, . . . , n. Further let mesh(P) := maxi |∆it| denote the mesh of the
partition, P.

Corollary 31.11. For all p > 2 and T < ∞, vp
(
B|[0,T ]

)
< ∞ a.s. (We will

see later that vp
(
B|[0,T ]

)
=∞ a.s. for all p < 2.)

Proof. By Theorem 31.3, there exists Kp <∞ a.s. such that

|Bt −Bs| ≤ Kp |t− s|1/p for all 0 ≤ s, t ≤ T. (31.9)

Thus we have∑
i

|∆iB|p ≤
∑
i

(
Kp |ti − ti−1|1/p

)p
≤
∑
i

Kp
p |ti − ti−1| = Kp

pT

and therefore, vp
(
B|[0,T ]

)
≤ Kp

pT <∞ a.s.

Exercise 31.2 (Quadratic Variation). Let

Pm :=
{

0 = tm0 < tm1 < · · · < tmnm = T
}

be a sequence of partitions such that mesh (Pm)→ 0 as m→∞. Further let

Qm :=

nm∑
i=1

(∆m
i B)

2
:=

nm∑
i=1

(
Btm

i
−Btm

i−1

)2

. (31.10)

Show
lim
m→∞

E
[
(Qm − T )

2
]

= 0

and limm→∞Qm = T a.s. if
∑∞
m=1 mesh (Pm) <∞. This result is often abbre-

viated by the writing, dB2
t = dt. Hint: it is useful to observe; 1)

Qm − T =

nm∑
i=1

[
(∆m

i B)
2 −∆it

]
and 2) using Eq. (31.2) there is a constant, c <∞ such that

E
[
(∆m

i B)
2 −∆it

]2
= c (∆it)

2
.

Proposition 31.12. Suppose that {Pm}∞m=1 is a sequence of partitions of [0, T ]
such that Pm ⊂ Pm+1 for all m and mesh (Pm)→ 0 as m→∞. Then Qm → T
a.s. where Qm is defined as in Eq. (31.10).

Proof. It is always possible to find another sequence of partitions, {P ′n}
∞
n=1 ,

of [0, T ] such that P ′n ⊂ P ′n+1, mesh (P ′n)→ 0 as n→∞, #
(
P ′n+1

)
= # (P ′n)+

1, and Pm = P ′nm where {nm}∞m=1 is a subsequence of N. If we let Q′n denote
the quadratic variations associated to P ′n and we can shown Q′n → T a.s. then
we will also have Qm = Q′nm → T a.s. as well. So with these comments we may
now assume that # (Pn+1) = # (Pn) + 1.

We already know form Exercise 31.2 that Qm → T in L2 (P ) . So it suffices
to show Qm is almost surely convergent. We will do this by showing {Qm}∞m=1

is a backwards martingale relative to the filtration,

Fm := σ (Qm, Qm+1, . . . ) .

To do this, suppose that Pm+1 = Pm ∪ {v} and u = ti−1, v = ti+1 ∈ Pm such
that u < v < w. Let X := Bv −Bw and Y := Bw −Bu. Then

Qm = Qm+1 − (Bv −Bw)
2 − (Bw −Bu)

2
+ (Bv −Bu)

2

= Qm+1 −X2 − Y 2 + (X + Y )
2

= Qm+1 + 2XY

therefore,
E [Qm|Fm+1] = Qm+1 + 2E [XY |Fm+1] .

So to finish the proof it suffices to show E [XY |Fm+1] = 0 a.s.
To do this let

bt :=

{
Bt if t ≤ v

Bv − (Bt −Bv) if t ≥ v,
that is after t = v, the increments of b are the reflections of the increments ofB.
Clearly bt is still a continuous process and it is easily verified that E [btbs] = s∧t.
Thus {bt}t≥0 is still a Brownian motion. Moreover, if Qm+n (b) is the quadratic
variation of b relative to Pm+n, then

Qm+n (b) = Qm+n = Qm+n (B) for all n ∈ N.

On the other hand, under this transformation, X → X and Y → −Y. Since
(X,Y,Qm+1, Qm+2, . . . ) and (−X,Y,Qm+1, Qm+2, . . . ) have the same distribu-
tion, if we write

E [XY |Fm+1] = f (Qm+1, Qm+2, . . . ) a.s., (31.11)

then it follows from Exercise 19.7, that

E [−XY |Fm+1] = f (Qm+1, Qm+2, . . . ) a.s. (31.12)

Hence we may conclude,

E [XY |Fm+1] = E [−XY |Fm+1] = −E [XY |Fm+1] ,

and thus E [XY |Fm+1] = 0 a.s.

Page: 483 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



484 31 Brownian Motion I

Corollary 31.13. If p < 2, then vp
(
B|[0,T ]

)
=∞ a.s.

Proof. Choose partitions, {Pm} , of [0, T ] such that limm→∞Qm = T
a.s. where Qm is as in Eq. (31.10) and let Ω0 := {limm→∞Qm = T} so that
P (Ω0) = 1. If vp

(
B|[0,T ] (ω)

)
<∞ for some ω ∈ Ω0, then, with b = B (ω) , we

would have

Qm (ω) =

nm∑
i=1

(∆m
i b)

2
=

nm∑
i=1

|∆m
i b|

p · |∆m
i b|

2−p

≤ max
i
|∆m

i b|
2−p ·

nm∑
i=1

|∆m
i b|

p ≤ [vp (b)]
p ·max

i
|∆m

i b|
2−p

which tends to zero as m → ∞ by the uniform continuity of b. But this con-
tradicts the fact that limm→∞Qm (ω) = T. Thus we must vp

(
B|[0,T ]

)
=∞ on

Ω0.

Remark 31.14. The reader may find a proof that Corollary 31.13 also holds for
p = 2 in [16, Theorem 13.69 on p. 382]. You should consider why this result in
not in contradiction with Exercise 31.2 and Theorem 31.12. Hint: unlike the
case of p = 1, when p > 1 the quantity;

vΠp (Z) :=

 n∑
j=1

∥∥Ztj − Ztj−1

∥∥p1/p

does not increase under refinement of partitions so that

vp (Z) = sup
Π
vΠp (Z) 6= lim

|Π|→0
vΠp (Z)

when p > 1.

Corollary 31.15 (Roughness of Brownian Paths). A Brownian motion,
{Bt}t≥0 , is not almost surely α – Hölder continuous for any α > 1/2.

Proof. According to Exercise 31.2, we may choose partition, Pm, such that
mesh (Pm) → 0 and Qm → T a.s. If B were α – Hölder continuous for some
α > 1/2, then

Qm =

nm∑
i=1

(∆m
i B)

2 ≤ C
nm∑
i=1

(∆m
i t)

2α ≤ C max
(

[∆it]
2α−1

) nm∑
i=1

∆m
i t

≤ C [mesh (Pm)]
2α−1

T → 0 as m→∞

which contradicts the fact that Qm → T as m→∞.

Lemma 31.16. For any α > 1/2, lim supt↓0 |Bt| /tα =∞ a.s. (See Exercise ??
below to see that α = 1/2 would work as well.)

Proof. If lim supt↓0 |ωt| /tα <∞ then there would exists C <∞ such that

|ωt| ≤ Ctα for all t ≤ 1 and in particular,
∣∣ω1/n

∣∣ ≤ Cn−α for all n ∈ N. Hence
we have shown{

lim sup
t↓0

|Bt| /tα <∞

}
⊂ ∪C∈N ∩n∈N

{∣∣B1/n

∣∣ ≤ Cn−α} .
This completes the proof because,

P
(
∩n∈N

{∣∣B1/n

∣∣ ≤ Cn−α}) ≤ lim inf
n→∞

P
(∣∣B1/n

∣∣ ≤ Cn−α)
= lim inf

n→∞
P

(
1√
n
|B1| ≤ Cn−α

)
= lim inf

n→∞
P
(
|B1| ≤ Cn1/2−α

)
= P (|B1| = 0) = 0

if α > 1/2.

Theorem 31.17 (Nowhere 1/2 + ε – Hölder Continuous). Let

W := {ω ∈ C ([0,∞)→ R) : ω (0) = 0} ,

B denote the σ – field on W generated by the projection maps, bt (ω) = ω (t)
for all t ∈ [0,∞), and µ be Wiener measure on (W,B) , i.e. µ is the Law of
a Brownian motion. For α > 1/2 and Eα denote the set of ω ∈ W such that
ω is α–Hölder continuous at some point t = tω ∈ [0, 1]. when µ∗(Eα) = 0, i.e.
there exists a set Ẽα ∈ B such that

Eα =

{
inf

0≤t≤1
lim sup
h→0

|ω (t+ h)− ω (t)|
|h|α

<∞
}
⊂ Ẽα

and µ
(
Ẽα

)
= 0. In particular, µ is concentrated on Ẽcα which is a subset of the

collection paths which are nowhere differentiable on [0, 1] .

Proof. Let α ∈ (0, 1) and ν ∈ N – to be chosen more specifically later. If
ω ∈ Eα, then there exists, t ∈ [0, 1], C <∞, such that

|ω(t)− ω(s)| ≤ C |t− s|α for all |s| ≤ ν + 1.

For all n ∈ N we may choose i ≥ 0 so that
∣∣t− i

n

∣∣ < 1
n . By the triangle

inequality, for all j = 1, 2, . . . , ν, we have

Page: 484 job: prob macro: svmonob.cls date/time: 20-Feb-2019/8:32



31.2 Path Regularity Properties of BM 485∣∣∣∣ω( i+ j

n

)
− ω

(
i+ j − 1

n

)∣∣∣∣ ≤ ∣∣∣∣ω( i+ j

n

)
− ω (t)

∣∣∣∣+

∣∣∣∣ω (t)− ω
(
i+ j − 1

n

)∣∣∣∣
≤ C

[∣∣∣∣ i+ j

n
− t
∣∣∣∣α +

∣∣∣∣ i+ j − 1

n
− t
∣∣∣∣α]

≤ Cn−α [|ν + 1|α + |ν|α] =: Dn−α.

Therefore, ω ∈ Eα implies there exists D ∈ N such that for all n ∈ N there
exists i ≤ n such that∣∣∣∣ω( i+ j

n

)
− ω

(
i+ j − 1

n

)∣∣∣∣ ≤ Dn−α ∀ j = 1, 2, . . . , ν.

Letting

AD := ∩∞n=1 ∪i≤n ∩νj=1

{
ω :

∣∣∣∣ω( i+ j

n

)
− ω

(
i+ j − 1

n

)∣∣∣∣ ≤ Dn−α} ,
we have shown that Eα ⊂ ∪D∈NAD. We now complete the proof by showing
P (AD) = 0. To do this, we compute,

P (AD) ≤ lim inf
n→∞

P

(
∪i≤n ∩νj=1

{
ω :

∣∣∣∣ω( i+ j

n

)
− ω

(
i+ j − 1

n

)∣∣∣∣ ≤ Dn−α})
≤ lim inf

n→∞

∑
i≤n

ν∏
j=1

P

(
ω :

∣∣∣∣ω( i+ j

n

)
− ω

(
i+ j − 1

n

)∣∣∣∣ ≤ Dn−α)

= lim inf
n→∞

n

[
P

(
1√
n
|N | ≤ Dn−α

)]ν
= lim inf

n→∞
n
[
P
(
|N | ≤ Dn 1

2−α
)]ν

≤ lim inf
n→∞

n
[
Cn

1
2−α

]ν
= Cν lim inf

n→∞
n1+( 1

2−α)ν . (31.13)

wherein we have used

µ (|N | ≤ δ) =
1√
2π

∫
|x|≤δ

e−
1
2x

2

dx ≤ 1√
2π

2δ.

The last limit in Eq. (31.13) is zero provided we choose α > 1
2 and ν

(
α− 1

2

)
> 1.

We end this section with a often useful, albeit heuristic, interpretation of
Wiener measure, µ := Law

(
B(·)

)
. This interpretation empathizes the Gaussian

nature of µ.

Theorem 31.18 (Fake Theorem!). Let µ := Law
(
B(·)

)
thought of as a mea-

sure on C ([0, 1] ,R) and let

H :=

{
x ∈ C ([0, 1] ,R) : x (0) = 0 and

∫ 1

0

|ẋ (t)|2 dt <∞
}
.

Then heuristically we expect µ (H) = 1,

dµ (x) =
1

Z
exp

(
−1

2

∫ 1

0

|ẋ (t)|2 dt
)
dm (x)

where m is “Lebesgue” measure on H, and Z is a normalization constant.

Fake Proof. Let P := {0 = t0 < t1 < · · · < tn = 1} be a partition of [0, 1] ,
let

HP := {x ∈ H : x (0) = 0 and x′′ (t) = 0 ∀ t /∈ P} ,
and for x ∈ C ([0, 1] ,R) with x (0) = 0, let xP be the unique element of HP
such that xP (ti) = x (ti) for 1 ≤ i ≤ n. Now suppose that F : C ([0, 1] ,R)→ R
is a bounded continuous function. The key points are;

1. max0≤t≤1

∣∣BPt (ω)→ Bt (ω)
∣∣ → 0 as mesh (P) → 0, and therefore

F
(
BP(·)

)
→ F

(
B(·)

)
as mesh (P)→ 0.

2. By the dominated convergence theorem,∫
C([0,1],R)

F (x) dµ (x) := E
[
F
(
B(·)

)]
= lim

mesh(P)→0
E
[
F
(
BP(·)

)]
.

3. We have

E
[
F
(
BP(·)

)]
=

∫
HP

f (x)
1

ZP
exp

(
−1

2

∫ 1

0

|ẋ (t)|2 dt
)
dmP (x)

where mP is a Lebesgue measure on HP and ZP is a normalization constant.
4. Given items 2. and 3. we formally have upon passing to the limit as

mesh (P)→ 0 that∫
C([0,1],R)

F (x) dµ (x)

=

∫
H

F (x)
1

Z
exp

(
−1

2

∫ 1

0

|ẋ (t)|2 dt
)
dm (x) .

The main point it to prove item 3. above which is done by direct compu-
tation. To this end, let f : Rn → R be defined so that f (x (t1) , . . . , x (tn)) =
F
(
xP
)
, then

E
[
F
(
BP(·)

)]
= E [f (Bt1 , . . . , Btn)]

=

∫
Rn
f (x1, x2, . . . , xn)

n∏
j=1

1√
2π∆j

exp

(
− 1

2∆j
|xj − xj−1|2

)
dxj
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where x0 = 0 by convention. The key point is that the above expression may
be written as

E [f (Bt1 , . . . , Btn)]

=

∫
HP

f (x (t1) , x (t2) , . . . , x (tn))
1

ZP
exp

(
−1

2

∫ 1

0

|ẋ (t)|2 dt
)
dmP (x)

(31.14)

where

ZP :=

n∏
j=1

√
2π∆j and dmP (x) := d [x (t1)] . . . d [x (tn)] .

The reason this is true is that for x ∈ HP ,

ẋ (t) =
x (tj)− x (tj−1)

∆j
for tj−1 < t < tj

and therefore∫ 1

0

|ẋ (t)|2 dt =

n∑
j=1

∫ tj

tj−1

|ẋ (t)|2 dt =

n∑
j=1

∣∣∣∣x (tj)− x (tj−1)

∆j

∣∣∣∣2∆j

=

n∑
j=1

|x (tj)− x (tj−1)|2

∆j
.

31.3 Scaling Properties of B. M.

Theorem 31.19 (Transformations preserving B. M.). Let {Bt}t≥0 be a
Brownian motion and Bt := σ (Bs : s ≤ t) . Then;

1. bt = −Bt is again a Brownian motion.
2. if c > 0 and bt := c−1/2Bct is again a Brownian motion.
3. bt := tB1/t for t > 0 and b0 = 0 is a Brownian motion. In particular,

limt↓0 tB1/t = 0 a.s.
4. for all T ∈ (0,∞) , bt := Bt+T −BT for t ≥ 0 is again a Brownian motion

which is independent of BT .
5. for all T ∈ (0,∞) , bt := BT−t − BT for 0 ≤ t ≤ T is again a Brownian

motion on [0, T ] .

Proof. It is clear that in each of the four cases above {bt}t≥0 is still a
Gaussian process. Hence to finish the proof it suffices to verify, E [btbs] = s ∧ t

which is routine in all cases. Let us work out item 3. in detail to illustrate the
method. For 0 < s < t,

E [bsbt] = stE [Bs−1Bt−1 ] = st
(
s−1 ∧ t−1

)
= st · t−1 = s.

Notice that t → bt is continuous for t > 0, so to finish the proof we must
show that limt↓0 bt = 0 a.s. However, this follows from Kolmogorov’s continuity

criteria. Since {bt}t≥0 is a pre-Brownian motion, we know there is a version, b̃
which is a.s. continuous for t ∈ [0,∞). By exercise 30.1, we know that

E :=
{
ω ∈ Ω : bt (ω) 6= b̃t (ω) for some t > 0

}
is a null set. Hence ω /∈ E it follows that

lim
t↓0

bt (ω) = lim
t↓0

b̃t (ω) = 0.

Corollary 31.20 (B. M. Law of Large Numbers). Suppose {Bt}t≥0 is a
Brownian motion, then almost surely, for each β > 1/2,

lim sup
t→∞

|Bt|
tβ

=

{
0 if β > 1/2
∞ if β ∈ (0, 1/2) .

(31.15)

Proof. Since bt := tB1/t for t > 0 and b0 = 0 is a Brownian motion, we
know that for all α < 1/2 there exists, Cα (ω) <∞ such that, almost surely,

t
∣∣B1/t

∣∣ =
∣∣tB1/t

∣∣ = |bt| ≤ Cα |t|α for all t ≤ 1.

Replacing t by 1/t in this inequality implies, almost surely, that

1

t
|Bt| ≤

Cα
|t|α

for all t ≥ 1.

or equivalently that
|Bt| ≤ Cαt1−α for all t ≥ 1. (31.16)

Hence if β > 1/2, let α < 1/2 such that β < 1 − α. Then Eq. (31.15) follows
from Eq. (31.16).

On the other hand, taking α > 1/2, we know by Lemma 31.16 (or Theorem
31.17) that

lim sup
t↓0

t
∣∣B1/t

∣∣
tα

= lim sup
t↓0

|bt|
tα

=∞ a.s.

This may be expressed as saying

∞ = lim sup
t→∞

t−1 |Bt|
t−α

= lim sup
t→∞

|Bt|
t1−α

a.s.

Since β := 1− α is any number less that 1/2, the proof is complete.
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32

Filtrations and Stopping Times

For our later development we need to go over some measure theoretic pre-
liminaries about processes indexed by R+ := [0,∞). We will continue this
discussion in more depth later. For this chapter we will always suppose that(
Ω,B, {Bt}t∈R+

)
is a filtered measurable space, i.e. Ω is as set, B ⊂ 2Ω is

a σ algebra, and {Bt}t∈R+
is a filtration which to say each Bt is a sub – σ –

algebra of B and Bs ⊂ Bt for all s ≤ t.

32.1 Measurability Structures

Notation 32.1 (B±t ) Let

B∞ = B∞+ = ∨t∈R+
Bt = σ

(
∪t∈R+

Bt
)
⊂ B,

and for t ∈ R+, let
B+
t = Bt+ := ∩s>tBs.

Also let B0− := B0 and for t ∈ (0,∞] let

Bt− := ∨s<tBs = σ (∪s<tBs) .

(Observe that B∞− = B∞.)

The filtration,
{
B+
t

}
t∈R+

, “peaks” infinitesimally into the future while B−t
limits itself to knowing about the state of the system up to the times infinites-
imally before time t.

Definition 32.2 (Right continuous filtrations). The filtration {Bt}t≥0 is

right continuous if B+
t := Bt+ = Bt for all t ≥ 0.

The next result is trivial but we record it as a lemma nevertheless.

Lemma 32.3 (Right continuous extension). Suppose
(
Ω,B, {Bt}t≥0

)
is

a filtered space and B+
t := Bt+ := ∩s>tBs.Then

{
B+
t

}
t≥0

is right continu-

ous. (We refer to
{
B+
t

}
t∈R+

as the right continuous filtration associated to

{Bt}t∈R+
.)

Exercise 32.1. Suppose (Ω,F) is a measurable space, (S, ρ) is a separable
metric space1, and S is the Borel σ – algebra on S – i.e. the σ – algebra
generated by all open subset of S.

1. Let D ⊂ S be a countable dense set and Q+ := Q ∩ R+. Show S may be
described as the σ – algebra generated by all open (or closed) balls of the
form

B (a, ε) := {s ∈ S : ρ (s, a) < ε} (32.1)

(or C (a, ε) := {s ∈ S : ρ (s, a) ≤ ε}) (32.2)

with a ∈ D and ε ∈ Q+.
2. Show a function, Y : Ω → S, is F/S – measurable iff the functions, Ω 3
ω → ρ (x, Y (ω)) ∈ R+ are measurable for all x ∈ D. Hint: show, for each
x ∈ S, that ρ (x, ·) : S → R+ is a measurable map.

3. If Xn : Ω → S is a sequence of F/S – measurable maps such that X (ω) :=
limn→∞Xn (ω) exists in S for all ω ∈ Ω, then the limiting function, X, is
F/S – measurable as well. (Hint: use item 2.)

Definition 32.4. Suppose S is a metric space, S is the Borel σ – algebra on

S, and
(
Ω,B, {Bt}t∈R+

)
is a filtered measurable space. A process, Xt : Ω → S

for t ∈ R+ is;

1. adapted if Xt is Bt/S– measurable for all t ∈ R+,
2. right continuous if t→ Xt (ω) is right continuous for all ω ∈ Ω,
3. left continuous if t→ Xt (ω) is left continuous for all ω ∈ Ω, and
4. progressively measurable, if for all T ∈ R+, the map ϕT : [0, T ]×Ω → S

defined by ϕT (t, ω) := Xt (ω) is B[0,T ] ⊗ BT /S – measurable.

Lemma 32.5. Let ϕ (t, ω) := Xt (ω) where we are continuing the notation in
Definition 32.4. If Xt : Ω → S is a progressively measurable process then X· is
adapted and ϕ : R+×Ω → S is BR+

⊗B/S – measurable and the X is adapted.

Proof. For T ∈ R+, let ηT : Ω → [0, T ] × Ω, be defined by ηT (ω) :=
(T, ω) . If a ∈ [0, T ] and A ∈ BT , then η−1

T ([0, a]×A) = ∅ ∈ BT if a 6= T

1 If you are unconfortable with this much generality, you may assume S is a subset
of Rd and ρ (x, y) := ‖x− y‖ for all x, y ∈ S.
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and η−1
T ([0, a]×A) = A ∈ BT if a = T. This shows ηT is BT /B[0,T ] ⊗ B –

measurable. Therefore, the composition, ϕT ◦ ηT = XT is BT /S – measurable
for all T ∈ R+ which is the statement that X is adapted.

For V ∈ S and T <∞, we have

ϕ−1 (V ) ∩ ([0, T ]×Ω) =
(
ϕT
)−1

(V ) ∈ B[0,T ] ⊗ BT ⊂ B[0,T ] ⊗ B. (32.3)

Since B[0,T ] ⊗ B and
(
BR+
⊗ B

)
[0,T ]×Ω are σ – algebras which are generated

by sets of the form [0, a] × A with a ∈ [0, T ] and A ∈ B, they are equal –
B[0,T ] ⊗ B =

(
BR+
⊗ B

)
[0,T ]×Ω . This observation along with Eq. (32.3) then

implies,
ϕ−1 (V ) ∩ ([0, T ]×Ω) ∈

(
BR+ ⊗ B

)
[0,T ]×Ω ⊂ BR+ ⊗ B

and therefore,

ϕ−1 (V ) = ∪T∈N
[
ϕ−1 (V ) ∩ ([0, T ]×Ω)

]
∈ BR+

⊗ B.

This shows ϕ is BR+
⊗ B/S – measurable as claimed.

Lemma 32.6. Suppose S is a separable metric space, S is the Borel σ – algebra

on S,
(
Ω,B, {Bt}t∈R+

)
is a filtered measurable space, and Xt : Ω → S for t ∈

R+ is an adapted right continuous process. Then X· is progressively measurable
and the map, ϕ : R+ × Ω → S defined by ϕ (t, ω) = Xt (ω) is

[
BR+ ⊗ B

]
/S –

measurable.

Proof. Let T ∈ R+. To each n ∈ N let ϕn (0, ω) = X0 (ω) and

ϕn (t, ω) := X kT
2n

(ω) if
(k − 1)T

2n
< t ≤ kT

2n
for k ∈ {1, 2, . . . , 2n} .

Then

ϕ−1
n (A) =

[
{0} ×X−1

0 (A)
]
∪∞k=1

[(
(k − 1)T

2n
,
kT

2n

]
×X−1

Tk2−n (A)

]
∈ B[0,T ]⊗BT ,

showing that ϕn is
[
B[0,T ] ⊗ BT

]
/S – measurable. Therefore, by Exercise 32.1,

ϕT = limn→∞ ϕn is also
[
B[0,T ] ⊗ BT

]
/S – measurable. The fact that ϕ is[

BR+ ⊗ B
]
/S – measurable now follows from Lemma 32.5.

Lemma 32.7. Suppose that T ∈ (0,∞) , ΩT := C ([0, T ] ,R) , and FT =
σ
(
BTt : t ≤ T

)
, where BTt (ω) = ω (t) for all t ∈ [0, T ] and ω ∈ ΩT . Then;

1. The map, π : Ω → ΩT defined by π (ω) := ω|[0,T ] is BT /FT – measurable.
2. A function, F : Ω → R is BT – measurable iff there exists a function,
f : ΩT → R which is FT – measurable such that F = f ◦ π.

3. Let ‖ω‖T := maxt∈[0,T ] |ω (t)| so that (ΩT , ‖·‖T ) is a Banach space. The
Borel σ – algebra, BΩT on ΩT is the same as FT .

4. If F = f ◦ π where f : ΩT → R is a ‖·‖T – continuous function, then F is
BT – measurable.

Proof. 1. Since BTt ◦ π = Bt is BT – measurable for all t ∈ [0, T ] , it follows
that π is measurable.

2. Clearly if f : ΩT → R is FT – measurable, then F = f ◦ π : Ω → R
is BT – measurable. For the converse assertion, let H denote the bounded BT
– measurable functions of the form F = f ◦ π with f : ΩT → R being FT –
measurable. It is a simple matter to check that H is a vector space which is
closed under bounded convergence and contains all cylinder functions of the
form, G (Bt1 , . . . Btn) = G

(
BTt1 , . . . B

T
tn

)
◦ π with {ti}ni=1 ⊂ [0, T ] . The latter

set of functions generates the σ – algebra, BT , and so by the multiplicative
systems theorem, H contains all bounded BT – measurable functions. For a
general BT – measurable function, F : Ω → R, the truncation by N ∈ N,
FN = −N ∨ (F ∧N) , is of the form FN = fN ◦ π for some FT – measurable
function, fN : ΩT → R. Since every ω ∈ ΩT extends to an element of ω̃ ∈ Ω,
it follows that limN→∞ fN (ω) = limN→∞ FN (ω̃) = F (ω̃) exists. Hence if we
let f := limN→∞ fN , we will have F = f ◦ π with f being a FT – measurable
function.

3. Recall that BΩT = σ (open sets) . Since Bs : Ω → R is continuous for all
s, it follows that σ

(
BTs
)
⊂ BΩT for all s and hence FT ⊂ BΩT . Conversely,

since
‖ω‖ := sup

t∈Q∩[0,T ]

|ω (t)| = sup
t∈Q∩[0,T ]

∣∣BTt (ω)
∣∣ ,

it follows that ‖· − ω0‖ = supt∈Q∩[0,T ]

∣∣BTt (·)− ω0 (t)
∣∣ is FT – measurable

for every ω0 ∈ Ω. From this we conclude that each open ball, B (ω0, r) :=
{ω ∈ Ω : ‖ω − ω0‖ < r} , is in FT . By the classical Weierstrass approximation
theorem we know that Ω is separable and hence we may now conclude that FT
contains all open subsets of Ω. This shows that BΩT = σ (open sets) ⊂ FT .

4. Any continuous function, f : Ω → R is BΩT = FT – measurable and
therefore, F = f ◦ π is BT – measurable since it is the composition of two
measurable functions.

32.2 Stopping and optional times

Definition 32.8. A random time T : Ω → [0,∞] is a stopping time iff
{T ≤ t} ∈ Bt for all t ≥ 0 and is an optional time iff {T < t} ∈ Bt for
all t ≥ 0.
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32.2 Stopping and optional times 489

If T is an optional time, the condition {T < 0} = ∅ ∈ B0+ is vacuous.
Moreover, since {T < t} ↓ {T = 0} as t ↓ 0, it follows that {T = 0} ∈ B0+ when
T is an optional time.

Proposition 32.9. Suppose T : Ω → [0,∞] is a random time. Then;

1. If T (ω) = s with s ≥ 0 for all ω, then T is a stopping time.
2. Every stopping time is optional.
3. T is a {Bt} – optional time iff T is a

{
B+
t

}
– stopping time. In particular,

if Bt is right continuous, i.e. B+
t = Bt for all t, then the notion of optional

time and stopping time are the same.

Proof. 1.

{T ≤ t} =

{
∅ if t < s
Ω if t ≥ s

which show {T ≤ t} is in any σ – algebra on Ω.
2. If T is a stopping time, t > 0 and tn ∈ (0, t) with tn ↑ t, then

{T < t} = ∪n {T ≤ tn} ∈ Bt− ⊂ Bt.

This shows T is an optional time.
3. If T is {Bt} – optional and t ≥ 0, choose tn > t such that tn ↓ t.

Then {T < tn} ↓ {T ≤ t} which implies {T ≤ t} ∈ Bt+ = B+
t . Conversely

if T is an {Bt+} – stopping time, t > 0, and tn ∈ (0, t) with tn ↑ t, then
{T ≤ tn} ∈ Btn+ ⊂ Bt for all n and therefore,

{T < t} = ∪∞n=1 {T ≤ tn} ∈ Bt.

Exercise 32.2. Suppose, for all t ∈ R+, that Xt : Ω → R is a function. Let
Bt := BXt := σ (Xs : s ≤ t) and B = B∞ := ∨0≤t<∞Bt. (Recall that the general

element, A ∈ Bt is of the form, A = X−1
Λ

(
Ã
)

where Λ is a countable subset of

[0,∞), Ã ⊂ RΛ is a measurable set relative to the product σ – algebra on RΛ,
and XΛ : Ω → RΛ is defined by, XΛ (ω) (t) = Xt (ω) for all t ∈ Λ.) If T is a
stopping time and ω, ω′ ∈ Ω satisfy Xt (ω) = Xt (ω′) for all t ∈ [0, T (ω)] ∩ R,
then show T (ω) = T (ω′) .

Definition 32.10. Given a process, Xt : Ω → S and A ⊂ S, let

TA (ω) := inf {t > 0 : Xt (ω) ∈ A} and

DA (ω) := inf {t ≥ 0 : Xt (ω) ∈ A}

be the first hitting time and Debut (first entrance time) of A. As usual
the infimum of the empty set is taken to be infinity.

Clearly, DA ≤ TA and if DA (ω) > 0 or more generally if X0 (ω) /∈ A,
then TA (ω) = DA (ω) . Hence we will have DA = TA iff TA (ω) = 0 whenever
X0 (ω) ∈ A.

In the sequel will typically assume that (S, ρ) is a metric space and S is
the Borel σ – algebra on S. We will also typically assume (or arrange) for our
processes to have right continuous sample paths. If A is an open subset of S
and t→ Xt (ω) is right continuous, then TA = DA. Indeed, if X0 (ω) ∈ A, then
by the right continuity of X· (ω) , we know that limt↓0Xt (ω) = X0 (ω) ∈ A and
hence Xt (ω) ∈ A for all t > 0 sufficiently close to 0 and therefore, TA (ω) = 0.
On the other hand, if A is a closed set and X0 (ω) ∈ bd (A) , there is no need
for TA (ω) = 0 and hence in this case, typically DA � TA.

Proposition 32.11. Suppose
(
Ω, {Bt}t≥0 ,B

)
is a filtered measurable space,

(S, ρ) is a metric space, and Xt : Ω → S is a right continuous {Bt}t≥0 –
adapted process. Then;

1. If A ⊂ S is a open set, TA = DA is an optional time.
2. If A ⊂ S is closed, on {TA <∞} ({DA <∞}), XTA ∈ A (XDA ∈ A) .
3. If A ⊂ S is closed and X is a continuous process, then DA is a stopping

time.
4. If A ⊂ S is closed and X is a continuous process, then TA is an optional

time. In fact, {TA ≤ t} ∈ Bt for all t > 0 while {TA = 0} ∈ B0+, see Figure
32.1.

Fig. 32.1. A sample point, ω ∈ Ω, where TA (ω) = 0 with A = {a} ⊂ R.

Proof. 1. By definition, DA (ω) < t iff Xs (ω) ∈ A for some s < t, which
by right continuity of X happens iff Xs (ω) ∈ A for some s < t with s ∈ Q.
Therefore,

{DA < t} =
⋃

Q3s<tX
−1
s (A) ∈ Bt− ⊂ Bt.
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2. If A ⊂ S is closed and TA (ω) <∞ (or DA (ω) <∞), there exists tn > 0
(tn ≥ 0) such that Xtn ∈ A and tn ↓ TA (ω) . Since X is right continuous and
A is closed, Xtn → XTA(ω) ∈ A (Xtn → XDA (ω)) .

For the rest of the argument we will now assume that X is a continuous
process and A is a closed subset of S.

3. Observe that DA (ω) > t iff X[0,t] (ω) ∩ A = ∅. Since X is continuous,
X[0,t] (ω) is a compact subset of S and therefore

ε := ρ
(
X[0,t] (ω) , A

)
> 0

where
ρ (A,B) := inf {ρ (a, b) : a ∈ A and b ∈ B} .

Hence we have shown,

{DA > t} = ∪∞n=1

{
ω : ρ

(
X[0,t] (ω) , A

)
≥ 1/n

}
= ∪∞n=1 ∩s∈Q∩[0,t] {ρ (Xs, A) ≥ 1/n} ∈ Bt

wherein we have used ρ (·, A) : S → R+ is continuous and hence measurable. As
{DA ≤ t} = {DA > t}c ∈ Bt for all t, we have shown DA is an stopping time.

4. Suppose t > 0. Then TA (ω) > t iff X(0,t] (ω) ∩ A = ∅ which happens iff
for all δ ∈ (0, t) we have X[δ,t] (ω) ∩ A = ∅ or equivalently iff for all δ ∈ (0, t) ,

ε := ρ
(
X[δ,t] (ω) , A

)
> 0. Using these observations we find,

{TA > t} = ∩n>1/t ∪∞m=1

{
ω : ρ

(
X[1/n,t] (ω) , A

)
≥ 1/m

}
= ∩n>1/t ∪∞m=1 ∩s∈Q∩[1/n,t] {ρ (Xs, A) ≥ 1/m} ∈ Bt.

This shows {TA ≤ t} = {TA > t}c ∈ Bt for all t > 0. Since, for t > 0, {TA < t} =
∪s∈Q(0,t) {TA ≤ s} ∈ Bt we see that TA is an optional time.

The only thing keeping TA from being a stopping time in item 4 above is
the fact that {TA = 0} ∈ B0+ rather than {TA = 0} ∈ B0. It should be clear
that, in general, {TA = 0} /∈ B0 for {TA = 0} ∈ B0 iff 1TA=0 = f (X0) for
some measurable function, f : S → {0, 1} ⊂ R. But it is clearly impossible to
determine whether TA = 0 by only observing X0.

Notation 32.12 If τ : Ω → [0,∞] is a random B∞ – measurable time, let

Bτ := {A ∈ B∞ : {τ ≤ t} ∩A ∈ Bt for all t ∈ [0,∞]} . (32.4)

and
Bτ+ := {A ∈ B∞ : A ∩ {τ < t} ∈ Bt for all t ≤ ∞} .

Exercise 32.3. If τ is a stopping time then Bτ is a sub-σ – algebra of B∞ and
if τ is an optional time then Bτ+ is a sub-σ – algebra of B∞.

Exercise 32.4. Suppose τ : Ω → [0,∞] is the constant function, τ = s, show
Bτ = Bs and Bτ+ = ∩t>sBt =: Bs+ so that the notation introduced in Notation
32.12 is consistent with the previous meanings of Bs and Bs+.

Exercise 32.5. Suppose that τ is an optional time and let

B+
τ :=

{
A ∈ B∞ : A ∩ {τ ≤ t} ∈ Bt+ = B+

t for all t ≤ ∞
}
.

Show Bτ+ = B+
τ . Hence Bτ+ is precisely the stopped σ – algebra of the stopping

time, τ, relative to the filtration
{
B+
t

}
.

Lemma 32.13. Suppose T : Ω → [0,∞] is a random time.

1. If T is a {Bt} – stopping time, then T is BT – measurable.
2. If T is a {Bt} – optional time, then T is BT+ = B+

T – measurable.

Proof. Because of Exercise 32.5, it suffices to prove the first assertion. For
all s, t ∈ R+, we have

{T ≤ t} ∩ {T ≤ s} = {T ≤ s ∧ t} ∈ Bs∧t ⊂ Bs.

This shows {T ≤ t} ∈ BT for all t ∈ R+ and therefore that T is BT – measurable.

Lemma 32.14. If τ is a {Bt} – stopping time and Xt : Ω → S is a {Bt} –
progressively measurable process, then Xτ defined on {τ <∞} is (Bτ ){τ<∞} /S
– measurable. Similarly, if τ is a {Bt} – optional time and Xt : Ω → S is
a
{
B+
t

}
– progressively measurable process, then Xτ defined on {τ <∞} is

(Bτ+){τ<∞} /S – measurable.

Proof. In view of Proposition 32.9 and Exercise 32.5, it suffices to prove
the first assertion. For T ∈ R+, let ψT : {τ ≤ T} → [0, T ] × Ω be defined by
ψT (ω) = (τ (ω) , ω) and ϕT : [0, T ]×Ω → S be defined by ϕT (t, ω) = Xt (ω) .
By definition ϕT is B[0,T ] ⊗ BT /S – measurable. Since, for all A ∈ BT and
a ∈ [0, T ] ,

ψ−1
T ([0, a]×A) = {τ ≤ a} ∩A ∈ (BT ){τ≤T} ,

it follows that ψT is (BT ){τ≤T} /B[0,T ]⊗BT – measurable and therefore, ϕT ◦ψT :

{τ ≤ T} → S is (BT ){τ≤T} /S – measurable.
For V ∈ S and T ∈ R+,

X−1
τ (A) ∩ {τ ≤ T} =

{
ω ∈ Ω : τ (ω) ≤ T and Xτ(ω) (ω) ∈ A

}
=
{
ω ∈ Ω : τ (ω) ≤ T and ϕT ◦ ψT (ω) ∈ A

}
= {τ ≤ T} ∩

{
ϕT ◦ ψT ∈ A

}
∈ (BT ){τ≤T} ⊂ BT .

This is true for arbitrary T ∈ R+ we conclude that X−1
τ (A) ∈ Bτ and since,

by definition, X−1
τ (A) ⊂ {τ <∞} , it follows that X−1

τ (A) ∈ (Bτ ){τ<∞} . This
completes the proof since A ∈ S was arbitrary.
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Lemma 32.15 (Properties of Optional/Stopping times). Let T and S be
optional times and θ > 0. Then;

1. T + θ is a stopping time.
2. T + S is an optional time.
3. If T > 0 and T is a stopping time then T + S is again a stopping time.
4. If T > 0 and S > 0, then T + S is a stopping time.
5. If we further assume that S and T are stopping times, then T ∧ S, T ∨ S,

and T + S are stopping times.
6. If {Tn}∞n=1 are optional times, then

sup
n≥1

Tn, inf
n≥1

Tn, lim inf
n→∞

Tn, and lim sup
n→∞

Tn

are all optional times. If {Tn}∞n=1 are stopping times, then supn≥1 Tn is a
stopping time.

Proof. 1. This follows from the observation that

{T + θ ≤ t} = {T ≤ t− θ} ∈ B(t−θ)+ ⊂ Bt.

Notice that if t < θ, then {T + θ ≤ t} = ∅ ∈ B0.
2. – 4. For item 2., if τ > 0, then

{T + S < τ} = ∪{T < t, S < s : s, t ∈ Q ∩ (0, τ ] with s+ t < τ} ∈ Bτ− ⊂ Bτ

and if τ = 0, then {T + S < 0} = ∅ ∈ B0. If T > 0 and T is a stopping time
and τ > 0, then

{T + S ≤ τ} = {S = 0, T ≤ τ} ∪ {0 < S, S + T ≤ τ}

and {S = 0, T ≤ τ} ∈ Bτ . Hence it suffices to show {0 < S, S + T ≤ τ} ∈ Bτ .
To this end, observe that 0 < S and S + T ≤ τ happens iff there exists m ∈ N
such that for all n ≥ m, there exists a r = rn ∈ Q such that

0 < rn < S < rn + 1/n < τ and T ≤ τ − rn.

Indeed, if the latter condition holds, then S+T ≤ τ−rn+(rn + 1/n) = τ+1/n
for all n and therefore S + T ≤ τ. Thus we have shown

{S + T ≤ τ} = ∪m∈N∩n≥m∪{r < S < r + 1/n, T ≤ τ − r : 0 < r < r + 1/n < τ}

which is in Bτ− ⊂ Bτ . In showing {0 < S, S + T ≤ τ} ∈ Bτ we only need for S
and T to be optional times and so if S > 0 and T > 0, then

{T + S ≤ τ} = {0 < S, S + T ≤ τ} ∈ Bτ− ⊂ Bτ .

5. If T and S are stopping times and τ ≥ 0, then

{T ∧ S ≤ τ} = {T ≤ τ} ∪ {S ≤ τ} ∈ Bτ ,
{T ∨ S ≤ τ} = {T ≤ τ} ∩ {S ≤ τ} ∈ Bτ ,

and

{S + T > τ} = {T = 0, S > τ} ∪ {0 < T, T + S > τ}
= {T = 0, S > τ} ∪ {0 < T < τ, T + S > τ} ∪ {T ≥ τ, T + S > τ}
= {T = 0, S > τ} ∪ {0 < T < τ, T + S > τ}∪

∪ {S = 0, T > τ} ∪ {S > 0, T ≥ τ} .

The first, third, and fourth events are easily seen to be in Bτ . As for the second
event,

{0 < T < τ, T + S > τ} = ∪{r < T < τ, S > τ − r : r ∈ Q with 0 < r < τ} .

6. We have {
sup
n
Tn ≤ t

}
= ∩∞n=1 {Tn ≤ t} ,{

inf
n
Tn < t

}
= ∪∞n=1 {Tn < t}

which shows that supn Tn is a stopping time if each Tn is a stopping time and
that infn Tn is optional if each Tn is optional. Moreover, if each Tn is optional,
then Tn is a Bt+ stopping time and hence supn Tn is an Bt+ stopping time and
hence supn Tn is an Bt optional time, wherein we have used Proposition 32.9
twice.

Lemma 32.16 (Stopped σ – algebras). Suppose σ and τ are stopping times.

1. Bτ = Bt on {τ = t} .
2. If t ∈ [0,∞] , then τ ∧ t is Bt – measurable.
3. If σ ≤ τ, then Bσ ⊂ Bτ .
4. (Bσ){σ≤τ} ⊂ Bσ∧τ and in particular {σ ≤ τ} , {σ < τ} , {τ ≤ σ} , and

{τ < σ} are all in Bσ∧τ .
5. (Bσ){σ<τ} ⊂ Bσ∧τ .
6. Bσ ∩ Bτ = Bσ∧τ .
7. If D is a countable set and τ : Ω → D ⊂ [0,∞] is a function, then τ is a

stopping time iff {τ = t} ∈ Bt for all t ∈ D.
8. If the range of τ is a countable subset, D ⊂ [0,∞], then A ⊂ Ω is in Bτ iff
A ∩ {τ = t} ∈ Bt for all t ∈ D.

9. If the range of τ is a countable subset, D ⊂ [0,∞], then a function f : Ω → R
is Bτ – measurable iff 1{τ=t}f is Bt – measurable for all t ∈ D.
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Moreover, all of the above results hold if σ and τ are optional times provided
every occurrence of the letter B is replaced by B+.

Proof. Recall from Definition 19.27 that if G is a σ – algebra on Ω and
A ⊂ Ω, then GA := {B ∩A : B ∈ G} – a sub – σ – algebra of 2A. Moreover if G
and F are two σ – algebras on Ω and A ∈ G ∩ F , then (by definition) G = F
on A iff GA = FA.

1. If A ∈ Bτ , then

A ∩ {τ = t} = A ∩ {τ ≤ t} ∩ {τ < t}c ∈ Bt.

Conversely if A ∈ Bt and s ∈ R+,

A ∩ {τ = t} ∩ {τ ≤ s} =

{
∅ if s < t

A ∩ {τ = t} if s ≥ t

from which it follows that A ∩ {τ = t} ∈ Bτ .
2. To see τ ∧ t is Bt – measurable simply observe that

{τ ∧ t ≤ s} =

{
Ω ∈ Bt if t ≤ s

{τ ≤ s} ∈ Bs ⊂ Bt if t > s

and hence {τ ∧ t ≤ s} ∈ Bt for all s ∈ [0,∞] .
3. If A ∈ Bσ and σ ≤ τ, then

A ∩ {τ ≤ t} = [A ∩ {σ ≤ t}] ∩ {τ ≤ t} ∈ Bt

for all t ≤ ∞ and therefore A ∈ Bτ .
4. If A ∈ Bσ then A ∩ {σ ≤ τ} is the generic element of (Bσ){σ≤τ} . We now

have

(A ∩ {σ ≤ τ}) ∩ {τ ∧ σ ≤ t} = (A ∩ {σ ≤ τ}) ∩ {σ ≤ t}
= (A ∩ {σ ∧ t ≤ τ ∧ t}) ∩ {σ ≤ t}
= (A ∩ {σ ≤ t}) ∩ {σ ∧ t ≤ τ ∧ t} ∈ Bt

since (A ∩ {σ ≤ t}) ∈ Bt and σ ∧ t and τ ∧ t are Bt – measurable and hence
{σ ∧ t ≤ τ ∧ t} ∈ Bt. Since Ω ∈ Bσ, it follows from what we have just proved
that {σ ≤ τ} = Ω ∩ {σ ≤ τ} ∈ Bσ∧τ and hence also {τ < σ} = {σ ≤ τ}c ∈
Bσ∧τ . By symmetry we may also conclude that {τ ≤ σ} and {σ < τ} are
in Bσ∧τ .

5. By item 4., if A ∈ Bσ, then

A ∩ {σ < τ} = A ∩ {σ ≤ τ} ∩ {σ < τ} ∈ Bσ∧τ .

6. Since σ∧τ is a stopping time which is no larger than either σ or τ, it follows
that from item 2. that Bσ∧τ ⊂ Bσ ∩ Bτ . Conversely, if A ∈ Bσ ∩ Bτ then

A ∩ {σ ∧ τ ≤ t} = A ∩ [{σ ≤ t} ∪ {τ ≤ t}]
= [A ∩ {σ ≤ t}] ∪ [A ∩ {τ ≤ t}] ∈ Bt

for all t ≤ ∞. From this it follows that A ∈ Bσ∧τ .
7. If τ is a stopping time and t ∈ D, then {τ = t} = {τ ≤ t}\[∪D3s<t {τ ≤ s}] ∈
Bt. Conversely if {τ = t} ∈ Bt for all t ∈ D and s ∈ R+, then

{τ ≤ s} = ∪D3t≤s {τ = t} ∈ Bs

showing τ is a stopping time.
8. If A ∩ {τ = t} ∈ Bt for all t ∈ D, then for any s ≤ ∞,

A ∩ {τ ≤ s} = ∪D3t≤s [A ∩ {τ = t}] ∈ Bs

which shows A ∈ Bτ . Conversely if A ∈ Bτ and t ∈ D, then

A ∩ {τ = t} = [A ∩ {τ ≤ t}] \ [∪D3s<t (A ∩ {τ ≤ s})] ∈ Bt.

9. If f : Ω → R is Bτ measurable, then f is a limit of Bτ – simple functions,
say fn → f. By item 7. it easily follows that 1{τ=t}fn is Bt – measurable
for each t ∈ D and therefore 1{τ=t}f = limn→∞ 1{τ=t}fn is Bt – measurable
for each t ∈ D.
Conversely if f : Ω → R is a function such that 1{τ=t}f is Bt – measurable
for each t ∈ D, then for every A ∈ BR with 0 /∈ A we have

{τ = t} ∩ {f ∈ A} =
{

1{τ=t}f ∈ A
}
∈ Bt for all t ∈ D.

Hence it follows by item 7. that {f ∈ A} ∈ Bτ . Similalry,

{τ = t} ∩ {f = 0} =
{

1{τ=t}f = 0
}
∩ {τ = t} ∈ Bt for all t ∈ D

and so again {f = 0} ∈ Bτ by item 7. This suffices to show that f is Bτ –
measurable.

Corollary 32.17. If σ and τ are stopping times and F is a Bσ – measurable
function then 1{σ≤τ}F and 1{σ<τ}F are Bσ∧τ – measurable.

Proof. If F = 1A with A ∈ Bσ, then the assertion follows from items 4. and
5. from Lemma 32.16. By linearity, the assertion holds if F is a Bσ – measurable
simple function and then, by taking limits, for all Bσ – measurable functions.
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Lemma 32.18 (Optional time approximation lemma). Let τ be a {Bt}t≥0

– optional time and for n ∈ N, let τn : Ω → [0,∞] be defined by

τn :=
1

2n
[2nτ ] =∞1τ=∞ +

∞∑
k=1

k

2n
1 k−1

2n ≤τ<
k

2n
. (32.5)

Then {τn}∞n=1 are stopping times such that;

1. τn ↓ τ as n→∞,
2. B+

τ ⊂ Bτn for all n, and
3. {τn =∞} = {τ =∞} for all n.

Proof. If A ∈ B+
τ then

A ∩
{
τn = k2−n

}
= A ∩

{
(k − 1) 2−n ≤ τ < k2−n

}
=
[
A ∩

{
τ < k2−n

}]
\
{
τ < (k − 1) 2−n

}
∈ Bk2−n .

Taking A = Ω in this equation shows {τn = k2−n} ∈ Bk2−n for all k ∈ N and
so is a stopping time by Lemma 32.16. Moreover this same lemma shows that
A ∈ Bτn . The fact that τn ↓ τ as n→∞ and τn =∞ iff τ =∞ should be clear.

32.3 Filtration considerations

For this sction suppose that
(
Ω,B, {Bt}t≥0 , P

)
is a given filtered probability

space.

Notation 32.19 (Null sets) Let NP := {N ∈ B : P (N) = 0} – be the collec-
tion of null sets of P.

Definition 32.20. If A ⊂ B is a sub-sigma-algebra of B, then the augmenta-
tion of A is the σ – algebra, Ā := A ∨N := σ (A ∪N ) .

Definition 32.21 (Usual hypothesis). A filtered probability space,(
Ω,B, {Bt}t≥0 , P

)
, is said to satisfy the weak usual hypothesis if:

1. For each t ∈ R+, NP ⊂ Bt, i.e. Bt contains all of the P – null sets.
2. The filtration, {Bt}t∈R+

is right continuous, i.e. Bt+ = Bt.

If in addition, (Ω,B, P ) is complete (i.e. if N ∈ NP , A ⊂ N, then A ∈ NP ),

then we say
(
Ω,B, {Bt}t≥0 , P

)
satisfies the usual hypothesis.

It is always possible to make an arbitrary filtered probability space,(
Ω,B, {Bt}t≥0 , P

)
, into one satisfying the (weak) usual hypothesis by “aug-

menting” the filtration by the null sets and taking the “right continuous ex-
tension.” We are going to develop these two concepts now. (For even more
information on the usual hypothesis, see [37, pages 34-36.].)

Lemma 32.22 (Augmentation lemma). Continuing the notation in Defini-
tion 32.20, we have

Ā := {B ∈ B : ∃ A ∈ A 3 A4B ∈ N} . (32.6)

Proof. Let G denote the right side of Eq. (32.6). If B ∈ G and A ∈ A such
that N := A4B ∈ N , then

B = [A ∩B] ∪ [A \B] = [A \ (A \B)] ∪ [B \A] . (32.7)

Since A \ B ⊂ N and B \ A ⊂ N implies A \ B and B \ A are in N , it follows
that B ∈ A∨N = Ā. Thus we have shown, G ⊂ Ā. Since it is clear that A ⊂ G
and N ⊂ G, to finish the proof it suffices to show G is a σ – algebra. For if we
do this, then Ā = A ∨N ⊂ G.

Since Ac 4 Bc = A4 B, we see that G is closed under complementation.
Moreover, if Bj ∈ G, there exists Aj ∈ A such that Aj 4 Bj ∈ N for all j. So
letting A = ∪jAj ∈ A and B = ∪jBj ∈ B, we have

B 3 A4B ⊂ ∪j [Aj 4Bj ] ∈ N

from which we conclude that A4B ∈ N and hence B ∈ G. This shows that G
is closed under countable unions, complementation, and contains A and hence
the empty set and Ω, thus G is a σ – algebra.

Lemma 32.23 (Commutation lemma). If
(
Ω,B, {Bt}t≥0 , P

)
is a filtered

probability space, then B̄t+ = Bt+. In words the augmentation procedure and the
right continuity extension procedure commute.

Proof. Since for any s > t, Bt+ ⊂ Bs it follows that Bt+ ⊂ B̄s and therefore
that

Bt+ ⊂ ∩s>tB̄s = B̄t+.

Conversely if B ∈ B̄t+ = ∩s>tB̄s and tn > t such that tn ↓ 0, then for each
n ∈ N there exists An ∈ Btn such that An 4 B ∈ N . We will now show that
B ∈ Bt+, by showing B 4A ∈ N where

A := {An i.o.} = ∩m∈N ∪n≥m An ∈ Bt+.

To prove this let A′m := ∪n≥mAn so that A′n ↓ A as n ↑ ∞. Then
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B 4A = B 4 [∩mA′m] = (B \ [∩mA′m]) ∪ ([∩mA′m] \B)

⊂ [∪m (B \A′m)] ∪ (A′1 \B) ∈ N

because measurable subsets of elements in N are still in N , N is closed under
countable unions,

B \A′m ⊂ B \Am ⊂ B 4Am ∈ N , and

A′1 \B = ∪∞n=1 [An \B] ⊂ ∪∞n=1 [An 4B] ∈ N .

32.3.1 ***More Augmentation Results (This subsection neeed
serious editing.)

In this subsection we generalize the augmentation results above to the setting
where we adjoin our favorite collection of “null like” sets.

Definition 32.24. Suppose (Ω,B) is a measurable space. A collection of sub-
sets, N ⊂ B is a null like collection in B if; 1) N is closed under countable
union, and 2) if A ∈ B and there exists N ∈ N such that A ⊂ N, then A ∈ N .

Example 32.25. Let {Pi}i∈I be any collection of probability measures on a mea-
surable space, (Ω,B) . Then

N := {N ∈ B : Pi (N) = 0 for all i ∈ I}

is a null like collections of subsets in B.

Example 32.26. If N is a null like collection in B, then

N̄ :=
{
A ⊂ 2Ω : A ⊂ N for some N ∈ N

}
is a null like collection in 2Ω .

Example 32.27. Let {Pi}i∈I be any collection of probability measures on a mea-
surable space, (Ω,B) . Then

N :=
{
N ⊂ 2Ω : ∃ B ∈ B 3 Pi (B) = 0 and N ⊂ B for all i ∈ I

}
is a null like collections of subsets of 2Ω . Similarly,

N :=
{
N ⊂ 2Ω : ∃ Bi ∈ B 3 Pi (Bi) = 0 and N ⊂ Bi for all i ∈ I

}
is a null like collections of subsets of 2Ω . These two collections are easily seen
to be the same if I is countable, otherwise they may be different.

Example 32.28. If Ni ⊂ B are null like collections in B for all i ∈ I, then N :=
∩i∈INi is another null like collection in B. Indeed, if B ∈ B and B ⊂ N ∈ N ,
then B ⊂ N ∈ Ni for all i and therefore, B ∈ Ni for all i and hence B ∈ N .
Moreover, it is clear that N is still closed under countable unions.

Definition 32.29. If (Ω,B) is a measurable space, A ⊂ B is a sub-sigma-
algebra of B and N ⊂ B is a null like collection in B, we say AN := A ∨N is
the augmentation of A by N .

Lemma 32.30 (Augmentation lemma). If A is a sub-sigma-algebra of B
and N is a null like collection in B, then the augmentation of A by N is

AN := {B ∈ B : ∃ A ∈ A 3 A4B ∈ N} . (32.8)

Proof. Let G denote the right side of Eq. (32.8). If B ∈ G and A ∈ A such
that N := A4B ∈ N , then

B = [A ∩B] ∪ [A \B] = [A \ (A \B)] ∪ [B \A] . (32.9)

Since A \ B ⊂ N and B \ A ⊂ N implies A \ B and B \ A are in N , it follows
that B ∈ A ∨ N = AN . Thus we have shown, G ⊂ AN . Since it is clear that
A ⊂ G and N ⊂ G, to finish the proof it suffices to show G is a σ – algebra. For
if we do this, then AN = A ∨N ⊂ G.

Since Ac 4 Bc = A4 B, we see that G is closed under complementation.
Moreover, if Bj ∈ G, there exists Aj ∈ A such that Aj 4 Bj ∈ N for all j. So
letting A = ∪jAj ∈ A and B = ∪jBj ∈ B, we have

B 3 A4B ⊂ ∪j [Aj 4Bj ] ∈ N

from which we conclude that A4B ∈ N and hence B ∈ G. This shows that G
is closed under countable unions, complementation, and contains A and hence
the empty set and Ω, thus G is a σ – algebra.

Lemma 32.31 (Commutation lemma). Let
(
Ω,B, {Bt}t≥0

)
be a filtered

space and N ⊂ B be null like collection and for G ⊂ B, let Ḡ := G ∨ N .
Then B̄t+ = Bt+.

Proof. Since for any s > t, Bt+ ⊂ Bs it follows that Bt+ ⊂ B̄s and therefore
that

Bt+ ⊂ ∩s>tB̄s = B̄t+.

Conversely if B ∈ B̄t+ = ∩s>tB̄s and tn > t such that tn ↓ 0, then for each
n ∈ N there exists An ∈ Btn such that An 4 B ∈ N . We will now show that
B ∈ Bt+, by shown B 4A ∈ N where

A := {An i.o.} = ∩m∈N ∪n≥m An ∈ Bt+.
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To prove this let A′m := ∪n≥mAn so that A′n ↓ A as n ↑ ∞. Then

B 4A = B 4 [∩mA′m] = (B \ [∩mA′m]) ∪ ([∩mA′m] \B)

⊂ [∪m (B \A′m)] ∪ (A′1 \B) ∈ N

because measurable subsets of elements in N are still in N , N is closed under
countable unions,

B \A′m ⊂ B \Am ⊂ B 4Am ∈ N , and

A′1 \B = ∪∞n=1 [An \B] ⊂ ∪∞n=1 [An 4B] ∈ N .

Corollary 32.32. Suppose A is a sub-sigma-algebra of B and N is a null like
collection in B with the additional property, that for all N ∈ N there exists
N ′ ∈ A ∩N such that N ⊂ N ′. Then

AN := {A ∪N : A ∈ A and N ∈ N} . (32.10)

Proof. Let G denote the right side of Eq. (32.10). It is clear that G ⊂ AN .
Conversely if B ∈ AN , we know by Lemma 32.22 that there exists, A ∈ A such
that N := A4 B ∈ N . Since C := A \ B ⊂ N, C ∈ N and so by assumption
there exists N ′ ∈ A ∩N such that C ⊂ N ′. Therefore, according to Eq. (32.7),
we have

B = [A \ C] ∪ [B \A] = [A \N ′] ∪ [(A ∩N ′) \ C] ∪ [B \A] .

Since A \N ′ ∈ A and [(A ∩N ′) \ C] ∪ [B \A] ∈ N , it follows that B ∈ G.

Example 32.33. Let ν be a probability measure on R. As in Notation ??, let
Pν :=

∫
R dν (x) Px be the Wiener measure on Ω := C ([0,∞),R) , Bt : Ω → R

be the projection map, Bt (ω) = ω (t) , Bt = σ (Bs : s ≤ t) , and Nt+ (ν) :=
{N ∈ Bt+ : Pν (N) = 0} . Then by Corollary ??, Bt+ = Bt ∨ Nt+ (ν) . Hence if
we let

N (ν) := {N ∈ B : Pν (N) = 0}

and
N̄ (ν) :=

{
B ⊂ 2Ω : B ⊂ N for some N ∈ N (ν)

}
then Bt+∨N (ν) = Bt∨N (ν) = B̄t and Bt+∨N̄ (ν) = Bt∨N̄ (ν) for all t ∈ R+.
This shows that the augmented Brownian filtration,

{
B̄t
}
t≥0

, is already right
continuous.

Definition 32.34. Recall from Proposition 6.66, if (Ω,B, P ) is a probability
space and N̄P := {A ⊂ Ω : P ∗ (A) = 0} , then the completion, P̄ := P ∗|B∨N̄P ,
is a probability measure on B ∨ N̄P which extends P so that P̄ (A) = 0 for all
A ∈ N̄P .

Suppose that (Ω,B) is a measurable space and N ⊂ B is a collection of sets
closed under countable union and also satisfying, A ∈ N if A ∈ B with A ⊂ N
for some N ∈ N . The main example that we will use below is to let {Pi}i∈I to
be a collection of probability measures on (Ω,B) and then let

N := {N ∈ B : Pi (N) = 0 for all i ∈ I} .

Let us also observe that ifNi is a collection of null sets above for each i ∈ I, then
N = ∩iNi is also a collection of null sets. Indeed, if B ∈ B and B ⊂ N ∈ N ,
then B ⊂ N ∈ Ni for all i and therefore, B ∈ Ni for all i and hence B ∈ N .
Moreover, it is clear that N is still closed under countable unions.

Lemma 32.35 (Augmentation). Let us not suppose that A is a sub-sigma-
algebra of B. Then the augmentation of A by N ,

AN := {B ∈ B : ∃ A ∈ A 3 A4B ∈ N} ,

is a sub-sigma-algebra of B. Moreover if N = ∩Ni and Ai = ANi is the aug-
mentation of A by Ni, then

AN = ∩iAi.

Proof. To prove this, first observe that

A4B = (A \B) ∪ (B \A) = (A ∩Bc) ∪ (B ∩Ac)
= (Bc \Ac) ∪ (Ac \Bc) = Ac 4Bc

from which it follows that AN is closed under complementation. Moreover, if
Bj ∈ AN , then there exists Aj ∈ A such that Aj 4Bj ∈ N for all j. So letting
A = ∪jAj ∈ A and B = ∪jBj ∈ B, we have

B 3 A4B ⊂ ∪j [Aj∆Bj ] ∈ N

from which we conclude that A4B ∈ N and hence B ∈ AN . This shows that
AN is closed under unions and hence we have show A ⊂ AN ⊂ B and AN is
sigma algebra.

???Now to prove the second assertion of this lemma. It is clear that if N ⊂
N ′, then AN ⊂ AN ′ and hence it follows that

AN ⊂ ∩iAi = ∩iANi .

For the converse inclusion, suppose that B ∈ ∩iANi in which case there exists
Ai ∈ A such that B 4Ai ∈ Ni for all i ∈ I.

Suppose that (Ω,B, P ) is a probability space and A is a sub-sigma-algebra
of B. The augmentation, AP , of A by the P – null sets of B is the collection
of sets:

AP := {B ∈ B : ∃ A ∈ A 3 P (B∆A) = 0} .
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Notation 32.36 Let B̄P denote the completion of B. Let BPt denote the aug-
mentation of Bt by the P – null subsets of B. We also let B̄Pt denote the aug-
mentation of Bt by the P – null subsets of B̄Pt .



33

Continuous time (sub)martingales

For this chapter, let
(
Ω,B, {Bt}t∈R+

, P
)

be a filtered probability space as

described in Chapter 32.

Definition 33.1. Given a filtered probability space,
(
Ω,B, {Bt}t≥0 , P

)
, an

adapted process, Xt : Ω → R, is said to be a ({Bt}) martingale provided,
E |Xt| < ∞ for all t and E [Xt −Xs|Bs] = 0 for all 0 ≤ s ≤ t < ∞. If
E [Xt −Xs|Bs] ≥ 0 or E [Xt −Xs|Bs] ≤ 0 for all 0 ≤ s ≤ t < ∞, then X is
said to be submartingale or supermartingale respectively.

Remark 33.2. If σ and τ are two {Bt} – optional times, then σ ∧ τ is as well.
Indeed, it t ∈ R+ ∪ {∞} , then

{σ ∧ τ < t} = {σ < t} ∪ {τ < t} ∈ Bt.

The following results are of fundamental importance for a number or results
in this chapter. The first result is a simple consequence of the optional sampling
Theorem 23.40.

Proposition 33.3 (Discrete optional sampling). Suppose {Xt}t∈R+
is a

submartingale on a filtered probability space,
(
Ω,B, {Bt}t≥0 , P

)
, and τ and

σ are two {Bt}t≥0 – stopping times with values in Dn :=
{
k
2n : k ∈ N̄

}
for

some n ∈ N. If M := supω τ (ω) < ∞, then Xτ ∈ L1 (Ω,Bτ , P ) , Xσ∧τ ∈
L1 (Ω,Bσ∧τ , P ) , and

Xσ∧τ ≤ E [Xτ |Bσ] .

Proof. For k ∈ N̄, let Fk := Bk2−n and Yk := Xk2−n . Then {Yk}∞k=0 is a
{Fk} – submartingale and 2nσ, 2nτ are two N̄ – valued stopping times with
2nτ ≤ 2nM < ∞. Therefore we may apply the optional sampling Theorem
23.40 to find

Xσ∧τ = Y(2nσ)∧(2nτ) ≤ E [Y2nτ |F2nσ] = E [Xτ |Bσ] .

We have used F2nσ = Bσ (you prove) in the last equality.

Lemma 33.4 (L1 – convergence I). Suppose {Xt}t∈R+
is a submartingale on

a filtered probability space,
(
Ω,B, {Bt}t≥0 , P

)
. If t ∈ R+ and {tn}∞n=1 ⊂ (t,∞)

such that tn ↓ t, then limn→∞Xtn exists almost surely and in L1 (P ) .

Proof. Let Yn := Xt−n and Fn := Bt−n for n ∈ −N. Then {(Yn,Fn)}n∈−N
is a backwards submartingale such that inf EYn ≥ EXt and hence the result
follows by by Theorem 23.79.

Lemma 33.5 (L1 – convergence II). Suppose {Xt}t∈R+
is a submartingale

on a filtered probability space,
(
Ω,B, {Bt}t≥0 , P

)
, τ is a bounded {Bt} – op-

tional time, and {τn}∞n=1 is the sequence of approximate stopping times defined
in Lemma 32.18. Then Xτ+ := limn→∞Xτn exists a.s. and in L1 (P ) .

Proof. Let M := supω∈Ω τ (ω) . If m < n, then τm and τn take values in
Dn, 0 ≤ τm ≤ τn, and τn ≤ M + 1. Therefore by Proposition 33.3, Xτm ≤
E [Xτn |Bτm ] and X0 ≤ E [Xτn |B0] . Hence if we let Yn := Xτ−n and Fn := Bτ−n
for n ∈ −N. Then {(Yn,Fn)}n∈−N is a backwards submartingale such that

inf
n∈−N

EYn = inf
n∈N

EXτn ≥ EX0 > −∞.

The result now follows by an application of Theorem 23.79.

Lemma 33.6 (L1 – convergence III). Suppose (Ω,B, P ) is a probability
space and {Bn}∞n=1 is a decreasing sequence of sub– σ– algebras of B. Then
for all Z ∈ L1 (P ) ,

lim
n→∞

E [Z|Bn] = E [Z| ∩∞n=1 Bn] (33.1)

where the above convergence is almost surely and in L1 (P ) .

Proof. This is a special case of Corollary 23.81 applied to the reverse mar-
tingale, Mm = E [Z|Fm] where, for m ∈ −N, Fm := B−m. This may also be
proved by Hilbert space projection methods when Z ∈ L2 (P ) and then by a
limiting argument for all Z ∈ L1 (P ) .

Proposition 33.7. Suppose that Z ∈ L1 (Ω,B, P ) and σ and τ are two stopping
times. Then

1. E [Z|Bσ] = E [Z|Bσ∧τ ] on {σ ≤ τ} and hence on {σ < τ} .
2. E [E [Z|Bσ] |Bτ ] = E [Z|Bσ∧τ ] .
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Moreover, both results hold if σ and τ are optional times provided every
occurrence of the letter B is replaced by B+.

Proof. 1. From Corollary 32.17, 1σ≤τE [Z|Bσ] is Bσ∧τ – measurable and
therefore,

1σ≤τE [Z|Bσ] = E [1σ≤τE [Z|Bσ] |Bσ∧τ ]

= 1σ≤τE [E [Z|Bσ] |Bσ∧τ ] = 1σ≤τE [Z|Bσ∧τ ]

as desired.
2. Writing

Z = 1σ≤τZ + 1τ<σZ

we find, using item 1. that,

E [Z|Bσ] = 1σ≤τE [Z|Bσ] + 1τ<σE [Z|Bσ]

= 1σ≤τE [Z|Bσ∧τ ] + 1τ<σE [Z|Bσ] . (33.2)

Another application of item 1. shows,

E [1τ<σE [Z|Bσ] |Bτ ] = 1τ<σE [E [Z|Bσ] |Bτ ]

= 1τ<σE [E [Z|Bσ] |Bτ∧σ] = 1τ<σE [Z|Bτ∧σ] .

Using this equation and the fact that 1σ≤τE [Z|Bσ∧τ ] is Bσ∧τ – measurable, we
may condition Eq. (33.2) on Bτ∧σ to find

E [E [Z|Bσ] |Bτ ] = 1σ≤τE [Z|Bσ∧τ ] + 1τ<σE [Z|Bτ∧σ] = E [Z|Bτ∧σ] .

Lemma 33.8. Suppose σ is an optional time and {σm}∞m=1 are stopping times
such that σm ↓ σ as m ↑ ∞ and σ < σm on {σ <∞} for all m ∈ N. Then
Bσm ↓ B+

σ as m→∞, i.e. Bσm is decreasing in m and

B+
σ = ∩∞m=1Bσm . (33.3)

Proof. If A ∈ B+
σ , then A ∈ B∞ and for all t ∈ R+ and m ∈ N we have

A ∩ {σm ≤ t} = A ∩ {σ < t} ∩ {σm ≤ t} ∈ Bt.

This shows A ∈ ∩∞m=1Bσm . For the converse, observe that

{σ < t} = ∪∞m=1 {σm ≤ t} ∀ t ∈ R+.

Therefore if A ∈ ∩∞m=1Bσm then A ∈ B∞ and

A ∩ {σ < t} = ∪∞m=1 [A ∩ {σm ≤ t}] ∈ Bt ∀ t ∈ R+.

Theorem 33.9 (Continuous time optional sampling theorem). Let
{Xt}t>0 be a right continuous {Bt} (or

{
B+
t

}
) – submartingale and σ and τ be

two {Bt} – optional (or stopping) times such that M := supω∈Ω τ (ω) < ∞.1
Then Xτ ∈ L1 (Ω,B+

τ , P ) , Xσ∧τ ∈ L1
(
Ω,B+

σ∧τ , P
)

and

Xσ∧τ ≤ E
[
Xτ |B+

σ

]
. (33.4)

Proof. Let {σm}∞m=1 and {τn}∞n=1 be the sequences of approximate times
for σ and τ respectively defined Lemma 32.18, i.e.

τn :=∞1τ=∞ +

∞∑
k=1

k

2n
1 k−1

2n ≤τ<
k

2n
.

By the discrete optional sampling Proposition 33.3, we know that

Xσm∧τn ≤ E [Xτn |Bσm ] a.s. (33.5)

Since Xt is right continuous, Xτn (ω) → Xτ (ω) for all ω ∈ Ω which combined
with Lemma 33.5 implies Xτn → Xτ in L1 (P ) and in particular Xτ ∈ L1 (P ) .
Similarly, Xσn∧τn → Xσ∧τ in L1 (P ) and therefore Xσ∧τ ∈ L1 (P ) . Using
the L1 (P ) – contractivity of conditional expectation along with the fact that
Xσm∧τn → Xσm∧τ on Ω, we may pass to the limit (n→∞) in Eq. (33.5) to
find

Xσm∧τ ≤ E [Xτ |Bσm ] a.s. (33.6)

From the right continuity of {Xt} and making use of Lemma 33.6 (or Corol-
lary 23.81) and Lemma 33.8, we may let m→∞ in Eq. (33.6) to find

Xσ∧τ ≤ lim
m→∞

E [Xτ |Bσm ] = E [Xτ | ∩∞m=1 Bσm ] = E
[
Xτ |B+

σ

]
which is Eq. (33.4).

Corollary 33.10 (Optional stopping). Let {Xt}t>0 be a right continuous
{Bt} (or

{
B+
t

}
) – submartingale and τ be any {Bt} – optional (or stopping)

time. Then the stopped process, Xσ
t := Xσ∧t is a right continuous

{
B+
t

}
–

submartingale.

Proof. Let 0 ≤ s ≤ t <∞ and apply Theorem 33.9 with to the two stopping
times, σ ∧ s and σ ∧ t to find

Xσ
s = Xσ∧s ≤ E

[
Xσ∧t|B+

σ∧s
]

= E
[
Xσ
t |B+

σ∧s
]
.

From Proposition 33.7,

E
[
Xσ
t |B+

σ∧s
]

= E
[
Xσ∧t|B+

σ∧t∧s
]

= E
[
E
[
Xσ∧t|B+

σ∧t
]
|B+
s

]
= E

[
Xσ∧t|B+

s

]
and therefore, we have shown Xσ

s ≤ E [Xσ
t |B+

s ] . Since Xσ
s = Xσ∧s is B+

σ∧s
measurable and B+

σ∧s ⊂ B+
s , it follows that Xσ

s is B+
s – measurable.

1 We will see below in Theorem 33.28, that the boundedness restriction on τ may be
replaced by the assumption that

{
X+
t

}
t≥0

is uniformly integrable.
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33.1 Submartingale Inequalities

Let
(
Ω,B, {Bt}t∈R+

, P
)

be a filtered probability space, D be any dense subset

of R+ containing 0, and let T denote either D or R+. Throughout this section,
{Xt}t∈T will be a submartingale which is assumed to be right continuous if
T = R+. To keep the notation unified, for T ∈ R+, we will simply denote
supD3t≤T Xt = infD3t≤T Xt, and sups∈D∩[0,T ] |Xs| by supt≤T Xt, inft≤T Xt, and
X∗T respectively. It is worth observing that if T = R+ and T ∈ D, we have (by
the assumed right continuity of Xt) that

sup
t≤T

Xt = sup
D3t≤T

Xt, inf
t≤T

Xt = inf
D3t≤T

Xt and , sup
s∈[0,T ]

|Xs| = sup
s∈D∩[0,T ]

|Xs| .

(33.7)
Our immediate goal is to generalize the submartingale inequalities of Section
23.5 to this context.

Proposition 33.11 (Maximal Inequalities of Bernstein and Lévy). With
T = D for T = R+, for any a ≥ 0 and T ∈ T, we have,

aP

(
sup
t≤T

Xt ≥ a
)
≤ E

[
XT : sup

t≤T
Xt ≥ a

]
≤ E

[
X+
T

]
, (33.8)

aP

(
inf
t≤T

Xt ≤ −a
)
≤ E

[
XT : inf

t≤T
Xt > −a

]
− E [X0] (33.9)

≤ E
[
X+
T

]
− E [X0] , (33.10)

and
aP (X∗T ≥ a) ≤ 2E

[
X+
T

]
− E [X0] . (33.11)

In particular if {Mt}t∈T is a martingale and a > 0, then

P (M∗T ≥ a) ≤ 1

a
E [|M |T : M∗T ≥ a] ≤ 1

a
E [|MT |] (33.12)

Proof. First assume T = D. For each k ∈ N let

Λk = {0 = t0 < t1 < · · · < tm = T} ⊂ D∩ [0, T ]

be a finite subset of D∩ [0, T ] containing {0, T} such that Λk ↑ D∩ [0, T ] . Not-
ing that {Xtn}

m
n=0 is a discrete (Ω,B, {Btn}

m
n=0 , P ) submartingale, Proposi-

tion 23.43 implies all of the inequalities in Eqs. (33.8) – (33.11) hold pro-
vided we replace supt≤T Xt by maxt∈Λk Xt, inft≤T Xt by mint∈Λk Xt, and X∗T
by maxt∈Λk |Xt| . Since maxt∈Λk Xt ↑ supt≤T Xt, maxt∈Λk |Xt| ↑ X∗T , and
mint∈Λk Xt ↓ inft≤T Xt, we may use the MCT and the DCT to pass to the
limit (k →∞) in order to conclude Eqs. (33.8) – (33.11) are valid as stated.
Equation (33.12) follows from Eq. (33.8) applied to Xt := |Mt| .

Now suppose that {Xt}t∈R+
and {Mt}t∈R+

are right continuous. Making

use of the observations in Eq. (33.7), we see that Eqs. (33.8) – (33.12) remain
valid for T = R+ by what we have just proved in the case T = D∪{T} .

Proposition 33.12 (Doob’s Inequality). Suppose that Xt is a non-negative
submartingale (for example Xt = |Mt| where Mt is a martingale) and 1 < p <
∞, then for any T ∈ T,

EX∗pT ≤
(

p

p− 1

)p
EXp

T . (33.13)

Proof. Using the notation in the proof of Proposition 33.11, it follows from
Corollary 23.47 that

E
[
max
t∈Λk

|Xt|p
]
≤
(

p

p− 1

)p
EXp

T .

Using the MCT, we may let k ↑ ∞ in this equation to arrive at Eq. (33.13)
when T = D. The case when T = R+ follows immediately using the comments
at the end of the proof of Proposition 33.11.

Lemma 33.13. Suppose that Fn is a sequence of bounded functions on [a, b)
which are uniformly convergent to a function F. If ξn := limt↓a Fn (t) exists
for all n, then ξ := limt↓a F (t) exists and ξn → ξ as n → ∞. An analogous
statement holds for left limits. In particular right (left) continuous functions
are preserved under uniform limits.

Proof. Let εn := supt∈[a,b) |F (t)− Fn (t)| which by assumption tends to
zero as n→∞. Thus for s, t > a, we have

|F (t)− F (s)| ≤ |F (t)− Fn (t)|+ |Fn (t)− Fn (s)|+ |Fn (s)− F (s)|
≤ 2εn + |Fn (t)− Fn (s)| .

Therefore we have

lim sup
s,t↓a

|F (t)− F (s)| ≤ 2εn → 0 as n→∞

which shows that ξ := limt↓a F (t) exists. Similarly, for any t > a,

|ξ − ξn| ≤ |ξ − F (t)|+ |F (t)− Fn (t)|+ |Fn (t)− ξn|
≤ |ξ − F (t)|+ |Fn (t)− ξn|+ εn

and hence by passing to the limit as t ↓ a in the previous inequality we have
|ξ − ξn| ≤ εn → 0 as n→∞.
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Corollary 33.14. Suppose that
(
Ω,B, {Bt}t≥0 , P

)
is a filtered probability

space such that Bt contains all P – null subsets2 of B for all t ∈ R+. For any
T ∈ R+, let MT denote the collection of (right) continuous L2 – martingales,
M := {Mt}t≤T equipped with the inner product,

(M,N)T := E [MTNT ] .

(More precisely, two (right) continuous L2 – martingales, M and N, are taken
to be equal if P (Mt = Nt ∀ t ≤ T ) = 1.) Then the space, (MT , (·, ·)T ) , is a
Hilbert space and the map, U : MT → L2 (Ω,BT , P ) defined by UM := MT , is
an isometry.

Proof. Since Mt = E [MT |Bt] a.s., if (MT ,MT ) = E |MT |2 = 0 then M =
0 in MT . This shows that U is injective and by definition U is an isometry
and (·, ·)T is an inner product on MT . To finish the proof, we need only show
H := Ran (U) is a closed subspace of L2 (Ω,BT , P ) or equivalently that MT is
complete.

Suppose that {Mn}∞n=1 is a Cauchy sequence in MT , then by Doob’s in-
equality (Proposition 33.12) and Hölder’s inequality, we have

E
[
(Mn −Mm)

∗
T

]
≤
√
E
[
(Mn −Mm)

∗2
T

]
≤
√

4E |Mn
T −Mm

T |
2

= 2 ‖Mn −Mm‖T → 0 as m,n→∞.

By passing to a subsequence if necessary, we may assume

∞∑
n=1

E
[(
Mn+1 −Mn

)∗
T

]
≤ 2

∞∑
n=1

∥∥Mn+1 −Mn
∥∥
T
<∞

from which it follows that

E

[ ∞∑
n=1

(
Mn+1 −Mn

)∗
T

]
=

∞∑
n=1

E
[(
Mn+1
· −Mn

·
)∗
T

]
<∞.

So if we let

Ω0 :=

{ ∞∑
n=1

(
Mn+1
· −Mn

·
)∗
T
<∞

}
,

then P (Ω0) = 1. Hence if m < l, the triangle inequality implies

(
M l
· −Mm

·
)∗
T
≤

l−1∑
n=m

(
Mn+1
· −Mn

·
)∗
T
→ 0 on Ω0 as m, l→∞,

2 Lemma 33.15 below shows that this hypothesis can always be fulfilled if one is
willing to “augment” the filtration by the P – null sets.

which shows that {Mn
· (ω)}∞n=1 is a uniformly Cauchy sequence and hence uni-

formly convergent for all ω ∈ Ω0. Therefore by Lemma 33.13, t → Mt (ω) is
(right) continuous for all ω ∈ Ω0. We complete the definition of M by setting
M· (ω) ≡ 0 for ω /∈ Ω0. Since Bt contains all of the null subset in B, it is easy
to see that M· is a Bt – adapted process. Moreover, by Fatou’s lemma, we have

E
[
(M· −Mm

· )
∗2
T

]
= E

[
lim inf
n→∞

(Mn
· −Mm

· )
∗2
T

]
≤ lim inf

n→∞
E
[
(Mn
· −Mm

· )
∗2
T

]
→ 0 as m→∞.

In particular Mm
t → Mt in L2 (P ) for all t ≤ T from which follows that M is

still an L2 – martingale. As M is (right) continuous, M ∈MT and

‖M −Mn‖T = ‖MT −Mn
T ‖L2(P ) → 0 as n→∞.

33.2 Regularizing a submartingale

Lemma 33.15. Suppose that
(
Ω,B, {Bt}t≥0 , P

)
is a filtered probability space

and {Xt}t≥0 be a {Bt}t≥0 – submartingale. Then {Xt}t≥0 is also a
{
B̄t
}
t≥0

–

submartingale. Moreover, we may first replace
(
Ω,B, {Bt}t≥0 , P

)
by its com-

pletion,
(
Ω, B̄, P̄

)
(see Proposition 6.66), then {Xt}t≥0 is still a submartingale

relative to the filtration B̄t := Bt ∨ N̄ where

N̄ :=
{
B ∈ B̄ : P̄ (B) = 0

}
.

Proof. It suffices to prove the second assertion. By the augmentation
Lemma 32.22 we know that B ∈ B̄s := Bs ∨ N̄ iff there exists A ∈ Bs such
that B 4A ∈ N̄ . Then for any t > s we have

EP̄ [Xt −Xs : B] = EP̄ [Xt −Xs : A] = EP [Xt −Xs : A] ≥ 0.

Proposition 33.16. Suppose that {Xt}t∈R+
is an {Bt} – submartingale such

that t → Xt is right continuous in probability, i.e. Xt
P→ Xs as t ↓ s for all

s ∈ R+. (For example, this hypothesis will hold if there exists ε > 0 such that
limt↓s E |Xt −Xs|ε = 0 for all s ∈ R+.) Then {Xt}t∈R+

is also an
{
B+
t

}
–

submartingale.
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Proof. Let 0 ≤ s < t < ∞, A ∈ B+
s , and sn ∈ (s, t) such that sn ↓ s. By

Lemma 33.4 we know that X̂s := limn→∞Xsn exists a.s. and in L1 (P ) and

using the assumption that Xsn
P→ Xs we may conclude that Xsn → Xs in

L1 (P ) . Since A ∈ B+
s ⊂ Bsn for all n, we have

E [Xt −Xs : A] = lim
n→∞

E [Xt −Xsn : A] ≥ 0.

Corollary 33.17. Suppose
(
Ω,B, {Bt}t≥0 , P

)
is a filtered probability space

and {Xt}t∈R+
is an {Bt} – submartingale such that Xt

P→ Xs as t ↓ s for

all s ∈ R+. Let
(
Ω, B̄, P̄

)
denote the completion of (Ω,B, P ) , N and N̄ be

the P and P̄ null sets respectively, then
(
Ω,B, {Bt+ ∨N}t≥0 , P

)
satisfies the

weak usual hypothesis (see Definition 32.21),
(
Ω, B̄,

{
Bt+ ∨ N̄

}
t≥0

, P̄
)

satis-

fies the usual hypothesis, and {Xt}t≥0 is a submartingale relative to each of
these filtrations.

Proof. This follows directly from Proposition 33.16, Lemma 33.15, and
Lemma 32.23. We use Lemma 32.23 to guarantee that {Bt+ ∨N}t≥0 and{
Bt+ ∨ N̄

}
t≥0

are right continuous.

In all of the examples of submartingales appearing in this book, the hypoth-
esis and hence the conclusions of Proposition 33.16 will apply. For this reason
there is typically no harm in assuming that our filtration is right continuous.
By Corollary 33.17 we may also assume that Bt contains all P – null sets. The
results in the following exercise are useful to keep in mind as you are reading
the rest of this section.

Exercise 33.1 (Continuous version of Example 23.7). Suppose that Ω =
(0, 1] , B = B(0,1], and P = m – Lebesgue measure. Further suppose that ε :
[0,∞) → {0, 1} is any function of your choosing. Then define, for t ≥ 0 and
x ∈ Ω,

Mε
t (x) := et

(
ε (t) 10<x≤e−t + (1− ε (t)) 10<x<e−t

)
= et (10<x<e−t + ε (t) 1x=e−t) .

Further let Bεt := σ (Mε
s : s ≤ t) for all t ≥ 0 and for a ∈ (0, 1] let

F(0,a] :=
{

[0, a] ∪A : A ∈ B(a,1]

}
∪ B(a,1]

and
F(0,a) :=

{
(0, a) ∪A : A ∈ B[a,1]

}
∪ B[a,1].

Show:

Fig. 33.1. The graph of x→M0
t (x) for some fixed t.

1. F(0,a] and F(0,a) are sub – sigma – algebras of B such that F(0,a] $ F(0,a)

and
B = ∨a∈(0,1]F(0,a] = ∨a∈(0,1]F(0,a).

2. For all b ∈ (0, 1],

F(0,b) = ∩a<bF(0,a] = ∩a<bF(0,a). (33.14)

3. Mε
t+ = M0

t for all t ≥ 0 and Mε
t− = M1

t for all t > 0. In particular, the
sample paths, t→Mε

t+ (x) , are right continuous and possess left limits for
all x ∈ Ω.

Fig. 33.2. A typical sample path of M0
· (x) .

4. Bεt = F(0,e−t] if ε (t) = 1 and Bεt = F(0,e−t) if ε (t) = 0.
5. No matter how ε is chosen, Bεt+ = B0

t := F(0,e−t) for all t ≥ 0.

6. Mε
t is a {Bεt }t≥0 – martingale and in fact it is a

{
Bεt+ = B0

t

}
t≥0

– martingale.

7. The map, [0,∞) × (0, 1] 3 (t, x) → Mε
t (x) ∈ R+ is measurable iff

{t ∈ [0,∞) : ε (t) = 1} ∈ BR+
.
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8. Let
N :=

{
x : Mε

t (x) 6= Mε
t+ (x) for some t ≥ 0

}
.

Show N = {x : ε (|lnx|) = 1} and observe that N is measurable iff ε is
measurable. Also observe that if ε ≡ 1, then P (N ) = 1 and hence Mε

t+ and
Mε
t are certainly not indistinguishable, see Definition 30.2.

9. Show {Mε
t }t≥0 is not uniformly integrable.

10. Let Z ∈ L1 (Ω,B, P ) find a version, Nε
t , of E [Z|Bεt ] . Verify that for any

sequence, {tn}∞n=1 ⊂ [1,∞), that Nε
tn → Z almost surely and in L1 (P ) as

n→∞.

Definition 33.18 (Upcrossings). Let {xt}t∈T be a real valued function which
is right continuous if T = R+. Given −∞ < a < b < ∞, T ∈ T, and a finite
subset, F, of [0, T ] ∩ T, let UxF (a, b) denote the number of upcrossings of
{xt}t∈F across [a, b] , see Section 23.6. Also let

UxT (a, b) := sup {UxF (a, b) : F ⊂f T∩ [0, T ]} (33.15)

be the number of upcrossings of {xt}t∈T∩[0,T ] across [a, b] .

Lemma 33.19. If T = D and {Fn}∞n=1 is a sequence of finite subsets of
D∩ [0, T ] such that Fn ↑ D∩ [0, T ] , then

UxT (a, b) := lim
n→∞

UxFn (a, b) . (33.16)

In particular, UXT (a, b) is a BT – measurable random variable when T = D.

Proof. It is clear that UxFn (a, b) ≤ UxT (a, b) for all n and UxFn (a, b) is
increasing with n and therefore the limit in Eq. (33.16) exists and satisfies,
limn→∞ UxFn (a, b) ≤ UxT (a, b) . Moreover, for any F ⊂f D∩ [0, T ] we may find
an n ∈ N sufficiently large so that F ⊂ Fn. For this n we will have

UxF (a, b) ≤ UxFn (a, b) ≤ lim
n→∞

UxFn (a, b) .

Taking supremum over all F ⊂f D∩ [0, T ] in this estimate then shows
UxT (a, b) ≤ limn→∞ UxFn (a, b) .

Remark 33.20. It is easy to see that if T = R+, xt is right continuous, and
a < α < β < b, then

UxT (a, b) ≤ sup {UxF (α, β) : F ⊂f D∩ [0, T ]} .

Lemma 33.21. Let T ∈ R+ and {xt}t∈D be a real valued function such that
UxT (a, b) <∞ for all −∞ < a < b <∞ with a, b ∈ Q. Then

xt− := lim
D3s↑t

xs exists in R̄ for t ∈ (0, T ] and (33.17)

xt+ := lim
D3s↓t

xs exists in R̄ for t ∈ [0, T ). (33.18)

Moreover, if we let Ux∞ (a, b) = limT↑∞ UxT (a, b) and further assume that
Ux∞ (a, b) < ∞ for all −∞ < a < b < ∞ with a, b ∈ Q, then x∞ := limt↑∞ xt
exists in R̄ as well.

Proof. I will only prove the statement in Eq. (33.17) since all of the others
are similar. If xt− does not exists in R̄ then we can find a, b ∈ Q such that

lim inf
D3s↑t

xs < a < b < lim sup
D3s↑t

xs.

From the definition of the lim inf and the lim sup, it follows that for every
ε ∈ (0, t) there are infinitely many s ∈ (t− ε, t) such that xs < a and infinitely
may s ∈ (t− ε, t) such that xs > b. From this observation it is easy to see that
∞ = Uxt (a, b) ≤ UxT (a, b) .

Lemma 33.22. Suppose that T = D, S is a metric space, and {xt ∈ S}t∈D .

1. If for all t ∈ R+,

x+
t := xt+ = lim

D3s↓t
xs exists in S,

then R+ 3 t→ x+
t ∈ S is right continuous.

2. If we further assume that

xt− := lim
D3s↑t

xs exists in S

for all t > 0, then limτ↑t xτ+ = xt− for all t > 0.
3. Moreover, if limD3t↑∞ xt exists in S then again limt↑∞ xt+ = limD3t↑∞ xt.

Proof. 1. Suppose t ∈ R+ and ε > 0 is given. By assumption, there exists
δ > 0 such that for s ∈ (t, t+ δ) ∩ D, we have ρ (xt+, xs) ≤ ε. Therefore if
τ ∈ (t, t+ δ) , then

ρ (xt+, xτ+) = lim
D3s↓τ

ρ (xt+, xs) ≤ ε

from which it follows that xτ+ → xt+ as τ ↓ t.
2. Now suppose t > 0 such that xt− exists in S. Then for all ε > 0 there

exists a δ > 0 such that ρ (xt−, xs) ≤ ε if s ∈ (t− δ, t)∩D. Hence, if τ ∈ (t− δ, t)
we may conclude,

ρ (xt−, xτ+) = lim
s↓τ

ρ (xt+, xs) ≤ ε
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from which it follows that xτ+ ↑ xt− as τ ↑ t.
3. Now suppose x∞ := limD3s↑∞ xs exists in S. Then for every ε > 0, there

exists M = M (ε) < ∞ such that ρ (x∞, xs) ≤ ε if s ∈ D∩ (M,∞) . Hence if
t ∈ (M,∞) we have

ρ (x∞, xt+) = lim
D3s↓t

ρ (x∞, xs) ≤ ε

from which we conclude that, limt↑∞ xt+ exists in S and is equal to x∞.

Theorem 33.23 (Doob’s upcrossing inequality). Let {Xt}t∈D be a sub-
martingale and −∞ < a < b <∞. Then for all T ∈ D,

E
[
UXT (a, b)

]
≤ 1

b− a
[
E (XT − a)+ − E (X0 − a)+

]
. (33.19)

Proof. Let {Fn}∞n=1 be a sequence as in Lemma 33.19 and assume without
loss of generality that 0, T ∈ Fn for all n. It then follows From Theorem 23.53
that

E
[
UXFn (a, b)

]
≤ 1

b− a
[
E (XT − a)+ − E (X0 − a)+

]
∀ n ∈ N.

By letting n ↑ ∞, Eq. (33.19) follows from this inequality, Lemma 33.19, and
the MCT.

Theorem 33.24. Let {Xt}t∈D be a submartingale,

Ω0 :=
⋂
T∈N

({
sup

D3t≤T
|Xt| <∞

}
∩
[⋂
{UXT (a, b) <∞ : a < b with a, b ∈ Q}

])
,

(33.20)
for all t ∈ R+,

Yt := lim sup
D3s↓t

Xs and X̄t := Yt · 1|Yt|<∞. (33.21)

Then;

1. P (Ω0) = 1.
2. on Ω0, supt≤T |Xt| < ∞ and Xt+ and Xt− exist for all t ∈ R+ where by

convention X0− := X0.
3. {Xt+ (ω)}t∈R+

is right continuous with left hand limits for all ω ∈ Ω0.

4. For any t ∈ R+ and any sequence {sn}∞n=1 ⊂ D∩ (t,∞) such that sn ↓ t,
then Xsn → Xt+ in L1 (P ) as n→∞.

5. The process
{
X̄t

}
t∈R+

is a
{
B+
t

}
t≥0

submartingale such that t → X̄t is

right continuous and has left limits on Ω0.
6. Xt ≤ E

[
X̄t|Bt

]
a.s. for all t ∈ D with equality at some t ∈ D iff

limD3s↓t EXs = EXt.

7. If Xs
P→ Xt as D 3 s ↓ t at some t ∈ D,3 then X̄t = Xt a.s.

8. If C := supt∈D E |Xt| <∞ (or equivalently supt∈D EX
+
t <∞), then X∞ :=

limD3t↑∞ X̄t = limD3t↑∞Xt exists in R a.s. and E |X∞| < C <∞.
Note: if

{
X+
t

}
t∈D is uniformly integrable then supt∈D E

∣∣X+
t

∣∣ <∞.
9. If

{
X+
t

}
t∈D is uniformly integrable iff there exists X∞ ∈ L1 (Ω,B, P ) such

that {Xt}t∈D∪{∞} is a submartingale. In other words,
{
X+
t

}
t∈D is uniformly

integrable iff here exists X∞ ∈ L1 (Ω,B, P ) such that Xt ≤ E [X∞|Bt] a.s.
for all t ∈ D.

Proof. 1. – 3. The fact that P (Ω0) = 1 follows from Doob’s upcrossing
inequality and the maximal inequality in Eq. (33.11). The assertions in items
2. and 3. are now a consequence of the definition of Ω0 and Lemmas 33.21 and
33.22.

4. Let Yn := Xs−n and Fn := Bs−n for −n ∈ N. Then {(Yn,Fn)}n∈−N is
a backwards submartingale such that inf EYn ≥ EXt and hence by Theorem
23.79, Yn = Xs−n → Xt+ in L1 (P ) as n→ −∞.

5. Since X̄t = Xt+ on Ω0 and Xt+ is right continuous with left hand limits,
X̄ has these properties on Ω0 as well. Now let 0 ≤ s < t <∞, {sn} , {tn} ⊂ D,
such that sn ↓ s, tn ↓ t with sn < t for all n. Then by item 4. and the
submartingale property of X,

E
[
X̄t − X̄s : A

]
= E [Xt+ −Xs+ : A] = lim

n→∞
E [Xtn −Xsn : A] ≥ 0

for all and A ∈ Bs+.
6. Let A ∈ Bt and {tn} ⊂ D with tn ↓ t ∈ D, then

E
[
X̄t : A

]
= lim
n→∞

E [Xtn : A] ≥ lim
n→∞

E [Xt : A] .

Since A ∈ Bt is arbitrary it follows that Xt ≤ E
[
X̄t|Bt

]
a.s. If equality holds,

then, taking A = Ω above, we find

EXt = EX̄t = lim
n→∞

E [Xtn ] .

Since {tn} ⊂ D with tn ↓ t was arbitrary, we may conclude that limD3s↓t EXs =
EXt. Conversely if limD3s↓t EXs = EXt, then along any sequence, {sn} ⊂ D
with sn ↓ s, we have

EXt = lim
n→∞

EXsn = E lim
n→∞

Xsn = EX̄t = EE
[
X̄t|Bt

]
.

As Xt ≤ E
[
X̄t|Bt

]
a.s. this identity implies Xt = E

[
X̄t|Bt

]
a.s.

3 For example, this will hold if limD3s↓t E |Xt −Xs| = 0.
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504 33 Continuous time (sub)martingales

7. Let tn ∈ D such that tn ↓ t, then as we have already seen Xtn → X̄t

in L1 (P ) . However by assumption, Xtn
P→ Xt, and therefore we must have

X̄t = Xt a.s. since limits in probability are unique up to null sets.
The proof or items 8. and 9. will closely mimic their discrete versions given

in Corollary 23.56.
8. The proof here mimics closely the discrete version given in Corollary 23.56.

For any −∞ < a < b <∞, Doob’s upcrossing inequality (Theorem 33.23) and
the MCT implies,

E
[
UX∞ (a, b)

]
= lim

D3T→∞
E
[
UXT (a, b)

]
≤ 1

b− a

[
sup
T∈D

E (XT − a)+ − E (X0 − a)+

]
<∞

where
UX∞ (a, b) = lim

D3T→∞
UXT (a, b)

is the total number of upcrossings of X across [a, b] . In particular it follows
that

Ω̃0 := ∩
{
UX∞ (a, b) <∞ : a, b ∈ Q with a < b

}
has probability one. Hence by Lemma 33.21, for ω ∈ Ω0 we have X∞ (ω) :=
limD3t→∞Xt (ω) exists in R̄. By Fatou’s lemma with D 3 tn ↑ ∞, it follows
that

E [|X∞|] = E
[
lim inf
n→∞

|Xn|
]
≤ lim inf

n→∞
E [|Xn|] ≤ C <∞

and therefore that X∞ ∈ R a.s.
9. If

{
X+
t

}
t≥0

is uniformly integrable, then, by Vitalli’s convergence The-

orem 17.55 and the fact that X+
t → X+

∞ a.s. (as we have already shown),
X+
t → X+

∞ in L1 (P ) . Therefore for A ∈ Bt we have, by Fatou’s lemma, that

E [Xt1A] ≤ lim sup
D3s→∞

E [Xs1A] = lim sup
D3s→∞

(
E
[
X+
s 1A

]
− E

[
X−s 1A

])
= E

[
X+
∞1A

]
− lim inf

D3s→∞
E
[
X−s 1A

]
≤ E

[
X+
∞1A

]
− E

[
lim inf
D3s→∞

X−s 1A

]
= E

[
X+
∞1A

]
− E

[
X−∞1A

]
= E [X∞1A] .

Since A ∈ Bt was arbitrary we may conclude that Xt ≤ E [X∞|Bt] a.s. for all
t ∈ R+.

Conversely if we suppose that Xt ≤ E [X∞|Bt] a.s. for all t ∈ R+, then
by Jensen’s inequality, X+

t ≤ E [X+
∞|Bt] and therefore

{
X+
t

}
t≥0

is uniformly

integrable by Proposition 23.8 and Exercise 17.5.

Example 33.25. In this example we show that there exists a right continuous
submartingale, {Xt}t≥0 , such that {Xsn}

∞
n=1 is not uniformly integrable for

some bounded increasing sequence {sn}∞n=1 . Indeed, let

Xt := −M0
tan(π2 t∧1),

where {Mt}t≥0 is the martingale constructed in Exercise 33.1. Then it is easily

checked that {Xt}t≥0 is a
{
Btan(π2 t∧1)

}
t≥0

– submartingale. Moreover if sn ∈

[0, 1) with sn ↑ 1, the collection, {Xsn}
∞
n=1 is not uniformly integrable for if it

were we would have

−1 = lim
n→∞

EXsn = E
[

lim
n→∞

Xsn

]
= E [0] = 0.

In particular this shows that in item 4. of Theorem 33.24, we can not suppose
{sn}∞n=1 ⊂ D∩[0, t) with sn ↑ t.

Exercise 33.2. If {Xt}t≥0 is a right continuous submartingale on a filtered

probability space,
(
Ω,B, {Bt}t≥0 , P

)
, then s → EXs is right continuous at t

and X is a
{
B+
t

}
– submartingale.

Exercise 33.3. Let {Xt}t≥0 be a submartingale on a filtered probability space,(
Ω,B, {Bt}t≥0 , P

)
, t ∈ R+, and Xs

P→ Xt as s ↓ t, then s → EXs is right

continuous at t.

Theorem 33.26 (Regularizing Submartingales). Let {Xt}t≥0 be a sub-

martingale on a filtered probability space,
(
Ω,B, {Bt}t≥0 , P

)
, and let Ω0 and

X̄t be as in Theorem 33.24 applied to {Xt}t∈D . Further let

X̂t (ω) :=

{
X̄t (ω) if ω ∈ Ω0

0 if ω /∈ Ω0,

and
{
B̄t+ := Bt+ ∨N

}
t≥0

where N is the collection of P – null subsets of Ω

in B. Then:

1.
{
X̂t

}
t≥0

is a
{
B̄t+

}
t≥0

– submartingale which is right continuous with left

hand limits.
2. E

[
X̂t|Bt

]
≥ Xt a.s. for all t ∈ R+ with equality holding for all t ∈ R+ iff

t→ EXt is right continuous.
3. If {Bt}t≥0 is right continuous, then X̂t ≥ Xt a.s. for all t ∈ R+ with equality

holding for all t ∈ R+ iff t→ EXt is right continuous.
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33.2 Regularizing a submartingale 505

In particular if {Xt}t≥0 is right continuous in probability, then {Xt}t≥0 has

a right continuous modification possessing left hand limits,
{
X̂t

}
t≥0

, such that{
X̂t

}
t≥0

is a
{
B̄t+

}
t≥0

– submartingale.

Proof. 1. Since Ω \ Ω0 ∈ N and X̄t is a Bt+ – measurable, it follows that

X̂t is B̄t+ – measurable. Hence
{
X̂t

}
t≥0

is an adapted process. Since X̂ is a

modification of X̄ which is already a
{
B̄t+

}
t≥0

– submartingale (see Lemma

33.15) it follows that X̂ is also a
{
B̄t+

}
t≥0

– submartingale.

2. Since X̂t = X̄t, we may replace X̂ by X̄ in the statement 2. We now need
only follow the proof of item 6. in Theorem 33.26. Indeed, if t ∈ R+, A ∈ Bt,
and {tn} ⊂ D with tn ↓ t ∈ D, then

E
[
X̄t : A

]
= lim
n→∞

E [Xtn : A] ≥ lim
n→∞

E [Xt : A] .

Since A ∈ Bt was arbitrary, it follows that

Xt ≤ E
[
X̄t|Bt

]
= E

[
X̂t|Bt

]
a.s. (33.22)

If equality holds in Eq. (33.22), EXt = EX̂t which is right continuous by Exer-
cise 33.2. Conversely if t → EXt is right continuous, it follows from item 6. of
Theorem 33.26 that X̂t = Xt a.s.

3. Since X̂t = X̄t a.s. and X̄t is Bt+ = Bt – measurable, we find

X̂t = X̄t = E
[
X̄t|Bt

]
= E

[
X̂t|Bt

]
a.s.

With this observation (i.e. X̂t = E
[
X̂t|Bt

]
a.s.) the assertions in item 3. follow

directly from those in item 2.
Now suppose that {Xt}t≥0 is right continuous in probability. By Proposition

33.16 and Lemma 33.15, {Xt}t≥0 is a
{
B̄t+

}
t≥0

– submartingale such that, by

Exercise 33.3, t→ EXt is right continuous. Therefore, by items 1. and 3. of the
theorem, X̂ defined above is the desired modification of X.

Example 33.27. Let be a Poisson process, {Nt}t≥0 , with parameter λ as de-
scribed in Example 30.9. Since {N}t≥0 has independent increments, it follows
that {Nt}t≥0 is a {Bt := σ (Ns : s ≤ t)}t≥0 – martingale. By example 27.14) we
know that E |Nt −Ns| = λ |t− s| and in particular, t → Nt is continuous in
probability. Hence it follows from Theorem 33.26 that there is a modification,

N̂ and N such that
{
N̂t

}
t≥0

is a
{
B̄t+

}
t≥0

– martingale which has continuous

sample paths possessing left hand limits.

The ideas of this example significantly generalize to produce good modifica-
tions of large classes of Markov processes, see for example [5, Theorem I.9.4 on
p. 46], [17] and [30]. See [36, Chapter I] where this is carried out in the context
of Lévy processes. We end this section with another version of the optional
sampling theorem.

Theorem 33.28 (Optional sampling II). Suppose {Xt}t≥0 is a right con-

tinuous submartingale on a filtered probability space,
(
Ω,B, {Bt}t≥0 , P

)
such

that
{
X+
t

}
t≥0

is uniformly integrable. Then for any two optional times, σ and

τ, Xτ ∈ L1 (P ) and
Xσ∧τ ≤ E

[
Xτ |B+

σ

]
. (33.23)

In particular if {Mt}t≥0 is a right continuous uniformly integrable martingale,
then

Mσ∧τ = E
[
Mτ |B+

σ

]
. (33.24)

Proof. Let X∞ := limD3t↑∞Xt ∈ L1 (P ) as in Theorem 33.24 so that
Xt ≤ E [X∞|Bt] for all t ∈ D. For t ∈ R+, let {tn}∞n=1 ⊂ D∩ (t,∞) be such that
tn ↓ t, then by Corollary 23.81,

Xt = lim
n→∞

Xtn ≤ lim
n→∞

E [X∞|Btn ] = E
[
X∞|B+

t

]
a.s.

Conditioning this inequality on Bt also allows us to conclude that Xt ≤
E [X∞|Bt] .4 We may now reduce the inequality in Eq. (33.23) to the case in
Theorem 33.9 where τ is a bounded stopping time by simply identifying [0, π/2]
with [0,∞] via the map, t→ tan t. More precisely, let {Yt}0≤t≤π/2 be the right

continuous
{
B̃t := Btan t

}
0≤t≤π/2

– submartingale defined by Yt := Xtan t. As

tan−1 (σ) and tan−1 (τ) are two bounded
{
B̃t
}

0≤t≤π/2
– optional times, we

may apply Theorem 33.9 to find;

Xσ∧τ = Ytan−1(σ)∧tan−1(τ) ≤ E
[
Ytan−1(τ)|B̃+

tan−1(σ)

]
= E

[
Xτ |B+

σ

]
a.s.

For the martingale assertions, simply apply Eq. (33.23) with Xt = Mt and
Xt = −Mt.

4 According to Exercise 33.2, {Xt}t≥0 is also a
{
B+
t

}
– submartingale. Therefore

for the purposes of this Theorem, there is no loss in generality in assuming that
B+
t = Bt.
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