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-3

Math 280A Homework Problems Fall 2018

Problems are from Resnick, S. A Probability Path, Birkhauser, or from the
lecture notes. The problems from the lecture notes are restated here. In the
lecture note problems listed in the assignments, you should look up the corre-
sponding problem in the lecture notes where more context is given including
extra standing assumptions for the problem. This context and standing assump-
tions are not always extracted out when I construct the homework sheets.

-3.1 Homework 1. Due Friday, October 5, 2018
e Read over Lecture notes Chapter

e Lecture note Exercises: and

-3.2 Homework 2. Due Friday, October 12, 2018
e Lecture note Exercises: [£.2] [4:3] [£.7] [£:8] [£:9] [4-10] [£:11] 12}

Look at Resnick, p. 20-27: 9, 12, 17, 23
e Hand in Resnick, p. 20-27: 5, 18, 40*

*Notes on Resnick’s #40: (i) B ((0, 1]) should be B ([0,1)) in the statement of
this problem, (ii) k is an integer, (iii) r > 2.

-3.3 Homework 3. Due Friday, October 19, 2018

e Look at Resnick, p. 20-27:and 19, 27, 30, 36
e Look at Lecture note Exercises: @

e Hand in Lecture note Exercises: E . . . . . - Exercise

- was postponed until Hm 4.)

-3.4 Homework 4. Due a, October 26, 2018

e Look at lecture note exercises:
e Hand in lecture note exercises: [5.19} [5.14], [5.15], [5.16}, [5.17} [5.18

e Hand in Resnick exercises: § 2.6, #7* and § 2.6, #13.

*Hint: For Resnick #7 you might label the coupons as {1,2,..., N} and let A;
be the event that the collector does not have the i*® — coupon after buying n -
boxes of cereal.

-3.5 Homework 5. Due Friday, November 2, 2018

Look at Resnick, § 2.6, p. 63-70; 3, 14
Look at lecture note exercises: [6.1]

Hand in Resnick, § 2.6, p. 63-70; 6, 11
Hand in lecture note exercises:

-3.6 Homework 6. Due Friday, November 9, 2018
Hand in Lecture note Exercises:

Look at Lecture note Exercises:

Look at Resnick, p. 85-90: 3, 7, 8, 12, 17, 21

Hand in from Resnick, p. 85-90: 4, 6*, 9, 15, 18**. Notes. * In #6, the
random variable X is understood to take values in the extended real num-
bers.

** In #18, I would write the left side in terms of an expectation.

-3.7 Homework 7. Due Wednesday, November 21, 2018

Hand in Lecture note Exercises: [0.7] [10.7] [10.29]

Look at Lecture note Exercises: 9.11]

Hand in from Resnick, p. 155-166: 6b, 7, 38
Look at Resnick, p. 155-166: 13, 26, 37



-3.8 Homework 8. Due Friday, November 30, 2018

Hand in Lecture note Exercises: [10.9} [10.4] [{0.8], [10.14], [15.6} [10.16

Look at Lecture note Exercises: [10.5] [10.18] [10.19] [10.20]
Hand in from Resnick, § 5.10: 29, 36 [In # 36, please assume all random

variables are real valued.|

-3.9 Homework 9. Due Friday, December 7, 2018

e Look at Lecture note Exercise [12.2], [12.3] [12.5] [12.6]
e Hand in Lecture note Exercises: [10.32] [12.4} [15.1}

For this last homework set you are to work alone and only use the text book
or the lecture notes as references. If you have questions about these problems,
please ask them in class so that everyone gets the same information.
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Math 280B Homework Problems Winter 2019

Problems are from Resnick, S. A Probability Path, Birkhauser, or from the
lecture notes. The problems from the lecture notes are restated here. In the
lecture note problems listed in the assignments, you should look up the corre-
sponding problem in the lecture notes where more context is given including
extra standing assumptions for the problem. This context and standing assump-
tions are not always extracted out when I construct the homework sheets.

-2.1 Homework 1. Due Monday, January 14, 2019

Look at Lecture note Exercise. [12.9] [13.3] - [13.4]
Look at from Resnik § 5.10: 8, 18, 19, 22

Hand in Lecture note Exercises: [T0.10} [T0.11] [10.12] [T3.17} [13.20
Hand in from Resnick § 5.10: 9

-2.2 Homework 2. Due Wednesday, January 23, 2019

Look at Lecture note Exercise [13.24] [14.3] [14.8| [15.2] [15.4]
Look at from Resnick § 4.6: 3, 5

Hand in Lecture note Exercises: [14.5], [14.6], [T4.7], [14.9] [15.3] [15.5] [15.9
Hand in from Resnick § 4.6: 6, 19

-2.3 Homework 3. Due Monday, January 28, 2019

You should work alone on this homework set! Please ask questions about these
problems in class.

e Look at Lecture note Exercise: Read Proposition [12.30} [15.6f
e Look at from Resnick § 4.6: 28, 29.

e Hand in Lecture note Exercises: [26.1],

* Exercise has been replaced by Exercise in the problems to be handed
in as Exercise [I5.6] was already given last quarter. Sorry about that.

-2.4 Homework 4. Due Monday, February 4, 2019

Look at Lecture note Exercise:
Look at from Resnick § 5.10: #39

e Hand in Lecture note Exercise [10.15] [16.1] [16.2], [16.3}, [16.4] [16.5]

-2.5 Homework 5. Due Monday, February 11, 2019

e Look at Lecture note Exercise: [17.1], [17.4] [T7.10
e Hand in Lecture note Exercise [17.2], [T7.3| [[7.5] [17.14] [17.15

-2.6 Homework 6. Due Wednesday, February 20, 2019

e Look at Lecture note Exercise: [18.3]
e Hand in Lecture note Exercise [17.7}, [17.16] [18.2] [18.5], [I8.6

-2.7 Homework 7. Due Monday, February 25, 2019

e Look at Lecture note Exercise: [19.2]
e Hand in Lecture note Exercise [I7.6] [I8.1] [19.1] [19.5] [19.8

-2.8 Homework 8. Due Monday, March 4, 2019

o Look at Lecture note Exercise:
e Look at from Resnick §6.7: 7 (Hint: Observe that X, Lo, N (0,1).

e Hand in Lecture note Exercise [19.9] [19.10] [19.11], [19.12] [19.13] P3.1] 3.2
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Background Material
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Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R := RU{+o0}, i.e. it
is R with two new points called oo and —oo. We use the following conventions,
+00-0=0, £o0-a = F0 if a € R with a > 0, +00-a = Foo if a € R with
a<0,oo+a==x foranya € R, co+ o0 =00 and —o0o — o0 = —o0 while
00 — 00 is not defined. A sequence a, € R is said to converge to oo (—oc) if for
all M € R there ezists m € N such that ap, > M (a, < M) for all n > m.

Lemma 1.2. Suppose {a,},—, and {b,},. | are convergent sequences in R,
then:

1. If a, < by, meI a.a. n, then lim,_, oo a,, < lim, _, o by,.
2. If c € R, then lim,, o (cay) = climy, o0 ap.
3. {an + bn},— is convergent and

lim (a, +b,)= lim a, + lim b, (1.1)
n— 00 n— 00 n— 00

provided the right side is not of the form oo — co.
4. {anby },2, is convergent and

g, (anbn) = lin o Jirg b (12)

provided the right hand side is not of the for £00-0 of 0 - (£00).

Before going to the proof consider the simple example where a,, = n and
b, = —an with a > 0. Then

o ifa<l1
lim (ay, + by) = 0 fa=1
—ocoifa>1
while
lim a, + lim b,“="00 — o0.
n— o0 n—oo

This shows that the requirement that the right side of Eq. (1.1)) is not of form
00— o0 is necessary in Lemma[l.2] Similarly by considering the examples a,, = n

)

! Here we use “a.a. n” as an abbreviation for almost all n. So an < b, a.a. n iff there
exists N < oo such that a, < b, for all n > N.

and b, = n~% with a > 0 shows the necessity for assuming right hand side of
Eq. is not of the form oo - 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. . Let a :=lim,,_, a, and b = lim,, ., b,,. Case 1., suppose
b = oo in which case we must assume a > —oo. In this case, for every M > 0,
there exists N such that b, > M and a,, > a — 1 for all n > N and this implies

ap +by, > M+a—1foralln> N.

Since M is arbitrary it follows that a, + b, — 0o as n — co. The cases where
b = —oo or a = oo are handled similarly. Case 2. If a,b € R, then for every
€ > 0 there exists N € N such that

la —an| <eand |b—b,| <eforalln>N.
Therefore,
la+b—(an+by)|=|a—an+b—by| <|a—a|+1|b—0,| <2

for all n > N. Since € > 0 is arbitrary, it follows that lim,, o (an, + b,) = a+b.

Proof of Eq. (1.2)). It will be left to the reader to prove the case where lim a,,
and lim b,, exist in R. I will only consider the case where a = lim,, o a,, # 0
and lim,_,. b, = oo here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let @ := min (%, 1). Given any M < oo, there exists
N € N such that a,, > a and b, > M for all n > N and for this choice of N,
anby > Ma for all n > N. Since o > 0 is fixed and M is arbitrary it follows
that lim, o0 (anbyp) = 0o as desired. [

For any subset A C R, let sup A and inf A denote the least upper bound and
greatest lower bound of A respectively. The convention being that sup A = oo
if oo € A or A is not bounded from above and inf A = —oo0 if —co € A or Ais
not bounded from below. We will also use the conventions that sup () = —oco
and inf ) = +o0.

Notation 1.3 Suppose that {x,} -~ C R is a sequence of numbers. Then

liminf 2, = lim inf{zy : k > n} and (1.3)
n—roo n—oo

limsupz, = lim sup{xy: k > n}. (1.4)
n—00 n—00
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We will also write lim for liminf, o and lim for limsup .
n—oo
Remark 1.4. Notice that if a, := inf{zy : kK > n} and b, := sup{zy : k >
n}, then {a,} is an increasing sequence while {b,} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R and
liminf x,, = supinf{zy : k > n} and
n—oo n
lim sup x,, = inf sup{zy, : k > n}.
n

n—o0

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 1.5. Let {a,}52, and {b,}52, be two sequences of real numbers.
Then

1. liminf, . a, < limsupa, and lim,_, a, ezists in R iff
n—oo

liminf a,, = limsup a,, € R.
n—oo n—oo

2. There is a subsequence {an, }32, of {an}S2, such that limy o0 ap,
limsup a,,. Similarly, there is a subsequence {an, }32, of {an}52, such that

n— oo
limy o0 ap, = liminf, , ay,.
3.
lim sup(a,, + b,) < limsup a,, + limsup b, (1.5)
n—oo n—oo n—00

whenever the right side of this equation is not of the form oo — co.
4. If ap, > 0 and b, > 0 for all n € N, then

lim sup(a,by,) < limsup a,, - lim sup by, (1.6)

n—oo n—0o0 n—oo

provided the right hand side of @ is not of the form 0 - oo or oo - 0.
Proof. 1. Since
inf{ag : k > n} <suplag : k > n} ¥n,
liminf a,, < limsup a,,.

n—00 n—00

Now suppose that liminf,, . a, = limsupa, = a € R. Then for all ¢ > 0,
n—oo
there is an integer N such that

a—e<inf{ag : k> N} <sup{arp:k >N} <a+e,

Page: 10 job: prob
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ie.
a—ec<ap<a-+eforal k> N.

Hence by the definition of the limit, limg_ oo ax = a. If liminf,, , a, = oo,
then we know for all M € (0,00) there is an integer N such that

M <inf{ax : k> N}

and hence lim,,_,,, a,, = co. The case where lim sup a,, = —o0 is handled simi-
n—oo

larly.
Conversely, suppose that lim, o a, = A € R exists. If A € R, then for
every € > 0 there exists N(g) € N such that |A — a,| < ¢ for all n > N(e), i.e.

A—e<a, <A+ceforalln>N().
From this we learn that

A — ¢ <liminfa, <limsupa, < A+ec.

n—00 n—00

Since € > 0 is arbitrary, it follows that

A <liminfa, <limsupa, < A4,

n—00 n—00

i.e. that A = liminf,, ., a, = limsupa,. If A = oo, then for all M > 0

n—oo
there exists N = N(M) such that a, > M for all n > N. This show that
liminf, . a, > M and since M is arbitrary it follows that

oo < liminf a,, < limsup a,.
n—oo n— oo

The proof for the case A = —oo is analogous to the A = oo case.

2. — 4. The remaining items are left as an exercise to the reader. It may
be useful to keep the following simple example in mind. Let a,, = (—1)" and
by, = —ay, = (—l)n+1 . Then a,, + b, = 0 so that

0= lim (an + b,) = liminf (a, + b,) = limsup (a, + by)
n—oo n—oo n—oo

while

liminf a,, = liminf b,, = —1 and
n—oo n—oo

limsup a,, = limsupb,, = 1.
n—oo n—oo

Thus in this case we have

lim sup (a,, + b,) < limsup a,, + limsupb,, and

n—oo n— oo n—oo

liminf (a,, + by,) > liminf a,, + lim inf b,,.
n—oo n—o00 n—o00

date/time: 25-Feb-2019/8:12



Remark 1.6.If a,, < b, for a.a. n, (i.e. there exists N € N such that a,, < b,
for all n > N), then it is easy to verify that

limsupa, < limsupb, and liminfa, <liminfb,.
n— oo n— o0 n—co n—00

In particular if a,, = b,, for a.a. n, then

limsup a,, = limsup b,, and liminf a,, = liminf b,,.
n—00 n—00 n—00 n—00

It is also easy to verify that if b € R, then

lim sup (a,, + b) = limsup a,, + b and hm 1nf (an + b) = liminf a, + b.

n—o00 n—o0o n—00

Lemma 1.7. If {a,}$2 and {b,}32, are two sequences of real numbers and
b =lim,,_,o b, exists in R, then

liminf (a,, + b,) = liminf a,, + b.
n—oo

n—roo

Proof. Let € > 0 be given and choose N = N (¢) € N so that [b—b,| < ¢
for all n > N (g). Then

ap+b—e<a,+b,<a,+b+cforalln>N
and hence taking the lim inf of this inequality using Remark we find
liminfa, +b—¢ < hmlnf(an +b,) <liminfa, +b+e¢.
n—oo n— oo

As this is valid for all € > 0 we may let € | 0 in the previous inequality to find

liminfa, +b < hm mf (an +bp) < hm mf an +0b.

n—oo

1.1 Infinite sums

Definition 1.8. For a,, € [0,00], let

00 N N

E ap = lim g a, = sup E Q-
N—oo N

n=1 n=1 n=1

Remark 1.9. If a,, by, € [0,00] and A > 0, then
9 o0 S
Z (an + Abn) = Z an + A Z bp.
n=1 n=1 n=1

Page: 11 job: prob

1.1 Infinite sums 11
Indeed,

N

nil (an +Aby) = lm 3 (an + Aby) = lim_ lzan+AZb]

n=1 n=1
N
:Nliinm;anmjvliinm;bn:%aﬁx;bn.

We will refer to the following basic proposition as the monotone convergence
theorem for sums (MCT for short).

Proposition 1.10 (MCT for sums). Suppose that for eachn € N, {f,, (i )}L )
is a sequence in [0,00] such that T lim, o fn (i) = f (i) by which we mean
fn (@)1 f (i) as n — oo. Then

nILH;Oan :i f @), ie

J;ngton =2l 0.

=1
We allow for the possibility that these expression may equal to +oo.

Proof. Let M :=1 lim,, 00 Y 50y fn (4). As fi, (i) < f (i) for all n it follows
that Y o2 fn (i) < >0y f (i) for all n and therefore passing to the limit shows
M <> 2, f(@i). If N € N we have,

N N
2SO =3 lum —J:H;ton <n15202fn
i=1 i=1

Letting N 1 oo in this equation then shows Y =, f (i) < M which completes
the proof. -

Proposition 1.11 (Tonelli’s theorem for sums). If {ag,};,—, C [0,00],

then ~ - ~ -
DD W=D Y ke

k=1n=1 n=1k=1

Here we allow for one and hence both sides to be infinite.

Proof. First Proof. Let Sy (k) := 22;1 Akn, then by the MCT (Proposi-
tion ,

Z hm Sn (k Zzakn

k=1n=1

e’}
lim Z SN
N—o00
k=1

macro: svmonob.cls date/time: 25-Feb-2019/8:12
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On the other hand,

00 oo N N oo
D Sy =D > =3 > am
k=1

k=1n=1 n=1k=1
so that
0o N oo oo 0o
lim E Sy (k) = lim E E Ak, = E Ak, -
N —oc0 N —oco
k=1 n=1 k=1 n=1 k=1

Second Proof. Let

and

Since

oo 00 K o K N
L= E E ar, = lim E E A, = lim lim g E Akn
K—oo K—o00 N—oo

k=1n=1 k=1n=1 k=1n=1

and Zk 1 Z _1 Gkn < M for all K and N, it follows that L < M. Conversely,

K N K oo oo 0o
Zzakngzzakngzzakn:L

k=1n=1 k=1n=1 k=1n=1

and therefore taking the supremum of the left side of this inequality over K
and N shows that M < L. Thus we have shown

By symmetry (or by a similar argument), we also have that >~ | > 77| agy =
M and hence the proof is complete. [

Definition 1.12. A sequence {a,},., C R is summable (absolutely con—
vergent) if Yoo | lan| < oo. When {an}oo, C R is summable we let af =
max (Fayn,0) and define,

oo oo o0
Zan ::Za,f—z:a;. (1.7)
n=1 n=1 n=1

Page: 12 job: prob

Remark 1.13. From Eq. (1.7) it follows that

<Za —|—Za :Z a, —|—a;)

., and {by} -

o
=2 _laal.
n=1

Proposition 1.14 (Linearity). If {a,} -
then {an + b, },—_, is summable and

D (an+Abn) = an+A> by
n=1 n=1 n=1

Proof. Let ¢, := a, + Ab, so that |c,| < |a,| + |\ |bs| and hence

o0 [eS) [e%S) [e%S)
S lenl =3 lan £ 20| < 3 Janl + A S bl < oo
n=1 n=1 n=1 n=1

—, are summable A € R,

This shows {¢,},.; is summable. Let us now suppose that A > 0 for the

moment. in which case we have

+

cf —c =ay,+ b, =at —a, + b — b,

Cp =

and therefore,

C:Jra;Jr)\b;:c;JraIJr)\bi.

Summing this equation on n while making use of Remark then shows,
Do+ an+A) by
n=1 n=1 n=1

=) (ch+ap +Ab,) =D (e +af + b))

=1 n

S

) 00 oo 0o
=Za;r+/\Zb::—Za;—/\Zb;
n=1 n=1 n=1 n=1

To finish the proof we need only observe that (—1 - a,)™ = a,;’ and hence

macro: svmonob.cls date/time:
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oo o0 o0 oo oo o0
E —1~an=E a;—g al = — E a;f—g a,, :—E Q.
n=1 n=1 n=1 n=1

n=1 n=1

You are asked to prove the next three results in the exercises.

Proposition 1.15 (Fubini for sums). Suppose {arn}y,—; C R such that

o oo oo o0
Z Z lagn| = ZZ |agn| < oo.

k=1n=1 n=1k=1
Then
o0 oo oo oo
DD =)
k=1n=1 n=1k=1

[In this simple setting, this is in fact a special case of the statement that
absolutely convergent sums are independent of rearrangements.]

Ezample 1.16 (Counter example). Let {Syn},, ,,—; be any sequence of complex

numbers such that lim,, oo Sy = 1 for all n and lim,, o Sy = 0 for all n.

For example, take Sy = 1> or Spn = 2. Then define {aij};x;.:l so that

Son =YY aij (1.8)
i=1 j=1

in which case we will have

oo o0

33 = i fim S =0#1= Jiy fin S =330y

i=1 j=1 j=1i=1
To find a;; which give Eq. (1.8) if we define Sy,,, = 0 if m =0 or n =0, then
Smn — Sm—l,n = Z Qmj
j=1

and so

n n—1
Amn = § Amyj — § Qmj
j=1 j=1

= (Smn - Smfl,n) - (Sm,nfl - Smfl,nfl)
- Smn - Sm—l,n - Sm,n—l + Sm—l,n—l-

Applying this to the example where Sy, , = 1>y gives,

Page: 13 job: prob
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1.1 Infinite sums 13

Am,n = 1m2n - 1m712n - 1m2n71 + 1m712n71
=2 1m2n - 1m2n+1 - 1m2n71

= 1m=n - 1m=n—1-

Thus it follows that n — a,, ,, is summable and m — a,, , is summable and

oo )
§ m,n = 1n:l and § Am,n = 0
m=1 n=1

and therefore
oo

e
n=1

Note: the graph of a,, , is O everywhere except on the two lines, n = m
where a,, , =1 and n = m + 1 where @, ;41 = —1. For an integral variant of
this example, fatten up a,,, to produce that function,

Ampn=1#0= iiamm.
1

m= m=1n=1

h (l'vy) = 1x§y§m+1 - 1x+1<y§m+27

see Figure [I.I] For this A we have

Ay

(=]

e oL

Fig. 1.1. The function h is 1 between the black and the green line, it is —1 between
the green and red line, at it 0 on the remaining regions in [0, 00)2.

o0
/ dr h(z,y) = yly<i + (2 —y) licy<s and
0

/ dy h(z,y)=0forallz>0
0

date/time: 25-Feb-2019/8:12



14 1 Limsups, Liminfs and Extended Limits

and hence

/ooodx /Ooody h(:o,y)o%l/ooody /ooodxh(x’y)'

Proposition 1.17 (Fatou’s Lemma for sums). Suppose that for eachn € N,
{hn (i) };=, is any sequence in [0,00], then

> liminf f,, () < lim inf > ha (i)
i=1 i=1

n—o0 4

The next proposition is referred to as the dominated convergence theorem
(DCT for short) for sums.

Proposition 1.18 (DCT for sums). Suppose that for each n € N,
{fn ())};2, C R is a sequence and {gn (i)};=, is a sequence in [0,00) such that;

1.3°72 gn (1) < oo for all n,

2. f(i) =limpo00 fn (1) and g (i) :=limy, 00 gn (i) exists for each i,
SN fu (D) < gn (4) for all i and n,

4o limy, oo Doy gn (1) = Yoy g (1) < 0.

Then - - -
S0 m 0= 50.
(Often this proposition is used in the special case where g, = g for all n.)

Exercise 1.1 (Prove the Fubini Proposition|1.15). Suppose {a’k"}?,}nZI C

R such that
oo oo oo oo
ZZ lakn| = ZZ lakn| < oo.
k=1n=1 n=1k=1
Then
oo oo oo o
DRSS 3) S
k=1n=1 n=1k=1

Hint: Let azn := max (axn,0) and a,,, = max (—axn,0) and observe that; ay, =
agn —ay,, and |a2'n| + |a,:n| = |agn| - Now apply Tonelli’s theorem (Proposition
i with ag, replaced by azn and a,,. You should be careful to verify that
{akn},—; is summable for each k and that{Sy = -, ak,n}iil is summable

so that Y72 | S akn = >_pey Sk exits, ete. ete.

Page: 14 job: prob
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Exercise 1.2 (Prove Fatou’s Lemma in Proposition [1.17]). Suppose that
for each n € N, {h,, (i)};2, is any sequence in [0, 00|, then

> lim inf hy, (i) < lim iogfz B () .
=1 =1

Hint: apply the MCT by applying the monotone convergence theorem with
fn (2) :==1nfp,>p A, () .

Exercise 1.3 (Prove DCT as in Proposition [1.18)). Suppose that for each
n €N, {fn(i)};=; C R is a sequence and {g, (i)};-, is a sequence in [0, 0)
such that;

1. 32 gn (i) < oo for all n,

2. f (1) = limy— o0 fr (1) and g (4) := lim,— 00 gn (¢) exists for each 7,
3. [fn (1)] < gn (¢) for all ¢ and n,

A limy o0 3577 gn (1) = 3272, g (1) < oo

Then - - -
dim D fu (@)= lim fu (@) =) f(i).
i=1 =1 =1

Hint: Apply Fatou’s lemma twice. Once with hy, (i) = g, (i) + f (¢) and once
with Ay, (i) = gn (4) — f (4) .

date/time: 25-Feb-2019/8:12



2

Basic Metric and Topological Space Notions

The reader may refer to this chapter when the need arises later.

Definition 2.1 (Pseudo-Metrics). Let X be a non-empty set. A function
d: X xX — [0,00) is called a pseudo-metric on X if d is symmetric and
satisfies the triangle inequality, i.e.

1. (Symmetry) d(z,y) = d(y,x) for all x,y € X, and
2. (Triangle inequality) d(x,z) < d(z,y) + d(y, z) for all x,y,z € X.

If we further assume that d is non-degenerate in the sense that d(xz,y) = 0
if and only if v =y € X, then we say d is a metric on X.

Notice that any subset, Y, of a (pseudo) metric space (X, d) is a metric space
by simply restricting d to Y x Y.

Ezample 2.2. Let us mention just a very few examples of (pseudo-metric) spaces.

1. Let X =R. Then d(z,y) = |y — =| is the usual metric on R. Another useful
metric is d (z,y) = [tan™! (y) — tan™! ().
2. If X = R%, then d(x,y) = 1/27:1 (y; — xj)2 is the usual Euclidean dis-

tance metric on R%. Subsets like the unit sphere in R? are metric spaces as

well.
3.Let X = C([0,1],C) be the continuous function the
d(f,g) = maxgepl|f(r)—g(x)] is a metric while d(f,g) =

max,eo,1/2) |f () — g ()] is a Pseudo - metric on X.

4. Any normed space (X, ||-||) (see Definition ??) is a metric space with
d(x,y) := || — y||. Thus the space ¢?(u) (as in Theorem ??) is a metric
space for all p € [1, o0].

5.Let X denote the C! — periodic functions on R. Then d(f,g) :=
maxzer |/ () — ¢’ (x)] is a pseudo-metric on X.

Throughout this chapter, let (X, d) be a pseudo-metric space and we will
often just say (X, d) is a metric space even though we may allow d to be degen-
erate unless explicitly noted.

Definition 2.3. Let (X,d) be a metric space. The open ball B(z,§) C X
centered at x € X with radius 6 > 0 is the set

B(z,6) :={y € X : d(z,y) < ¢}.

We will often also write B(z,d) as By(0). We also define the closed ball cen-
tered at x € X with radius 6 > 0 as the set C,(0) :={y € X : d(x,y) < d}.

Definition 2.4. A4 sequence {x,,},—, C X is said to converge to a point v € X

if imy, oo d (2, x,) = 0 and abbreviate this by writing x,, — x or z, L 2 as
n — 00.

If , — « and x,, — y, then
d(z,y) <d(z,x,)+d(z,,y) >0asn— oo

and so d(z,y) = 0. If d is non-degenerate, then = y and limits are unique
otherwise they are not.

Definition 2.5. A set E C X is bounded if E C B (z, R) for some z € X and
R < 0. A set F C X is closed iff every convergent sequence {x,} -, which is
contained in F' has its limits back in FE| A set V C X is open iff V¢ is closed.
We will write F — X to indicate F' is a closed subset of X and V C, X to
indicate the V' is an open subset of X. We also let 74 denote the collection of
open subsets of X relative to the metric d.

Exercise 2.1. Let F be a collection of closed subsets of X, show NF := NpcrF
is closed. Also show that finite unions of closed sets are closed, i.e. if {Fk}szl
are closed sets then UX_| F}, is closed. (By taking complements, this shows that
the collection of open sets, 74, is closed under finite intersections and arbitrary
unions.) Show by example that a countable union of closed sets need not be
closed.

Exercise 2.2. Show that V C X is open iff for every x € V thereisa § > 0
such that B, (6) C V. In particular show B, (d) is open for all € X and ¢ > 0.
Hint: by definition V is not open iff V¢ is not closed.

Definition 2.6. A subset A C X is a neighborhood of x if there exists an
open set V. C, X such that x € V. C A. We will say that A C X is an open
neighborhood of x if A is open and x € A.

! When d is non-degenerate we require all the possible limits of {x,,} to be in F. This
then implies that if x € F and y € X with d (z,y) = 0, then y € F as well.
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The following “continuity” facts of the metric d will be used frequently in
the remainder of this book.

Lemma 2.7. For any non empty subset A C X, let da(z) := inf{d(x,a)|a €
A}, then
|[da(z) —da(y)| < d(z,y) Va,y € X (2.1)

and in particular if x, — x in X then da (x,) = da (z) as n — oo. Moreover
the set F. :={x € X : da(x) > €} is closed in X.
Proof. Let a € A and z,y € X, then
da(z) < d(z,a) < d(z,y) + d(y, a).
Take the infimum over a in the above equation shows that
da(z) < d(z,y) +daly) Yo,y € X.

Therefore, da(x) — da(y) < d(z,y) and by interchanging x and y we also have
that da(y) — da(z) < d(x,y) which implies Eq. (2.1). If z,, = = € X, then by
Eq. (2.1),

|[da(z) — da(z,)] < d(z,2,) = 0 as n — oo

so that lim,, o da (z,) = da (z) . Now suppose that {z,},~, C F. and 2, — z
in X, then
da(z)= lim da(x,) > ¢

n—oo

since d4 (zy) > ¢ for all n. This shows that « € F, and hence F; is closed. m

Corollary 2.8. The function d satisfies,
|d(z,y) —d(@’,y")| < d(y,y’) + d(z,2").

In particular d : X x X — [0,00) is “continuous” in the sense that d(x,y) is
close to d(z',y") if x is close to x' and y is close to y'. (The notion of continuity
will be developed shortly.)

Proof. By Lemma for single point sets and the triangle inequality for
the absolute value of real numbers,

|d($,y) - d(l‘/’y/” < |d(1’,y) - d(I, y/)| + |d(1’,y/) - d(:I}/,y/)|
<d(y,y) +d(z,2').
]

Ezample 2.9. Let x € X and 6 > 0, then C, (§) and B, (§)° are closed subsets
of X. For example if {y,} -, C C; (§) and y, — y € X, then d (y,,x) < § for
all n and using Corollary it follows d (y,x) < 6, i.e. y € Cy (§). A similar
proof shows B, (§) is closed, see Exercise

Page: 16 job: prob

macro: svmonob.cls

Lemma 2.10 (Approximating open sets from the inside by closed
sets). Let A be a closed subset of X and F, = {z € X|da(zx) > e} T X
be as in Lemma[2.] Then F. 1 A¢ ase | 0.

Proof. Tt is clear that d4(z) = 0 for 2 € A so that F. C A° for each € > 0
and hence U.soF. C A°. Now suppose that x € A° C, X. By Exercisethere
exists an € > 0 such that B,(¢) C A° ie. d(x,y) > ¢ for all y € A. Hence
x € F. and we have shown that A° C U.soF.. Finally it is clear that F. C F./
whenever ¢’ < e. n

Definition 2.11. Given a set A contained in a metric space X, let A C X be
the closure of A defined by

A={zeX:3{z,} CA> 2= lim x,}.
n—oo

That is to say A contains all limit points of A. We say A is dense in X if
A =X, i.e every element x € X is a limit of a sequence of elements from A.
A metric space is said to be separable if it contains a countable dense subset,
D.

Exercise 2.3. Given A C X, show A is a closed set and in fact
A=n{F:ACF C X with F closed}. (2.2)
That is to say A is the smallest closed set containing A.

Exercise 2.4. If D is a dense subset of a metric space (X,d) and £ C X is
a subset such that to every point z € D there exists {z,} -, C F with z =
lim,, o0 Ty, then E is also a dense subset of X. If points in F well approximate
every point in D and the points in D well approximate the points in X, then
the points in E also well approximate all points in X.

Exercise 2.5. Suppose (X, d) is a metric space which contains an uncountable
subset A C X with the property that there exists ¢ > 0 such that d (a,b) > ¢
for all a,b € A with a # b. Show that (X, d) is not separable.

2.1 Metric spaces as topological spaces

Let (X,d) be a metric space and let 7 = 74 denote the collection of open
subsets of X. (Recall V' C X is open iff V¢ is closed iff for all z € V there
exists an € = €; > 0 such that B (z,e,) C V iff V' can be written as a (possibly
uncountable) union of open balls.) Although we will stick with metric spaces
in this chapter, it will be useful to introduce the definitions needed here in the
more general context of a general “topological space,” i.e. a space equipped
with a collection of “open sets.”
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Definition 2.12 (Topological Space). Let X be a set. A topology on X is
a collection of subsets (1) of X with the following properties;

1. T contains both the empty set (B) and X.
2. T is closed under arbitrary unions.
3. T is closed under finite intersections.

The elements V € T are called open subsets of X. A subset FF C X is said
to be closed if F° is open. I will write V C, X to indicate that V C X and
V e 1 and similarly FF T X will denote FF C X and F' is closed. Given x € X
we say that V. C X is an open neighborhood of x if V € 7 and x € V. Let
7. ={V € 17:a € V} denote the collection of open neighborhoods of x.

Of course every metric space (X, d) is also a topological space where we take
T =Td.

Definition 2.13. Let (X, 7) be a topological space and A be a subset of X.
1. The closure of A is the smallest closed set A containing A, i.e.
A=n{F:ACFrCX}.

(Because of Exercise this is consistent with Definition for the clo-
sure of a set in a metric space.)
2. The interior of A is the largest open set A° contained in A, i.e.

A°=u{Ver:VCA}.

3. A C X is a neighborhood of a point x € X if x € A°.
4. The accumulation points of A is the set

acc(A) ={z e X : VN[A\{z}] #0 for all V € 7,.}.

5. The boundary of A is the set bd(A) :== A\ A°.
6. A is dense in X if A= X and X is said to be separable if there exists a
countable dense subset of X.

Remark 2.14. The relationships between the interior and the closure of a set
are:

(A°)° = rW{VC :VerandV C A} :ﬂ{C:C is closed C' D A°} = Ac
and similarly, (4)¢ = (A¢)°. Hence the boundary of A may be written as
bd(A) := A\ A° = AN (A°)° = AN A, (2.3)

which is to say bd(A) consists of the points in both the closures of A and A°.
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2.1 Metric spaces as topological spaces 17

2.1.1 Continuity

Suppose now that (X, p) and (Y, d) are two metric spaces and f : X - Y isa
function.

Definition 2.15. A function f : X — Y is continuous at x € X if for all
€ > 0 there is a § > 0 such that

d(f(x), f(2")) < € provided that p(z,x") < 4. (2.4)
The function f is said to be continuous if f is continuous at all points v € X.

The following lemma gives two other characterizations of continuity of a
function at a point.

Lemma 2.16 (Local Continuity Lemma). Suppose that (X, p) and (Y,d)
are two metric spaces and f : X — Y is a function defined in a neighborhood
of a point x € X. Then the following are equivalent:

1. f is continuous at x € X.

2. For all neighborhoods A C'Y of f(x), f~1(A) is a neighborhood of x € X.

3. For all sequences {xn},—, C X such that x = lim, o0 Ty, {f(2,)} is con-
vergent in'Y and

lim f(z,)=f ( lim scn> .

Proof. 1 = 2. If A C Y is a neighborhood of f (), there exists € > 0
such that By, (¢) C A and because f is continuous there exists a § > 0 such
that Eq. (2.4) holds. Therefore

By (6) C f7' (Byw) (e)) € f71(A)

showing f~! (A) is a neighborhood of z.

2 = 3. Suppose that {z,,},-; C X and & = lim,,_, 2,. Then for any ¢ >
0, By(z) (€) is a neighborhood of f (z) and so f~! (By() (€)) is a neighborhood
of x which must contain B, (J) for some d > 0. Because z,, — =, it follows that
Ty, € By (6) C f71 (B (¢)) for a.a. n and this implies f (z,,) € By () (¢) for
a.a. n, i.e. d(f(z), f (z,)) < ¢ for a.a. n. Since € > 0 is arbitrary it follows that

3. = 1. We will show not 1. = not 3. If f is not continuous at =z,
there exists an € > 0 such that for all n € N there exists a point z,, € X with
p(xn,z) < Lyetd(f(zn),f(x)) > e Hence z, — x as n — oo yet f (z,,) does
not converge to f (). ]

Here is a global version of the previous lemma.
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18 2 Basic Metric and Topological Space Notions

Lemma 2.17 (Global Continuity Lemma). Suppose that (X, p) and (Y, d)
are two metric spaces and f : X — Y is a function defined on all of X. Then
the following are equivalent:

1. f is continuous.

2. f7XV) e, for all V € 14, i.e. f7H(V) is open in X if V is open in'Y.
3. f7YCO) is closed in X if C is closed in Y.
4. For all convergent sequences {xzn,} C X, {f(xn)} is convergent in'Y and

lim f(z,)=f ( lim xn) .
n—oo n—oo

Proof. Since f~1(A¢) = [f~! (A)]c, it is easily seen that 2. and 3. are
equivalent. So because of Lemma [2.16| it only remains to show 1. and 2. are
equivalent. If f is continuous and V' C Y is open, then for every x € f~1(V), V
is a neighborhood of f (z) and so f~* (V) is a neighborhood of . Hence f~* (V)
is a neighborhood of all of its points and from this and Exercise[2.2]it follows that
f~1 (V) is open. Conversely, if z € X and A C Y is a neighborhood of f () then
there exists V' C, X such that f(x) € V C A. Hence z € f~1(V) C f~1(A)
and by assumption f~! (V) is open showing f~!(A) is a neighborhood of z.
Therefore f is continuous at x and since z € X was arbitrary, f is continuous.
]

Definition 2.18 (Continuity at a point in topological terms). Let
(X,7x) and (Y, 7y) be topological spaces. A function f : X — Y is contin-
uous at a point © € X if for every open neighborhood V' of f(x) there is an
open neighborhood U of x such that U C f=Y(V). See Figure .

LI

Fig. 2.1. Checking that a function is continuous at z € X.
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Definition 2.19 (Global continuity in topological terms). Let (X, 7x)
and (Y, 7y) be topological spaces. A function f: X —'Y is continuous if

fHry) = {f_l (V): Ve Ty} CTx.

We will also say that [ is Tx /Ty —continuous or (tx,Ty) — continuous. Let
C(X,Y) denote the set of continuous functions from X to'Y.

Exercise 2.6. Show f: X — Y is continuous (Definition [2.19)) iff f is contin-
uous at all points z € X.

Exercise 2.7. Show f : X — Y is continuous iff f~1(C) is closed in X for all
closed subsets C of Y.

Definition 2.20. A map f : X — Y between topological spaces is called a
homeomorphism provided that f is bijective, f is continuous and f~1:Y —
X is continuous. If there exists f : X — Y which is a homeomorphism, we say
that X andY are homeomorphic. (As topological spaces X andY are essentially
the same.)

Ezxample 2.21. The function ds defined in Lemma is continuous for each
A C X. In particular, if A = {z}, it follows that y € X — d(y, ) is continuous
for each =z € X.

Exercise 2.8. Use Example and Lemma to recover the results of
Example 2.9

Exercise 2.9 (A joint continuity criteria). Let X,Y,Z be three metric
spaces and F': X XY — Z be a function such that;

1. For each z € X the map Y 3y — F (x,y) € Z is continuous and moreover
are locally equi-continuous in z. In more detail, assume for all (a,b) € X xY
there exists x := & (a,b) > 0 such that

lim sup d(F(x,y),F (z,b)) =0.

Y=breBx (ae)

2. There exists a dense subset Yy C Y such that X 5 ¢ — F(x,y) € Z is
continuous for any fixed y € Yj.

Show;

1. X 52 — F(z,y) € Z is continuous for any fixed y € Y and then show
2. F: X xY — Z is jointly continuous on X x Y.
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Lemma 2.22 (Urysohn’s Lemma for Metric Spaces). Let (X, d) be a met-
ric space and suppose that A and B are two disjoint closed subsets of X. Then

dB(J?)

da@) +dn(@) forxe X (2.5)

flz) =
defines a continuous function, f: X — [0, 1], such that f(x) =1 for x € A and
f(z)=01ifz e B.

Proof. By Lemma @ da and dp are continuous functions on X. Since
A and B are closed, da(x) > 0if v ¢ A and dp(z) > 0 if x ¢ B. Since
ANB =0, d(x)+dp(z) >0 for all z and (da +dp) " is continuous as well.
The remaining assertions about f are all easy to verify. [

Sometimes Urysohn’s lemma will be use in the following form. Suppose
F Cc V C X with F being closed and V being open, then there exists f €
C(X,[0,1])) such that f =1 on F while f = 0 on V. This of course follows
from Lemma [2.22] by taking A = F and B = V*.

Corollary 2.23. If A and B are two disjoint closed subsets of X, then there
exists disjoint open subsets U and V' of X such that A C U and B C V.

Proof. Let f be as in Lemma so that f € C (X — [0,1]) such that
f=1onAand f=0on B. Thenset U={f>1}andV={f<1/2}. =

2.2 Completeness in Metric Spaces

Definition 2.24 (Cauchy sequences). A sequence {z,,},. | in a metric space
(X,d) is Cauchy provided that

lim d(x,,zm) =0.
m,n— oo

Exercise 2.10. Let (X, d) be a pseudo metric space.

1. Show every convergent sequence, {z,},-, C X, is Cauchy.

2. If x,, = x and y,, — y show d (z,,yn) — d(z,y) .

3.1 {wn}, . {yn},—y C X are Cauchy sequences, show lim, o d (2n,yn)
exists in [0, 00).

As you showed in Exercise [2.10, convergent sequences are always Cauchy
sequences. The converse is not always true. For example, let X = Q be the set
of rational numbers and d(z,y) = |z — y|. Choose a sequence {z,} .-, C Q
which converges to v/2 € R, then {z,,}>-, is (Q,d) — Cauchy but not (Q,d) —
convergent. The sequence does converge in R however.
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2.2 Completeness in Metric Spaces 19

Definition 2.25. A metric space (X,d) is complete if all Cauchy sequences
are convergent sequences.

Exercise 2.11. Let (X, d) be a complete metric space. Let A C X be a subset
of X viewed as a metric space using d|ax 4. Show that (A, d|ax4) is complete
iff A is a closed subset of X.

Ezxample 2.26. Examples 2. — 4. of complete metric spaces will be verified in
Chapter 77 below.

1. X =R and d(z,y) = |z — y|, see Theorem ?? above.
n 1/2
2. X =R" and d(z,y) = |lo — yll, = (Zi_ (2 — v)?)*.
3. X =¢P(p) for p € [1,00] and any weight function u: X — (0, 00).
4. X = C([0,1],R) — the space of continuous functions from [0, 1] to R and

d = t)—g(t)].
(£,9) := max |£(t) = ()]
This is a special case of Lemma 7?7 below.
5. Let X = C(]0,1],R) and

1
d(f.g) ::/0 |£(t) — g(t)] dt.

You are asked in Exercise 77 to verify that (X, d) is a metric space which
is not complete.

Exercise 2.12 (Completions of Metric Spaces). Suppose that (X,d) is a
(not necessarily complete) metric space. Using the following outline show there
exists a complete metric space (X,d) and an isometric map i : X — X such
that 7 (X) is dense in X, see Definition m

1. Let C denote the collection of Cauchy sequences a = {a,} -, C X. Given
two element a,b € C show d¢ (a,b) := lim,, o0 d (an, by) exists, de¢ (a,b) >0
for all a,b € C and d¢ satisfies the triangle inequality,

de (a,c¢) < dc (a,b) + de (b, c) for all a,b,c € C.

Thus (C,d¢) would be a metric space if it were true that de¢(a,b) = 0 iff
a = b. This however is false, for example if a,, = b, for all n > 100, then
dc(a,b) = 0 while a need not equal b.

2. Define two elements a,b € C to be equivalent (write a ~ b) when-
ever dc(a,b) = 0. Show “ ~ 7 is an equivalence relation on C and that
de (a/,b') = dc (a,b) if a ~ a’ and b~ V. (Hint: see Corollary [2.8])
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20 2 Basic Metric and Topological Space Notions

3. Given a € Clet @ := {b € C : b ~ a} denote the equivalence class containing
a and let X := {a: a € C} denote the collection of such equivalence classes.
Show that J(EL, 6) :=d¢ (a,b) is well defined on X x X and verify (X, J) is
a metric space.

4. For z € X let i (x) = @ where a is the constant sequence, a, = z for all n.
Verify that i : X — X is an isometric map and that i (X) is dense in X.

5. Verify (X,d) is complete. Hint: if {@(m)},._, is a Cauchy sequence in X
choose b, € X such that d (i (bn),a(m)) < 1/m. Then show a(m) — b
where b = {b,,}~_, .

Definition 2.27 (Lip-K functions). Suppose that (X,d) is a pseudo-metric
space, U be a non-empty subset of X, and K > 0. A function f : U — C 1is
Lip-K on U if

If (v) = f(2)| < Kd(z,y) for all z,y € U.

The basic fact about pseudo-metrics and Lip-K - functions that we will use
is contained in the next lemma.

Lemma 2.28. Let (X, d) be a pseudo-metric space, U be a non-empty subset of
X, U denote its closure in X, and f: U — C be a Lip-K function. Then there
exists a unique Lip-K function, f : U — C such that f = f|y. [See Exercise

for a generalization of this result.]

Exercise 2.13. Prove Lemma [It is useful to observe that every Lip-K
function on U as above is continuous on U]

Ezample 2.29. Let ¢ > 0, X = [¢,00), d(x,y) := |y —z| for z,y € X, U :=
XNQ, and f(%) =4 = (m)fl for m,n € Q. For x,y € U we have

m n

1
Iy—wlﬁe—zly—xl~

[f (z) = f(y)l =

1 1’ 1

z oyl |zl lyl
Thus f is Lip-¢~2 and therefore extends to a Lip—e~2 function on U = X.
This shows how to construct the inverse of a real number from knowing the
how to compute inverses of numbers in Q. Note that for z € X, we will have
71 =1lim, oo x;l where z,, € U such that x,, — = as n — oo. Thus it follows
that

-1

z-z ' = lim z,- lim 3:7:1 = lim [a:n -z, ] =1.
n—oo n—oo n—oo

2.3 Sequential compactness

Definition 2.30. A metric space, (Y, p), is (sequentially) compact iff every se-
quence, {yn}r—; CY has a convergent subsequence.
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The method of proof of the next proposition typically goes under the name
of Cantor’s diagonalization technique.

Proposition 2.31 (A “little” Tychonov theorem). Suppose that A is a
countable set (like N) and for each A\ € A, (Yx,px) is a compact metric space.
Given sequences, {yx (n) : n € N} C Yy, for each \ € A, there exists an increas-
ing sequence, {ny}re; C N such that yy = limy_,o Y (ny) ezists in Yy for each
Ae A

Proof. Since A is countable we may as well assume that A = N. By as-
sumption and induction there exists infinite subsets {I\}3.; of N such that
IN' DIy D3 D ... and imp, 5noe0 ya (n) = ya € Y, exists for all A € N.
We now define ny inductively by n; = min/l}, ny = min[l% N (ng,00)],
ng = min [I3 N (ng,00)], etc. etc. It then follow that ny € I'\ for all k > A,
ng > k and ni T oo as k — oo. Since subsequences of convergent sequences are
still convergent we find,

lim yy(ng) = lim yx(n) =y €Y, forall A € A
k—o0

I'xon—o0

2.4 Supplementary Remarks

2.4.1 Word of Caution

Ezample 2.32. Let (X, d) be a metric space. It is always true that B;(g) C Cy(€)
since C(¢) is a closed set containing B, (¢). However, it is not always true that
B, (e) = C,(¢). For example let X = {1,2} and d(1,2) = 1, then By(1) = {1},
B1(1) = {1} while C1(1) = X. For another counterexample, take

X={(z,y) eR*:z=00rz=1}
with the usually Euclidean metric coming from the plane. Then

Bo,oy(1) = {(0,y) e R* : [y| < 1},
B,oy(1) = {(0,y) €R?: |y| <1}, while

C0,0)(1) = Bo,0)(1) U{(1,0)}.

In spite of the above examples, Lemmas and below shows that for
certain metric spaces of interest it is true that B,(¢) = Cy(¢).
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Lemma 2.33. Suppose that (X, |-|) is a normed vector space and d is the metric
on X defined by d(x,y) = |x —y|. Then

B,(e) = Cy(e) and
bd(B;(e)) ={y € X : d(z,y) = ¢}.

where the boundary operation, bd(-) is defined in Definition ?? (BRUCE: For-
ward Reference.) below.

Proof. We must show that C := C,(¢) C B,(¢) = B. For y € C, let
v =1y — z, then
vl = |y — =] = d(z,y) <e.

Let a, =1 —1/n so that a,, T 1 as n — oo. Let y,, =  + ayv, then d(z,y,) =
and(z,y) < €, so that y, € By(¢) and d(y,yn) = (1 — ) |v| = 0 as n — oo.
This shows that y, — y as n — oo and hence that y € B. [
2.4.2 Riemannian Metrics

This subsection is not completely self contained and may safely be skipped.

Lemma 2.34. Suppose that X is a Riemannian (or sub-Riemannian) manifold
and d is the metric on X defined by

d(z,y) =inf{€(c) : 0(0) =z and o(1) = y}

where (o) is the length of the curve o. We define £(0) = 0o if o is not piecewise
smooth.
Then

B, (e) = Cy(e) and
bd(Bx(e)) = {y € X : d(z,y) = ¢}

where the boundary operation, bd(-) is defined in Definition 77 below.

_ Proof. Let C := C,(¢) C By(e) =: B. We will show that C' C B by showing
B¢ C C°. Suppose that y € B¢ and choose ¢ > 0 such that By(6) N B = (. In
particular this implies that

By(6) N By(e) = 0.

We will finish the proof by showing that d(z,y) > € +§ > € and hence that
y € C°. This will be accomplished by showing: if d(x,y) < e+ ¢ then B,(d) N
Bg(e) # 0. If d(z,y) < max(e, ) then either x € By (d) or y € B;(¢). In either
case B, (6) N B,(¢) # (0. Hence we may assume that max(e, d) < d(z,y) < €+ 0.
Let a > 0 be a number such that
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=

Fig. 2.2. An almost length minimizing curve joining x to y.

max(e,d) < d(z,y) <a<e+d

and choose a curve ¢ from z to y such that £(o) < a. Also choose 0 < §’ < ¢ such
that 0 < o — ¢’ < € which can be done since o — § < . Let k(t) = d(y,0(t)) a
continuous function on [0, 1] and therefore k([0, 1]) C R is a connected set which
contains 0 and d(z,y). Therefore there exists ¢y € [0, 1] such that d(y,o(to)) =
k(to) = 9¢'. Let z = o(ty) € By(d) then

d(w,2) < l(o]j0,5) = £(0) = U(0jtg1) <a—d(z,y) =a—0d <e
and therefore z € B, () N B, (d) # 0. [

Remark 2.35. Suppose again that X is a Riemannian (or sub-Riemannian) man-
ifold and
d(z,y) =inf{£(c) : 0(0) =z and o(1) = y}.

Let o be a curve from x to y and let ¢ = ¢(0) — d(z,y). Then for all 0 < u <
v <1,

d(z,y) +e=1L(c) =Ll(o|pu) + £(0]ww) + Lo
> d(.’lﬁ, U(u)) + E(U‘[u,vv + d(O‘(U), y)

['u,l])

and therefore, using the triangle inequality,

(z,y) +& —d(z,0(u)) —d(o(v),y)

(o(u),o(v)) +e.

This leads to the following conclusions. If ¢ is within € of a length minimizing
curve from z to y then o, ,) is within € of a length minimizing curve from o (u)

to o(v). In particular if o is a length minimizing curve from x to y then o|f,
is a length minimizing curve from o(u) to o(v).
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2.5 Exercises

Exercise 2.14. Let (X, d) be a metric space. Suppose that {x,}52, C X is a
sequence and set &, := d(zy,, Tpy1). Show that for m > n that

xnaxm Z€k<25k

Conclude from this that if

Zekudxman

n=1

then {z,}52, is Cauchy. Moreover, show that if {x,}>2; is a convergent se-
quence and x = lim,, ., ,, then

d(x, xy,) E Ek-

Exercise 2.15. Show that (X, d) is a complete metric space iff every sequence
{x,}52, C X such that > | d(2p,Tnt1) < 00 is a convergent sequence in X.
You may find it useful to prove the following statements in the course of the
proof.

1. If {w,, } is Cauchy sequence, then there is a subsequence y; := x,,; such that
221 A(Yj+1,75) < 0.

2. If {x, }52, is Cauchy and there exists a subsequence y; := x,,, of {z,} such
that x = lim;_, y; exists, then lim,,_,, z,, also exists and is equal to .

Exercise 2.16. Suppose that f : [0,00) — [0,00) is a C? — function such
that f(0) = 0, f/ > 0 and f” < 0 and (X, p) is a metric space. Show that
d(z,y) = f(p(z,y)) is a metric on X. In particular show that

 ple,y)
W9 = T ey

is a metric on X. (Hint: use calculus to verify that f(a +b) < f(a) + f(b) for
all a,b € [0,00).)

Exercise 2.17. Let {(X,,,d,)},—, be a sequence of metric spaces, X :=
12, Xy, and for z = (z(n)),—; and y = (y(n)),—, in X let

Sy dalaln). ()
D= 2 T e ) 20

Show:
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1. (X, d) is a metric space,

2. a sequence {xy},o; C X converges to x € X iff zx(n) — z(n) € X,, as
k — oo for each n € N and

3. X is complete if X,, is complete for all n.

Exercise 2.18. Suppose (X, p) and (Y,d) are metric spaces and A is a dense
subset of X.

1. Show that if /' : X — Y and G : X — Y are two continuous functions
such that /' = G on A then F = G on X. Hint: consider the set C :=
{reX:F(z)=G()}.

2. Now suppose that (Y, d) is complete. If f : A — Y is a function which is
uniformly continuous (i.e. for every € > 0 there exists a 6 > 0 such that

d(f(a), f(b)) <e for all a,b e A with p(a,b) <),

show there is a unique continuous function F': X — Y such that FF = f on
A. Hint: each point x € X is a limit of a sequence consisting of elements
from A.

3.Let X =R =Y and A = Q C X, find a function f : Q — R which is
continuous on Q but does not extend to a continuous function on R.
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3

Basic Probabilistic Notions

Definition 3.1. A sample space {2 is a set which is to represents all possible
outcomes of an “experiment.”

Example 3.2. 1. The sample space for flipping a coin one time could be taken
to be, 2 ={0,1}.
2. The sample space for flipping a coin N -times could be taken to be, 2 =
{0, 1}N and for flipping an infinite number of times,

Q={w=(w1,ws,...) 1 w; €{0,1}} = {0,1}".
3. If we have a roulette wheel with 38 entries, then we might take
2 ={00,0,1,2,...,36}

for one spin,
2 =1{00,0,1,2,...,36}"

for N spins, and
2 ={00,0,1,2,...,36}"

for an infinite number of spins.
4. If we have a spinner (a board with an arrow attached to the board by a
bearing at its base), we could take

Q:Slz{ze(C:|z|:1}={ei0:—ﬂ'§9§7r}.

5. If we throw darts at a board of radius R, we may take
Q2 =Dp:={(z,y) ER*: 2> +y* < R}

for one throw,
2 =D¥

for N throws, and
2 =D%

for an infinite number of throws.
6. Suppose we release a perfume particle at location € R? and follow its
motion for all time, 0 <t < oo. In this case, we might take,

2 ={weC(0,0),R*:w(0)=2a}.

Definition 3.3. An event, A, is a subset of 2. Given A C 2 we also define
the indicator function of A by

_JlifweAd
La (@) '_{Oifw¢A'

Ezample 3.4. Suppose that 2 = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here w,, = 1 represents the fact that a head was
thrown on the n'® — toss, while w,, = 0 represents a tail on the n*" — toss.

1. A={w € 2 : w3 =1} represents the event that the third toss was a head.

2. A=U2, {w € N:w; =wi+1 = 1} represents the event that (at least) two
heads are tossed twice in a row at some time.

3.A=NF_; Up>n {w € 2:w, =1} is the event where there are infinitely
many heads tossed in the sequence.

4. A = U Np>n {w € 2:w, =1} is the event where heads occurs from
some time onwards, i.e. w € A iff there exists, N = N (w) such that w, =1
for all n > N.

Ideally we would like to assign a probability, P (A), to all events A C (2.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, w (n) € 2 for each n € N,
then try to “define” P (A) = limy_ oo Py (A) where
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1 N
:N;L“ (w (k) (3.1)
:%#{1§k§N:w(k)€A}. (3:2)

Here Py (A) is the (empirical) relative frequency that event A happened during
the first IV trials. The properties of this function are indicated in the next simple
lemma.

Lemma 3.5. The function Py (-) satisfies;

1. Py (A) € [0,1] for all A C 2.

2. PN (@) =0 and PN (Q) =1.

3. Additivity. If A and B are disjoint event, i.e. AN B = AB = (), then
Py (AUB) =Py (A)+ Py (B).

4. Countable Additivity. More generally, if {A; } _, are pairwise disjoint
events (i.e. Aj N A =0 for all j # k), then

Py (U521 4;) ZPN

Proof. Items 1. and 2. are obvious. For the additivity of item 3. first observe
that if A and B are disjoint events, i.e. ANB = AB = (), then 1,up = 14 +15.
Therefore we have

N
AUB ZlAuB ):%Z[lAw

k=1

k) + 15 (w (k)]
= Py (A) + Py (B) .
Similarly for item 4., if {4; } - , are pairwise disjoint events (i.e. AjNA =0
for all j # k), then again, Ly 4, = ijl 14, and therefore

N

N oo
Py (U, 4;) = %Z luse 4, (w (k) = %ZZ La, (w (K

E—1 k=1 j=1
[ N i

= Y @) = 3 Py (4)
3 j:1

]

We expect that Py (A) is an approximation to the “true” probability of the

event A which gets closer to the truth as N — co. Thus we wish to define P (A)

to be the relative long term relative frequency that the event A occurred for
the given sequence of experiments, {w (k)},—, , i.e.
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“P(A):= lim Py (A) =

N—o00

(3.3)

| —
=
—
b

k=

There are of course a number of problems with defining P as in Eq.
of which the most important is how do we know the limit even exits. Even if
the limit exists we may wonder if the answer is independent of the sequence of
experiments we used to compute P (A) . Nevertheless, we will take it for granted
in this chapter that the limit does exist and is well defined, i.e. independent of
the given sequence of experiments.

Under the postulate that limit in Eq. exists for each even A C 2, we
may formally pass to the limit in the expressions in items 1. — 4. of Lemma
in order to “show” P satisfies;

1. P(A) €[0,1] for all A C 2.

2. P(0) =0 and P(£2) =1

3. Additivity. If A and B are disjoint event, i.e. AN B = AB = (), then
laup =14+ 1p so that
P(AUB)= lim Py(AUB)= lim [Py (A)+ Py (B)]=P(A)+P(B).

N—o0 N—o0
4. Countable Additivity. If {4; } _, are pairwise disjoint events (i.e. A; N
= () for all j # k), then again, Ly 4, = Zj 1 14, and therefore we

might hope that (by another leap of faith) that

P(U=d) = Nlinoopﬂ - JEHWZPN

j=1

Definition 3.6 (Probability Measures (Provisional)). Loosely speaking a
probability measure is a function, P : 2 — [0,1] for which the 4 conditions
above are satisfied. (Probability theory is the study of such functions.)

Ezxample 3.7. Let us consider the tossing of a fair coin N times. In this case we
would expect that every w € 2 is equally likely, i.e. P ({w}) = QLN Assuming
this we are then forced to define

PA) = S #(4).

Observe that this probability has the following property. Suppose that o €
{0, l}k is a given sequence, then
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1 _ 1
P({w:(wl,...,wk):a}):Q—NQN k:27'

That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.

Example 3.8. The previous example suggests that if we flip a fair coin an infinite
number of times, so that now 2 = {0, 1}N, then we should define

P{we 2: (wy,...,wx)=0}) = (3.4)

for any k > 1 and o € {0, 1}k. Assuming there exists a probability, P : 2 —
[0,1] such that Eq. holds, we would like to compute, for example, the
probability of the event B where an infinite number of heads are tossed. To try
to compute this, let

A, ={w € 2 :w, =1} = {heads at time n}

By = Up>nA, = {at least one heads at time N or later}

and
B = ﬁ(;voleN = {An 10} = ﬂ%:l Un>nN A,.
Since
BJCV :ﬂnzNA,cl CmMznZNA% :{WE Q:wN:wN+1 = =Wy :0},

we see that

P(B%) < —0as M — oo.

oM-N

Therefore, P (By) = 1 for all N. If we assume that P is continuous under taking
decreasing 1imit£| we may conclude, using By | B, that

P(B)= lim P(By)=1.

Without this continuity assumption we would not be able to compute P (B).

The unfortunate fact is that we can not always assign a desired probability
function, P (A), for all A C 2. For example we have the following negative
theorem.

Theorem 3.9 (No-Go Theorem for fair spinners). Let 2 =
{z € C:|z| =1} be the unit circle. Then there is no probability function,
P : 2 —[0,1] such that P is invariant under rotations.

! We will see a little later this is a consequence of countable additivity.
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Proof. We are going to use the fact proved below in Proposition that
the continuity condition on P is equivalent to the o — additivity of P. For z € {2
and N C (2 let

zN:={zne€ 2:ne N}, (3.5)

that is to say e’ N is the set N rotated counter clockwise by angle 6. By
assumption, we are supposing that

P(zN) = P(N) (3.6)

for all z € £2 and N C f2.
Let A ‘
Ri={z=e?":tcQ}={2=e%"":1€[0,1)NQ}

— a countable subgroup of {2. As above R acts on {2 by rotations and divides {2
up into equivalence classes, where z,w € (2 are equivalent if z = rw for some
r € R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N C {2 be the set of these representative
points. Then every point z € {2 may be uniquely written as z = nr with n € N
and r € R. That is to say

N=> (rN) (3.7)

reR

where )~ A, is used to denote the union of pair-wise disjoint sets {A}. By

Eqgs. and ,
1=P(2)=>Y P(rN)=>Y_ P(N). (3.8)

reR reR

We have thus arrived at a contradiction, since the right side of Eq. is either
equal to 0 or to oo depending on whether P (N) =0 or P (N) > 0. |

Here are some other related results which should give one pause even when
thinking about desirable finitely additive measures.

Theorem 3.10 (Banach—Tarski paradox 1942). Given any two bounded
subsets A and B of R? with d > 3, both of which have a non-empty interior,
there are partitions of A and B into a finite number of disjoint subsets, A =
AyU---UA, and B = B1U---UBy. such that A; and B; are congruent for each
i.

Theorem 3.11 (Robinson’s doubling of the sphere 1947). [t is possible
to double the ball in R3 by decomposing it into five pieces. To be more precise if
B is the unit ball in R® there exists {Ai}le C B such that B = 2?21 A; while

S0 Al = BU B’ where B' is a translate of B such that B'0 B = an each
Al is congruent to A; for 1 <i <5.
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To avoid the issues inherent in the last three theorems we are going to have
to relinquish the idea that P should necessarily be defined on all of 2. So we
are going to only define P on particular subsets, B C 2. We will developed
this below under the title of o — algebras.

Remark 3.12 (What is probability about.). Given a sample space 2 our goals in
a nutshell are as follows;

1. Start with a “natural” probability Py defined on some relatively small col-
lection of events (A) in 2, see Proposition

2. Verify that Py has the continuity property of being countably additive —
this is a substantial restriction on P, see Proposition

3. Show that continuous Py’s have a unique extension (P) to (B) — the “clo-
sure” of A, see Theorem [6.20] and [6.28|

4. Now try to compute as explicitly as possible P (A) for A € B and more gen-
erally “expectations of random variables” relative to P. [This is essentially
the main content of the course and the rest of these notes.|
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4

Preliminaries

4.1 Set Operations

Let N denote the positive integers, Ny := NU{0} be the non-negative integers
and Z = Ny U (—=N) — the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 4.1 Given two sets X and Y, let YX denote the collection of all
functions f : X — Y. If X = N, we will say that f € YN is a sequence
with values in'Y and often write f, for f(n) and express f as {fn}rry. If
X ={1,2,..., N}, we will write YV in place of Y112N}t and denote f € YN
by f = (f1, f2,..., fn) where fr, = f(n).

Notation 4.2 More generally if { X, : a« € A} is a collection of non-empty sets,

let X4 = [] Xa and 7o : Xa4 — X, be the canonical projection map defined
acA
by o (z) = o If If Xo = X for some fized space X, then we will write || X,
acA
as X4 rather than X 4.

Recall that an element x € X4 is a “choice function,” i.e. an assignment
ZTo = z(a) € X, for each a € A. The axiom of choice states that X4 # 0
provided that X, # ) for each « € A.

Notation 4.3 Given a set X, let 2% denote the power set of X — the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2% is that if we think of 2
meaning {0, 1}, then an element of a € 2% = {0, 1}X is completely determined
by the set

A={re X :a(x)=1} C X.

In this way elements in {0,1}~ are in one to one correspondence with subsets
of X.
For A € 2% let
A =X\A={zeX:z ¢ A}

and more generally if A, B C X let
B\A:={zxeB:x¢ A} = Bn A°.

We also define the symmetric difference of A and B by
AAB:=(B\A)U(A\ B).

As usual if {A,},,; is an indexed collection of subsets of X we define the union
and the intersection of this collection by

Ugerdo:={r e X:3ael 5 x€ A,} and
Nacrdo ={zeX:x € AyVael}.

Notation 4.4 We will also write Zael A, for UserAa in the case that
{Aa}er are pairwise disjoint, i.e. Ao N Ag =0 if a # B.

Notice that U is closely related to 9 and N is closely related to V. For example
let {A,},2, be a sequence of subsets from X and define

inf A, := Ng>pdr, sup A, := Ug>,Apg,
k>n - k>n -

limsup 4, :=infsup Ay ={z € X : #{n:z€ A,} = 0} = {4, 1.0}

n—00 " k>n
and

liminf A,, := sup IiI>1f Ap ={z € X : z € A, for all n sufficiently large} =: {4, a.a.}.

n— oo n

(One should read {A,, i.0.} as A, infinitely often and {A,, a.a.} as A, almost
always.) Then = € {A, i.0.} iff

YVNeNdIn>N>3ze€A,
and this may be expressed as

{4, i.0.} =NF=; Un>n An.
Similarly, z € {4,, a.a.} iff

dNeN>VYn>N, x€ A,
which may be written as

{An a.a.} e Ujovozl Mp>N A,.
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Definition 4.5. Given a set A C X, let

lifre A
1A(I){0ifa:¢A

be the indicator function of A.

Ezxample 4.6. Here are some example identities involving indicator functions.
Let A and B be subsets of X, then

lanp =14 1p =min(l4,15),

Laup = max (14,1p),

lge=1—14, and 1yap = |14 — 15|

Lemma 4.7 (Properties of inf and sup). We have:

1. (UpAy)S =nNuAS,

2. {4, i.0.}° ={AS a.a.},

3. limsup A, ={z e X :> 7 14, () =00},
n—oo

4. liminf, oo Ap = {z € X : > 07 14e (x) < o0},

5. SUPgk>p 1Ak (l’) = 1Uk2nAk = ]‘SUszn Ag>

6. inkan lAk (if) = 1m,€2,,LAk - 1infk2n Ao

7. Llimsup 4, = limsup1ly, , and
n—oco n—oo

8. 11iminfn%°o A, = lim il’lanOO 1A".

Proof. These results follow fairly directly from the definitions and so the
proof is left to the reader — some of the results are in the exercises below. (The
reader should definitely provide a proof for herself.) [

Definition 4.8. A set X is said to be countable if is empty or there is an
injective function f : X — N, otherwise X is said to be uncountable.

Lemma 4.9 (Basic Properties of Countable Sets).

. If A C X is a subset of a countable set X then A is countable.

. Any infinite subset A C N is in one to one correspondence with N.

. A non-empty set X is countable iff there exists a surjective map, g : N — X.

Af X and Y are countable then X X Y is countable.

. Suppose for each m € N that A,, is a countable subset of a set X, then
A =UX_1 Ay, is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then YX

is uncountable. In particular 2% is uncountable for any infinite set X.

Grds Lo~

Proof. We take each item in turn.
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. If f: X — Nis an injective map then so is the restriction, f|a, of f to the

subset A.
Let f (1) = min A and define f inductively by

fn+1) =min (A\{f(1),..., f(n)}).

Since A is infinite the process continues indefinitely. The function f : N — A
defined this way is a bijection.
If g : N — X is a surjective map, let

f(x) =ming™" ({z}) =min{n € N: f(n) =z}.

Then f : X — Nisinjective which combined with item 2. (taking A = f(X))
shows X is countable. Conversely if f : X — N is injective let g € X be
a fixed point and define g : N — X by g(n) = f~1(n) for n € f(X) and
g(n) = xo otherwise.

Let us first construct a bijection, h, from N to N x N. To do this put the
elements of N x N into an array of the form

(1,1) (1,2) (1,3) ...
(2,1) (2,2) (2,3) ...
(3,1) (3,2) (3,3) ...

and then “count” these elements by counting the sets {(i,7):i+j =k}
one at a time. For example let h (1) = (1,1), h(2) = (2,1), h(3) = (1,2),
h(4) = (3,1), h(5) = (2,2), h(6) = (1,3) and so on. If f : N—X and
g : N =Y are surjective functions, then the function (f X g)oh: N X xY
is surjective where (f x g) (m,n) := (f (m), g(n)) for all (m,n) € N x N.
If A= () then A is countable by definition so we may assume A # (). With
out loss of generality we may assume A; # () and by replacing A, by A4;
if necessary we may also assume A,, # @ for all m. For each m € N let
@ : N — A, be a surjective function and then define f : NxN — UX_, A4,,
by f(m,n) := am(n). The function f is surjective and hence so is the
composition, foh : N — UX_; A, where h : N — N x N is the bijection
defined above.

Let us begin by showing 2V = {0, 1}N is uncountable. For sake of con-
tradiction suppose f : N — {O,I}N is a surjection and write f(n) as
(fi(n), f2(n), f3(n),...). Now define a € {0,1}" by a, = 1 — fu(n).
By construction f, (n) # ay for all n and so a ¢ f(N). This contradicts
the assumption that f is surjective and shows 2V is uncountable.

For the general case, since Y;¥ C Y for any subset Yy C Y, if Y§¥ is
uncountable then so is YX. In this way we may assume Yj is a two point
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set which may as well be Yy = {0, 1} . Moreover, since X is an infinite set we
may find an injective map = : N — X and use this to set up an injection,
i: 2N — 2% by setting i (A) := {z, :n € N} C X for all A C N. If 2%
were countable we could find an injective map f : 2¥ — N. We then have
foi:2Y = Nis also injective which would imply 2~ is countable which it
is not.

4.2 Exercises

Let f: X — Y be a function and {4;};c; be an indexed family of subsets of Y,
verify the following assertions.

Exercise 4.1. (N;erA;)°¢ = U;e1 AS.

Exercise 4.2. Suppose that B C Y, show that B\ (U;er4;) = Nier(B\ A;).
Exercise 4.3. Let { B; };c; be another collection of subsets of Y. Show [U;er A4;]\
[UierBi] C User (A; \ B;) and then use this inclusion twice to show [U;erA4;] A
[UierBi] C User (4i A B;).

Exercise 4.4 (Triangle inclusion for sets). If A, B, C are subsets of X, show
A\ C C [A\ B]U[B\ C] and use this identity twice to show

AANCC[AABJU[BAC]. (4.1)
Exercise 4.5. f 1 (UjerA;) = Uier fH(4).
Exercise 4.6. f = (NierA;) = Nierf~H(A).

Exercise 4.7. Find a function f : X = {a,b,c¢} — Y = {1,2} and subsets C
and D of X such that

f(€ND)# f(C)n f(D) and f(C°) # [f (O)°.

4.3 Algebraic sub-structures of sets

Definition 4.10. A collection of subsets A of a set X is a m — system or
multiplicative system if A is closed under taking finite intersections.

Definition 4.11. A collection of subsets A of a set X is an algebra (Field)
if
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1.0, Xe A

2. A € A implies that A° € A

3. A is closed under finite unions, i.e. if Ay, ..., A, € A then A1U---UA, € A.
In view of conditions 1. and 2., 3. is equivalent to

3. A is closed under finite intersections.

Definition 4.12. A collection of subsets B of X is a 0 — algebra (or some-
times called a o — field) if B is an algebra which also closed under countable
unions, i.e. if {A;};o, C B, then U, A; € B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections. )

Ezxample 4.13. Here are some examples of algebras.

1. B=2% then Bis a o — algebra.

2. B={0,X} is a o — algebra called the trivial o — field.

3. Let X = {1,2,3}, then A = {0, X,{1},{2,3}} is an algebra while, S :=
{0, X,{2,3}} is a not an algebra but is a m — system.

4. Suppose that S is a set (called state space) and {2 := S := SN (think of
N as time and (2 as path space). For each n € N, let

A, :={Bx2:BcCS"}.
Then A, is a o-algebra while A := U2, A, is an algebra. [When S is
an uncountable set we will typically only used a modified version of this

construction.]

Proposition 4.14. Let £ be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and o — algebra o(E) which contains E.

Proof. Simply take

A) = ﬂ{.A : A is an algebra such that £ C A}

and
o(€):= m{/\/l : M is a o — algebra such that £ C M}.

Example 4.15. Suppose X = {1,2,3} and £ = {0, X, {1, 2},{1,3}}, see Figure
41l Then
A(E) = o(&) = 2%,

On the other hand if £ = {{1,2}}, then A () = {0, X, {1, 2}, {3}}.
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(o

Fig. 4.1. A collection of subsets.

Exercise 4.8. Suppose that & C 2% for i = 1,2. Show that A(&;) = A (&)
iff & C A(&) and & C A (&) . Similarly show, o (£1) = o (&2) iff £ C o (&2)
and & C o (&1) . Give a simple example where A (&1) = A (£2) while &1 # &s.

In this course we will often be interested in the Borel ¢ — algebra on a
topological space.

Definition 4.16 (Borel o — field). The Borel o — algebra, B = Br =
B(R), on R is the smallest o -field containing all of the open subsets of R.
More generally if (X, 7) is a topological space, the Borel o — algebra on X is

Bx := o0 (1) — i.e. the smallest ¢ — algebra containing all open (closed) subsets
of X.

Exercise 4.9. Verify the Borel ¢ — algebra, Bg, is generated by any of the
following collection of sets:

1.6 :={(a,00) :a € R}, 2. & :={(a,0) :a € Q} or 3. & :={[a,0) : a € Q}.

Hint: make use of the ideas in Exercise [4.8

We will postpone a more in depth study of ¢ — algebras until later. For now,
let us concentrate on understanding the the simpler notion of an algebra.

Definition 4.17. Let X be a set. We say that a family of sets F C 2% is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F.

Ezample 4.18. Let X be a set and & = {A;,...,A,} where Ay,... A4, is a
partition of X. In this case

A(€) = 0(€) = {Uicadi : AC{1,2,...,n}}
where U;e 1 A; := 0 when A = (). Notice that
#(A(E)) = #2112ty =2,
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Example 4.19. Suppose that X is a set and that A C 2% is a finite algebra, i.e.
# (A) < oo. For each z € X let

Ar=nN{AecA:x € A} € A,

wherein we have used A is finite to insure A, € A. Hence A, is the smallest set
in A which contains x.

Now suppose that y € X. If x € A, then A, C A, so that A, N A, = A,.
On the other hand, if x ¢ A, then z € A, \ A, and therefore A, C A, \ 4,, i.e.
Ay N Ay = 0. Therefore we have shown, either A, N A, =0 or A, N A, = A,.
By reversing the roles of z and y it also follows that either A, N A, = 0 or
Ay N A, = A,. Therefore we may conclude, either A, = A, or A, N A, =0 for
all z,y € X.

[Alternatively, let z,y € X. If v ¢ A,, then z € A, \ A, € A and therefore
A\ Ay = A, ie. AyN A, = 0. Similarly if y ¢ A,, then A, N A, = (. From
these remarks we may now also conclude that if € A,, then y € A, (for
otherwise A, N A, =) and therefore A, C A, and A, C A,, i.e. A, = Ay]

Let us now define {Bi}le to be an enumeration of { A, }
forward to conclude that

A={UieaB;i : AC{1,2,... k}}.

zex - It is a straight-

For example observe that for any A € A, we have A = U,eca Ay = Ujea B; where
A:={i:B; C A}.

Proposition 4.20. Suppose that B C 2% is a o — algebra and B is at most
a countable set. Then there exists a unique finite partition F of X such that
F C B and every element B € B is of the form

B=U{AeF:AcCBj}. (4.2)
In particular B is actually a finite set and # (B) = 2™ for some n € N.
Proof. We proceed as in Example For each z € X let
A, =n{AeB:zec A} € B,

wherein we have used B is a countable o — algebra to insure A, € B. Just as
above either A, N A, =0 or A, = A, and therefore F = {4, :2 € X} C Bisa
(necessarily countable) partition of X for which Eq. holds for all B € B.

Enumerate the elements of F as F = {P,}Y | where N € Nor N = oo. If
N = oo, then the correspondence

ae{0, 1} 54, =U{P,:a,=1}€B

is bijective and therefore, by Lemma[£.9] B is uncountable. Thus any countable
o — algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader. ]
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Ezample 4.21 (Countable/Co-countable o — Field). Let X = R and & :=
{{z} : 2 € R}. Then o (£) consists of those subsets, A C R, such that A is
countable or A€ is countable. Similarly, A (£) consists of those subsets, A C R,
such that A is finite or A€ is finite. More generally we have the following exercise.

Exercise 4.10 (Look at but do not hand in.). Let X be a set, I be an
infinite index set, and & = {A;}ics be a partition of X. Prove the algebra,
A(€), and that o — algebra, o (£), generated by £ are given by

A(E) = {Usead; : A C I with # (A) < 0o or # (A°) < oo} (4.3)

and
(&) = {UjcaA; : A C I with A countable or A° countable} (4.4)

respectively. Here we are using the convention that U;e4A; := ) when A = 0.
In particular if I is countable, then

0'(8) :{UieAAiIACI}.

Proposition 4.22. Let X be a set and £ C 2X. Let £¢ := {A°: A € £} and
E:=EU{X,0}U&° Then

A(E) := {finite unions of finite intersections of elements from E.}.  (4.5)

Proof. Let A denote the right member of Eq. . From the definition of
an algebra, it is clear that £ C A C A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z € A be expressed as

N K
z=U4y

i=1j=1

where A;; € &. Therefore, writing B;; = Afj € &., we find that

N K K
z2=UBsi= U Bu,NBy,N---NByjy) €A
i=1j=1 J1enin=1

wherein we have used the fact that By;, NBaj,N- - -N By, is a finite intersection
of sets from &,. ]

Corollary 4.23. Let £ C 2. If # (£) < oo then # (A(E)) < oo and o (§) =
A(E).

Page: 33 job: prob

macro: svmonob.cls

4.3 Algebraic sub-structures of sets 33

Remark 4.24. One might think that in general o(€) may be described as the
countable unions of countable intersections of sets in £¢. However this is in

general false, since if
z=U( 4

i=1j=1
with Aij S gc, then

z° = U <n AE,J’@)
(=1

J1=1,j2=1,...in=1,...

which is now an uncountable union. Thus the above description is not correct.
In general it is complicated to explicitly describe o (&), see Proposition 1.23 on
page 39 of Folland for details. Also see Proposition |4.20]

Definition 4.25 (Topologies). A collection T C 2% is a said to be a topology
on X if

1.0, Xer
2.if Vi,Vo € T, then V1 N Vs € 7, i.e. T is closed under finite intersections.
3. If {Va}aeA C 7 then UaecaVy € 7, i.e. T is closed under arbitrary unions.

The sets V. € 7 are called open sets while those sets F C X such that
F¢ e 7 are said to be closed sets.

Exercise 4.11. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F NV where F is closed and V is open.

Definition 4.26. A set S C 2% is said to be an semialgebra or elementary
class provided that

PesS

S is closed under finite intersections

if E € S, then E° is a finite disjoint union of sets from S. (In particular
X = 0¢ is a finite disjoint union of elements from S.)

We will typically denote semi-algebras or elementary classes by either S or

E.

Proposition 4.27. Suppose S C 2% is a elementary class, then A = A(S)
consists of sets which may be written as finite disjoint unions of sets from S.
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Proof. (Although it is possible to give a proof using Proposition it is
just as simple to give a direct proof.) Let A denote the collection of sets which
may be written as finite disjoint unions of sets from S. Clearly S C A C A(S) so
it suffices to show A is an algebra since A(S) is the smallest algebra containing
S. By the properties of S, we know that #, X € A. The following two steps now
finish the proof.

1. (A is closed under finite intersections.) Suppose that A4; = ., F' € A
where, for ¢ = 1,2, A; is a finite collection of disjoint sets from S. Then

A10A2:<ZF>H<2F>: U [AnE)

FeAy FeA; (F17F2)€A1><A2

and this is a pairwise disjoint (you check) union of elements from S. Therefore
A is closed under finite intersections.

2. (Ais closed under complementation.) If A = > 7. \ F with A being a finite
collection of disjoint sets from S, then A¢ = (5., F°. Since, by assumption,
Fe¢e Aforall Fe ACS and A is closed under finite intersections by step 1.,
it follows that A€ € A. ]

Example 4.28. Let X = R, then

S:= {(a,b}ﬂR:a,bGR}
={(a,b] : a € [~00,00) and a < b < oo} U{D, R}

is a elementary class. The algebra, A(S), generated by S consists of finite dis-
joint unions of sets from S. For example,

A=(0,7]U (27,7 U(11,00) € A(S).
Exercise 4.12. Let A C 2% and B C 2¥ be elementary class. Show the collec-
tion
S=AxB:={AxB:Ac Aand B € B}

is also a elementary class.



5

Finitely Additive Measures / Integration

Definition 5.1. Suppose that £ C 29 is a collection of subsets of 2 and u :
& — [0,00] is a function. Then

1. p is additive or finitely additive on & if

p(E) = 3 () (5.1)

whenever E=Y"" | E; € E with E; € € fori=1,2,...,n < oo.

2. p is o — additive (or countable additive) on & if Fq. holds even
when n = 0.

3. p is sub-additive (finitely sub-additive) on & if

SZM(E)

whenever E =] E; € £ withn € NU{oo} (n € N).

4. i is a finitely additive measure if € = A is an algebra, u (0) =0, and p
18 finitely additive on A.

5. 1 is a premeasure if p is a finitely additive measure which is o — additive
on A.

6. 1 is a measure if u is a premeasure on a o — algebra. Furthermore if
w(02) =1, we say pu is a probability measure on (2.

Proposition 5.2 (Basic properties of finitely additive measures). Sup-
pose i is a finitely additive measure on an algebra, A C 29, A, B € A with
AC B and {A;}_ C A, then :

1. (1 is monotone) p(A) < u(B) if A C B.
2. For A, B € A, the following strong additivity formula holds;

W(AUB) + u(ANB) = p(A) + pu(B). (5.2)

3. (u is finitely subbadditive) j((U7_; A;) < 3771 u(A;).
4. p is sub-additive on A iff

p(A) < p(Ay) for A= ZA (5.3)

=1

where A € A and {A;};2, C A are pairwise disjoint sets.

3. Let {E;}_ 1C.AandsetE = Ej \(E1

5. (u is countably superadditive) If A =>"° | A; with A;, A € A, then

’ (z AZ-) S 64
=1 =1

(See Remark for example where this inequality is strict.)
6. A finitely additive measure, 1, is a premeasure iff u is subadditive.

Proof.

1. Since B is the disjoint union of A and (B\ A) and B\ A=BNA°“e€ Ait

follows that
w(B) = p(A) + n(B\ A) = u(A).

2. Since

AUB=[A\(ANB)]Y [B\(ANB)]Y AnB,

uw(AuB)=p(AUB\(ANB))+p(ANB)
= p(A\(ANB))+p(B\ (AN B)+pu(ANB).

Adding 11 (A N B) to both sides of this equation proves Eq. (5.2).
U Ej_) so that the E; ’s
are pair-wise disjoint and £ = U}_, E;. Since E C Ej; it follows from the

monotonicity of p that

4. If A=J2, B; with A € Aand B; € A, then A = >, A; where A; :=

B;\ (B1U...B;_1) € A and By = (. Therefore using the monotonicity of

w and Eq.
< ZM(Ai) < ZM(B
i=1 i=1
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5. Suppose that A = > 72 A, with A;,A € A, then Y | A, C A for all n
and so by the monotonicity and finite additivity of p, Y, p(4;) < p(A).
Letting n — oo in this equation shows p is superadditive.

6. This is a simple combination of the previous two items.

5.1 Examples of Measures

Most o — algebras and ¢ -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe ex-
plicitly what is going on.

Ezample 5.3. Suppose that 2 is a finite set, B := 2% and p : 2 — [0,1] is a
function such that
> pw) =

weR
Then
= Zp(w) for all A C 2
wEA

defines a measure on 2.
Example 5.4. Suppose that (2 is any set and w € (2 is a point. For A C §2, let

1if we A
5w(A)_{Oifw¢A.

Then p = 6, is a measure on 2 called the Dirac delta measure at w.

Example 5.5. Suppose B C 2 is a ¢ algebra, p is a measure on B, and A > 0,
then X - p is also a measure on B. Moreover, if J is an index set and {u;},ecs
are all measures on B, then p = Z;’;l iy, i.e.

A) =Y p;(A) for all A€ B,

defines another measure on B. To prove this we must show that p is countably
additive. Suppose that A = Y.° | A; with A; € B, then (using Tonelli for sums,

Proposition 7

ITTIED ) SET
Jj=1 Jj=11:i=1
2

i = u(A
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Ezample 5.6. Suppose that {2 is a countable set and A : £2 — [0, 0o] is a function.
Let 2 = {wy},.; be an enumeration of 2 and then we may define a measure

uon 2 by,
H= X = Z Awn)dg,, -
n=1

We will now show this measure is independent of our choice of enumeration of
{2 by showing,

p(A) = Aw):= sup > Aw) VACLQ. (5.5)

weA ACrA e

Here we are using the notation, A Cy A to indicate that A is a finite subset of
A.
To verify Eq. (5.5), let M := SUPAc A > wea A(w) and for each N € N let

Ay ={wn :w, € Aand 1 <n < N}.

Then by definition of u,

M(A):Z n wn = lim Z)\wn wp€A

N—o0
E: A
N—Nm

WEAN

On the other hand if A Cy A, then

DA = DY Alwn) =p(4) < p(4)

weA n: w, €A

from which it follows that M < p (A). This shows that p is independent of how
we enumerate (2.

5.2 Additive probabilities on infinite products of a
discrete space

Let S be a non-empty finite or countable set (we refer to S as state space),
2 := 8% := SN (think of N as time and (2 as path space)

A, :={Bx2:BcCS"} foralln €N,

and A := U2 A,. We call the elements, A € A, the cylinder subsets of (2.
Notice that A C {2 is a cylinder set iff there exists n € N and B C S™ such that

macro: svmonob.cls date/time: 25-Feb-2019/8:12



A=Bx2:={weNR:(w,...,w,) € B}.

Also observe that we may write A as A = B’ x 2 where B’ = B x §* c §»t+F
for any £ > 0.

Exercise 5.1 (Look at but do not hand in.). Show;

1. A, is an algebra for each n € N,

2. A, C A,y for all n, and

3. A C 2? is an algebra of subsets of 2. (In fact, you might show that
A = U2 A, is an algebra whenever {A4,} -, is an increasing sequence
of algebras.)

Let us now further suppose that P : A — [0,1] is a finitely additive prob-
ability measure such that P|4, is a—additiveﬂ for each n € N and we further
define s = (s1,...,8,) € 5™,

Q. (B):=P (B x £2) for all BC S™ and

Pn (8) = Qn ({s})
=P({weN:ws =51,...,wn =Sn}). (5.6)

Then @, is easily seen to be countably additive (as you should check) and
satisfies,
Qn(B) =Y pnl(s) forall BC S
seB

Exercise 5.2 (Consistency Conditions). [Look at only, do not hand in.]
If p,, is defined as above, show:

1. esp1(s) =1and
2. for all n € N and (s1,...,8,) € S™,

Dn (81,5 5n) :anH (S15-+-55n,8).
ses

These conditions are basically equivalent to the statements that @, (S) =1
and Qpi1 (B x S) =@, (B) for all n € Nand B C S™.

Exercise 5.3 (Converse to . Suppose for each n € N we are given func-
tions, p, : S™ — [0, 1] such that the consistency conditions in Exercise hold.
Then there exists a unique finitely additive probability measure, P on A such
that Eq. holds for all n € N and (s1,...,s,) € S™ and such that P|4, is
a o-additive measure on A,, for all n € N.

1 'We will show a little later that any such P has a unique extension to a o-additive
probability measure on o (A).
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Corollary 5.7. Suppose for each k € N, ¢ : S — [0,1] is a function such
that Y cgqr (s) = 1. Then there exists a unique finitely additive probability
measure, P on A such that P|a, is o-additive for alln € N and

PHwe R :wi =581,...,0n =8n}) =q1(51)q2(52)* Gn (Sn)
holds for alln € N and (s1,...,8,) € S™.

Proof. Let p, (s1,-..,5n) :=q1 (51) g2 (s2) - - gn (s,,) and observe that

dopi(9)=> a(s)=1

seS seS
and
an—i—l (817 <oy Sny )‘) = Z q1 (81) q2 (82) cgn (Sn) qn+1 (/\)
AES S
= (5102 (52) g (50) 3 s (V)
AES
=q (81)Q2 (82) ©gn (Sn) = Pn (Sl7~ . ~a3n) .
Hence the result follows from Exercise ]

The above example has a natural extension to the case where {2 is uncount-
able and A : 2 — [0, 00] is any function. In this setting we simply may define
w2 — [0, 00] using Eq. . We leave it to the reader to verify that this is
indeed a measure on 2°°.

5.2.1 Finitely additive measures on R

We will construct many more measure in Chapter [6] below. The starting point of
these constructions will be the construction of finitely additive measures using
the next proposition.

Proposition 5.8 (Construction of Finitely Additive Measures). Sup-
pose S C 27 is a semi-algebra (see Definition and A = A(S) is the
algebra generated by S. Then every additive function p : S — [0,00] such that
() = 0 extends uniquely to an additive measure (which we still denote by p)
on A.

Proof. Since (by Proposition |4.27)) every element A € A is of the form
A =3, E; for a finite collection of E; € S, it is clear that if ;1 extends to a
measure then the extension is unique and must be given by

p(A) =D (B, (5.7)
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38 5 Finitely Additive Measures / Integration

To prove existence, the main point is to show that p(A) in Eq. (5.7) is well
defined; i.e. if we also have A = Zj F; with F; € S, then we must show

S u(E) =3 ulF). (5.8)

But E; =, (E; N F}) and the additivity of 4 on S implies pu(E;) = > ; u(E;
F;) and hence

Zu(Ei) = ZZ#(Ei NFj) = ZM(Ei NEj).

Similarly,

ZM(FJ') = ZM(Ei NE;)

which combined with the previous equation shows that Eq. (5.8) holds. It is
now easy to verify that u extended to A as in Eq. (5.7)) is an additive measure
on A. (]

Proposition 5.9. Let 2 =R, S be the semi-algebra,
S={(a,))NR: —00 <a<b< o0}, (5.9)

and A = A(S) be the algebra formed by taking finite disjoint unions of elements
from S, see Proposition[{.27 To each finitely additive probability measures p :
A — [0,00], there is a unique increasing function F : R —1[0,1] such that
F(—00) =0, F(co) =1 and

w((a, b)) NR) = F(b) — F(a) ¥V a < b in R. (5.10)

Conversely, given an increasing function F : R —[0,1] such that F(—oo) = 0,
F(oo0) =1 there is a unique finitely additive measure p = pup on A such that
the relation in FEq. holds. (Eventually we will only be interested in the
case where F (—00) = lim,| oo F' (a) and F (00) = limpreo F' (b))

Proof. Given a finitely additive probability measure pu, let
F(x) = p((—o0,2] NR) for all x € R.
Then F (00) =1, F (—o0) = 0 and for b > a,
F(b) = F(a) = p((=00,0] NR) = p1((—00,a]) = p((a,b] NR).

Conversely, suppose F' : R —[0,1] as in the statement of the theorem is
given. Define g on S using the formula in Eq. (5.10). The argument will be
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completed by showing p is additive on & and hence, by Proposition has a
unique extension to a finitely additive measure on A. Suppose that

n

(a, b] = Z(ai, bl]

i=1
By reordering (a;, b;] if necessary, we may assume that
a=a1<bi=ay<by=a3<---<bp_1=a,<b,=0.

Therefore, by the telescoping series argument,

p((a;b] NR) = F(b) — F(a) = Z [F(b;) = Flai)] = Y n((ai,b] NR).

Remark 5.10. Suppose that F': R — R is any non-decreasing function such that
F (R) C R. Then the same methods used in the proof of Proposition |5.9| shows
that there exists a unique finitely additive measure, u = pr, on A = A (S) such
that Eq. holds. If F' (c0) > limppeo F' (b) and A; = (i,i+1] for i € N, then

e} [eS) N
Zup( Z (i+1) ())—ngnooZ(F(iJrl)—F(i))
= lim (F(N+1)—F(1)) < F(o0) — F (1) = ur (U2, A) .

N—o00

This shows that strict inequality can hold in Eq. and that pr is not
a premeasure. Similarly one shows up is not a premeasure if F(—o0) <
lim,| o F'(a) or if F' is not right continuous at some point a € R. Indeed,
in the latter case consider

(a,a+1 Z %]

n=1

Working as above we find,
i (a—&-La—i-l] =F(a+1)— F(a+)
o HFE n+1 ) n -

while pp ((a,a+ 1]) = F (a+ 1) — F (a) . We will eventually show in Chapter [6]
below that pp extends uniquely to a ¢ — additive measure on Bg whenever F'
is increasing, right continuous, and F (£oo) = lim, 1 F ().
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5.3 *Finitely additive measures on product spaces

In this section, let A C 2% and B C 2¥ be algebras.
Definition 5.11. Let

AxB:={Ax B:(A,B) € Ax B}
and A ® B be the sub-algebra of 2X*Y generated by AxB.

As we have seen in Exercise AxB is a semi-algebra and therefore A® B
consists of subsets, C' C X x Y, which may be written as;

C=>"A;x B; with (4;,B;) € AxB. (5.11)
i=1
Definition 5.12. A function, p : AxB — C is bi-additive if for each A € A,

the function
BeB—p(AxB)eC

is an additive measure on BB and for each B € B, the function
AeA—p(AxB)eC
is an additive measure on A.

Theorem 5.13. If p : AxB — C is a bi-additive function, then p extends
uniquely to an additive measure on the product algebra A ® B. [This theorem
has an obvious generalization to multiple factors.]

Proof. The collection £ = AxB is an elementary family, see Exercise
Therefore, it suffices to show p is additive on €. To check this suppose that
Ax B €€ and

AXB:Z(AkXBk)
k=1
with A, x By, € £. We wish to show

p(A X B) = p(A]C X Bk)
k=1

For this consider the finite algebras A’ C 24 and B’ C 2 generated by {A;},_,
and {By},_, respectively. Let II, C A" and II, C B’ be partitions of A and B
which generate A’ and B’ respectively as described in Proposition Then

I, <y = {ax B: (a,B) € I, x I}
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is a partition of A x B. I now claim to each («,3) € II, x II}, there exists a
unique k£ such that o x 8 C A x Byg. Indeed, choose an x € a and y € £,
then there exists a unique k such that (z,y) € Ay X By and since a N Ay # 0
and 8N By # () we must have o C Ay and 8 C By. The consequence of this
observation is that

AkXBk: Z ozxﬁforlgkgn,
aCAyg, BCBy

where we agree that sums involving « () run through I, (IIp) .
By the construction of I, and II, we also have

Ag= > o and By = »_ 8.

aCAy BC By

Using the bi-additivity of p it then follows that

p(Aex Be)=p | Aex Y B =D p(AxxB)

BCBy BCB
Y (ZaXﬁ> plax )
BCBy aCAy ,BCBkaCAk
= > 3). (5.12)

aXﬂCAkXBk

By summing this equation on k, using the claim above, and then the bi-
additivity of p again we learn that

Z/J (Ak x By) = Z p (o x B)

k=1 (a,B)€l o X T},

= Zp(axB):p(AxB).

a€cll,

Example 5.1/ (Product Measure). If A C 2% and B C 2Y be are subalgebras
and p: A — [0,00] and v : B — [0, 00] are finitely additive measures then there
exists a unique finitely additive measure, p ©® v : A ® B — [0,00] such that
pOV(AxB)=p(A) -v(B) for all A € Aand B € B. We refer to p © v as
a product measure. To verify this assertion one needs only apply Theorem

.13 with p (A x B) := u(A) - v (B).

Here is another interesting application of Theorem [5.13]
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40 5 Finitely Additive Measures / Integration

Proposition 5.15. Suppose that A C 2% is an algebra and for each t € R,
we : A — Cis a finitely additive measure. Let Y = (u,v] C R be a finite interval
and B C 2Y denote the algebra generated by € := {(a,b]: (a,b] CY}. Then
there is a unique additive measure p on C, the algebra generated by AxB :=

{Ax B:Aec A and B € B} such that
(A x (a,b]) = up(A) — pa(A) V (a,b] € € and A € A.

Proof. By Proposition and Remark for each A € A, the function
(a,b] = p(A x (a,b]) extends to a unique measure on B which we continue to
denote by p. Now if B € B, then B = )", I}, with I}, € £, then

(A x B) =3 u(A x Ip)
k

from which we learn that A — u(A x B) is still finitely additive. The proof is
complete with an application of Theorem [5.13 ]

5.4 Simple Random Variables

Before constructing o — additive measures (see Chapter |§| below), we are going
to pause to discuss a preliminary notion of integration and develop some of its
properties. Hopefully this will help the reader to develop the necessary intuition
before heading to the general theory. First we need to describe the functions
we are (currently) able to integrate.

Definition 5.16 (Simple random variables). A function, f : 2 = Y is said
to be simple if f (2) C Y is a finite set. If A C 2 is an algebra, we say that a
simple function f: 2 —Y is measurable if {f =y} = f~1 ({y}) € A for all
y € Y. A measurable simple function, f : 2 — C, is called a simple random
variable relative to A.

Notation 5.17 Given an algebra, A C 2%, let S(A) denote the collection of
simple random variables from 2 to C. For example if A € A, then 14 € S(A)
is a measurable simple function.

Lemma 5.18. Let A C 2 be an algebra, then;

1. S(A) is a sub-algebra of all functions from 2 to C.
2.f:90 — C, is a A — simple random variable iff there exists a; € C and
A; € A for1 <i<n for somen €N such that

F= aila, (5.13)
i=1
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3. For any function, F : C — C, Fof € S(A) for all f € S(A). In particular,
|fl€S(A) if f€S(A).
Proof. 1. Let us observe that 1, =1 and 1y = 0 arein S (A) . If f,g € S(A)
and ¢ € C\ {0}, then

{freg=x= U {f=an{g=teA (5.14)

a,beC:a+cb=A\

and

{fo=xn= U {f=anfg=tpea (5.15)
a,beC:a-b=X\
from which it follows that f + cg and f - g are back in S(A).
2. Since S(A) is an algebra, every f of the form in Eq. (5.13)) is in S(A).
Conversely if f € S(A) it follows by definition that f = Zaef(()) alip_ay

which is of the form in Eq. (5.13).
3.If F: C — C, then

Fof= Y F(a) l{j=a) €S(A).
acf(£2)
[ ]
Exercise 5.4 (A — measurable simple functions). As in Example let
A C 27 be a finite algebra and { B, ..., By} be the partition of {2 associated to

A. Show that a function, f : 2 — C, is an A — simple function iff f is constant
on B; for each . Thus any A — simple function is of the form,

k
f=> ailg, (5.16)
=1

for some «; € C.

Corollary 5.19. Suppose that A is a finite set and Z : 2 — A is a function.
Let

A=AZ)=2"2Y={Z2(E): EC A}.
Then A is an algebra and f : 2 — C is an A — simple function iff f = Fo Z
for some function F : A — C.

Proof. For A € A, let
Ay ={Z =N ={we:Z(w)=2A}.

The {Ax},c, is the partition of 2 determined by A. Therefore f is an A —
simple function iff f|4, is constant for each A € A. Let us denote this constant
value by F'(A\). As Z =X on Ay, F: A — C is a function such that f = F o Z.

Conversely if F': A — C is a function and f = Fo Z, then f = F (\) on Ay,
i.e. f is an A — simple function. ]
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5.4.1 The algebraic structure of simple functions*

Definition 5.20. A simple function algebra, S, is a subalgebrcﬂ of the
bounded complex functions on {2 such that 1 € S and each function in S is
a simple function. If S is a simple function algebra, let

AS)={AC2:14€S}.
(It is easily checked that A(S) is a sub-algebra of 2%.)

Lemma 5.21. Suppose that 'S is a simple function algebra, f € S and a € f (2)
— the range of f. Then {f = a} € A(S).

Proof. Let {\;},_, be an enumeration of f (£2) with Ay = . Then

= lﬁ(a—)\i)l f[(f_)\il)eg

i=1

Moreover, we see that g = 0 on U, {f = \;} while g =1 on {f = a}. So we
have shown g = 1;;_,) € S and therefore that {f=a} e A(S). [

Exercise 5.5. Continuing the notation introduced above:

1. Show A(S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A € {Algebras C 29} — S(A) € {simple function algebras on 2}

is bijective and the map, S — A (S), is the inverse map.

5.5 Simple Integration

Definition 5.22 (Simple Integral). Suppose now that P is a finitely additive
probability measure on an algebra A C 2. For f € S(A) the integral or
expectation, E(f) = Ep(f), is defined by

/ fdP =Y yP(f = (5.17)
yeC
Ezample 5.23. Suppose that A € A, then
Ely=0-P(A%) +1-P(A) = P(A). (5.18)

2 To be more explicit we are assuming that S is a linear subspace of bounded functions
which is closed under pointwise multiplication.
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Remark 5.24. Let us recall that our intuitive notion of P (A) was given as in

Eq.by
P(A) = lim —ZlA

N—oco N

where w (k) € 2 was the result of the k' “independent” experiment. If we use
this interpretation back in Eq. (5.17) we arrive at,

E(f)=) yP(f=y)=) y- lim = Z L (we)=y
yeC yeC
= ngnoo* >y Zlf(w(k)) =y
yeC k=1
N
= lim = > f (@ () L=y
k=1yeC
1 N
= leloﬁl;f(w (K))

Thus informally, Ef should represent the limiting average of the values of f
over many “independent” trials. We will later revisit this idea when we discuss
the strong law of large numbers.

We now extend the above notion to general positively finite additive mea-
sures, fi.

Definition 5.25 (Simple Integral). Suppose now that u is a finitely additive
measure on an algebra A C 2 and let Sy (A) denote the [0,00] — valued A —
simple functions and for f € Sy (A) we let

B = [ Fin= 3 s =), (5.19)

[For f € S (A), Eu(f) = oo is allowed and we use the convention that 0-oo =
0 = oo -0.] Further let

S, (A) = {f € S(A) : u(f #0) < o0}

and for f € S, (A) we let

B = [ fin= 3wl =)

yeC\{0}
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42 5 Finitely Additive Measures / Integration

It is easy to verify that S, (A) is a subspace of S(A) and that S, (A) is
closed under addition and scalar multiplication by non-negative constants.

Proposition 5.26. The expectation operator, E = E, : S, (A) — [0,00], sat-
isfies:

1. If f €Sy (A) and X € [0,00], then
E(\f) = AE(f). (5.20)
2.If f,g €Sy (A), then f +g €Sy (A) and
E(f +9) =E(9) + E(f). (5.21)
3.If f,g €Sy (A) and f < g, then E(f) <E(g).

Proof.

1.IfA=0o0r A =00 we have E(0- f) = 0=0-E(f) and E[oco- f] = oo iff
pw(f#£0)>0iff Ef > 0iff oo - Ef = oo respectively. If 0 < A < oo and
f €Sy (A), then

EA)= > yuMf=y)= > yulf=y/\

y€[0,00] y€[0,00]
= > Az ulf =2) = AE(f).
z€[0,00]

2. Writing {f = a,g = b} for f~1({a}) Ng=1({b}), we have

E(f+g9)= Y zulf+g=2)

z€[0,00]
= > zu( Y {f=a g=b}>
z€[0,00] a+b=z

Yoz > u({f=a,g=1b}

2€[0,00] a+tb=z

> > @t+bu{f=a, g=0b})

z€[0,00] a+b=z

da+b)u({f=a,g="b}).

a,b

But
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dap({f=a g=b}=> ad p({f=a, g=0})
a b

a,b

=Y ap(U{f=a, g=1b})
=Y ap({f=a}) =Ef

and similarly,

> bu({f =a, g=0}) =Eg.

a,b
Equation (|5.21)) is now a consequence of the last three displayed equations.
3. Let h := g — fl{fcoey > 0. Notice that {h =00} = {g=oc} and for
z € [0, 00),
{h=2}=Usp—o{g=0a}n{f=0b}c A
so that h € S; (A). As (is easily verified) g = f + h it follows that
E.g=FE.f +E.h>E,f.

Alternative proof. If A > 0, then

Aplg=N) = Z A(g=Af=y)

0<y<A

> > yulg=X\f=y)
0<y<A

=> yulg=X\rf=y).
0<y

Summing this inequality on A > 0 then gives,

Eug> > yulg=\f=y)

0<y,A

=Y u> nlg=xrf=y
0<y 0<A\

=> yn(f=y) =E.f.
0<y

]
Proposition 5.27. The expectation operator, E=E, : S, (A) — C, satisfies:
1.If f €S, (A) and X € C, then
E(Af) = AE(f). (5.22)
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5.5 Simple Integration 43

2.1f f,9 €S (A), then San({f=a,g=b) =Y ay p({f=a, g=0}
a,b a b
E(f +9) = E(9) + E(f). (5.23)
=Y ap(U{f=a, g=1b})
Items 1. and 2. say that E(-) is a linear functional on S, (A). a
S If f = Zjvzl Ajla, for some \;j € C and some A; € A with w(4;) < oo, = Za,u {f=a}) =
then a
f) = Z)‘j“ (4;). (5.24) and similarly,
' > bu({f =a, g=0}) =g
4. E is positive, i.e. E(f) > 0 for all 0 < f € S, (A). More generally, if b
[,9€S,(A) and f < g, then E(f) <E(g). Equation ({5.23)) is now a consequence of the last three displayed equations.
5. Forall f €S, (A), 3. If f =321 Ajla,, then
Ef| <E|f]. (5.25)
N N N
Proof. Ef =E Y Mla, | =Y NELy, = Aju(4))
1. If A # 0, then j=1 j=1 j=1
_ ) — _ 4. If f > 0 then
=> yuAf=y)=> yulf=y/N =
yel = E(f) =) aulf =
a>0
= Az = )\E B
;C & (- and if f < g, then g — f > 0 so that
The case A = 0 is trivial. E(g)—-E(f)=E(g—f)=0

2. Writing {f = a,g = b} for f=1({a}) Ng=1({b}), then

E(f+9) =Y zu(f+g=2)

5. By the triangle inequality,

*eC Efl =Y M =N <D INulf=X=E|fl,
AeC AeC

ST SRTEEY

z€C a+b=z wherein the last equality we have used Eq. (5.24]) and the fact that |f| =
_Zz Z {f_a g_b}) ZA€C|A|1JCZ>\'

zeC  a+b=z ]
= bp{f= =b

;Cagz @t ({f=a g=0}) Remark 5.28. If 2 is a finite set and A = 2%, then
—Za+b ({f=a, g=1b}). FO =Y Fw) iy

wen
But and hence

Epf =Y fw) P{w}).

wes?
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44 5 Finitely Additive Measures / Integration

Exercise 5.6. Let P is a finitely additive probability measure on an algebra
AC2? and for A,B € Alet p(A,B) := P(AA B) where AAB=(A\ B)U
(B\ A). Show;
1. p(A,B) =E|14 — 1g]| and then use this (or not) to show
2.p(A,C)<p(A,B)+p(B,C) foral A, B,C € A.
Remark: it is now easy to see that p : A x A — [0, 1] satisfies the axioms of

a metric except for the condition that p (A, B) = 0 does not imply that A = B
but only that A = B modulo a set of probability zero.

Lemma 5.29 (Chebyshev’s Inequality). Suppose that f € S(A), € > 0, and
p >0, then

bis

P{|fl =€}) =E[ljs>] <E [gpl,fps} <ePE|f|P. (5.26)

Proof. First observe that

PP = AP Lgpmny
aeC
is a simple random variable and {|f| = e} = }2, 5. {f = A} € A. Therefore
17 -

eP

1j#|>¢ is a simple random variable and since,
" p
Ligze <& PIfI7,

the estimates in Eq. ((5.26)) follow from item 4. of Proposition
Lemma 5.30 (Inclusion Exclusion Formula). If A, € A for n =
1,2,..., M such that (Uﬁ/leAn) < 00, then

M
p(UNL Ay) =D (1) 3 W(An, M- NAL) . (5.27)

k=1 1<ni<ne<---<np <M

Proof. This may be proved inductively from Eq. (5.2)). We will give a dif-
ferent and perhaps more illuminating proof here. Let A := UTAflzlAn.
Since A¢ = (Uﬁ/lezﬁln)C =M, A¢, we have

|f
Lze = 757

M M
1—Ia=1a = [[1as =[] 0 -14,)
n=1 n=1
M
IR0 METLNNED SRR PR
k=1 1<ni<na<---<np <M
M
frnd ]. + (7].)]C Z ].Anlm...mAnk
k=1 1<ni<ng<---<nip <M
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from which it follows that

M
k+1
L a4, =1a=) (-1 > 1A, nenA,, - (5.28)
k=1 1<ni<ne<---<nip <M
Integrating this identity with respect to u gives Eq. (5.27)). ]

Remark 5.31. The following identity holds even when u (ufleAn) = 00,

M
NEDSTEDS S e

k=2 & k even 1<nj<ns<--<np<M

M
= Y > p(An, N--NA).  (5.29)

k=1 & k odd 1<n; <ng<---<np<M

This can be proved by moving every term with a negative sign on the right
side of Eq. (5.28) to the left side and then integrate the resulting identity.

Alternatively, Eq. 1' follows directly from Eq. || if u (U,AleAn < 00
and when (U%:IAH = oo one easily verifies that both sides of Eq. 1} are
infinite.

To better understand Eq. (5.28)), consider the case M = 3 where,
T—1a=(1-14)1—14,)(1—1a,)
=1- (1A1 +1a, + 1A3)
+ 1A11A2 + 1A11A3 + 1A21A3 — 1A11A21A3
so that

1A1UA2UA3 = 1A1 + 1A2 + 1A3 - (1A10A2 + 1A10A3 + lAgﬂAg) + ]-AlﬂAgﬁAg

Here is an alternate proof of Eq. . Let w € 2 and by relabeling the
sets {A,} if necessary, we may assume that w € 41N---NA, andw ¢ A1 U
-+« U Ay for some 0 < m < M. (When m = 0, both sides of Eq. are zero
and so we will only consider the case where 1 < m < M.) With this notation
we have
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M=

k+1
- >
1 1<ni<no<---<nip <M

™m

St Y

LA, nena,, (W)

el
Il
3

la,,nna,, (W)

=1 1<n; <na<--<ni<m
_ kZ:l (_1)k+1 (7;)
=1 et (%)

This verifies Eq. (5.28) since 1yn 4, (w) = 1.

Ezample 5.32 (Coincidences). Let {2 be the set of permutations (think of card
shuffling), w: {1,2,...,n} = {1,2,...,n}, and define P (A) := #(A) to be the
uniform distribution (Haar measure) on (2. We wish to compute the probability
of the event, B, that a random permutation fixes some index 7. To do this, let
A; = {w € N:w(i) =14} and observe that B = U ; A;. So by the Inclusion
Exclusion Formula, we have

:zn:(_n’““ > P(A,N---NA).

k=1 1<i1<i2<i3< - <ip <n
Since
.P(AAl1 ﬂﬂAzk) :P({we in(il) :il,...,w(ik) :Zk})
_(n—h)
n n!
and
#{1<i1 <ip<iz<- - <ig<n}= (Z)
we find

) o

.
=

I

|
[
?z\ -
IIZ

°°1
— F_1_e 120632
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Example 5 38 (Expected number of coincidences). Continue the notation in Ex-
ample [5 We now wish to compute the expected number of fixed points of
a random permutatlon, w, i.e. how many cards in the shuffled stack have not
moved on average. To this end, let

Xi=1a,

and observe that

N(w):ZX (w)

denote the number of fixed points of w. Hence we have

EN:iEXi:iP(Ai):i(n_

i=1

:le(i):i:#{iiw(i):i}.

Let us check the above formulas when n = 3. In this case we have

w N{(
123 3
132 1
213 1
231 0
312 0
321 1

and so 4 9
P (3 a fixed point) = §=3 >~ (.67 = 0.632

while

1 1 1 2

k+1
7_1_, -z
2+6 3

Mw

k:l
and 1
]EN:6<3+1+1+0+0+1):1

The next three problems generalize the results above. The following notation
will be used throughout these exercises.

1. (2, A, P) is a finitely additive probability space, so P (§2) =1,
2. Aje Afori=1,2,...,n,
3. N (w) =201 14, (w) =#{i:we A}, and
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46 5 Finitely Additive Measures / Integration

4. {Sk}y_, are given by Hint: differentiate Eq. (5.34) m times with respect to z and then evaluate the
result at z = —1. In order to do this you will find it useful to derive formulas
Sy 1= Z P(A;,Nn---NA;) for;
i< <ip<n dm n dm
1<ip << < dzim|zz—1 (1 + Z) and d27m|z:—lzk-

= > P (Nieads).

AC{1,2, )3 A=k Ezxample 5.34. Let us again go back to Example where we computed,

A
Exercise 5.7. For 1 < k < n, show; Sk = (Z) (n 'k)' = %
n! !
L. (as functions on 2) that Therefore it follows from Exercise 5.9 that
(‘Z) _ Z P (5.31) P (3 exactly m fixed points) = P (N = m)
AC{1,2,...n}3|A|=k o (—1yF (k) 1
where by definition k=m G
0 if k>m _ = (_1)’6*’" 1
(Tg): e if 1<k <m . (5.32) m!k;n (k —m)!
1 if k=0 So if n is much bigger than m we may conclude that
2. Conclude from Eq. (5.31) that for all z € C, . ~ _
4 P (3 exactly m fixed points) = € !
(14+2)" =1+ Z z Z 1a, A, (5.33) Let us check our results are consistent with Eq. (5.30));
1<i1<ig< - <ip<n n
P (3 a fixed point) = P(N =m)
provided (1 + 2)° = 1 even when z = —1. mZ:l
3. Conclude from Eq. (5.31)) that S, = Ep (]]Z) n n N
o _1\k—m -
Exercise 5.8. Taking expectations of Eq. (5.33)) implies, N mz;l = (=1) (m) k!
k—m k 1
E [(1+z } - 1+ZSkz (5.34) = (-1) o)
1<m<k<n
n k
Show that setting z = —1 in Eq. (5.34) gives another proof of the inclusion _ Z (71)k—m k1
exclusion formula. Hint: use the definition of the expectation to write out —= m) k!
E {(1 + Z)N} explicitly. n T k L )
: : = > (= - (-1
Exercise 5.9. Let 1 < m < n. In this problem you are asked to compute the — = m k!

probability that there are exactly m — coincidences. Namely you should show,

- R

k=m wherein we have used,

]:m(l)km (:;) 1gi1<;ikgnP(A“ NN 4y) z’“: (Cpym (k) -1 o
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5.5.1 * Appendix: Bonferroni Inequalities

In this appendix (see Feller Volume 1., p. 106-111 for more) we want to dis-
cuss what happens if we truncate the sums in the inclusion exclusion formula
of Lemma In order to do this we will need the following lemma whose
combinatorial meaning was explained to me by Jeff Remmel.

Lemma 5.35. Let n € Ny and 0 < k < n, then

i (-1 (7) = (-1 (n N 1) Ln0 + In=o- (5.35)

=0

Proof. The case n = 0 is trivial. We give two proofs for when n € N.
First proof. Just use induction on k. When k = 0, Eq. (5.35) holds since
1 = 1. The induction step is as follows,

S ()= (5 + ()

(_1)k+1
:W[nm_l)-“(n—k)—(k—i—l)(n—l)...(n—k:)}

_1)\k+1 .
g = =B G = 0 ()

Second proof. Let 2 ={1,2,...,n} and observe that

k n k
=3 () =0 4=
1=0 =0

Ae292: #(N)<k
Define T : 2 — 2% by

Su{1}lif1¢s
T(5>{5\{{1fif1§s~

Observe that T is a bijection of 2 such that T takes even cardinality sets to
odd cardinality sets and visa versa. Moreover, if we let

I={Ae€2? : #(A) <kand 1€ Aif #(A) =k},

then T (I;) = I}, for all 1 < k < n. Since
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Z (_1)#(/1) _ Z (_1)#(T(A)) _ Z _(_1)#(/1)

A€y, AeTy, AeTy,

we see that ) (—1)#(A) = 0. Using this observation with Eq. 1} implies
A A k(N — 1
mp= > (-D*V 4 N ()W =04 (1) ( B )
A€, #(A)=k & 1¢A
[

Corollary 5.36 (Bonferroni Inequalitites). Let p : A — [0, (82)] be a
finitely additive finite measure on A C 2, A, € A forn =1,2,...,M, N :=
Zﬁil 1a,, and

N
1<ii <<, <M

Then for 1 <k < M,

B (U4 = 3 (US4 (CDPE, [ | s

=1

This leads to the Bonferroni inequalities;

k
M (UrILM:1An) < Z (—1)lJrl Sy if k is odd
=1
and

k
p (UM A,) > Z (=) Sy if k s even.
1=1
Proof. By Lemma [5.35
& N N-1
Z(_l)l (l) =(-1" ( 1 >1N>0 + 1n=o.
1=0
Therefore integrating this equation with respect to p gives,
; N-1
1 k -
p@)+ 0t si=n v =0+ (e, ()
1=1

and therefore,
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48 5 Finitely Additive Measures / Integration
p(UpLi4,) = p (N >0) = p(2) = (N =0)

b N-1
:_;(_1)lsl+(—1)’“1@u< § )

The Bonferroni inequalities are a simple consequence of Eq. (5.37) and the fact

that N1 N1
) > E, (. " )>o.
(" )z = m(" )2

5.6 * Finitely Additive Measures on R? and [0, 1]*

(Riesz Markov theorem is in Section below.) Let us begin by describing
finite measure on A = A (R?) — the subalgebra of 2R generated by £x ... xE
where & is the semi-algebra of subsets of R defined by

E={RN(a,b]: —c0<a<b<oo}c 28

For a,b € R? we let (a,b] := ((ar,b1] X --- % (aq,ba]) N R? and so with this
notation, ~
Ex...xE={(a,b]:a,beR witha <b}.

Notation 5.37 If a,b € RY and v C {1,2,...,d}, let ay X bye be the point in
R? defined by

(a’y X b,yc)j :

:{aj fjen
bjifj €~°

Lemma 5.38. For all a,b € R* with a < b we have,

IS

vc{1,2,...,d}

(_1)‘7‘ 1(7oo,a,y><b,yc]~ (538)

Proof. If z € R?, then

d d

Tap () = [ ] Larwa (@) = [ [L—oopi (@) = L—oo,ar) ()]
=1 i=1
> (—n! I oot @) TT Lmoon,) ()

vC{1,2,....d} i€y JEVE

= Z (—1)”' 1(—o0,ay xbye] (z).

vC{1,2,...,d}
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Corollary 5.39. Suppose that V' is a vector space, j1 : A (Rd) — Vis a finitely
additive measure, and for b € R? let F (b) := p ((—o0,b]). Then for all a,b € R?

with a < b,
plat)= 3 (D F(ay xbye). (5.39)
yC{1,2,....d}
Proof. The result follows directly by integrating Eq. (5.38) relative to pu
while using g ((—00, ay X bye]) = F (ay X bye) for all v € {1,2,...,d}. ]

Remark 5.40. Corollary may be understood using the inclusion exclusion
formula. For example, when d = 2 we have

(av b] =S \ l:S(a17b2) U 5(517112)]

and hence

1% ((CL, b]) =W (Sb) — M (S(m,bz) U S(b1,a2))
=p(S) — [,u (S(ahbz)) tu (S(bl)az)) — K (S(alvbz) N S(blvaz))]

=p(S) —p (S(al,bz)) K (S(bh‘lZ)) + 11 (Sa)
= F(b) — F(al,bl) — F(b1,a2) +F(a),

wherein the third equality we have used S(q, p,) N S(b,,a5) = Sa)-

We will give a converse to this corollary in Proposition below. To help
motivate the proof of Proposition observe if  is a finitely additive measure
on A (R?), then to each b € R, i, (C) := p(C x (—o0,b]) for C € A(R)
defines a finitely additive measure on A (Rdil) . Moreover, if a,b € R with
a < b we further have u (C X (a,b]) = pp (C) — po (C) .

Proposition 5.41. To every function, F : R* — V, there exists a unique
finitely additive measure (ur) on A(RY) such that

pr((@t) = Y

yC{1,2,...,d}

(=) F(ay x bye) (5.40)

for all a,b € Re with a < b.

Proof. The proof for d = 1 is completely analogous to the proof of
Proposition and so will be omitted. To each a = (ay,...,aq) € R?, let
a' = (ay,...,aq—1) so that a = (a’, ag) . With this notation in hand we proceed
to the induction step.

Suppose that d > 2 and we have proved the proposition when d is replaced
by d— 1. Then for ¢ € R let p. = KF(.,c) be the unique finitely additive measure
on A (Rd_l) (guaranteed to exist by the induction hypothesis) such that for all

a',b' € R with @’ < b we have
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ne (@ o)=Y ()PP, x B0, (5.41)
yc{1,2,...,d—1}

By Proposition there is a unique finitely additive measure (pp) on
AR?) = A (R1) @ A(R) such that

pr (C % (ag, b)) = pty, (C)—pia, (C) ¥VC € A(RY) and —oco < aq < by < oo.

Letting a < b with a,b € R? and using Eq. (5.41)) it is not to hard to show,

pr ((a,b]) = (—1)[F(a, x Ve, b) — F(a, x e, a)]
vC{1,2,...,d—1}
= (~1)F(ay x bye).
vC{1,2,...,d}
The point is that the subsets, v C {1,2,...,d}, split into two types; those
which contain d and those which do not. [

We now wish to prove the analogous result with R? replaced by [0, 1]d . We
begin with some needed additional notation.

Notation 5.42 For a,b € |0, 1]d with a < b, let
{a,b] :={1a1,b1] x -+ x {4aq, bd]
where {;= (if a; > 0 and is either ( or [ when a; = 0.

Remark 5.48. The point of this notation is that [0, l}d is the product of [0, 1]
with itself d — times and if £ C 20911 are the sets of the form [0,b) with0 <b <1

or (a,b] with 0 < a <b <1, then A ([O, 1]d) is generated by the semi-algebra,
Ex ... x&, consisting of sets of the form {a,b] with 0 <a <b < 1.

Lemma 5.44. For all a,b € [0, l]d with a < b we have,

Lo = O wy (D" 1 sga kb (5.42)
~vC{1,2,...,d}

where

0 otherwise.

{1 if {i=(foralliec~
Wy =
In particular,

Z w’Yl[O,awxch} = Z wwl[o,awxbwc]*’l{a,b] > Z w’Yl[O,awxbwc]'

|v| even |v] odd [v] odd
(5.43)
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wi:{l it {i=(

0 otherwise.

Proof. Let

and observe that w, =[], w;. Hence if = € [0, 1), then

i€y
d

d
Lap) (@) = [T Vearng @) = T [0 (2:) = wilpp a,) ()]
i=1 i=1
> (P! [T witioa @) - J] 1-oon (25)

yC{1,2,...,d} i€y jeve
- Z (_1)|’Y| w’Yl[O,awxbwc] (z).
yC{1,2,...,d}

Corollary 5.45. Suppose that V is a vector space, pu : A ([0, l]d) = Viisa

finitely additive measure, and for b € [0, l]d let F (b) := p ([0,0]). Then for all
a,b € [0,1]" with a < b,

p{at) = 3w, (=) F(ay xbye). (5.44)
vC{1,2,...,d}

Proof. First proof. The result follows directly by integrating Eq. (5.42)
relative to p while using ([0, ay X bye]) = F (ay x bye) forally C {1,2,...,d}.
Second proof. We carry this proof out only in the case d = 2. We have

p({a,0]) = p({1a1,b1] x {2a2,b2]) = p ({1a1,b1] % [0, b2]) — waps ({1a1,b1] x [0, az])

= ([0, 0]} x [0, a]) — wra ([0, an] > [0, ba])
— Wa [:u ([07 bl] X [07 a2]) —wip ([07 al] X [07 GQD]
=F (b) — wlF (al, bg) — ’LUQF (bl, (12) — ’U.)l'LUQF (a) .

The general scheme of this proof would then follow by induction. [
The next result is the converse of this corollary.

Proposition 5.46. To every function, F : [0, 1]d — V, there exists a unique

finitely additive measure (up) on A([0, l]d) such that Eq. holds for all
a,b e [0,1]" with a < b.

Proof. The proof for d = 1 is completely analogous to the proof of Propo-
sition and so will be omitted. Now suppose that d > 2 and we have proved
the Proposition when d is replaced by d — 1. Then for ¢ € [0, 1] let p. = pp(. c)

be the unique finitely additive measure on A ([O, 1]d71) (guaranteed to exist
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50 5 Finitely Additive Measures / Integration
by the induction hypothesis) such that for all a’,b’ € [0,1]*"

have
ne{ad b= 3w (~D)PIF@, x bec). (5.45)
~c{1,2,...,d—1}

with a’ < b we

By Proposition there is a unique finitely additive measure (pp) on
A0, 11 = 4 ([07 1]*1) ® A([0,1]) such that

2 (C % {aqba)) = p, (C)—wapta, (C) VC € A ([o, 1]d—1) £0<ag<by<l.

Letting a < b with a,b € [0, 1]d and using Eq. 1) it is not to hard to show,

r ({a,b]) = Z w., (—1)1! [F(al, x bl c,b) —waF(al, x b, a)]

yC{1,2,...,d—1}

= Y wy (=) F(ay x bye).

~C{1,2,...,d}

The point is that the subsets, v C {1,2,...,d}, split into two types; those
which contain d and those which do not. [

5.7 * Appendix: Riemann Stieljtes integral

In this subsection, let {2 be a set, A C 2% be an algebra of sets, and P := p :
A — [0,00) be a finitely additive measure with u (£2) < co. As above let

ﬂf—/fdu—zxuf NV fES(A). (5.46)
AeC
Notation 5.47 For any function, f : £2 — C let ||f|, = sup,ecq|f (W)].

Further, let S := S (A) denote those functions, f : 2 — C such that there exists
fn € S(A) such that lim, . || f — fnll, = 0.

Exercise 5.10 (Do not hand in). Prove the following statements.

1. For all f € S(A),
Epf| < p () [ £, - (5.47)

2.If f € Sand f, € S := S(A) such that lim, o ||f — fnll, = 0, show
lim,, o0 E,, f, exists. Also show that defining E,, f := lim,, o E, f,, is well
defined, i.e. you must show that lim, ,o E,f, = lim, o E,gy if g, € S
such that lim, o ||f = gnll,, = 0.

3. Show E,, : S — C is still linear and still satisfies Eq. -
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4. Show |f| € S'if f € S and that Eq. (5.25) is still valid, i.c. |E,f| < E,|f]
for all f €S.

Let us now specialize the above results to the case where 2 = [0,7] for
some T' < c0. Let § := {(a,b] : 0 < a <b<T}U{0} which is easily seen to be
a semi-algebra. The following proposition is fairly straightforward and will be
left to the reader.

Proposition 5.48 (Riemann Stieljtes integral). Let F': [0,7] — R be an
increasing function, then;

1. there exists a unique finitely additive measure, up, on A := A(S) such that

r((a,b]) =F(b) — F(a) for all0 <a <b<T and pr ({0}) =0. (In fact

one could allow for pup ({0}) = A for any A > 0, but we would then have to
write (g Tather than pp.)

2. Show C([0,1], (C) C  S(A). More precisely, suppose w =
{0=ty <ty < <tn,=T} is a partition of [0,T] and ¢ = (c1,...,¢cpn) €
[0, 7] with t;— S ¢; < t; for each i. Then for f € C(]0,1],C), let

fre: 0) 1{0y + Z flei) L,y (5.48)

Show that || f — fx.c|l, is small provided, |r| := max {|t; —t;_1|:i=1,2,...,

is small.
3. Using the above results, show

/[O,T] fdur = hHIBO; f i) (F (t;) — F (ti—1))

where the ¢; may be chosen arbitrarily subject to the constraint that t;_1 <
C; S h.

It is customary to write fOT fdF for f[o 7] fdup. This integral satisfies the
estimates,

fdur F(0) ¥V f€S(A).

< / \Fldur < | ], (F(T)
[0,T7]

/OdeF_/OTf(t)dt

is the usual Riemann integral.

’ [0.7]

When F (t) =
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Exercise 5.11. Let a € (0,T), A > 0, and
G(J?):)\'lmza: {

1. Explicitly compute f[O,T] fdug for all f € C([0,1],C).

2.If F(x) =2+ X- 15>, describe f[O,T] fdup for all f € C([0,1],C). Hint:
if F(x) = G(z) + H (z) where G and H are two increasing functions on
(0,77, show

Nifz>a
DOifr<a’

fdpr =/ fdpe + fdpm.
[0,7] [0,7]

Exercise 5.12. Suppose that F,G : [0,T7] — R are two increasing functions
such that F'(0) =G (0), F(T) =G (T), and F (z) # G (z) for at most count-
ably many points, € (0,7") . Show

[0,7]

fdup = / fdug for all f € C([0,1],C). (5.49)
[0,7] [0,7]

Note well, given F (0) = G (0), ur = ug on A iff F = G.

One of the points of the previous exercise is to show that Eq. holds
when G (z) := F (z+) — the right continuous version of F. The exercise applies
since and increasing function can have at most countably many jumps, see
Remark So if we only want to integrate continuous functions, we may
always assume that F : [0,7] — R is right continuous.

5.8 * Tonelli and Fubini’s Theorem I

In the last part of this section we will extend some of the above ideas to
more general “finitely additive measure spaces.” A finitely additive mea-
sure space is a triple, (X, A, 1), where X is a set, A C 2% is an algebra, and
w: A —[0,00] is a finitely additive measure. Let (Y, B,v) be another finitely
additive measure space. Further let 1 ® v be the product measure on A ® B as
described in Example

Theorem 5.49 (Tonelli’s Theorem) Iff e S+ (A ® B) then for each z € X,
f(x,-) €Sy (B) and X 32 — [, f(x,y)dv (y) is in S; (A) and moreover,

/Xxyf( Wd(pov) (@ /[/fxydu ] i (z).

Similarly, for eachy €Y, f(-,y) € Sy (A) andY 3y — [y f (z,y) du(x) is in

S, (B) and moreover,
/Xxyf( (o) /[/fa:ydu )] v (y).
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Proof. By the usual arguments it suffices to assume f = 1axp for some
(A, B) € A x B in which case the above results are trivial. |

Theorem 5.50 (Product Measure and Fubini’s Theorem). Assume that
w(X) < oo and v(Y) < oo for simplicity. Then there is a unique finitely
additive measure, p®v, on A® B such that pOv (A x B) = u(A) v (B) for all
A€ A and B € B. Moreover if f € S(A® B) then;

1.y — f(x,y) isin S(B) for all x € X and v — f(x,y) is in S(A) for all
yevy.

2.x— [, f(z,y)dv(y) is in S(A) and y — [ f (x,y) dp (x) is in S (B).

3. we have,

/X [/Yf(:c,y) dv (y)} dp (x)

:/ fl@y)d(pov)(,y)
XxXY

:/YUXf(x,y)du(a:)} v (3).

We will refer to 4 ® v as the product measure of u and v.

Proof. According to Eq. (5.11)),

ZleB z,y) ZlA ) 15, (y

from which it follows that 1¢ (z,-) € S (B) for each z € X and

n

[ 1e@narm) =3 1a @ (5).

i=1
It now follows from this equation that  — [, 1¢ (2, y) dv (y) € S (A) and that

n

/X UY lo (Ly)dl/(y)} dp(z) =Y p(A)v(Bi).

i=1
Similarly one shows that

n

/YUX le (l’vy)du(w)] dv(y) = n(A)v(B).

i=1

In particular this shows that we may define
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52 5 Finitely Additive Measures / Integration
n
=5 n(A) v (By)
=1

and with this definition we have,

/X [/Y 1o (z,y) du(y)] dp (z)

=(rov)(C)

:/Y{/ch(x,y)d,u(w)} dv (y).

From either of these representations it is easily seen that p ® v is a finitely
additive measure on A ® B with the desired properties. Moreover, we have
already verified the Theorem in the special case where f = 1o with C € A ®
B. Since the general element, f € S(A® B), is a linear combination of such
functions, it is easy to verify using the linearity of the integral and the fact that
S (A) and S (B) are vector spaces that the theorem is true in general. ]

Ezample 5.51. Suppose that f € S(A) and g € S(B). Let f ® g(z,y) =
f(x)g(y). Since we have,

f@g(ry) = (mea )(Zzﬂgb >

= Z ablys—a)x{g=b} (7, V)
a,b

it follows that f ® g € S(A® B). Moreover, using Fubini’s Theorem it

follows that
foo roaten= [ sa][[oa]

Remark 5.52. We can at this point now use the obvious generalizations of these
results to prove the classical Weierstrass approximation theorems. [See Theorem
5.69 and more generally Section [5.11}]

5.9 Conditional probabilities and expectations

We begin with the notion of conditional probabilities which tries to capture the
dependency of one event on another. Throughout this section let (2, B, P) be
a finitely additive probability space. For motivational purposes we heuristically
think that P may be computed using,
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P (B) ::ngnoofzm wy) for all B € B,
n=1

where {wy, },—; C 2 are the outcomes of a sequence of identical and independent
experiments.

For events A and B € B we wish to know how likely the event A is given
that we know that B has occurred. Informally (in the spirit of Chapter [3)) we
want P (A|B) :=limy_, o Py (A|B) where
#{k:1<k<Nandw(k) e AN B}

#{k:1<k <N and w(k) € B}
_ y#{k:1<k<Nandw(k) e AN B}
 L#{k:1<k<Nandw(k) € B}
. Py (A n B)

Py (B)

Py (A|B) =

which represents the frequency in the first N trials that A occurs given that
we know that B has occurred. [This is only defined when Py (B) > 0, i.e.
where B has occurred during the first N — trials.] As we explained, we expect
P(ANB) =limy_o Py (AN B) and P (B) = limy_,o Py (B) and all of this
together leads to the following definition.

Definition 5.53. If B is a non-null event, i.e. P(B) > 0, define the condi-
tional probability of A given B by,
P(ANB)

P (A|B) := W

We may now ask a similar question as to what is the expectation of a random
variable, X : 2 — R, given an event B. Using the above notation and ideas
along with the intuition in Remark it is reasonable to write,

N
p[X|B] = lim M > X (wn) s (wn)
n=1 n/ n=1
N 1 &
= lim —m——— — X (wn) 1B (wn
NﬂooznlB(Wn)Nz::l ( )B( )
1
Bk [X - 15] = Ep(p) [X] .

Definition 5.54 (Conditional expectation I). If X : 2 — R is a B-simple
function and B € B with P(B) > 0, then conditional expectation of X
given B 1is

Ep[X|B] = ﬁ]E X - 15] = Epgim [X].
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It turns out that a far reaching generalization of this notion is to defined
the conditional expectation of X given a sub—algebraﬂ A C B. For this mo-
tivational and introductory section we are going to assume that A is a finite
sub-algebra, i.e. # (A) < oo, and X : 2 — R is a B — simple function. Recall
from Example for each w € 2, let A, :=N{A € A:we A} and recall
that either A, = A, or A, N A, =0 for all w,w’ € 2. Let {By,...,Bp} C A
be an enumeration of {4, : w € 2} in which case {By,...,B,,} is a partition
of 2 and A= A({By,...,Bn}).

We now imagine that our measuring devices can only tell us which B;
that the w, is in and hence we get a report from the experiment consisting
of {(i(wn),X (wn))}ory C {1,...,m} x R where i(w) = j iff w € By, ie.
1= Z;nzl J1p,. Our manager now asks us to make sense out this data, i.e. she
wants to know what X (w) will be if we know w € B;. However the data we
are given is inconsistent with giving such an answer so we do the best we can
and give her the average of the X (w,) for which w, € B,, i.e. we report that
our best guess, X, to X given we are not able to observe w directly but only
whether w € B; for some j is the random variable,

N
X (@) = Y E[X|B,] 1z, () (5.50)

j=1
with the convention (say) that E[X|B;] = 0 if P(B;) = 0. Noting that
1p, (w) = 1iff w € Bj iff B; = A,,, we may rewrite this expression as

X (w) = mE [14,X] forallw e 2 (5.51)

with the convention that X (w) = 0 if P (A,) = 0. It should be noted, from
Exercise that X = E X € S(A).

Definition 5.55 (Conditional expectation). Let X : {2 — R be a B — simple
random variable, i.e. X € S(B) and A C B is as above, we say that X € S (A)
given by either of the previously displayed equations is the conditional expec-
tation of X given A and we denote X by E[X|A] or E4X. So in summary,

N m

E4X =) E[X|Bj]1s, = Ep s, [X] 15, (5.52)
j=1 j=1

with the convention that E[X|B;] =0 if P(B;) = 0.

Exercise 5.13 (Simple conditional expectation). Let X € S(B) and, for
simplicity, assume all functions are real valued. Prove the following assertions;

3 To do so in full generality later we will need to use o-additive probabilities and
o-algebras in the full constructions.
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1. (Orthogonal Projection Property 1.) If Z € S(A), then

E[XZ]=E[XZ] =E[EAX - Z] (5.53)
and .
®az)w) ={ “H 00 20 (5.54)
[Applying Eq. with Z = E4X then shows E4 [E4X] = E4X for all
XesB)f

2. (Orthogonal Projection Property 2.) If Y € S (A) satisfies, E[X Z] =
E[YZ] for all Z € S(A), then Y (w) = X (w) whenever P (A4,) > 0. In
particular, P (Y #+ X) = 0. Hint: use item 1. to compute E [(X — Y)ﬂ .

3. (Best Approximation Property.) For any Y € S(A),

E [(X - X)Q} <E [(X - Y)2] (5.55)

with equality iff X = Y almost surely (a.s. for short), where X =Y a.s. iff
P ()_( # Y) = 0. In words, X = E4X is the best (“L?”) approximation to
X by an A — measurable random variable.

4. (Contraction Property.) E|X| < E|X|. (It is typically not true that
|X (w)| < |X (w)] for all w.)

5. (Pull Out Property.) If Z € S(A), then

E[ZX] = ZE4X.

Remark 5.56. The cleanest way to see that E 4 in Eq. (5.50)) is an orthogonal
projection is to let

(X,Y) :=E[XY] for all X,Y € S(B)

and observe that (-,-) satisfies the axioms of inner product except for possibly
the axiom that (X, X) = 0 implies X = 0. What is true is that if (X, X) =0,
then X =0 a.s., i.e. P (X # 0) = 0. To avoid technicalities associate with these

1B

“null” sets, let us suppose that P (B;) > 0 for each . In this case L
PP (Bi) { 0] }Z

is an orthonormal basis for the subspace S (A) C S(B). Therefore orthogonal
projection from S (B) onto S (A) is given by

4 All in all these results basically show that E 4 is orthogonal projection from S (B)

onto S (A) relative to the inner product

(f,9) =E[fg] forall f,g €S(B).
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X 1
XX (xS -y B
i

which is precisely the formula for E 4 X.

5.10 Simple Independence and the Weak Law of Large
Numbers

Again we assume throughout this section let ({2,158, P) be a finitely additive
probability space. Informally, we say two experiments are independent if know-
ing the outcome of one of the experiments in no way influences the second
experiment. As an example of independent experiments, suppose that one ex-
periment is the outcome of spinning a roulette wheel and the second is the
outcome of rolling a dice. We expect these two experiments will be indepen-
dent. As an example of dependent experiments, suppose that dice roller now
has two dice — one red and one black. The person rolling dice throws his black
or red dice after the roulette ball has stopped and landed on either black or
red respectively. If the black and the red dice are weighted differently, we ex-
pect that these two experiments are no longer independent. We now go to the
mathematical definitions of independence.

Definition 5.57. Two events, A, B € B are P- independent events if either
P(B)=0 orP(B) >0 and P(A|B) = P (A). Alternatively put, A and B are
independent provided P (AN B) =P (A)P(B).

Definition 5.58. Suppose that S and T are sets and X : 2 — S and
Y : 2 — T are B — simple functions, i.e. X and Y have finite range and
{X=s},{Y=tteBforallse S andt € T. We say that X andY are (P)
independent if {X = s} and {Y =t} are independent events for all s € S and
tefT.

Proposition 5.59. Suppose that S and T are sets and X : {2 — S and Y
2 — T are B — simple functions. The following are equivalent;

1. X and Y are independent

2E[f(X)g(Y)] = E[f(X)]E[g(Y)] for all functions, f : S — R and g :
T — R.

3. P(XeAYeB)=P(Xe€A)P(Y€B)foralACS and BCT.

Proof. We will prove 1. = 2. = 3. = 1.

(1. = 2.) Wehave f(X) =3 g f(s)lx=sand g(Y)=>,cr9(t) ly=
and therefore,
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ZZf ) 1x=s - ly= t—ZZf ) Ix=sy=t

seSteT s€SteT
and therefore,

Ef(X)gM)=>_ > f(s)g(t) P(X =5Y =1)

seESteT

=X > FOPX =5 g)P(Y =t)=E[f (X)]E[g(Y)].

seSteT

(2. = 3.)For AC Sand B C T take f =14 and g = 1p in item 2. to
learn

P(X S A,Y S B) :]E[lXeAlYEB] :]E[].A (X) 1p (Y)]
—E[14(X)]-E[lz (V)] = P(X € A)- P(Y € B).

(8. = 1) Forse Sandt € T, let A= {s} and B = {t} in item 3. to

learn
P{X =sin{Y =t}) = P{X =s}) P({Y = 1t}),
ie. {X = s} and {Y =t} are independent events for all s € S and t € T. ]

Exercise 5.14. Suppose that S, T, U are sets and X : 2 — S, Y : 2 — T,
and Z : 2 — U are B — simple functions such that Z is independent of (X,Y) :
2 — S x T. Show that Z is independent of X. [In words, if knowing values of
both (X,Y) does not change the likelihood that Z = u then knowing the value
of just X does not change the likelihood that Z = u either.]

Ezxample 5.60. It is not true in general that if Z is independent of X and Z
is independent of Y then Z is independent of (X,Y"). For example let XY :
2 — {£1} be independent random variables (i.e. B — simple functions) such
that P (X =+1) =2 = P(Y = +1). Then take Z = XY. It is now fairly easy
to verify that X and Z are independent and Y and Z are independent while
Z = XY is not independent of (X,Y).

Method 1. Let f,g: {£1} — R be two functions, then (by doing the z —
sum first)

E[f 1 [faw= ZE =Ef (X),

xye{:l:l} ye{il}

Ef(2)gV]=EF(XV)gW]=; ¥ F)gl)

zye{tl}
1
=5 2 Ef(XN)]g(y) =Ef(X) Eg(Y)
ye{£1}
=E[f(Z)] - Eg(Y).
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This shows Y and Z are independent and a similar computation shows X and
Z are independent. On the other hand Z = XY is not independent of (X,Y).
For example

0=P(Z=1,(X,Y)=(,-1))

while L1 1
P(Z=1) P(XY)=(,-1)=1 T =140
Method 2. The reader should verify that for €,d € {:I:l} that P(Z =9) =
3 1
P(X=eZ2=6)=7=P(X=c)P(Z=0)

and same with X replaced by Y. This shows that X and Z are independent
and Y and Z are independent while Z = XY is not independent of (X,Y") . For
example

0=P(Z=1,XY)=(1-1))
while
11
2 4
Remark 5.61. The above example easily generalizes as follows. Let G be any
finite group and suppose that X,Y : 2 —> G are independent random functions
such that P(X =g¢g) = P(Y =g) = #(G) for all g € G, i.e. X and Y are
uniformly distributed on G. Then Z = XY will be independent of X and of Y
separately but not independent of (X,Y) : 2 - G x G. Example is the
special case where G = {£1} . Later we may see “continuous” versions of this
example as well where G is replaced by any compact group.

P(Z=1)-P(X)Y)=(1-1) = *740

Definition 5.62. Suppose that {S;},_, are sets and X; : 2 — S; is an B -
simple function for each 1 < i < n. We say {Xi}n_l are independent iff for
each 1 < i < n, X; is independent of X : 2 — [, S; where X0 (W) =

X1 (w),...,X; (w),..., X, (w)) where the hat over a term means that term

is to be omitted from the list.

Exercise 5.15. Suppose that X; : 2 — 5; is an B — simple function for each
1 <i <mn.Show {X;}" | are independent iff

P (N {Xi =s:}) = HP (X5 = si) (5.56)

for all (s1,...,8,) €51 X -+- x Sp,.

Exercise 5.16. Suppose that X; : 2 — S; is an B — simple function for each
1 <4 < n. Show the following are equivalent;
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1. {X;}_, are independent.
2. For all choices of functions, f; : S; =& R with 1 <14 <mn,

E lH f; (Xi)] = HE [fi (X3)]
i=1 =1

3. For all choices of subsets A; C S; with 1 <1i < n,
PN {X;e A}) =[] PUX:i € A}).
i=1

Remark 5.63.1f {X,Y,Z} are as in Example [5.60} then X is independent of
Y, X is independent of Z, and Y is independent of Z, yet {X,Y, Z} is not an
independent collection of random variables. Thus independence of three or more
random variables can not be verified by checking independence of all pairs of
these random variables.

Exercise 5.17. Suppose now that S is a finite set, 2 = S™, B = 29 and
X; : 2 — S is projection onto the i factor of £2, i.e.

Xi(w)=w; € Sforall w=(wy,...,w,) € £2.

Let P be a probability measure on (2, B). Show {X;}!", are P — independent
iff P there are functions, ¢; : S — [0,1] (for 1 <4 < n)suchthat ) _gq;(s) =1
and

P({s}) = qu ) for all s € £2. (5.57)

and define ¢; (s) := P (X; =s) forall s € Sand 1 <i < n.

Example 5.64 (Heuristics of independence and conditional expectations). Let us
suppose that we have an experiment consisting of spinning a spinner with values
in Ay ={1,2,...,10} and rolling a die with values in Ay = {1,2,3,4,5,6}. So
the outcome of an experiment is represented by a point, w = (z,y) € 2 =
Ay x Ay Let X (z,y) =2, Y (2,y) =y, B=27, and

A=AX)=X"12")={X"1(A): Ac A} CB,

so that A is the smallest algebra of subsets of 2 such that {X =z} € A for all
x € A;. Notice that the partition associated to A is precisely

(X =1},{X =2},... {X =10}}.

Let us now suppose that the spins of the spinner are “empirically independent”
of the throws of the dice. As usual let us run the experiment repeatedly to
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produce a sequence of results, w, = (zn,yn) foralln e N.If g: A5 - Ris a
function, we have (heuristically) that

N
R > Sy
n=1 *X(w(n))=x

N
— lim Zn:1 9 (Yn) Lz, = _

N
N—voo Zn:l ]‘In:I

As the {y, } sequence of results are independent of the {x,, } sequence, we should
expect by the usual mantraﬂ that

S L gyn) 1 Y

: n=1 n) -Tp=x __ 1. — —

Jim LA = Jm > 9@W) =E[g(V)],
n=1 "Tn=2 n=1

where M (N) = SN 1, —, and (1,%2,---) = {91 : loy=s}. (We are also
assuming here that P (X = z) > 0 so that we expect, M (N) ~ P(X =z) N
for N large, in particular M (N) — 00.) Thus under the assumption that X
and Y are describing “independent” experiments we have heuristically deduced

that E4 [g (Y)] : 2 = R is the constant function;
Ealg (Y] (z,y) =E[g (V)] for all (z,y) € 2. (5.58)

Let us further observe that if f : A; — R is any other function, then f (X) is
an A — simple function and therefore by Eq. (5.58)) and Exercise

E[f(XIE[gY)]=E[f(X)-ElgM=E[f(X) -Ealg(WM]] =E[f(X)-g ()]

Lemma 5.65 (Conditional Expectation and Independence). Let 2 =
Ay x Ay, X, Y, B =29 and A=X"1 (2/11), be as in Example above.
Assume that P : B — [0,1] is a probability measure. If X and Y are P —
independent, then Eq. holds.

Proof. From the definitions of conditional expectation and of independence
we have,

Ellx=s-g(Y)] _ Eflx=.]-E[g (V)]
P(X =x) P(X =x)

Exlg (V)] (2,y) = =Efg(Y)].

]
The following theorem summarizes much of what we (i.e. you) have shown
regarding the underlying notion of independence of a pair of simple functions.

5 That is it should not matter which sequence of independent experiments are used
to compute the time averages.
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Theorem 5.66 (Independence result summary). Let (2,B,P) be a
finitely additive probability space, A be a finite set, and X,Y : 2 — A be two
B — measurable simple functions, i.e. {X =x} € B and {Y =y} € B for all
z,y € A. Further let A= A(X) := A({X =z} :2 € A). Then the following
are equivalent;

1.P(X=2,Y=y)=P(X=2x2)-P(Y=y)forallz € Aandy € A,

2E[f(X)g(Y)] =E[f(X)]E[g(Y)] for all functions, f : A — R and g :
A= R,

3. Eaxylg(Y)]=E[g(Y)] forallg: A — R, and

4 B If (O] =E[f (X)] for all f - 4 R

We say that X andY are P — independent if any one (and hence all) of the
above conditions holds.

Exercise 5.18 (A Weak Law of Large Numbers). Suppose that A C R is
a finite set, n € N, 2 = A", p(w) =[], ¢ (w;) where ¢ : A — [0,1] such that
> aeaq(A) =1, and let P : 2% — [0,1] be the probability measure defined as
in Eq. with S replaced by A. Further let X; (w) = w; for i =1,2,...,n,
€:=EX;, 02:=E(X; —£)°, and

1
Sp=—X14+ -+ X,).
n
1. Show, £ = > \c4 A ¢(\) and

ot = (A =7aN) =) NN € (5.59)

A€eA AeA

2. Show, ES,, = ¢.
3. Let 0;; =11if i = j and 0;; = 0 if ¢ # j. Show

E [(Xz - 5) (Xj - f)] = 5ij0'2-

4. Using S,, — & may be expressed as, =~ 1" | (X; — &), show

E (S, —¢)?* = —o>. (5.60)

5. Conclude using Eq. (5.60) and Chebyshev’s Inequality (Remark [5.29) that
L

P (IS, —¢&l>¢) < @U . (5.61)

So for large n, S, is concentrated near £ = EX; with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.
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Definition 5.67 (Covariance). Let (£2, B, P) is a finitely additive probability.
The covariance, Cov (X,Y), of X,Y € S(B) is defined by

Cov (X,Y) = E[(X —&x) (Y —&)] =E[XY] —EX -EY
where £x = EX and £y = EY. The variance of X,
Var (X) := Cov (X, X) = E [X?] — (EX)?

We say that X andY are uncorrelated if Cov (X,Y) =0, i.e. E[XY] =EX -
EY. More generally we say {Xy},_, C S (B) are uncorrelated iff Cov (X;, X;) =
0 for all i # j.

Remark 5.68. 1. Observe that X and Y are independent iff f (X) and g (V) are
uncorrelated for all functions, f and g on the range of X and Y respectively. In
particular if X and Y are independent then Cov (X,Y) = 0.

2 If you look at your proof of the weak law of large numbers in Exercise
you will see that it suffices to assume that {X;}!_, are uncorrelated rather
than the stronger condition of being independent.

Exercise 5.19 (Bernoulli Random Variables). Let A ={0,1}, X: A - R
be defined by X (0) = 0 and X (1) = 1, = € [0,1], and define @ = zd; +
(1 —x)dp, ie. Q({0}) =1—x and Q ({1}) = x. Verity,

&(z) =EgX =z and
o} (x)=FEg (X —2)’=(1—-z)z <1/4

Theorem 5.69 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f € C([0,1],C) and

Pn () = é <Z>f (S) 2 (1= z)" ",
Then
lim sup |f () —pn (z)| = 0.

n—oo E[O 1]

Proof. Let x € [0,1], A ={0,1},¢(0)=1—2z, ¢(1) =z, 2 = A", and

P ({w}) = q (@) g (wn) = 22 (1= ) "2

As above, let S, = 1 (X1 + -+ X,,), where X; (w) = w; and observe that

P, (sn - i) - <Z)xk (1-2)" ",
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Therefore, writing E, for Ep_, we have

=S (5) (1)t amart = o).
k=0
Hence we find

lpn () = [ (2)| = [Ec f (Sn) = [ (2)| = [Ez [f (Sn) — [ (2)]]
< Eqo|f(Sn) = f (2)]
=E; [|f (Sn) — f(@)]: [Sn — x| > €]
Eo [[f (Sn) = f ()] : [Sn — 2| <]
<2M - P, (|Sp — x| >¢e)+d(e)

where

M = d
yrg[gf]lf( y)| an

6 (e) :==sup{|f(y) — f(z)] : 2,y € [0,1] and |y — 2| <&}

is the modulus of continuity of f. Now by the above exercises,

1
P (S, —x| >e) <
(18, -2 22) < -

(see Figure (5.62)

and hence we may conclude that

- <
e [ (2) = f (@)l < 5=

and therefore, that

limsup max |p, () — f (z)| < 0 (e).

n—oo €[0,1] -

This completes the proof, since by uniform continuity of f, d (¢) } 0 as € | 0.
]

5.10.1 Complex Weierstrass Approximation Theorem

The main goal of this subsection is to prove Theorem [5.75] which states that
any continuous 27 — periodic function on R may be well approximated by
trigonometric polynomials. The main ingredient is the following two dimen-
sional generalization of Theorem All of the results in this section have
natural generalization to higher dimensions as well , see Theorem [5.70]

macro: svmonob.cls date/time: 25-Feb-2019/8:12



58 5 Finitely Additive Measures / Integration
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Fig. 5.1. Plots of P, (S, = k/n) versus k/n for n = 100 with z = 1/4 (black), z = 1/2
(red), and = = 5/6 (green).

Theorem 5.70 (Weierstrass Approximation Theorem). Suppose that
K =1[0,1)*, f € C(K,C), and

- kol _ _
potea)= Y £ (5D (D) ()t amor a0 e
k,1=0
Then p, — [ uniformly on K.

Proof. We are going to follow the argument given in the proof of Theorem
(.69 By considering the real and imaginary parts of f separately, it suffices
to assume f € C([0,1]°,R). For (z,y) € K and n € N we may choose a
collection of independent Bernoulli simple random variables {X;,Y;}! | such
that P(X; =1) = « and P(Y;=1) = y for all 1 < ¢ < n. Then letting
S, = le Yo X and T, = %Z?:l Y;, we have

E[f (Sn,Tn)] Zf( ) (n-Sp=kmn -T,=1)=p,(z,y)

k,1=0

where p,, (z,y) is the polynomial given in Eq. (5.63) wherein the assumed in-
dependence is needed to show,

P(n-Sy=kn-T,=1)= <Z> <?)xk 1—2)" gt (1 —y)" .

Thus if M =sup{|f(z,y)|: (z,y) € K},e >0,
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66 = Sup{|f($/7y/) - f(x,y)

and

: ($7y) ’ (xl7y/> € K and H(l'/7y/) - (x7y)|| < 8}7

A= {”(SnaTn) - (x,y)H > 5}7

we have,

|f(z,y) = pulz, y)l = [E(f(z,y) — f (S, Th)))
<E[f(z,y) = f ((Sn, Tn))|
=E[|f(z,y) — f (S0, T0)| : 4]
+E[|f(z,y) — f(Sn, Tn)| : A°]
<2M - P (A)+ 6. - P(A°)
< oM. P(A)+6.. (5.64)

To estimate P (A), observe that if

1(Sn, Tn) = (2 9)1* = (Sn = 2)° + (T —9)* > &2,
then either,
(Sp —x)* >e%/2 0r (T, —y)* >e2/2
and therefore by sub-additivity and Eq. (5.62)) we know

P(4) < P (IS0 — 2l > £/V3) + P (ITa =yl > =/V2)
1 1 1
— 2ne? + 2me2  ne?’ (5.65)

Using this estimate in Eq. (5.64]) gives,

1
‘f(xay) _pn(xvy” <2M- @ + 56
and as right is independent of (z,y) € K we may conclude,

limsup sup |f (z,y) —pn (z,y)| < 0c
N0 (z.4)eK

which completes the proof since d. | 0 as € | 0 because f is uniformly continuous
on K. [

Remark 5.71. We can easily improve our estimate on P (A) in Eq. (5.65) by a
factor of two as follows. As in the proof of Theorem [5.69]

E (IS, T) = @ )II*] = E (S =) + (T — 9)°]
= Var (S,,) + Var (T,)

1x(1—m)+y(1— )< g
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Therefore by Chebyshev’s inequality,

1 1
P(A) =P (I(5n, Tn) = (@, 9)l > €) < ZE[(Sn, Tn) — (z,y)lI* < VR
Corollary 5.72. Suppose that K = [a, b] x [c, d] is any compact rectangle in R?.
Then every function, f € C(K,C), may be uniformly approzimated by polyno-
mial functions in (x,y) € R2.

Proof. Let F(z,y) := f(a+z(b—a),c+y(d—c)) — a continuous func-
tion of (z,y) € [0,1]*. Given & > 0, we may use Theorem Theorem to find
a polynomial, p (z,y), such that SUD (5,4)€[0,1]2 |F (z,y) —p(z,y)| < e. Letting
E=a+z(b—a)and n:=c+y(d—c), it now follows that

sup ‘f(é“,n)p(g_a n_c>‘§e

(em)eK b—a’d-c
which completes the proof since p (E:Z, Z:g) is a polynomial in (£, 7). ]

Theorem 5.73 (Complex Weierstrass Approximation Theorem).
Suppose that K C C is a compact rectangle. Then there exists poly-
nomials in (z=z+iy,z=x—1y), pn(z,z) for z € C, such that
SUp.cx |qn(2,2) — f(2)] = 0 as n — oo for every f € C (K,C).

Proof. The mapping (z,y) € R xR — z = © + iy € C is an isomorphism
of vector spaces. Letting Z = = — iy as usual, we have z = ZJQFZ and y = Zz_f.
Therefore under this identification any polynomial p(x,y) on R x R may be

written as a polynomial ¢ in (z, Z), namely

( 7) z2+zZ z—Z2

2,Z) = .

q\z, p 5 ' 9

Conversely a polynomial ¢ in (z,Z) may be thought of as a polynomial p in

(x,y), namely p(z,y) = q(x + iy,x — iy). Hence the result now follows from

Corollary [

Ezample 5.74. Let K = S' = {2 € C: |z] = 1} and A be the set of polynomials
in (z, 2) restricted to S'. Then A is dense in C(S'). To prove this first observe
if f€C(S') then F(z) =|z| f (ﬁ) for z # 0 and F(0) = 0 defines F' € C(C)
such that F|s1 = f. By applying Theorem to F restricted to a compact
rectangle containing S' we may find ¢, (2, %) converging uniformly to F on K

and hence on S!. Since z = 27! on S!, we have shown polynomials in z and
271 are dense in C(S?!).
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Theorem 5.75 (Density of Trigonometric Polynomials). Any 27 — pe-
riodic continuous function, f : R — C, may be uniformly approximated by a
trigonometric polynomial of the form

p(xz) = Z arer
AeA

where A is a finite subset of Z and ay € C for all A € A.

Proof. For z € S', define F(z) := f() where § € R is chosen so that
z = €. Since f is 27 — periodic, F is well defined since if § solves ¢ = 2 then
all other solutions are of the form {6 + 27n : n € Z}. Since the map 6 — %
is a local homeomorphism, i.e. for any J = (a,b) with b — a < 2w, the map
beJbJ= {e?:0 € J} C S' is a homeomorphism, it follows that F(z) =
fo¢ 1(z) for z € J. This shows F is continuous when restricted to J. Since
such sets cover S!, it follows that F is continuous.

By Example [5.74] the polynomials in z and z = z~! are dense in C(S%).
Hence for any € > 0 there exists

p(z,2) = Z Amn 22"

0<m,n<N
such that |F(2) — p(z,2)| < € for all z € S'. Taking z = €% then implies
sup |£(0) — p (¢, e < ¢
6

where
p (61'97 e—i@) _ Z am nei(m—n)G
0<m,n<N
is the desired trigonometry polynomial. [

Exercise 5.20. Use Example to show that any 27 — periodic continuous
function, g : R — C, may be uniformly approximated by a trigonometric

polynomial of the form
p(e) = 3 are

where A is a finite subset of Z¢ and ay € C for all A € A. Hint: start by
showing there exists a unique continuous function, f : (S 1)d — C such that
f(e™1,... e) = F(z) for all x = (z1,...,2q4) € R%

Exercise 5.21. Suppose f € C(R,C) is a 27 — periodic function (i.e.
f(x+2m) = f(x) for all z € R) and

2m

(z) e dx = 0 for all n € Z,
0

show again that f = 0. Hint: Use Exercise [5.20]
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5.11 *Appendix: A Multi-dimensional Weirstrass
Approximation Theorem

The following theorem is the multi-dimensional generalization of Theorem [5.69

Theorem 5.76 (Weierstrass Approximation Theorem). Suppose that
K = [a1,b1] X ...[ag,bq] with —co < a; < b; < o0 is a compact rectangle
in Re. Then for every f € C(K,C), there exists polynomials p, on R? such that
Pn — [ uniformly on K.

Proof. By a simple scaling and translation of the arguments of f we may
assume without loss of generality that K = [0, 1]d . By considering the real and
imaginary parts of f separately, it suffices to assume f € C([0, 1], R).

Given z € K, let {Xn = (X}l, .. .,Xg)}le be i.i.d. random vectors with

values in R? such that

(1— :ci)l_m x)
1

P(Xn:n):‘

7

d

.na) € {0,1}*. Since each X7 is a Bernoulli random variable
with P (X7 = 1) = z;, we know that

for all n = (n1, ...

EX, =2 and Var (X]) = z; — x? =xz;(1 —xj).

As usual let S, := X1 +--- 4+ X,, € R%, then

2 2 d
E %— 1221!3(%—@) —ZVM(—%)
j=1 j=1
d S 1 d n
=>ovar(3) = 5 303 var ()
j=1 j=1k=1
1 d
:*;xj(lij)gﬁ

This shows S,,/n — z in L? (P) and hence by Chebyshev’s inequality, S, /n L
and in fact for any € > 0,

Sh, 1d

Pll|l——-=z|>¢) < 5—.

( n - )_ e2dn
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Observe that

w2 ()

- ¥

7:{1,2,...,n}—={0,1}¢

n d
_ ) f (n(1)+~r-b-+n(n)> TITL0 -z ® 27 )

n:{1,2,....,n}—{0,1}¢ k=14i=1

(5.66)

is a polynomial in x of degree nd at most. If we further let M =
sup{|f(z)]: x € K}, and

6e =sup{|f(y) — f(z)| : 2,y € K and ||y —z| < e},

then
@) =t =& (1600 - 7 (2))| <2 |- 1 (22)]
<e|r0) -1 ()] 1su - ol > <]
+E[|f0) - 1 (2] 15, - ol <]
<OMP (||, — 2| > &) + 6. < 2:5]‘24 +6.. (5.67)
Therefore,

limsupmax | f(z) — pn(z)] < 6. > 0ase 0

n—oo TEK

wherein we have used the uniform continuity of f to guarantee 6. | 0 as € | 0.

]
Remark 5.77. We can write out the expression in Eq. (5.66]) more explicitly by
observing that {S},...,S%} are independent random variables with

P, (5. = k) = (Z)ﬁ 1—z)" " for0<k<n

and therefore

kﬁ
VRS
—~
2
3|
=2
SN—
~—
—_
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Theorem has the following multi-dimensional generalization.

Theorem 5.78 (Complex Weierstrass Approximation Theorem). Sup-
pose that K C C¢ = R? x R? is a compact rectangle. Then there ex-
ists polynomials in (z = x +iy,zZ = x — iy), pn(2,2) for z € C%, such that
SUp.cx [an(2,2) — f(2)] = 0 as n — oo for every f € C (K,C).

Proof. The mapping (z,y) € R x R — 2 = z+iy € C? is an isomorphism
of vector spaces. Letting Z = = — iy as usual, we have z = #t2 and y = ST
Therefore under this identification any polynomial p(x,y) on R? x R? may be

written as a polynomial ¢ in (z, Z), namely

z+z z2—2
2 72

).

q(z,2) = p(

Conversely a polynomial ¢ in (z,Z) may be thought of as a polynomial p in
(z,y), namely p(z,y) = q(x + iy,x — iy). Hence the result now follows from
Theorem [5.706] ]

Ezxample 5.79. Let
(Sl)d: {z=(2,...,2) €Ch:|z]=11<7 <d} cc?

A be the set of polynomials in (z,Z) restricted to (Sl)d. Then A is dense in
C ((Sl)d) . To prove this first observe if f € C ((S’l)d) then

21 Zd

F(z):|zl|...zd|f<21|,...,|2d|) when z; # 0 for all 4

and F(z) = 0 if z; = 0 for some i defines a continuous function on C? such that
F|x = f. By applying Theorem to F' restricted to a compact rectangle
K containing (S 1)d we may find ¢, (z, Z) converging uniformly to F' on K and
hence on (Sl)d. Since z = z"! on (Sl)d, we have also shown polynomials in z
and z7! = (z;l, .. .,z;l) are dense in C' ((Sl)d) .






6

Countably Additive Measures

Let A C 2 be an algebra and 1 : A — [0, 0c] be a finitely additive measure.
Recall that p is a premeasure on A if p is 0 — additive on A.

Definition 6.1. A premeasure space is a triple, (§2, A, p) , where §2 is a non-
empty set, A is a sub-algebra of 2, and i : A — [0, 0] is a premeasure on A. If
in addition A is a o — algebra (Definition|4.12), we say (12, A) is a measurable
space and (2, A, 1) is a measure space.

Definition 6.2. Let (£2,B) be a measurable space. We say that P : B — [0, 1] is
a probability measure on (£2,B) if P is a measure on B such that P (§2) =1
and in this case we say (12,8, P) is a probability space.

The main construction theorem of this chapter is Theorem [6.20] which in
part states that if (£2,.4, 1) is a premeasure space such that p (£2) < oo, then
there exists a unique o-additive measure, i : o (A) — [0, 1 (2)], which extends
w. Before going on to Theorem [6.20]and its proof let us first give some equivalent
conditions for checking when a finitely additive measure is in fact a premeasure.

Proposition 6.3 (Equivalent premeasure conditions). Suppose that p is
a finitely additive measure on an algebra, A C 2. Then the following are
equivalent:

1. p is subadditive on A.

2. u is a premeasure on A, i.e. u is o — additive on A.

3. For all A, € A such that A, 1 A€ A, u(A,) T u(4).
If we now further assume that p (§2) < oo then the any of the above condi-
tions are also equivalent to any of the following conditions.

4. For all A, € A such that A, L A€ A, u(A,) L u(A).

5. For all A,, € A such that Ay, 182, p(An) T p(82).

6. For all A,, € A such that A, | 0, 1 (A,) ] 0.

Proof. The equivalence of 1 and 2 has already been shown in Proposition
(2l We will next show 2 <= 3 < 4.

2. = 3. Suppose A, € A such that A, T A€ A Let A/, := A, \ A1
with Ay := 0. Then {A]} 7, are disjoint, A, = Up_; A} and A = U A;.
Therefore,

p(A) = p(Ap) = lim D p(Ay) = lim (Vo Af) = lim p(An).
k=1 k=1

3. = 2. If {4,},7, C A are disjoint and A = U2, A, € A, then
UN_, A, 1+ A. Therefore,

N oo
1(A) = NIEHOOM (ijyzlAn) = ]\;EHOO;N (4,) = 7;,“ (4n) .

We now further assume that p (2) < oo which allows us to use p (B \ A) =
w(B) — pu(A) for all A,B € Awith AC B.
3. = 4.If A, € Asuch that A,, | A € A, then A¢ 1 A° and therefore,

Jim (p(2) = p(An)) = lim p (A7) = p(A°) = p(2) = p(A).
4. = 3. If A, € Asuch that A, T A € A, then AS | A° and therefore we
again have,
lim (u(£2) = p(An)) = lim p (A7) = p(A9) = p(2) — p(4).
n— oo n—00
The same proof used for 3. <= 4. shows 5. <= 6. and it is clear that

4. = 6. To finish the proof we will show 6. — 3.
6. = 3.If A, € A such that A, T A € A, then A\ A,, | 0 and therefore

lim (1 (A) = p(An)] = lim p(A\ Ay) = 0.

n—oo

]
The following result is another useful result for verifying a finitely additive
measure is a premeasure.

Proposition 6.4. Suppose that S C 2% is a semi-algebra, A = A(S) and p :
A — [0,00] is a finitely additive measure. Then p is a premeasure on A iff p is
countably sub-additive on S.

Proof. Clearly if u is a premeasure on A then p is o - additive and hence
sub-additive on S. Because of Proposition to prove the converse it suffices
to show that the sub-additivity of y on & implies the sub-additivity of x on A.
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So suppose A =3 ° A, € A with each A, € A . By Proposition we
may write A = Zle E; and A, Z " B with B
the identity, A =7 | A,, with E; 1mphes

E; = ANE, _ZA NE; _ZZEmmE

n=1 i=1

E,; € S. Intersecting

By the assumed sub-additivity of p on S,

oo N,

SZZ (EniNEj)

Summing this equation on j and using the finite additivity of p shows

2

w(A) =S wE) <SS p(Buin By)
j=1 j=1n=11i=1
oo N, k oo Np 0
=3NS w(EBaiNE)=>"Y p(Bai) =) n(A
n=1i=1 j=1 n=1 i=1 n=1

[

We will give explicit examples of premeasure spaces and hence measure

spaces after we have developed Theorem [6.20] The notion of an “outer measure”

(which is the topic of the next section) is an intermediate step in proving the
main measure construction theorems.

6.1 Outer Measures

Definition 6.5 (Outer measures). Let {2 be a non-empty set. A function
v:2% - [0,00] is an outer measure (on £2) if;

1.v(0) =0,

2. v is monotonic (i.e. v(A) < v (B) whenever A C B) and

3. v is countably sub-additive (i.e. v(USZ A,) < S v (A,) for all
{4}, C29).

Proposition 6.6 (Example of an outer measure.). Let £ C 2% be arbitrary
collection of subsets of 2 such that 0,2 € E. Let p : £ — [0,00] be a function
such that p(0) = 0. For any A C 2, define

p*(A) = inf {i p(E): AC [j Ey with Ej, € 5} . (6.1)

k=1 k=1

Then p* is an outer measure.
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Proof. It is clear that p* is monotonic and p*(0) = 0. Suppose {4, },~ | C
? and £ > 0 is given. By definition of p* (A4,,), there exists {E,x} 5, C € such

that An C U FE,;. and
k=1

ZP(Enk) <p'(An) +27"e.
k=1

oo oo
Using these inequalities and the fact that |J 4, C U Enk, it follows that
n=1 n,k=1

p* <U An) Z Z Z [p*(An) + 27”5] = Z p*(An) +e.
n=1

n=1k=1 n=1 n=1
The sub-additivity of p* then follows from this inequality as € > 0 was arbitrary.

It is important that we allowed for countable £-covers of A in the definition
of p* (A). If we had defined

N N
p*(A) = inf {Zp(Ek) tAC | Ex with By € £ and N € N}
k=1 k=1

we could not in general show that p* is countably subadditive but only finitely
subadditve. Countable subadditivity is key to all of the development to follow.

Definition 6.7 (The outer metric). If v is an outer measure on 2, the
associate outer pseudo-metric (d,) on 2% is defined by

d,(A,B) :=v(AAB) €0,00] VA Be29

Proposition 6.8 (Properties of the outer metric). If v : 22 — [0, 00] is
an outer measure and d = d,, is as in Definition[6.7, then;

1. d is a pseudo metric, i.e. is symmetric and satisfies the triangle inequality.
2.d(A°,0°) =d(A,C) for all A,B € 2%.
S IfF{An o {Bntor, C 2%, then

Mg

d (U, A, U B,) <> d(An, Bn) and (6.2)
n=1
d (M5 A, 52, By) <3 d(An, By). (6.3)
n=1
Proof. We take each item in turn.
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1. Since AA B = BAA it follows that d (4, B) = d (B, A) and hence we need
only shows that d satisfies the triangle inequality. If A, B,C € 2%, then

lanc =114 —1¢| < [1a — 1|+ 1 — 1¢| = laas + 1BAC:
From this equation (or directly from Exercise it easily follows that
ANCC[AAB]U[BAC)
and therefore,
d(A,C)=v(AAC)<v([AABJU[BAC])
<v(AAB)+v(BAC)=d(A,B)+d(B,C).

2. As
ANC=[A°NCIU[C*NA]=[C\AJU[A\C]|=AAC
it follows that d (A€, C¢) = d (A, C) . This also may be verified alternatively
as follows;
lacace = |1ae —loe| = |[1 = 1a] = [1 = 1] =14 — 1¢| = lanc.

3. By Exercise [£.3]

(U, Ap] A U2, B, € U, [An A By (6.4)

n=1

Hence using the monotonicity and finite subadditivity of v then gives;

d(UnZiAn, UpZy Bn) = v (U An] A (UL Bn]) < v (URZy [An & Ba))

§iu A, A B,) Zd Ap, By)

1

which proves Eq. (6.2). Equation (6.3) may be proved similarly or by com-
bining item 2. with Eq. (6.2)) as follows;
d(MpZy An, M2, By)
=d([NyL14,]%, (N2 Bal%)

o0

= d (U, AS, U BS) < Zd (AS,BS) = d(An, By).

n=1
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6.2 Construction of o—Additive Finite Measures

The most important special case of the construction in Proposition is when
£ = A is an algebra and p = p is a premeasure on A. The next two relatively
easy results will play an important role in this section.

Lemma 6.9 (Outer measures dominate). Suppose that (§2, A, 1) is a pre-
measure space and v : o (A) — [0,00] is a o-additive measure such that v =
on A, then

v(B) <u*(B) forall Beo(A).

Proof. If B € o (A) and {4, },~, C Ais a cover of B (i.e. B C U3 A4,),

then
<3 v =Y u(An).
n=1 n=1

As this inequality holds for every A-cover of B, it follows that v (B) < u* (B).
|

Proposition 6.10. If (2, A, 1) is a finitely additive measure space then u* < u
on A. Moreover u* = on A iff pu is a premeasure.

Proof. If A € A, then A C U2 | A,, where A] = A and Ay =) for all k > 2

and therefore,
(oo}
<3 u(4n) = p(A).
n=1

Hence p* < p on A.
Now suppose j is a premeasure on A and that {4, },~, C Ais a given cover
of A, ie. A=U2 1 A,. Let Ag = 0 and defined

A, =ANA\[AU---UA,_1] € Aforall n e N.
We then have A, C A, and A=3>° A

=iu(fln) Siu(A )

As {A,})7, C A was an arbitrary cover of A, it follows from the previous
equation that p(A4) < p* (A) and hence p = p* on A.

Lastly let us suppose that p = p* on A. If {A} U {A4,} ~, C A are such
that A =Y | A, then by definition of p* and the assumption that p = p*
on A we find,

0 N
1 (4) z:: An) = lgHOOZu —]Vlgnoou<;An> < p(A)

n = U2, A, and therefore
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66 6 Countably Additive Measures

wherein we have used the finite additivity and monotonicity of u. The previous
equation clearly implies p(A) = Y02, 1 (A,) which shows p is a premeasure
on A. ]

Corollary 6.11. Suppose that (2, A,u) is a premeasure space such that
pu(£2) < oo and let d(A,B) = u* (AN B) for all A,B € 2. Then u is Lip-
1 relative to d. Hence, Lemma [2.28, uu has a unique Lip-1 extension, fi, to
B=B(u) = A

Summary: A subset, B C (2, is in B iff there exists {A,} C A such that
lim;, 00 p* (An A B) = 0 and in which case i (B) := lim, 00 it (4y) = p* (B).

Proof. Let A, B € A. By the basic properties of the simple integral and the
fact that 4 = p* on A we find,

u(B) =)l =| [ (1510
§/QllsflA\du:M(BAA):M*(BAA):d(A,B)'

Definition 6.12. Given a collection of subsets, £, of 12, let £, denote the col-
lection of subsets of {2 which are finite or countable unions of sets from E.
Similarly let Es denote the collection of subsets of {2 which are finite or count-
able intersections of sets from £. We also write E55 = (E)5 and Eso = (E5), »
etc.

Lemma 6.13. Suppose that A C 2 is an algebra. Then:

1. A, is closed under taking countable unions and finite intersections.
2. The map, Ay > A — A° € A is a bijection.
3. As is closed under taking countable intersections and finite unions.

Proof. 1. By construction A, is closed under countable unions. Moreover
if A=U2A; and B = U2, B; with A;, B; € A, then

ANB=U5_1A;,NB; e A,,

ij=1

which shows that A, is also closed under finite intersections.
2. IfA; € Aand A =U2 A; € Ay, then A° = N2, AS € As and visa versa.
3. This item follows directly from items 1. and 2. or may be proved directly.
]

Proposition 6.14. Suppose that (§2, A, u) is a premeasure space. If A € A,
and {A,},2; C A are such that A, T A, then
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M8

p(A) =t lim p(A,) =

n—oo

3
Il

Moreover, if we further assume that p(§2) < oo, then
d(An, A)=p"(A) —n(4,) - 0asn— oo
and in particular B= A = A, and

fi(A) = lim p(Aa) = (A). (6.6)

n—oo

Proof. Since A = > | [A,, \ A,_1], by the definition of p* (A) it follows
that

o] N
p(A4) < Z p(Ap \ Ap—1) = ]\;gnoc Z 1(An \ An—1)
n=1

n=1

N
= lim p <Z [An\An_1]> = Jim p(Ay) <p”(4),

wherein the last inequality we have used u (An) = p* (An) < p* (A) since that
A > Ay C A. For the second assertion observe that for each n € N,

A3 AN\ A, T A\ A, as N T oc.

So by what we have just proved while using u (£2) < oo so that p(Ay) < oo
we find,

where the last expression goes to zero as n — oo since the first assertion implies,
p(An) 1 p* (A) asn — oo. This in particular shows that A, C Aand as A C A,
we may conclude that A C A, C A, i.e. B= A= A,. ]

Proposition 6.15. If (2, A, 1) is a finite (11 (£2) < 00) premeasure space, then
B=Ac 2% is aoc-algebra.

Proof. Since A C B, we have (), 2 € B. If B € B, there exists 4,, € A so
that lim,, o d (A, B) = 0 and so by Proposition
lim d(A5,B¢) = lim d(4,,B)=0

n—r oo n—oo

which shows B¢ € B.
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Now suppose that {B,},., C B and B := U2 B,. Given ¢ > 0 we may
find A,, € A so that d(A4,,B,) < &27" for all n. With 4 := U2 A, € A,, it
follows (using Proposition that

d(A,B) = d(U;An, Ui, By) < Y d(A,,B,) <e. (6.7)
n=1

As € > 0, this shows B € A, = A% = B. N

Remark 6.16. If (£2, A, ) is a premeasure space, 0 < M < oo, and B C (2, then
w* (B) < M iff there exists D := Zjoil Dj such that D; € A, B C D, and

o0

W (D)= > (Dy) < M.

Proposition 6.17. Let (2, A, u) be a premeasure space with p(§2) < oo and
B € 2. Then the following are equivalent;

1. For all € > 0 there exists A € As and C € A, such that A C B C C and
uw* (C\A) <e.

2. For all € > 0 there ezists a C € A, such that B C C and p* (C'\ B) < e.

3. The set B is in B=B(u).

Proof. (1 = 2) This implication simply follows by monotonicity of p*
which implies p* (C'\ B) < p* (C'\ 4) < e.

(2 = 3) Assuming 2 we may find C,, € A, so that B C C, and
d(B,Cy) =p* (Cp,\ B) < 1/n — 0 as n — co. This shows that B € A, = B.

(3 = 1) Given if B € B, then for all ¢ > 0 there exists Ge € A so that
e > d(Ge, B) = p* (BAG,) and so by Remark there exists D, C A, such
that u* (D:) < € and BAG, C D.. We now let

As 5 A.:==G.\D. C G.\[BAG.]=BNG.CB

and
A, 5C.:=G.UD. DG, U[BAG,] = BUG, D B.

Thus A. C B C C. and the proof is complete since p* (C. \ B:) = p* (D) < ¢
because,

Ce \Bs = [Gs U Ds] \ [Ge \ Ds] - [[GE \ DE] U Ds} \ [Gs \ Ds} =D..
[ ]
Proposition 6.18. Let (2, A, 1) be a premeasure space with u (£2) < oo, then
n=p* onB.
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Proof. Let B € B and € > 0 be given and choose C' € A, so that B C C
and d (B,C) = u* (C'\ B) < e. Using the fact that fi is Lip-1 on B we have
A (B) = 3 (B) — 1(0)] < d(B.0) = " (B), and
i (B) —p(C) <d(B,C) <e.

These inequalities along with Eq. then imply,
i(B) < (B) < 1 (C) = i (C) < i (B) +e.
As e > 0 was arbitrary we conclude that @ (B) = p* (B). ]

Proposition 6.19. If (2, A, u) is a finite premeasure space, then fi defined in
Theorem is a 0 — additive measure on the o-algebra, B = A?.

Proof. For A, B € B, choose A,,, B,, € A so that A,, 4 A and B, 4 B as
n — oo. By Proposition [6.8] it follows that

AnUBniAUB and AnﬁBniAﬁBasn%oo.
Therefore using the definition of i and the finite additivity of u, it follows that

B(AUB)+a(ANB) = lim [u(A,UBy,)+p1(4,NB,)]

n—oo

= lim [p(An) + i (Bn)]

n—oo

A (A) + A (A).

This shows that i is finitely additive. Since, by Propositions [6.18] 7 = p* on
B, it follows that f is sub-additive on B and hence [ is countably additive, see
Proposition [5.2

]
The next theorem summarizes most of the results we have proved in this
section.

Theorem 6.20 (Finite premeasure extension theorem). If (2, A, u) is
a finite premeasure space, B = A4 C 2, and [i is the unique d — continuous
extension of p from A to B, then;
1.|a(B)—p(A)| <d(A,B) =p* (AAB) for all A,B € B,
2. B:= A% is a o-algebra which necessarily contains A and hence o (A) .
3. For B € 2, the following are equivalent;
a) For all € > 0 there exists A € As and C € A, such that AC B C C
and p* (C'\ A) < e.
b) For alle > 0 there exists a C € A, such that B C C and u* (C'\ B) < .
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68 6 Countably Additive Measures
¢) The set B is in B = B(u), i.e. for e > 0 there exists A € A such that

p* (BAA) < e.
4. p=p* on B so that
fi(B) = pu* (B)
=infQu*(C)=> pu(C;):BCC:=> CjwithCj € A
Jj=1 j=1

5. : B —=[0,u(£2)] is a o-additive measure, i.e. (2,8, i) is a measure space!
6. If v is any measure on o (A) such that v = on A, then v =[ on o (A).

Proof. The only thing left to prove is the uniqueness assertion. If v is a
measure on o (A) such that v = p on A, then from Lemma we know that
v(B) < p*(B) for all B € o (A). Consequently if By, By € o (A), then

v (By) —v(B2)| =By [15, — 13,
SEV |1Bl - 1BQ| = EVlBlABQ
=V (BlABQ) S ,u* (BlABQ) = d#«* (Bl, BQ) .
Thus v is a Lip -1 continuous and hence v = i on o (A) C B as Ais d,- —
dense in o (A). |
Exercise 6.1. Suppose A C 2% is an algebra and p and v are two finite o-

additive measures on B = o (A) such that 4 = v on A. Show p = v on B.

Exercise 6.2. Let p, i, A, and B := B(u) be as in Theorem Further
suppose that By C 2% is a o-algebra such that A € By € B and v : By —
[0, 1t (£2)] is a o-additive measure on By such that v = p on A. Show that v = i
on By as well.

6.3 A Discrete Kolmogorov’s Extension Theorem

In this section we continue the setup in Section In detail, let S be a non-
empty finite or countable state space, 2 := S := SN (path or configuration
space),
A, ={Bx2:BcCS"} foralln €N,
and A :=UJ2 A,
The next result is a key compactness result we will use in this section.

Theorem 6.21 (A finite intersection property I). Let S be an arbitrary
set, 2:= SV, {]\%}Zo:1 C N be an increasing sequence such that lim,_,., N, =

oo, and B,, = B,, x 2 with B, Cr SNn for allm € N. If{Bn} ) has the finite
intersection property, i.e. ﬁﬁilén # 0 for all M < oo, then ﬁfleén £ 0.
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Proof. Let m, : 2 — S™» be the projection map onto the first NN, —
coordinates,
T (W) = (W1, wa,...,wn,) €SV Vwe N,
We will abuse notation and also use m, to denote the projection from SM

SNn for all M > N,,. By replacing B, by By N---N B, if necessary, we may

~ o0
assume that {Bn =B, X Q} are non-increasing non empty sets where again

n=1
0+ B, c SN». R - .
For each n € N choose w (n) € B,, = 7, ! (B,,) . Then using B,, C B for all
n we have,

m (w(n)) € m (Bn) cm (Bl) =B VneN.
Let Iy := N. As B is a finite set, there exists A\ € By such that
N={neN=g%,:m(w(n)) =M}
is an infinite set. Similarly for n € I} with n > 2,
7o (w(n)) € mo (Bn> C o (Bg) = By
and since B> is a finite set there exists Ay € By such that
In={nel:n>2and m (w(n)) = A2}

is an infinite set. Continuing this way inductively we produce for all k£ € N, a
A € By such that

Ii:={neli_1:n>kand mp (w(n)) =M} C Ik
is an infinite set. By construction, if k > 1> 1 and n € Iy, C I}, then
>\l = T (w (n)) = 7] O Tk (w (n)) = T (>\k) .

From this “consistency relation,” it follows that there exists a unique point
A € 2 such that m; (A\) = A, for all [ € N. Since

Wl()\):/\l:ﬂ'l(w(n))EBl for all n € I

it follows that A € B, for all [ and therefore \ € ﬁj’ilél which shows mf;Bl =+ .
]
For later purposes, let us record a jazzed up version of the last result.

Theorem 6.22 (A finite intersection property II). Let (S,p) be a met-
ric space, {2 := SN, {N,};_, C N be an increasing sequence such that
lim, oo N, = 00, and B, = B, x 2 with B, is a compact subset of S™»
~ oo ~
for alln e N. If {Bn} has the finite intersection property, i.e. "M B,, # ()
n=1

for all M < oo, then N2, B,, # 0.
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Proof. The proof is very similar to what we have just done. We again
let 7, : 2 — S™» be the projection map onto the first N,, — coordinates as
above and again replace B, by By N---NB, if necessary so that we may

assume that {B =B, x Q} are non-increasing non empty sets with B,
n=1

being a non-empty compact subset of S™V». [As BiN---NB, = K x 2 where
K=n}, [Bk X SN"_Nk} is a closed subset of B,, ¢ S™V» and B,, was compact
it follows that K is still compact.]

For each n € N choose w (n) € B, ~1(B,). Then using B, C B, for all
n we have,

1 (w(n 67?1( )Cﬂ'l( ):B1Vn€N.

Let Iy := N. As B; is a compact set, there exists A\; € By and an infinite subset,
It C N, such that
m (w(n)) — A\ as I't 3 n — oo.

Similarly for n € I with n > 2,
T2 (w (n)) € o (Bn> C o (Bg) = B2

and since By is a compact set there exists Ay € By and an infinite subset,
Iy C I, such that

o (w(n)) = Ag as Iy 3 n — oo.

Continuing this way inductively we produce for all k € N, a \; € By and an
infinite subset, I'y, C I';_1, such that

7 (w(n)) = A\, as Iy, 3 n — oo.
By construction, if £ > 1> 1 then Iy, C I7 and
M= pdm ) = )
= lim momg(w(n))=m(Ag).

I'xdn—o0

From this “consistency relation,” it follows that there exists a unique point
A € 2 such that m; (A\) = \; for all [ € N. Since

mA) =X N=m(w(n)) e B, forallnel

it follows that A € B, for all [ and therefore \ € ﬁj’ilgl which shows mf;Bl £ .
[

Theorem 6.23 (Kolmogorov’s Extension Theorem I.). Suppose that S is
a finite set. Then every finitely additive probability measure, P : A — [0,1],
has a unique extension to a probability measure on B := o (A).

Page: 69 job: prob

6.3 A Discrete Kolmogorov’s Extension Theorem 69

Proof. If {A,},2, C A is a decreasing sequence of non-empty sets then
there exists N,, 1T oo such that A4, = B, x 2 with B, c S™ for all n.
Since SN is a finite set, Bn is necessarily a finite subset as well. Hence an
application of Theorem asserts that NS, A, # (. Thus we may con-
clude that if {A,} ~, C A with A4, | 0, then A, = 0 for a.a. n and hence
lim,, 00 P (A,) = lim,, o, 0 = 0. This shows P is a premeasure on .4 and the
result now follows by an application of Theorem [6.20 [ |

Exercise 6.3. Suppose S is a finite set, 2 = S, and B := o (A) as above.
Show every sequence of probability measures {Pn}zo=1 possesses a subsequence
{P, = Py, },—, such that limy_,oc P, (A) = P(A) for all A € A where P is a
probability measure on ({2, 8) . Hints: 1) note that A is a countable collection
of subsets of 2, and 2) use Cantor’s diagonalization argument.

The next theorem extends this result to the setting where S is countably
additive.

Theorem 6.24 (Kolmogorov’s Extension Theorem II). If P: A — [0,1]
is a finitely additive probability measure such that P| 4, is a o -additive measure
for alln € N then P is a premeasure and hence extends uniquely to a o-additive
probability measure on o (A), still denoted by P.

Proof. Suppose that A, € A with A, | and P(A4,) > ¢ for all n € N.
Choose N,, € N such that N, T co as n — oo such that 4, = C, x 2 €
Ay, with C,, C SN for all n € N. Then choose finite sets B,, C C,, so that

P (An \ Bn> < %52_" for all n. We then have

P(A\Bin-nB,) < ZP(A\B) %Zw

from which it follows that
e < P(A,) :P(Bln ~-m§n) +P(An\Blm~--mBn)

gP(BmmmBn)Jre/Q

sothatP(Blﬂ -NB, > ¢/2. In particular Bin --ﬂBn;«é@for alln e N

and therefore by Theorem [6.21
0 # N5, B; C NS, A

and the result is proved. [
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70 6 Countably Additive Measures

Corollary 6.25 (Kolmogorov’s Extension Theorem IIa). Probability
measures, P, on (2,0 (A)) are in one to one correspondence with sequences
of functions, p, : S™ — [0,1] for n € N which satisfy the consistency condi-
tions,

an ($1,--+,Sn—1,t) = Dn-1(81,-.-,8n-1) foralln € N (6.8)
tes

where by convention, pg := 1. The correspondence is determined by
D (81,..,8,) =P{weR:ws=s1,...,wn = 58n}). (6.9)

Proof. If P is a probability measure on (£2,0 (A)) and p, : S™ — [0,1] is
defined as in Eq. , it is a simple matter to verify the consistency conditions
in Eq. hold using the countable additivity of P. Conversely if p,, : S™ —
[0,1] for n € N which satisfy the consistency conditions in Eq. , then you
have shown in Exercise[5.3]that there exists a unique finitely additive probability
measure, P, on (§2, A) such that P|4, is o-additive for each n and

Dn (81, 8n) =P{w € N :wy =81,...,wn = Sp}).

By Theorem this finitely additive measure extends uniquely to as o-
additive measure, still denote by P, on o (A). ]

Ezample 6.26 (Existence of iid simple R.V.s). Suppose now that ¢ : S — [0,1]
is a function such that ) ¢ q(s) = 1. Then there exists a unique probability
measure P on o (A) such that, for all n € N and (s1,...,s,) € S™, we have

PHwe N :wi =81,...,wn =58p}) =q(s1)...q(sn).

One need only define p,, (s1,...,8,) :=q(s1)...q(sn) and note that
an (51, sy Sn—lat) =q (51) - q (Sn—l) Zq (t) = Pn-1 (517 ceey Sn—l) .
tes tes
Thus the claim follows directly from Corollary
Ezample 6.27 (Markov Chain Probabilities). Let S be a finite or at most count-
able state space and p : S X S — [0, 1] be a Markov kernel, i.e.

Zp(m,y) =1foralzeb. (6.10)
yeS

Also let 7 : S — [0,1] be a probability function, i.e. >° o7 (z) = 1. We now
take
Q=8N = {w=(s0,51,...):8; €S}

and let X,, : £2 — S be given by
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Xn (80,81,...) = 8y for all n € Ny.
Then there exists a unique probability measure, Py, on o (A) such that
P, (Xo=x0,...,Xn =x,) =7 (x0) p(x0,21)...p(Tpn_1,Tn)

for all n € Ng and zg,x1,...,2, € S. To see such a measure exists, we need
only verify that

Pr (Toy -y xn) =7 (x0) p(x0,21) - . P (Tpe1, Tp)

verifies the hypothesis of Exercise taking into account a shift of the n —
index.

6.4 Construction of o - Finite Measures

The goal of this section is to generalize Theorem [6.20] and Proposition to
o — finite measures.

Theorem 6.28 (o - Finite Premeasure Extension Theorem). If (2, A, i)
is a premeasure space such that y is o — finite on A (i.e. there exists A, € A
with p(A,) < 0o such that A, 1 {2), then there exists a unique measure, i, on
o (A) such that i = p on A.

Proof. Existence of an extension. Let {{2,} -, C A be a partition of
2 such that u (£2,,) < oo for all n. [Take (2, := A,, \ A,—1 with the convention
that Ag = ().] To each n € N let p,, be the finite premeasure on A defined by

tn (A) == pn (ANS2,) forall Ac A

and let fi,, be an extension of j, to o (A) guaranteed by Theorem Then
the measure, i := Y.~ [in, is then an extension of u to o (A).

Uniqueness of the extension. Suppose that v is another measure on
o (A) such that v = p on A. Given n € N, let v, be the measure on o (A)
defined by v, (B) :=v (BN ,) for all B € o (A). As v, = py, = [in, on A, it
follows by Exercise [6.1] that v,, = i, on o (A) and therefore

o0

o0
V:ZVn:Zﬂn:/J“
n=1 n=1

Corollary 6.29. Suppose that p is a o — finite premeasure on an algebra A.
If B o(A) and e > 0 is given, there exists A € As and C € A, such that
AC BCC and p(C\ A) < e. Moreover if i (B) < co and € > 0 1is given,
there exists A € A so that (B A A) < e.
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Proof. Let {{2,},7, C A be a partition of {2 such that p (§2,) < co for all
n and let fi,, be the measure on o (A) defined by fi,, (B) := (BN §2,) for all
B € o (A). According to Proposition to each B € o (A) and € > 0, there
exists (for all n € N) C), € A, such that B C (), and

27" > fin (Cn \ B) = 1 ([Co \ BI N $23) = i ([Cr N 20\ B) -
Taking C' := Y | [C\, N 2,] € A, it follows that B C C' and

[ee]

i(C\ B) :Z an\B)gisr"q
n=1

Applying this same result to B¢ € o (A), there exists A € Ay so that B¢ C
A¢ e A, and
(B A) = i (4°\ BY) < e.

From this we conclude that fi (C'\ A) < 2¢ which suffices as ¢ > 0 was arbitrary.

Let us now further assume that i (B) < oo and € > 0 be given. By what we
have just proved there exists a C € A, such that B C C with i (C'\ B) < € and
further, by the definition of A,, there exists A, € A such that A, 1 C € A,.
Hence it follows that,

fi(Au & B) = i ([4, \ BJU[B\ A]) < i (4, \ B) + 1 (B\ A,)
<A(C\B)+i(B\A,) <e+0i(B\A,).

As i(B) < oo and B\ A, C C\ A, | 0, we know that (B \ 4,) J 0 and
therefore for n sufficiently large we see that i (4, A B) < e. [ ]

Corollary 6.30. Suppose that u is a o — finite premeasure on an algebra A and
[ is its unique extension to a measure on o (A), then again i = p* on o (A).

Proof. From Lemma [6.9 we know that i < yi* on o (A). Let B € o (A) and
e > 0 be given and then use Corollary [6.29to find C' € A, such that B C C and
a(C\B)<e If A, € Awith 4, 1 C, it follows from Eq. of Proposition
and the continuity of ji under increasing limits that

p(C) = lim p(A,) = lim fi(An) =@ (C).

n—oo

Combining these observations implies,
i(B) < ' (B) < 1" (C) = i(C) = i(B) + i (C\ B) < fi (B) ++,

i.e.

i (B) <p*(B)<i(B)+eforalle>0.

As this is true for all € > 0, we have shown [ (B) = p* (B) and the proof is
complete.
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|
The following slight reformulation of Theorem [6.28| can be useful.

Corollary 6.31 (*). Let A be an algebra of sets, {2y,},-_, C A is a given
sequence of sets such that 2, T {2 as m — oco. Let

A ={Ae A: AC (2, for some m € N}.

Notice that Ay is a ring, i.e. closed under differences, intersections and unions
and contains the empty set. Further suppose that i : Ay — [0,00) is an additive
set function such that 1 (Ay) | 0 for any sequence, {An} C Ay such that Ay, |0
as n — 0o. Then u extends uniquely to a o — finite measure on A.

Proof. Existence. By assumption, pn, = pla, : Ag, — [0,00) is a
premeasure on ({2,,, A, ) and hence by Theorem extends to a measure
e on (2,0 (Ap, ) =DBa, ). Let fn (B) = pu, (BN§2y,) for all B € B.
Then {fim,},._, is an increasing sequence of measure on ({2, B) and hence ji :=
lim,, s o0 flm defines a measure on (2, B) such that fi|4, = pu.

Uniqueness. If pp and po are two such extensions, then ps (£2,, N B) =
w2 (2, N B) for all B € A and therefore by Proposition or Exercise We
know that py (2, N B) = pa (2, N B) for all B € B. We may now let m — oo
to see that in fact uy (B) = ug (B) for all B € B, i.e. pu1 = uo. ]

6.5 Radon Measures on R

We say that a measure, p, on (R, Br) is a Radon measure if 4 ([a,b]) < oo
for all —oo < a < b < oo. In this section we will give a characterization of all
Radon measures on R. Throughout this section let

S:={(a,l]NR: -0 <a <b< o0},

be the semi-algebra of half open intervals and A = A (S) be the algebra gener-
ated by S consisting of those subsets, A C R, which may be written as finite dis-
joint unions of sets from S, see Example Recall that Bgr =0 (A) =0 (S).

If 1 is a Radon measure on (R, Bg), then we can always find a function,
F :R — R, such that

i ((a,b]) = F(b) — F(a) forall —oo<a<b< oo. (6.11)

For example if u (R) < oo we can take F () = pu ((—o0,z]) while if u (R) = oo
we might take

~f w((0,z]) ifz>0
= { w((z,0]) ifx <0 (6.12)
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Remark 6.32. It is a simple matter to see that Eq. only uniquely deter-
mines F' modulo an additive constant. We can fix this constant by requiring F'
take on a specific value at a specific point in R (or possibly R). For example by
replacing F' by F' — F (0) if necessary we may normalize F' so that F (0) = 0.
This normalization then leads to the formula for F in Eq. (6.12). If x (R) < oo
then we may replace F' by F — lim,_, o, F' (). In this case the resulting F’
satisfies F' (—00) :=lim; oo F' () = 0 and we find F (x) = p ((—o0,z]) .

Lemma 6.33. If i is a Radon measure on (R,Bg) and F : R = R is chosen
so that p((a,b)) = F (b) — F (a), then F is increasing and right continuous.

Proof. The function F' is increasing by the monotonicity of u. To see that
F' is right continuous, let b € R and choose a € (—o0,b) and any sequence
{by},2, C (b,o0) such that b, | b as n — oo. Since p((a,b1]) < oo and
(a,bp] | (a,b] as n — oo, it follows that

F(bn) = F(a) = p((a, bal) L p((a,b]) = F(b) = F(a).

Since {bn}zo=1 was an arbitrary sequence such that b, | b, we have shown
1imy¢b F(y) = F(b) u
The key result of this section is the converse to this lemma.

Theorem 6.34. Suppose F': R — R is a right continuous increasing function.
Then there exists a unique Radon measure, p = pup, on (R, Br) such that Eq.

holds.

Proof. Let us define F (+o00) := lim, 40 F' (x) and let p = pp be the
finitely additive measure on (R,.4) described in Proposition and Remark
To finish the proof it suffices by Theorem [6.28| to show that x is a premea-
sure on A = A (S). In light of Proposition to finish the proof it suffices to
show p is sub-additive on S, i.e. we must show

(1) < ), (6.13)
n=1

where J = Y>° J, with J = (a,b] NR and J,, = (an,b,] N R. Recall from

n=1
Proposition [5.2] that the finite additivity of p implies
S ) < (). (6.14)
n=1

We begin with the special case where —co < a < b < co. We now give two

proofs of Eq. (6.14])).

First proof of Eq. (6.14) when —co < a < b < oo. Our proof will be by
“continuous induction.” The strategy is to show a € A where
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A= {a € [a,b] s p(J N (b)) <Y p(J (a,b])} . (6.15)

As b € J, there exists an k such that b € Jj, and hence (ay, bx] = (ax, b] for this
k. It now easily follows that J, C A so that A is not empty. To finish the proof
we are going to show a := inf A € A and that a = a.

o Let ay, € A such that o, | a, i.e.

(1(J O (i, b Z (tm, ). (6.16)

The right continuity of F implies o — p (J,, N (e, b]) is right continuous. So
by the dominated convergence theorenﬂ for sums,

n(J N (a,b]) = hm N(Jﬂ (Qm, b])

ie.ae A
e Ifa>a,then a € J, = (a;,b] for some [. Letting o = a; < @, we have,

p(J N (a, b)) = p(J N (e, al) + u(J 0 (@, b])

< ,U,(Jl N (Oé,a]) + Z,U/(Jn n (d7bD

n=1

= p(Ji 0 (@, al) + p (J0 (@) + Y (T 1 (@, b))
n#l

= (0 () + 3 e 1 (@8]
n#l

i (Jn N (a, b))

This shows o € A and o < @ which violates the definition of a. Thus we
must conclude that a = a.

! DCT applies as u(Jn N (@m,b]) < p(Jn) and 302 u(Jn) < pu(J) < oo by Eq.

(16.16).
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Second proof of Eq. (6.14) when —oco < a < b < oo. Choose numbers
a > a, b, > by, in which case I := (a,b] C J,

T = (an,bn] D JC := (an,bp) D Jy.

_ _ oo
Since I = [a, b] is compact and I C J C |J J2 there exist N < oo such that

n=1

rciclyggc Jn
n=1 n=1
Hence by finite sub-additivity of p,
N ~ 0o .
F(b)—F(@) = p(I) <Y p(Jn) <Y i)
n=1 n=1

Using the right continuity of F' and letting a | a in the above inequality,

u(7) = pl(a.b]) = F(0) ~ F(a) < > p ()

=D 1 (a) + D uln\ ). (6.17)

Given ¢ > 0, we may use the right continuity of F' to choose by, so that
p(Tn \ Jn) = F(by) = F(by) <e27" Vn e N.

Using this in Eq. (6.17) shows
u() = pl(ab) < p(dn) +e
n=1

which verifies Eq. since € > 0 was arbitrary.

Using either of the two proofs above, the hard work is now done but we still
have to check the cases where a = —oo or b = co. For example, suppose that
b = oo so that

2 To see this, let ¢ := sup {a: <b:[a,xz] is finitely covered by {jZ}OO } If ¢ < b,
n=1

then ¢ € J2, for some m and there exists z € Jg, such that [a,z] is finitely covered

~ Yoo ~ -\ max(m,N)
by {Jﬁ} , say by {JS} . We would then have that {JS} finitely
n=1

~ n=1
covers [a, c'] for all ¢’ € J2,. But this contradicts the definition of c.

N
n=1
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Jz(a,oo):ZJn

n=1

with J,, = (an,b,] NR. Then

o0
Ing = (a,M]=J NIy =Y JuN Iy

n=1

and so by what we have already proved,
oo oo
FOM) = Fla) = (L) € 3 uln N 1ag) € 3 ).
n=1 n=1
Now let M — oo in this last inequality to find that
ul((a,00)) = F(o0) = F(a) <Y p(Jn)-
n=1

The other cases where a = —oo and b € R and a = —o0 and b = oo are handled
similarly. ]
Corollary 6.35. Suppose —o0 < a < 8 < o0 and F : [a, 5] — R is a right

continuous increasing function. Then there exists a unique measure, | = pp,

on ([, 8], Bla,)) such that
w([e, b)) = F (b) foralla<a<b<g.

Proof. Extend F to R by setting F' (z) = F («) for x > awand F (z) = F (B)
for x < 3. The extension now satisfies the hypothesis of Theorem [6.34]and hence
there exists a measure i on (R, Bg) such that Eq. (6.11) holds. The measure j
satisfies,

n—00 n

jilfont) = ) = Jim g (= 1.3])
~ lim {F(b)—F(a—;ﬂ —F(b) = F(a).

n—oo

Therefore the desired measure is given by p(A) := F (a) 64 (A) + 1 (A) for all
Ae B[a’ﬁ]. |

It is instructive to give another proof of Theorem which we base on the
following simple lemma.

Lemma 6.36. Let F': R — R be a increasing right continuous function and p
be the finitely additive measure on A = A(S) such that

w((a, b)) NR) =F (b) — F(a) forall —oco<a<b< 0.

Then for all bounded sets, A € A and § > 0, there exists B € A such that
BCBCAand p(A\B) <é.
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Proof. Write A = >°;'_,(ak,b] and then take B := >_7'_, (ax,bx] where
ap < @i < bg. Then
BCBZZ[@k,bk] cA
k=1
and
n n
p(A\B) = p (Z(%ﬁk]) = [F(ax) — F(ax)] .
k=1 k=1
Using the right continuity of F' we may now choose a; sufficiently close to ay
so that the latter sum is less than 4. ]
Alternate proof of Theorem For J = (a, f] with —co < a < 8 <

00, let s (A) :=p(JNA)forall A€ Asothat s is a finitely additive measure
on A such that

py (R) = p(J)=F(B) - F(a) < oo.
Claim: p; is a premeasure and hence extends to a measure, fi7, on (R, 0 (A)) =
(R, BR) .
To prove this claim, suppose that A,, € A such that A,, | and
e:= lim py(A4,) =inf uy (4,) > 0.

n—roo

We need to show N2, 4,, # 0. Since py (A,) = p (A, N J) we may replace A,
by A, N J if necessary so that A,, C J for all n and particular A,, is bounded
for all n. By the Lemma we may choose B,, € A such that B,, C B,, C A4,
and (A, \ B,) < 2=+ Tt then follows that

e—puy(BiN--NBy) <py(An) —ps(BiN---NB,)

I~
:uJ(An\Bm.--mBn)gi;& F<e/2

and hence py (ByN---NB,) > ¢e/2 for all n. In particular, this shows
0#4BNn---NB,CBiN---NB, forall n € N.

Since the {Bn}:o:l are all closed subsets of the compact set, .J, they satisfy the
finite intersection property and we may conclude that

0#n°,B, CN, A,

and the claim is proved.

To finish the proof of existence, let J, := (n,n + 1] and then define
B = Y ,cz BJ,, which is a measure on (R,Bg). Let us note that s, (J5;) =
wy, (JE) = p (@) = 0. So given —oo < a < b < oo we choose M € N so that
(a,b] C (=M, M], then
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fi((a,0]) = Z i, ((a,b]) = Z 1, ((a,b])

[n|<M In|<M
= > p(an(@b]) = p((~M, M +1] 0 (a,b])
[n|<M

= p((a,b]) = F(b) = F (a).

Uniqueness. Suppose that y and v are two o—additive measures Radon
measures on (R, Bg) which agree on A. For J = (a, 8] as above, let u; (B) =
w(BNJ)and vy (B) =v(BNJ) for all B € Bg. Then py and v; are bounded
measures (R, Br) which agree on A and hence py = vy. It then follows for any
B € Bg that,

p(B)= lim p((—n,n]NB)= lim v((—n,n]NB) =v(B).

n—roo n—oo

Exercise 6.4. Let 2 = R, A C 2% be the algebra generated by half open
intervals, p be the length measure on A, and set B =U2 ___(2n,2n+1] € A,.

Show d(B,A) = oo for all A € A and use this to conclude that A, is not
contained in A and that B = A is not a o-algebra.

Definition 6.37. Given a probability measure, P on Bg, the cumulative dis-
tribution function (CDF) of P is defined as the function, F' = Fp : R — [0, 1]
given as

F(x):=P((—o0,x]). (6.18)

Example 6.38. Suppose that
P=p6_1+qb + 76
with p,q,r > 0 and p+ ¢+ r = 1. In this case,

0 for xz< -1
p for-1<z<1

F(x)= .
() ptgfor 1<zx<m
1 form<zr<o
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A plot of F (x) with p=.2, ¢ = .3, and r = .5.

Lemma 6.39. If F = Fp : R —[0,1] is a distribution function for a probability
measure, P, on Bg, then:

1. F is non-decreasing,
2. F is right continuous,
3. F(—00) :=limg—_oo F (2) =0, and F (00) := lim, o F (2) = 1.

Proof. The monotonicity of P shows that F(z) in Eq. (6.18) is non-
decreasing. For b € R let A,, = (—00,b,] with b, | b as n — oo. The continuity
of P implies

F(bn) = P((—00,bn]) I p((—=00,b]) = F(b).
Since {b,},-, was an arbitrary sequence such that b, | b, we have shown
F (b+) := lim,, F(y) = F(b). This show that F is right continuous. Similar
arguments show that F' (co) =1 and F (—o0) = 0. |

The converse of Lemma [6.39| now follows directly from Theorem [6.34

Theorem 6.40. To each function F : R —[0,1] satisfying properties 1. — 3..
in Lemma[6.39, there exists a unique probability measure, Pp, on Br such that

Pr ((a,b]) = F (b) — F (a) forall —oco<a<b< .
Ezample 6.41 (Uniform Distribution). The function,

Ofor x<0
Fz):=¢azfor 0<z<1,
lforl <z < oo

is the distribution function for a measure, m on Br which is concentrated on
(0,1]. The measure, m is called the uniform distribution or Lebesgue mea-
sure on (0, 1].
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Fig. 6.1. The cumulative distribution function for the uniform distribution.

6.6 Lebesgue Measure

Definition 6.42 (Lebesgue Measure). If F (x) = x for all x € R, we denote
wr by m and call m Lebesgue measure on (R, Bg), i.e. Lebesgue measure is
the unique o-additive measure, m, on (R, Bgr) such that

m ((a,b]) =b—a for all —oco <a<b< 0.
Notation 6.43 Given x € R and B C R, let
r+B:={zx+y:ye B} andx-B:={zxy:y € B}.

In Exercise below you are asked to show that for any B € Bgr and any
rz€Rthat t + B € Bgr and x - B € Bg.

Theorem 6.44. Lebesgue measure m is invariant under translations, i.e. for
B e Bg and r € R,
m(z + B) = m(B). (6.19)

Lebesgue measure, m, is the unique measure on Bgr such that m((0,1]) =1 and
Eq. holds for B € Br and x € R. Moreover, m has the scaling property

m(AB) = |A| m(B) (6.20)
where A € R, B € Bg and A\B := {\z : x € B}.

Proof. Let m,(B) := m(x+ B), then one easily shows that m, is a measure
on By such that m,((a,b]) = b — a for all a < b. Therefore, m; = m on A(S)
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76 6 Countably Additive Measures

where S is the semi-algebra of half open intervals and so by the uniqueness
assertion in Theorem [6.28| or more directly using Theorem

For the converse, suppose that m is translation invariant and m((0,1]) = 1.
Given n € N, we have

k—1 k k—1 1
1] = 'n,_ _— ] = n_ —_— — .
(Oa ] kal( n 7n} Uk:fl ( n + (07 ])
Therefore,

1= m((0,1)) =

That is to say
1
0,—])=1/n.
m((0, ) = 1/n

Similarly, m((0,t]) = I/n for all ,n € N and therefore by the translation
invariance of m,

m((a,b]) =b—a for all a,b € Q with a < b.

Finally for a,b € R such that a < b, choose a,,b, € Q such that b, | b and
an T a, then (an,by,] | (a,b] and thus

m((a, b)) = nl;rrgo m((an,by]) = nhﬁngo (bp, —an) =b—a,
i.e. m is Lebesgue measure. To prove Eq. (6.20) we may assume that A # 0

since this case is trivial to prove. Now let my(B) := [A|”' m(AB). It is easily
checked that m is again a measure on Br which satisfies

mx((a,b]) = A m (Aa, \b)) = A1 (Ab— Xa) = b —a
if A >0 and
ma((a,0) = A" m (b, Aa)) = — AP (Ab—Xa) =b—a

if A < 0. Hence my = m. |

6.7 Metric-Measure Space Regularity Results

This section is a self study guide to the “approximating” Borel sets in a metric
space by closed and open subsets of the metric space. We begin with some basic
properties of metric spaces. Throughout this section we will assume that (X, p)
is a metric space and Bx denotes the Borel o-algebra on X.
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Lemma 6.45. For any non empty subset A C X, let pa () := inf{p(z,a)|a €
A}, then

lpa(x) —paW)| < p(x,y) Va,ye X (6.21)

which shows pa : X — [0,00) is continuous.
Proof. Let a € A and z,y € X, then
pa(x) < plz,a) < p(x,y) + p(y, a).
Take the infimum over a in the above equation shows that
pa (@) < p(z,y)+paly) Vo,ye X

Therefore, pa (z) — pa(y) < p(z,y) and by interchanging = and y we also have
that pa(y) — pa (x) < p(z,y) which implies Eq. (6.21]). [ ]

Corollary 6.46. The function p satisfies,

o (2, y) = p(a',y) < ply, ) + ple, 7).
In particular p: X x X — [0,00) is continuous.

Proof. By Lemma for single point sets and the triangle inequality for
the absolute value of real numbers,

lp(z,y) = p(x’, ") < lp (2, y) — plx, v )| + |p(x, ') — p(2',9)]
< p(y,y) + plz,2).

Corollary 6.47. Given any set A C X and ¢ > 0, then
Aci={pa<el={reX:pa(z)<e}

is an open set containing A and A. | A as € | 0 where A is the closure of A.
Similarly,
Fei={pazet={veX:pa(z)=¢}

is a closed set and F. 1 (A°)° ase | 0 where (A°)? is the interior of A° :== X\ A.

Proof. Because of the continuity of p4 and the facts that (—oo,¢) is open
in R and [e,00) is closed in R, it follows that A. = p;' ((—o0,¢)) is open and
F. = p,* ([e,00)) is closed. We have z € N.soA. iff pa () < ¢ for all e > 0 iff
pa (x) =0 and hence

AC {pA = 0} = Ne>0de.
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Since {pa =0} is closed it follows that A C {pa = 0}. Conversely if = €
{pa =0} then there exists {x,} C A such that lim,, p(z,2,) = 0, i.e.
x, — ¢ and therefore z € A.

To finish the proof observe that

[U6>0Fa]c =Nex>oFS =Neso{pa <e} = A

and therefore B
Ue>OFe =A°= (AC)O'
]

Lemma 6.48 (Urysohn’s Lemma for Metric Spaces). Let (X, d) be a met-
ric space and suppose that A and B are two disjoint closed subsets of X. Then

dB (.CE)
da (x) +dp (.%')

defines a continuous function, f : X — [0,1], such that f (z) =1 forx € A and
f(x)=01ifz e B.

fx)= forze X (6.22)

Proof. By Lemma da and dp are continuous functions on X. Since
A and B are closed, dg(z) > 0if x ¢ A and dg(z) > 0 if = ¢ B. Since
ANB=10,du (z)+dp (z) >0 for all 2 and (ds + dp) " is continuous as well.
The remaining assertions about f are all easy to verify. [ ]

Sometimes Urysohn’s lemma will be use in the following form. Suppose
F Cc V C X with F being closed and V being open, then there exists f €
C (X,[0,1])) such that f =1 on F while f = 0 on V. This of course follows
from Lemma by taking A = F and B = V¢,

Corollary 6.49. If A and B are two disjoint closed subsets of a metric space,
(X,d), then there exists disjoint open subsets U and V of X such that A C U
and B CV.

Proof. Let f be as in Lemma so that f € C(X — [0,1]) such that
f=1onAand f=0on B. Thenset U={f>1}andV={f<1/2}. m

We now (as we did with outer measures) associate a pseudo metric to any
measure space.

Proposition 6.50 (The measure pseudo metric). Let (£2, 5, 1) be a mea-
sure space and define

d, (A,B):=p(AAB)€[0,00] ¥V A,BeB.

Then d = d,, satisfies;
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1.d is a pseudo metric, i.e. d(A,B) = d(B,A) and d(A,C) < d(A,B) +
d(B,C) for all A,B,C € B.

2.d(A°,C%) =d(A,C) forall A,B € B.

S If{An}oe ABn}o, C B, then

Mg

d (U, A, U, By) <> d (A, Bn) and (6.23)

3
Il
-

AN A, N2, B) <> d (A, By). (6.24)

M8

n=1

In summary,

max {d (N%_, Ap, N B,,) ,d (U, A,, U, By,) Z (A, By)
- (6.25)
Proof. We take each item in turn.

1. The fact that d is a pseudo metric easily follows from the fact that 1aanc =
|14 — 1¢| and therefore,

d(A,C)=E|1ls—1¢].
2. Ttem 2. follows from the fact that
ASANC=[A°NCIU[C° N Al =[C\AJU[A\C]|=AAC
which is also seen via,
laence =|1ae —loe| =|[1 = 1a] —[1 = 1¢]| = |1a — lo| = lanc.

3. It is a simple exercise to verify,

[Us 1 An] A U2 By C U, [An A By
and hence
d(UnZiAn, UnZy Br) = p([UnZy An] A [UR2 Ba]) < (UnZy [An A Bu))
gi (A, A B,) Zd An, By)
n=1

which proves Eq. (6.23). Equation (6.24) may be proved similarly or by
combining item 2. with Eq. (6.23]) as follows;
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78 6 Countably Additive Measures
d (N1 Ans NpZy Bn)
=d(] Z°:1An]c ) [m?zolen]c)

= d(Up2, A, U2, BE) <> d(Ag, Bg) = > d(An, By).

n=1 n=1

6.7.1 Regularity Exercises for Borel measures on (X, Bx)

Exercise 6.5. If (X, p) is a metric space and p is a finite measure on (X, Bx),
then for all A € Bx and ¢ > 0 there exists a closed set F' and open set V' such
that FCACVand u(V\F)=pu(F AV) < e. Here are some suggestions.

1. Let By denote those A C X such that for all € > 0 there exists a closed set
F and open set V such that F C ACV and d, (F,V)=p(V\F) <e.

2. Show By contains all closed (or open if you like) sets using Corollary

3. Show By is a o-algebra. [You may find Propositionto be helpful in this
step.]

4. Explain why this proves the result.

Exercise 6.6. Let (X, p) be a metric space and p be a measure on (X, Bx) . If
there exists open sets, {V,,}; , of X such that V;, 1 X and p (V;,) < oo for all

n, then for all A € Bx and € > 0 there exists a closed set F' and open set V'
such that F C ACV and d, (F,V) =p(V \ F) < . Hints:

1. Show it suffices to prove; for all € > 0 and A € By, there exists an open set
V C X such that AC V and p(V\ 4) <e.

2. Now you must verify the assertion above holds. For this, you may find it
useful to apply Exercise to the measures, u, : Bx — [0, 1 (V4,)], defined
by pn (A) == p(ANV,) for all A € Bx. The € > 0 in Exercise should
be replaced by judiciously chosen small quantities €, > 0 depending on n,
for example ¢, = 27" will work.

Exercise 6.7 (Special case of above). Let B = Br. =
o ({open subsets of R"}) be the Borel o — algebra on R™ and p be a
probability measure on B. Further, let By denote those sets B € B such that
for every € > 0 there exists ' C B C V such that F' is closed, V is open, and
w(V\ F) <e. Show:

1. By contains all closed subsets of B. Hint: given a closed subset, FF C R™ and
keN,let Vi :=UzepB(x,1/k), where B (z,0) :={y € R" : |y — x| < §}.
Show, Vi, | F as k — oo.
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2. Show By is a ¢ — algebra and use this along with the first part of this
exercise to conclude B = By. Hint: follow closely the method used in the
first step of the proof of Theorem [7.7]

3. Show for every ¢ > 0 and B € B, there exist a compact subset, K C R™, such
that K C B and p(B\ K) < €. Hint: take K := FN{z € R": |z| <n}
for some sufficiently large n.

Go to Chapter [9]

6.8 * The m — X\ theorem

This section may and probably should be omitted on first reading. Later in
Chapter [12| we will come back to a function theoretic variant of the results in
this chapter which we will tend to use throughout the book.

Recall that a collection, P C 2. is a m — class or 7 — system if it is closed
under finite intersections. We also need the notion of a A —system.

Definition 6.51 (\ — system). A collection of sets, L C 2, is A — class or
A — system if

a. €L

b. If A,B € L and A C B, then B\ A € L. (Closed under proper differences.)

c. If A, € L and A, T A, then A € L. (Closed under countable increasing
unions.)

Remark 6.52. If L is a collection of subsets of {2 which is both a A\ — class and
a m — system then £ is a o — algebra. Indeed, since A° = 2\ A, we see that
any A - system is closed under complementation. If £ is also a m — system, it is
closed under intersections and therefore £ is an algebra. Since £ is also closed
under increasing unions, £ is a o — algebra.

Lemma 6.53 (Alternate Axioms for a A\ — System*). Suppose that L C 2%
is a collection of subsets 2. Then L is a A\ — class iff A satisfies the following
postulates:

1.2¢L

2. A € L implies A° € L. (Closed under complementation.)

3 If {An})_, C L are disjoint, then Y .~ A, € L. (Closed under disjoint
unions.)

Proof. Suppose that L satisfies a. — c¢. above. Clearly then postulates 1. and
2. hold. Suppose that A, B € £ such that AN B = {, then A C B° and

A°NB°=B°\Ae L.
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Taking complements of this result shows AU B € L as well. So by induction,
B, =Y A, € L. Since B, T Y7, A, it follows from postulate c. that
S A, EL.

Now suppose that £ satisfies postulates 1. — 3. above. Notice that § € £
and by postulate 3., L is closed under finite disjoint unions. Therefore if A, B €
L with A € B, then B¢ € £ and AN B¢ = () allows us to conclude that
AU B¢ € L. Taking complements of this result shows B\ A= A°NB € L as
well, i.e. postulate b. holds. If 4,, € £ with A,, T A, then B, := A, \ A,—1 € L
for all n, where by convention Ag = ). Hence it follows by postulate 3 that

Ay =30 By eL. ]

Theorem 6.54 (Dynkin’s 7 — A Theorem). If £ is a A class which contains
am — class, P, then o(P) C L.

Proof. We start by proving the following assertion; for any element C' € L,
the collection of sets,

LC:={DeL:CNnDecL},

is a A\ — system. To prove this claim, observe that: a. 2 € L%, b. if A C B with
A Be L then ANC, BNC € L with ANC C BN C and therefore,

(B\A)NC =[BNC]\A=[BNC]\[ANC] € L.

This shows that £¢ is closed under proper differences. c. If A, € £ with
A, 1 A, then A,NC € Land A,NC 1T+ ANC € L,ie. Ac L Hence we have
verified £ is still a A — system.

For the rest of the proof, we may assume without loss of generality that £
is the smallest A — class containing P — if not just replace £ by the intersection
of all A — classes containing P. Then for C € P we know that £& C L is a A
- class containing P and hence L& = L. Since C' € P was arbitrary, we have
shown, CND € L for all C € P and D € £. We may now conclude that if
C € L, then P ¢ £C C £ and hence again £ = L. Since C € L is arbitrary,
we have shown CND € Lforall C,D € L,i.e. Lisam—system. So by Remark
L is a o algebra. Since o (P) is the smallest o — algebra containing P it
follows that o (P) C L. |

As an immediate corollary, we have the following uniqueness result.

Proposition 6.55. Suppose that P C 22 is a m — system. If P and Q are two
probabilityfy| measures on o (P) such that P = Q on P, then P = Q on o (P).

Proof. Let L:={A€ o (P): P(A) =Q(A)}. One easily shows L is a A —
class which contains P by assumption. Indeed, 2 € P C L, if A, B € L with
A C B, then

3 More generally, P and @ could be two measures such that P (£2) = Q (£2) < co.
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P(B\A)=P(B)-P(A)=Q(B)-Q(A)=Q(B\A4)

so that B\ A € £, and if 4,, € £ with A,, T A, then P (A) = lim, o P (4,) =
lim,, 00 Q (Ar) = Q (A) which shows A € L. Therefore o (P) C L =0 (P) and
the proof is complete. ]

Ezample 6.56. Let (2 := {a,b,c,d} and let p and v be the probability measure
on 2 determined by, p ({z}) = 1 for all z € 2 and v ({a}) = v ({d}) = & and
v ({b}) = v ({c}) = 3/8. In this example,

L:={Ae2?:P(A)=Q(A)}

is A — system which is not an algebra. Indeed, A = {a,b} and B = {a, c} are in
Lbut ANB ¢ L.

Exercise 6.8. Suppose that p and v are two measures (not assumed to be
finite) on a measure space, ({2, B) such that y = v on a ™ — system, P. Further
assume B = o (P) and there exists £2,, € P such that; i) u (£2,) = v (£2,,) < ©
for all n and ii) 2, T 2 as n 1 co. Show p =v on B.

Hint: Consider the measures, u,(A) = p(AN$2,) and v, (A) =
v(AN,).

Corollary 6.57. A probability measure, P, on (R, Bgr) is uniquely determined
by its cumulative distribution function,

F(z):=P((—o0,x]).

Proof. This follows from Proposition wherein we use the fact that
P :={(—o0,x] : x € R} is a m — system such that Bg = o (P). |

Remark 6.58. Corollary generalizes to R™. Namely a probability measure,
P, on (R™, Bgn) is uniquely determined by its CDF,

F (z):= P ((—o0,x]) for all z € R"
where now
(=00, ] := (=00, 1] X (=00, Ta] X -+ X (—00, Zy].
Exercise 6.9. Given x € R\ {0} let
x4+ B:={x+y:ye B} andx-B:={xy:y € B}. (6.26)

Use the 7 — A Theorem to show x + B and z - B are in By for all B € Bg.
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Exercise 6.10 (* Density of A in o (A)). Suppose that A C 2 is an algebra,
B :=0(A), and P is a probability measure on B. Let p (A, B) := P(AA B).
The goal of this exercise is to use the w — A theorem to show that A is dense in
B relative to the “metric,” p. More precisely you are to show using the following
outline that for every B € B there exists A € A such that that P (A A B) < e.
[Some of the assertions to be proved below have already been covered in the
Exercises in subsection [£.2]]

1. Recall from Exercise that pla,B)=P(AAB)=E|14—15].
2. Observe; if B =UB; and A = U;A;, then

B\A:UZ[BZ\A]CUZ(BZ\AZ)CUZAZABl and

so that

3. We also have

(B2 \ B1) \ (A2 \ A1) = B> N B N (A2 \ A;)°
= By N B{ N (A N AD)¢
— BN BSN(ASU A
— [By N BSN AZ U [Bs N BE N Ayl
C (B \ As) U (A \ By)

and similarly,
(A2 \ A1)\ (B2 \ B1) C (A2\ B2) U (B1\ A1)
so that

(A2 \ A1) A (B2 \ B1) C (B2 \ A2) U (A1 \ B1) U (A2 \ B2) U (B1\ Ay)
= (Al A Bl) U (A2 ABQ) .

4. Observe that A, € B and A4,, T A, then

 P(B\A)+P(A\B)= P(AA B).

5. Let £ be the collection of sets B € B for which the assertion of the theorem
holds. Show £ is a A — system which contains A.
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6.9 * Supplement: Generalizations of Theorem [6.34] to R™

Notation 6.59 Let a,b € R" we say a < b if a; < b; for all i and a < b if
a; < b; for all i. For a <b we let

(a,b] := (a1, b1) "R X -+ X (an, by] NR.
Also define x Ny = (x1 AY1,- .., T AYyn) for all z,y € R™.

Definition 6.60. A function F : R™ — C (or any normed space) is right
continuous at a € R"™ if for every ¢ > 0 there exists a § > 0 such that
|F' (b) — F(a)| < € for all b € [a,00) such that |b—a| < 6. Alternative put, F
is Tight continuous at a iff for every € > 0 there exists b € R™ such that b > a
and |F (y) — F (a)| <€ for alla <y <b.

Definition 6.61. Let A = A(R") be the sub-algebra of B generated by sets of
the form (a,b] NR™ with a,b € R™. [Note that (a,b] = 0 if a; > b; for some i.]

Theorem 6.62. Suppose F : R™ — R is a right continuous function and pp :
A(R™) — R is the associated finitely additive measure as given in Eq.
of Proposition |5.41} If pur is positivﬁ in the sense that pp ((a,b]) > 0 for all

a < b, then there exists a unique measure u = fip on Bgrn such that

p((@b) = pr (@) = 3 (~D)MIF(a x bae)

AcC{1,2,...,n}
for all a < b with a,b € R™.

Proof. We let pup be the finitely additive measure on A = A (R™) given
in Proposition [5.41} which (by assumption) is non-negative on A (R"). So to
finish the proof we need only show p := up is a premeasure on A which we
will do by showing p is subadditive on &€ := {(a,b] : a,b € R™ and a < b}, i.e.
if (a,b] = >.°7, (an, b,] then we must show

n=1
p((a,b]) <3 ((an, b))
n=1

We may suppose that a < b (i.e. a; < b; for all ¢) for otherwise (a, b] = 0 and
t ((a,b]) = 0 and there will be nothing to prove. For any choice of a < a < b
and b, > b, for all n € N, we have

4 1t is not sufficient to assume that F is non-decreasing in each of it variables. For
example F (z,y) := x+y—zy on [0, 1]* satisfies, F;, =1—y >0and F, =1—2 >0
while F,, = —1 < 0. In this case ur ([0, 1}2) = —1 < 0 and more generally
ur ((a,b]) = — (b1 —a1) (b2 — az) < 0 for all a < b. Moreover if F is sufficiently
smooth, then non-decreasing in each of its variables means 9; F' > 0 for all ¢ whereas
dup = 01 ..., Fdm will be a positive measure iff 91 ...9,F > 0.
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[@,b] C (a,b] C U (an,En) .
So by compactness there exists N < oo such that
@@,b] C [a,b] € UN_, (an,5n>  UN_ (an, bl

By finite sub-additivity and monotonicity of u, we have

h@ <> ((@nba]) < 3 i (@Bl

n=1 n=1
Using the right continuity of F' it follows that

i ((a,b]) = lim Z ((ansBa]) (6.27)

a

Also using the right continuity of F, for every ¢ > 0 we may choose b, > b
such that ((an,Bn]) < p((an,by]) + €27 which combined with Eq. (6.27]

implies,

1 ((a,b]) < Z [N((amb +e27" Z ((an, bn]) +e.

As ¢ > 0 is arbitrary the proof is complete in the case a < b.
The proof for the cases where some of the components of a are —oo and or
some the components of b are +o0o follows as in the proof to Theorem [

Lemma 6.63 (Right Continuous Versions). Suppose G : R — R is in-
creasing in each of its vam’ablesﬂ For x € R" let F (z) := infy~, G (y). Then
F is increasing in each of its variables and F is right continuous.

Proof. If a < b and y > b then y > a so that F (a) < G (y). Therefore
F (a) <infys, G (y) = F (b) and so F is increasing in each of its variables. Now
suppose that e > 0 there exists 5 > a such that 0 < G (8) — F (a) < €. Then
for any a < b < 3, we have

0<G@y)—F(a) <G(B)—F(a)<eforalb<y<p.
From this it follows that
0SF®)-Fla) <, inf Gly)~Fla) <GB~ Fa)<e
y

which proves the right continuity of F. [

® The increasing in each of its variables assumption is a bit of a red herring. For
example, if F (z,y) = 2y — x — y, then ur = Lebesgue measure on the plane since
F. ., = 1. However F, =y —1 and F}, = x — 1 has variable signs. Actually we could
use the simpler example of F (z,y) = xy just as well.
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6.10 * Appendix: Completions of Measure Spaces

Definition 6.64. A set E C {2 is a null set if E € B and u(E) = 0. If P is
some “property” which is either true or false for each x € {2, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E :={x € 2:P is false for x}

is a null set. For example if f and g are two measurable functions on (2, B, u),
f =g a.e. means that u(f #g) = 0.

Definition 6.65. A measure space (£2,B, ) is complete if every subset of a
null set is in B, i.e. for all F C 2 such that FF C E € B with u(E) = 0 implies
that F' € B.

Proposition 6.66 (Completion of a Measure). Let ({2, 8, u) be a measure
space. Set

N=NHt:={NCQ:3F €Bsuch that N C F and u(F) =0},
B=B":={AUN:A€Band N € N} and
G(AUN) := u(A) for A€ B and N e N,

see Fig. 6.2 - Then B is a o — algebra, [i is a well defined measure on B, [i is the
unique measure on B which extends p on B, and (§2,B, 1) is complete measure
space. The o-algebra, B, is called the completion of B relative to u and [i, is
called the completion of .

Proof. Clearly £2,0) € B. Let A € B and N € N and choose F € B such

Fig. 6.2. Completing a o — algebra.

that N C F and p(F) = 0. Since N® = (F'\ N) U F©,
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(AUN)¢ = A° N N°® = A°N (F\ N UF°)
= [A°N (F\ N)]U[A° N F]

where [A° N (F\ N)] € N and [A° N F¢] € B. Thus B is closed under
complements. If A; € B and N; C F; € B such that u(F;) = 0 then
U(4; UN;) = (UA;) U (UN;) € B since UA; € B and UN; C UF; and
w(UE;) <5 u(F;) = 0. Therefore, B is a o — algebra. Suppose AUN; = BU N,
with A, B € B and Ny, Ny,e N. Then A € AUN, C AUN,UF, = BU F,
which shows that

u(A) < p(B) + p(Fz) = p(B).

Similarly, we show that pu(B) < u(A) so that u(A) = p(B) and hence (A U
N) := p(A) is well defined. It is left as an exercise to show [ is a measure, i.e.
that it is countable additive. ]



7

*Measure construction extras

The reader is advised that this chapter may and should be ignored.

7.1 Overview

The goal of this chapter is develop methods for proving the existence of prob-
ability measures with desirable properties. The main results of this chapter
may are summarized in the following theorem. Throughout this chapter A will
be a sub-algebra of 2 and p will be a finitely additive measure on A with
w(£2) < oo.

Theorem 7.1. A finitely additive finite measure p on an algebra, A C 2%,
extends to o — additive measure on o (A) iff p is a premeasure on A. If the
extension exists it is unique.

Proof. The uniqueness assertion is proved Proposition below. The ex-
istence assertion of the theorem is contained in Theorem (also restated in
Theorem [7.4| below). |

In order to use this theorem it is necessary to determine when a finitely ad-
ditive probability measure in is in fact a premeasure. The following proposition
(which may be omitted until needed) is sometimes useful in this regard.

7.1.1 An Extension of Measure Strategy

Let us end this overview by briefly explaining the strategy we will use below
for extending measures.

Example 7.2. Tt is easy to verify that to every finitely additive measure, p : A —
[0, 00), the function d,, : A x A — [0, 00) defined by

d, (A, B) ::u(AAB):/ [1p —1aldu
9]

is a pseudo metric on A. In general d, (A, B) = 0 does not imply A = B but
only that A = B modulo sets of ;1 — measure zero.

Lemma 7.3. If p: A — [0,00) is a finitely additive measure, then u is Lip-1

relative to d,, i.e.

[1(B) = pn(A)] < du(A,B) ¥ A, Be A

Proof. First proof. By the basic properties of the simple integral we find,

[ (B) — p(A)| =

[ s —1A>du] < [ o= 1aldu= (B2 ) = d, (4.5).
Second proof. Using the basic properties of measures we have,
p(B) = p(A) =p(B\A) +p(BNA) = [n(A\ B) +p (BN A)
— u(B\ A)—u(A\B).
Basic inequalities then give
[ (B) = p(A) < p(B\NA) + p(A\B) = p(BA A) =dy, (A, B).

]

Our proof strategy for constructing o — additive measures is now as follows.

1) we look for a pseudo-metric d on 2 such that d = d,, on A and then 2) we

extend 1 to a Lip —1 function (i) on A? by continuity using Lemma It

will turn out that if we choose d sufficiently carefully (i.e. sufficiently “small”),

then B := A will be a o — algebra and ji will be a measure on B. The outcome
of this strategy is summarized in the next theorem.

Theorem 7.4 (Finite premeasure extension theorem II.). Let (2, A, 1)
be a premeasure space with 1 (2) < oo and define u* : 22 — [0, 1 (£2)] by

p* (B) = inf {ZM(A,L) : A, € A with B C u;;o_lAn} .
n=1

Further let B C 2 consist of those B C §2 such that there exists {A,} C A
such that lim, oo p* (An A B) = 0. Then;

1. B is a o -algebra containing A,
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2.if B€ B and {A,} C A with and B C 2 such that lim,,_, o p* (A, A B) =
0, then i (B) :=limy, o0 1t (Ay) exists and gives a well defined o — additive
measure, fi : B — [0,00) extending p on A.

We will begin the proof of this result in section below and it will be
completed with the proof of Theorem Before doing so we pause for a
couple of optional sections pertaining to the uniqueness of the extensions and
their continuity properties.

7.2 Monotone Class Theorems

In this section we record a theorem which is a cousin of the m — A theorem.

Definition 7.5 (Montone Class). C C 2% is a monotone class if it is closed
under countable increasing unions and countable decreasing intersections.

Lemma 7.6 (Monotone Class Theorem*). Suppose A C 2 is an algebra
and C is the smallest monotone class containing A. Then C = o(A).

Proof. For C € C let
C(C)={BeC:CnNnB,CNB*,BNC°eC},

then C(C) is a monotone class. Indeed, if B, € C(C) and B,, 1 B, then B, | B¢
and so

C>CnB,T1CNB
C>CnNnB; |l CnNB°and
C>B,NnC°1tBNC".

Since C is a monotone class, it follows that C N B,C N B¢, BN C°c € C, i.e.
B € C(C). This shows that C(C) is closed under increasing limits and a similar
argument shows that C(C) is closed under decreasing limits. Thus we have
shown that C(C) is a monotone class for all C € C. If A € A C C, then
ANB,ANB BN A € A C C for all B € A and hence it follows that
A C C(A) C C. Since C is the smallest monotone class containing A and C(A) is
a monotone class containing A, we conclude that C(A) = C for any A € A. Let
B € C and notice that A € C(B) happens iff B € C(A). This observation and
the fact that C(A) = C for all A € Aimplies A C C(B) C C for all B € C. Again
since C is the smallest monotone class containing A and C(B) is a monotone
class we conclude that C(B) = C for all B € C. That is to say, if A, B € C then
A e C=C(B) and hence ANB, AN B¢, AN B € C. So C is closed under
complements (since 2 € A C C) and finite intersections and increasing unions
from which it easily follows that C is a ¢ — algebra. [ ]
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7.3 * o - Algebra Regularity and Uniqueness Results

The goal of this appendix it to approximating measurable sets from inside
and outside by classes of sets which are relatively easy to understand. Our
first few results are already contained in Carathoédory’s existence of measures
proof. Nevertheless, we state these results again and give another somewhat
independent proof.

Theorem 7.7 (Finite Regularity Result). Suppose A C 2% is an algebra,
B=0c(A) and p: B — [0,00) is a finite measure, i.e. 1 (§2) < co. Then for
every € > 0 and B € B there exists A € As and C € A, such that AC BcC C
and p(C\ A) < e.

Proof. Let By denote the collection of B € B such that for every € > 0
there here exists A € As and C € A, such that AC B C C and u(C\ A4) < e.
It is now clear that A C By and that By is closed under complementation. Now
suppose that B; € By for i = 1,2,... and € > 0 is given. By assumption there
exists A; € As and C; € A, such that A; C B; C C; and u (C; \ 4;) < 27 %.

Let A := U A;, AN .= UN A, € As, B := U2, B;, and C = UX,C; €
Agy. Then AN ¢ AC Bc C and

C\NA=[UZCI\A=UZ, [C;\ A CUZ, [Ci\ Ay

Therefore,
p(C\A) = p (U, [Ci\ A)) Z 1 (Ci\ A) sz n(Ci\ Ai)

Since C'\ AN | C'\ 4, it also follows that p (C'\ AY) < ¢ for sufficiently large
N and this shows B = U2, B; € By. Hence By is a sub-o-algebra of B = o (A)
which contains A which shows By = B. [

Many theorems in the sequel will require some control on the size of a
measure p. The relevant notion for our purposes (and most purposes) is that
of a o — finite measure defined next.

Definition 7.8. Suppose 2 is a set, ECB C 22 and p : B — [0,00] is a
function. The function p is o — finite on & if there exists E,, € £ such that
wWEy) < oo and 2 =UX E,. If B is a o — algebra and u is a measure on B
which is o — finite on B we will say (£2,B, 1) is a o — finite measure space.

The reader should check that if 4 is a finitely additive measure on an algebra,
B, then p is o — finite on B iff there exists {2, € B such that (2, T 2 and
w(£2,) < oo.
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Corollary 7.9 (o — Finite Regularity Result). Theorem continues to
hold under the weaker assumption that u : B — [0,00] is a measure which is o

— finite on A.

Proof. Let £2,, € A such that US>, $2,, = 2 and p(£2,) < oo for all n.Since
A e B—p,(A) == pu(2,NA) is a finite measure on A € B for each n, by
Theorem [7.7} for every B € B there exists C,, € A, such that B C C,, and
w(2,N[C,\ B]) = pin (Cr \ B) < 27"¢. Now let C' := U2, [2,NC,] € A,
and observe that B C C and

1 (C\ B) = 21 (2. N CR]\ B))

p(Ups
gi (2, N Ch \B:i (2. N[Cu\ B]) <

Applying this result to B¢ shows there exists D € A, such that B¢ C D and
W (B\ D) = u(D\ B) < ¢
So if we let A := D¢ € As, then A C B C C and
#(C\A) = u(B\AJUIC\ B)\ A]) < 5 (B\ A) + u(C\ B) < 2
and the result is proved. [

Exercise 7.1. Suppose A C 2% is an algebra and p and v are two measures on

B=o(A).

a. Suppose that p and v are finite measures such that 4 = v on A. Show
°w=v.

b. Generalize the previous assertion to the case where you only assume that
p and v are o — finite on A.

Corollary 7.10. Suppose A C 2 is an algebra and p : B = o (A) — [0, 00] is
a measure which is o — finite on A. Then for all B € B, there exists A € As,
and C € Ays such that AC B C C and (C\ A) =0.

Proof. By Theorem given B € B, we may choose A, € As and C), € A,
such that A,, C B C C,, and M(C \B) < 1/nand u(B\A,) < 1/n. By replacing
Ay by UN_ A, and Cy by NY_,C,,, we may assume that A4, T and C, | as n
increases. Let A = UA,, € .Agg and C = NC, € Ays, then A C B C C and

W(C\A) = u(C\ B) + (B 4) < p(Ca\ B) + (B A,)
<2/n—0asn— oco.
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7.4 *Other characterizations of B

This section may (probably should) be skipped on first reading. Its purpose is to
serve as motivation for Carathéodory’s general construction theorem appearing
in the optional Chapter

Proposition 7.11 (*Other characterizations of 5). Let
B :={BCQ:y*(ENB)+u*(E\B)=pu"(E) VE 2%}

and
"={BCQ:p"(B)+p" (B°) =p(R)}

Then we have B =B = B" and moreover i = u*|s.
Proof. Let us first observe that B’ may be expressed alternatively as;
B :={BCQ:y(ENB)+u (E\B)<u*(E) VEe2?}.
This is because the subadditivty of u* automatically implies
p (E) <p* (ENB)+p* (E\B)Y B,E € 29,

As the test for as set to be in B” is the same as one of the tests (namely
E = 02) for being in B, we have B’ C B”. We will now complete the proof that
B =B = B" by showing B C B and B"” C B.

(BcB).If BeB, Ec2? and C € A, such that E C C, then

W (ENB)+p* (E\B) <’ (CNB) + " (C\ B)
= A(CNB)+a(C\B) = (C) = uq (C).

Taking the infimum over all C € A, such that £ C C shows
p (ENB)+p" (E\B) <p" (E)

and hence B € B'.
(B”CB).If Be B’ ande > 0 is given, there exists C, D € A, so that
BcdC,B°CD,

A(C) = o (C) < " (B) + &, and i (D) = pp (D) < i* (BY) +
Summing these inequalities while using B € B implies,
B(C)+ (D) < () +20 = [(C) < (D) + 2.

As D¢Cc BC Cand C\D*=CnND e A,, it follows that
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p* (C\ D) = p, (C\ D) =i (C\ D) < 2.
Consequently we conclude that,

d(B,C) = u* (C\ B) < p* (C'\ DY) < 2¢ and (7.1)
d(B,D) = " (B\ D) < pi* (C'\ D) < 2. (7.2)

Since € > 0 is arbitrary these equations show B € A? = B and also that
B € A4. Moreover, since ji = p, on A, and fi is Lip —1 relative to d, we also
find,

|1 (B) — " (B)] < [1(B) = 1 (C)| + |po (C) — p* (B
<24¢e=3e.

Again as € > 0 is arbitrary we have also shown that g = p* on B. ]

Notation 7.12 (Inner measures) If u: A — [0,00) is a finite premeasure
and B C (2 let
pis (B) :=sup {u’ (A) : As > A C B},

where pd = fi| 4, We refer to u. (B) as the inner measure (or inner con-
tent) of B.

Remark 7.13.1f A € As and A, € A are such that A,, | A, then p°(A) =
lim,, ;o0 ¢ (A,,) . This shows that 4° may be computed directly from p without
referring to the extension iz as in Notation [7.12

Corollary 7.14. Let (12, A, u) be a finite premeasure space and pi. and p* be the
inner and outer measures associated to p as in Notations[7.19 and Proposition
and Proposition respectively. Then (continuing to use the notation in

Theorem

B:=A"={BcCQ:u.(B)=u" (B)}. (7.3)

Proof. From Proposition we know that B € B iff u* (B) + u* (B¢) =
1 (£2). Now choose C,, € A, such that B¢ C C,, and i (C) | p* (B¢) and let
A, = C% € As with A, C B, then

Wt (B) = u () -t (BY) = lim [u(2) - 1 (Cy)]

n—oo
= lim @ <
Jim fi(An) < e (B) -
As . (B) < p* (B) holds for all B € 2 it follows that B € B implies u* (B) =
p (B) -
Conversely if B € 29 satisfies yu* (B) = p. (B) , there exists As > A, C B C
C,, € A, such that lim, . i (Cy) = lim,, o & (A,) which implies
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n— oo
and hence d (B, C,,) = p* (Cp \ B) < p* (Cy, \ Ay) — 0 as n — oo which shows
Be Al =B.
[

7.5 * Appendix: Alternate measure extension
construction

(The reader wanting for more motivation of the construction measure in this
section may wish to read Section below first.)

Suppose p is a finite premeasure on an algebra, A C 2, and A € AsN A,.
Since A, A° € A, and 2 = AU A€, it follows that pu (£2) = p (A) + u (A€) . From
this observation we may extend p to a function on A5 U A, by defining

w(A) = p(2) — p(A°) for all A € As. (7.4)

Lemma 7.15. Suppose 11 is a finite premeasure on an algebra, A C 22, and
1 has been extended to As U A, as described in Proposition 7?7 and Eq.
above.

1.If A€ As then p(A) =inf{u(B): AC Be A}.

2. If A€ As and A, € A such that A,, | A, then p(A) =] lim, 0o pt (4y) .
3. v is strongly additive when restricted to As.

4. If Ae As and C € A, such that A C C, then u(C\ A) =pu(C)—pu(A).

Proof.
1. Since p (B) = pu(£2) — p(B°) and A C B iff B¢ C A°, it follows that
inf{u(B):AC Be A}y =inf {u(2) — pn(B°) : A> B C A°}
=p(2) —sup{p(B): A> B C A%}
=p(2) = p(A%) = p(4).

2. Similarly, since A 1 A° € A,, by the definition of p(A) and Proposition
77 it follows that

p(A) = p(2) = p(A%) = p(2) =1 lim p(A7)
=4 lim [ (2) = p (A7) =4 lim g (A).

3. Suppose A, B € As and A,, B, € A such that A,, | A and B, | B, then
A,UB, | AUB and A, N B, | AN B and therefore,
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w(AUB)+ u(ANB) = lim [u(A,UB,)+ p(A,NB,)]

n— oo

= lim [ (An) + 1 (B)] = o (4) + p (B).

n—oo
All we really need is the finite additivity of u which can be proved as follows.
Suppose that A, B € As are disjoint, then AN B = () implies A°U B¢ = (2.
So by the strong additivity of p on A, it follows that
1 (82) + p (AN BY) = p (A%) + p (B°)
from which it follows that
(AU B) = pu(82) — p(A°NB°)
= p(92) = [ (A) + 1 (BY) — p(£2)]
— 5 (4) +u(B).
4. Since A¢,C € A, we may use the strong additivity of p on A, to conclude,
p(AUC) +p(A°NC) = p(A%) +p(C).
Because 2 = A°UC, and p(A°) = u(§2) — 1 (A), the above equation may
be written as
p(2) + p(C\NA) = p(02) = pn(A) + pn(C)
which finishes the proof.

]

If B C {2 has the same inner and outer content (see Notations and 77

respectively) it is reasonable to define the measure of B as this common value.

As we will see in Theorem below, this extension becomes a o — additive
measure on a o — algebra of subsets of 2.

Definition 7.16 (Measurable Sets). Suppose p is a finite premeasure on an
algebra A C 2. We say that B C 2 is measurable if ji, (B) = pu* (B) where
pi (B) and p* (B) as in Notations[7.19 and ?? respectively. We will denote the
collection of measurable subsets of £2 by B = B () and define fi : B — [0, pu (£2)]
by

i (B) = u« (B) = p* (B) for all B € B. (7.5)

Remark 7.17. Observe that p, (B) = p*
and C € A, such that A C B C C and
n(C

p(C\A) =

(B) iff for all £ > 0 there exists A € As

)—p(4) <e, (7.6)

wherein we have used Lemma for the first equality. Moreover we will use
below that if B € Band As > AC BC C € A,, then

1 (A) < pw (B) = p(B) = p* (B) < (C). (7.7)
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Theorem 7.18 (Finite Premeasure Extension Theorem (revisited)).
Suppose p is a finite premeasure on an algebra A C 2% and i : B := B (u) —
[0, 1 (£2)] be as in Definition[7.16 Then B is a o — algebra on §2 which contains
A and [ is a 0 — additive measure on B. Moreover, i is the unique measure on
B such that fi| 4 = p

Proof. 1. B is an algebra. It is clear that A C B and that B is closed
under complementation — see Eq. and use the fact that A°\ C°=C'\ A.
Now suppose that B; € B for i = 1,2 and ¢ > 0 is given. We may then
choose 4; C B; C C; such that A; € As, C; € A,, and p(C;\ A;) < ¢ for
i = 1,2. Then with A = A1 U Ay, B = By UBy and C = C; U(Cs, we have
As > AC BcCC e A,. Since

CNA=(C\A)U(C2\A) C(C1\ A1) U (C2\ A2),
it follows from the sub-additivity of u that
p(C\NA) < p(Cr\ Ar) +p(C2\ Az) < 2e.

Since € > 0 was arbitrary, we have shown that B € B which completes the proof
that B is an algebra.

2. B is a c—algebra. As we know B is an algebra, to show B is a o — algebra
it suffices to show that B = > ° | B, € B whenever {B,},. | is a disjoint
sequence in B. To this end, let € > 0 be given and choose A; C B; C C; such
that A; € As, C; € Ay, and u (C; \ A;) <27 for all 4. Let C := UX,C; € A,
and for n € Nlet A" := 3" | A; € As. Since the {A;};°, are pairwise disjoint
we may use Lemma [7.15] to show,

S u(C) =" (u(Ai) + p(Ci\ Ay))
i=1 i=1
= (A")+ ) p(Ci\ Ay) +Ze2—1
i=1
which on letting n — oo implies
Z 1 (C (92) +¢ < 0. (7.8)

Using
C\A™ = U, (G \ A™) C Uy (G \ A)] U [UR,, 1G] € Ao,

and the sub-additivity of u on A, it follows that

macro: svmonob.cls date/time: 25-Feb-2019/8:12



o0

pu(C\ A" gi Ci\A)+ ) <522 +Z
i=1 i=n-+1 i=n+1

o
<e+ Z w(C;) — € as n — oo,
i=n—+1

wherein we have used Eq. in computing the limit. In summary, B =
UX,B;, As 2 A" Cc BC Ce A, C\A" € A, with p(C\A™) < 2¢ for all n
sufficiently large. Since € > 0 is arbitrary, it follows that B € B.

3. i is a measure. Continuing the notation in step 2, we have

n

Zu(Az') EEY u(A) = p(AM) < p(B) <p(C) < ZM(Q‘)- (7.9)

i=1

On the other hand, since A; C B; C C;, it follows (see Eq. (7.7))) that u (4;) <
i (B;) < u(C;) and therefore that

donu(A) <Yy aB) <Y u(C). (7.10)
i=1 i=1

Equations (7.9) and - show that & (B) and ) .o, it (B;) are both between
Dy 1 (As) and > ieq 1(Cy) and so

A(B) =3 (B

Since € > 0 is arbitrary, we have shown i (B) = Y., i (B;), i.e. i is a measure
on B.

Since we really had no choice as to how to extend u, it is to be expected
that the extension is unique. You are asked to supply the details in Exercise[6.2]
below. [

oo

S p(C) =D pm(A) =D p(Ci\ A <) 27 =e

Corollary 7.19. Suppose that A C 2 is an algebra and p : By := o (A) —
[0, (2)] is a o — additive finite measure. Then for every B € o (A) and e > 0;

1. there exists As 2 AC B C C € Ayand € > 0 such that u(C'\ A) < € and
2. there exists A € A such that p (AN B) < e.

Exercise 7.2. Prove corollary by considering 7 where v := pu|4. Hint:
you may find Exercise [5.6] useful here.
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*Carathéodory’s Construction of Measures

This chapter deals with Carathéodory’s very general measure construction
theorem. This chapter may be safely skipped as we will not make direct
use of the results here in the remainder of this book.

8.1 General Extension and Construction Theorem

Proposition motivates the following definition.

Definition 8.1. Let p* : 22 — [0, 00] be an outer measure, see Definition .
Define the p*-measurable sets to be

M) ={BCR:u"(E)>u (ENB)+u" (ENB°)V E C 2}.
Because of the sub-additivity of p*, we may equivalently define M(u*) by
M )={BC Q:py(E)=p"(ENB)+u*(ENB°) VY E C 2}. (8.1)

Theorem 8.2 (Carathéodory’s Construction Theorem). Let p* be an
outer measure on £2 and M := M(p*). Then M is a o-algebra and p = p*| pm
is a complete measure.

Proof. Clearly 0, 2 € M and if A € M then A € M. So to show that M is
an algebra we must show that M is closed under finite unions, i.e. if A, B € M
and E € 27 then

W (B) > 1" (EN (AUB)) + p(E \ (AU B)).

Using the definition of M three times, we have

p(E) = p (ENA)+p"(E\ A) (8.2)
=p"(ENANB)+u* (ENA)\B)
P ((ENA)NB) +p((E\ A)\ B). (8.3)

By the sub-additivity of u* and the set identity,

En(AuB)=(ENA)U(ENB)
=[((ENA\B)U(ENANB)]U[(ENB)\A)U(ENANB)|
=[ENANBJU[(ENA)\BJU[(E\ A)N B],

we have
W(ENANB)+u (ENA)\B)+p* (E\NA)NB)>u " (EN(AUB)).
Using this inequality in Eq. shows
p(E) z " (EN(AUB)) 4+ p*(E\ (AU B)) (8.4)

which implies AU B € M. So M is an algebra. Now suppose A, B € M are
disjoint, then taking E = AU B in Eq. (8.2)) implies
p*(AUB) = p*(A) + p*(B)

and p = p*| s is finitely additive on M.
We now must show that M is a ¢ — algebra and the p is o — additive. Let
A; € M (without loss of generality assume 4; NA; = 0 if i # j) B, = JI-, A,

o0
and B = |J A;, then for £ C {2 we have
j=1

w(ENB,)=p (ENB,NA,)+u (ENB,NA)
=p"(ENA,)+u (ENBy_1).
and so by induction,
“(ENBy) =Y p'(ENA). (8.5)
k=1

Therefore we find that
pr(E) = p (ENBy) + p*(EN By)
=3 (BN AL + (B0 B2
k=1
> S (BN A + (B0 BY)
k=1

where the last inequality is a consequence of the monotonicity of p* and the
fact that B¢ C B{. Letting n — oo in this equation shows that
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w(E) > 3 w(ENAg) + p*(ENB°)
k=1
p(Uk(EN Ag)) +p*(E\ B)

p (ENB)+p"(E\ B) > p*(E),

wherein we have used the sub-additivity p* twice. Hence B € M and we have
shown M is a o — algebra. Since p*(E) > p*(E N B,,) we may let n — oo in

Eq. to find
Z E N Ak
k=1

&)
Letting E = B = UA, in this inequality then implies p*(B) > > p*(Ag) and
k=1

118

hence, by the sub-additivity of pu*, u*(B) = w*(Ag). Therefore, p = p*|pm

k=1

is countably additive on M.
Finally we show pu is complete. If N C F' € M and u(F)
p*(N) =0 and

= 0= p*(F), then

p(E) <p (ENN)+p (ENN®) = p*(ENN°) < p(E).

which shows that N € M. ]

8.2 Extensions of General Premeasures

In this subsection let 2 be a set, A be a subalgebra of 22 and pg : A — [0, 00
be a premeasure on A.

Theorem 8.3. Let A C 29 be an algebra, pu be a premeasure on A and p* be
the associated outer measure as defined in Eq. with p = p. Let M :=
M(p*) D o(A), then:

1. ACM((p*) and p*la = p

2. i = p*|pm is a measure on M which extends p.

3. Ifv: M — [0,00] is another measure such that v =y on A and B € M,
then v(B) < fi(B) and v(B) = p(B) whenever i(B) < oo.

4. If u is o-finite on A then the extension, fi, of u to M is unique and moreover

M _ mﬂ\a(m.

Proof. Recall from Proposition 77 that u extends to a countably additive
function on A, and p* = p on A.
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. Let A€ Aand E C {2 such that p*(E) < co. Given € > 0 choose pairwise

disjoint sets, B; € A, such that E C B := Z;’il B; and
p(E)4+¢e>pu(B) =

Since ANE C 377 (B; N A°) and ENA° C 3372 (B; N A°), using the
sub-additivity of p* and the additivity of u on A we have,

2 Y =3 (s
> (ENA)+p*(EnA%).

50 A) + u(B; 0 A°)]

Since € > 0 is arbitrary this shows that
w(E)

and therefore that A € M(p*).

This is a direct consequence of item 1. and Theorem

If A:=3"7" Aj with {A; };‘;1 C A being a collection of pairwise disjoint
sets, then

> (BN A) + p*(E N A°)

oo

=Y v(A) =) uld)) = n(A).
j=1

j=1
This shows v = 4 = i on A,. Consequently, if B € M, then
v(B) <inf{v(A):BC Aec A,}
=inf{u(A): BC Ae A,} = p"(B) = i(B). (8.6)

If i(B) < 0o and € > 0 is given, there exists A € A, such that B C A and
i (A) = p(A) < i (B) +¢. From Eq. (8.6)), this implies

v(A\B) < ju(A\B)<e
Therefore,

<B(B) < p(4) = v(B)+v(A\B) <v(B)+e
which shows i(B) = v(B) because € > 0 was arbitrary.

For the o — finite case, choose £2; € M such that 2; 1 2 and f(£2;) < o0
then

A(B) = lim (BN £2;) = lim v(BN ;) =v(B).

‘]*)OO j*}OO
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Theorem 8.4 (Regularity Theorem). Suppose that 11 is a o — finite pre-
measure on an algebra A, [ is the extension described in Theorem and

Be M :=M(u*). Then:

1.
a(B):=inf{n(C):BCcCeA,}.
2. For any € > 0 there exists A C B C C such that A € As, C € A, and
gB(C\ A) <e.
. There exists A C B C C such that A € As,, C € Ays and G(C'\ A) = 0.
4. The o-algebra, M, is the completion of o (A) with respect to il (a)-

o

Proof. The proofs of items 1. — 3. are the same as the proofs of the corre-
sponding results in Theorem|[7.7], Corollary[7.9] and Theorem [6.28 and so will be
omitted. Moreover, item 4. is a simple consequence of item 3. and Proposition
0.60) u

The following proposition shows that measures may be “restricted” to non-
measurable sets.

Proposition 8.5. Suppose that (£2, M, ) is a probability space and 29 C 2
is any set. Let Mg, := {AN 2 : Ae M} and set P(AN ) := p* (AN ).
Then P is a measure on the o - algebra Mg,. Moreover, if P* is the outer
measure generated by P, then P*(A) = u*(A) for all A C 2.

Proof. Let A, B € M such that AN B = {). Then since A € M C M(p*) it
follows from Eq. (8.1) with F := (AU B) N {2 that

p((AUB)YN ) = p* (AUB)N 20N A) 4+ p* ((AU B) N 25 N A°)

=p (20NA)+p* (BN )

which shows that P is finitely additive. Now suppose A = ZOO ; with A, €
M and let B,, := Z] —ni1 A5 € M. By what we have just proved,

AN 20) = >t (A; 0 020) + 1 (B N 20) > > (451 2).
j=1 j=1

Passing to the limit as n — oo in this last expression and using the sub-
additivity of p* we find

> ut(A;N02) = pt (AN Q) > ZN (A; N 2).
7j=1

Thus

oo

Aﬁﬂo ZPJ Aﬁ.QO
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and we have shown that P = M*|Mrz0 is a measure. Now let P* be the outer
measure generated by P. For A C 2y, we have

P*(A)=inf{P(B): AC B€ Mg,}
=inf{P(BN{): AC Be M}
=inf{p*(BN): AC Be M} (8.7)

and since p*(B N 2y) < p*(B),

P*(A) <inf{u"(B): AC Be M}
=inf{u(B): AC Be M} =pu"(A).
On the other hand, for A C B € M, we have p*(A) <

by Eq. (87)

p*(BN{2) and therefore

p*(A) <inf{u*(BN2): AC Be M} =P (A).

and we have shown

W (A) < P(A) < 1 (A).

8.3 More Motivation of Carathéodory’s Construction
Theorem [8.2]

The next Proposition helps to motivate this definition and the Carathéodory’s
construction Theorem B2l

Proposition 8.6. Suppose £ = M is a o — algebra, p = p: M — [0,00] is a
measure and p* is defined as in Eq. . Then

1.ForAcCcX
w(A) =inf{u(B): Be M and A C B}.

In particular, p* = p on M.
2. Then M C M(u*), i.e. if A€ M and E C X then

w(E) > (ENA)+ p*(ENA°. (8.8)

3. Assume further that p is o — finite on M, then M(u*) =
1 M(py = B where (M = M*H, [i) is the completion of (M, ).
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Proof. Item 1. If E; € M such that A C UE; = B and E; = E\(F1U---U

Ei—l) then
> w(E) > w(E:) = p(B)
SO _
pr(A) <> u(E) = u(B) <> u(E).
Therefore, u*(A) = inf{u(B) : B € M and A C B}.

Item 2. If p*(E) = oo Eq. (8.8)) holds trivially. So assume that u*(E) < oo.
Let € > 0 be given and choose, by Item 1., B € M such that £ C B and
w(B) < p*(F)+e. Then

W () + & > u(B) = u(B N A) + u(B N A°)
> u (ENA)+ u*(EnA°.
Since € > 0 is arbitrary we are done.

Ttem 3. Let us begin by assuming the u(X) < oco. We have already seen that
M C M(p*). Suppose that A € 2% satisfies,

p*(B)=p (ENA) +p (ENA°)VE € 2%, (8.9)

By Item 1., there exists B,, € M such that A C B, and p*(B,) < p*(A) + 1
for all n € N. Therefore B = NB, D A and u(B) < pu*(A) + L for all n which
implies that p(B) < p*(A) which implies that u(B) = p*(A). Similarly there
exists C' € M such that A° C C and p*(A°) = p(C). Taking F = X in Eq.
shows

p(X) = (A) + p(A°) = u(B) + p(C)
&)

p(C%) = w(X) = p(C) = u(B).

Thus letting D = C*¢, we have

D c AcC Band u(D) =p*(A) = u(B)
so (B '\ D) =0 and hence

A=DUJ[(B\D)N A
where D € M and (B\D) N A € N showing that A € M and p*(A) = i(A).
Now if p is o — finite, choose X,, € M such that u(X,) < co and X,, T X.
Given A € M(u*) set A, = X,, N A. Therefore
p (E)=p (ENA) +p (ENA)V E € 2%,

Replace E by X,, to learn,

Page: 92 job: prob

M*(Xn) = M*(An) + :U’*(Xn \ A) = :u'*(An) + :U’*(Xn \ An)

The same argument as above produces sets D,, C A,, C B, such that u(D,,) =
w*(An) = n(By). Hence A, = D, UN,, and N,, := (B, \ D,)N A, € N. So we
learn that

A=DUN := (UD,)U(UN,) € MUN = M.

We also see that p*(A) = u(D) since D C A C DU F where F' € M such that
N C F and
(D) = p*(D) < p*(A) < (DU F) = p(D).
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Random Variables

Notation 9.1 If f: X = Y is a function and € C 2Y let
FiE = (€)= (S B)E € £},

If G C 2%, let
f.G:={Ae2"|[f(4) eg}.

Definition 9.2. Let £ C 2¥ be a collection of sets, B C Y, ig: B —Y be the
inclusion map (ig(y) =y for ally € B) and

Ep=i4(E) ={BNE:Ec¢&}.

Exercise 9.1. If f : X — Y is a function and F C 2¥ and B C 2% are o —
algebras (algebras), then f*F and f.B are o — algebras (algebras).

The following results will be used frequently (often without further refer-
ence) in the sequel.

Lemma 9.3 (A key measurability lemma). If f : X — Y is a function and
EcC2Y, then

o (€)= [ (a(€)). (9-1)
In particular, if B CY then
(@(€))p =0(€p), (9-2)
(Similar assertion hold with o (-) being replaced by A(-).)

Proof. Let M := o (f*£). by Exercise 0.1 below, f*(c(£)) is a o — algebra
and since £ C (&), it follows that f*€ C f*(o(€)) and therefore

M=o (f*(€)) € F*(o(£)). (9.3)
For the reverse inclusion we again appeal to Exercise which implies
fiM={BCY:f"(B)eM:=c(f*(&))}
is a o-algebra. If B € &, then f~'(B) € f*(€) C o(f*(£)) = M and so

Be fuM, ie.
& C f«M which implies o (£) C f. M.

Thus for B € o (€) we have f~! (B) € M, i.e.
fre(€) cM=a(f (). (9-4)

Equations (9.3) and (9.4) gives Eq. (9.1). Equation (9.2)) is a special case of Eq.
(9.1) with X = B and f=ig: B =Y,

(0())p =5 (0(E)) = a(i5' (€)) = o(Ep).
]

Ezample 9.4. Let € = {(a,b] : —00 < a < b < oo} and B = o (£) be the Borel o
— field on R. Then
Eoa)={(a,b]:0<a<b<1}

and we have
B =0 (Eo.) -

In particular, if A € B such that A C (0,1], then A € ¢ (5(0,1]) )
Exercise 9.2. Given x € R\ {0} let
x4+ B:={x+y:yeB} anda-B:={xy:y € B}. (9.5)

Show x + B and x - B are in Bgr for all B € Br. Hint: take £ =
{(a,b) : —o00 < a <b< oo} and apply Lemma with f(y) = y — « and
f (y) = y/x respectively.

9.1 Measurable Functions

Definition 9.5. A measurable space is a pair (X, M), where X is a set and
M is a 0 — algebra on X.

To motivate the notion of a measurable function, suppose (X, M, ) is a
measure space and f: X — R, is a function. Roughly speaking, we are going
to define f fdu as a certain limit of sums of the form,

X
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o0

> aip(f~ (ai, aisa]).

O0<a1<az<az<...

For this to make sense we will need to require f~*((a,b]) € M for all a < b.
Because of Corollary below, this last condition is equivalent to the condition
f*Bgr C M.

Definition 9.6. Let (X, M) and (Y, F) be measurable spaces. A function f :
X — Y is measurable of more precisely, M/F — measurable or (M,F) -
measurable, if f*F C M, i.e. if f~1(A) € M for all A € F.

Remark 9.7. Let f: X — Y be a function. Given a o — algebra F C 2Y, the o
— algebra M := f*F is the smallest o — algebra on X such that f is (M, F) -
measurable . Similarly, if M is a o - algebra on X then

F=fM={Ac2V|f1(A) e M}
is the largest o — algebra on Y such that f is (M, F) - measurable.

Ezample 9.8 (Indicator Functions). Let (X, M) be a measurable space and A C
X. Then 14 is (M, Bg) — measurable iff A € M. Indeed, 1" (W) is either 0,
X, A or A for any W C R with 1" ({1}) = A.

Ezample 9.9 (Simple Functions). Let (X, M) be a measurable space and f :
X — R be a simple function. Then f is (M, Bg) — measurable iff f~1 ({z}) € M
for all z € f(X). Indeed, if B € Bg, then

F7H(B) = Usepnrox)f ' ({2}
from which the result easily follows.

Ezample 9.10 (Simple Functions Again). Suppose f : X — Y with Y being a
finite or countable set and F = 2¥. Then f is measurable iff =1 ({y}) € M
for all y € Y.

Proposition 9.11. Suppose that (X, M) and (Y, F) are measurable spaces and
further assume € C F generates F, i.e. F = o (E). Then a map, f: X =Y is
measurable iff f*€ C M.

Proof. If f is M/F measurable, then f*¢& C f*F C M. Conversely if
f*€ C M then o (f*€) C M and so making use of Lemma

[fF=f"o()]=0(f€) CM.
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Corollary 9.12. Suppose that (X, M) is a measurable space. Then the follow-
ing conditions on a function f: X — R are equivalent:

1. f is (M, Bgr) — measurable,

2. f7*((a,00)) € M for all a € R,

3. f~Y((a,00)) € M for all a € Q,

4. fY((~o0,a]) € M for all a € R.

Exercise 9.3 (Look at but do not hand in). Prove Corollary ie.

Suppose that (X, M) is a measurable space. Then the following conditions on
a function f: X — R are equivalent:

is (M, Bgr) — measurable,
((a,00)) € M for all a € R,
((a,0)) € M for all a € Q,
((—o0,a]) € M for all a € R.

Hint: See Exercise 1.9

w0

== e

1. f
2. f~
3. f
4. f-

Exercise 9.4. Show that every monotone function f : R — R is (Bg,Bgr) —
measurable.

We will often deal with functions f : X — R = RU{£o0}. When talking
about measurability in this context we will refer to the o — algebra on R defined
by

Bg := 0 ({[a,0] : a € R}). (9.6)

Proposition 9.13 (The Structure of Bg). Let Br and Bg be as above, then
Bg={ACR:ANR EBg}. (9.7)
In particular {00}, {—00} € Bg and Bgr C Bg.
Proof. Let us first observe that

{—OO} = ﬂ?:l[_(x% _n) = mzozl[_"% OO]C € B]Ra

{00} =N, [n, 0] € Bg and R = R\ {+o0} € Bg.
Letting i : R — R be the inclusion map,

i*Bg = o (i* ({la, 0] :a €R})) =0 ({i™" ([a,¢]) : a € R})
=0 ({la,c]NR:a eR}) =0 ({[a,) : a € R}) = Br.

Thus we have shown
Br Zi*BR = {AQR:AEBR}.

This implies:
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1. Ae Bg = ANR eBg and

2. if A C Ris such that ANR €Bg there exists B € Bg such that ANR = BNR.
Because A A B C {£oo} and {o0},{—00} € Bz we may conclude that
A € Bg as well.

This proves Eq. (9.7). ]

Corollary 9.14. Let (X, M) be a measurable space and f : X — R be a func-
tion. Then the following are equivalent

is (M, Bg) - measurable,

'((a,x]) € M for all a € R,

1((—00,a]) € M for all a € R,

H{—oc}) e M, f71({oo}) € M and f: X — R defined by

_Jf@if f(z)eR
1 () '_{ 0 if f(z) € {£o0}

1. f
2. f
3. f
4-f

is measurable.

Exercise 9.5. Prove Corollary [9.14 noting that the equivalence of items 1. — 3.
is a direct analogue of Corollary Use Proposition to handle item 4.

Proposition 9.15 (Closure under sups, infs and limits). Suppose that
(X, M) is a measurable space and f; : (X, M) = R for j € N is a sequence of
M /By — measurable functions. Then

sup,f;, inf;f;, limsup f; and liminf f;
J j—00 Jj—oo

are all M /By — measurable functions. (Note that this result is in generally false
when (X, M) is a topological space and measurable is replaced by continuous in
the statement.)

Proof. Define g (z) :=sup; f;(x), then
{r:94(x) <a} ={z: fj(z) <aVj}
=N{z: fj(z) <a} eM
so that g1 is measurable. Similarly if g_(z) = inf; f;(z) then

{o:9-() 2 a} = Ny{o: f(2) = a} € M.

Since
limsup f; =infsup{f;:j >n} and
j—o0 n
liminf f; =supinf{f;:j > n}
J—0o0 n
we are done by what we have already proved. ]
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Exercise 9.6. Let (X, M) be a measure space and f, : X — R be a sequence
of measurable functions on X. Show that {z : lim,_, fn(z) exists in R} € M.
Similarly show the same holds if R is replaced by C.

Definition 9.16. Given measurable spaces (X, M) and (Y,F) and a subset
A C X. We say a function f: A—Y is measurable iff f is Ma/F — measur-
able.

Proposition 9.17 (Localizing Measurability). Let (X, M) and (Y, F) be
measurable spaces and f: X —'Y be a function.

1. If f is measurable and A C X then fla: A=Y is Ma/F — measurable.
2. Suppose there exist A, € M such that X = U2, A, and f|A, is Mg, /F
- measurable for all n, then f is M — measurable.

Proof. 1. If f : X — Y is measurable, f~1(B) € M for all B € F and
therefore
flaH(By=ANfY(B) € My for all B€ F.

2. If B € F, then
f_l(B) = Ui’f’:l (f_l(B) N An) = UrOLO:1f ;xl(B)

Since each A, € M, M4, C M and so the previous displayed equation shows
f~YB) e M. ]

Lemma 9.18 (Composing Measurable Functions). Suppose that
(X, M), (Y, F) and (Z,G) are measurable spaces. If f : (X, M) — (Y, F) and
g: (Y, F) = (Z,G) are measurable functions then go f : (X,M) — (Z,G) is
measurable as well.

Proof. Let us first observe that
(9o 0)°G={gon " (C):CeG}={s (s (C):CEG) = [ (5°0).
By assumption ¢*(G) C F and f*F C M so that
(900)°G=1"(9"9) C ['Fc M.
]

Definition 9.19 (¢ — Algebras Generated by Functions). Let X be a
set, I be an index set, and suppose there is a collection of measurable spaces
{(Ya, Fo) : a € I} and functions fo : X — Y, for alla € I. Let o(fo : v € I)
denote the smallest o — algebra on X such that each f, is measurable, i.e.

G(f(x HEOAS I) = U(Uaf;]:a)'
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Exercise 9.7. Let X be a set, I be an index set, and suppose there is a collec-
tion of measurable spaces {(Ya,, Fo) : @ € I'} and functions f, : X — Y, for all
ael If&, C F, for each o € T are such that F, := o (&), show

o(fa:a€l) =0 UsecrfaFa) =0 (Uncrfaa) .

Exercise 9.8. Let X be a set, I be an index set, and suppose there is a col-
lection of measurable spaces {(Yu,Fo): « € I} and functions f, : X — Y,
for all @« € I. If Z is another set and G : Z — X is a function then
Go(fo:a€l)=0(faoG:ael).

Exercise 9.9. If M is the ¢ — algebra generated by £& C 2%, then M is the
union of the o — algebras generated by countable subsets F C &.

Ezample 9.20. Suppose that Y is a finite set, F = 2¥, and X = YV for some
N € N. Let m; : YN — Y be the projection maps, ; (y1,.-.,yn) = y;. Then,
as the reader should check,

o(m,...,mp) ={Ax AN AC A"},

Proposition 9.21. Assuming the notation in Definition (s0 fo : X —
Y, for all « € I) and additionally let (Z, M) be a measurable space. Then

g:Z — X is (M,0(fo : « € I)) — measurable iff fo 0g (Zini?Ya) is
(M, Fo)-measurable for all o € I.

Proof. (=) If g is (M, 0(fs : « € I)) — measurable, then the composition
faogis (M, F,) — measurable by Lemma
(«) Since o(fy : v € I) = 0 (€) where & := U, f*F,, according to Propo-
sition it suffices to show g~ (A) € M for A € f:F,. But this is true
since if A = f;!'(B) for some B € F,, then g7' (4) = g7 (f'(B)) =
(fa0g) " (B) € M because fqo0g: Z — Y is assumed to be measurable.
[

Definition 9.22. If{(Y,, F.) : a € I} is a collection of measurable spaces, then
the product measure space, (Y, F), is Y :=[[,c; Ya, F := 0 (7o : @ € I) where
T Y — Y, is the o — component projection. We call F the product o — algebra
and denote it by, F = Qqecr1Fa-

Let us record an important special case of Proposition [9.21

Corollary 9.23. If (Z, M) is a measure space, then g: Z —Y =[] c; Yo is
(M, F := @qecrFa) — measurable iff a0 g: Z — Yy is (M, F,) — measurable
foralla e I.
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As a special case of the above corollary, if A = {1,2,...,n}, then Y =
Yix---xY,and g = (g1,...,9,) : Z — Y is measurable iff each component,
gi : Z —Y;, is measurable. Here is another closely related result.

Proposition 9.24. Suppose X is a set, {(Yo,Fo): a € I} is a collection of
measurable spaces, and we are given maps, fo : X — Y,, for all a € I. If
f: X =Y :=]],c;Ya is the unique map, such that 7o o f = fo, then

0(farael)=a(f)=f"F

acl

where F 1= QuerFa-

Proof. Since mp 0 f = fo is 0 (fo : @ € I) /F, — measurable for all @ € I it
follows from Corollary that f: X — Y is 0 (fo : @ € I) /F — measurable.
Since o (f) is the smallest o — algebra on X such that f is measurable we may
conclude that o (f) Co(fa: € ).

Conversely, for each a € I, f, = mq 0 [ is o (f) /F, — measurable for all
a € I being the composition of two measurable functions. Since o (f, : o € I)
is the smallest o — algebra on X such that each f, : X — Y, is measurable, we
learn that o (fo: € I) Co(f). |

Exercise 9.10. Suppose that (Y7, F1) and (Y2, F2) are measurable spaces and
& is a subset of F; such that Y; € & and F; = o (&;) for ¢ = 1 and 2. Show
F1@Fy =0 (E) where £ :={A1 x Ay : A; € &; for i = 1,2} . Hints:

1. First show that if Y is a set and &; and Ss are two non-empty sub-
sets of 2Y, then o (0 (S1) U (S2)) = 0 (S1USz). (In fact, one has that
0 (Uaero (Sa)) = 0(UaerSq) for any collection of non-empty subsets,
{Sa}ael C 2Y)

2. After this you might start your proof as follows;

F1@ Fy:=o0(n] (F1)Ums (F2)) =0 (n] (0 (&) Ums (0(&))) =....

Remark 9.25. The reader should convince herself that Exercise [0.10] admits the
following extension. If I is any finite or countable index set, {(Y3, F;)},o; are
measurable spaces and &; C F; are such that Y; € & and F; = o (&;) for all

i € I, then
RictFi =0 ({HAi tAje&forall je I})

il
and in particular,

®i€[fi:U ({HAZA] E.Fj for allyeI}) .

i€l

The last fact is easily verified directly without the aid of Exercise [0.10}
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Exercise 9.11. Suppose that (Y7, F1) and (Y2, F2) are measurable spaces and
() £ B; C Y; for i = 1,2. Show

[F1® Falp, v, = [F1lp, ® [F2lp, -
Hint: you may find it useful to use the result of Exercise with
E:={A; xAy: A, € F; fori=1,2}.

Definition 9.26. A function f : X — Y between two topological spaces is
Borel measurable if f*(By) C Bx.

Proposition 9.27. Let X and Y be two topological spaces and f : X — Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma and By = o(1y),
["By = f*(a(1v)) = o(f*1v) Co(7x) = Bx.
[

Ezample 9.28. For i = 1,2,...,n, let m; : R® — R be defined by m; (x) = x;.
Then each 7; is continuous and therefore Bgn /Br — measurable.

Lemma 9.29. Let £ denote the collection of open rectangle in R™, then Bgn =
o (€). We also have that Bgn = o (11,...,7,) = Br®---®@Bgr and in particular,
Ay X -+ X A, € Brn whenever A; € Br fori=1,2,... ,n. Therefore Bgn may
be described as the o algebra generated by {A; X --- X A, : A; € Br}. (Also see

Remark[9.23)

Proof. Assertion 1. Since £ C Bgn, it follows that ¢ (£) C Brn. Let
& :={(a,b):a,b € Q" 3 a < b},
where, for a,b € R”, we write a < b iff a; < b; for i =1,2,...,n and let
(a,b) = (a1,b1) X -+ X (an,by) . (9.8)

Since every open set, V. C R™, may be written as a (necessarily) countable
union of elements from &y, we have

Veo() co(l),

ie. 0(&) and hence o (€) contains all open subsets of R™. Hence we may
conclude that

Brn = o (open sets) C 0 (&) C o (€) C Bgrn.
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9.1 Measurable Functions 97

Assertion 2. Since each 7; : R™ — R is continuous, it is Bgn /Bg — measur-
able and therefore, o (71, ...,7,) C Brn. Moreover, if (a,b) is as in Eq. ,
then

(a,b) = ﬁ?zlﬂ'i_l ((as, b)) € o (m1y ...y 70) -
Therefore, £ C o (71,...,7,) and Brn =0 (£) C o (m1,...,70) -
Assertion 3. If A; € Bg for i =1,2,...,n, then

Ay x - XA.,L:ﬂzlzlﬂ'i_l (Az) EU(Wl,...,Fn):BRn.

Corollary 9.30. If (X, M) is a measurable space, then

f:(flaf27--~7fn):X_>Rn

is (M, Brn) — measurable iff f; + X — R is (M, Bgr) — measurable for each i.
In particular, a function f: X — C is (M, Bc) — measurable iff Re f and Im f
are (M, Br) — measurable.

Proof. This is an application of Lemmal[9.29 and Corollary [0.23|with ¥; = R
for each 1. ]

Corollary 9.31. Let (X, M) be a measurable space and f,g : X — C be
(M, Bc) — measurable functions. Then f + g and f - g are also (M,Bg) —
measurable.

Proof. Define F: X - CxC, AL :CxC—-Cand M :CxC — C
by F(z) = (f(z),g9(z)), Ax(w,z) = w £+ z and M(w,z) = wz. Then Ay and
M are continuous and hence (Bcz,Bc) — measurable. Also F' is (M, Bez2) —
measurable since o F = f and mooF = g are (M, B¢ ) — measurable. Therefore
AyoF = fd+gand MoF = f-g, being the composition of measurable functions,
are also measurable. ]

Lemma 9.32. The function, i : C — C, defined by

o i z#£0
Z(Z)_{o@'f 2=0

is Bc/Bc - measurable.
Proof. We first assume a = 0. For any open set V C C we have
THV) = (VA {0h) U (V n{0})

Because i is continuous except at z =0, i~*(V \ {0}) is an open set and hence
in Be. Moreover, i~1(V N {0}) € Be since i~1(V N {0}) is either the empty set
or the one point set {0} . Therefore i*7¢ C B¢ and hence i*Be = i*(o(7¢)) =
o(i*1c) C Be which shows that ¢ is Borel measurable. ]
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98 9 Random Variables

Lemma 9.33. Let o € C, (X, M) be a measurable space, and f : X — C be a
(M, Bc) — measurable function. Then

) —11, if f(x)#0
Fz) = { fi)z) if f(z)=0
18 measurable.

Proof. Simply observe that
F:i0f+a~1{0}0f

where i (z) is as in Lemma [0.32} This gives the result since composition of
measurable maps are measurable and linear combination of measurable maps
are still measurable. [

Remark 9.34. For the real case of Lemma define i as above but now take
z to real. From the plot of i, Figure the reader may easily verify that
i1 ((—o0,a]) is an infinite half interval for all @ and therefore i is measurable.
See Example for another proof of this fact.

T
el

Ezample 9.35. As we saw in Remark i:R — R defined by

1
io={5i 20 (99)

is measurable by a simple direct argument. For an alternative argument, let

%forauneN.
21

in (2) :=

Then i, is continuous and lim,, iy (2) = i(2) for all z € R from which it
follows that i is Borel measurable.

Similarly we may consider ¢ defined in Eq. (9.9) to be a function from C to C.
Again i () is Borel measurable (see also Lemm since 7 (2) = limy,—s 00 iy (2)
for all z € C where,

% for all n € N.

in (Z) = |z|2 n

n
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Here is another corollary of Proposition [9.13

Corollary 9.36. Let (X, M) be a measurable space, f,g: X — R be functions
and define f-g: X — R and (f +g) : X — R using the conventions, 0- oo = 0
and (f+g) () =0 if f(x) =00 and g(x) = —o0 or f(z) = —oc0 and g (z) =
oo. Then f-g and f + g are measurable functions on X if both f and g are
measurable.

Exercise 9.12. Prove Corollary

Ezample 9.37. Let {r,}52; be an enumeration of the points in Q N [0, 1] and

define
> 1
o) = Y2 n
n=1

Ve =y

with the convention that

Then f: R — R is measurable. Indeed, if

0 ifx=r,

gn () = { T e #

then g, (z) = \/|i (x — r,)| is measurable as the composition of measurable is
measurable. Therefore g, +5 - 1(,. } is measurable as well. Finally,

N

. .1
R

is measurable since sums of measurable functions are measurable and limits
of measurable functions are measurable. Moral: if you can explicitly write a
function f : R — R down then it is going to be measurable.

Definition 9.38. Given a function f : X — R let fi(z) := max {f(x),0} and
f- (x) :=max (—f(x),0) = —min (f(z),0). Notice that f = f+ — f_.

Corollary 9.39. Suppose (X, M) is a measurable space and f : X — R is a
function. Then f is measurable iff f+ are measurable.

Proof. If f is measurable, then Proposition[9.15]implies f+ are measurable.
Conversely if fi are measurable then sois f = f. — f_. [ ]

Definition 9.40. Let (X, M) be a measurable space. A function ¢ : X — F
(F denotes either R, C or [0,00] C R) is a simple function if ¢ is M — By
measurable and p(X) contains only finitely many elements.
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Any such simple functions can be written as

@ = Aila, with 4; € M and \; € F. (9.10)
i=1
Indeed, take A1, Ao,..., A, to be an enumeration of the range of ¢ and A; =
0 r({\;}). Note that this argument shows that any simple function may be
written intrinsically as
o= yle (- (9.11)
y€eF

The next theorem shows that simple functions are “pointwise dense” in the
space of measurable functions.

Theorem 9.41 (Approximation Theorem). Let f : X — [0, 00] be measur-
able and define, see Figure[9.1}

2271,71
k n
cpn(x) = Z %1f_1((%7k2-21])(1') +2 ].f—l((Qn,oo])(x)
k=0
22m 1

k
= Z 271{2%<f§k2t”1 ($)+2n1{f>2n}<33)
k=0

then @, < f for all n, p,(x) T f(x) for allx € X and ¢, T [ uniformly on the
sets Xy :={x € X : f(x) < M} with M < cc.

Moreover, if f : X — C is a measurable function, then there exists simple
functions p,, such that im,, o ¢, (z) = f(x) for allx and |p,| T |f] asn — oco.

Proof. Since f~! ((£, &) and f~1((2", oc]) are in M as f is measurable,

n is a measurable simple function for each n. Because

k k+1 2k 2k +1 2k +1 2k +2
<27’ on ] = (2n+1’ on+1 ] ( on+l 7 9n+l ]’
if ((23%, 22’2—111]) then ¢, (z) = ¢py1(x) = 23% and if z €

-1
[ (( 2ﬁ¢117 3]2112}) then Spn(x) = 23&1 < éﬁﬂ = @n+1($). Similarly

(2", 00] = (27,271 U (2" o),
and so for z € f71((2"T! o0]), pn(z) = 2" < 2" = @, 1(z) and for z €
U2, 27, oy (x) > 2™ = ¢, (x). Therefore ¢, < p,11 for all n. It is
clear by construction that 0 < ¢,(z) < f(x) for all  and that 0 < f(x) —

on(x) <27 if x € Xon = {f < 2"} . Hence we have shown that ¢, (z) 1 f(x)
for all x € X and ¢, T f uniformly on bounded sets.
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Fig. 9.1. Constructing the simple function, 2, approximating a function, f : X —
[0, 00]. The graph of 2 is in red.

For the second assertion, first assume that f : X — R is a measurable
function and choose ¢ to be non-negative simple functions such that ¢ 1 fi
as n — oo and define ¢, = ¢;7 — ¢, . Then (using ¢} - ¢, < f+ - f- =0)

lonl = @ + 05 < O +0nir = lontl
and clearly |on| =@} +on T fr+f-=|fland o =@ —¢y = fr—f-=f
as n — o0o. Now suppose that f : X — C is measurable. We may now choose

simple function u,, and v, such that |u,| T |Re f|, |vn| T |Im f|, u, — Re f and
v, = Im f as n — oco. Let ¢,, = u,, + iv,, then

lonl® = u2 +02 1 |Re fI> + |Im f|* = | f[?

and ¢, = u, +iv, = Ref+ilm f = f as n — oc. -

9.2 Factoring Random Variables
Lemma 9.42. Suppose that (Y,F) is a measurable space andY : 2 =Y is a

map. Then to every (o(Y), Bg) — measurable function, h : 2 — R, there is a
(F, Bg) — measurable function H : Y — R such that h = H oY. More generally,
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100 9 Random Variables

R may be replaced by any “standard Borel space, ’E| i.e. a space, (S,Bgs) which
is measure theoretic isomorphic to a Borel subset of R.

(2,0(Y)) = (Y, F)

h .7
. H
S

(5765)

Proof. First suppose that h = 14 where A € 0(Y) = Y~ 1(F). Let B € F
such that A = Y~!(B) then 14 = 1y-1(p) = 1 oY and hence the lemma
is valid in this case with H = 1. More generally if h = > a;14, is a simple
function, then there exists B; € F such that 14, = 1p,0Y and hence h = HoY
with H := > a;1p, — a simple function on R.

For a general (F, Bg) — measurable function, A, from {2 — R, choose simple
functions h,, converging to h. Let H, : Y — R be simple functions such that
h, = H,, oY. Then it follows that

h= lim h, =limsuph, =limsupH,oY = HoY

n—00 n—o00 n—00

where H := limsup H,, — a measurable function from Y to R.
n—oo

For the last assertion we may assume that S € Bgr and By = (Br)g =
{ANS: AeBgr}. Since ig : S — R is measurable, what we have just proved
shows there exists, H : Y — R which is (F,Bg) — measurable such that h =
isoh = HoY. The only problems with H is that H (Y) may not be contained
in S. To fix this, let

He — Hlel(S) on H_I(S)
o * onY\ H~1(S)

where * is some fixed arbitrary point in S. It follows from Proposition [0.17] that

Hg :Y — Sis (F,Bs) — measurable and we still have h = Hg oY as the range

of Y must necessarily be in H~! (5). ]
Here is how this lemma will often be used in these notes.

Corollary 9.43. Suppose that (£2,8) is a measurable space, X,, : 2 — R are
B/Bgr — measurable functions, and B, := o (X1,...,X,) C B for each n € N.
Then h : 2 — R is B, — measurable iff there exists H : R™ — R which is
Brn /Br — measurable such that h = H (X1,...,X,).

! Standard Borel spaces include almost any measurable space that we will consider in
these notes. For example they include all complete seperable metric spaces equipped
with the Borel o — algebra, see Section m
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A

(R, Bgr)

Proof. By Lemma and Corollary the map, ¥V := (X1,...,X,) :
2 — R"is (B,Brn = Br ® -+ ® Br) — measurable and by Proposition
B, = o (Xi1,...,X,) = o(Y). Thus we may apply Lemma to see that
there exists a Bgr /Bgr — measurable map, H : R” — R, such that h = HoY =
H(Xy,...,X,). (]
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9.3 Summary of Measurability Statements

It may be worthwhile to gather the statements of the main measurability re-
sults of Sections and in one place. To do this let (2,8), (X, M), and
{(Ya, Fa)}oer be measurable spaces and f, : £2 — Y, be given maps for all
a € 1. Also let m,, : Y — Y, be the o — projection map,

F = QueciFa =0 (mq:a€l)

be the product o — algebra on Y, and f : 2 — Y be the unique map determined
by mq o f = fo for all « € I. Then the following measurability results hold;

1. For A C 2, the indicator function, 14, is (B, Bg) — measurable iff A € B.
(Example [0.8).

2. If £ C M generates M (i.e. M =0 (£)), then a map, g: 2 — X is (B, M)

— measurable iff g~ (£) C B (Lemmal9.3] and Proposition )

The notion of measurability may be localized (Proposition [9.17]).

Composition of measurable functions are measurable (Lemma .

5. Continuous functions between two topological spaces are also Borel mea-
surable (Proposition [9.27).

6. o (f) =0 (fa:a€I) (Proposition [0.24).

7. Amap, h: X — Q21is (M,0(f) =0 (fa : @ € I)) — measurable iff f, oh is
(M, F,) — measurable for all « € I (Proposition [9.21]).

8. Amap, h: X — Y is (M, F) - measurable iff m,0h is (M, F,) — measurable

for all o € I (Corollary [9.23)).
9. I ={1,2,...,n}, then

w0

®a61fa:]:1®"'®fn:0({141XAQX“-XAH:AiG.Fl' fOI‘iGI}),

this is a special case of Remark

10. Bgn = Br ® - - ® Bgr (n - times) for all n € N, i.e. the Borel o — algebra on
R™ is the same as the product o — algebra. (Lemma [9.29)).

11. The collection of measurable functions from (2, B) to (R, Bg) is closed un-
der the usual pointwise algebraic operations (Corollary. They are also
closed under the countable supremums, infimums, and limits (Proposition
9.15).

12. The collection of measurable functions from (§2, B) to (C, Be) is closed under
the usual pointwise algebraic operations and countable limits. (Corollary
and Proposition . The limiting assertion follows by considering
the real and imaginary parts of all functions involved.

13. The class of measurable functions from (£2,B) to (R, Bg) and from (2, B)
to (C, Bc) may be well approximated by measurable simple functions (The-

orem [9.41]).
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14. If X; : 2 — R are B/Bg — measurable maps and B, := o (X1,...,X,),
then h : 2 — R is B,, — measurable iff h = H (X1, ..., X,) for some Bgn /Br
— measurable map, H : R" — R (Corollary [0.43)).

15. We also have the more general factorization Lemma [0.42]

For the most part most of our future measurability issues can be resolved
by one or more of the items on this list.

9.4 Generating All Distributions from the Uniform
Distribution

The proof of the following proposition is routine and will be left to the reader.

Proposition 9.44. Let (X, M, u) be a measure space, (Y, F) be a measurable
space and f : X —'Y be a measurable map. Define a function v : F — [0, 00] by
v(A) == pu(f~1(A)) for all A € F. Then v is a measure on (Y, F). (In the future
we will denote v by f.op or po f=1 or Law,, (f) and call f.pu the push-forward
of u by f or the law of f under u.

If U € (0,1) is a random variable with the uniform distribution, G :
(0,1) = R is a non-decreasing function, and F' (z) := P (G (U) < x) is the cu-
mulative distribution function of G (U), then

F(z)=m({ye(0,1):G(y) <z}) =sup{y € (0,1):G(y) <z}. (9.12)

Now suppose that F' : R —[0,1] is a cumulative distribution function of a
probability measure on (R, Bg), i.e. F' is non-decreasing, right continuous, and
lim, 00 F (z) = 1, and lim,, o F () = 0. We would like to find a function
G as above such that Eq. holds. If F' happened to be continuous and
strictly increasing we should take G (y) = F~!(y). For general distributions
functions (F') we will show that

G(y):=inf{x eR:y < F(x)} forallye (0,1), (9.13)
(see see Figure is the required function.

Theorem 9.45. If F : R —[0,1] is a cumulative distribution function of a
probability measure p = pp on (R,Br) and G is defined as in Eq. , then
G :(0,1) = R is a non-decreasing (hence Borel measurable) function such that
Lawp (G (U)) = Gom = pp.

Proof. Since y < 1, G (y) < oo and since y > 0, G (y) > —oco wherein we

have used lim,_,o F (z) = 1, and lim,_, o, F (x) = 0 respectively. Since F is
non-decreasing it is easily seen that G is non-decreasing. To finish the proof it
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/ e R )
&) 6ty “A

Fig. 9.2. A pictorial definition of G.

suffices to prove G (y) < z iff y < F' (x). For once this is done it easily follows

that Eq. (9.12)) is valid.

By definition of G (y), G (y) < z iff there exists a non-increasing se-
quence {z,} C R such that y < F(x,) for all n and lim,,_,» z, < x. Since
limey oo F'(§) = 0 and y > 0, it follows that lim, . z, = ¢ € R for some
xg € (—00, z]. Because F is right continuous we may conclude that F (zg) > y.
Thus we have shown G (y) < « iff there exists xg < x such that y < F (x¢) . As
F is non-decreasing this last equivalence is equivalent to G (y) < z iff y < F (z).

[

Theorem 9.46 (Durret’s Version). Given a distribution function, F
R —1[0,1] let Y : (0,1) — R be defined (see Figure[9.3) by,

Y (z) :==sup{y: F(y) < x}.

ThenY : (0,1) = R is Borel measurable and Yom = up where pp is the unique
measure on (R, Br) such that pr ((a,b]) = F (b) — F (a) for all —co < a <b <
00.

Proof. Since Y : (0,1) — R is a non-decreasing function, Y is measurable.
Also observe, if y <Y (x), then F (y) < x and hence,

F(Y (2)-) = mli;{lx)F(y) <z

For y > Y (x), we have F (y) > x and therefore,

F(Y (@) =F(Y()4)= lim F()>a

and so we have shown
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Fig. 9.3. A pictorial definition of Y (z).

We will now show
{x € (0,1): Y (z) <yo}=(0,F (yo)] N (0,1). (9.14)

For the inclusion “C,” if z € (0,1) and Y (z) < yo, then z < F (Y (z)) < F (o),
ie. x € (0,F (yo)] N (0,1). Conversely if x € (0,1) and = < F (yo) then (by
definition of Y (z)) yo > Y (2).

From the identity in Eq. 7 it follows that Y is measurable and

(Yam) ((—00,y0)) = m (Y ' (=00, 40)) = m ((0, F (y0)] N (0,1)) = F (o) -

Therefore, Law (Y) = pp as desired. ]
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Integration Theory

In this chapter, we will greatly extend the “simple” integral or expectation
which was developed in Section above. Recall there that if (£2, B, u) was
measurable space and ¢ : {2 — [0,00) was a measurable simple function, then
we let

Eupi= Y Aulp=2A).
A€E€[0,00)

The conventions being use here is that 0- (¢ = 0) = 0 even when u (¢ =0) =
o0o. This convention is necessary in order to make the integral linear — at a
minimum we will want E, [0] = 0. Please be careful not blindly apply the
0 - 0o = 0 convention in other circumstances.

10.1 Integrals of positive functions

Definition 10.1. Let L™ = Lt (B) = {f : 2 — [0,00] : f is measurable}.
Define

/ f(w)du (w / fdp :=sup{E, ¢ : ¢ is simple and ¢ < f}.
We say the f € LT is integrable if [, fdu < oco. If A € B, let

/f ) dp (w /fdu—/lAfdu

We also use the notation,

Ef:‘/gfdu and E[f : A] ::/Afd,u.

Remark 10.2. Because of item 4. of Proposition if ¢ is a non-negative
simple function, [, ¢du =E,p so that [, is an extension of E,,.

Lemma 10.3. Let f,g € L™ (B). Then:

1. if A >0, then
/Afdu=A/ fdy
(9] 0

wherein X [, fdp =0 if X =0, even if [, fdu = oco.

2.if0< f <g, then

/Qfdué/ngdu. (10.1)

p(f >e) < */ fpl{f>s}du<*/ fPdp. (10.2)

3. For alle >0 and p > 0,

The inequality in Fq. 1s called Chebyshev’s Inequality for p =1 and
Markov’s inequality for p = 2.

4. 1f [, fdp < oo then pu(f = 00) =0 (i.e. f < 0o a.e.) and the set {f > 0}
is 0 — finite.

Proof. 1. We may assume A > 0 in which case,
/ Afdp = sup{E ¢ : ¢ is simple and ¢ < Af}
2
= sup {E,¢ : ¢ is simple and Ao < £}

= sup{E, [\Y] : ¢ is simple and ¢ < f}
= sup {AE, [¢] : ¢ is simple and ¢ < f}

:)\/Qfdu.

{¢ is simple and ¢ < f} C {p is simple and ¢ < g},

2. Since

Eq. (10.1)) follows from the definition of the integral.
3. Since 1{f>.3 < 1{f25}%f < éf we have

1\ /1 \”
Lipzey < Ip>ey <€f> < <€f>

and by monotonicity and the multiplicative property of the integral,

u(fZE)Z/Ql{fzs}dué (i) /1{f>s}fpdﬂ<( ) /fpd“'
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4. If p(f =o00) > 0, then @, := nlfs_ is a simple function such that
pn < f for all n and hence

np (f =o00) =E, (¢n) < /Qfdu

for all n. Letting n — oo shows [, fdu = oo. Thus if [, fdu < oo then

p(f =o00) =0.
Moreover,
{f >0 =0z {f > 1/n}
with p(f > 1/n) < n [, fdu < oo for each n. n

Theorem 10.4 (Monotone Convergence Theorem). Suppose f, € LT is
a sequence of functions such that fn, * f (f is necessarily in LT) then

/fnT/f as n — oo.

Proof. Since f, < f,,, < f, for all n < m < oo,

JEXY RS

from which if follows [ f,, is increasing in n and

1m,tas/ﬁ (10.3)

For the opposite inequality, let ¢ : 2 — [0,00) be a simple function such
that 0 < o < f, @ € (0,1) and £2,, := {fn, > ap} E| Notice that (2, 1 £2 and
fn > alg, - ¢ and so by definition of [ f,,

[ 2z Bulata,6) = aB, 10,4, (10.4)

Then using the identity

lo,p=1lg, Zyl{sa:y} = Zyl{v:y}ﬂﬂm

y>0 y>0
and the linearity of [E,, we have,

! Notice that in order for £2,, to be measurable we must assume that fr is measurable
here.
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Tim By [lg,¢) = lim Zoy (20 N {p =y})
y>

Z Yy le w(2, N {p =y}) (finite sum)
y>0

=> yufe =y}) =E, ¢,

y>0

wherein we have used the continuity of g under increasing unions for the third
equality. This identity allows us to let n — oo in Eq. to conclude
lim,, 0o f fn > aE, ] and since o € (0,1) was arbitrary we may further
conclude, E,, [¢] < lim, oo [ fn. The latter inequality being true for all simple
functions ¢ with ¢ < f then implies that

]/f:: sup Eule] < lim [ fu,

0<e<f n—roo
which combined with Eq. (10.3]) proves the theorem. ]

Remark 10.5. The definition [ fdu makes sense for all functions f : £2 — [0, c0]
and not just measurable functions. However, the measurability of the f, (and
hence f = lim, o fn) Was needed in the proof of the monotone convergence
theorem in order for £2,, := {f, > ap} to be measurable.

Remark 10.6 (“Explicit” Integral Formula). Given f : {2 — [0, 0] measurable,
we know from the approximation Theorem on T f where

22n_1

k n
©On = Z 271{27;%<f§k;1} +2 1{f>2n}.
k=0

Therefore by the monotone convergence theorem,

/fdu= lim [ pndu
Q n—oo Q

92n_q
, k [k k1) .
= lim Zwu<2n<fé 2n)+2u(f>2)

Corollary 10.7. If f,, € LT is a sequence of functions then

n=1 n=1
In particular, if Yo", [ fn < 00 then > 00 | fn < 00 a.e.
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Proof. First off we show that

/(f1+f2):/f1+/f2

by choosing non-negative simple function ¢, and %, such that ¢, 1T fi and
Yn T f2. Then (@, + 9y,) is simple as well and (¢, + ¥,) T (f1 + f2) so by the

monotone convergence theorem,

[t £ = i [ (o) = tim (/so /¢)
:nlirr;o @"+nlirgo/¢":/fl+/f2'

Now to the general case. Let gy = Z fnand g = Z fn, then gy T g and so

again by monotone convergence theorem and the add1t1v1ty just proved,

Z/fn —ngan/fﬁngnm/an

Example 10.8 (Sums as Integrals I). Suppose, 2 = N, B := 2V 1 (A) = # (A)
for A C 2 is the counting measure on B, and f : N — [0, 00] is a function. Since

n=1

it follows from Corollary [10.7] that

/fdu Z/f n) gy dpt = Zf n({nh) =S 1 ()

Thus the integral relative to counting measure is simply the infinite sum.

Lemma 10.9 (Sums as Integrals IT*). Let 2 be a set and p : 2 — [0, 00] be
a function, let p =3 . p(w)d, on B=2% ie.

p(A) =" pw).

w€eA

If f: 02— [0,00] is a function (which is necessarily measurable), then

/Qfdu =S
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Proof. Suppose that ¢ : 2 — [0,00) is a simple function, then ¢ =
ZzE[O,oo) Zl{‘P:Z} and

ZW_Z W) D zlpema@)= D 2 pw)lpmny (W)

wesn z€[0,00) z€[0,00) wEen
= Y wlle=2)= / .
z€[0,00) 2

So if ¢ : 2 — [0,00) is a simple function such that ¢ < f, then

/ pdp =Y op< Y fp.
2 Q Q

Taking the sup over ¢ in this last equation then shows that

[ fan<> 1o
Q 5

For the reverse inequality, let A C; 2 be a finite set and N € (0,00).
Set fN(w) = min{N, f(w)} and let ¢ 4 be the simple function given by
onAw) = 14(w) ¥ (w). Because pn a(w) < f(w),

ZfNP:ZQDMAPZ/ @N,Ad/JS/ fdu.
- > o o

Since fV 1 f as N — 0o, we may let N — oo in this last equation to concluded

zAjfp < /Qfdu-

Since A is arbitrary, this implies

fp< | fdp.
Sz,

Exercise 10.1. Suppose that p,, : B — [0,00] are measures on B for n € N.
Also suppose that p,(A) is increasing in n for all A € B. Prove that u: B —
[0, 00] defined by p(A) :=lim, 0 pin(A) is also a measure.

Lemma 10.10. If ¢ > 0 is a simple function and E C {2 is a null set, then
S edp =0 and hence . edp = [ edp.
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Proof. Write o = Y1 | Aila,, then 1o = >""" | A\jla,np and therefore,

n

/<de Z)\ZMANE) > xi-0=0.

i=1 =1
|

Proposition 10.11. If f, g > 0 are measurable functions such that f < g a.e.

then [, fdu < [, gdp. In particular if f = g a.e. then [, fdu = [, gdp. Also
if f >0 is a measurable function, then f =0 a.e. iff fQ fdp =0.

Proof. Let E be the exceptional null set where f > g, i.e.
E={f>g9}={vec: fw)>g(w)}

If ¢ > 0 is a measurable simple function such that ¢ < f, then

lgep <1pef <1lpeg<g

/wdu:/ lEcwduS/gdu-
2 2 2

As this is true for all 0 < ¢ < f, we find [, fdu < [, gdp. If f = g a.e. then

Jo fdn < [, gdp and [, gdp < [, fdp which implies [, fdu = [, gdp.
If f =0 a.e. then

and hence

fdu:/O-dm:O.
Q Q

Conversely if fQ fdup =0, then by Lemma m

u(f >1/n) §n/9fdu:()for all n.

As {f >1/n} 1+ {f > 0} it follows that u (f > 0) =1 lim, .o pu(f >1/n) =0,
ie. f=0a.e.
|

Corollary 10.12. Suppose that {f,} is a sequence of non-negative measurable
functions and f is a measurable function such that f, T f off a null set, then

/fnT/f as n — oo.

Proof. Let F C {2 be a null set such that f,1gc T flge as n — oo. Then
by the monotone convergence theorem and Proposition |[10.11

/fn:/fnlEcT/flEc:/fasn—)OO.
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Lemma 10.13 (Fatou’s Lemma). If f,, : 2 — [0,00] is a sequence of mea-
surable functions then

/lim inf f,, <lim inf/fn
n— 00 n—o0

Proof. Define g; := 1I;fk fn so that gi T liminf, . f, as k — oo. Since

gr < fpn for all k < n,
/gkg/fnforalank

/gk <lim inf /fn for all k.
n—oo

We may now use the monotone convergence theorem to let & — oo to find
/lim inf f, = / lim g MET Jim /g;€ < lim inf /fn
n— 00 k—o0 k—o0 n—o0
]

The following Corollary and the next lemma are simple applications of Corol-
lary

Corollary 10.14. Suppose that (£2,B, ) is a measure space and {A,} -, C B
is a collection of sets such that u(A; N A;) =0 for all i # j, then

n 1‘4 ZM

and therefore

Proof. Since

1 ( ;L.o=1An):/ lus  a,dp and
Q

> n(An) :/ D a,du
n=1 2 n=1
it suffices to show

Z 1a, = lue 4, pu— ae. (10.5)

Now Z A > 1U°° 1A, and Zn 1 ( ) 7é 1U701<>=1An (W) iff we A;N A] for
some i # j, that is

{ Z1A ¢1UMA()}ui<inmAj

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. ((10.5)) and hence the corollary. ]
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Lemma 10.15 (The First Borell — Cantelli Lemma). Let (2,8, 1) be a
measure space, A, € B, and set

{An i0.} ={we N:we A, forinfinitely many n’s} = ﬂ U Ay
N=1n>N

If > u(A,) < oo then p({A, i.0.}) =0.

Proof. (First Proof.) Let us first observe that

{4, 1.0} = {we ():ilAn(w) :oo}.

n=1

Hence if Y | 1(A,,) < co then
00> Y u(A,) = Z/ 1Andu=/ D la,dp
n=1 n=1"1 2 p=1

implies that > 14, (w) < oo for p - a.e. w. That is to say u({4, i.o.}) = 0.
=1

=
(Second Proof.) Of course we may give a strictly measure theoretic proof of
this fact:

w(A, io.) = A}i_r>nwu U A,
n>N

< lim Zu(An)

~ N—oo
n>N

and the last limit is zero since Y- | u(A,) < co. [

Ezample 10.16. Suppose that ({2, B, P) is a probability space (i.e. P({2) = 1)
and X, : £2 — {0,1} are Bernoulli random variables with P (X,, = 1) = p,, and
P(X,=0)=1-p, If > p, < oo, then P(X, =11io0.) = 0 and hence
P (X, =0 a.a.) =1. In particular, P (lim,_,0c X, =0) = 1.

10.2 Integrals of Complex Valued Functions
Definition 10.17. A measurable function f : 2 — R is integrable if f, =

flgssoy and f— = —f 1gp<oy are integrable. We write L' (u;R) for the space
of real valued integrable functions. For f € L' (u;R), let
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/Qfdu=/9f+du—/nffdu~

To shorten notation in this chapter we may simply write f fdp or even [ f for
[, fdp.
o fdu

Convention: If f, g : £2 — R are two measurable functions, let f + g denote
the collection of measurable functions h : £2 — R such that h(w) = f(w) + g(w)
whenever f(w)+ g(w) is well defined, i.e. is not of the form oo — 0o or —oo + 0.
We use a similar convention for f — g. Notice that if f,g € L!(y;R) and
hi,he € f + g, then hy = hs a.e. because |f| < co and |g| < oo a.e.

Notation 10.18 (Abuse of notation) We will sometimes denote the inte-
gral [, fdp by p(f). With this notation we have p(A) = p(14) for all A € B.

Remark 10.19. Since
fi S |f‘ §f++f—a

a measurable function f is integrable iff [ |f| dp < co. Hence
L' (i R) := {f : 2 = R: fis measurable and / |f] du < oo}.
I7)

If f,g € L' (;R) and f = g a.e. then fi = g+ a.e. and so it follows from
Proposition [10.11] that [ fdu = [ gdu. In particular if f,g € L' (4;R) we may

define
/Q(f+g)du:/9hdu

where h is any element of f + g.

Proposition 10.20. The map
feLl(/,L;R)—>/ fdueR
0

is linear and has the monotonicity property: [ fdu < [gdu for all f,g €
L' (u;R) such that f < g a.e.

Proof. Let f,g € L' (u;R) and a,b € R. By modifying f and g on a null set,
we may assume that f, g are real valued functions. We have af +bg € L' (u; R)
because
laf +bg| < la| ||+ [b] |g| € L (s R) -

If a < 0, then
(af)+ = —af- and (af)- = —afs
so that
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Jar=a[sva[ti=a(ft.- [£)=a]1

A similar calculation works for a > 0 and the case a = 0 is trivial so we have

shown that
/af = a/f.

Now set h = f 4+ g. Since h =hy — h_,

hy —h_=fy—f-+g9+—9g-

or
hy+f-+9-=h_+fi+9+.
Therefore,
Jrew [rv fo= [ [rov [ar
and hence

fomfro- foom foos for [ foom [+ o

Finally if fy — f- = f <g=g94+ —g— then fi +g_ < g+ + f— which implies

that
/f++/97§/9++/f7
or equivalently that

[1= - [r= fofore o

The monotonicity property is also a consequence of the linearity of the integral,
the fact that f < g a.e. implies 0 < g — f a.e. and Proposition [10.11 ]

Definition 10.21. A measurable function f
fQ |f| dp < co. Analogously to the real case, let

2 — C s integrable if

Ll(,u;(C)::{f:Q—HC: f is measurable and /Q\f| du<oo}.

denote the complex valued integrable functions. Because, max (|Re f|, |Im f|) <

I < V2max (|Re f|, [Im f]), [|f] dp < oo iff
/|Ref|du+/\1mf\dp<oo.

For f € L (1;C) define

/fdu:/Refdu+i/Imfdu.
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It is routine to show the integral is still linear on L! (y; C) (prove!). In the
remainder of this section, let L! (1) be either L' (4;C) or L* (u;R). If A € B
and f € L' (u;C) or f: 2 — [0,00] is a measurable function, let

/;fdu:ZQ/;lAfdu'

Proposition 10.22. Suppose that f € L (u;C), then

Léwwséme (10.6)

Proof. Start by writing fQ f du = Re" with R > 0. We may assume that
R = |fQ fdu| > 0 since otherwise there is nothing to prove. Since

Rze‘“’/ﬂf duz/oe-if’f du:/QRe(e_wf) du—i—i/ﬂlm(e_i@f) du,

it must be that fQ Im [e_wf] dp = 0. Using the monotonicity in Proposition

/Q fdu’ - /Q e (e‘“’f) dp = /Q ‘Re (e_wf)|d.“ < /Q |fldp.

Proposition 10.23. Let f,g € L (1), then

1. The set {f # 0} is o — finite, in fact {|f| > L} {f # 0} and p(|f| > 1) <
oo for all n.
2. The following are equivalent

a)fEf:ngforallEGB
b)g\f—glzo

c) f=gae

Proof. 1. By Chebyshev’s inequality, Lemma [10.3]

512 D < [ [71du < o0

for all n.
2. (a) = (c) Notice that

szégﬁég—m=o
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for all E € B. Taking F = {Re(f —¢g) > 0} and using 1g Re(f — g) > 0, we
learn that

0 :Re/ (f —g)du = /IERe(ffg) = 1gRe(f —g) =0 ae.
E
This implies that 15 = 0 a.e. which happens iff
u({Re(f —g) > 0}) = u(E) = 0.
Similar p(Re(f —g) < 0) = 0 so that Re(f —g) = 0 a.e. Similarly, Im(f —¢g) =0

a.e and hence f —g=0a.e., i.e. f =g a.e.
(¢) = (b) is clear and so is (b) = (a) since

’[Ef_/Eg‘S/If—m:o.

Lemma 10.24 (Integral Comparison I). Suppose that h € L' (u) satisfies

/ hdu >0 for all A € B, (10.7)
A

then h > 0 a.e.

Proof. Since by assumption,
0 :Im/ hdy = / Im hdp for all A € B,
A A

we may apply Proposition [10.23] to conclude that Imh = 0 a.e. Thus we may
now assume that h is real valued. Taking A = {h < 0} in Eq. (10.7) implies

/1A\h|d,u:/71,4hd,u:f/hdy§0.
Q Q A

However 14 |h| > 0 and therefore it follows that [, 14 || du = 0 and so Proposi-
tion [10.23|implies 14 |h| = 0 a.e. which then implies 0 = p (A) = p(h < 0) = 0.
[

Lemma 10.25 (Integral Comparison II). Suppose (£2,B, ) is a o — finite
measure space (i.e. there exists 2, € B such that 2, 1 2 and p (£2,) < oo for
alln) and f,g: 2 — [0,00] are B — measurable functions. Then f > g a.e. iff

/ fdu > / gdp for all A € B. (10.8)
A A

In particular f = g a.e. iff equality holds in Eq. .
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Proof. It was already shown in Proposition [10.11| that f > g a.e. implies
Eq. (10.8)). For the converse assertion, let B,, := {f <nlg,}. Then from Eq.

00 > np (§2,) Z/lenduZ/ngndu

from which it follows that both f1g and glp, are in L' (1) and hence h :=
flp, —glp, € L' (u). Using Eq. (10.8) again we know that

/h:/lenmA—/ngnmAZOforallAEB.
A

An application of Lemma [10.24] implies h > 0 a.e., i.e. flp, > glp, a.e. Since
B, 1 {f < o}, we may conclude that

fl{f<oo} = n11_>1r010 flg, > nler;oglgn = gl{f<oo} a-€.

Since f > g whenever f = co, we have shown f > g a.e.
If equality holds in Eq. , then we know that ¢ < f and f < g a.e., i.e.
f=gae. [
Notice that we can not drop the o — finiteness assumption in Lemma [10.25
For example, let u be the measure on B such that p(A) = oo when A # 0,
g = 3, and f = 2. Then equality holds (both sides are infinite unless A = ()
when they are both zero) in Eq. holds even though f < g everywhere.

Definition 10.26. Let (2,8, 1) be a measure space and L'(u) = L' (82, B, 1)
denote the set of L' (u) functions modulo the equivalence relation; f ~ g iff
f =g a.e. We make this into a normed space using the norm

Hf—mufa/u—gmﬂ

and into a metric space using p1(f,q) = ||f — g1 -

Warning;: in the future we will often not make much of a distinction between
L'(u) and L (1) . On occasion this can be dangerous and this danger will be
pointed out when necessary.

Remark 10.27. More generally we may define LP(u) = LP(£2, B, p) for p € [1, 00)
as the set of measurable functions f such that

/Lﬁwﬂ<m
0

modulo the equivalence relation; f ~ g iff f = g a.e.
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We will see in later that

1/p
1= ([ 1570) " tor £ € 2200

is a norm and (LP(u), ||-||.») is a Banach space in this norm and in particular,

1f +gll, < If1l, + llgll, for all f,g € LP ().

Theorem 10.28 (Dominated Convergence Theorem). Suppose frn, gn, g €
L' (), fo = fae, [fal < g0 € LN (1), g0 — g ae. and [, gndp — [, gdp.

Then f € L' (1) and
/ fdp = lim / fndp.
0 h—o0 0

(In most typical applications of this theorem g, = g € L () for all n.)

Proof. Notice that |f| = limy—eo [fn] < limp oo |gn] < g a.e. so that
f € L' (n). By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,

/ (g £ fdu = / liminf (g, + f,) du < hmlnf/ (gn £ fn)dp
o) 7}

n—oo
n—oo

/gd,u—i—hmmf <:|:/ fndu)
n—oo N

Since lim inf,,_,(—a,) = — limsup a,,, we have shown,
n—oo

liminf, o [, frdp
gdui/fduﬁ/gdw 1
/Q 5 o hrrlnﬁsolip Jo fndp

and therefore

= lim gndp + lim inf (i/ fnd,u)
0 n— oo N

limsup/ fnd,ug/ fdugliminf/ fndu.

n—oQ

This shows that lim [, f,dp exists and is equal to [, fdp. m
n—oo

Exercise 10.2. Give another proof of Proposition by first proving Eq.
with f being a simple function in which case the triangle inequality for
complex numbers will do the trick. Then use the approximation Theorem
along with the dominated convergence Theorem to handle the general
case.
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Corollary 10.29. Let {f,}o—, C L'(u) be a sequence such that

> [l < o0, then >0 1 fa is convergent a.e. and

/ (f_oj fn> = f_oj |t

Proof. The condition 3707, || fallp1(,) < o0 is equivalent to 377, [fa| €

L' (p). Hence Y7 | f, is almost everywhere convergent and if Sy := Zf:[:l I

then N
‘SN| < Z |fn| < Z |fn‘ € Ll (ﬂ)
n=1 n=1

So by the dominated convergence theorem,

/ an d,u:/ lim Sydp = lim /SNd,u
e\ n N—oo N—co |

N o)
i S [ guda =3 [ g
2 =2,

Ezample 10.30 (Sums as integrals). Suppose, 2 = N, B := 2N i is counting
measure on B (see Example [10.8]), and f : N — C is a function. From Example

we have f € L' (u) iff Y07 |f (n)] < oo, ie. iff the sum, > o2 f(n) is

absolutely convergent. Moreover, if f € L' (), we may again write

Z n) 1iny

and then use Corollary [10.29 to conclude that

/fd,u Z/f n) Lpnydp = Zf 1 ({n}) :i

So again the integral relative to counting measure is simply the infinite sum
provided the sum is absolutely convergent.
However if f(n) = (—1)" 1, then

is perfectly well defined while fN fdp is not. In fact in this case we have,
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/Nfﬂ:d,u = 00.

The point is that when we write Y - | f (n) the ordering of the terms in the
sum may matter. On the other hand, fN fdu knows nothing about the integer
ordering.

The following corollary will be routinely be used in the sequel — often without
explicit mention.

Corollary 10.31 (Differentiation Under the Integral). Suppose that J C
R is an open interval and f : J x {2 — C is a function such that

1. w — f(t,w) is measurable for each t € J.
2. f(to,-) € LY () for some tg € J.
3. ‘Z—{(t,w) exists for all (t,w).

4. There is a function g € L (u)

%t(ta')’ < g for each t € J.

Then f(t,-) € L'(u) for all t € J (ie. [,|f(t,w)|du(w) < o0), t —
fQ ft,w)du(w) is a differentiable function on J, and

d
p ftw /attwdu w).

Proof. By considering the real and imaginary parts of f separately, we may
assume that f is real. Also notice that

U (1,0) = Tim n(f(t+n"tw) = f(t,w))

ot n—o00

and therefore, for w — %(t,w) is a sequential limit of measurable functions

and hence is measurable for all ¢t € J. By the mean value theorem,
|f(t,w) = f(to,w)| < glw) [t —to| for all t € J (10.9)
and hence
[f(t,w)| < [f(E,w) = fto,w)| + |f (o, w)| < g(w) [t —to| + | f(to,w)| -
This shows f(t,-) € L' (u) for all t € J. Let G(t) := [, f(t,w)du(w), then

G(t) — G(to) flt,w) — f(to,w)
(to) / — 02 dp(w).

t—to

By assumption,
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t - f(t 0
t—to t—to ot

and by Eq. (10.9),

f(t,w) = f(to,w)
t—1o

(t,w) for all w € 2

‘gg(w)foralltGJandwEQ.

Therefore, we may apply the dominated convergence theorem to conclude
G(t
lim ( n) =

G(to) f( tmw f(to,w)
=1 d
n—00 tn —to n~>oo/ —t p(w)

:/ f(tmw) f(th )d,u(w)

tn — to

— [ G tto.)due)

for all sequences t, € J\ {to} such that t, — to. Therefore, G(to) =
G(t)=G(to)
t—to

limy 4, exists and

QM—Agmmww.
| |

Corollary 10.32. Suppose that {a,},., C C is a sequence of complex numbers
such that series
o0
)= Z an(z — 2z9)"
n=0

is convergent for |z — zp| < R, where R is some positive number. Then f :
D(z9, R) — C is complex differentiable on D(zy, R) and

g nan(z — 20)"

By induction it follows that f*) exists for all k and that

Z nan(z — 29)" L. (10.10)

oo

fBE) = "nn-1)...(n—k+1)an(z — 2)" "

n=0
Proof. Let p < R be given and choose r € (p,R). Since z = 29 +r €
&S}

D(z9, R), by assumption the series > a,r™ is convergent and in particular
n=0
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M := sup,, |a,r™| < co. We now apply Corollary [10.31] with X = NU{0}, u
being counting measure, {2 = D(zo, p) and g(z,n) := a,(z — 29)". Since

|9 (z,n)| = [nan(z — 20)" 7| < nlag|p" "
1 n—1 1 n—1
<-n (8) lan|r"™ < —n (B) M
r o \r r \r

. " is summable (by the Ratio test for exam-
ple), we may use G as our dominating function. It then follows from Corollary

1037
Zan (z —z0)"

is complex differentiable with the differential given as in Eq. (10.10). [ ]

and the function G(n) := 4n (g)”_

1) = [ gtz

10.3 Integration on R

Notation 10.33 If m is Lebesgue measure on Bg, [ is a non-negative Borel
measurable function and a < b with a,b € R, we will often write f: f(x)dz or

fab fdm for f(%b]mR fdm.

Ezample 10.34. Suppose —00 < a < b < oo, f € C([a,b],R) and m be Lebesgue
measure on R. Given a partition,

r={a=ayp<ay < <a,=>},

let
mesh(r) := max{|a; —a;_1|:j=1,...,n}
and )
fﬂ' (.Z‘) = Z f (al) 1(az,az+1](aj)'
1=0

Then

b n—1 n—1

[ fedm= 3 flaym (o)) = Y F @) (o - )
@ 1=0 1=0

is a Riemann sum. Therefore if {m;},—, is a sequence of partitions with
limg_, oo mesh(my) = 0, we know that

hm fﬂk dm = / f(x (10.11)
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where the latter integral is the Riemann integral. Using the (uniform) continuity
of f on [a,b], it easily follows that limy—,co fr, (z) = f (2) and that | fr, ()] <
g(x) == M1(qyp (v) for all z € (a,b] where M := max,eq4 |f (7)] < co. Since
Jzgdm = M (b—a) < oo, we may apply D.C.T. to conclude,

b b b
lim / frn dm:/ lim fr, dm:/ f dm.
k—oo [, a k—oo a

This equation with Eq. (10.11f) shows

/abfdm/abf(z)dx

whenever f € C([a,b],R), i.e. the Lebesgue and the Riemann integral agree
on continuous functions. See Theorem below for a more general statement
along these lines.

Theorem 10.35 (The Fundamental Theorem of Calculus) Suppose

—00 < a<b<oo, feC((ab),R)NL ((a,b),m) and F(z) = [ f(y
Then
1. F € C(la,b],R) N C*((a,b),R).
2. F'(z) = f(z) for allxe(a,b).
3. If G € C(]a, b] )ﬂ C1((a,b),R) is an anti-derivative of f on (a,b) (i.e.
f=Gl@ap) th

b
/ f(@)dm(z) = G(b) — G(a).

Proof. Since F(z) := [ 1(a.2)(y)f(y)dm(y), limg_,. 14 2)(y) = 1(a,2)(y) for
m — a.e. y and |1(a T) )f( )| < 1(a b)( )| f(y)| is an L' — function, it follows
from the dominated convergence Theorem [10.28] m that F' is continuous on [a, b].
Simple manipulations show,

Flath)=F) o1 [ ) = feldn)|ith >0
" B\ 2 @) = F@]dm(y)| it <0

< VL) — @)l dm(y) ith > 0

ST L £w) — F@)dmly) it <0

<sup{|f(y) — f(@)| - y € [z — [h],x + |hl]}

and the latter expression, by the continuity of f, goes to zero as h — 0 . This
shows F’ = f on (a,b).
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For the converse direction, we have by assumption that G'(x) = F'(z) for
€ (a,b). Therefore by the mean value theorem, F' — G = C for some constant
C. Hence

b
| #@dmiz) = Fo) = Fb) - F(@)
= (G(b) + C) - (G(a) + C) = G(b) — G(a).

]
We can use the above results to integrate some non-Riemann integrable
functions:

Ezxample 10.36. For all A > 0,

> 7)\30 71
/0 dm(x) and / 1—|—x2 =T.

The proof of these identities are similar. By the monotone convergence theorem,
Example and the fundamental theorem of calculus for Riemann integrals
(or Theorem [10.35| below),

00 N N
/ e~ dm(z) = lim e dm(z) = lim e Mdx
0

and

1 N N
/ ——dm(z) = lim dm(z) = lim dz
N

Ezample 10.37 ( fol 2~ Pdx ). In this example we consider the integrability of the
function, x — 7P for x near 0. Using the MCT and the fundamental theorem
of calculus,

/ i dm(z) = lim 1( 1]( ) ! dm( )
(0,1]

xP n—oo Jq
1 x—p-‘,—l 1
= lim —dzx = lim
n—oo % xP n—o00 ]_—p 1/n
1 .
oo ifp>1
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If p=1 we find

1 "1
/ — dm(z) = lim —dz = lim ln(x)H/n = 0.
(0

1) ¥P n—oo J1 X n—00
’ n

Exercise 10.3. Show
> 1 c ifp<1
/1 o im (@) = {pll ifp>1

Ezample 10.38 (Integration of Power Series). Suppose R > 0 and {a,} -, is a
sequence of complex numbers such that Y7 |a,|r™ < oo for all r € (0, R).
Then

[ T S S S S

for all =R < a < 8 < R. Indeed this follows from Corollary [10.29| since

18] lex]
> / ol dm( >sz(/ anlla]" dma) + | |an||w"dm<x>>

ﬁn+1 an+1

1 1
- |\ﬂ|”+ + o™ S
ap

Z n—H<2TZ|an|r"<oo

n=0 n=0
where 7 = max(|3], |a]).

Ezample 10.39. Let {r,}22, be an enumeration of the points in QN [0, 1] and
define

1
fle)=) 27"—
nz::l \/|x_rn|

with the convention that
1

Ve —mrnl

=5ifx =r,.
Since, By Theorem [10.35]

/11 d /11 d+/rn71 d

€T = X z

0 ,/\x_rn| rn VI —Tp 0o VIn—2
=2z _Tnﬁn =2V =zl =2 (V1 =1 — /1)

<4,

we find
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dx<z2 "4 =4 < 0.

| fim(@) =3 / . T —

In particular, m(f = co0) = 0, i.e. that f < oo for almost every z € [0,1] and
this implies that

< oo for a.e. z € [0, 1].

1
97
; Ve —=mrnl

This result is somewhat surprising since the singularities of the summands form
a dense subset of [0, 1].

Example 10.40. The following limit holds,

n

x n
I (1= ) dm() = 1. 10.12
A f, ) dmi) (1012)
DCT Proof. To verify this, let f,(z) = (1-2) 10,n x). Then

lim,, o0 frn(x) = 7% for all z > 0. Moreover by sunple calculu
l—x<e*forall z e R.

Therefore, for x < n, we have

0<1-Z<en = (1-2) < [ewn]" = e,
n

3

from which it follows that
0 < fu(x) <e ® forall z > 0.

From Example [10.36] we know
/ e %dm(z) =1 < oo,
0

so that e is an integrable function on [0,00). Hence by the dominated con-
vergence theorem,

n

lim ; (1—£) dm(z) = lim fu(z)dm(z)

n—00 n n—oo [q

:/OOO lim fn(x)dm(x):/ooo e~ dm(z) = 1.

n—oo

—x —x

2 Since y = 1 — x is the tangent line to y = e ® at « = 0 and e~ % is convex up, it

follows that 1 —x < e~ % for all x € R.
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MCT Proof. The limit in Eq. (10.12)) may also be computed using the
monotone convergence theorem. To do this we must show that n — f, (z) is
increasing in n for each x and for this it suffices to consider n > z. But for
n>x,

where, for 0 <y < 1,

Since h (0) = 0 and

R (y) = — + + >0

it follows that A > 0. Thus we have shown, f, (z) T e~ as n — oo as claimed.
Ezample 10.41. Suppose that f,(x) := nl 1 (£) for n € N. Then
lim,, 00 fr (z) =0 for all x € R while

lim fn( )dz = lim 1:1;&0:/ lim f, (z)dx
n—o0 n—o0 R 00

The problem is that the best dominating function we can take is

g(a:)—supfn Zn L 1 (2).

n+1’

Notice that

- 1 1 — 1
d = . —_—— = =
/Rg(x) v ;n (n n+1> ;n—kl
Ezample 10.42 (Jordan’s Lemma). In this example, let us consider the limit;

s 9 .
lim cos (sin ) e~ s gp.
0 n

n— oo
Let 9
fn (0) = 1(0,x) (0) cos <sin ) e msin()
n
Then
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|fnl < 1(0,m € L' (M)
and
lim f,, (0) = 10, (0) Lz} (0) = Lyny ().

n— oo

Therefore by the D.C.T.,

™ I} )
lim | cos <sin n) e 50 g — /R Liny (8) dm () = m ({r}) = 0.
Example 10.43. Recall from Example [10.36| that
A= / e~ dm(z) for all A > 0.
[0,00)

Let € > 0. For A > 2¢ > 0 and n € N there exists C),(g) < oo such that

< —_— AT — gl —Az < —ET.
0< < dA) e z"e < Cple)e

Using this fact, Corollary [10.31] and induction gives

d\" d\"
I\—n—1 _ ([ _ 7 -1 _ 7 -z
nI\ ( d)\) A /[0700) ( d/\) e "*dm(x)

= / e M dm(zx).
[0,00)

nl = )\"/ z"e M dm(x). (10.13)
[0,00)

That is

Remark 10.44. Corollary[10.31jmay be generalized by allowing the hypothesis to
hold for x € X \ E where E € B is a fixed null set, i.e. E must be independent
of ¢. Consider what happens if we formally apply Corollary [10.31] to g(¢) :=

fOOO 11§tdm(x)a
Lod [T 2 [0

The last integral is zero since %lxgt = 0 unless t = x in which case it is not
defined. On the other hand g(t) = ¢ so that ¢(¢) = 1. (The reader should decide
which hypothesis of Corollary [10.31| has been violated in this example.)

Exercise 10.4 (Folland 2.28 on p. 60.). Compute the following limits and
justify your calculations:

1. lim fo sin(e) .

n— 00 (a+3 )”
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: 1 1+nm2
2. nll_{lgo 0 {ta2)™ d

3. lim fooo nsin(xz/n) dx

n— 00 (1+z%)

4. For all a € R compute,

oo

f(a) := lim n(1 4 n?z?)"ldz.
n—oo a

Exercise 10.5 (Integration by Parts). Suppose that f,g : R — R are two
continuously differentiable functions such that f’g, fg’, and fg are all Lebesgue
integrable functions on R. Prove the following integration by parts formula;

/Rf’ () g(x)dx =— /R f(z)-d (v)dz. (10.14)

Similarly show that if Suppose that f,g : [0,00)— [0,00) are two continuously
differentiable functions such that f’g, fg’, and fg are all Lebesgue integrable
functions on [0, 00), then

/OOO f'(@)-g(x)de =—f(0)g(0) - /Ooo f(@)-d (z)da. (10.15)

Outline: 1. First notice that Eq. holds if f (z) =0 for |z| > N for
some N < oo by undergraduate calculus.

2. Let ¢ : R —[0,1] be a continuously differentiable function such that
Y (x) =11if || <1 and ¢ () = 0 if |x| > 2. For any € > 0 let ¢.(z) = ¢(ex)
Write out the identity in Eq. with f (z) being replaced by f (x) . ().

3. Now use the dominated convergence theorem to pass to the limit as e | 0
in the identity you found in step 2.

4. A similar outline works to prove Eq. .

Definition 10.45 (Gamma Function). The Gamma function, I' : R, —
R, is defined by

oo o0 d
I'(z) ::/ uzflefudu:/ wemu Y (10.16)
0 0 u

(The reader should check that I'(xz) < oo for all x > 0.)
Here are some of the more basic properties of this function.

Ezample 10.46 (I" — function properties). Let I' be the gamma function, then;
1. I' (1) = 1 as is easily verified.
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2. I'(x+ 1) =x'(z) for all z > 0 as follows by integration by parts;

oo oo d
F(m—l—l):/ e‘“u”du:/ u‘”(—e“)du
0 0 du
:x/ u”te ™ du == I'(z).
0

In particular, it follows from items 1. and 2. and induction that

I'(n+1) =n!for all n € N. (10.17)

(Equation ([10.17)) was also proved in Eq. (10.13).)

3. I'(1/2) = y/m. This last assertion is a bit trickier. One proof is to make use
of the fact (proved below in Lemma [14.19)) that

/ e o dr = \/? for all a > 0. (10.18)
o a

Taking a = 1 and making the change of variables, u = r? below implies,

V= / e dr = 2/ w1 2e ™ du = I'(1/2).
—00 0

r(1/2) = 2/000 e dr = /_OO e " dr
=5L(1) = V. )

4. A simple induction argument using items 2. and 3. now shows that

r(neg) =t

where (D! := 1 and 2n—1D!! = 2n—-1)(2n—-3)...3 -1 for n €
N.Letting the mesh of IT tend to zero using the uniform continuity of f
then shows A (f) = u(f).

10.4 Densities and Change of Variables Theorems

Exercise 10.6 (Measures and Densities). Let (X, M,u) be a measure
space and p : X — [0,00] be a measurable function. For A € M, set

v(A) = [, pdp.

1. Show v : M — [0, ] is a measure.
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2. Let f: X — [0, 00] be a measurable function, show

[ sav= [ foan (10.19)

Hint: first prove the relationship for characteristic functions, then for sim-
ple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X — C is in L'(v) iff |f|p € L'(n)
and if f € L'(v) then Eq. still holds.

Notation 10.47 It is customary to informally describe v defined in Ezercise
by writing dv = pdju.

Exercise 10.7 (Abstract Change of Variables Formula). Let (X, M, p)
be a measure space, (Y, F) be a measurable space and f : X — Y be a mea-
surable map. Recall that v = f.u : F — [0, 00] defined by v(A) := u(f~(A))
for all A € F is a measure on F.

/gdu_/ gof (10.20)

for all measurable functions g : ¥ — [0, oo]. Hint: see the hint from Exercise
110.0l
2. Show a measurable function g : Y — Cis in L}(v) iff go f € L!(u) and that

Eq. (10.20) holds for all g € L!(v).

Ezample 10.48. Suppose (§2,B, P) is a probability space and {X;};_, are ran-
dom variables on 2 with v := Lawp (X1,...,X,,), then

1. Show

E[g(Xl,...,Xn)]:/nng

for all ¢ : R® — R which are Borel measurable and either bounded or non-
negative. This follows directly from Exercise with f = (X1,...,X,) :
2 —-R"and u=P.

Remark 10.49. As a special case of Example[I0.48] suppose that X is a random
variable on a probability space, (£2,B8, P), and F (z) := P(X < z). Then

X)) = /R f (@) dF (2) (10.21)

where dF (x) is shorthand for dup (x) and pp is the unique probability measure
on (R, Bg) such that pup ((—oo,z]) = F (x) for all z € R. Moreover if F: R —
[0, 1] happens to be C''-function, then
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durp (z) = F' (x) dm (z) (10.22)

and Eq. may be written as
B (0] = [ ) F (@) dm @), (10.23)

To verify Eq. (10.22)) it suffices to observe, by the fundamental theorem of
calculus, that

b
,uF((a,b]):F(b)—F(a):/ F’(x)dx/( b]F’dm.

From this equation we may deduce that pp (A) = [, F'dm for all A € Bg.
Equation [10.23] now follows from Exercise [I0.6}

Exercise 10.8. Let F' : R — R be a C'-function such that F’(x) > 0 for all
x € R and lim,_, 1o F(z) = £oo. (Notice that F is strictly increasing so that
F~1:R — R exists and moreover, by the inverse function theorem that F~! is
a C! — function.) Let m be Lebesgue measure on Bg and

v(4) = m(F(A)) = m((F~) " (4)) = (B 'm) (4)
for all A € Bg. Show dv = F'dm. Use this result to prove the change of variable
formula,

/hoF~F’dm = / hdm (10.24)
R R

which is valid for all Borel measurable functions h : R — [0, co].

Hint: Start by showing dv = F’'dm on sets of the form A = (a,b] with
a,b € R and a < b. Then use the uniqueness assertions in Exercise to
conclude dv = F’dm on all of Bg. To prove Eq. apply Exercise
with g=ho F and f = F~L.

10.5 Square Integrable Random Variables and
Correlations

Suppose that (2,8, P) is a probability space. We say that X : 2 — R is
integrable if X € L' (P) and square integrable if X € L? (P). When X is
integrable we let ax := EX be the mean of X.
Now suppose that X,Y : {2 — R are two square integrable random variables.
Since
0<|X =Y = X[+ V" —2|x| Y],
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it follows that
v L2
(XY < SIXP+ 5 Y[ e L(P).

In particular by taking Y = 1, we learn that | X| < % (1 + |X2|) which shows
that every square integrable random variable is also integrable.

Definition 10.50. The covariance, Cov (X,Y), of two square integrable ran-
dom variables, X and Y, is defined by

Cov(X,)Y)=E[X —ax)(Y —ay)|=E[XY]-EX -EY
where ax :=EX and ay := EY. The variance of X,
Var (X) := Cov (X, X) = E[X?] — (EX)? (10.25)

We say that X and Y are uncorrelated if Cov(X,Y) = 0, i.e. E[XY] =
EX - EY. More generally we say {Xy},_, C L*(P) are uncorrelated iff
Cov (X;,X;) =0 for all i # j.

It follows from Eq. (10.25]) that
Var (X) <E[X?] for all X € L*(P). (10.26)

Lemma 10.51. The covariance function, Cov (X,Y) is bilinear in X and
Y and Cov(X,Y) = 0 if either X or Y is constant. For any constant k,
Var (X + k) = Var (X) and Var (kX) = k? Var (X). If {Xx},_, are uncor-
related L? (P) — random variables, then

Var (S,) = Y _ Var (Xx).
k=1

Proof. We leave most of this simple proof to the reader. As an example of
the type of argument involved, let us prove Var (X + k) = Var (X);

Var (X + k) = Cov (X + k, X + k) = Cov (X + &k, X) + Cov (X + k, k)
=Cov (X +k,X) =Cov (X, X)+ Cov (k, X)
= Cov (X, X) = Var (X),

wherein we have used the bilinearity of Cov (-,-) and the property that
Cov (Y, k) = 0 whenever k is a constant. ]

Exercise 10.9 (A Weak Law of Large Numbers). Assume {X,} is a
sequence if uncorrelated square integrable random variables which are identi-

cally distributed, i.e. X, 2 x,, for all m,n € N. Let S, := Y1, X, p:=EXj,
and o2 := Var (X;) (these are independent of k). Show;
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2 2
E<Snu> = Var <Sn> :J—, and
n n n

Sy, o2
— —pl>e) < —

n ne

(

for all € > 0 and n € N. (Compare this with Exercise )

10.6 Medians

Definition 10.52 (Medians). Suppose (£2, 8, P) is a probability space and X :
2 — R is a random variable. We then let We say m € R is a median of X if

median (X) :={m eR: P(X >m)AP(X <m) >1/2}
and call any element m € median (X) C R a median of X.

Example 10.53. Suppose —o0o < a < b < oo and X is a simple random variable
such that P(X =a) = 1 = P(X =b). It is then an easy exercise to see
that median (X) = [a,b] . Similarly if X is a simple random variable such that
P(X =a)=1/4 and P (X =b) = 3/4, then median (X) = {b}.

Recall if X is an L? (P) - random variable and y = EX, then for any a € R,
E(X—a =E[X — g+ (u—a)]’
=E(X —p)’+2(u—a)E(X —p)+ (1 —a)?
—E(X —p)’ +(n—a)’
so that
p=argminE [X — a]2 .
a
In the problems below along with Remark [10.55| you will show

median (X) = argmin E|X — al.

Ezample 10.54. Suppose that dy (x) = ﬁlagwggdm on (R, Br) and X (z) =

2. Then median (X) = 5*2'—‘)‘ while for @ < a < 8,

a

B

F@y:w—aﬂﬂX—M:—/‘@—aMx+/(x—wm

[0 a
1

=5 [l@-a+ (-0
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As simple calculus exercise shows this function is minimized at a = O‘—JQF’E and
p(etBY_(B-a)
2 4

Exercise 10.10. Let (£2,B, P) be a probability space and X : 2 — R is a
random variable. Prove the following assertions.

1.If a < b and a,b € median (X), then [a,b] C median (X).
2. If

m_ :=inf{m eR: P(X <m)>1/2} and
my:=sup{meR:P(X >m)>1/2},

show —oo < m_ < my4 < oo and median (X) = [m_,m4]. [In particular
median (X) # 0.]

3.If I = [a,b] is a bounded closed interval such that P (X € I) > 1/2, then
either {a,b} Nmedian (X) # () or median (X) C (a,b).

Exercise 10.11. Let (£2, B, P) be a probability space, X € L' (P:R), and
m € median (X) . Show for any 1 < p < oo and a € R that

Im —al|’ <2E[|X —a|’]. (10.27)
[In particular, by taking a = EX and p = 2 it follows thatﬂ
|m —EX| < /2 Var (X)

and if Var (X) is small the medians of X and mean, EX, must be close. | Hint:
you may find it useful to consider two case, m > a and m < a.

Exercise 10.12 (L!-minimization). Let (£2,B,P) be a probability space,
X € L' (P :R), and m € median (X) . Show

E|X —a|>E|X —m)| for all a € R. (10.28)
Hints:

1.Let Y = X —m and o = a — m, then 0 € median (Y') = median (X) — m
and Eq. (10.28) is then equivalent to proving

ElY —a|>E|Y] for all « € R. (10.29)
2. A simple exercise shows for a > 0 that

|Y — Oz| — |Y| = 70(1)/2(1 -+ (Oé — QY) 10<y<a -+ alygo (1030)
> —alyso + aly<g. (10.31)
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Fig. 10.1. Graph of |y — 3| — |y| .

3. Integrate Eq. (10.31)) to find to prove Eq. (10.29)) for a > 0.
4. If a < 0 show that you may use item 3. by replacing Y by —

Remark 10.55. Suppose again the 0 € median (Y') and o > 0. From Eq. (10.30)
it follows that

Y —a| = Y] =—alysa + alyca =2V - locy<a
and integrating this identity implies,
EY —a|—-E|lY|=—-aP (Y >a)+aP (Y <a)—2E[Y1cy<a)
=a(l-2P(Y > a)) —2E[Y1pcy<a)
>a(l-2P(Y > a)).

Thus if E|Y —a| = E|Y| we conclude that 0 > 1 — 2P (Y > «), i.e. that
P >a) > 1/2. Since P(Y <a) > P(Y >0) > 1/2 it follows that a €
median (V). A similar argument (or by replacing Y by —Y) we may also con-
clude that E|Y — a| = E|Y| implies o € median (Y') when a < 0. Consequently,
it is not hard to now conclude that m € median (X) iff

E|X —m|=minE|X —al.
a€R

10.7 Some Common Distributions

10.7.1 Some Discrete Distributions

Exercise 10.13. Let d € N, 2 = N¢, B =29 1 : B — Ny U {oo} be counting
measure on {2, and for x € R% and w € §2, let 2% := %" ... z%». Further suppose
that f: 2 — C is function and r; > 0 for 1 < ¢ < d such that

3 One may remove the factor of 2 here by using the next problem along with Holder’s
or Jensen’s inequalites which has not yet been covered.
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S 1f @) /|f |y (w) < oo,

wen
where r := (r1,...,74) . Show;

1. There is a constant, C' < oo such that |f (w)| < & for all w € (2.

2. Let
U::{xeRd:|xi|<riVi} andU:{xeRd:|xi|§nVi}

Show > |If (w)a¥| < oo for all 2 € U and the function, F : U — R

defined by
x) = Z f (w) x* is continuous on U.
wen
3. Show, for all z € U and 1 <7 < d, that
0

Fa)= Y wif (w)a

wes?

axi

where ¢; = (0,...,0,1,0,...
4. For any a € {2, let 0% := (‘%1) L (%) “and a! == szl a;! Explain
why we may now conclude that

,0) is the i*" — standard basis vector on R?.

O°F (z) = Z alf (w)z¥ = for all x € U. (10.32)
wesn

5. Conclude that f (a) = (aaF)(O) for all a € (2.
6. If g : 2 — C is another functlon such that Y g (w)a¥ =3 o f(w)a¥
for x in a neighborhood of 0 € R?, then g (w) = f (w) for all w € £2.

Definition 10.56 (Generating Function). Suppose that N : 2 — Ny is an
integer valued random variable on a probability space, (2,8, P). The generating
function associated to N is defined by

Gy (2) = ZP ) 2" for |2| < 1. (10.33)

By Corollary |10.32} it follows that P (N =n) = %Gg\}l) (0) so that Gy can
be used to completely recover the distribution of N.

Proposition 10.57 (Generating Functions). The generating function sat-
isfies,

GPVE=E[NWN-1)...(N=k+1)2Y"] for |2 <1
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and

a™® (1) znglc:(’f) (2)=E[N(N—-1)...(N—k+1)],

where it is possible that one and hence both sides of this equation are infinite.
In particular, G' (1) :=lim,4 G’ (z) = EN and if EN? < oo,

Var (N) =G" (1) + G (1) - [G' (1)]°. (10.34)

Proof. By Corollary [10.32| for |z| < 1,

G§§>(z):ip(Nzn).n(n—1)...(n_k+1)zn*k
n=0
=E[N(N—1)...(N—k+1)zN*]. (10.35)
Since, for z € (0,1),
0OSN(N—-1)...(N—k+1)2N"F 1t NN-1)...(N—k+1) as 211,
we may apply the MCT to pass to the limit as z 1 1 in Eq. to find,
G (1):1%10(’“) (2)=E[N(N—-1)...(N —k+1)].
]

Exercise 10.14 (Some Discrete Distributions). Let p € (0,1] and A > 0.
In the four parts below, the distribution of N will be described. You should
work out the generating function, Gy (), in each case and use it to verify the
given formulas for EN and Var (N).

1. Bernoulli(p) : P(N=1) = p and P(N =0) = 1 — p. You should find
EN = p and Var (N) = p — p°.

2. Binomial(n,p) : P(N=k) = (Z)pk (1 —p)n_k for k = 0,1,...,n.
(P (N = k) is the probability of k successes in a sequence of n indepen-
dent yes/no experiments with probability of success being p.) You should
find EN = np and Var (N) = n(p—pQ).

3. Geometric(p) : P(N=4k) = p(1—p)* ! for k € N. (P(N =k) is the
probability that the &*® — trial is the first time of success out a sequence
of independent trials with probability of success being p.) You should find
EN = 1/p and Var (N) = 2.

4. Poisson(\) : P(N =k) = %e‘A for all & € Ny. You should find EN = X =
Var (N).
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Exercise 10.15 (A law of rare events). Let S, , 4 Binomial(n,p), k € N,
DPn = An/n where A, — A > 0 as n — oo. Show that

k
nll_{gcp(smm =k)= e
[See Exercise [10.14] for the definitions of the distributions being used here.
Interpretation. Given a large n € N, k € N with k << n, and p = O (1/n),
then

A = P (Poisson (\) = k).

k
(pn) —

P (Binomial (n,p) = k) = P (Poisson (pn) = k) = o

(We will come back to the Poisson distribution and the related Poisson process
later on.)
10.7.2 Continuous Distributions

Definition 10.58 (Moment Generating Function). Let (£2,8,P) be a
probability space and X : 2 — R a random wvariable. The moment gener-
ating function of X is Mx : R — [0, 00] defined by

Mx (t) :=E [etx] .

Proposition 10.59. Suppose there exists € > 0 such that E [65|X|] < 00, then
Mx (t) is a smooth function of t € (—¢,€) and

%) m L
Mx (t) =" —EX" if |t <e. (10.36)
n=0
In particular,
d n
EX" = (dt> lt=oMx (t) for all n € Ny. (10.37)
Proof. If |t| < e, then
- " n o " n| _ | X|
E Zoﬁm <E Z{)Hm fE[e } < .
n= n—

it etX < eflX! for all |t| < e. Hence it follows from Corollary [10.29| that, for
t| <e,

tX n n
Mx () =E[¢X] =E | —X ] =) EX".
n=0 n=0
Equation ((10.37)) now is a consequence of Corollary [10.32 ]
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Ezample 10.60 (Uniform Distribution,). Suppose that X has the uniform distri-
bution in [0, b] for some b € (0,00), i.e. X, P = 7 -m on [0,b] . More explicitly,

b
E[f(X)] = % /0 f (z) dz for all bounded measurable f.

The moment generating function for X is;

M t—l bmd e g
X()—boe x—bt(e )

oo

=1
g; ZnJrl

On the other hand (see Proposition [{10.59)),

Mx (t) = =] IEX
n=0
Thus it follows that "
EX"™ = .
n+1
Of course this may be calculated directly just as easily,
I 1 b
EX’!L _ = nd _ n+1|b _ .
b/ox o b(n+1)x T n+1

Definition 10.61. A random variable T > 0 is said to be exponential with
parameter \ € [0,00) provided, P (T >t) = e~ for all t > 0. We will write

TLE (A\) for short.

If A > 0, we have

P(T>t)=e M= e dr

—~
3

from which it follows that P (T € (t,t + dt)) = A;>pe~*dt. Applying Corollary
10.31] repeatedly implies,

o d o0 d
ET = —AT — _ —AT _ -1 _ y—1
/0 TAe Ndr )\( d/\)/o e "dr A( dA)A =\

and more generally that

%) k 00 k
ET* — / The= M \dr = \ 4 / e Mdr =\ 4 A= kIR,
0 d\ 0 d\

(10.38)

Page: 121 job: prob

10.7 Some Common Distributions 121

In particular we see that
Var (T) =222 = A2 = \72 (10.39)

Alternatively we may compute the moment generating function for T,

My (a) :=E[e*T] = / e Ne NMdr
0

_ aTy , —AT _ _
7/0 AN T = = ey (10.40)

which is valid for @ < A. On the other hand (see Proposition [10.59)), we know
that

oo n

a a mn
EleT] =) —E[T"] for |a] <. (10.41)
n=0
Comparing this with Eq. (10.40) again shows that Eq. (10.38) is valid.
Here is yet another way to understand and generalize Eq. (10.40)). We simply

make the change of variables, u = A7 in the integral in Eq. (10.38]) to learn,

T = )\‘k/ uFe ™ "dr = \TF0 (k4 1).
0
This last equation is valid for all k¥ € (—1,00) — in particular k£ need not be an
integer.

Theorem 10.62 (Memoryless property). A random wvariable, T € (0, 0]
has an exponential distribution iff it satisfies the memoryless property:

P(T>s+tT>s)=P(T>t) forall s,t >0,

where as usual, P (A|B) :
E (0) means that P(T >t

a.s.)

Proof. (The following proof is taken from [32].) Suppose first that T' 1E (N
for some A > 0. Then

P (AN B) /P (B) when p(B) > 0. (Note that T <
=e% =1 for all t > 0 and therefore that T = oo

0

P(T t —A(s+t)
P(T>s+tT>s) = ](D(T:s:) ) :eeﬂs —eM=P(T>1).

For the converse, let g (¢t) := P (T > t), then by assumption,

g(t+s)

e =P(T>s+tT>s)=P(T>t)=g(t)
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whenever g (s) # 0 and ¢ (t) is a decreasing function. Therefore if g (s) = 0 for
some s > 0 then g (¢) = 0 for all ¢ > s. Thus it follows that

gt+s)=g(t)g(s) forall s,t > 0.

Since T > 0, we know that g(1/n) = P(T > 1/n) > 0 for some n and
therefore, g (1) = g (1/n)" > 0 and we may write g (1) = e~ for some 0 < \ <
00.

Observe for p,q € N, g(p/q) = g(1/q)" and taking p = ¢ then shows,
e =g (1) = g(1/q)?. Therefore, g (p/q) = e~ /9 so that g (t) = e~ for all
teQy :=QNR,. Given r,s € Q4 and ¢t € R such that » <t < s we have,
since ¢ is decreasing, that

e N =g(r)>g(t)>g(s)=e.

Hence letting s Tt and r | t in the above equations shows that g (t) = e~ for

all t € Ry and therefore T LE (A). |
We now turn to the all important Gaussian (normal) random variables.

Definition 10.63 (Normal / Gaussian Random Variables). A random
variable, Y, is normal with mean 1 standard deviation o iff

P(Y €B)=

1 1 2
—5z(y—n)
e 257 dy for all B € Bg. (10.42)
V2mo? /
We will abbreviate this by writing Y N (M,O‘Q) . When =0 and 0®> =1 we
will simply write N for N (0,1) and if Y = N, we will say Y is a standard

normal random variable.

Observe that Eq. (10.42)) is equivalent to writing

/ fy) e—%%(y—u)zdy

B0 == |

for all bounded measurable functions, f : R — R. Also observe that Y 4

N (u, 02) is equivalent to Y 445N +u. Indeed, by making the change of variable,
y = ox + p, we find

E[f (oN + p)] = %/f(‘””ru) e 3% dx

2d 1 1 2
—w?dy / —s -2 g,
\/27r/f o V2ro? Rf(y)e Y

—1/2

Lastly the constant, (271'02) is chosen so that
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1 1 2 1 1,2
— 2.2 (=" gy = — 31 —
e 202 dy = —— / e 2Y dy=1,
V2ro? /]R Y= Ve e Y
see Example and Lemma [T4.19]

Exercise 10.16. Suppose that X N (0,1) and f : R — R is a C! — function
such that X f (X), f'(X) and f (X) are all integrable random variables. Show

—e -3 gy

B (X =-—= [ @

_ \/T?/Rf' (2) 4" de = E[f (X))

Example 10.64. Suppose that X 4 N (0,1) and define o, := E [sz] for all
k € Ny. By Exercise [10.16

aps1 = E [X2FH X = (2k + 1) oy, with ap = 1.
Hence it follows that
ar=a9g=1, as =307 =3, ag=5-3
and by a simple induction argument,
EX? = qp = (2k — 1), (10.43)

where (—1)!! := 0. Actually we can use the I' — function to say more. Namely
for any 8 > —1,

1 2 [
IE|X|B:\/7/ |x|’66_%12dm:1/f/ aPem2 dy.
T JR ™ Jo

Now make the change of variables, y = 2%/2 (i.e. = /2y and dz = %yil/zdy)
to learn,

1 e gy —
IE|X|ﬁ=77?/ (29)"% ey~ dy
0
1 > B+1
_ 26/2/ BH1)/20-uy 1y — L oB/2p . (10.44
NG v YTy = o 5 (10.44)
Exercise 10.17. Suppose that X N (0,1) and A € R. Show

fFA) :=E [e*] = exp (—A?/2). (10.45)

Hint: Use Corollary [10.31|to show, f’ () = iE [Xe***] and then use Exercise
10.16| to see that f’ (\) satisfies a simple ordinary differential equation.
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Exercise 10.18. Suppose that X £ N (0,1) and ¢t € R. Show E [etX]
exp (t2 /2) . (You could follow the hint in Exercise or you could use a
completion of the squares argument along with the translation invariance of
Lebesgue measure.)

Exercise 10.19. Use Exercise |10.18| and Proposition [10.59| to give another
proof that EX2¥ = (2k — 1)!! when X iN (0,1).

Exercise 10.20. Let X < N (0,1) and o € R, find p : Ry — Ry = (0,00)
such that

E[f (XM= | f(z)p(x)de
Ry
for all continuous functions, f : Ry — R with compact support in R;..

Lemma 10.65 (Gaussian tail estimates). Suppose that X is a standard
normal random variable, i.e.

1 2
P(XeA) = E/Ae—m 2dx for all A € Bg,

then for all x > 0,

1 X 2 1 2 1 2
P(X > < 3 — —z”/2 /2 <7_x/2. 10.4
( _gc)_m1n(2 me ,mxe < 3¢ (10.46)
Moreover (see (35, Lemma 2.5]),
T T 1 2
P(X>z)> 1- /2 10.4
( _:c)_max< \/ﬂ’xQ—i—l\/ﬂe ) (10.47)

which combined with Eq. proves Mill’s ratio (see [18]);

) P(X > )
lim Rt
T—00 me

(10.48)

Proof. See Figure where; the green curve is the plot of P (X > z), the
black is the plot of

1 1 2 2
min < — e /2, ! e * /2> ,
2 2w 2nx

the red is the plot of %e‘ﬁ/Z, and the blue is the plot of

(1 x x 1 _xz/Q)
max | = — , e .
2 Vor 22+4+142r
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Fig. 10.2. Plots of P (X > z) and its estimates.

The formal proof of these estimates for the reader who is not convinced by
Figure [10.2] is given below.
We begin by observing that

1 o 2 1 Ooy 2
PXz2z)=— v /24 <—/ Ze ¥ /2
(X =) \/%[E ¢ y_\/% - z° Y
1 1 1 1 -
< — eV T = /2 10.49
e |2 o ( )

If we only want to prove Mill’s ratio ((10.48)), we could proceed as follows. Let
«a > 1, then for x > 0,

1 oo
P(XZ;U):E/ e—y2/2dy
x
1 1
€

IOLI
5 1 / ﬁe—?f/?dy - _ eV /2)y=ax
~Vor ), ax 21 ax y=r
— 1 ie—xz/Q [1 _ e—azxz/Z}

V2T ax

from which it follows,

lim inf [\/27rxex2/2~P(X > 1:)} >1/atlasall.

Tr—r00

The estimate in Eq. (10.49) shows limsup,_, . [ 2mre /2. P (X > x)} <L

To get more precise estimates, we begin by observing,

11 [T ey
P(X>z)==—— [ e ¥/2dy (10.50)

IN
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This equation along with Eq. (10.49) gives the first equality in Eq. (10.46[). To
prove the second equality observe that /27 > 2, so

L1 2 1
e < =
Var -2

For x <1 we must show,

e/ 0 > 1.

T 2 —z2
ew/2§ew/2

1
V2T 2
or equivalently that f (z) := e’ /2 \/%w <1 for 0 < < 1. Since f is convex
(f” (@) = (22 +1) e’ /2 > 0) , £(0) =1 and f(1) 2 0.85 < 1, it follows that

f <1on[0,1]. This proves the second inequality in Eq. (10.46).
It follows from Eq. (10.50|) that

1 1 r 2
P(X>a)=c—-—= [ e¥/%d
(X > ) Nzl y
1 ¥ 1
—— | 1dy = _—
V2T /0 4 V21
So to finish the proof of Eq. (10.47) we must show,

1

V2T
1 2 o0 2

- —x%/2 2 —y“/2

= ze —(14+=z / e d}SOforallO§x<oo.
= 1+ | y

This follows by observing that f (0) = —1/2 < 0, lim4o f () = 0 and

N =

— x for all z > 0.

2
1
2

| =

f(z):= ze /2 (1+2*)P(X >2)

[ (z)= \/% [e—zz/z (1 — x2) —2zP (X >x)+ (1 +x2) 6_352/2}

1 )
=2 e /2 _gpP(X > >>0,
<\/% (X>y)) >

where the last inequality is a consequence Eq. ((10.46)). [

10.8 Stirling’s Formula

On occasion one is faced with estimating an integral of the form, fJ e~ CWat,
where J = (a,b) C R and G (t) is a C! — function with a unique (for simplicity)
global minimum at some point ¢ty € J. The idea is that the majority contribu-
tion of the integral will often come from some neighborhood, (to — «, tg + @),
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of tg. Moreover, it may happen that G (t) can be well approximated on this
neighborhood by its Taylor expansion to order 2;

G(t) =G (t) + %G‘(to) (t—to)>.

Notice that the linear term is zero since tg is a minimum and therefore G (to) =
0. We will further assume that G (ty) # 0 and hence G (to) > 0. Under these
hypothesis we will have,

1.
/ e~ GM g =~ e*G“fJ)/ exp (—G (to) (t — t0)2> dt.
J [t—to|<c 2

Making the change of variables, s = 1/ G (o) (t — to) , in the above integral then
gives,

1 1.2
CIOF M- —G(to)/ —35 4
e e e S
/J /G(to) [s|<+/G(to)-a

27__1 e~ G(to) \/27r—/ ._ e_észds]
/G(to) VG (to) o

= _ e~ G |\Vor — O ! e~ 2C(to)a’

G (to) L VG (to) -

If « is sufficiently large, for example if /G (tg) - @« = 3, then the error term is
about 0.0037 and we should be able to conclude that

/e*G“)dtg 2T ~Glto), (10.51)
J G (to)

The proof of the next theorem (Stirling’s formula for the Gamma function) will
illustrate these ideas and what one has to do to carry them out rigorously.

Theorem 10.66 (Stirling’s formula). The Gamma function (see Definition
, satisfies Stirling’s formula,

. I'(z+1)
lim ———— =
z—00 \/Qre—Tgrtl/2

In particular, if n € N, we have

n! =TI (n+1)~V2re "n"+1/2

(10.52)

where we write a, ~ b, to mean, lim, _, Z—Z = 1. (See Example [10.71] below
for a slightly cruder but more elementary estimate of n!)
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Proof. (The following proof is an elaboration of the proof found on page
236-237 in Krantz’s Real Analysis and Foundations.) We begin with the formula
for I' (z +1);

(oo} oo
F(m+1)=/ e‘ttxdt:/ e~ GWqg, (10.53)
0 0

where
G, (t):=t—zlnt.
Then G, (t) = 1 —z/t, G, (t) = 2/t?, G, has a global minimum (since G, > 0)
at tg = x where )
G, (r)=x—2zlnz and G, (z) = 1/=x.

So if Eq. ((10.51]) is valid in this case we should expect,
I (z+1) 2V 2rpe”@2n0) = \/one=2 o +1/2

which would give Stirling’s formula. The rest of the proof will be spent on
rigorously justifying the approximations involved.

Let us begin by making the change of variables s = /G (tg) (t —tg) =
ﬁ (t — x) as suggested above. Then

Gy (t) =Gy (x)=(t—x)—xIn(t/z) = Vzs—xln <MS>

x
s s s
=r|-—=-In(1+—=)| =5%¢( —=
|G (e G2)) = ()
where 1 .
q(u) = — [u—In(1+u)] for u>—1 with ¢ (0) := 3
u
Setting ¢ (0) = 1/2 makes ¢ a continuous and in fact smooth function on
(—1,00), see Figure Using the power series expansion for In (14 u) we
find,
(u)—1+i£f0r lu| <1 (10.54)
q =3 2 . .

Making the change of variables, t = z + y/zs in the second integral in Eq.

(10.53)) yields,

F(Jj—|— 1) _ ef(acfxlnm)\/‘;/ e—q(\;;)szds _ xm+1/2671 . I(x),
-V

where
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Fig. 10.3. Plot of ¢ (u) .

From Eq. (10.54)) it follows that lim,_,o ¢ (u) = 1/2 and therefore,

/ lim {19\/5 . e_q(ji)sz} ds = / e~ 2% ds = /2. (10.56)

oo TrO0

So if there exists a dominating function, F' € L' (R, m), such that
_ (i)&
lys yz-e "\WVE)° < F(s) forall seRand z > 1,

we can apply the DCT to learn that lim, .o, I (x) = v/27 which will complete
the proof of Stirling’s formula.

We now construct the desired function F. From Eq. it follows that
g(u)>1/2for =1 <u <0.Since u —In (1 +u) >0 foru#0 (u—1In(l+u)is
convex and has a minimum of 0 at © = 0) we may conclude that ¢ (u) > 0 for
all u > —1 therefore by compactness (on [0, M]), min_1<y<nar ¢ (u) =€ (M) >0
for all M € (0,00), see Remark for more explicit estimates. Lastly, since
LIn (14 u) — 0 as u — oo, there exists M < oo (M = 3 would due) such that
cIn(1+u) < % for w > M and hence,

1 1 1
q(u)=-— {l—ln(l—i—u)} > — for u > M.
U U 2u

So there exists € > 0 and M < oo such that (for all z > 1),
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— s )52 o2 _
1527\/58 (I(ﬁ)g S 1,\/5<3§Me €s +152Me zs/2

2
< 17\/5<S§M67€S + 182M678/2

<e= pe 2 = F(s) e LY (R, ds).

We will sometimes use the following variant of Eq. (10.52]);

L
T—00 T (z\7T
()

=1 (10.57)

To prove this let  go to x — 1 in Eq. (10.52)) in order to find,

1= lim I (z) = lim (@)
$_>°°«/27re_$-e~(x—1)l_l/2 T—00 2%(%)1 T 6(17%):6

z—1

which gives Eq. (10.57)) since

x 1\*
-e-(1—> =1.
T—00 ;C—l X

lim

Remark 10.67 (Estimating q (u) by Taylor’s Theorem). Another way to estimate
q (u) is to use Taylor’s theorem with integral remainder. In general if h is C? —
function on [0, 1], then by the fundamental theorem of calculus and integration
by parts,

h(1) = h(0) :/0 o (#) dt = —/0 W) d(—1)
1
=—h(t)(1-1) |5+/ h(t)(1—t)dt
0
—§(0) +% / o (#) dv () (10.58)
0
where dv (t) := 2 (1 — t) dt which is a probability measure on [0,1]. Applying

this to h(t) = F(a+t(b—a)) for a C? — function on an interval of points
between a and b in R then implies,

F(b)—F(a):(b—a)F(a)—Ff(b—a)Q/O Fla+t(b—a))dv(t). (10.59)

(Similar formulas hold to any order.) Applying this result with F (z) = = —
In(l14+2),a=0,and b=wu € (—1,00) gives,
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1
ufln(1+u):%u2/0 ( L dv (t),

1+ tu)?
ie.

1 [t 1
aw =73 [ T

From this expression for ¢ (u) it now easily follows that
IR 1
q(u 27/ v =-if —1<u<0
w25 [ g ® =

and

IR | 1
Q(U)ZQ/O Wd’/(f):m~

So an explicit formula for e (M) is e (M) = (1+ M)~ /2.

10.8.1 Two applications of Stirling’s formula

In this subsection suppose = € (0,1) and S, iBinomial(n7 x) for all n € N, i.e.

P, (S, =k) = (Z) " (1—2)""" for 0 < k <n. (10.60)

Recall that ES,, = nz and Var (S,) = no? where 02 := 2 (1 — 2). The weak
law of large numbers states (Exercise [5.18)) that

(
Sn

and therefore, =2 is concentrating near its mean value, x, for n large, i.e. S, =
nx for n large. The next central limit theorem describes the fluctuations of .S,
about nz.

Sn
— -z
n

I 5
ze| <—0o
ne2

Theorem 10.68 (De Moivre-Laplace Central Limit Theorem). For all
—o0o<a<b<oo,

S, —nx 1 b 1,2

im Pla< 2——<b| =—— e 29 d
=00 <_ ov/n _) \/27T/a Y
=P(a< N <b)

d d
where N % N (0,1) . Informally, 527\_/%”3 ~ N or equivalently, S, & nx+o+/n-N

which if valid in a neighborhood of nx whose length is order \/n.
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10.8 Stirling’s Formula 127

Proof. (We are not going to cover all the technical details in this proof as In order to shorten the notation, let z; := %yk =0 (n_1/2) so that k =
we will give much more general versions of this theorem later.) Starting with nx +nzy =n (z + 2z;) . In this notation we have shown,
the definition of the Binomial distribution we have,
p Sy —nx b P(s 5 /7277_0\/5(”)1_1@ (1- x)nfk N a* (1 - m)nfk
= < — < = n—
Pn (a gy ) (Sy, € nz + ov/nla,b]) k (z+z) 1 —2—z)""
1
= Z P (Sn = k) - k n—=k
kenz+o+/nla,b] (1 + %Zk) (1 - ﬁzk)
n n—k 1
= Z (k) xk (1 — JJ) . = Py p— =:q (n’ k;) .
k€nz+o/nla,b] (1 4 %Zk)n(z%m) (1 - ﬁ@e)
Letting k = nx+o+/nys, i.e. yr. = (k — nx) /o\/n we see that Ay = yp11—yx = (10.63)
1/ (o4/n) . Therefore we may write p,, as
Taking logarithms and using Taylor’s theorem we learn
Do = Z m/ﬁ(Z) (1= 2)"" Ay, (10.61) 1
ye€la,b] n(x+ z)In (1 + xzk>

So to finish the proof we need to show, for k = O (y/n) (yx = O (1)), that 1 1, 5/o

(n/ﬁ(n) 2 (1—z)" 7~ L e 3% as n — 0o (10.62) n 2
k V2 =nz + 2—2,% +0 (n_3/2) and
x
in which case the sum in Eq. (10.61)) may be well approximated by the “Riemann 1
sum:” n(l—z—z)ln (1 = zk)
) 1—=z
Dn ~ Z ! 6_;yi4yk—>1/b€_;y2dy as n — oo. =n(l—-z—2z) | — L 2k — 1 z2+0(n_3/2)
g Vo Vor Ja 1_2 2(1— $)2 k
By Stirling’s formula, =-—nz; + in +0 (n_3/2) .
2(1—x)
n 1 n! ovn nnt1/2 ) .
U\/ﬁ(k> = U\/ﬁH =R ~ NTITTE (n_ k)n—k+1/2 and then adding these expressions shows,
o 1 n 51 1 73/2)
Vo (E)’fﬂ/? (1- @)"—kﬂ/2 g (n, k) = 9k (ac Tz a:) +0 (n
__9 1 = izz,f +0 (n*3/2) = Eyﬁ +0 (n*?’/Q) .
T (A 2 ?
x+ = o
vk vk Combining this with Eq. (T0.63) shows,
o 1 1
~ = — k n—k n n—*k 1 1 _
2r o (l-2) (x—i—ﬁyk) (1—1‘—%%) U\/ﬁ(k>mk(1—x) by exp (—2y;%+0(n 3/2))
1 1
- Vor k n—k" which gives the desired estimate in Eq. (10.62)). ]
(m + ﬁyk) (1 - ﬁyk) The previous central limit theorem has shown that
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o

—N
n er\/ﬁ

which implies the major fluctuations of S,,/n occur within intervals about z

Sn

[0 &

of length O (ﬁ . The next result aims to understand the rare events where

Sp/n makes a “large” deviation from its mean value, z — in this case a large
deviation is something of size O (1) as n — oo.

Theorem 10.69 (Binomial Large Deviation Bounds). Let us continue to
use the notation in Theorem|10.68 Then for all y € (0,z),

1 n 1
lim lnPI(S§y>y1nm+(ly)ln .
n—oo 7 n Y 1—y
Roughly speaking,

Px <S’n S y) ~ e_nlfc(y)
n

where I, (y) is the “rate function,”

Fig. 10.4. A plot of the rate function, I 5.
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Proof. By definition of the binomial distribution,

P, (i" < y) =P (Sp<ny) =Y (Z)xk (1—2)" ",

k<ny

If ar > 0, then we have the following crude estimates on ZZZOI ak,

m—1
max ap < Z ar < m-maxag. (10.64)

k< k<

n

In order to apply this with a, = (})a* (1 - 2)" " and m = [ny], we need to
find the maximum of the a; for 0 < k < ny. This is easy to do since ay is
increasing for 0 < k < ny as we now show. Consider,

a1 _ (kil)karl (1— x)n—k—l
ak (Mak (1 —a)" "
Elln—k)! 2

(k‘—|—1)!-(n—k—.1')!-(1—x)
).

(n—k)-x
(k+1)-(1—u2)

Therefore, where the latter expression is greater than or equal to 1 iff

Q41
ag

>1 <= n—k)-z>(k+1)-(1—-2)
= ne>k+l-z <= k<(n-1)z—-1.
Thus for k < (n — 1) z — 1 we may conclude that (})z* (1 — 2)" " is increasing

in k.

Thus the crude bound in Eq. (10.64) implies,

o B Y R (W e

or equivalently,

i)
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By Stirling’s formula, for k£ such that k and n — k is large we have,

(n) 1 nnt1/2 vn 1

)~ 2 k172 . (n_k)nkarl/? = oL (E)k+1/2 ] (1 B E)nkarl/z
n

() Em(2)-(-2)-(-)

So taking k = [ny], we learn that

and therefore,

nli_{r;o%ln <[:y]> =—yhhy—(1-y)ln(l—y)

and therefore,

lim llan (Sn <y> =—ylny—(1-y)ln(1-y)+yhe+(1-y)ln(l-2)
n

n—oo M
InZ+(1-y)l (1x)
=yln— —y)ln .

Yy 1-y

]
As a consistency check it is worth noting, by Jensen’s inequality described
below, that

x 1—2 x 1—2
L (yy=yln—+4+(1—y ln()§1n<y+ 1—y )ln 1) =0.
W)=yl +(1-y)m (= Cry) ) =m)

This must be the case since

n—oo M T n—ooon

1 1
—I,(y) = lim —InP, <in §y) < lim —Inl1=0.

10.8.2 A primitive Stirling type approximation

Theorem 10.70. Suppose that f : (0,00) — R is an increasing concave down
function (like f (z) =Inz) and let s, := Y ._, f (k), then

</1 f(z)d

< s ;UO%+U+2f(H+%f@)

gsn—§uow+2fuﬂ+§fm»

1

Page: 129 job: prob

10.8 Stirling’s Formula 129

W 20T
1.5 1+
1.0 1+
[

0.0 T 1 1 1 T i

1] 1 2 3 4

X

Proof. On the interval, [k —
straight line segment joining (k — 1, f (k —

1,k], we have that f(z) is larger than the
1)) and (k, f (k)) and thus

k
(fR)+f(k=1)) < f(z) dx

k—1

N =

Summing this equation on k = 2,...,n shows,

Z - 1))

x)dr = f(z
,;/ /
< f(k)=f" (k) (z — k)

L\DM—*

1
Sn_ﬁ(f(

IN

For the upper bound on the integral we observe that f (x)
for all z and therefore,
k k 1
f(w)drcé/k [f (k) = 1" (k) (z = )] da = f (k) = 5 f" (K).
-1

k—1

Summing this equation on k = 2,...,n then implies,

/ f(z d:c<Zf

Since f” (x) <0, f'(x) is decreasing and therefore f'(z) < f’ (k —
[k — 1, k] and integrating this equation over [k — 1, k] gives

fk)=fk=1)<f(k-1).
n + 1 then shows,

1) for z €

Summing the result on k = 3,...,
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n

, Exercise 10.22 (From problem 12 on p. 27 of Folland.). Let (X, M, )
flnt1) = f(2) < Zf (k) be a finite measure space and for A, B € M let p(A,B) = u(A A B) where

h=2 AAB=(A\B)U(B\A).Itis clear that p (4, B) = p(B, A). Show:
and thus ti follows that . . . .
1. p satisfies the triangle inequality:
n n 1
: f(@)de < 2 fk) =5 (f(n+1) = £(2) p(A,C) < p(A,B)+p(B,C) forall A,B,C € M.
=2
_. 1 1 2. Define A ~ B iff u(A A B) = 0 and notice that p(A,B) = 0 iff A ~ B.
= o 2 [f e+ 1)+ 2f (W] + 2f ) Show “~ 7 is an equivalence relation.
1 1 3. Let M/ ~ denote M modulo the equivalence relation, ~, and let [A] :=
<s,— = 2f (1 —f(2 rL7
=Ty F(m)+2f (D) + Qf( ) {B € M: B~ A}.Show that p([A], [B]) := p (4, B) is gives a well defined
- metric on M/ ~ .
4. Similarly show fi ([A]) = u (A) is a well defined function on M/ ~ and show
Ezample 10.71 (Approximating n!). Let us take f (n) = Inn and recall that fi: (M/ ~)— Ry is p— continuous.
/n lmzde =nlnn —n+ 1. Exercise 10.23. Supposg that fin : /\/l — [0, 00| are measures on M for n € N.
1 Also suppose that p,(A) is increasing in n for all A € M. Prove that u: M —

Thus we may conclude that [0, 00] defined by p(A) :=lim, o0 ptn(A) is also a measure.
1 1 1 Exercise 10.24. Now suppose that A is some index set and for each A € A,
sp—yln<nlhn-n+1<s,—-lnn+ -In2. ux @ M — [0,00] is a measure on M. Define p : M — [0,00] by u(A4) =
2 2 2 .
> xeaMa(A) for each A € M. Show that p is also a measure.
Thus it follows that

) ) Exercise 10.25. Let (X, M, i) be a measure space and {4, } -, C M, show
(n+2) Inn—n+1-Inv2<s, < (n—|— 2) Inn —n-+1.

w({A, a.a.}) <liminf u (A,)
n—0o0

Exponentiating this identity then implies, .
P & Y P and if p (Up>nAm) < oo for some n, then

(&
. e—nnn+1/2 <nl<e- e—nnn+1/2

V2 w({A, i.0.}) > limsup u (4,,) .

n—oo
hich 1l with Strirling’s fi la (Th 10.66)) which stat
WHICH compates wet wi rirling’s formula ( eorem WWHICH States, Exercise 10.26 (Folland 2.13 on p. 52.). Suppose that {f,} -, is a se-

nl ~ V2re pnt1/2 quence of non-negative measurable functions such that f,, — f pointwise and
Observe that lim [ f, = / f < oo.
n—oo
e
— 21.9221 < V21 = 2.506 < e=2.7183.
V2 = VT o Then

/ f= lim fn

E n— 00 E

for all measurable sets £ € M. The conclusion need not hold if lim,, o f fn=
J f- Hint: “Fatou times two.”

10.9 More Exercises

Exercise 10.21. Let i be a measure on an algebra A C 2% then u(A)+u(B) =
uw(AUB)+ pu(ANB) for all A, B € A.
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Exercise 10.27. Give examples of measurable functions {f,} on R such that
fn decreases to 0 uniformly yet [ f,dm = oo for all n. Also give an example
of a sequence of measurable functions {g,} on [0,1] such that g, — 0 while
J gndm =1 for all n.

Exercise 10.28. Suppose {a,} - C C is a summable sequence (i.e.

n=—oo

>ooC o lan| < 00), then f(6) = Zzozioo a,e’™ is a continuous function for
0 € R and
L[ e an
ap = — :
27

Exercise 10.29. For any function f €  L'(m), show 2 €
]R—)f(ioo z]f(t) dm (t) is continuous in z. Also find a finite measure, p,

on Bg such that z — f(_oo 2] f(t)dp (t) is not continuous.

Exercise 10.30. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is
wrong by a factor of —1 and the sum is on k = 1 to co. In part (e), s should be
taken to be a. You may also freely use the Taylor series expansion

_ (2n -1l > Lo
(1—2)"Y2= Z S Z 2zlfor |z| < 1.

n=0

Exercise 10.31. Prove Lemma [I1.2

Exercise 10.32. In each case below find L (allowing for values of +00) and
justify the calculations:

! min (na, 1)

1. L= lim dx,
o0
: —n2z? —n?z 2
2. L= lim e cos (e n“xdx, and
n—oo 0

> 1
3. L= lim e 1T/ 2l gip (x) dx.
oo n

n—oo






11

* More Measure Theory Results

The results in this chapter are highly optional on first reading.

11.1 Comparison of the Lebesgue and the Riemann
Integral™®

For the rest of this chapter, let —00 < a < b < oo and f : [a,0] — R be a
bounded function. A partition of [a,b] is a finite subset m C [a, b] containing
{a,b}. To each partition

T={a=tyg<t; <---<t,=0>} (11.1)

of [a, b] let
mesh(rm) ;= max{|t; —t;_1|:j=1,...,n},

Mj = sup{f(z) : t; <2 <tj_1}, m; =inf{f(z):t; <z <t}
GTr = f(a’)l{a} + ZMjl(tj,l,tjb g7T = f(a)l{a} + ij]'(tjfhtj] a‘nd
1 1

Sef = M;(t;

Notice that

tji—1) and s f = Zm] ti—1).

b b
Srf :/ Grdm and s, f :/ grdm.

The upper and lower Riemann integrals are defined respectively by
) a
/ f(x)dx = inf S, f and / f(x)dx = sup sif.
a g Jp 7r

Definition 11.1. The function f is Riemann integrable iff fabf = fbf €ER

and which case the Riemann integral f; f is defined to be the common value:

/ab f(z)dx = /abf(x)dx = /abf(:r)dx

The proof of the following Lemma is left to the reader as Exercise [10.31
Lemma 11.2. If 7’ and m are two partitions of [a,b] and w7 C 7" then
G‘ITZGTI'/ ZfZgn/ Zgw and
Sﬂ'f > STr’f > Sﬂ"f > Sﬂ'f'

There exists an increasing sequence of partitions {my}po; such that mesh(my) |
0 and

b b
Sﬂkfi/fandsme/ f as k — oo.

If we let
G = lim G4, and g := lim g, (11.2)
k—o0 ’ k—o0 )
then by the dominated convergence theorem,

b
/ gdm = lim Gr, = lim sq, f :/ f(z)dz (11.3)

[a.0] F=00 Jla,b) koo Ja_

and

b
Gdm = lim Gr, = hm S,ka:/ f(z)d. (11.4)

[a,b] k—o0 [a,b] a

Notation 11.3 For x € [a,b], let
H(z) = limsup f(y) = lim sup{f(y) : [y —a <¢, y € [a,b]} and
€.

Yy—x
h(w) = tminf £(y) = lim inf {£(s): |y — o] <, y € [a,H]).
y—z €l0
Lemma 11.4. The functions H,h : [a,b] = R satisfy:
h(z) < f(z) < H(x) for all x € [a,b] and h(z) = H(x) iff f is continuous
at x.

2. If {my }rey is any increasing sequence of partitions such that mesh(my) | 0
and G and g are defined as in Eq. , then

G(z)=H(x) > f(x) > h(z) =g(x) Va¢n:=Up . (11.5)

(Note 7 is a countable set.)
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8. H and h are Borel measurable.
Proof. Let Gi, := G, | G and gi := g, T 9.

1. Tt is clear that h(z) < f(z) < H(x) for all z and H(x) = h(x) iff 1131 fy)
y—T

exists and is equal to f(z). That is H(x) = h(z) iff f is continuous at x.
2. For x ¢ m,
Gi(z) = H(z) = f(z) = h(x) = gr(x) V k

and letting £k — oo in this equation implies
G(z) =2 H(z) = f(z) =2 h(z) =2 g(x) V= & 7. (11.6)
Moreover, given € > 0 and x ¢ T,

sup{f(y) : ly — x| < ¢, y € [a,b]} > Gi(x)

for all k large enough, since eventually G (x) is the supremum of f(y) over
some interval contained in [x — €,z + £]. Again letting £k — oo implies

sup f(y) > G(x) and therefore, that
ly—z|<e

H(z) = limsup f(y) > G(x)

y—x
for all x ¢ w. Combining this equation with Eq. (11.6) then implies H(x) =
G(z) if x ¢ m. A similar argument shows that h(x) = g(z) if * ¢ 7 and

hence Eq. ((11.5) is proved.

3. The functions G and ¢ are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set ,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 11.5. Let f : [a,b] — R be a bounded function. Then

b b
/ f= Hdm and/ f:/ hdm (11.7)
a [a,b] Ja [a,b]

and the following statements are equivalent:

1. H(z) = h(zx) for m -a.e. x,
2. the set
E :={x € [a,b] : f is discontinuous at x}

is an m — null set.
3. f is Riemann integrable.
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If f is Riemann integrable then f is Lebesgque measumbleﬂ ie. fis L/B -
measurable where L is the Lebesque o — algebra and B is the Borel o — algebra
on [a,b]. Moreover if we let m denote the completion of m, then

b
/ Hdm = / flx)dx = fdm = hdm. (11.8)
[a,b] a [a,b] [a,b]

Proof. Let {m},-; be an increasing sequence of partitions of [a,b] as de-
scribed in Lemma and let G and g be defined as in Lemma Since

m(n) =0, H= G a.e., Eq. (11.7) is a consequence of Egs. (11.3) and ((11.4]).
From Eq. (11.7), f is Riemann integrable iff

/ Hdm = hdm

[a,b] [a,b]

and because h < f < H this happens iff h(z) = H(x) for m - a.e. z. Since
E ={x: H(z) # h(x)}, this last condition is equivalent to F being a m — null
set. In light of these results and Eq. , the remaining assertions including
Eq. are now consequences of Lemma ]

Notation 11.6 In view of this theorem we will often write f; f(z)dx for
12 fdm.

11.2 Riesz Markov Theorem for [0, 1]¢ and R?

Before getting to the main theorem let us begin with a few basic generalities. For
the moment suppose (X, p) be a metric space. For example, it will be sufficient
to take X to be a subset of R? and p to be the usual Euclidean metric. Let
C. (X) denote the compactly supported real valued continuous functions on
X. If X is compact we simply write C' (X) for C.(X). For f € C. (X) we let

[fllo := maxzex [ f (x)]-

Definition 11.7. A positive linear functional, I, on C.(X) is a linear map,
I:C.(X)— R such that I (f) > 0 whenever f > 0.

Ezample 11.8. If 1 is any measure on (X, By ) with u (K) < oo for all compact
subset K C X, then I (f) := pu(f) := [y fdp is a positive linear functional on
C. (X). The Riesz Markov theorem states under certain assumptions on (X, p)
that the converse result is true as well.

Proposition 11.9. If I is a positive linear functional on C.(X) and K is a
compact subset of X, then there exists C < 0o such that |I(f)| < Ck||f|leo for
all f € C.(X) with supp(f) C K.

! # need not be Borel measurable.
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Proof. By Urysohn’s Lemma for metric spaces (see Lemmaor also 77),
there exists ¢ € C.(X, [0, 1]) such that ¢ =1 on K. Then for all f € C.(X,R)
such that supp(f) C K, |f] < ||fllecg or equivalently | f|lcc £ f > 0. Hence
1l () £ 1(f) > 0 or equivalently, [1(£)] < || fll-o](¢). Letting Cx = I(s),
we have shown that |I (f)| < Ck|flle for all f € C.(X,R) with supp(f) C K.
For general f € C.(X,C) with supp(f) C K, choose |a| =1 such that «I(f) >
0. Then

(L)l = ad(f) = I(e f) = I(Re(af)) < Ckl[[Re (af) [0 < Ck [ floo-

Notation 11.10 Let C(X), = {foo : X = [-00,00)| 3 f € C(X) > ful foo}

where fn, | foo means fn () > fot1(x) for allm € N and z € X and
foo () =limy, 00 fn () € [—00,00) for all z € X.

Ezample 11.11. If F' is a closed subset of X, then 1r € C'(X), . To prove this
first observe that pp (x) := inf {p(x,y) : y € F} > 0 is a continuous function
such that pp(z) = 0 iff z € F. Now let h, : [0,00) — [0,1] be defined by
hy (t) = max {0, 1 — nt} so that hy | 1;oy. It then follows that f,, := h, o pr €
C(X) with fn J/ 1{0} o pp = ]_F.

Theorem 11.12. Suppose that X is compact and X\ is a positive linear func-
tional on C (X). Then X satisfies;

1 If fo, f € C(X) and fr | foo € C(X) with foo < f, then limy, o0 A (fn) <
NG}

2. If fr, gn € C(X) such that fr, | foo and gn | goo (pointwise) with foo < goo,
then limy, 00 A (fr) < limy o0 A (gn) - In particular if fn, | foo and gn | foo,
then lim, oo then limy, o0 A (fn) = limy 00 A (gn) -

3. Because of item 2. we may extend X\ to a function on C’(X)i by setting
A(foo) = limy 00 A (fn) whenever f,, € C(X) with f, | foo- The extension
satisfies;

a) AN(f) < A(g) for all f,g € C(X), with f <g and
b) for all f,g€ C(X), anda >0, f+ag € C(X), and

A(f+ag)=A(f)+ar(g). (11.9)
Proof. We take each item in turn.

L If fo, f € C(X) and foo € C'(X), are as in item 1., then f, < fo V f | f
and so by Dini’s theorem it follows that f,V f — f uniformly on X. Because
A is a bounded linear functional (see Propositions [11.9)) it follows that

lim A(f,) < lim A(fa v ) = A(f).

n—oo
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2. If fo,gn € C(X) and feo,goc € C(X)¢ are as in item 2., then for each
m €N,
fnan\/gmif\/gngm as n — oQ.

Hence by item 1., lim, 00 A (fn) < A(gm) and the result follows by letting
m — oo in this last inequality.

3. The monotinicity assertion of item 3a. follows directly from item 2. The
proof 3b. is straight forward and will be left to the reader.

Remark 11.13. Because of Theorem and Example if (X,p) is a
compact metric space and A € C(X)" is a positive linear functional, then
A(1p) is well defined for all F' closed subsets, FF C X. Moreover if Fy, Fy are
closed subsets of X such that Fy C Fy, then A (1p,) < A(1g,). It is fact true
it this level of generality that there exists a Borel measure, u, on (X, Bx) such
that p(F) = A(1p) for closed subsets F' C X. In this section we are going to
verify this assertion when X = [0,1]% for d € N.

Definition 11.14. To each b € R and € > 0 let v € C (R, [0,1]) be defined

by
1 if r<b
wre(z)=q1—(z—-b)feifb<az<b+e (11.10)
0 if ©>b+e.

The key property of these functions are that ¢y | 1(_ocp) as € | 0.

Theorem 11.15 (Riesz Markov Theorem for an Interval). Let X = [0, 1]
and A € C'(X)™ be a positive linear functional. Then there exists a unique Borel
measure, @, on Bx such that

1
A(S) :/0 fdu for all f € C(X). (11.11)

Proof. The uniqueness is an easy consequence of the multiplicative systems
theorem and hence we will concentrate on existence. We break the existence
proof up into a number of steps.

1. For b € [0,1], let F(b) := A (1jg4) which is a well defined non-decreasing
function on [0, 1] by Remark 11.13L It is also true that F'is right continuous.
To prove this choose d,, so that

1 1 1
0<6,<—— = :
n n+l nn+1)

(11.12)

Then
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Yopra) < foi=@pr2.5,l00] + Log) as n — 00

n?
and hence

F(b+) = lim F<b+i> < lim A(f,) = F (b) < F (b+).

n—oo n—oo

2. By item 1. and Corollary [6.35] there exists a unique measure p on Bio 1)
such that F(b) = u([0,b]) for all b € [0, 1].
3. If a,b € [0,1] with a < b, then A (1(54)) < p([a,b]). Since

p([0,0) = F (b) = A (Ljo.)
we may assume that 0 < a < b < 1. For any 0 < a < a we have,
Lol + 1o < o)
and therefore
F(a)+ A (Lay) =X (Lo,a) + Ljap) < A (L)) = F (b).
From this equation it follows that
A(ljap) SF () = F (@) = p((@b]) .

Letting @ 1 a gives the desired result, namely that A (1(,4) < p ([a,b]).
4. Since Y coqr({z}) < p([0,1]) < oo, it follows that U :=
{z €10,1] : p({x}) > 0} is at most a countable set.
5. (Verification of Eq. (11.11)).) First assume f € C (X) is non-negative, i.e.
f>0. Let
7={0=ap<a1 < <a,=1}
be a partition of [0, 1] where we always assume that a; € U¢ for 1 < j < n.
Let
cf i=max{|f(z)]:a;i <x < ajp1} for 0 <i <,

and define f, and fw by

n—1

fr= Col[oaal] + Z Cil(auawﬂ and
=1

n—1

fﬂ' = COl[O,al] + Zcil[ai,ai+1] € C([07 1])¢ .

i=1

It is easy to see that f < f, < fw and that f, — f uniformly on X. Hence
it follows that
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n—1
A(f) <A (fﬁ) = coA (1[0,a4]) + Z X (Layai54])

< cop ([0, a1]) + z_: cip ([ai, aivi])
= cop ([0, a1]) + i cipt ((ai, ait1])

— 11(fx) = 1 (f) as mesh (r) = 0

wherein we have used p ({a;}) = 0 for all 1 <4 < n in the second to last
inequality and the dominated convergence theorem to take the limit.

Thus we have shown that A\(f) < u(f) for all f > 0. Since A(1) = u(1), if
feC(X)and M = ||f| ., we find that

MAL) + A(f) = A(f + M) < p(f + M) = p(f) + Mu(1)

and thus A(f) < u(f) for all f € C (X). Replacing f by —f implies that
w(f) < A(f) and therefore that A(f) = u(f).

]

The next theorem is the multi-dimensional extension of Theorem [I1.15

The proof will follow the same pattern as its one dimensional cousin with a

few complications due to cumbersome nature of multi-dimensional cumulative
distribution functions.

Theorem 11.16 (Multi-Dimensional Riesz Markov Theorem). Let X =
[0,1]¢ and A € C (X)™ be a positive linear functional. Then there exists a unique
Borel measure, p, on Bx such that

A =p(f) ::/ fdu for all f € C(X). (11.13)
p's
Proof. For b € [0,1]* and & > 0 let Ybe(z) = H?Zl b, ¢ (x;) so that

Pbelx € C(X) and ppe | 1jop) as € | 0 which again shows 1} € C’(X)i.
We will carry the proof in a number of steps.

1. We start by defining F : [0,1]" — [0,00) by F(b) := A (1)) for all
b € [0,1]% which exists by Remark Let pp be the unique finitely
additive measure on A ([O7 1]d) such that

pr({at) = Y e (- F(ay x bye). (11.14)
~yC{1,...,d}
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Notice that if a,b € [0, 1]d with a <b, then 1jg 5 < 1jg,p] and so F'(a) =

A (o)) <A (Ljop)) = F (b).

In what follows we extend F to [0,00)¢ by setting F (b)

Fby Al ..;bgN1).

. Next we will show F' is right continuous and pur > 0 and hence there exists

a unique extension, u, of ur to Bx. We now prove these claims.

a) Right continuity of F. We must show if b,, € [0, 1]d with a < b,, and
lim,, o by, = @, then limy, o0 F (by) = F (a). If we let ¢, == at+-+1
for m € N, we will have [0, b,] C [0, c,,,] for all sufficiently large n and

hence
limsup F' (b,,) = limsup A (1[0,]0”]) <A (1[07(:7”]) =F(cp).
n—oo n— oo
Therefore

F (a) <liminf F' (b,) <limsup F (b,) < lim F(c;,)

n—oo n—oo m—r o0

and so to finish the proof of right continuity it suffices to show
lim;, o0 F'(cp,) < F(a).
If we let 4,, > 0 be as in Eq. (11.12]), then

Lo, < Pensn +10.,a]
and therefore
F (Cn) <A (‘Pcn,én) A (l[o’a]) =F (a)

which shows lim,,—, o F (c,,) < F (a) .
b) ur is positive. Let a,b € [0,1]" . From Eq. (5.43]) we have

Z w’Yl[O,a,YXb,Yc] 2 Z w’Yl[O,a,YXb,Yc]

|v] even |v] odd

and therefore using Theorem [11.12

Z Wy F (ay X bye) = A Z (% (1[07%“%])

|v| even |v] even
> A E : Wylloa xbye] | = E | Wy F (ay X bye).
|| odd || odd

The inequality combined with Eq. (11.14)) shows pp ({a,b]) > 0.

job: prob

3. Next we show that if a,b € [0,1]" with a < b then A (1}4,5)) < pr (

macro:

. (Verification of Eq. m
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[a,b]). To
prove this let a; = 0 and and {a;,b;] = [0,b;] if a; = 0 and a; € (0,a;) an
{ai, bi] = (a;,b;] if a; > 0. If we further let &, := Hz‘ew lo,0 = H 14,0,
then we find,

—_
B
=
—
8
S~—
Il
—=
=

«
Il
—

— 1jo,0,) (23]

d
al) 7, H 1[0b
i=1

[110,6: (i) —

I
.z&

«
I
A

1(17;;&0 . 1[0,a,i) (xz)]

IN
.z&

©
I
—

[Ljo,6:] (®3) = La,20 - Ljo,a,] (1))

- ¥

~vC{1,2,....d}

& (=DM 15 . (2).

This inequality may be rewritten as

Lo+ Y. Slaxe < > &lawbe.

|| odd || even

Applying A to the last inequality and solving the result for A (1[a7b]) shows

Mlag) < > &=

ISLIDY (1a,xb,c)

~C{1,2,...,d}
= Y & ()"F@, xbye) = pr (@ b))
~vC{1,2,...,d}

Letting a 1 a in this inequality then implies A (1[a b]) < up ([a,b]).

Let 7={0=s90<s$1 <--+<s,=1} be
partition of [0,1], for s = s, € w \ {1} let s; := spy1,and let IT
be the partition of [0,1]" consisting of rectangles @ of the form {a,a]
where a = (ag,...,aq) [\ {1}]", ay = ((a1),,...,(aq),), and
{a,a;] = H?Zl{ai,(ai)Jr] with {a;, (a;),] = (ai,(a;),] if a; > 0 and
{ai, (ai),] = [as, (a:),] if a; = 0. Let us first assume that f € C(X) is
a non-negative function and for Q € II let cq := max,q f (z) and define

f™ and f’r by
fTr = Z CQlQ and f7T = Z CQlQ.

Qen Qell

Since 0 < f < f7 < f” eC (X)i’ we conclude that
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0<AN A7) = 3 cor(1g) £ Y conur (Q) (11.15)

Qe QelIr
wherein the last inequality we have used step 6.

Since
Z 7 ({x €[0,1): 2 = u}) <u ([07 1]d) < 0o

u€[0,1]

we conclude that
U= {u € [0,1): max p ({33 0,14z = u}) > 0}

is at most countable. Let us now always suppose that we have chosen 7 so
that 7 \ {0,1} C U® in which case pp (Q) = pup (Q) for all Q € II. Thus
under previous restriction on 7w we the inequality in Eq. (11.15) becomes

0<A(f) < Y cour (Q) = n(fT).

Qell

Since f™ — f boundedly as || — 0 with « \ {0,1} C U® as above, we may

pass to the limit in the previous inequality using DCT to find 0 < A (f) <
w(f) for all f > 0.
For arbitrary f € C'(X) choose M > 0 so that M + f > 0 and therefore,

MAXQ)+A(f) =AM+ f)<p(M+f)=Mu(1)+p(f).

As (1) =F (1) = A(1), we conclude that A (f) < p(f) forall f € C(X).
Replacing f by —f then shows p (f) < A(f) for all f € C'(X) and hence it
follows that A (f) = p (f).

Theorem 11.17. Suppose that A € C, ((0, l)d) is a positive linear functional.
Then there ezists a K — finite measure (1 on ((O, 1)d , 8(071).1) such that A (f) =

w(f) forall f € C, ((0, 1)d) .

Proof. Given ¢ € C, ((O,l)d,[(), 1]), let Ay (f) == A(¢- f) for all f €
Ce ([0, 1]d> . As )\, is a positive linear functional on C' ([0, 1]d> we may ap-

ply Theorem |11.16| to find a unique measure f, on ([0, 1]d , B[Oyl]d) such that

Ao (f) = o (f) forall f e C ([O, 1]d) . We now complete the proof in a number
of steps.
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1. If ¢y € C. ((0, )%, 0, 1]) with ¢ < then pu, < py. To see this is the case

first observe that if F' is a closed subset of [0,1]? and f, € C ([07 l]d) are
chosen so that f, | 1, then

pe (F) = nh—{%o Ap (fn) = nh_{gc/\ (pfn) =A(p-1p). (11.16)
As p-1p <9 - 1p it follows

po (F) =A@ -1p) S A(¢ - 1p) = py (F) -

Then using the regularity properties of ., and iy, (see Exercise and/or

?7) if A € By 1)« we have,
py (A) =sup{u, (F): F C A& F closed}

<sup{py (F): F C A& F closed} = uy (A). (11.17)

2. If A € By qje with A C {¢ =}, then p, (A) = py (A). Indeed if F is

a closed subset of A, then ¢ -1p = 9 - 1p and hence from Eq. (11.16) it

1L.17)

follows that p, (F') = py (F) and in this case the inequality in Eq.
becomes an equality.

3. Let Q, :=[1,1— %]d for n > 3 and let ¢,, € C, ((0, H%, 0, 1]) be chosen
so that 1g, < ¢, and supp (¢n) C Qn+1 and hence ¢, T 1(071)d. We then
define the measure p on B ;ya by

w(A) =1 nhﬁ\rr;o P (A) VA E B ya.

4. An easy consequence of item 2. is that if f is a bounded B(Ovl)d — measurable
function with compact support in (0,1)%, then u (f) = e, (f) for all n such
that supp (f) C Q. In particular if f € C. ((0, 1)d) with supp (f) C @n,

then
1 (f) = g, (f) = Ap, (f) = Alenf) = A(f)

and the proof is complete.
(]

Corollary 11.18. Suppose that A € C, (]Rd)* s a positive linear functional.
Then there exists a K — finite measure p on (R, Bga) such that A (f) = p(f)
forall f € C. (Rd) .

Proof. The map, ¥ : (0,1) — R be defined by ¢ (t) = cot™! (¢/7) is a
homeomorphism and hence so is ¢ : (0,1)* — R¢ where

w(tla"'vtd) = (¢(t1)77w(td))

Using this homeomorphic identification of (0, 1)? with R? we may easily trans-
late the statement in Theorem to the statement in the corollary. |
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11.2.1 Bone yards to the proof of Theorems [11.15|(11.16
Proof.

11.3 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 11.19. Suppose that (X, B, u) is a complete measure spaceﬂ and
f:+ X — R is measurable.

1.If g: X — R is a function such that f(x) = g(x) for p — a.e. x, then g is
measurable.

2.1If f, : X — R are measurable and f : X — R is a function such that
lim, yoo frn = f, it - a.e., then f is measurable as well.

Proof. 1. Let £ = {x : f(x) # g(x)} which is assumed to be in B and
w(E) =0. Then g = 1gcf + 1gg since f = g on E°. Now lgcf is measurable
so g will be measurable if we show 1gg¢g is measurable. For this consider,

ECU(1pg) " (A\ {0} if0e A

(lEg)_l(A) = {(1E9)_1(A) if0¢ A (11.18)

Since (1gg)~'(B) C Eif 0 ¢ B and p(E) = 0, it follow by completeness of

B that (1gg)~'(B) € B if 0 ¢ B. Therefore Eq. (11.18) shows that 1gg is

measurable. 2. Let F = {z : li_>m fa(x) # f(x)} by assumption F € B and
n—oo

w(E) = 0. Since g := 1gf = lim, 00 Lge frn, ¢ is measurable. Because f = g
on E° and pu(F) =0, f = g a.e. so by part 1. f is also measurable. ]

The above results are in general false if (X, B, 1) is not complete. For exam-
ple, let X = {0,1,2}, B = {{0}, {1, 2}, X, ¢} and p = d. Take g(0) =0, g(1) =
1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

Lemma 11.20. Suppose that (X, M, 11) is a measure space and M is the com-
pletion of M relative to pu and [i is the extension of i to M. Then a function
f: X —Ris (M,B=Bgr) — measurable iff there exists a function g : X — R
that is (M, B) — measurable such E = {z : f(x) # g(x)} € M and i (E) = 0,
i.e. f(x) = g(x) for i — a.e. x. Moreover for such a pair f and g, f € L*(ji) iff

g € L'(u) and in which case
/ fdp = / gdp.
X X

2 Recall this means that if N C X is a set such that N ¢ A € M and u(A) = 0,
then N € M as well.
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Proof. Suppose first that such a function g exists so that i(E) = 0. Since g
is also (M, B) — measurable, we see from Proposition [11.19|that f is (M, B) —
measurable. Conversely if f is (M, B) — measurable, by considering f+ we may

assume that f > 0. Choose (M, B) — measurable simple function ¢, > 0 such
that ¢, T f as n — co. Writing

Pn = Z agla,

with A, € M, we may choose By, € M such that Bj, C Ay, and ji(A, \ By) = 0.

Letting
@n = Z alek

we have produced a (M, B) — measurable simple function @, > 0 such that
E, = {pn # &n} has zero i — measure. Since i (U,E,) < > fi(Ey), there
exists F' € M such that U, E,, C F' and p(F) = 0. It now follows that

1F'¢)n:1F'<PnTg::1Ffasn_>oo'

This shows that g = 1pf is (M, B) — measurable and that {f # g} C F has i
— measure zero. Since f = g, i — a.e., fX fdo = fX gdp so to prove Eq. (11.19)

it suffices to prove
/ gdi = / gdp. (11.19)
X X

Because i = p on M, Eq. is easily verified for non-negative M —
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem it holds for all M — measurable functions
g : X — [0,00]. The rest of the assertions follow in the standard way by
considering (Reg), and (Img), . |
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12

Functional Forms of the m — A Theorem

In this chapter we will develop a very useful function analogue of the m — A
theorem. The results in this section will be used often in the sequel.

12.1 Multiplicative System Theorems

Notation 12.1 Let {2 be a set and H be a subset of the bounded real valued

functions on 2. We say that H is closed under bounded convergence if; for
oo . .

every sequence, {fn}, ., C H, satisfying:

1. there exists M < oo such that |f, (w)| < M for allw € 2 and n € N,
2. f(w) :=limy, oo fn (w) exists for all w € 2, then f € H.

Notation 12.2 For any o-algebra, B C 29, let B(£2,B;R) be the bounded
B/Br-measurable functions from §2 to R.

Notation 12.3 IfM is any subset of B (Q, 292 R) , let H(M) denote the small-
est subspace of bounded functions on §2 which contains MU{1}. (As usual such
a space exists by taking the intersection of all such spaces.)

Definition 12.4. A subset, M C B (£2,2%;R) , is called a multiplicative sys-
tem if M is closed under finite products, i.e. f,g € M, then f-g € M.

The following result may be found in Dellacherie [7, p. 14]. The style of
proof given here may be found in Janson |23 Appendix A., p. 309].

Theorem 12.5 (Dynkin’s Multiplicative System Theorem). Suppose
that H is a vector subspace of bounded functions from {2 to R which contains the
constant functions and is closed under bounded convergence. If M C H is a mul-
tiplicative system, then H contains all bounded o (M) — measurable functions,
i.e. H contains B (2,0 (M);R).

Proof. We are going to in fact prove: if M C B (Q, PALE R) is a multiplicative
system, then H (M) = B (2,0 (M);R). This suffices to prove the theorem as
H (M) C H is contained in H by very definition of H (M) . To simplify notation
let us now assume that H = H (M) . The remainder of the proof will be broken
into five steps.

Step 1. (H is an algebra of functions.) For f € H, let H/ :=
{g € H:gf € H}. The reader will now easily verify that H/ is a linear sub-
space of H, 1 € H, and H/ is closed under bounded convergence. Moreover if
f € M, since M is a multiplicative system, M C HY. Hence by the definition of
H, H=H/, ie. fg € Hfor all f € M and g € H. Having proved this it now
follows for any f € H that M C H/ and therefore as before, H/ = H. Thus we
may conclude that fg € H whenever f,g € H, i.e. H is an algebra of functions.

Step 2. (B:={AC 2:14 € H} is a o — algebra.) Using the fact that H
is an algebra containing constants, the reader will easily verify that B is closed
under complementation, finite intersections, and contains {2, i.e. 3 is an algebra.
Using the fact that H is closed under bounded convergence, it follows that B is
closed under increasing unions and hence that B is o — algebra.

Step 3. (B(£2,B;R) C H) Since H is a vector space and H contains 14
for all A € B, H contains all B — measurable simple functions. Since every
bounded B — measurable function may be written as a bounded limit of such
simple functions (see Theorem [9.41)), it follows that H contains all bounded B
— measurable functions.

Step 4. (0 (M) C B.) Let ¢, (x) = 0V [(nz) A 1] (see Figure below)
so that ¢, (z) T 1zs0. Given f € M and a € R, let F,, := ¢, (f —a) and
M :=sup ¢ |f (w) — a|. By the Weierstrass approximation Theorem [5.69} we
may find polynomial functions, p; (x) such that p; — ¢, uniformly on [-M, M].
Since p; is a polynomial and H is an algebra, p; (f — a) € H for all I. Moreover,
pro(f —a) = F, uniformly as [ — oo, from with it follows that F,, € H for all
n. Since, Fy, T 154y it follows that 1554y € H, ie. {f > a} € B. As the sets
{f > a} with a € R and f € M generate o (M), it follows that o (M) C B.

Step 5. (H(M)=B(£2,0(M);R).) By step 4., o (M) C B, and so
B (2,0 (M);R) C B(£2,B;R) which combined with step 3. shows,

B (2,0 (M);R) C B(£2,B;R) C H(M).

However, we know that B (2,0 (M) ;R) is a subspace of bounded measurable
functions containing M and therefore H (M) C B (£2,0 (M) ;R) which suffices
to complete the proof.

|

Corollary 12.6. Suppose H is a subspace of bounded real valued functions such
that 1 € H and H is closed under bounded convergence. If P C 22 is a mul-
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i
2
X

Fig. 12.1. Plots of ¢1, ¢2 and 3 which are continuous functions used to approximate,
T — 13320.

tiplicative class such that 14 € H for all A € P, then H contains all bounded
o(P) — measurable functions.

Proof. Let M = {1}U{14 : A € P}. Then M C H is a multiplicative system
and the proof is completed with an application of Theorem [12.5 ]

Ezample 12.7. Suppose p and v are two probability measure on ({2, B) such

that
/Qfd,u:/gfdu (12.1)

for all f in a multiplicative subset, M, of bounded measurable functions on 2.
Then p = v on o (M) . Indeed, apply Theorem with H being the bounded
measurable functions on {2 such that Eq. olds. In particular if M =
{1} U{l4 : A € P} with P being a multiplicative class we learn that = v on
o(M)=0(P).

Exercise 12.1. Let 2 := {1,2,3,4} and M := {14, 15} where A := {1,2} and
B:={2,3}.

a) Show o (M) = 29.
b) Find two distinct probability measures, 4 and v on 2 such that p(A4) =
v(A) and p(B) = v (B), i.e. Eq. (12.1) holds for all f € M.

Moral: the assumption that M is multiplicative can not be dropped from
Theorem [12.5

Proposition 12.8. Suppose u and v are two measures on (2,B8), P C B is a
multiplicative system (i.e. closed under intersections as in Deﬁm’tion such
that p(A) = v (A) for all A € P. If there exists 2, € P such that £2, 1 £2 and
w(2,) =v(2,) < oo, then p=v on o (P).
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Proof. Step 1. First assume that u(2) = v(£2) < oo and then apply
Example [12.7 with M = {14 : A € P} in order to find y = v on o (M) = o (P).

Step 2. For the general case let p, (B) = p(BN§2,) and v, (B) =
v(BnN2,) for all B € B. Then p,, = v, on P (because 2, € P) and

pin (£2) = 11 (2n) = v (2n) = vn (£2).

Therefore by step 1, p, = v, on o (P). Passing to the limit as n — oo then
shows

p(B) = lim p(BNQ2,) = lim pu,(B)
= nh_}rréo Un (B) = nh—>Holo v(BN2,) =v(B)

for all B € o (P). |
Here is a complex version of Theorem [12.5

Theorem 12.9 (Complex Multiplicative System Theorem). Suppose H
is a complex linear subspace of the bounded complex functions on 2,1 € H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M C H is multiplicative system which is closed under conjugation, then H
contains all bounded complex valued o(M)-measurable functions.

Proof. Let My = spangs(M U {1}) be the complex span of M. As the reader
should verify, M is an algebra, My C H, M is closed under complex conjuga-
tion and o (M) = o (M) . Let

HE .= {f € H: f is real valued} and
M = {f € My : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and M C HF. Moreover, M is a multiplicative
system (as the reader should check) and therefore by Theorem H® contains
all bounded o (M) — measurable real valued functions. Since H and M are
complex linear spaces closed under complex conjugation, for any f € H or
f € My, the functions Re f = %(f—i—f) and Im f = %(f—f) are in H or
M respectively. Therefore My = M + iM§, o (M§) = o (M) = o (M), and
H = HF + H®. Hence if f : £2 — C is a bounded ¢ (M) — measurable function,
then f = Re f +iIm f € H since Re f and Im f are in HE. [

Lemma 12.10. If —0co < a < b < 00, there exists f,, € C. (R, [0,1]) such that
lim,, 0 fn = ]-(a,b]'

Proof. The reader should verify lim,, o fn = 1(4,5) Where f,, € C. (R, [0,1])
is defined (for n sufficiently large) by
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0 on (—00,a] U b+ £, 00)
_ ) n(@—a) if a<z<a+y

1—-n(b-—2) if beSb—F%
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[

Fig. 12.2. Here is a plot of fs () when a = 1.5 and b = 3.5.

Lemma 12.11. For each A > 0, let ey (z) := €"**. Then
Be=0c(ex:A>0)=0(ey' (W):A>0, WeBg).
Proof. Let S':={2€C: |z =1}. For —n <a < B <7 let
A(a,,@’)::{eieza<9<ﬂ}zslﬂ{rew:a<9<ﬁ, 7°>0}

which is a measurable subset of C (why). Moreover we have ey (z) € A («, )

iff Az € Y7, [(o, B) + 27n] and hence

ex (A, B)) = Z Kix) +27r;j calex:A>0).

neZ

Hence if —co < a < b < 0o and A > 0 sufficiently small so that —7 < Aa <
Ab < 7, we have

—1 _ n
ey (A(Xa,\b)) = Z [(a, b) + 27rx}
ne
and hence
(a,b) = Mysoey ' (A(Aa, Ab)) € o (ex : A > 0).

This shows Bg C o (e) : A > 0). As ey, is continuous and hence Borel measurable
for all A > 0 we automatically know that o (ex : A > 0) C Bg. ]

Remark 12.12. A slight modification of the above proof actually shows if {\,} C
(Oa OO) with hmn—>oo >\n = 0, then o (6>\ n e N) = Bg.

n
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Corollary 12.13. Each of the following o — algebras on R* are equal to Bga;

1. My = U(Uzlzl {SU — f(xl) 1 feC. (R)}),

2. My:=0(x— fi1(x1)...fa(za): i € Cc(R))
S Mz=oc (CC (Rd)) , and

4. My:=0 ({x —erT e Rd}) .

Proof. As the functions defining each M; are continuous and hence Borel
measurable, it follows that M; C Bga for each i. So to finish the proof it suffices
to show Bra C M, for each 1.

M, case. Let a,b € R with —oo < a < b < co. By Lemma [I2.10] there
exists f, € C.(R) such that lim, ,o fn = 1(ap). Therefore it follows that
x — 1(qy) (z5) is My — measurable for each i. Moreover if —oco < a; < b; < 00
for each 4, then we may conclude that

d

2= ] Larb @) = Var b)xex(aaba) (2)
=1

is M; — measurable as well and hence (a1,b1] x -+ X (ag,bq] € M. As such
sets generate Bra we may conclude that Bra C M;.

and therefore My = Bpa.

My case. As above, we may find f; , — 14, ,) asn — oo foreach 1 <i <d
and therefore,

Liay,bi]x-x(aa,ba] (T) = nh_)rréO fin (x1) .. fan (zq) for all x € R4,

This shows that 1(4, ,]x--.x (au,ba] 18 M2 — measurable and therefore (ay,b1] x
- X (ag,bq] € Ma.
M3 case. This is easy since Bra = My C M3 C Bpa.
My case. Let 7 : R? — R be projection onto the j* — factor, then for
A >0, eyomj(z) = e, It then follows that

J(e>\07rj:)\>0):J((6A07rj)71(W):)\>07W€B¢:>
=0 (’n'j_l (6;\1 (W)) A>0,W e Bc)
= 773‘_1 (o ((6;1 (W) :A>0,W € Bg)) = 71']-_1 (Br)

wherein we have used Lemma [12.11] for the last equality. Since
o(exomj: A>0)C M,y for each j we must have

d times
—N—
Bra =Br® - @Br=0(m;:1<j<d) C My
Alternative proof. By Lemma [12.19| below there exists g, €Trig(R) such

that lim,, o0 gn = 14, Since  — g, (7;) is in the span {x D W= Rd}
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for each n, it follows that & — 1(44) (7;) is My — measurable for all —oo < a <
b < oo. Therefore, just as in the proof of case 1., we may now conclude that
B]Rd C M4. | ]

Corollary 12.14. Suppose that H is a subspace of complex valued functions on
R? which is closed under complex conjugation and bounded convergence. If H
contains any one of the following collection of functions;

1. M:={x— fi(x1)... fa(za): fi € C.(R)}
2.M:=C. (R), or
3. M:= {z —e*: X e R}

then H contains all bounded complex Borel measurable functions on R<.

Proof. Observe that if f € C, (R) such that f(z) = 1 in a neighborhood
of 0, then f, (z) := f(z/n) — 1 as n — oo. Therefore in cases 1. and 2., H
contains the constant function, 1, since

In case 3, 1 € M C H as well. The result now follows from Theorem and

Corollary [12.13 ]

Proposition 12.15 (Change of Variables Formula). Suppose that —
a<b<ooandu: [a,b — R is a continuously differentiable function which
is not necessarily invertible. Let [c,d] = u ([a,b]) where ¢ = minwu ([a,b]) and
d = maxu ([a,b]). (By the intermediate value theorem u ([a,b]) is an interval.)
Then for all bounded measurable functions, f : [c,d] = R we have

u(b) b
/ f(x)dx:/ F(u ()i () dt. (12.2)
u(a) a

Moreover, Eq. is also valid if f : [¢c,d] — R is measurable and

/|f W [t (8)] dt < oc. (12.3)

Proof. Let H denote the space of bounded measurable functions such that
Eq. holds. It is easily checked that H is a linear space closed under
bounded convergence. Next we show that M = C ([¢,d],R) C H which cou-
pled with Corollary will show that H contains all bounded measurable
functions from [c,d] to R.

If f:[c,d] — R is a continuous function and let F be an anti-derivative of
f- Then by the fundamental theorem of calculus,
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/Qf< B dt = /F i (t) dt

:/a SF (u(t) dt = F (u () ;

u(b) u(b)
=F(u®) - F(u(a)) = F’(x)dm:/ f(z)da.

u(a) u(a)

Thus M C H and the first assertion of the proposition is proved.
Now suppose that f : [¢,d] — R is measurable and Eq. (12.3)) holds. For M <
oo, let fas (x) = f (2) - 1|f(a)j<m — & bounded measurable function. Therefore

applying Eq. (12.2) with f replaced by |fas| shows,

u(b)
/|fM Dl () dt

Using the MCT, we may let M 1 oo in the previous inequality to learn

u(b)

/ x)| dx
u(a)

Now apply Eq. (12.2) with f replaced by fis to learn

u(b) b
/ fu (x) dx =/ far (u(t))a(t)dt.

Using the DCT we may now let M — oo in this equation to show that Eq.

(12.2) remains valid. -

Exercise 12.2. Suppose that v : R — R is a continuously differentiable func-
tion such that @ (¢) > 0 for all ¢ and lim;_, £ o u (t) = f00. Use the multiplicative
system theorm to prove

/f(x)dx:/f(u(t))u(t)dt (12.4)
R R

for all measurable functions f : R — [0, 00]. In particular applying this result
to u (t) = at + b where a > 0 implies,

/Rf(x)d;z::a/Rf(at+b)dt

Definition 12.16. The Fourier transform or characteristic function of
a finite measure, [, on (Rd, BRd) , is the function, i : R? — C defined by

|far (z)| dx| =
u(a)

/ [ Far ()] i (8 d.

</|f W[ i ()] dt < oo.

()= / eNdu (z) for all X € RY
Rd
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Corollary 12.17. Suppose that p and v are two probability measures on
(Rd,BRd) . Then any one of the next three conditions implies that u = v;

1. fRd(f1)($1 Sa(zg)dv(x) = [ga f1(@1) ... fa(za)dp(x) for all f; €
C.(R).
2. Jga = foa S ( (z) for all f € C.. (RY).

3. U= ,u
Item 3. asserts that the Fourier transform is injective.

Proof. Let H be the collection of bounded complex measurable functions
from R? to C such that

/Rd fdu = /R fdv. (12.5)

It is easily seen that H is a linear space closed under complex conjugation and
bounded convergence (by the DCT). Since H contains one of the multiplicative
systems appearing in Corollary [12.14] it contains all bounded Borel measurable
functions form R? — C. Thus we may take f = 14 with A € Bga in Eq. -
to learn, u (A) = v (A) for all A € Bga.

In many cases we can replace the condition in item 3. of Corollary [12.17] by7

/ eNMdp (r) = / eMdy (x) for all X € U, (12.6)
R4 R4

where U is a neighborhood of 0 € R?. In order to do this, one must assume
at least assume that the integrals involved are finite for all A € U. The idea
is to show that Condition [12.6]implies 7 = fi. You are asked to carry out this
argument in Exercise [12.3] making use of the following lemma.

Lemma 12.18 (Analytic Continuation). Let ¢ > 0 and S. :=
{z+iyeC:|z| <e} be an e strip in C about the imaginary axis. Sup-
pose that h : S — C is a function such that for each b € R, there exists
{en ()}, C C such that

o0

h(z+1ib) = ch (b) 2™ for all |z| < e. (12.7)

n=0
If ¢, (0) = 0 for all n € Ny, then h = 0.

Proof. It suffices to prove the following assertion; if for some b € R we know
that ¢, (b) = 0 for all n, then ¢, (y) = 0 for all n and y € (b—e,b+¢). We
now prove this assertion.

Let us assume that b € R and ¢, (b) = 0 for all n € Ny. It then follows
from Eq. that h(z+4b) = 0 for all |z| < e. Thus if |y —b| < €, we
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may conclude that h (z + éy) = 0 for z in a (possibly very small) neighborhood
(—0,9) of 0. Since

S en ()2 = h(z +iy) =0 for all |z] <4,
n=0
it follows that 1
and the proof is complete. ]

Lemma 12.19 (This may be omitted.). Suppose that —o0o < a < b < 00
and let TrigR) C C(R,C) be the complex linear span of {x — ** : X € R}.
Then there exists f, € Ce (R,[0,1]) and g, € Trig(R) such that lim,_, fr (z) =
Liap) (%) = limy, o0 gn () for all z € R.

Proof. The assertion involving f,, € C. (R, [0, 1]) was the content of one of
your homework assignments. For the assertion involving g, €Trig(R), it will
suffice to show that any f € C. (R) may be written as f (z) = lim,—, 0 gn ()
for some {g,} CTrig(R) where the limit is uniform for x in compact subsets of
R.

So suppose that f € C.(R) and L > 0 such that f(z) = 0 if |z| > L/4.

Then -
> f@+nl)

n=—oo

is a continuous L — periodic function on R, see Figure [I2.3] If ¢ > 0 is given,
we may apply Theorem to find A Cy Z such that

fL <2I7’rx) _ Za)\eiax

ae

<eforall z € R,

wherein we have use the fact that z — fr, (ix) is a 2w — periodic function of
z. Equivalently we have,

<e.

fr(@) =Y ane’ "

acA

m ax

In particular it follows that f, (x) is a uniform limit of functions from Trig(R) .
Since limy,, o fr (z) = f (z) uniformly on compact subsets of R, it is easy to
conclude there exists g, €Trig(R) such that lim, o gn () = f (x) uniformly
on compact subsets of R. [
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[N
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Fig. 12.3. This is plot of fs (z) where f(z) = (1 — 2*) 1;3/<1. The center hump by
itself would be the plot of f (x).

12.2 Exercises

Exercise 12.3. Suppose ¢ > 0 and X and Y are two random variables such
that E [e'X] = E [e'Y'] < oo for all |t| < e. Show;

1.E [eE‘Xq and E [ee‘n] are finite.
2. E [¢"X] = E [¢] for all t € R. Hint: Consider h (z) :=E [e**] — E [e*Y]
for z € Sc. Now show for |z| < e and b € R, that

h(z+ib) =E [e®Xe**] —E [V e*Y ] = i cn (b) 2" (12.8)
n=0
where 1
en (b) = — (E [e®X X" —E [e®YY"]). (12.9)

3. Conclude from item 2. that X < Y, i.e. that Lawp (X) = Lawp (V).

Exercise 12.4. Let ({2, 8, P) be a probability space and X,Y : 2 — R be a
pair of random variables such that

E[f(X)g (V)] =E[f(X)g(X)]

for every pair of bounded measurable functions, f,g : R — R. Show
P(X =Y) = 1. Hint: Let H denote the bounded Borel measurable functions,
h : R? — R such that
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Eh(X,Y)=E[h(X,X)].

Use Theorem to show H is the vector space of all bounded Borel measurable
functions. Then take h (z,y) = 1=y

Exercise 12.5 (Density of A — simple functions). Let (2, B, P) be a prob-
ability space and assume that A is a sub-algebra of B such that B = o (A).
Let H denote the bounded measurable functions f : 2 — R such that for every
€ > 0 there exists an an A — simple function, ¢ : 2 — Rsuch that E|f — ¢| < e.
Show H consists of all bounded measurable functions, f : 2 — R. Hint: let M
denote the collection of A — simple functions.

Corollary 12.20. Suppose that (12,8, P) is a probability space, {X,},- | is a
collection of random variables on §2, and Boo := 0 (X1, X2, X3,...). Then for
all € > 0 and all bounded Bo, — measurable functions, f : {2 — R, there ezists
ann € N and a bounded Bgrn — measurable function G : R® — R such that
E|f - G(X1,...,Xn)| < &. Moreover we may assume that sup,cg» |G (z)| <

M :=sup,cn|f ().

Proof. Apply Exercise with A := U2 0 (X1,...,X,) in order to find
an A — measurable simple function, ¢, such that E |f — ¢| < e. By the definition
of A we know that ¢ is ¢ (Xy,...,X,) — measurable for some n € N. It now
follows by the factorization Lemmal[9.42|that ¢ = G (X1,..., X,,) for some Bgn
— measurable function G : R™ — R. If necessary, replace G by [G A M|V (—M)
in order to insure sup,cp. |G (z)| < M. |

Exercise 12.6 (Density of A in B = o (A)). Keeping the same notation as
in Exercise but now take f = 1p for some B € B and given € > 0, write
© = > g Aila, where \g = 0, {\;}]"_; is an enumeration of ¢ (£2) \ {0}, and
A; :={p = \;}. Show; 1.

E‘13—<p|:P(AoﬂB)—l—iHl—)\Z‘P(BHAZ)—F|)\Z‘P(AZ\B)] (12.10)

2P(AomB)+zn:min{P(BnAi),P(Ai\B)}. (12.11)
i=1

2. Now let ¢ = Y7 [ a;1a, with

_{1ifP(Ai\B)<P(BﬁAZ-)
YTV 0if P(A;\B)>P(BNA;) "

Then show that

El|lp —¢|=P(AgNB)+> min{P(BNA;),P(4\B)}<E|lp—¢|.
i=1
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Observe that ¥ = 1p where D = U,.o,_, A; € A and so you have shown; for
every € > 0 there exists a D € A such that

P(BAD)=E|lz —1p| <e.

Exercise 12.7. Suppose that {(X;, B;)};_, are measurable spaces and for each
i, M; is a multiplicative system of real bounded measurable functions on X;
such that o (M;) = B; and there exist x,, € M; such that y,, — 1 boundedly as
n—o00.Given f; : X; = Rlet 1 ®---® f, : X1 x--- x X;, = R be defined by

(fl@"'@fn) (x17~-~7x'rz) :fl (xl)fn(xn)

Show
M@ @M, :={fi® - ®f,: fi €M, for 1 <i<n}

is a multiplicative system of bounded measurable functions on
X=X1x-xX,,B:=B®---®B,) such that c (M; ® --- @ M,,) = B.

12.2.1 Obsolete stuff follows.

Notation 12.21 Suppose M is a subset of £° (X, R).

1. Let H (M) denote the smallest subspace of £>° (X, R) which contains M, the
constant functions, and is closed under bounded convergence.
2. Let H, (M) denote the smallest o — function algebra containing M.

Exercise 12.8. Let X = {1,2,3,4}, A = {1,2}, B = {2,3} and M :=
{14,1B}. Show H, (M) # H (M) in this case.

12.3 A Strengthening of the Multiplicative System
Theorem*

Notation 12.22 We say that H C £ (£2,R) is closed under monotone
convergence if; for every sequence, {fn},_; C H, satisfying:

1. there exists M < oo such that 0 < f, (w) < M for allw € 2 andn € N,
2. fn (w) is increasing in n for allw € §2, then f :=lim, o fn € H.

Clearly if H is closed under bounded convergence then it is also closed under
monotone convergence. | learned the proof of the converse from Pat Fitzsim-
mons but this result appears in Sharpe [41} p. 365].

Proposition 12.23. *Let {2 be a set. Suppose that H is a vector subspace of
bounded real valued functions from {2 to R which is closed under monotone con-
vergence. Then H is closed under uniform convergence as well, i.e. {f,}>-; C H
with Sup, ey SUPyeq | fn (W) < 00 and f, — f, then f € H.
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Proof. Let us first assume that {f,} -, C H such that f, converges uni-
formly to a bounded function, f : 2 — R. Let | f||, := sup,ecqn |f (w)|. Let
e > 0 be given. By passing to a subsequence if necessary, we may assume
If = falloo < €27 +D, Let

gn = fn — 0+ M
with §,, and M constants to be determined shortly. We then have
Gnt1 — Gn = fad1 — fo + 0n — Onpr > =27 45, — 6,01

Taking 6, := €27", then §,, — 8,41 = 27" (1 —1/2) = £2-+1) in which case
gn+1 — gn > 0 for all n. By choosing M sufficiently large, we will also have
gn > 0 for all n. Since H is a vector space containing the constant functions,
gn € H and since g,, T f + M, it follows that f = f + M — M € H. So we have
shown that H is closed under uniform convergence. ]

This proposition immediately leads to the following strengthening of Theo-
rem [12.9

Theorem 12.24. *Suppose that H is a vector subspace of bounded real val-
ued functions on {2 which contains the constant functions and is closed under
monotone convergence. If Ml C H is multiplicative system, then H contains all
bounded o (M) — measurable functions.

Proof. Proposition [I2.:23] reduces this theorem to Theorem [T2.5] [

12.4 The Bounded Approximation Theorem*

This section should be skipped until needed (if ever!).

Notation 12.25 Given a collection of bounded functions, M, from a set, {2, to
R, let My (M) denote the the bounded monotone increasing (decreasing) limits
of functions from M. More explicitly a bounded function, f : 2 — R is in My
respectively M iff there exists f,, € M such that f, T f respectively f,, | f.

Theorem 12.26 (Bounded Approximation Theorem®). Let (2,8, u) be
a finite measure space and M be an algebra of bounded R — valued measurable
functions such that:

1.0 (M) =B,
2.1eM, and
3. 1fl e M for all f € M.
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Then for every bounded o (M) measurable function, g : 2 — R, and every
e > 0, there exists f € M| and h € My such that f <g<h and u(h—f) < EE'

Proof. Let us begin with a few simple observations.

1. M is a “lattice” —if f,g € M then

ng=%(f+g+|f—9|)€M

and L
ng=§(f+g—|f—gD€M-

If f,ge My or f,g € M| then f+ g € My or f+ g € M respectively.

.IfA>0and feMy (f e My), then A\f € My (Af € M).

. If f € My then —f € M and visa versa.

. If f, € My and f,, T f where f : {2 — Ris a bounded function, then f € Mj.
Indeed, by assumption there exists f, ; € M such that f,; T f, as i — oc.
By observation (1), g, := max {f;; : 7,7 < n} € M. Moreover it is clear that
gn <max{fi: k <n}=f, <fandhence g, T g :=lim, 0 gr < f. Since
fij < g for all 7,, it follows that f, = lim;_, fn; < ¢ and consequently
that f = lim, o fr < g < f. So we have shown that g, 1 f € Mj.

T W N

Now let H denote the collection of bounded measurable functions which
satisfy the assertion of the theorem. Clearly, M C H and in fact it is also easy
to see that My and M are contained in H as well. For example, if f € My, by
definition, there exists f, € Ml C M such that f,, T f. Since M} > f,, < f <
f €My and p(f — fn) — 0 by the dominated convergence theorem, it follows
that f € H. As similar argument shows M| C H. We will now show H is a
vector sub-space of the bounded B = o (M) — measurable functions.

H is closed under addition. If g; € H for i = 1,2, and ¢ > 0 is given, we
may find f; € M| and h; € My such that f; < g; < h; and p(h; — f;) < /2 for
i=1,2.Sinceh=hy +ha e My, f:=fi+ foeM}, f<g1+92<h,and

ph—f)=phy— fi) +p(he — f2) <e,

it follows that g1 + go € H.

H is closed under scalar multiplication. If ¢ € H then A\g € H for all
A € R. Indeed suppose that ¢ > 0 is given and f € M and h € My such that
f<g<hand p(h—f)<e. Then for A >0, M 5 \f < Ag < A\h € M and

(A= Af)=Au(h— f) < Ae.

! Bruce: rework the Daniel integral section in the Analysis notes to stick to latticies
of bounded functions.
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Since € > 0 was arbitrary, if follows that Ag € H for A > 0. Similarly, M >
—h < —g< —feM;and

p(=f=(=h)=plh-f)<e

which shows —g € H as well.

Because of Theorem to complete this proof, it suffices to show H is
closed under monotone convergence. So suppose that g, € H and g,, T g, where
g : 2 —- R is a bounded function. Since H is a vector space, it follows that
0 <6p = gnt1 —gn € H for all n € N. So if € > 0 is given, we can find,
M, 3 u, < 6, < v, € My such that p (v, — uy) < 27 "¢ for all n. By replacing
Up, by un, VO € M (by observation 1.), we may further assume that u, > 0. Let

V= Z v, =71 lgmOo Z vy, € My (using observations 2. and 5.)

n=1

and for N € N, let

N
= Z un, € M (using observation 2).

n=1
Then
Z5n: hm Z5n: hm (gnp1—91)=9—a
n=1

and vV < g — g1 < v. Moreover,

vfu Zu n — Un) i (Vn <Z<€2 "+ Z Un)
n=N+1 n=N+1
<e+ Z M(Un)'
n=N+1

However, since

Zﬂ (vn) gz (O +227") =D 1 (6n) +2p(R2)
= n=1

Z p(g—g1) +en () < oo,

it follows that for N € N sufficiently large that Y " .|yt (v,) < e. Therefore,
for this N, we have u (v —ulV ) < 2e and since € > 0 is arbitrary, if follows
that g — g1 € H. Since g1 € H and H is a vector space, we may conclude that
g=(9-91)+g €M u
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12.5 Distributions / Laws of Random Vectors

Definition 12.27. Suppose that {X;}!_, is a sequence of random variables on
a probability space, (£2,B, P). The probability measure,

p=(X1,....X,), P=Po(Xy,....X,)" " onBg

(see Proposition [9.4]) is called the joint distribution (or law) of
(X1,...,X,). To be more explicit,

uw(B):=P((X1,....,Xn)€B)=P{we 2: (X1 (w),...,X, (w)) € B})
for all B € Bgn.

Corollary 12.28. The joint distribution, p is uniquely determined from the
knowledge of

P((X1,...,Xpn) € Ay x -+ x A,) forall A; € Bg
or from the knowledge of
P(X; <x1,...,X, <z,) forall A; € By
forallx = (z1,...,z,) € R™

Proof. Apply Example (or see Proposition [6.55)) with P being the m —
systems defined by

P:={A; x---x A, € Bgn : A; € Br}
for the first case and
P :={(—o0,x1] X -+ X (—00,xy,] € Brn : z; € R}
for the second case. ]

Definition 12.29. Suppose that {X;},—, and {Y;}!_, are two finite sequences
of random variables on two probability spaces, (12,8, P) and (£2',B', P') respec-
tively. We write (X1,...,Xn) = (Y1,...,Y,) if (X1,...,X,) and (Y1,...,Y,,)
have the same distribution / law, i.e. if

P((Xy,...,X,) € B)=P((Y1,...,Y,) € B) for all B € Bgn.

More generally, if {X;};2, and {Y;};2, are two sequences of random variables
on two probability spaces, (12,8, P) and (2, B', P") we write {X;};-, 2 {Yi}:2,
iff (X1, Xn) 2 (V1,...,Y,) for alln € N.
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Proposition 12.30. Let us continue using the notation in Definition |12.29
Further let

X=(X1,X,...): 2 >RV and Y := (Y1,Ys,...) : 2 — RY

and let F := QuenBr ~ be the product o — algebra on RN. Then {X;}:°, 2
{Vi}:2, iff XuP =Y. P’ as measures on (RY,F).
Proof. Let
Pi=U2 {41 x Ay x - x Ay xRV 1 A; € Bpfor 1 <i<n}.

Notice that P is a m — system and it is easy to show o (P) = F (see Exercise

9.10). Therefore by Example (or see Proposition , XuP =Y, P iff
X,P=Y,P' on P. Now for A; x Ay x --- x A, x RN € P we have,

X, P (A1 x Ay X oox Ay x RY) = P((X1,...,X,) € Ay x Ay x -+ x Ay,)
and hence the condition becomes,
P((Xl,...,Xn)EAl XAQ><"'XAn):P/((Yl,...,Yn)GAl X Ag ><'~~XAn)

for all n € N and A; € Bg. Another application of Example [12.7] or us-
ing Corollary [12.28| allows us to conclude that shows that X, P = Y, P’ iff

(X1,..., X)) 2 (Y1,...,Y,) for all n € N. .

Corollary 12.31. Continue the notation above and assume that {X;};o, 2
{Yi};2, . Further let
_ J limsup,,_, . Xy if +
Xe = { lim inf,, oo X, if —
and define Y1 similarly. Then (X_, Xy) 4 (Y_,Y}) as random variables into
(RQ, B ® B@) . In particular,

P ( lim X,, ewxists in R) =P ( lim Y,, eists in R) : (12.12)
Proof. First suppose that (2/,B',P') = (RN,]:, P = X*P) where

Y; (a1,aq,...) :=a; = m; (a1,a2,...). Then for C € Bz ® By we have,
X_l ({(vaer) € C}) = {(Y, OX7 Y+ OX) € C} = {(X*7X+) € 0}7
since, for example,

Y_oX =liminfY,, 0o X =liminf X,, = X_.

n— oo n— oo
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Therefore it follows that

P((X_,X;)€C)=PoX " ({(V.,Ys) € C}) = P'({(Y_,Y}) € C}).
(12.13)
The general result now follows by two applications of this special case.
For the last assertion, take

C={(z,2):x € R} € Bre = Br @ Br C B ® Bg.

Then (X_, X ) e Ciff X_ = X € R which happens iff lim,,_, o X, exists in
R. Similarly, (Y_,Y}) € C iff lim,,~ Y, exists in R and therefore Eq. (12.12))
holds as a consequence of Eq. (12.13]). [

Exercise 12.9. Let {X;};2, and {Y;};2, be two sequences of random variables

such that {X;}°, 4 {V;}:2, . Let {S,},—, and {T},},2, be defined by, S, :=
Xi+---+X,and T}, :=Y; 4+ --- +Y,. Prove the following assertions.

1. Suppose that f : R"™ — R¥ is a Bgn/Bgr — measurable function, then
d
X X)L f ).
2. Use your result in item 1. to show {Sn}zozl 4 {Tn}nm:1 )

Hint: Apply item 1. with & = n after making a judicious choice for f :
R™ — R™.



13

Multiple and Iterated Integrals

13.1 Iterated Integrals

Notation 13.1 (Iterated Integrals) If (X, M,u) and (Y,N,v) are two
measure spaces and f : X xY — C is a M @ N — measurable function, the
iterated integrals of f (when they make sense) are:

[ auta) [ s = [ | [ ena] due)

[ vt [ autorsn = [ [ /. f(x,y>du<x>] v (y).

Notation 13.2 Suppose that f : X — C and g : Y — C are functions, let f®g
denote the function on X XY given by

f@g(z,y) = f(z)g(y).

Notice that if f, g are measurable, then f® g is (M @ N, Bc) — measurable.
To prove this let F(z,y) = f(x) and G(x,y) = g(y) so that f ® g = F - G will
be measurable provided that F' and G are measurable. Now F' = f o m; where
m : X XY — X is the projection map. This shows that F' is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

and

13.2 Tonelli’s Theorem and Product Measure

Theorem 13.3. Suppose (X, M, ) and (Y,N,v) are o-finite measure spaces
and f is a nonnegative (M @ N, Br) — measurable function, then for eachy €Y,

r — f(z,y) is M — Bjg,oc] measurable, (13.1)

for each x € X,
y — f(z,y) is N~ Bjo,oc] measurable, (13.2)

x —>/ f(z,y)dv(y) is M — By o] measurable, (13.3)
Y

y —>/ f(x,y)dp(z) is N~ Big o) measurable, (13.4)
X

and

| [ avwran = [ avt) [ ane)f@a. 035)
Proof. Suppose that E=Ax B€ £ := M x N and f = 1g. Then
fly) = 1axs(z,y) = 1a(z)1p(y)
and one sees that Egs. and hold. Moreover
| fenav) = [ 1a@iaay) = 1a@ms),
Y Y

so that Eq. (13.3)) holds and we have

/ dyu(z) / dv(y) f(z.y) = v(B)u(A). (13.6)
X Y
Similarly,
/X f(.y)dp(z) = u(A)1p(y) and
[ avtw) [ duta)s(e.) = vBIn(4)
Y X

from which it follows that Eqgs. and hold in this case as well.

For the moment let us now further assume that ;(X) < oo and v(Y) < 0o
and let H be the collection of all bounded (M ® N, Bg) — measurable functions
on X x Y such that Egs. - hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence the-
orem (the dominating function always being a constant), one easily shows that
H closed under bounded convergence. Since we have just verified that 1 € H
for all E in the 7 — class, &, it follows by Corollary that H is the space



152 13 Multiple and Iterated Integrals

of all bounded (M ® N, Bgr) — measurable functions on X x Y. Moreover, if
f: X xY —[0,00] is a (M ®@N,Bg) — measurable function, let fo; = M A f
so that fa; 1 f as M — oo. Then Egs. - hold with f replaced by
far for all M € N. Repeated use of the monotone convergence theorem allows
us to pass to the limit M — oo in these equations to deduce the theorem in the
case p and v are finite measures.

For the o — finite case, choose X,, € M, Y,, € N such that X,, 1 X, Y, 1Y,
w(Xy) < oo and v(Y,) < oo for all m,n € N. Then define p,(A4) = pu(X,, N A)
and v, (B) = v(Y,NB) for all A € M and B € N or equivalently du,, = 1x, du
and dv, = ly, dv. By what we have just proved Egs. - with
u replaced by g, and v by v, for all (M ® N, Bg) — measurable functions,
f: X xY — [0, 00]. The validity of Egs. - then follows by passing
to the limits m — oo and then n — oo making use of the monotone convergence
theorem in the following context. For all u € LT (X, M),

/udum:/ulxmd,uT/ud,uasm—M)o7
X b'e X

and for all and v € LT (Y, N),

/vd,un:/ vlynduT/ vdp as n — oo.
Y Y Y

Corollary 13.4. Suppose (X, M,u) and (Y,N,v) are o — finite measure
spaces. Then there erists a unique measure © on M QN such that 7(A x B) =
w(A)v(B) for all A € M and B € N. Moreover  is given by

w(E) = /X dyu(z) /Y dv(y)Ls(z,y) = /Y du(y) /X (@) lp(ey)  (13.7)

foral E € M QN and 7w is o — finite.

Proof. Notice that any measure 7 such that (A x B) = u(A)v(B) for
all A € M and B € N is necessarily o — finite. Indeed, let X,, € M and
Y,, € N be chosen so that u(X,) < oo, ¥(Y¥,) < oo, X, T X and Y,, 1Y,
then X, xY, e M@N, X, xY, + X xY and m(X,, x Y,,) < oo for all n.
The uniqueness assertion is a consequence of the combination of Exercises
and [7.1] Proposition [£.27) with £ = M x N. For the existence, it suffices to
observe, using the monotone convergence theorem, that 7 defined in Eq.
is a measure on M ® N. Moreover this measure satisfies 7(A x B) = u(A)v(B)
for all A € M and B € N from Eq. (13.6). m

Notation 13.5 The measure 7 is called the product measure of pu and v and
will be denoted by p ® v.
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Theorem 13.6 (Tonelli’s Theorem). Suppose (X, M,u) and (Y,N,v) are
o — finite measure spaces and ™ = p @ v is the product measure on M @ N.
Iffe LY (X xY,M®N), then f(-,y) € LT (X, M) for ally € Y, f(z,-) €
LY (Y,N) for all z € X,

/ Fw)duly) € L (X, M), / f(@, Vdu(z) € L* (Y, N)

and

/Xxyf d”:/xdﬂ(x)/de(y)f(:v,y) (13.8)
= /Y dv(y) /X dp(z) f(z,y). (13.9)

Proof. By Theorem and Corollary the theorem holds when
f =1 with E € M ® N. Using the linearity of all of the statements, the
theorem is also true for non-negative simple functions. Then using the mono-

tone convergence theorem repeatedly along with the approximation Theorem
one deduces the theorem for general f € L*T(X X Y, M @ N). [

Ezxample 13.7. In this example we are going to show, I := fR e~ /2dm (x) =
v/ 27. To this end we observe, using Tonelli’s theorem, that

o [ /R e 2, (@} o /R eV { /R = 2, (x)} dm ()

where m? = m ® m is “Lebesgue measure” on (RQ, Br: = Br ® BR) . From the

monotone convergence theorem,

I’ = lim e (1) 24m2 (2 y)
R—00 Dr Y

where Di = {(#,y) : 2> + y*> < R?} . Using the change of variables theorem
described in Section [14] below][[] we find

/ e (& +v°)/2 g (z,y) =/ e 2rdrdd
Dr (0,R) x (0,27)
R 2 2
:271'/ efr/zrdrz27r<1—efR/2).
0

L Alternatively, you can easily show that the integral J Dr fdm? agrees with the
multiple integral in undergraduate analysis when f is continuous. Then use the
change of variables theorem from undergraduate analysis.
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From this we learn that

12 = lim 2r (1 _ 6*32/2) — o

R—o0

as desired.

13.3 Fubini’s Theorem

Notation 13.8 If (X, M, u) is a measure space and f : X — C is any mea-
surable function, let

| [ A if
J o= {1

otherwise.

fx|f‘dﬂ<oo

Theorem 13.9 (Fubini’s Theorem). Suppose (X, M,u) and (Y,N,v) are
o — finite measure spaces, T = u ® v is the product measure on M @ N and
f:XxY = CisaM®N — measurable function. Then the following three
conditions are equivalent:

/ny [fldm < o0, ie. f € L}(m), (13.10)
/X </Y |f($ay)|dV(y)) dp(z) < 0o and (13.11)
/Y </x |f(z,y)] du(:c)) dv(y) < oo. (13.12)

If any one (and hence all) of these condition hold, then f(z,-) € Ll( ) for p-a.e.

x,f(ny)GLl( ) for v-a.c. y, [y F(y)dv(y) € LNp), [ f(x,")du(z) € L'(v)
and Eqs. and ' are still valzd after puttmg a bar over the integral
symbols.

Proof. The equivalence of Egs. (13.10) — (13.12)) is a direct consequence of
Tonelli’s Theorem Now suppose f € L!(r) is a real valued function and

let

E = {xGX:/Y|f(x,y)|dV(y):oo}. (13.13)

Then by Tonelli’s theorem,  — [, |f (2,y)|dv (y) is measurable and hence
E € M. Moreover Tonelli’s theorem implies

/X[/Y|f(33,y)|du(y)] du(m):/xxy|f|dﬂ-<oo
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which implies that u (F) = 0. Let f1 be the positive and negative parts of f,
then

/ f(@,y)dv (y) =
Y

Ige (%) f (z,y) dv (y)
Lge (z) [f4 (z,y) — f- (z,y)] dv (y)

Il
— o 5—

Lpe (&) fo (2, ) do () — /Y Lpe (&) f- (2,y) dv (1)
(13.14)

Noting that 1ge (z) f+ (z,y) = (1 ® 1y - f1) (z,y) is a positive M @ N —
measurable function, it follows from another application of Tonelli’s theorem

that x — fyf (z,y)dv (y) is M — measurable, being the difference of two
measurable functions. Moreover

@ < [ ][ 15 wniaro) e <.

which shows fY y)dv(y) € L*(u). Integrating Eq. (13.14) on = and using
Tonelli’s theorem repeatedly implies,

/X l/yf(x,y) dv (y)] dp (z)
:/xd“(x)/ydl/(y) lpe (x

(@) D) [ )16 @)1 (@)
= [ [ auta) 15 @) 71 @) - ) [ dn @16 @) £ )

)
- [ [ awe) @ = [ avw) [ dn@ s @)

which proves Eq. ((13.8]) holds.
Now suppose that f = u 4+ v is complex valued and again let E be as in
Eq. (13.13)). Just as above we still have E € M and p (E) = 0 and

/ f (@,y)dv (y) = / L (2) f (2,y) dv (y) = / 1pe (&) [u (2, ) + v (2,)] dv (4)
Y Y Y
- / 1pe (2) u(z,y) dv (y) + i / L (2) v (2, y) dv (4)
Y Y

/fxde()

J
J

f+ (‘T7y)7 d:u(
X

dv (y
Y

v dp
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The last hne is a measurable in x as we have just proved. Similarly one shows

f v (y) € L' (n) and Eq. still holds by a computatlon similar to
that done in Eq. (13.15)). The assertlons pertaining to Eq. (13.9) may be proved
in the same way. [

The previous theorems generalize to products of any finite number of o —
finite measure spaces.

Theorem 13.10. Suppose {(X;, M;, p;)}_, are o — finite measure spaces
and X = X1 X -+ x X,. Then there exists a unique measure (mw) on

(X, M1 ®---®@M,,) such that
(A X - X Ap) = p1 (A1) - - - pin(

(This measure and its completion will be denoted by py ® - -
[0,00] is a My ® - -+ @ M,, — measurable function then

/ fdm = / dy’a(l) (xa(l))' o / dlu‘a(n) (xa(7t)) f(xla ) xn) (1317)
X Xo(1) Xo(n)

Ay) for all A; € M. (13.16)
@ pn.) If f: X —

where o is any permutation of {1,2,...,n}. In particular f € L*(r), iff

/ dua(l)(mo’(l))' o /
Xa(l) X

for some (and hence all) permutations, o. Furthermore, if f € L' (), then

/ fd7T =/ d,u,g(l)(wa(l)) . /
X Xo(1) X

for all permutations o.

d/”'o’(n (xo' n)) |f(1‘1, R axn)| <X

o(n)

Apto(n)(Tomy) f(T1,. .., 2,) (13.18)

o(n)

Proof. (* I would consider skipping this tedious proof.) The proof will be by
induction on n with the case n = 2 being covered in Theorems and So
let n > 3 and assume the theorem is valid for n — 1 factors or less. To simplify
notation, for 1 < i < n, let X* = 1,2 X5, M= @M, and Pt = ®j i
be the product measure on (X ‘ Mz) which is assumed to exist by the induction
hypothesis. Also let M := M; ®---®@ M, and for z = (z1,...,x xn) € X
let

= (T, ey By T) = (X1 i1, Tt 1y e e )

Here is an outline of the argument with some details being left to the reader.

1. If f: X —[0,00] is M -measurable, then
(zl,...,ii,...,xn)ﬁ/ fxy, . iy ) dug ()
X;

is M? -measurable. Thus by the induction hypothesis, the right side of Eq.

(13.17)) is well defined.
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2. If o € S,, (the permutations of {1, 2,

macro:

.,n}) we may define a measure w on
(X, M) by;

7w (A) = /X diig1 (Tg1): -+ /X Aiign (Ton) 1a (X1,...,2,).  (13.19)

It is easy to check that 7 is a measure which satisfies Eq. (13.16)). Using the
o — finiteness assumptions and the fact that

PZZ{AlX"'XAnZAiEMifOI‘lfiSn}

is a 7 — system such that o (P) = M, it follows from Exercise[6.§| that there
is only one such measure satisfying Eq. . Thus the formula for 7 in
Eq. is independent of o € S,,.

From Eq. and the usual simple function approximation arguments

we may conclude that Eq. (13.17)) is valid.
Now suppose that f € L' (X, M, ).
Using step 1 it is easy to check that

-,xn)—>/ [z, .z xp
X

is M® — measurable. Indeed,

(1,'17..., —)/ 56'1,...7 Gy ey

is M* — measurable and therefore

E = {(xl,...,i‘i,...,xn):/ |f (1, ymiy ey
X

(1‘17"'7‘%13 )d/ul('r’t)

)| dp; ()

xn)| dp; (25) < oo} € M-

Now let u := Re f and v := Im f and u4 and vy are the positive and
negative parts of u and v respectively, then

/Xif(af) dp; (;) =/ 1z (2%) f (2) dui (z5)

i

:/X. 1g (wl)u(a?)duz(xz)—&-z/ 1g (2%) v (z) dp; ().

X

Both of these later terms are M? — measurable since, for example,

i

which is M? — measurable by step 1.
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5. It now follows by induction that the right side of Eq. ((13.18]) is well defined.
6. Let i :=on and T : X — X; x X? be the obvious identification;
T(.’Ei,(fEl,...,QATi,...

 Zn)) = (1, ., 2) .

One easily verifies T is M/M; @ M* — measurable (use Corollary [9.23
repeatedly) and that m o T~! = u; ® u (see Exercise .

7. Let f € L' (7). Combining step 6. with the abstract change of variables
Theorem (Exercise implies

[rar= [ (temya(uen).
X X;x X0
By Theorem we also have

(13.20)

/XixXi (foT)d (@ pu') :/ dy' () /X‘d,ui(mi) FoT (o)

i

:/idl‘l (') /Xid’ui(xi) f(:z:l,...,x(n). |
13.21

Then by the induction hypothesis,

[t [ o) s o) -
Xi X; o)X
J#
(13.22)
where the ordering the integrals in the last product are inconsequential.

Combining Egs. (13.20)) — (13.22]) completes the proof.

]

Convention: We are now going to drop the bar above the integral sign
with the understanding that [, fdu = 0 whenever f: X — C is a measurable
function such that [ |f|du = oo. However if f is a non-negative function (i.e.
f: X — [0, 00]) non-integrable function we will interpret | + fdu to be infinite.

Example 13.11. In this example we will show

. M gin
lim
M — oo 0

do = /2. (13.23)

To see this write % = fooo et dt and use Fubini-Tonelli to conclude that
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H/jd/ij (%)/Xidm(mi) flay,...
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<1
—>/ 7dt:EasM—>oo,
o 1+t 2

wherein we have used the dominated convergence theorem (for instance, take
g(t) = ﬁ (1+te t+et)) to pass to the limit.

The next example is a refinement of this result.

Ezxample 13.12. We have

/ ST Az gy = 37 arctan A for all A > 0 (13.24)
0 xr
and forA, M € [0, 0),
M —MA
1
/ ST Az gy o + arctan A| < o (13.25)
0 x

where C' = max;>¢ 11;:—;2 = 2\/%_2 =~ 1.2. In particular Eq. (13.23) is valid.

To verify these assertions, first notice that by the fundamental theorem of

calculus,
T xr xr
|sin x| = ’/ cosydy‘ < ‘/ |c0sy|dy’ < ‘/ ldy‘ = |z
0 0 0

so [#22] <1 for all x # 0. Making use of the identity

/ e dt =1/x
0

and Fubini’s theorem,
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M [e9)
sinx _ _
/ e My = dxsmme Am/ Lt
0

T
M
/ dt/ dx sin g e~ (ATt

7/0017 (cos M + (A +t)sinM)e *M(A“)dt
0 (A + ) +1
o (A+1)P+1 0 (A+1t)* +
1
=57 arctan A — e(M, A) (13.26)
where
E(M,A):/ cosM+(A+t)s1nM o~ M(A+1) gy
0 (A+1)° +
Since
cos M + (A+t)sin M < 14+ (A+7)
(A+1)° +1 T A+
—MA

(M, A)| < / M+ g o
0

This estimate along with Eq. (13.26)) proves Eq. (|13.25]) from which Eq. (13.23)

follows by taking A — co and Eq. (13.24]) follows (using the dominated conver-
gence theorem again) by letting M — oo.

Lemma 13.13. Suppose that X is a random variable and ¢ : R — R is a C!
— functions such that lim,_,_~ ¢ (x) = 0 and either ¢’ (z) > 0 for all z or
Jg ¢’ (x)] dz < oo. Then

oo

EMX)]:/ o (4) P(X > y) dy.

— 00

Similarly if X >0 and ¢ : [0,00) = R is a C* — function such that ¢ (0) = 0
and either ¢' >0 or [ |¢' (z)|dz < oo, then

E[¢<X>]=/0m¢'<y>P<X>y>dy.

Proof. By the fundamental theorem of calculus for all M < oo and z € R,

x

() = o (- M) + / Wy (13.27)

Page: 156 job: prob

Under the stated assumptions on ¢, we may use either the monotone or the
dominated convergence theorem to let M — oo in Eq. (13.27) to find,

o (z) = / o (y)dy = / ly<z¢’ (y)dy for all z € R.
—00 R
Therefore,

Efp(X)] =E [ [1exe' ) dy} - [l W= [ S P>

—0Q0

where we applied Fubini’s theorem for the second equality. The proof of the
second assertion is similar and will be left to the reader. ]

Example 13.14. Here are a couple of examples involving Lemma [13.13

1. Suppose X is a random variable, then

E[eX] = /OO P(X >y)eldy = /OOO P (X > Inu) du, (13.28)

— 00

where we made the change of variables, u = €Y, to get the second equality.
2.If X > 0and p>1, then

EX? = p/ PP (X > y)dy. (13.29)
0

13.4 Fubini’s Theorem and Completions*

Notation 13.15 Given E C X XY and x € X, let
E:={yeY:(x,y) € E}.
Similarly if y € Y is given let
E, ={zeX:(z,y) € E}.

If f : X xY — Cis a function let f, = f(z,-) and fY = f(-,y) so that
fz: Y =Cand f¥: X = C.

Theorem 13.16. Suppose (X, M, ) and (Y,N,v) are complete o — finite
measure spaces. Let (X xY, L, \) be the completion of (X XY, MQN, up®v). If
[ is L — measurable and (a) f >0 or (b) f € LY(\) then f, is N' — measurable
for p a.e. x and fY is M — measurable for v a.e. y and in case (b) f, € L'(v)
and f¥ € L*(pn) for p a.e. x and v a.e. y respectively. Moreover,
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(.T—)/wadl/> € L' (u) and (y—>/Xfydu> eL'(v)
/Xxyfd)\:/ydu/xduf:/xdp/ydl/f.

Proof. f E e M®N is a p® v null set (ie. (u®@v)(E) = 0), then

and

0= (ue)(B) = [ vGEdn() = [ u(E,)vty)

X X

This shows that

u({z: v(,E) #0}) = 0 and v({y : u(E,) # 0}) =0,

ie. v(F) =0 for pae. z and u(E,) =0 for v a.e. y. If h is £ measurable and
h =0 for A — a.e., then there exists E € M ® N such that {(z,y) : h(z,y) #
0} C E and (u®@v)(E) = 0. Therefore |h(x,y)| < 1g(z,y) and (n @ v)(E) = 0.
Since

{hy #0} ={y €Y : h(z,y) #0} C . E and
{hy #0} = {z € X : h(z,y) £0} C B,

we learn that for p a.e. z and v a.e. y that {h, #0} € M, {h, #0} € N,
v({hsy #0}) = 0 and a.e. and p({h, # 0}) = 0. This implies [, h(z,y)dv(y)
exists and equals 0 for p a.e. x and similarly that [, h(x,y)du(z) exists and
equals 0 for v a.e. y. Therefore

o= = () o= ()

For general f € L'()\), we may choose g € LY (M®N, u®v) such that f(z,y) =
g(x,y) for A— a.e. (z,y). Define h := f—g. Then h = 0, A— a.e. Hence by what
we have just proved and Theorem [I3.6] f = g + h has the following properties:

L For pae. z,y — f(z,y) = g(x,y) + h(z,y) is in L'(v) and

/Y f (@ y)dv(y) = /y o, y)dv(y).

2. For v ae. y, x — f(x,y) = g(x,y) + h(z,y) is in L'(u) and

/Xf(%y)du(SC)Z/Xg(x,y)du(m)~
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From these assertions and Theorem it follows that

[ auta) [ avwsen = [ anto) [ avtwygte.n)

- /Y dv(y) /Y dv(z)g(z,y)
:/ 9z, y)d(1 ® v)(z, y)
XxY

X XY

Similarly it is shown that

[ [ aw@sen = [ fapaey.

13.5 Kolmogorov’s Extension Theorems

In this section we will extend the results of Section [6.3] to spaces which are not
simply products of discrete spaces. We begin with a couple of results involving
the topology on RV,

13.5.1 Regularity and compactness results

Theorem 13.17 (Inner-Outer Regularity). Suppose p is a probability mea-
sure on (RN,BRN) , then for all B € Bgxn we have

pw(B)=inf{p(V): BCV and V is open} (13.30)

and
w(B) =sup{p(K): K C B with K compact} . (13.31)

Proof. In this proof, C, and C; will always denote a closed subset of RY
and V, V; will always be open subsets of RY. Let F be the collection of sets,
A € B, such that for all ¢ > 0 there exists an open set V' and a closed set, C,
such that C C A C V and u (V' \ C) < e. The key point of the proof is to show
F = B for this certainly implies Equation and also that

w(B) =sup{p(C):C C B with C closed} . (13.32)

Moreover, by MCT, we know that if C is closed and K, :=
Cn{zeRY:|z|<n}, then p(K,) 1 u(C). This observation along
with Eq. (13.32)) shows Eq. (13.31) is valid as well.
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158 13 Multiple and Iterated Integrals

To prove F = B, it suffices to show F is a o — algebra which contains all
closed subsets of RV. To the prove the latter assertion, given a closed subset,
CcRY, and e >0, let

C. :=Ugzec B (2,¢)

where B (z,¢) := {y € RV : |y — 2| < e} . Then C. is an open set and C. | C
as € | 0. (You prove.) Hence by the DCT, we know that u(C. \ C) | 0 form
which it follows that C' € F.

We will now show that F is an algebra. Clearly F contains the empty set
and if A € Fwith C C A CV and u(V\C) < ¢, then V¢ C A° C C° with
u(C\Ve) =pu(V\C) <e. This shows A® € F. Similarly if A; € F fori=1,2
and C; C A; C V; with u(V; \ C;) < ¢, then

C=CiUCyCcAjUA; C VLUV =V
and

p(VAC) <p(Vi\C)+pu(V2\O)
< ‘LL(V1\01)+M(‘/2\CQ) < 2e.
This implies that A; U As € F and we have shown F is an algebra.

We now show that F is a o — algebra. To do this it suffices to show A :=
Yoo Ay € Fif A, € F with A, N A, =0 for m # n. Let C,, C A,, C V,, with
pu (Vi \ Cn) < €27 for all n and let OV := U,<nC,, and V := U, V,,. Then
CNcCcACV and

0o N 0o
p(VACY) <3 p(Va\CY) <D n(Va\Ca)+ D n(Va)
n=0 n=0 n=N+1

<> 2 > [u(An) +e277)

n=N+1

=c+ Z w(Ay) .

n=N+1

The last term is less that 2e for N sufficiently large because > -, p1(A,)
i (A) < oo.

Notation 13.18 Let I = [0,1], Q@ = IN, 7; : Q — I be the projec-
tion map, m;(x) = x; (where x = (x1,%2,...,2j,...) for all j € N, and
Bg := 0 (m; : j € N) be the product o — algebra on Q. Let us further say that a
sequence {z (m)},°_, C Q, where x(m) = (z1 (m),x2(m),...), converges to
z € Q iff imy, oo xj (M) = x; for all j € N. (This is just pointwise conver-
gence.)
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Lemma 13.19 (Baby Tychonoff’s Theorem). The infinite dimensional
cube, Q, is compact, i.e. every sequence {x (m)} -_; C Q has a convergent
subsequence,{x (M)} rey -

Proof. Since I is compact, it follows that for each j € N, {z; (m)} ~_, has
a convergent subsequence. It now follow by Cantor’s diagonalization method,
that there is a subsequence, {my};—, , of N such that limj,_, z; (my) € I exists
for all j € N. [

Corollary 13.20 (Finite Intersection Property). Suppose that K,, C Q
are sets which are, (i) closed under taking sequential limit:ﬂ and (i) have the
finite intersection property, (i.e. "\ _1 K, # 0 for allm € N), then N\2_, K,,, #
0.

Proof. By assumption, for each n € N, there exists z(n) € NP _; K.
Hence by Lemma there exists a subsequence, = (ng), such that x :=
limg 00 © (ng) exists in Q. Since x (ng) € NI _; K,, for all k large, and each
K,, is closed under sequential limits, it follows that x € K, for all m. Thus we
have shown, = € N%°_, K, and hence N_, K,,, # 0. [

13.5.2 Kolmogorov’s Extension Theorem and Infinite Product
Measures

Theorem 13.21 (Kolmogorov’s Extension Theorem). Let I := [0,1].
For each n € N, let p, be a probability measure on (I"™,Br~) such that
tnt1 (A X I) = pn (A). Then there exists a unique measure, P on (Q,Bg)
such that

P(AX Q)= i (4) (13.33)

for all A € Byn andn € N.

Proof. Let A := UB,, where B,, .= {AXQ:A€Bm} =0 (m,...,7n),
where m; () = z; if © = (21, 22,...) € Q. Then define P on A by Eq. (13.33)
which is easily seen (Exercise[3.1]) to be a well defined finitely additive measure
on A. So to finish the proof it suffices to show if B,, € A is a decreasing sequence
such that

i%fP (By) = nlLH;OP (Bp) =¢>0,
then B :=nNB, # 0.

To simplify notation, we may reduce to the case where B,, € B,, for all n.

To see this is permissible, let us choose 1 < ny < ng < ng < .... such that

2 For example, if K., = K}, x Q with K/, being a closed subset of I"™, then K,, is
closed under sequential limits.
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By, € B,,, for all k. (This is possible since B,, is increasing in n.) We now define

. )
a new decreasing sequence of sets, {Bk} as follows,

n1—1 times no—nji times n3—ng times mn4—n3 times

~ o~ —_——
(Bl,Bg,...>: 0.....0.B1.....B1. Bs.....B>.Ba. ... . Ba,...

We then have B,, € B, for all n, lim, o P (Bn) =¢e>0,and B =N 1B

Hence we may replace B,, by B, if necessary so as to have B, € B, for all n.

Since B,, € B,, there exists B/, € Br» such that B, = B/, x Q for all n.
Using the regularity Theorem there are compact sets, K], C B), C I",
such that wu, (B, \ K!) < 27! for all n € N. Let K, := K/, x Q, then
P (B, \ K,) <e2 1 for all n. Moreover,

P (Bn\ [Me1 Kn]) = P (Ugzy [Bn \ Ko

m=

f:P Bu\ Kn)
m=1

< ZP( m \ Km) < 252_m L<e/2.
1 m=1

So, for all n € N,
P (Mh=1Km) = P (Bn) = P (Bn \ [M5,—1 Ki]) 2 € —€/2=¢/2,

and in particular, N%,_, K,, # (. An application of Corollary[13.20| now implies,
0 +#nN,K, CN,By. m

Exercise 13.1. Show that Eq. (13.33) defines a well defined finitely additive
measure on A := UB,,.

The next result is an easy corollary of Theorem [I3:21}

Theorem 13.22. Suppose {(X,,, M) }nen are standard Borel spaces (see Ap-
pendiz [13.6] below), X := [ X, mn : X — X,, be the n'" — projection map,
neN

B, =oc(mp:k<n), B=o(m, :n €N), and T,, := Xpy1 X Xp1o X ....
Further suppose that for each n € N we are given a probability measure, p, on

Mi®---® M, such that

tnt1 (AX Xpp1) = pn (A) foralneNand Ae M1 Q- @ M,,.

Then there exists a unique probability measure, P, on (X,B) such that
P(AXT,)=pn(A) foradlAc M1 @ - @ M,.
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Proof. Since each (X,,M,) is measure theoretic isomorphic to a Borel
subset of I, we may assume that X,, € BI and M,, = (By)y_ for all n. Given
A € By, let i, (A) :i= pn (AN[Xy X -+ x X,]) — a probablhty measure on
Byn. Furthermore,

Fing1 (AXT) = pngq ([A X I] N [Xy X -0 X Xpgq])
= pnt1 (AN [X1 X X Xp]) X Xgr)
= pn (AN Xy X X X)) = fin (A) .
Hence by Theorem [13.21] there is a unique probability measure, P, on I such

that -
P(AxIY)=f,(A) foralln € Nand A € Byn.

We will now check that P := Plge g
have

is the desired measure. First off we

n

P(X)= lim P(X; x- x X, x I") = lim ji, (X; x -+ x X,,)

n—oo n—oo

= lim p, (X3 x---x X,) =1
n—oo
Secondly, if A € M; ® - ® M,,, we have

P(AxT,) =P(AxT,) =P((AxI)nX)
=P (Ax V) = fi, (A) = pn (A) .

Here is an example of this theorem in action.

Theorem 13.23 (Infinite Product Measures). Suppose that {v,} —, are a
sequence of probability measures on (R, Br) and B := ®,enBr is the product o
— algebra on RY. Then there exists a unique probability measure, v, on (RN, B) ,
such that
V(Al X Ag X -+ X A, XRN) :l/l(Al)...l/n(An) VA €Br &neN.
(13.34)
Moreover, this measure satisfies,

f(z1,...,zn)dv(z) = flxe,...,zn)dvr (x1) .. dvy (z,)  (13.35)
RN ]Rn

foralln € N and f : R® — R which are bounded and measurable or non-negative
and measurable.

Proof. The measure v is created by apply Theorem with p, =11 ®
- @up on (R™, Brn = @}_,Br) for each n € N. Observe that
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160 13 Multiple and Iterated Integrals
pnt1 (A X R) = iy, (A) - vy (R) = pn (4),

so that {u,}, . satisfies the needed consistency conditions. Thus there exists
a unique measure v on (RN, B) such that

v(AxRY) =y, (A) for all A€ Bpn and n € N.

Taking A = A; X Ay X --- x A, with A; € Bg then gives Eq. . For this
measure, it follows that Eq. holds when f = 14,x...x4,. Thus by an
application of Theorem [I2.5| with Ml = {14, x...xa, : 4; € Br} and H being the
set of bounded measurable functions, f : R” — R, for which Eq. shows
that Eq. holds for all bounded and measurable functions, f : R® — R.
The statement involving non-negative functions follows by a simple limiting
argument involving the MCT. ]

It turns out that the existence of infinite product measures require no topo-
logical restrictions on the measure spaces involved. See Corollary below.

13.6 Appendix: Standard Borel Spaces*

For more information along the lines of this section, see Royden [39] and
Parthasarathy [34].

Definition 13.24. Two measurable spaces, (X, M) and (Y,N) are said to be
isomorphic if there exists a bijective map, f: X — Y such that f (M) =N
and f~1(N) = M, i.e. both f and f=' are measurable. In this case we say f
is a measure theoretic isomorphism and we will write X =Y.

Definition 13.25. A measurable space, (X, M) is said to be a standard Borel
space if (X, M) = (B,Bp) where B is a Borel subset of ((0,1),B1)) -

Definition 13.26 (Polish spaces). A Polish space is a separable topological
space (X, T) which admits a complete metric, p, such that T = 7,.

The main goal of this chapter is to prove every Borel subset of a Polish
space is a standard Borel space, see Corollary below. Along the way we
will show a number of spaces, including [0, 1], (0, 1], [0, 1}d, R?, {0, 1}N, and
RY are all (measure theoretic) isomorphic to (0,1). Moreover we also will see
that a countable product of standard Borel spaces is again a standard Borel

space, see Corollary [13.33

*On first reading, you may wish to skip the rest of this
section.
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Lemma 13.27. Suppose (X, M) and (Y,N') are measurable spaces such that
X =" ,X,Y =2V, with X, € M and Y, € N. If (X,,, Mx,)
is isomorphic to (Y, Ny, ) for all n then X =Y. Moreover, if (X,, M,) and
(Y., N,,) are isomorphic measure spaces, then (X = [[7 | Xn, @52, M,,) are
(Y =112, Yo, ®52,N,,) are isomorphic.

Proof. For each n € N, let f,, : X,, — Y, be a measure theoretic isomor-
phism. Then define f : X — Y by f = f, on X,,. Clearly, f : X — Y is a
bijection and if B € N, then

f_l (B) = Uff’:lf_l (B N Yn) = Uzozlfrjl (B N Yn) e M.

This shows f is measurable and by similar considerations, f~' is measurable
as well. Therefore, f : X — Y is the desired measure theoretic isomorphism.

For the second assertion, let f,, : X,, — Y,, be a measure theoretic isomor-
phism of all n € N and then define

f@)=(f1(z1), fo(z2),...) with x = (z1,22,...) € X.

Again it is clear that f is bijective and measurable, since

fil (H Bn> = H f;l (Bn) € ®$1,O=1Nn
n=1 n=1

for all B,, € M,, and n € N. Similar reasoning shows that f~! is measurable as
well. ]

Proposition 13.28. Let —c0 < a < b < oo. The following measurable spaces
equipped with there Borel o — algebras are all isomorphic; (0,1), [0,1], (0,1],
[0,1), (a,b), [a,b], (a,b], [a,b), R, and (0,1)UA where A is a finite or countable
subset of R\ (0,1).

Proof. It is easy to see by that any bounded open, closed, or half open
interval is isomorphic to any other such interval using an affine transformation.
Let us now show (—1,1) = [—1,1]. To prove this it suffices, by Lemma to
observe that

(LD ={0yud (-2 2 U2 )

and

FL= {0 u (2 2 U2 ).

Similarly (0, 1) is isomorphic to (0, 1] because
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oo o0

(0,1)=>"[27"",27") and (0,1] = Y (27", 27"].

n=0 n=0

The assertion involving R can be proved using the bijection, tan
(=7/2,7/2) = R.

If A= {1}, then by Lemmal13.27 and what we have already proved, (0,1)U
{1} = (0,1] = (0,1) . Similarly if N € N with N > 2 and A ={2,...,N + 1},
then

N-1
(0,1)UA=(0,1]UuAd=(0,2"N+u lz (27", 27" 1l uA4
n=1
while
N-1
(0,1) = (0,27 V1 U [Z (2—",2—"—1)] u{2™:n=1,2,...,N}
n=1
and so again it follows from what we have proved and Lemma|13.27|that (0,1) =
(0,1) U A. Finally if A = {2,3,4,...} is a countable set, we can show (0,1) &
(0,1) U A with the aid of the identities,
[Z (2727 1 u{2™:neN}
and
(0,1)UA=(0,1]UA = Z (27" 27"l u A,
|

Notation 13.29 Suppose (X, M) is a measurable space and A is a set. Let
7o : X4 — X denote projection operator onto the a'™ — component of X4 (i.e.
7o (w) = w (a) for all a € A) and let M®4 := o (7, : a € A) be the product o —
algebra on XA.

Lemma 13.30. If ¢ : A — B is a bijection of sets and (X, M) is a measurable
space, then (X4, M®4) = (XB, M®B).

Proof. The map f: X — X* defined by f (w) =wo ¢ for all w € XB is
a bijection with f~! (a) = o~ !. Ifa € A and w € XB, we have

X o fw) = f (W) (@) =w (9 (a) = 150 @),

where 71'2( * and 7rb X7 are the projection operators on X4 and X respectively.

Thus X" o f = 7r for all @ € A which shows f is measurable. Similarly,
A

of = cp_l(b) showmg £~ is measurable as well. [
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Proposition 13.31. Let 2 := {0,1}", m; : 22 — {0,1} be projection onto the
it" component, and B := o (71,72,...) be the product o — algebra on 2. Then

(2,B) = ((0,1), B(o,1y) -

Proof. We will begin by using a specific binary digit expansion of a point
x € [0,1) to construct a map from [0,1) — 2. To this end, let r; (z) = z,

Y1 (7) := 1y59-1 and 72 (2) =2 — 271y () € (0,271),

then let vo :=1,,59-2 and 73 = 1o — 272y, € (0, 2*2) . Working inductively, we
construct {7y (z), 7k (x)}re, such that v (z) € {0,1}, and

e (@) = 7 (2) = 27y ( _IE—ZQ T (x) € (0,277) (13.36)

for all k. Let us now define g : [0,1) — 2 by g (z) := (71 (z),72 (z),...). Since
each component function, m; o g =y; : [0,1) — {0,1}, is measurable it follows
that g is measurable.

By construction,

15—22]% )+ Tt (2)

and ri41 () — 0 as k — oo, therefore

x = Z 277, (z) and 7441 ( Z 27y, (z (13.37)
j j=k+1

Hence if we define f: 2 — [0,1] by f = 37, 2777, then f (g (z)) = z for all
€ [0,1). This shows g is injective, f is surjective, and f in injective on the
range of g.

We now claim that 2y := ¢ ([0,1)), the range of g, consists of those w € 2
such that w; = 0 for infinitely many ¢. Indeed, if there exists an k € N such
that v; (z) = 1 for all j > k, then (by Eq. (13.37)) rx41 (z) = 27% which
would contradict Eq. (13:36). Hence g ([0,1)) C 2. Conversely if w € {2 and
z = f(w) € [0,1), it is not hard to show inductively that ~; (z) = w; for all
j, i.e. g(z) = w. For example, if w; = 1 then x > 27! and hence 7; (z) = 1.
Alternatively, if w; = 0, then

z=Y 277w <y 277 =27"
=2 =2
so that 71 () = 0. Hence it follows that 7o (z) = Zj‘;z 27Jw; and by similar

reasoning we learn ro (v) > 272 iff wy = 1, i.e. 7o (x) = 1 iff wy = 1. The full
induction argument is now left to the reader.
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162 13 Multiple and Iterated Integrals

Since single point sets are in B and
A=02\ 2 =UL {we:w;=1for j >n}

is a countable set, it follows that A € B and therefore ) = 2\ A € B.
Hence we may now conclude that g : ([0,1),Bj,1)) — (£20, Bg,) is a measurable
bijection with measurable inverse given by f|q,, i.e. ([O, 1), 3[0,1)) > (£20,Bq,) -
An application of Lemma [I3.27] and Proposition [I3.28 now implies

Q=02UA2[0,1)UN2[0,1)=(0,1).
|

Corollary 13.32. The following spaces are all isomorphic to ((0,1),8(071));

(0, 1)d and R for any d € N and [0, 1]N and RN where both of these spaces are
equipped with their natural product o — algebras.

Proof. In light of Lemma and Proposition we_know that
(0,1) = R% and (0,1)" = [0,1]" = RY. So, using Proposition it suf-
fices to show (0,1)* = 2 = (0,1)" and to do this it suffices to show 27 =
and Q2N = 0.

To reduce the problem further, let us observe that £2¢ = {0, 1}NX{1’2 """ 4

and 2V = {O,I}NZ. For example, let g : 2V — {0,1}N2 be defined by
N
g (W) (i,5) = w (i) (j) for all w € NV = [{0, I}N] . Then g is a bijection and

N2
since W&{i%.l)} og(w) =y (W?N (w)) , it follows that g is measurable. The in-
verse, g~ ! : {0,1}N2 — N to g is given by g7 () (i) () = a(i,7). To see
2
this map is measurable, we have 7T{2N ogt: {0, 1} = 2 ={0,1}" is given

72 097 (@) = g~ (@) (i) (-) = (i, ) and hence

K2

N L. 0,1 N2
Wfowf og(a):oz(uj):wij 4 ()

N
i

2
og~t = 101" i measurable for all i,7 €N
1

from which it follows that 7rj” oT

N . ; .
and hence 7> o g~! is measurable for all i € N and hence g~! is measurable.

This shows 28 22 {0, 1}N2 . The proof that £2¢ = {0, 1}NX{1’2""’d} is analogous.

We may now complete the proof with a couple of applications of Lemma
Indeed N, N x {1,2,...,d}, and N? all have the same cardinality and
therefore,

{0,102t > 10 YV = g0, 1} = 2,
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Corollary 13.33. Suppose that (X,,, M,,) forn € N are standard Borel spaces,
then X := [[,—, X,, equipped with the product o — algebra, M := @22, M,, is
again a standard Borel space.

Proof. Let A, € Bjg,1) be Borel sets on [0, 1] such that there exists a mea-
surable isomorpohism, f,, : X, = A,. Then f: X — A:=[[ 2, A, defined by
fx1,2e,...) = (f1(z1), fa(x2),...) is easily seen to me a measure theoretic
isomorphism when A is equipped with the product o — algebra, ®9% 84, . So ac-
cording to Corollary [[3:32] to finish the proof it suffice to show ®52 B4, = My
where M := ®52,Bjg 1] is the product o — algebra on [0, 1N,

The o — algebra, @52, B4, , is generated by sets of the form, B := [[°2 | B,
where B, € Ba, C Bjg,1- On the other hand, the o — algebra, M4 is generated
by sets of the form, AN B where B := | B,, with B,, € Bjp,1j- Since

ANB= ﬁ (BnmAn) = ﬁBn
n=1

n=1

where B,, = B,, N A,, is the generic element in B4, we see that ®2°,B,4, and
M 4 can both be generated by the same collections of sets, we may conclude
that ®2°:1[)’An = My. u

Our next goal is to show that any Polish space with its Borel o — algebra is
a standard Borel space.

Notation 13.34 Let Q := [0,1]" denote the (infinite dimensional) unit cube
in RN, Fora,be Q let

— 1 = 1
d(a,b) := Z on lan, — by| = Z on |7 (@) — 7, (D). (13.38)
n=1 n=1

Exercise 13.2. Show d is a metric and that the Borel o — algebra on (Q, d) is
the same as the product o — algebra.

Theorem 13.35. To every separable metric space (X, p), there exists a contin-
uous injective map G : X — Q such that G : X — G(X) C Q is a homeomor-
phism. Moreover if the metric, p, is also complete, then G (X) is a G5 —set, i.e.
the G (X) is the countable intersection of open subsets of (Q,d). In short, any
separable metrizable space X is homeomorphic to a subset of (Q,d) and if X is
a Polish space then X is homeomorphic to a G5 — subset of (Q,d).

Proof. (This proof follows that in Rogers and Williams [38, Theorem 82.5
on p. 106.].) By replacing p by ﬁpp if necessary, we may assume that 0 < p < 1.

Let D = {a,},—; be a countable dense subset of X and define

G(‘T) = (p(a:,al),p(x,@),p(z,ag),...) €Q
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and

(z,an) — p(y,an)|

l\D‘H

v(@,y) =d(G (x Z

for x,y € X. To prove the first assertion, we must show G is injective and ~ is
a metric on X which is compatible with the topology determined by p.

If G(x) = G(y), then p(x,a) = p(y,a) for all @ € D. Since D is a dense
subset of X, we may choose oy € D such that

0= lim p(z,ay) = lim p(y,ar) = p(y,z)
k—o00 k—o00

and therefore z = y. A simple argument using the dominated convergence
theorem shows y — 7 (z,y) is p — continuous, i.e. vy (z,y) is small if p (z,y) is
small. Conversely,

14 (a:,y) < P (33, an) +p (ya an) = 2/) (x,an) + p(yvan) - P (xv an)
<2p(z,an) + |p (2, a0) — p (Y, an)| < 2p (2, an) + 2"y (2,9) -

Hence if € > 0 is given, we may choose n so that 2p(x,a,) < £/2 and so if
v (z,y) < 2-(+Ve it will follow that p(x,y) < e. This shows 7., = 7,. Since
G: (X,7) = (Q,d) is isometric, G is a homeomorphism.

Now suppose that (X, p) is a complete metric space. Let S := G (X) and o
be the metric on S defined by o (G (z),G (y)) = p (z,y) for all z,y € X. Then
(S,0) is a complete metric (being the isometric image of a complete metric
space) and by what we have just prove, 7, = 74,. Consequently, if u € S and £ >
0 is given, we may find ¢’ (¢) such that B, (u,d’ (€)) C By (u,e). Taking § (¢) =
min (8’ () ,¢), we have diamg (Bg (u,d (¢))) < € and diam, (Bg (u,d(¢))) < €
where

diam, (A) := {supo (u,v) : u,v € A} and
diamy (A) := {supd (u,v) : u,v € A}.

Let S denote the closure of S inside of (Q,d) and for each n € N let
N, :={N € 74 : diam, (N) V diam, (NN S) < 1/n}

and let U, := UN,, € 74. From the previous paragraph, it follows that S C U,
and therefore ScSn(Ne,Un).

Conversely if u € SN (N%,U,) and n € N, there exists N,, € N,, such
that u € N,,. Moreover, since Ny N---N N, is an open neighborhood of u € S,
there exists u, € Ny N---N N, NS for each n € N. From the definition of
N, we have lim, o0 d (u,u,) = 0 and o (uy, Uyp) < max (n‘l,m_l) — 0 as
m,n — oo. Since (S,0) is complete, it follows that {u,} -, is convergent in
(S o) to some element ug € S. Since (S, dg) has the same topology as (S, o)
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it follows that d (un,,up) — 0 as well and thus that v = ug € S. We have
now shown, S = S N (N%,U,). This completes the proof because we may
write S = (ﬂ;ozl Sl/n) where Sy, 1= {u eQ:d (u, 5) < 1/n} and therefore,
S = (Mol Un) N (Noy Si/n) is a Gy set. [

n=1

Corollary 13.36. FEvery Polish space, X, with its Borel o — algebra is a stan-
dard Borel space. Consequently any Borel subset of X is also a standard Borel
space.

Proof. Theorem [13.35| shows that X is homeomorphic to a measurable (in
fact a Gg) subset Qg of (Q,d) and hence X = @Qg. Since @ is a standard Borel
space so is Qg and hence so is X. [

13.7 More Exercises

Exercise 13.3. Let (X, M, u;) for j = 1,2,3 be o — finite measure spaces.
Let F: (X1 x X2) X X3 — X; X X5 x X3 be defined by

F((x1,22),23) = (21,22, 23).

1. Show F'is (M1 ® Mz) @ M3, M1 ® Ma ® M3) — measurable and F~! is
(M @ M2 @ M3, (M1 @ Ms3) ® Ms) — measurable. That is

F ((X1 X XQ)XXg, (Ml ®M2)®M3) — (X1 XX2 XXg,M1®M2®M3)

is a “measure theoretic isomorphism.”

2. Let 7 := F, [(1 ® p2) ® p3], i.e. 7(A) = [(p1 @ p2) @ ps) (F~L(A)) for all
A e My @ My ® Ms. Then 7 is the unique measure on M; @ My ® M3
such that

m(A1 x Az x Az) = p (A1) p2(Az)ps(As)
for all A; € M;. We will write 7 := 1 ® po ® 3.
3. Let f: X1 X Xo x X3 — [0,00] be a (M1 @ Ma ® M3, Bg) — measurable
function. Verify the identity,

/ fdr = dps(xs3) dps(2) dp(z1) f(z1, 22, 3),

Xl X X2 ><X3 X3 X2 Xl
makes sense and is correct.

4. (Optional.) Also show the above identity holds for any one of the six possible
orderings of the iterated integrals.

Exercise 13.4. (Part of Folland Problem 2.46 on p. 69.) Let X = [0,1], M =
Bjg,1; be the Borel o — field on X, m be Lebesgue measure on [0, 1] and v be
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counting measure, v(A) = #(A). Finally let D = {(z,z) € X?: 2 € X} be the
diagonal in X?2. Show

/XUX 1D(x,y)du(y)] dm(x)#/x[/X 1D(x,y)dm(x)} dv(y)

by explicitly computing both sides of this equation.

Exercise 13.5. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 13.6. Folland Problem 2.50 on p. 69 pertaining to area under a curve.
(Note the M x B should be M ® Bg in this problem.)

Exercise 13.7. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 13.8. Folland Problem 2.56 on p. 77. Let f € L'((0,a),dm), g(z) =
fa @dt fOI' VS (Oa a)v ShOW g S Ll((o, a),dm) and

/Oag(x)dx - /Oaf(t)dt.

Exercise 13.9. Show [;° |22 |dm(z) = oo. So #22 ¢ L([0,00),m) and
Jo" 22 dm(x) is not defined as a Lebesgue integral.

Exercise 13.10. Folland Problem 2.57 on p. 77.

Exercise 13.11. Folland Problem 2.58 on p. 77.

Exercise 13.12. Folland Problem 2.60 on p. 77. Properties of the I" — function.

13.8 Exercises

Many of the following exercises are probably repeats of the exercises above.

Exercise 13.13. Prove Theorem ?7. Suggestion, to get started define

w(A) = du(xl)---/X dp (zp)1a (1, .., 20)

X1

and then show Eq. (?77) holds. Use the case of two factors as the model of your
proof.

Exercise 13.14. Let (X;, M;, ;) for j = 1,2,3 be o — finite measure spaces.
Let F: (X1 x X3) x X3 = X7 x X3 X X3 be defined by

F((I1,$2),$3) = (I17I2,I3)-
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1. Show F is (M1 ® Ma) ® M3z, M1 ® My ® M3) — measurable and F~! is
My @ Ms ® M3, (M1 ® Ms3) ® Ms) — measurable. That is

F ((X1 X XQ)XXg, (Ml ®M2)®M3) — (Xl XX2 XX3,M1®M2®M3)

is a “measure theoretic isomorphism.”

2. Let 7 := F, [(11 @ p2) ® p3), i.e. 7(A) = [(p1 @ p2) ® ps) (F~L(A)) for all
A e M;® My ® Ms. Then 7 is the unique measure on M1 ® My ® M3
such that

m(Ar x Ay x Az) = p1 (A1) p2(A2)ps(As)
for all A; € M;. We will write 7 := 1 ® po ® 3.
3. Let f: X1 x Xg x X3 — [0,00] be a (M1 @ Mg ® Mg, Bg) — measurable
function. Verify the identity,

/Xl><X2><X3 fdﬂ/XS d'“3(933)/x2 duz(@)/Xl dpa (1) f (21, 22, 23),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six possible
orderings of the iterated integrals.

Exercise 13.15. Prove the second assertion of Theorem ??. That is show m¢

is the unique translation invariant measure on Bga such that m<((0,1]%) = 1.
Hint: Look at the proof of Theorem ?77.

Exercise 13.16. (Part of Folland Problem 2.46 on p. 69.) Let X = [0,1], M =
Bjp,1) be the Borel o — field on X, m be Lebesgue measure on [0,1] and v be
counting measure, v(A) = #(A). Finally let D = {(z,z) € X?: 2 € X} be the
diagonal in X?2. Show

/X { /X m(x,y)dV(y)} dm(z) # /X { /X lp(x,y)dm(m)} dv(y)

by explicitly computing both sides of this equation.

Exercise 13.17 (Folland Problem 2.48 on p. 69.). Let X =Y =N, B = 2"
and = v =Y " | 6, be counting measure on (X, B) and (Y, B) . If f : X xY —
R is defined by

f(m,n) = lm=n — lm=nt1
show [y yIfldlp @ v) = oo while [ du(m) [(dv(n)f(m,n) and
Jydv(n) [ du(m) f(m,n) both exists but are unequal.

Exercise 13.18. Folland Problem 2.50 on p. 69 pertaining to area under a
curve. (Note the M x Bg should be M ® By in this problem.)
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Exercise 13.19. Folland Problem 2.55 on p. 77. (Explicit integrations.)
Exercise 13.20 (Folland Problem 2.56 on p. 77. ). Let a € (0,00), f €
L'((0,a),dm), and
Lt
g(z) = / @dt for x € (0, a).

Show g € L'((0,a),dm) and

/Oag(x)d:v = /Oa ft)de.

Exercise 13.21. Show fooo ‘¥| dm(z) = co. So #2Z ¢ L1([0,00),m) and
Jo7 22 dm(x) is not defined as a Lebesgue integral.

Exercise 13.22. Folland Problem 2.57 on p. 77.

Exercise 13.23. Folland Problem 2.58 on p. 77.

Exercise 13.24 (Folland Problem 2.60 on p. 77.). If I'(x) is the I" -
function as in Definition show

1
rx)C(y)/I(z+y) = / (1 —r)* ¥~ ar for all z,y > 0.
0

Hint: write I'(z)I'(y) as a double integral and then make a couple of change
of variables.

Exercise 13.25. Folland Problem 2.61 on p. 77. Fractional integration.






14

Lebesgue Measure on R?

Notation 14.1 Let
d times d times

—_——~ ——N—
mi=mg- --@m on Bra = Br ® -+ ® Br

be the d — fold product of Lebesgue measure m on Bg.
Alternatively, define m® by induction on d using

m? =m@ma! on Bga = Br @ Bga-1.
[We will also use m? to denote its completion and let Lq be the completion of
Bga relative to m®. A subset A € Ly is called a Lebesque measurable set and

m< is called d — dimensional Lebesgue measure, or just Lebesque measure for

short.]

Definition 14.2. A function f : R? — R is Lebesgue measurable if f*Br C
L.

Notation 14.3 I will often be sloppy in the sequel and write m for m® and dx
for dm(x) = dm?(x), i.e.

f(z) dx:/ fdm = fdm?.
R4 R4 R4

Hopefully the reader will understand the meaning from the context.

Theorem 14.4. If a € R? and f : R — [0, 00] is Borel measurable, then

fr+a)dmg(x) = f(z)dmg (z) (14.1)
R4 Rd

and in particular Lebesque measure, m?, is invariant under translation. More-

over, if i is a measure on Bgra which is translation invariant and p ((O7 l]d) <
00, then = c-m® where ¢ = p ((0,1]4) .

Proof. The proof of these assertions will be by induction on d. The case
d = 1 being already known. Here is the induction step to prove Eq. .
By Tonelli’s theorem along with the translation invariance of my if we let z =
(71,y) € R x R then

/Rdf(x—’_a)dmd(x):Ad,ldy[Rdxlf(xl+al’y+b)

:/Rdildy/Rd:clf(scl,y—i-b)
:/Rdxl/d,ldyf(m’“b)
:/Rdxl/wldyf(m,y)=/Rdf<w+a>dmd<fv>

wherein the induction step was used in the second to last equality. Taking
f = 1p with 2 € Bga shows m (2 —a) = m(£2) which is the translation
invariance of m¢.

For the uniqueness assertion, let B € Bra-1 be a fixed bounded set and then
define v (A) := u (A x B) for A € Bg. Then v is translation invariant measure
on Bg which is finite on bounded sets and hence v (A) = v ((0,1]) - m (4), i.e.

p(Ax B)=m(A)p((0,1] x B).

As simple truncation arguments now shows this last equation holds for all B €
Bra-1. Applying the induction hypothesis ot the translation ninvariant measure,
Bga-1 > B — 1 ((0,1] x B), we conclude that 1 ((0,1] x B) = ¢- m¢~1 (B) for
all B € Bra-1. Combinining these results shows

p(Ax B)=c-m(A)m*(B)=cm?(Ax B) forall A€ Bg and B € Bga-1.

By an application of Proposition we conclude that p = ¢ - m¢.
]

Exercise 14.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on By which is invariant under translations and
satisfies, m(By(e)) > 0 for all € > 0. Show m(V') = oo for all non-empty open
subsets V C H.



168 14 Lebesgue Measure on R?
14.1 Linear Change of variables theorem

Suppose that T is an invertible d X d real matrix which we view to be a linear
transformation from R? to R%. Let mT := T 'm, i.e. mT is the measure on
Bga such that (mT) (B) = m (T'B) for all B € Bga. Since Lebesgue measure is
translation invariant (Theorem

(mT) (z + B) = m (Tx + TB) = m(TB) = (mT) (B)

which shows mT is still translation invariant. We now let

§(T) :==m (T 0, 1]”‘)

and observe that & (T') € (0, 00) since T [0,1]% is a bounded set with non-empty
interior. Then y := ﬁmT is a translation invariant measure on Bga such that

" ([0, 1]d) = 1 and hence by Theorem [14.4{ 4 = m, i.e. mT = §(T) - m. The

main goal of this section is to show § (T') = |det T'|.
Let us begin by showing § behaves like a determinant. If S is another in-
vertible d x d real matrix then

0(ST)m=mST =5(S)mT =6(S)0(T)m

which shows ¢ (ST) = § (S5) 6 (T') . We also clearly have 6 (I) = 1. Although this
indicates that ¢ may be the determinant it is certainly not enough to prove
it yet. For example, we could have ¢ (T') = |det T'|" for some p € R. We are
going to show 6 (T') = |det T'| by factoring T' as T = RDS where R and S are
orthogonal matrices and D is a dilation. We will then compute § on each of
the factors. Before getting started let us briefly review the basic notion of an
orthogonal matrix.
Let (x,y) or x -y denote the standard dot product on RY, i.e

d

() =a-y =1 a

j=1

Recall that if A is a d x d real matrix then the transpose matrix, A", may be
characterized as the unique real d x d matrix such that

(Az,y) = (x,A"y) for all z,y € RY.

Definition 14.5. A d x d real matriz, S, is orthogonal iff S*S = I or equiva-
lently stated S* = S—1.

Here are a few basic facts about orthogonal matrices.
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1. A d x d real matrix, S, is orthogonal iff (Sx, Sy) = (x,y) for all z,y € R%.
2. If {u]} | is any orthonormal basis for R? and S is the d x d matrix deter-

mined by Sej =uj for 1 < j <d, then S is orthogonalﬂ Here is a proof for
your convenience; if x,y € R?, then

d d
<:c, Stry> (Sz,y) = Z z,e;) (Sej, y) Z z,ej5) (uj,y
j=1 j=1

M&

(x, 8~ u] (uj,y) = <;E7S_1y>
Jj=1

from which it follows that S = S~1.
3. If S is orthogonal, then 1 = det I = det (S*S) = det S* - det § = (det S)?
and hence det §' = £1.

The following lemma is a special case the well known singular value de-
composition or SVD for short..

Lemma 14.6 (SVD). If T is a real d x d matriz, then there exists D =
diag (A1, ..., q) with Ay > Ay > -+ > Ay > 0 and two orthogonal matrices
R and S such that T = RDS. Further observe that |detT| =det D = Ay ... A\q.

Proof. Since T%T is symmetric, by the spectral theorem there exists an
orthonormal basis {'U;j}?zl of R and Ay > Xy > -+ > Ag > 0 such that
T"Tu; = )\?uj for all j. In particular we have

(Tuj, Tug) = <TtrTUj,uk> = )\?(%k V1<jk<d.
1. detT # 0 case.
a) (First proof.) In this case A; ... g = det T"T = (det T)* > 0 and so
d
Ag > 0. It then follows that {vj = %Tuj} is an orthonormal basis
J j=

for R%. Let us further let D = diag(\1,...,Aq) (i.e. De; = Aje; for
1< j <d)and R and S be the orthogonal matrices defined by

Rej =vj and S%¢; = S~ te; = uj for all 1 < j < d.
Combining these definitions with the identity, Tu; = A;v;, implies
TS 'e; = A\jRe; = R\jej = RDe; for all 1 < j < d,

i.e. TS™! = RD or equivalently T = RDS.

! This is a standard result from linear algebra often stated as a matrix, S, is orthog-
onal iff the columns of S form an orthonormal basis.
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b) (Second proof.) By the spectral theorem, T%T = S* D2S where S is
an orthogonal matrix and D is diagonal with the square roots of the
eigenvalue of T T along the diagonal. From this equation we conclude,

ST"TS™ = D* — [D7'STY] [TS"D™'| =1
and so R := TS D~! is an orthogonal matrix. Solving the last equation

for T then implies T'= RDS.
2. detT = 0 case. In this case there exists 1 < k < d such that Ay > Ay >

- > X > 0= Agy1 = -+ = Ag. The only modification needed for the

above proof is to define v; := %Tuj for j < k and then extend choose
J

Va1, ---,0q € RY so that {Uj}q:1 is an orthonormal basis for R?. We still

have T'u; = Ajv; for all j and so the proof in the first case goes through
without change.

]

In the next theorem we will make use of Theorem [[4.4] which characterizes

d-dimensional Lebesgue measure as the unique measure on (Rd, BRd) which is
translation invariant assigns unit measure to [0, l]d .

Theorem 14.7. If T is a real d x d matriz, then moT = |detT| - m.

Proof. Recall that we know mT = § (T') m for some ¢ (T) € (0,00) and so
we must show 0 (T') = |det T'| . We first consider two special cases.

1. If T = R is orthogonal and B is the unit ball in Rdﬂ then 6 (R)m (B) =
m (RB) = m (B) from which it follows ¢ (R) =1 = |det R|.

2. If T = D = diag (A1, ...,A\q) with A; > 0, then D[0,1]% = [0, Ay] X --- x
[0, Ag] so that

§(D)=6(D)m ([0, 1]d) —m (D 0, 1]d> = A1... Mg = det D.

3. For the general case we use singular value decomposition (Lemma [14.6]) to
write T'= RDS and then find
§(T)=6(R)6(D)6(S)=1-detD 1= |detT].
|

Theorem 14.8 (Linear Change of Variables Theorem). If
T € GL(d,R) = GL (Rd) — the space of d x d invertible matrices, then
the change of variables formula,

fly)dy = / f(Tx) - |detT|dzx, (14.2)
R4 Rd
holds for all f € Lt (R, Bga) or for all f € L' (m?) .

*B={zeR’:|z| <1}.
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Proof. Theorem may be restated to say T, 'm = moT = |det T|dm
which combined with the abstract change of variables theorem (see Exercise

10.7) gives

fdm = foTd [T, 'm] :/ foT-|detT|dm
Rd R4 R4

for all f € LT (RY, Bga) .
]
In a Chapter 7?7, we will prove a much more general version of the change
of variables theorem for d-dimensional Lebesgue measure. In the next section
we describe an important “disintegration” theorem for m¢.

The next exercise gives an alternative proof of Theorem [14.7]

Exercise 14.2 (Change of variables for elementary matrices). Let R :=
(a,b] = (a1,b1] x - -+ x (aq, bg] C R? be a bounded half open rectangle. Show by
direct calculation that;

|detT|/Rd1RoT(x)dm:m(R):/Rle(y)dy (14.3)

for each of the following linear transformations;

1. Suppose that ¢ < k and
T(.%'l,IQ e )l‘d) = (xla ey L1 Ly L1« v+ s Th—15 Ly The-15 - - 'xd)7

i.e. T swaps the 7 and k coordinates of x.

2. T(x1,. Thy---yxq) = (T1,...,CTk, ... Tq) where c € R\ {0}.
i’th spot
3. T(x1,22...,2q) = (ml,...,Jci—l—gxk,...xk,...xd) where ¢ € R.

Hint: you should use Fubini’s theorem along with the one dimensional
change of variables theorem[]

14.2 General Change of Variables

In this chapter we are going to first state and illustrate the multi-dimensional
change of variables theorem.

3 Recall that this exercise states; fy gd [fsp] = fx (go f)dp.

4 The point of this exercise to compute explicitly § (T) where T is an elementary
matrix and show in all case that ¢ (T)) = |det T'|. This may be easier to do using
the integration theoretic definition of § (T") . Once all of this is done it follows by
the fact that every invertible matrix is the product of elementary matricies that
0 (T) = |det T'| whenever T is invertible.
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170 14 Lebesgue Measure on R?

Notation 14.9 (Standing Notation) Let 2 be an open subset of R? and
for 1 < i < d, let 9; := 9/0x; for 1 < i < d. A function, T : 2 — R s
continuously differentiable if for all1 < i < d and 1 < j < d, 9;,T; (x)
exists for v € 2 and 2 3 x — 9;T; (x) € R is continuous. We let C* (£2,R?)
denote the vector space of continuously differentiable functions from £2 to R,

Definition 14.10 (Differentials). For T € C' (2,R") and let T’ (z) be the
differential of T at x defined by.

T'(x) = [(T) (). [ (94T) (z)] V x € 12, (14.4)
where T'(z) = (Th (z x))™. In more detail,
a1Tl 8dTl( )
, (14.5)
81Td Bde( )

i.e. the i - j-matriz entry of T'(x) is given by T'(x);; = 0;T;(x).

We now wish to sketch an outline of the proof of the change of variables
theorem. Our goal is to show d(moT) = |det T’ (-)] dm. If we can do this it
will then follows that

/T(Q)fdm:/nfon(moT):/nfoT-detT ()] dm.

Theorem 14.11 (Change of Variables Theorem I). Let 2 C, R? be an
open set and T : 2 — T (£2) C, RY be a C*- dzﬁeomorphzsml °| see Fzgurem
Then d(moT) = |det T’ (-)| dm where both sides are measure on (£2,Bg) .

Proof. We will only sketch the idea of the proof here. Full proofs of the
theorem will appear at the end of this chapter. To verify that d(moT) =
|det 77 (-)| dm it suffices to show

m (T (R)) = /R et ' ()] dm (14.6)

whenever R € By, is a half-open rectangle. Indeed if this can be done and
Ry € By, is a half-open rectangle, then by the multiplicative system theorem
it will follows that d(moT) = |detT' (-)]dm on all A € By, with A C Ry. If
A € By, is a set such that A C 2, we can find finitely many half-open rectangle,

® That is T : 2 — T(2) C, R? is a continuously differentiable bijection and the
inverse map 7' : T(£2) — (2 is also continuously differentiable.
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0 y - space

dy = | det(T"(x))|dx

>

T - space

Fig. 14.1. The geometric setup of Theorem |14.13

{R; } _, with R; C §2 such that A C U/_;R? C UJ_, R;. It is now a simple
matter to conclude thatf]

m(T(A)):/A|detT’(~)|dm.

A simple truncation argument now shows that d(moT) = |detT’ (-)| dm on
all of By,. Thus it remains to prove Eq. (14.6) holds. The sketch of this proof
follows.

1. Decompose R into small cubes or almost cube regions, R = Zfil Q@; and
let x; be the center point in @;. Then

N
= Zm (T Q;
=1

5 Suppose that u and v are two measure on a measure space (£2,8). If A; € B for
1<j< Nandp=vonBa, forall j,then p = v on Bua,. Indeed if B € Bua, then
B:Z;L:1~BQAJ' Where 141 :Al and Aj :Aj\[Alu---UAj,ﬂ f0r2 S] S N.
Since BN A; € Ba; for each j we conclude that

n

[,L(B):i,u(BﬂAj) ZZV(BQAJ-) =v(B).

j=1
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2. We then use for x € Q;, T (z) 2 T (z;) + T" (z;) (x — x;) so that T (Q;) =
T (i) +T" (i) (@ — i) .
3. Consequently,

m (T (Qi)) =m (T (z:) + T' (x:) (Qi — ) = m (T" () (Qi — x4))
= |det T" (z;)| m (Qi — x;) = |det T' (x;)| m (Q;) -

4. Summing this equation indicates that
m( Z|detT' x;)|m(Q %/ |det T" ()| dm

as the mesh of the partition tends to 0.
]

Remark 14.12 (*Added details to the proof sketch). Here are some more the
details of the above proof which you may safely ignore! For the purposes of the
estimates below we let |z| = maxj<;<q|z;| and ||| denote the corresponding
operator norm on d X d matrices.

By the definition of the derivative, for xy € (2,

T (xo+y) =T (x0) +T" (x0) y = Tny (y)
which suggest we define,
Sao (y) =T (20) "' [T (w0 +y) — T (0)]

so that ~
T (zo+y) =T (v0) + T (20) Sy () = Ty © S (y) -

We then have S;, (0) = 0 and S}, (0) = I and hence

(/ o (ty) dt)y=y+pzo(y)y

pao (y) = /0 (S5, (ty) — 1] dt.

Fix a compact subset, K C {2, for example take

where

1 -
K:KN:{QTEQd($,80)<N}mB(O,N>

for some N € N so that Ky 1 §2 as N 1 co. Then define
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a(6) =14 sup sup |pz (v)]
€K |y|<é

so that a(8) | 1 as § | 0. We then have the estimate,

1520 ()| < (L4 oz W) [yl < e (y]) [yl < a(6) [y| for |y| <o.

Choosing @ (d) > a/(d) so that @ (d) | 1 (tak a(0)
and letting Qs := (=6, 6]¢ (note that Qs = [—4,8]" =
all zg € K and § small enough, that

Sz (Qs) C Sa (Qs5) € Qa(s)s C Qa(s)s-

By replacing ¢ by /@ () in this inequality we also have

Seo (Qé/a(é)) - Q%ﬁ%é))& C Qs (14.7)

= «a(6) + 0 for example)
{y : |y| < d}) we find, for

where the last inclusion follows since /@ () < d so that @ (/@ (5)) < a(9).
We actually apply the above inclusion with S, replaced by S 01 which satisfies
the same properties of S,,. |Note that S, ! exists since

Suo () =T (20) " [T (z0 +y) — T (20)] = 2 <=
T(xo+y) =T (x0) +T (z0)z <= 2o+y=T (T (20) + T’ (20) 2)

and hence
S 1(2) =TT (x0) + T' (20) 2) — x0.]

Zo

We now let & (0) := 1+ sup, cx SUpyj<s ||Pzo ()| where

Pao (y) = /01 [(5501)' (ty) — I] dt

and then set §(§) = 1/[a (d) + 6] 1 1. Then we will have from Eq. (14.7) with
Sz, replaced by S; ! that S, 1

A (Qﬁ(g)g) C Qs and so all together we have shown
Qp5)5 C Szy (Qs) C Qas)s ¥ 2o € K and ¢ small enough.
Applying Tmo to these inclusions then shows
T, (Qps)s) C T (zo+Qs) C TMQ&((;)(; V zo € K and ¢ small enough
and then taking the measure of all sets involved we learn,

[det T ()| B () m (Q5) < m (T (w0 + @) < |det T (20)| & (5) m (Qs).

Given a half open rectangle R C {2 with dyadic rationale vertices we get the
approximation,
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172 14 Lebesgue Measure on R?

513" Jdet T (a)]m (Qs)

z€As

<m(T(R)= > m(T(z+Qs))

<a(@)? ) [det T’ (z)] m (Qs)

TE€As

where Ag are centers of § - cubes which partition R where 6 = 27" for sufficiently
large n. Letting 6 = 27" | 0 in the above inequalities while using the dominated
convergence theorem to conclude that

D |det T (x)| m (Qs) —>/ |det T ()| dm ()
TEA;

allows us to show
m (T (R)) = / |det T" (z)| dm (z) .
R

Theorem 14.13 (Change of Variables Theorem II). Let 2 C, R? be an
open set and T : 2 — T (£2) C, R? be a Cl—diﬁeomorphz'smﬂ see Figure m
Then for any Borel measurable function, f : T (§2) — [0, 0],

/f )| det T' (z) |dz = / f (y) dy, (14.8)

T($2)

In short, if we make the non-linear change of variables, y = T (x), then dy =
|det T (x)| dx. (Of course, as in the one dimensional case one must take care
of the limits of integration properly.)

Proof. Let g : £2 — [0, 00] be a measurable function, then by Theorem [14.11
and the abstract change of variables theorem we find,

/ gldetT'|dm = | gd[moT] :/ goT tdm.
I7) 7} (2)

Equation (|14.8)) now follows by taking g = f o T. ]

Remark 14.14. Theorem [14.13]is best remembered as the statement: if we make
the change of variables y = T (), then dy = | det T" (z) |dx. As usual, you must
also change the limits of integration appropriately, i.e. if  ranges through 2
then y must range through 7 (£2).

" That is T : 2 — T(2) C, R? is a continuously differentiable bijection and the
inverse map T~ ' : T(§2) — £2 is also continuously differentiable.
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Remark 14.15. When d = 1, one often learns the change of variables formula as

T(b)
/ F(T (@) T (z) de = / £ (w) dy (14.9)

T(a)

where f : [a,b] — R is a continuous function and 7" is C' — function defined in

a neighborhood of [a,b]. If T/ > 0 on (a,b) then T ((a,b)) = (T (a),T (b)) and

Eq. is implies Eq. with 2 = (a,b). On the other hand if 7" < 0
n (a,b) then T ((a,b)) = (T (b),T (a)) and Eq. is equivalent to

T(a)
f@mmwrumm=5/ f@@z—A“Wf@@

(a;b) T(b)

which is again implies Eq. (14.8). On the other hand Eq. (14.9)) is more general

than Eq. (14.8]) since it does not require T' to be injective. The standard proof
of Eq. (14.9) is as follows. For z € T ([a, b]) , let

= / f(y)dy
T(a)

Then by the chain rule and the fundamental theorem of calculus,

b b
/f T (@)do = [ F(T@)T (w)do = [P (T (@) do
T(b)

=F<T<m>>\i;=/ f @) dy.

T(a)

An application of Dynkin’s multiplicative systems theorem now shows that Eq.
(14.9) holds for all bounded measurable functions f on (a,b). Then by the
usual truncation argument, it also holds for all positive measurable functions

n (a,b) .

Exercise 14.3. Continuing the setup in Theorem [14.13] show that f €
LY (T (£2),m?) iff

/|foT\|detT’|dm<oo

and if f € L' (T (£2),m?), then Eq. (14.8) holds.

Ezample 14.16 (Polar Coordinates). Suppose T : (0,00) x (0,27) — R? is de-
fined by
x=T(r,0) = (rcosf,rsinb),

i.e. we are making the change of variable,
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r1 =rcosf and x5 = rsinf for 0 < r < oo and 0 < 6 < 2.

In this case

T'(r,60) = <0059 —rsin@)

sinf rcosf

and therefore
dr = |det T’ (r,0)| drdf = rdrdo.

Observing that
R?\ T ((0,00) x (0,27)) = £ := {(,0) : x > 0}

has m? — measure zero, it follows from the change of variables Theorem [14.13
that

2 [e's]
f(z)dz = / d9/ dr r- f(r(cosf,sind)) (14.10)
R? 0 0
for any Borel measurable function f : R? — [0, oc].

Ezample 14.17 (Holomorphic Change of Variables). Suppose that f : £2 C, C &
R%— C is an injective holomorphic function such that f’(z) # 0 for all z € £2.
We may express f as

fle+iy) =U(z,y) +iV (z,y)
for all z = x + iy € £2. Hence if we make the change of variables,

w=u+iv=f(zx+iy) =U(z,y) +iV (z,y)

det [U‘” Uy}

then

dudv = dedy = UV, — U, V| dady.

Ve Vy

Recalling that U and V satisfy the Cauchy Riemann equations, U, = V, and
Uy = -V, with f' = U, +iV,, we learn

UsVy = Uy Ve = U2+ V2 =|f.

Therefore
dudv = |f' (z + zy)\2 dzdy.

Example 14.18. In this example we will evaluate the integral

I:= //_Q (:1:4 — y4) dxdy

.Q:{(:c,y):1<9:2—y2<2,O<xy<1}7

where
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(O8]
1

A

a1+

Fig. 14.2. The region {2 consists of the two curved rectangular regions shown.

see Figure We are going to do this by making the change of variables,
(u,v) =T (z,y) = (m2 — yZ,my) ,

in which case

dudv =

det [Zm —2y}
Yy T

dxdy =2 (1‘2 + y2) dxdy
Notice that
(¢~ 4) = (2 ) (& +07) =0 (2 +07) = Judude:

The function T is not injective on {2 but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
2=-DUD and T(xD) = (1,2) x (0,1). The change of variables theorem
then implies

1 1 u? 3
Ii::// zt —yt dmdy:f// ududv = =—12 -1 ==
:I:D( ) 2 JJa,2y%0,1) 22 4

and therefore I = I, +1_=2-(3/4) =3/2.

Exercise 14.4 (Spherical Coordinates). Let T': (0,00) x (0,7) x (0,27) —
R3 be defined by

T (r,¢,0) = (rsinpcosf, rsinesiné, r cos )

= r (sin p cos b, sin ¢ sin b, cos p) ,

see Figure [[4.3] By making the change of variables z = T (r, ¢, 6) , show
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174 14 Lebesgue Measure on R?

K

Fig. 14.3. The relation of z to (r, ¢, 0) in spherical coordinates.

™ 2m oo
f(z)dx = / d(p/ do dr r*sinp - f(T (r,¢,0))
R3 0 0

0
for any Borel measurable function, f : R® — [0, oo].
Lemma 14.19. Let a > 0 and

Ii(a) := /e‘“‘”lzdm(x).

Rd
Then Iy(a) = (7/a)?/2.
Proof. By Tonelli’s theorem and induction,
Ii(a) = / e_“‘ylze_“tzmd,l(dy) dt
Rd-1xR
=Ig1(a)l1(a) = If(“)~

So it suffices to compute:

Ir(a) = /e*“‘wlzdm(z) = / e~ =) 4o das.

R2 R2\{0}

Using polar coordinates, see Eq. , we find,

o'} 2m 0
Ir(a) = / dr r g e = 27r/ re=o" dr
0 0 0

M 2 e M on
=27 lim re” *" dr =27 lim / = — =7/a.
0

M—o0 J M—oco —2a

This shows that Iz(a) = m/a and the result now follows from Eq. (14.11)).
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14.3 The Polar Decomposition of Lebesgue Measure*

Let
Si—1 = {z € RY: |x\2 = fo =1}
i=1

be the unit sphere in R? equipped with its Borel o — algebra, Bga—1 and & :
R\ {0} — (0, 00) x §971 be defined by @(z) := (||, |z|" #). The inverse map,
@1 :(0,00) x S — R4\ {0}, is given by &~ !(r,w) = rw. Since ¢ and &~!
are continuous, they are both Borel measurable. For E € Bga-1 and a > 0, let

E,:={rw:r€(0,a) and w € E} = &7 ((0,a] x E) € Bga.

Definition 14.20. For E € Bga-1, let 0(E) := d-m(E1). We call o the surface
measure on ST

It is easy to check that o is a measure. Indeed if £ € Bga-1, then F; =
&1 ((0,1] x E) € Bga so that m(Ey) is well defined. Moreover if E = >_° | E;,
then E1 = Z?il (Ei)l and

o) = d-m(E) = Y m((E),) = Y o(E).

The intuition behind this definition is as follows. If E € S% 1 is a set and £ > 0
is a small number, then the volume of

(Ll4e-E={rw:re(l,14+¢] and w € E}

should be approximately given by m ((1,1+¢]- E) = o(E)e, see Figure [14.4]
below. On the other hand

(14.11)

Fig. 14.4. Motivating the definition of surface measure for a sphere.
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m((1,1+¢elE) =m(E14c \ E1) = {(1 +5)d — l}m(El).

Therefore we expect the area of E should be given by

1+e)—1tm(E
o(E) = lim { ) ymi(Ey) =d-m(E).
el0 IS
The following theorem is motivated by Example and Exercise

Theorem 14.21 (Polar Coordinates). If f : R? — [0,00] is a (Bga,B)-
measurable function then

/f(x)dm(x) = flrw)rd=t drdo(w). (14.12)
R

(0,00)x Sd—1

In particular if f: Ry — Ry is measurable then

/f(|z|)dz = /Oo f(r)dv(r) (14.13)
R4 0

where V(r) =m (B(0,7)) = r'm (B(0,1)) = d 1o (S471) rd.

Proof. By Exercise [10

/fdm: / (fod M) oddm= (fod™') d(®m) (14.14)
Rd

R4\ {0} (0,00) x §4—1

and therefore to prove Eq. (14.12) we must work out the measure ®,m on
B(O,oo) ® Bga-1 defined by

®.m(A) :=m (& (A)) V A E B(g,00) @ Bga-1. (14.15)
If A= (a,b] x E with 0 <a <band E € Bga—1, then
o YA ={rw:r € (a,b] and w € E} = bE; \ aF;

wherein we have used F, = aF; in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(®.m) ((a,b] x E) = m (bE1 \ aE1) = m(bE1) — m(aEy)

b
= bim(Ey) — a'm(E,) = d-m(El)/ ri=ldr.  (14.16)
Letting dp(r) = r¢~1dr, i.e.
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p(J) = /er—ldr V J € B(o,00): (14.17)

Eq. may be written as
(@.m) ((a,8] % E) = pl(a,8]) - 0(E) = (p@ ) ((a,b] x B).  (14.18)

Since
E={(a,b) x E:0<a<band FE € Bga-1},

is a 7 class (in fact it is an elementary class) such that o(£) = B(g,00) ® Bga-1,
it follows from the m — A Theorem and Eq. (14.18]) that &.m = p ® 0. Using
this result in Eq. (14.14)) gives

/fdmz / (fod™') d(p®o)

R4 (0,00) x Sd—1
which combined with Tonelli’s Theorem m proves Eq. (14.14)). ]
Corollary 14.22. The surface area o(S%™1) of the unit sphere S¥=1 C R? is

27('d/2
T(d/2)

where I' is the gamma function is as in Ezample and [1046,
Proof. Using Theorem [14.21| we find

Id(l):/ dr rd—le"’ / daza(S’d_l)/ rd=le=r* dr.
0 0
Sd—l

(81 =

(14.19)

We simplify this last integral by making the change of variables u = r? so that
r=u? and dr = %u_l/Qdu. The result is

o0 2 4 1
/ rd=lem drz/ W e a1 2du
0 0 2

L[> 4 1
= f/ u2 te du = ~I'(d/2). (14.20)
2 Jo 2

Combing the the last two equations with Lemma|14.19|which states that I;(1) =
742 we conclude that

1
/% = I4(1) = 5o (d/2)
which proves Eq. (14.19)). ]
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176 14 Lebesgue Measure on R?
14.4 More Spherical Coordinates*
In this section we will define spherical coordinates in all dimensions. Along

the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r,60) € (0,00) x

[0,27) so that
1\ _ [rcosf\
(SUQ) - (rsin@) =T2(6,7)-

For n = 3 we let 3 = rcos p; and then

(21) =T5(0,rsin¢1),

2

as can be seen from Figure so that

Fig. 14.5. Setting up polar coordinates in two and three dimensions.

7 sin @1 cos 6

T1 -

Ty | = (Tg(&,rblnapl)) = | rsing;sin® | = T5(0,¢1,7,).
N r COS (o1

3 T COSs Y1

We continue to work inductively this way to define

T
Tn(0, 01,y n_o,rsing,_1,)
= TR ’ V) =Thg1(0,01, o On—2, On—1,T).
, ( T COS Pr—1 n+1( ®1 Pn—-2,Pn—1 )
Tn+1

So for example,

T1 = 78in g sin 1 cos
ZTo = 7 sin g sin 7 sin §
T3 = rsin o2 cos Y1

T4 = T COS P2
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and more generally,

21 = 7rsin@,_s...sin pysin ¢ cosl
To = rsinY,_s . ..sin pysin pg sinf

T3 = rsin,_o...sin e cos @1

Tp_o = 78N @y_9SiNn 3 COS Pr_4

Tp—1 = TSN Q,_2 COS Yn_3

Ty = T COS Pp_2. (14.21)
By the change of variables formula,
f(@)dm(x)
R?L
e An(0,01, ..., Qn_2,T)
= dr/ dey ... dpn_odb T ’
/o 0< s <m,0<O<2m a1 Fn=2 Xf(Tnh(0, 01, .., Pn—2,7))
(14.22)
where
A (0,01, on_o,r) = |det T (0,01, ..., 0n_2,7)].
Proposition 14.23. The Jacobian, A, is given by
An(0,01,. .., pna,r) = " sin" "2 @, . ..sin? pysing;. (14.23)

If f is a function on rS™1 — the sphere of radius r centered at 0 inside of R",
then

/TSn_1 f(z)do(z) = "1 /Sn_1 F(re)do(w)

—/ F(Ta(0, 01, s 0n—2,7)An (0,01, ..., 0n_2,7)dp1 ...dp, 2d0
0<p;<m,0<0<27
(14.24)
Proof. We are going to compute 4,, inductively. Letting p := rsing,_1
and writing ag;" for 887;" (0,01, ,0n_2,p) we have
An+1(979017 ooy Pn—2,Pn—1, 7")
O 9Ln gt Ernrcos o1 G sinpn 1
0 0 ... 0 —rsinY,_1 COS (P —1
=7 (cos2 Yn—-1+ sin? gon_l) An(0,01, ... On—2,p)

= TATL(07 Pl Pn—2, T sin ¢H—1)7
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ie.

An+1(97 P1y-- -3 Pn—2,Pn—1; T) = TAn(H, Py Pn—2; 7 sin @n—l)' (1425)
To arrive at this result we have expanded the determinant along the bottom
row. Staring with Ay(6,r) = r already derived in Example [14.16{ Eq. (14.25))

implies,

As(0,01,7) = rAy(h, rsin 1) = r? sin ¢y
Ay(0, 01, p2,7) = rA3(0, 01, rsinps) = r3 gin? 2 sin @1

n—1 _: n—2 2 :
An(0,01,. .. on2,7) =777 SIn" " pp_g...sIn” ppsinpy

which proves Eq. (14.23)). Equation (14.24) now follows from Eqs. (14.12)),
(14.22)) and (14.23)). ]
As a simple application, Eq. (|14.24)) implies

o(S" 1 = / sin" 2 p,_o...sin% @ sinp1dpy . .. dp,_odf
0< i <m,0<0<2m
n—2
=21 [ % =o(5" ) n2 (14.26)
k=1

where v := fow sin® odp. If k > 1, we have by integration by parts that,

Vi = / sin® pdp = —/ sin* "t dcosp = 26,1 + (k — 1)/ sin* =2 ¢ cos? pdyp
0 0 0

=201+ (k— 1)/ sin® %o (1 —sin® ) dp = 20k1 + (k — 1) [ve—2 — Vi
0

and hence v, satisfies v = 7, 71 = 2 and the recursion relation

k—1
Ve = Vi—2 for k > 2.
Hence we may conclude
_ o gk 2y 3L 42, 531
Yo =T, V1= 4, 72_277a 73_3 5 74_4271-7 75_53 776_64271-
and more generally by induction that
(2k — 1! (2K
=n1—Z2 and =2——.
B O 75 TR DY 1T
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Indeed,
2k +2 C2k+2_ 0 (20! _o 2(k+ 1)
T2 T I T oy 3T 2k + D (2(k+ 1) + DY
and
2k+1 S 2k+1 (2-DN 0 (2k+ 1!
D T gy 1R T ok 12" k) (2k+2)I
The recursion relation in Eq. (14.26) may be written as
a(S") =0 (S" ") Y1 (14.27)
which combined with o (S 1) = 27 implies
o (Sl) = 2m,
o(S?) =2m -y =21 -2,
1 2272
3\ _ _ _
(S )f27r~2~'ygf27r~2~§7rfw,
2272 2272 2 2372
4y _ _ _
o5 =S = 3T
1 2 31 2373
5 _

1 231 42 2473
6\ __ —

and more generally that

2 (2m)" (2m)"
2n\ _ 2n+1y _
o(S) = @n— D and o (S )= @l (14.28)
which is verified inductively using Eq. (14.27)). Indeed,
202m)"  (2n -1 (2m)"t!
2n+1\ __ 2n _ _
(ST = o5 = G T @ T @a)t
and
n+1 n 2(92 n+1
(n+1)y _ 2n+2\ _ 2n+1 _ (2m) (2n)!! _ (2)
o(STY) = o(STF) = o(ST i (2n)!! 2(2n+1)!! (2n + 1)
Using

2n)l=2n(2(n—1))...(2-1) =2"n!

we may write o(S?H1) = %HL,H which shows that Egs. (]14.12[) and (]14.28| are
in agreement. We may also write the formula in Eq. (14.28)) as

2((3?5(,2 for n even
o(S"™) = n¥1

% for n odd.

date/time: 25-Feb-2019/8:12
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14.5 Gaussian Random Vectors

The following lemma is an easy application of Corollary on differentiation
past the integral.

Lemma 14.24. Let (2, B, P) be a probability space, X : 2 — R? be a random
vector, and

fx (A) ==E[¢]
be the characteristic function of X. If k € N and E|| X || < 0o then

1 1 1
(301300301 0x) (O = B[, .. X,

and in particular if k = 2 we have

EX; = (18jfx) (0) and Cov (X;,Xi) = —(0;0kfx) (0)+(9; fx) (0)-(r fx) (0) .

Proof. The only thing to observe is that for 1 < ¢ < k and ji,...,J¢ €
{1,2,...,d} we have

14 k
X, X < IX1° < (14 1X07)

and the latter random variable is assumed to be integrable. ]

Definition 14.25 (Gaussian Random Vectors). Let ({2, B, P) be a proba-
bility space and X : 2 — R be a random vector. We say that X is Gaussian if
there exists an d x d — symmetric matriz Q and a vector y € R such that

. 1
E [ ] = exp (—262/\ DT /\> for all X € RY. (14.29)

We will write X = N (Q, 1) to denote a Gaussian random vector such that Eq.

holds.

Notice that if there exists a random variable satisfying Eq. then
its law is uniquely determined by @ and p because of Corollary [12.17] In the
exercises below your will develop some basic properties of Gaussian random
vectors — see Theorem for a summary of what you will prove.

Lemma 14.26. The martiz () in Eq. is necessarily non-negative.
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Proof. If there exists v € R? such that Qu - v < 0, then taking A = tv in

Eq. (14.29) implies,

e -

t2 t2
exp (—QQ’l)'U—‘ritu-U)‘ = exp (—2Qv~v> — 00 as t — 00.
On the other hand,
|E [e?*]] <E[[e?¥]] =1 for all A € R%.
Thus we must have Qv - v > 0 for all v € R%. [

Definition 14.27. Given a Gaussian random vector, X, we call the pair, (Q, 1)
appearing in Fq. the characteristics of X. We will also abbreviate the
statement that X is a Gaussian random vector with characteristics (Q,p) by

writing X <N (Q, 1) .

Lemma 14.28. Suppose that X 4N (Q, 1) and A:R* = R™ is amxd — real
matriz and o € R™, then AX + « N (AQA®™, Ay + ). In short we might
abbreviate this by saying, AN (Q, 1) + « N (AQA™, Ap + ).

Proof. Let £ € R™, then
E [eif'(AXJrO‘)} = SR [eiA“g'X} = e %exp (—;QA“{ CAYE+ip A”f)
= e %exp (;AQAtrf “E+iAp- §>
~ exp (—;AQA“g E+i(Apta)- g)

from which it follows that AX + a < N (AQA™, Au+ ). |
Exercise 14.5. Let P be the probability measure on 2 := R defined by
/2 d
1 1 1 2
dP (x) := | — e 2" %dx = e_mi/dei) .
(@) <27r> };[1 (\/271’

Show that N : 2 — R defined by N (z) = x is Gaussian and satisfies Eq.
(14.29) with @ = I and p = 0. Also show

pi = EN; and d;; = Cov (N;, N;) for all 1 <i,j <d. (14.30)

Hint: use Exercise |10.17| and (of course) Fubini’s theorem.
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Exercise 14.6. Let A be any real mxd matrix and u € R™ and set X := AN+b
where 2 =R? P, and N are as in Exercise Show that X is Gaussian by
showing Eq. holds with Q = AA®™ (A' is the transpose of the matrix
A) and p = b. Also show that

p; = EX; and Q;; = Cov (X;, X;) forall 1 <i,5 <m. (14.31)

Remark 14.29 (Spectral Theorem). Recall that if @ is a real symmetric d x d
matrix, then the spectral theorem asserts there exists an orthonormal basis,
{u}?zl, such that Qu; = Aju; for some A; € R. Moreover, \; > 0 for all j is
equivalent to Q being non-negative. When Q > 0 we may define Q/2 by

Ql/Quj =/ Aju; for 1 <j <d.
Notice that Q/2 > 0 and Q = (Q1/2)2 and Q2 is still symmetric. If Q is
positive definite, we may also define, Q—1/2 by

Q_l/Quj = uj for 1 <j<d

1
Vi
so that Q=12 = [Q'/?]~

Exercise 14.7. Suppose that @ is a positive definite (for simplicity) d x d real
matrix and 1 € R? and let £2 = R%, P, and N be as in Exercise @ By Exercise
- 6| we know that X = Q'/2N + y is a Gaussian random vector satisfying Eq.
. Use the multi-dimensional change of variables formula to show

Laver (X) () = e (=507 =) - =) ) dy

Let us summarize some of what the preceding exercises have shown.

Theorem 14.30. To each positive definite d X d real symmetric matriz Q and
i € R there exist Gaussian random vectors, X, satisfying Eq. . More-
over for such an X,
Lavwp (X) (dy) = —— (50 -m--)a
aw = ——exp|—2 —u) - (y—
P y o) 5 y—p)-(y—p)|dy

where Q and p may be computed from X using,
i =EX; and Q;; = Cov (X;,X;) foralll <i,j <m. (14.32)

When Q is degenerate, i.e. Nul(Q) # {0}, then X = Q2N + p is still a
Gaussian random vectors satisfying Eq. (14.29)). However now the Lawp (X) is
a measure on R? which is concentrated on the non-trivial subspace, Nul (Q)l -

the details of this are left to the reader for now.
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Lemma 14.31. If A is positive definite d x d real symmetric matriz, then

(27T)d/2
exp | —=A .
/Rd p( v y) v= det A
Proof. We give two proofs. For the first proof take Q = A~! in Theorem

[[4:30] and p = 0, then

1 1,
= | ————exp| —= cy ) d
] / o0 p( 5@ y) y
which implies

Vdet A
VA and make the change of variable,

/ exp (—;Ay . y) dy = +/det (27Q) =
R4

For the second proof we let B =
y = B~ 'z to find,

1 1
/exp ——Ay -y dy:/ exp | —=By - By | dy
]Rd 2 Rd 2
1 _
:/Rd exp (—2m~x> ‘det (B 1)|da:

(2 er (51| = 2
= T = .
det A
(]
Corollary 14.32. If X LY (Q,0) and e > 0 so that Q= — eI is still positive
definite, then
E [egnxuq _ 1 .
det (I — Q)
Note that
Ql-el>0 <= QV*[Q'-eI]QY?>0 <= I-:Q>0.
Proof. We have
2 1 1 £ 2
E |esIXI 2/7@( (— 1x-x) eslel” gy
[ } Vdet (27Q) P 2Q
1. )
ex —el|lz-z|dx
/ w/det e 7 < & )
(2m)%/? 1
\/det (27Q) +/det (Q~1 —eI) \/det (I-cQ)
]
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180 14 Lebesgue Measure on R?

Exercise 14.8 (Gaussian random vectors are “highly” integrable.).

Suppose that X : 2 — R? is a Gaussian random vector, say X N (Q, ). Let
|z|| ;== V& -« and m := max {Qz - = : ||z|| = 1} be the largest eigenvalueﬁ of Q.

Then E [es”X‘ﬂ < oo for every € < ﬁ

Remark 14.33. We can in fact compute E {esHXHQ} exactly — see Eq. (14.33|) be-

low for the final answer. To this end, let {ui}le be a diagonalizing orthonormal
basis (not necessarily the standard basis) for @, i.e. Qu = ¢;u with ¢; > 0 for
1 <4 < d. Further let Z; := N - u; and observe that (Z1,...,Z4) is a linear
transform of N, namely

A
Z:=1 ! | =RN
Zyg
where R is the rotatlon matrix with rows, ul, u¥, ..., ulf respectively. From

this it follows that Z < N (R™R,0) = N (I,0) is still a standard normal random
vector. Moreover,

IX)1* = | AN + pl|* = [|AN||* + [||* + 24N - p

d
=D (62} + 2apZi) + |l
i=1
where p; := p - u;. Therefore using the independence of the {Z; }z 1

E[ anxu“’} — ecllull® H]E{ G2 +2/T i 2 L)] .

Now observe that for any a < 1, ¢t € R, and Z N (0,1), that

1 1 2
E {eaZz—&-tZ _ eO? 24tz _522(12 — 6—5(1—2a)z +tzdz
\/27r V2o Jr
1.2 t
+\/1—2cx dx

~J/a —Qa)\/ﬁ/Re;
1 1 2
-7 (s
1

wherein we have made the change of variables, z = NiETid So taking a = q;
and t = 2¢,/q;p1; we may conclude

8 For those who know about operator norms observe that m = ||Q|| in this case.
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£ 21 ellwl? (25\/(]7/1’1)
[ ||xn] e<llull Hm p< (1_25%))

d
1 qi
el 2 p [ 222 _ 42
v/det (I —2:Q) P Z 1 —2eq; Hi
1
—eelle®, = 2 o
det (T — 25Q 21_25611 !

To simplify this expression more observe that

d

962 2 =" |22 % 2
el + sz =3 | e

i=1
4 €
2 -1
;:1 [ oeg M e(1=2eQ) " p-p
Thus we have shown,

1 _
E [eE‘IXI‘Z} . S <5 (1 -2:Q)7! ) . 14.33
g ( Q) n (14.33)
Because of Eq. (14.32)), for all A € R? we have

d
poA=> EX; X =E(\-X)
i=1

and

Q)\ A= ZQij)\i)\j = Z)\i)\j Cov (Xi,Xj)

(2] (2]
= Cov ZAlXZ,ZAJXJ :Var()\X)
i J

Therefore we may reformulate the definition of a Gaussian random vector as
follows.

Definition 14.34 (Gaussian Random Vectors). Let (2,8, P) be a proba-
bility space. A random vector, X : 2 — R?, is Gaussian iff for all X € R?,

E [e*] = exp (—; Var (A - X) +iE (X - X)) . (14.34)

In short, X is a Gaussian random vector iff \- X is a Gaussian random variable
for all A € R,
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Remark 14.85. To conclude that a random vector, X : £2 — R%, is Gaussian
it is not enough to check that each of its components, {Xi}gzl , are Gaussian
random variables. The following simple counter example was provided by Nate
Eldredge. Let (X,Y) : £2 — R? be a Random vector such that (X,Y), P = u®v

where du (z) = \/%e_%xzdw and v =3 (0_1 +61). Then (X,YX): 02— R?is
a random vector such that both components, X and Y X, are Gaussian random

variables but (X,Y X) is not a Gaussian random vector.

Exercise 14.9. Prove the assertion made in Remark [14.35] Hint: explicitly
compute E [ei(A1X+A2xy)] . [14.35

14.5.1 *Gaussian measures with possibly degenerate covariances

The main aim of this subsection is to explicitly describe Gaussian measures
with possibly degenerate covariances, ). The case where () > 0 has already
been done in Theorem [4.301

Remark 14.36. Recall that if @ is a real symmetric NV x N matrix, then the
spectral theorem asserts there exists an orthonormal basis, {u}jvzl , such that
Quj = Aju; for some A; € R. Moreover, A\; > 0 for all j is equivalent to ) being
non-negative. Hence if @ > 0 and f: {)\; : j =1,2,..., N} = R, we may define
f(Q) to be the unique linear transformation on RY such that f (Q)u; = \ju;.

Ezample 14.37. When Q > 0 and f (z) := \/z, we write Q/2 or \/Q for f(Q).
Notice that Q'/2 > 0 and Q = Q'/2Q"/2.

Ezxample 14.38. When @ is symmetric and

o= {1 iz2e

we will denote f (Q) by @~'. As the notation suggests, f (Q) is the inverse of Q
when @ is invertible which happens iff A\; £ 0 for all i. When @ is not invertible,

Q_l =f (Q) = Q|;{;H(Q)Pa (1435)

where P : RN — RY be orthogonal projection onto the Ran (Q) . Observe that
P = g(Q) where g (z) = 1540.

Lemma 14.39. For any Q > 0 we can find a matriz, A, such that Q = AAY.
In fact it suffices to take A = Q2.

Proposition 14.40. Suppose X < N (Q,¢) (see Definition where ¢ €

RN and Q is a positive semi-definite N x N real matriz. If ji = H(Q,e) = PoX 1
then
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! Lot —c) (x—c T
[@aw =g [ @en(—0 =0 @=0)d

where dx is now “Lebesgue measure” on ¢+ Ran (Q), Q! is defined as in Eq.
14.39), and Z = \/det (QWQ\RM(Q)).

Proof. Let k = dim Ran (Q) and choose a linear transformation, U : R¥ —
RY, such that Ran (U) = Ran(Q) and U : R¥ — Ran(Q) is an isometric
isomorphism. Letting A := Q/2U, we have

AAT — Ql/QUUtrQl/Z _ Ql/QPRan(Q)Ql/Q — Q
Therefore, if Y = N (Ipxx,0), then X = AY +¢ <N (@, c) by Lemma [14.28
Observe that X — ¢ = Q'/2UY takes values in Ran (Q) and hence the Law
of (X — ¢) is a probability measure on RY which is concentrated on Ran (Q).
From this it follows that u = P o X! is a probability measure on measure on

RY which is concentrated on the affine space, ¢ + Ran (Q). At any rate from
Theorem [[4.30] we have

1 k/2 L
f@ydute) = [ flay+o) (%) e 4o gy
1/2 1 h/2 Ly|?

Ql/QUy+C — UUtrQl/2Uy+C,

RN

Since

we may make the change of variables, z = U"Q'/2Uy, using

dz = \/det Qlraniydy = | [] Ny

:A;7#0

and

N

2 = ‘(UtrQl/ZU)_l . ? _ ’UtrQ—l/QUZ‘Q _ (Q_I/QUZ,Q_1/2UZ)R

= (Q_le, UZ)]RN ,

to find
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182 14 Lebesgue Measure on R?

2T

1\"/? 1
= fWUz+¢ () —_—
RE ( ) 2m Vvdet Qran(q)

1 _
— f (UZ + C) 6_%(Q 1UZ,UZ)RN dZ
Rk \/det (27TQ|Ran(Q))

k/2 1 try1/277\ 1|2
f@)du(z)= [ fUz+¢) () e [CArRE R
Rk

RN

e—%(Qfle,Uz)RN dz

— [ fw=vo
Rk \/det (27TQ|Ran(Q))

This completes the proof, since x = Uz + ¢ € ¢+ Ran (Q) is by definition dis-

tributed as Lebesgue measure on ¢+ Ran (@) when z is distributed as Lebesgue
measure on R”. ]

14.6 More Exercises

Exercise 14.10 (Folland Problem 2.62 on p. 80. R). Show the surface
measure on S¢1 is invariant under rotations.

Exercise 14.11 (Folland Problem 2.64 on p. 80. ). On the integrability
of |z|* |log |z||” for & near 0 and  near oo in R™.

Exercise 14.12. Show, using Problem that
1
iw;d = ~§;j0 (S771).
/Sd—lwwj O'(UJ) d ]U( )

Hint: show |, gd—1 w?do (w) is independent of i and therefore

d
1
2 2
/3471 wido (w) = p ]211 /Sdi1 wjdo (w).

Exercise 14.13. Folland Problem 2.61 on p. 77. Fractional integration.

14.7 Other change of variables proofs

Note: you may skip the rest of this chapter!
[There are a number of proof in the Math 140 notes which might be better

to uses here.]
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1 e
o H QT Uste=0) (Uste=0) o g

14.7.1 Induction on dimension proof of Theorem [14.13

Proof. The proof will be by induction on d. The case d = 1 was essentially done
in Exercise Nevertheless, for the sake of completeness let us give a proof
here. Suppose d =1, a < a < 8 < b such that [a,b] is a compact subinterval of
£2. Then |detT"| = |T"'| and

J.s

If 7" (x) > 0 on [a,b], then

/ "\ () da

8
Lr(ag) (T (2)) \T'(x)ldff:/ La,p) (%) IT'(x)IdSU:/ T ()] da.

[a,

I
T~
=

N
&
Q.
3

I

N
=

|

N
L

while if 77 (z) < 0 on [a,b] , then

B B
/|T’(:1c)|dac:—/ T' (x)dz =T (o) — T (B)

«

—m (T (@) = [ Lrasm () dy
T([ab])
Combining the previous three equations shows

S (T (@) |T ()| de = / f () dy (14.36)
] T([a,b])

[a;b

whenever f is of the form f = lp((q,s)) With a < o < 8 < b. An application
of Dynkin’s multiplicative system Theorem then implies that Eq.
holds for every bounded measurable function f : T ([a,b]) — R. (Observe that
|T" ()| is continuous and hence bounded for z in the compact interval, [a, ] .)
Recall that 2 = 25:1 (an, by) where ap,b, € RU{xoc} forn=1,2,--- < N
with N = oo possible. Hence if f : T (2) — R , is a Borel measurable function
and a, < ap < Br < b, with a; | a, and B T b,, then by what we have
already proved and the monotone convergence theorem
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[t o) ldm = [ (trqapiy 1) 0T 17lim
£2
= lim (1T([ak,5k]) . f) oT - |T/| dm

k—o0
0

Q

= lim IT([akﬁk]) fdm

k—o0
T(£2)

= / IT((anybn)) : f dm

()

Summing this equality on n, then shows Eq. holds.

To carry out the induction step, we now suppose d > 1 and suppose the
theorem is valid with d being replaced by d — 1. For notational compactness, let
us write vectors in R? as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, 7" (x) , will always be taken to be given

as in Eq. (14.5).

Case 1. Suppose T (z) has the form
T (z) = (v, T2 (2),...,Ta(x)) (14.37)

or

T(z)=(T1(2),...,Ta-1(2), @) (14.38)
for some i € {1,...,d}. For definiteness we will assume T is as in Eq. (14.37]),
the case of T in Eq. (14.38] imi L RA-T

14.38)) may be handled similarly. For ¢t € R, let 4, : —

R? be the inclusion map defined by
i (W) == wy = (wr, .., w1, bW, -, Wa—1)
2; be the (possibly empty) open subset of R¢~! defined by
2, = {w e R (wy, .. Wiy, t Wi, - ,Wq—1) € Q}
and T, : £2, — R%1 be defined by
T (w) = (Ta (wy) ..., Ty (wy)),

see Figure [[4.6] Expanding det 7" (w;) along the first row of the matrix 7" (w;)

shows
|det T (wy)| = |det T} (w)] .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
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Tup=(t, Tw)

T Q)

yt

Fig. 14.6. In this picture d = ¢ = 3 and 2 is an egg-shaped region with an egg-shaped
hole. The picture indicates the geometry associated with the map 7' and slicing the
set (2 along planes where x3 = t.

/foT|detT’|dm:/19~foT|detT’|dm
Rd

= /19 (wy) (f o T) (wy) | det T' (wy) |dwdt

Rd

:/ /(foT)(wt)|detT’(wt)|dw dt
& LS2

:/R /f(t,Tt(w))|detTt’(w) dw | dt

fh
:/ / f(tz)dz| dt = / / Lroy (t,2) f(t,2)dz| dt
Tt(Qt d—1
= / fy)dy
(%)

wherein the last two equalities we have used Fubini-Tonelli along with the iden-

tity;
=3 T (i (2) =Y {(t,z):z €T ()}

teR teR
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184 14 Lebesgue Measure on R?

Case 2. (Eq. (14.8) is true locally.) Suppose that T : 2 — R? is a general
map as in the statement of the theorem and xy € {2 is an arbitrary point. We
will now show there exists an open neighborhood W C {2 of x( such that

/f0T| detT'|dm:/ fdm
W W)

holds for all Borel measurable function, f : T(W) — [0, 00]. Let M; be the 1
minor of T’ (xg), i.e. the determinant of 7" (x) with the first row and " —
column removed. Since

H_l 8 T .7,‘0) Mi7

M&

0 # det T" (xg) =

z=1
there must be some i such that M; # 0. Fix an ¢ such that M; # 0 and let,
S(x):= (x5, To(z),...,Ty(x)). (14.39)

Observe that |det S” (zo)| = |M;| # 0. Hence by the inverse function Theorem,
there exist an open neighborhood W of z such that W C, 2 and S (W) C, R?
and S: W — S (W) is a C! - diffeomorphism. Let R : S (W) — T (W) C, R?
to be the C'! — diffeomorphism defined by

R(z):=ToS ' (2) forall z€ S(W).
Because
(Ty (2),....Ty(x)) =T (z) = R(S (z)) = R((x1,Ts (z), ..., Ty (x)))
for all z € W, if
(21,22, .., 24) = S (z) = (20, Ty (x) , ..., Ta ()

then
R(z)=(T1 (S7'(2)),22,...,2a) - (14.40)

Observe that S is a map of the form in Eq. (14.37)), R is a map of the form in Eq.
(114.38), T () = R’ (S (z)) S’ (z) (by the chain rule) and (by the multiplicative
property of the determinant)

|det T" (z)| = |det R’ (S (z))||det S (z)| ¥V = € W.

Soif f: T(W) — [0,00] is a Borel measurable function, two applications of the
results in Case 1. shows,
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/fOT-\detT’|dm:/(f0R-\detR’|)OS-|detS'| dm

w
/ foR-|det R'|dm = / fdm
S(W) R(S(W))
= / fdm
W)

and Case 2. is proved.
Case 3. (General Case.) Let f : {2 — [0, o0] be a general non-negative Borel
measurable function and let

K, :={z € 02 :dist(z,2°) > 1/n and |z| < n}.

Then each K, is a compact subset of {2 and K, 1 {2 as n — oo. Using the
compactness of K,, and case 2, for each n € N, there is a finite open cover W,
of K,, such that W C (2 and Eq. - ) holds with {2 replaced by W for each
W e W,. Let {W; }Z | be an enumeration of U ; W, and set W; = W; and
Wi =W\ (Wi U---UW;_y) for all i > 2. Then 2 = >3°, W; and by repeated
use of case 2.,

/fOT|detT’|dm Z/1~ )« | det T |dm

219

14.7.2 6 — function localization proof of the change of variables

Theorem [14.13

The proof we give here comes from |31J°| who attributes the idea to Cornea.
Recall that we are trying to prove Eq. (14.8]) which states,

9 There are some mistakes in the arguments given in this reference which we have

taken the opportunity to correct in the exposition below.
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/f ) | det T (= |dgc—/f

()

The key heuristiﬂ idea of this proof is to first verify that the formula holds
when f (y) = d(yo —y) for all yg € T (§2), i.e. we wish to show (with zg =
T~ (y0)) that

1—/5yo— dy—/5yo—

If we can verify Eq. (14.41]), then multiplying this equation by f (yo) and inte-
grating the result ,would give,

/f Yo) dyo = /dyof Yo /dl’5 yo — T (x)) |det T' ()|

T($2) (%)

- / dz / dyof (40) 8 (9o — T () | det T () |

)| det T (z) |dx. (14.41)

/da:f )) | det 7' (z) |

which is the desired change of variables formula. So let us explain why Eq.
(14.41)) should be true.
Asyo— T (x) =0iff z = 29 := T~ (yo) , we should have

/ 5 (o — T (2)) | det T () |dx = / 5 (yo — T (2)) | det T (o) |dx
(9] 2

— |det " w0) |- [ 30— T (&) ds
[0
and so Eq. (14.41)) is equivalent to showing

1
1 =T de = ——— V 0. 14.42
| -T@)de = o v € (14.42)
The “reasons” to expect Eq. (14.42) is correct are; 1)

T (x) 2T (xo) + T (z0) (x — z0) =90 + T" (z0) (x — x0)

for z near xg, 2) § (yo — T (x)) is supported in an “infinitesimal” neighborhood
of zg and so we expect 0 (yo — T (z)) = 6 (T" (x0) (x — x0)) (not just approxi-
mately equal), and hence 3) making use of the change of variables theorem for
linear transformations we should have

10 If you are uncomfortable with the heuristic discussion to follows you may skip it
and jump directly to Proposition [14.41]
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/ S (yo—T (x))dx = / (T (wo) (x — o)) dz = [ (T (x0) w) dw
2 (9] Rd
1 1
= et 7 o)l Jrs * O = Tt [ o]

The above “proof” outline is of course not rigorous since there is no honest
function satisfying the properties of a § — function. To remedy this deficiency
we are going to replace 0 by an approximate § — sequence {d,},- . So as usual
we let 01 € C° (R%,[0,00)) with supp (1) C B — the unit ball in R? and
fRd 61 () dz = 1 and then define, §, (z) = =%, rilz) for all » > 0. The next

i

key pr0p0s1t10n is a rigorous version of Eq. (|1

Proposition 14.41. If for each r > 0, J,. : T (£2) — [0, 00] be defined by

Jo(y) = / 6, (T (x) — ) da, (14.43)
0

then lim, o J, (y) = 1/ |det T (T*1 (y))’ locally uniformly in y € (2. In more
detail we are claiming to any compact subset, K C T (12),

1
|det T" (T~ (y))|

lim sup
rl0 ye K

Jy (y) — (14.44)

We will give the proof of this result a little later in this section after Lemma
[[4:42] First let us show how to use Propositions to prove Theorem [14.13]

Proof of Theorem [14.13]. Let f € C.. (T (£2),[0,00)) and K := supp (f).
Then by Tonelli’s theorem,

/T(mf( dy—/dm/ dyod, ( /f*6

(14.45)
By Propositions and dominated convergence theorem,
1
lim W) Jr (y) dy = / f () dy. (14.46)
10 J1 () T(2) |det T (T (y))|

By simple approximate § — function arguments we know f % d,, — f uniformly
on {2 and moreover supp (f *0,) C K, where K, := {x e R dg (z) < 7‘}.
Hence if we let

p = min <;dz’st (K, T (2)), 1> , (14.47)

then for all 0 < 7 < p, supp ((f *6,)oT) C T (K,) (a compact subset of
) and (f *x0,) oT — f o T uniformly as r | 0. Thus again by Dominated
convergence theorem we conclude
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tm /Q F00 (T (2)) do = /Q F(T (2)) da. (14.48)

Combining Eqs. (14.45)), (14.46]), and (14.48]) implies

1
/Qf(T (2)) da = /T(mf(y) et T (T ()] %Y

from which Theorem follows upon replacing f(y) by f(y) -
|det T" (T ()| - C

The next lemma spells out certain mapping and continuity properties of
T—1 T, and T" which will be used in the proof of Proposition

Lemma 14.42. Let K be a compact subset of T (£2), 0 < p < 1 be as in Eq.

; Kp::{xERd:dK(x)Sp}and

M = sup H(Tﬁl)/(y) < 00. (14.49)
yeK, op
Then
sup IT7'(y+w)—T" ()| < M |lw|| ¥ we pB, (14.50)
ye
1
: ! -1 > d .
ylélf{HT (T~ (y) w|| > i lw]| VweRY, (14.51)
and lim, o e (1) = 0 where
1

=TT () +rw) —y] =T (T () w

ek (r):=sup sup
r

yeK ||w|<rM

op

(14.52)

Proof. To simplify notation in the proof, let S := T~! : T (£2) — 2. For
y € K and |Jw| < p we have by the fundamental theorem of calculus,

S(y+w)—S(y) = [/OlS'(ersw)ds}w (14.53)

which along with standard estimates gives Eq. (14.50)).

By the chain rule applied to the identity, y = T o S (y) for all y € T (£2),
we have I =T (S (y)) S (y), i.e. 8’ (y) = T’ (S (y))~". By the very definition
of M, we have

|7 (S @)™ 2| = 18" Wl < M) vy e K and 2 € RY,

" We have K C K, C T (£2) and K, is closed and bounded and hence compact.
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Taking z = 7" (S (y)) w in this inequality leads directly to Eq. (14.51).

Let p € (0, p] be chosen so that Mp < dist (S (K), 2°). In proving the last
assertion we always assume that r € (0, p) . By the the fundamental theorem of
calculus, for y € K and w € rM B, we have

(5 (y) + 1) ] - T' (S (1)) w
/ TS W)+ aw))da] w— T (S () w
/ 1T (S (9) + ow)) — T' (S ()] da} w
[

v do.

r

= [ (s )+ o) =7 (5 )
It is now a simple matter to use this identity and simple estimates to show

ex (r) < sup sup ||T"((S (y) +w)) = T" (S (W)l - M
YeK ||lw||<rM

which tends to 0 as 7 | 0 by uniform continuity of 7" on
[S (K], = {7 € R - dg( (z) < Mp}.

|

We are now ready for the proof of Proposition [14.41
Proof of Proposition Let K be a compact subset of T'(£2), 0 <
p <1 be as in Eq. , and let y € K and 0 < r < p and let us continue to
use the notation in Lemma [14.42] If z € 2 is such that §, (T (z) — y) > 0, then
T (z) —y|| < r or equivalently that T'(z) € y +rB, i.e. z € T (y+7rB).

Now the estimate in Eq. (14.50)) implieﬂ

Tl (y+rB)cT '(y) +rMBYy<c Kandr <p
and hence J, (y) defined in Eq. (14.43) may be described by;

Jr (y) = or (T'(x) —y)dz Vy € K.
T-'(y)+rMB
12 At this point in [31], it is implicitly asserted that w — &; (% [T (T*1 (y) + rw) — y])

is supported in B. This is however falsie in general. For example if M > 1 and
T (x) = M~ 'z, then

w3 (% [T (T () + rw) — y}) — 5 (M)

which is supported in M B in general and not in B.
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We now make the affine change of variables, x = T~ (y) + rw in the above
integral to find

I (y) := / 5 (i [T (T (y) + rw) —y]) dwVyecK.

Using the dominated convergence theorem along with the continuity of d; it
follows that

rl0

13301 Jr(y) = / lim &; (i [T(T" (y) 4+ rw) — y}> dw

gt o)

g 10 1
= /51 (T (T (y)) w) dw. (14.54)
MB

According to Eq. ,
/ 5 (T (T (9)) w) dw = / 5 (T (T (9)) w) duw

MB Rd

|T" (T~ (y)) w|| > 1if ||w| > M and therefore,

1
= [0 et T (71 ()]

Rd

1
 det T (T (y))]

wherein we have made the linear change of variables, z =T (T~* (y)) w in the
second equality | and used [ &1 (z) dz = 1 in the last equality.
R4

To finish the proof we still need to show the convergence in Eq. (14.54) is
uniform over y € K. However, for y € K,

13 Note well that y is fixed here and so z is varying with w only.
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Jr (y) — / &1 (T’ (T71 (y)) w) dw

MB

1

| [ [ Grra s ) s @ @ ) v aw

r
MB

<||Véi]l -m(MB)-ex(r) »0asr 0

IN

b (i [T (T () + rw) — y}) oy (T (T () w) ‘ dw

wherein e (r) is as in Eq. (14.52). The proof is complete since we have already
seen in Lemma |14.42 that lim, ek (r) = 0. |

14.7.3 Proof of Theorem [14.13| using the Radon Nykodym Thoerem

Remark 14.43 (A proof using the Radon Nykodym theorem). As usual let T :
2 — T(£2) be a C! — diffeomorpshism and assume both 7' and T~! have
globally bounded Lipschitz constants (this can be achieved by shrinking (2 if
necessary). We will work in the /> — norm on R%.

1.IEf:T(2) > Rand g: 2 — R we have

/ foTdm :/ fd(moT™) (14.55)
Q T(£2)

and
/ gonldm:/ gd(moT). (14.56)
T(£2) n

2. Referring to the math 140 notes, show |m o T (A)] < Km (A) and similarly
moT~! (A)| < Km (A). Therefore by the easiest version of the the Radon
— Nykodym there are bounded non-negative functions, a and § such that

M =qa:2 —Rand
dm
d (m o T_l)
—=3:T(2 R.
() -
In other words we now have,
/ foTdm = fBdm and (14.57)
0 T(2)
/ goTldm = / gadm. (14.58)
T(2) I?)

date/time: 25-Feb-2019/8:12



188 14 Lebesgue Measure on R?
3. There is a relationship between « and S. Indeed taking g = (f3) o T' shows

((fB)oT)o T dm
()

/ foTdm= [  fBdm =
o T(2)

— [ (o) (3o T)adm
(9]

from which we conclude

1

(BoT)a=1ae <— a:BoT

(14.59)

We now wish to compute the functions a and S by taking limits and for
this we will use the Lebesgue differentiation theorem or the easier fact that
S xa— ain L}, as ] 0 where 6, (z) := mlgr(o).

4. Forre R andyeye B, (z)=x+ B, (0),

T(y)—T(x)z/o T (24t (y— ) (y — ) dt
- [T’ @+ [ W ari-)-T <x>]dt] (v—2)
0
— T (@) [ +2(2.9)] (v~ )
where )
e (z,y) ::/o [T’(x)_lT'(:c—i—t(y—x))—I} dt.

The error term, ¢ (z,y) , satisfies

el < [ @ T ) — 1] de = 2 0

where ¢ (r) denotes a function of » > 0 such that lim, g &g (1) = 9 (0) = 0.
Combining these identities and estimates while using

I +e(@ylly—a)| <r(I+e(r) Vye B, (z),

implies

T (B, (2) € T(2) + T (2) By.(1e=(r) (0) . (14.60)

dimeT) 3y < |det T" (z)] for

5. We now give two arguments showing a () = =~

a.e. x € 0.

a) From Eq. (14.60) it follows that
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m (T (.’L‘) + T (ac) BT(1+5(T)) (0))
m (B, (z)) m (B, (z))
= |det T" (z)] - (1 + ¢ ()"

Letting r | 0 and using the Lebesgue differentiation theorem (see The-
orem ?7) which is a rather deep result!)

a(z) = % () < |detT" (z)| for a.e. z € £2. (14.61)

Applying this result with 7" replaced by 7! then shows,

d (m o T‘l)
dm

B(y) = (y) < ‘det (T*I)/ (y)‘ for a.e. y € T(12).

(14.62)
b) Alternatively let us observe that

m (T (B, (z))) 1

m (B (x))  m(B.(z)) /BT(O)a(x—l-y)dy:&.*a(x).

By the easier approximate identity Theorem ?? we know §, * @ — « in
L}, and so there exists 7, | 0 such that §,, * @ — o a.e. as n — oo.
Thus we again learn that for a.e. x,

a(z) = lim 6, *a(z)= lim m (T (B, (z)))

n—o0 n—oo  m (B, (x))
< lim |det 77 (z)] - (1 + & (r))* = |det T ()] .
n—oo

6. We now use a = g7 from Eq. (14.59) along with the inequality in Eq.
(14.62f) to learn

_ :
BoT(z) ~ ’det (T-4'(T (37))’

a ()
On the other hand, since T=1oT = I, it follows by the chain rule that
(T=1) (T (%)) T’ (z) = I and therefore

1
|det (T-1)' (T (x))]

= |det T (2)|

and we may conclude a (z) > |detT’ (z)|. This result along with the in-

equality in Eq. (14.61]) shows
a(z) = |det T (z)].
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7. Using this result back in Eq. (14.58]) with ¢ = f o T" for some function on
f:T(2) — R gives,

/ fdm:/ foT-|detT'|dm.
T(2) o

Note: By working harder as in the inverse function Theorem ?7?, we could
have proved the stronger version of Eq. (14.60));

T (1‘) + T’ (.%') Br(l—s(r)) (0) cT (Br (CE)) cT (CC) + T/ (a:) Br(l+s(r)) (0) .

If we had done this we could have avoided discussing [ altogether. Indeed, the
method of step 5. would then give

m (T (B, (z)))

|det T’ ()] - (1 =& ()" < m (B (v))

< |det T' ()] - (1 + € ())*

which upon letting 7 | 0 would have shown % () = |det T" (z)] .






15

Independence

As usual, (£2,B,P) will be some fixed probability space. Recall that for
A, B € B with P (B) > 0 we let

P(ANnB)

P(A|B) := “PB)

which is to be read as; the probability of A given B.

Definition 15.1. We say that A is independent of B is P (A|B) = P (A) or
equivalently that
P(AnB)=P(A)P(B).
We further say a finite sequence of collection of sets, {C;};_, , are independent
if
P (NjesA;) H P(A
jedJ
forall A; € C; and J C {1,2,...,n}.

15.1 Basic Properties of Independence

If {C;}!, , are independent classes then so are {C; U {£2}}!_, . Moreover, if we
assume that 2 € C; for each i, then {C;};_,, are independent iff

P 4;) =[] P(4)) forall (Ay,...,A;) €Crx -+ x Cp.
j=1

Theorem 15.2. Suppose that {C;}.—, is a finite sequence of independent m —
classes. Then {o (C;)}}_, are also independent.

Proof. As mentioned above, we may always assume without loss of gener-
ality that 2 € C;. Fix, A; € C; for j = 2,3,...,n. We will begin by showing
that

Q(A):=P(ANAyNn---NA,)=P(A)P(As)...P(A,) forall A€o (Cy).
(15.1)

Since @ (-) and P (As)... P (A,) P (-) are both finite measures agreeing on (2
and A in the m — system Cq, Eq. is a direct consequence of Proposition
Since (As, ..., Ay) € Co x -+ x C,, were arbitrary we may now conclude
that o (C1),Ca,...,C, are independent.

By applying the result we have just proved to the sequence, Ca, . .. ,Cp, 0 (C1)
shows that o (C3),Cs,...,Cy,0 (C1) are independent. Similarly we show induc-
tively that

g (C]) ,Cj+1, ce ,Cn,O'(C1) g ,O'(Cj_l)

are independent for each j = 1,2,...,n. The desired result occurs at j =n. =

Corollary 15.3. Suppose that {A; } " and {A}},_, are sets from B and let

A=A ({Aj}jzl) and A" = A ({A}}._,) . then A and A’ are P-independent iff
P(A;NBkg)=P(Ay)P(Bk) forall J C {1,2,...,m} and K C {1,2,...,n}
where Ay = NiegA; and Ay = Niex Aj,.

Proof. Apply Theorem with C; = {4y :J C{1,2,...,m}} and C3 :=
{4 : K C{1,2,...,n}}. L]
Definition 15.4. Let (£2,B, P) be a probability space and {Aj};.vzl C B be a
collection of events and for J C {1,...,N}, let Ay := A ({Aj}jeJ) . We say

that there are no hidden dependencies among the {A; }jvzl if for all proper
subsets, J C {1,...,N}, the algebras A; and Ajc are P-independent.

Corollary 15.5 (Characterizing no hidden independence). Let
{Aj};.vzl C B. Then there are no hidden dependencies among the {Aj}j.vzl iff

ﬂjng HP

jeJ

) forall JC{1,...,N}. (15.2)

Proof. We will show if there are_no hidden dependencies among the
{Aj}jil , then we will show that Eq. (15.2) holds by induction on n := # (J).
When n = 1 there is nothing to prove. For n = 2, we have J = {a, b} and we let
A = {a} so that b € A°. By the assumption that A, and A,- are P-independent
it follows that P (A, N Ay) = P (A,) P(Ap) as A, € Ay and Ap € Age. When
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n = 3 so that J = {a,b,c} we let A ={a,b} so that c € A°. As A, N A, € Ay
and A, € Aye, it follows by the hypothesis that

P(A,NA,NA)=P([AaNA)NA)=P(A,NA) P (A.).

However, by the n = 2 case we also know that P (A, N Ap) = P (A4.) P (A4p)
and so we have shown,

P (Aa NAN Ac) =P (Aa N Ab) P (Ac) =P (Aa) P (Ab) P (Ac) .

The full simple inductive proof is now left to the reader.
For the converse direction, for any J C {1,2,...,N} let

CJ = {AA:anAAjZ ACJ}

which is a multiplicative class generating A ;. From Eq. (15.2) it is now easy to
verify that C; and Cj. are P-independent for all J C {1,2,..., N} and hence,
by Theorem [15.2] so are the algebras, Ay and Aje. ]

Definition 15.6. Let (2,8, P) be a probability space, {(S;,S;)};_, be a collec-
tion of measurable spaces and Y; : 2 — S; be a measurable map for 1 < i < n.
The maps {Y;};_, are P - independent iff {C;};_, are P — independent, where
Ci=Y 1 (S)=0(Yi)C B for1<i<n.

Theorem 15.7 (Independence and Product Measures). Let (2,8, P) be
a probability space, {(S;,S;)}i—, be a collection of measurable spaces and Y; :
2 — S; be a measurable map for 1 < ¢ < n. Further let u; == P o Yi_1 =
Lawp (Y;). Then {Y;},_, are independent iff

Lawp (Y1,...,Y) =11 @ -+ Q pin,
where (Y1,...,Y,): 2 —= 51 x---x 8, and
Lawp (Y1,...,Y,) =Po(Y1,....Y,) ' 181 @---®S, = [0,1]
is the joint law of Y1,...,Y,.

Proof. Recall that the general element of C; is of the form A; = Yfl (B;)
with B; € S;. Therefore for A; = Y[l (B;) € C; we have

PAin---NnA,)=P((M,...,Y,) €By X+ X By)
:((HvaYn)*P)(B1XXBn)

If(Yh,....Y,), P =11 ® - @ py, it follows that
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P(AN-NA) =1 @ @ pn (By X -+ X By)
=p1 (B1)--p(Bp) =P (Y1 € B1)--- P (Y, € By)
=P (4;)...P(4,)
and therefore {C;} are P — independent and hence {Y;} are P — independent.
Conversely if {Y;} are P — independent, i.e. {C;} are P — independent, then
P(<Y1,7Yn) € By x--- XBn) :P(AlﬁﬂAn)
=P(A)...P(A,)
=P(Y1€By)---P(Y, € By)
= p (Bu) -~ p(By)
= ® - @ pin (By X -+ X Bp).
Since
7:={By X+ xB,:B; €8; for1 <i<n}

is a m — system which generates S1 ® ---® S,, and
Y1,....,Y,),P=m® - Qu, onm,
it follows that (Y1,...,Y,), P=m Q@ - Quuonall of S ® --- ® Sy,. [

Remark 15.8. When have a collection of not necessarily independent random
functions, Y; : 2 — 5;, like in Theorem [15.7] it is not in general possible
to recover the joint distribution, 7 := Lawp (Y7,...,Y},), from the individual
distributions, p; = Lawp (Y;) for all 1 < ¢ < n. For example suppose that
S; = R for i = 1,2. u is a probability measure on (R, Bg), and (Y7, Y>) have
joint distribution, m, given by,

7w (C) = /RIC (z,z)dup (x) for all C € Bg:.

If we let u; = Lawp (Y;), then for all A € Bg we have
1 (A) = P (Y € A) = P((Y1,Y3) € A x R)

=7(AxXR)= / Taxr (z,2)dp(x) = p(4).
R

Similarly we show that ps = p. On the other hand if i is not concentrated on

one point, 4 ® p is another probability measure on (R2,BR2) with the same

marginals as 7, i.e. 7 (A X R) = p(A) =7 (R x A) for all A € Bg.

Lemma 15.9. Let (£2,,B,P) be a probability space, {(S;,Si)}._, and
{(T;, ) }i—, be two collection of measurable spaces, F; : S; — T; be a mea-
surable map for each i and Y; : £2 — S; be a collection of P — independent
measurable maps. Then {F; o Y;},_, are also P — independent.
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Proof. Notice that

o(FioY:) = (FioY)  (T) =Y, (FH(T) ¥, (8) = Ci.

7

The fact that {o (F;oY;)}_, is independent now follows easily from the as-
sumption that {C;} are P — independent. ]

Ezample 15.10.1f 2 :=[[_, S;, B:==81 ® - @8y, Y; (s1,...,5,) = s; for all
(51,...,5n) € 2, and C; := Y, (S;) for all 5. Then the probability measures, P,

1
on (£2, B) for which {C;}!"_; are independent are precisely the product measures,

P=p ®---® p, where y; is a probability measure on (S;,S;) for 1 < i <mn.
Notice that in this setting,
Ci=Y 1 (S)={S1 x -+ xSi1xBxSiy1 x---x8,:BeS;}CB.

Proposition 15.11. Suppose that (12, B, P) is a probability space and {Zl}"
are independent integrable random wvariables. Then H Z; s also mtegmble

and
E|[]%|=]]E%-
j=1 j=1

Proof. Let p1; := Po Z;l : Br — [0,1] be the law of Z; for each j. Then we
know (Z1,...,2Zy), P = p1®- - Q. Therefore by Example[10.48 and Tonelli’s
theorem,

B (T11Z:1| = [ |TL| dls5mm) @)
j=1 R™ | j=1
:H/ |2j] dpj (25) H]E|Z\<oo
j=1

which shows that H Z; is integrable. Thus again by Example |10.48| and
Fubini’s theorem,
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Theorem 15.12. Let (12,,B, P) be a probability space, {(S;, S;)}i—, be a collec-
tion of measurable spaces and Y; : 2 — S; be a measurable map for 1<i<n.
Further let p; == PoY; ' = Lawp (Y;) and w := Po(Y1,. .. YY) Si08,
be the joint distribution of

(Y1,...,Y,): 2= 51 x--- x8,.
Then the following are equivalent,

1. {Y;},_, are mdependent

2. M= QU - Q

3. for all bounded measumble functions, f: (S1 %+ x 5,851 ®--®S,) =
(R7 BR) 9

Ef(Yh;Yn) :L s f(xla“'axn) dul (Il)dﬂn (In)ﬂ (153)

( where the integrals may be taken in any order),

4. E[ITL, fi (V3)] = Hl LEfi (Y3)] for all bounded (or non-negative) measur-
able functions, f; : S; — R or C.

Proof. (1 <= 2) has already been proved in Theorem [15.7} The fact
that (2. = 3.) now follows from Exercise and Fubini’s theorem. Sim-
ilarly, (3. = 4.) follows from Exercise and Fubini’s theorem after taking
f(x1,...,xn) = [l fi (z;). Lastly for (4. = 1.), let A; € S; and take
fi :=14, in 4. to learn,

PN, {Y; € A;}) = lﬂu

=[IE[a )] =[P (i€ 4)
i=1 i=1

which shows that the {Y;};; are independent. ]

Corollary 15.13. Suppose that (§2,B,P) is a probability space and
{Y;: 02— R} _, is a sequence of random variables with countable ranges, say

A CR. Then {Y }j:1 are independent iff

n

P {Y;=y}) =[P =u) (15.4)

j=1
for all choices of y1,...,yn € A.

Proof. If the {Y } are independent then clearl Eq. (15.4) holds by definition
as {Y; =y;} €Y, Y(Bg) . Conversely if Eq. holds and f; : R —[0, c0) are

measurable functlons then,
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E[Hfi(Yi) = > I PO Y =u})
i=1

Y1,y Yn €A =1

n

= > JIrw) - I[Pvi=u)

Y1, Yn €A =1 j=1
=1I> fitw)- P, =yy)
i=1ly;eA

= HE[fi (Y3)]

wherein we have used Tonelli’s theorem for sum in the third equality. It now
follows that {Y;} are independent using item 4. of Theorem [15.12 |

Definition 15.14 (i.i.d.). A sequences of random variables, {X,} -, on a
probability space, (2,8, P), are i.i.d. (= independent and identically dis-
tributed) if they are independent and (X,,), P = (Xy), P for all k,n. That is

we should have
P(X,€eA)=P(Xr€A) forallk,neN and A € Bg.

If {X,} —, are i.i.d. random variables iff

P (X, EAla-~-7Xn€An):HP(Xi€Ai):HP(XI EAi)ZHM(Ai)
j=1 j=1 j=1

(15.5)

where p = (X71), P. The identity in Eq. (15.5)) is to hold for all n € N and all
A; € Bg. If we choose p, = p in Example [15.19] the {Y,,} 7, there are i.i.d.

with Lawp (Y,,) = PoY, ! =y for all n € N. We will give another proof of the
existence of arbitrary sequences of independent random variables in Proposition
15.23| below which will rely on the following very special case.

Exercise 15.1. Suppose that 2 = [0,1), B = Bjg,1), and P = m is Lebesgue
measure on B. Let

2?’1,—1

Y, = Z 1[2k—1 2k for all n € N.
k=1

27 52

1. What is P (Y, =1) and P (Y,, = 0)?
2. Suppose that €; € {0,1} are given for ¢ € N, show (by induction on n) that

{lezfl,...,Yn:En}:[f
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where
. n n
2‘7—“ =S 2 e j=Y g2
=1 =1

3. Show (using items 1. and 2.) that {Y]}?:1 are independent random variables
for each n € N.
4. Show (Y7 (w), Y3 (w),...) is the binary digit expansion of w € [0, 1), namely

show -
w=> Y;(w)2  forallw € [0,1). (15.6)
i=1
Hint: use item 2. to show for all n € N that
n _ n » 1
D Yiw)2T<w< Y Vi(w)?2 + 5 (15.7)
i=1 i=1

Exercise 15.2. Let X, Y be two random variables on ({2, B, P).

1. Show that X and Y are independent iff Cov (f (X),g(Y)) =0 (ie. f(X)
and g (Y') are uncorrelated) for bounded measurable functions, f,g: R —
R.

2.If X,Y € L?(P) and X and Y are independent, then Cov (X,Y) = 0.

3. Show by example that if X,Y € L?(P) and Cov(X,Y) = 0 does not
necessarily imply that X and Y are independent. Hint: try taking (X,Y) =
(X, ZX) where X and Z are independent simple random variables such that
EZ = 0 similar to Remark [4.35

Exercise 15.3 (A correlation inequality). Suppose that X is a random
variable and f,g : R — R are two increasing functions such that both f (X)
and g (X) are square integrable, ie. E|f(X)]> + Elg(X)]®> < oo. Show
Cov (f(X),9(X)) > 0. Hint: let Y be another random variable which has
the same law as X and is independent of X. Then consider

E[(f(Y) = f(X))-(g(Y) =g (X))].

Let us now specialize to the case where S; = R™ and S; = Bgrm; for some
m; € N.

Theorem 15.15. Let (£2,8,P) be a probability space, m; € N, §; = R™,
S; = Bgmy, Yj 1 2 = S; be random vectors, and p; = Lawp (Y;) = P o ijl :
S; = [0,1] for 1 < j < n. The the following are equivalent;

1. {Y]}?:1 are independent,
2. Lawp (Y1,...,Y) =11 Q@ ua ® -+ ® piy
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3. for all bounded measurable functions, f : (S1 X - X 5p,$1®---®8,) —
(Ra BR) )

B (Y= [ fanm) din @) cdin (@) (158)

( where the integrals may be taken in any order),

4. E [H?:l fi (Yj)} = H E[f; (Y;)] for all bounded (or non-negative) mea-
surable functions, f; : S — R orC.

5. P(ﬁ” 1Yy < yj}) = H?zlP({Y}- <wy;}) for all y; € S;, where we say
thatYSyjzﬁ( e < (W5), for 1 <k <m;.

6. E[[Tj=y £ ()] = T} ELf; (Y3)] for all f; € C. (S5, R),
E [ei 25 *J"YJ} =I/_ E [e?Y5] for all \; € S; = R™.

Jj=

Proof. The equivalence of 1. — 4. has already been proved in Theorem[15.12
It is also clear that item 4. implies any of the items 5. —7. upon noting that
item 5. may be written as,

H 1( 00,y5] H ]E —00,Y;] )]

where
(=00, 5] := (=00, (y;)] X - X (=00, (y5),,, |-

The proofs that either 5. or 6. or 7. implies item 3. is a simple application of
the multiplicative system theorem in the form of either Corollary [I2.6]or Corol-
lary In each case, let H denote the linear space of bounded measurable
functions such that Eq. holds. To complete the proof I will simply give
you the multiplicative system, M, to use in each of the cases. To describe M,
let N=mq+---+m, and

y=yn) = (¥ % yY) € RY and
A=ty A) = (A2 0N e RY

For showing 5. = 3.take M = {1(_oo 4 : y € RV }.

For showing 6. = 3. take M to be a those functions on R" which are of
the form, f (y) = Hl]il fi (yl) with each f; € C. (R).

For showing 7. = 3. take M to be the functions of the form,

f(y) =exp iZ)\j-yj =exp (i\-y).

j=1
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Alternatively we could show 7. = 2. as follows. Let N = mj + -+ + my,
7= Law (Y,...,Y,) and X := (\1,...,\,) € RY. Ttem 7. states,

e[ ]

j
— (M Qe ®- @ pn) (A)
and so T = p1 ® fig ® -+ - @ py, by Corollary [12.17] [

Definition 15.16. A collection of subsets of B, {Ci},cp is said to be indepen-
dent iff {C¢},cx are independent for all finite subsets, A C T. More explicitly,
we are requiring

P (Nieady) = H P (Ay)

teA
whenever A is a finite subset of T and A; € Cy for all t € A.

Corollary 15.17. If {C;},.p is a collection of independent classes such that
each C; is a m — system, then {0 (Ct)},cp are independent as well.

Definition 15.18. A collections of random variables, {X; :t € T} are inde-
pendent iff {o (X;) :t € T} are independent.

Ezample 15.19. Suppose that {,},-, is any sequence of probability measure
on (R,Bg). Let 2 =RY, B:= ®2 ,Bg be the product o — algebra on §2, and
P := ®;2 4, be the product measure. Then the random variables, {Y,,} 7,
defined by Y,, (w) = wy, for all w € 2 are independent with Lawp (Yn) =y, for
each n.

Lemma 15.20 (Independence of groupings). Suppose that {B; :t € T} is
an independent family of o — fields. Suppose further that {Ts} g is a partition
of T (ie. T =3, gTs) and let

BTS = \/teTth =0 (UteTSBt) .
Then {Br, },c g is again independent family of o fields.

Proof. Let
Cs = {maEKBoe : By € By, K Cr Ts}-

It is now easily checked that By, = o (Cs) and that {C,}, g is an independent
family of m — systems. Therefore {Br,}, ¢ is an independent family of o —

algebras by Corollary [15.17} |
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196 15 Independence

Remark 15.21. To better understand the last proof it is instructive to write
out a special case in more detail. Suppose that {A, B,C,D,E} are independent
sub-o— algebras relative to (£2, F, P). This independence implies

P(ANBNCNDNE)=P(A)P(B)P(C)P(D)P(E)
=P(ANB)P(CNDNE)

forall Ac A, BeB, CeC,DeD,and E € £. Therefore,

Ci:={ANB:Ae€ Aand B € B} and
Co:={CNDNE:CeC, DeD, and E € &}

are independent. As C; and Cs are multiplicative we may conclude from Theorem
that AVB =0 (Cy) and CV DV E = o (Cz) are independent as well.

Corollary 15.22. Suppose that {YT,,}ZO:1 is a sequence of independent random
variables (or vectors) and Ay, ..., Ay, is a collection of pairwise disjoint subsets
of N. Further suppose that f; : RY — R is a measurable function for each
1<i<m,then Z; .= f; ({Yl}leAi> is again a collection of independent random
variables.

Proof. Notice that o(Z;) C o ({Yi}es,) = 0 (Uea,o(¥1)). Since
{o (V})};2, are independent by assumption, it follows from Lemma that
{o ({Yl}lem)}:’; are independent and therefore so is {0 (Z;)}~,, i.e. {Z;}.",
are independent. [

Proposition 15.23. Given any sequence, {u,},- ,of probability measure on

(R, Br), there exists a independent sequence, {X,}~_, , of random variables on
([0,1),Byo,1y, P = m) such that Lawp (X,,) = pin, for all n.

Proof. Let {Y,} 2, be 1iid. Bernoulli random variables on
([O7 1), Bjo,1y, P = m) as in Exercise Let ¢ : N x N — N be a bijection
and set Z,, := Y, (1,5 so that {Zl,n}:1 are i.i.d. Bernoulli random variables
on ([0,1), Bjo.1), P =m) . For each n € N, let U,, := > Z;,27". According
to Corollary [15.22) {U,} -, are independent random variables. Moreover the
reader should verify that Lawp (U,) = m for all n so that {U,} , are iid.
uniformly distributed random variables on ([0,1),8[0,1),P =m). We now
choose measurable functions, G, : (0,1) — R as in Theorem so that
Lawp (G, (Uy,)) = pn for each n. Then {X,, :=G,, (U,)},—, is the desired
collection of independent random variables on ([0,1),[3[071),P:m). [See

Section for more details on this type of construction.] ]
The following theorem follows immediately from the definitions and Theo-
rem [15. 1))
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Theorem 15.24. Let X := {X,; :t € T} be a collection of random variables.
Then the following are equivalent:

1. The collection X is independent,

2.
P(Mea{Xi € A}) = [[ P(Xi € Ay
teA
for all finite subsets, A C T, and all {A¢},c, C Bg.
3.

P(Niea{X: <a}) = H P (X, <uxy)
teA

for all finite subsets, A C T, and all {x4},., C R.
4. For all I' Cy T and f; : R"— R which are bounded an measurable for all
tel,

E

11 % (Xt)] ~ I (X)) = /R TT /o) T e )

tel’ tel’ tel’ tel’

5. E [[Tierexp (e™%)] = Tlyep it (M)
6. For all T C¢ T and f : (R")" = R,

Bl = [ 7 T et

7. For ol T Cy T, Lawp (X1) = Qierfu.
8. Lawp (X) = QreT Ut

Moreover, if By is a sub-o - algebra of B fort € T, then {B;},., are inde-
pendent iff for all I' Cy T,

[ x

tel’

E = H EX; for all X; € L™ (2, B;, P).

tel’

Proof. The equivalence of 1. and 2. follows almost immediately form the
definition of independence and the fact that o (X;) = {{X, € A} : A € Br}.
Clearly 2. implies 3. holds. Finally, 3. implies 2. is an application of Corollary
with C; := {{X: < a} :a € R} and making use the observations that C;
is a m — system for all ¢ and that o (C;) = o (X;). The remaining equivalence
are also easy to check. ]
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15.2 Independence for Gaussian Random Vectors

As you saw in Exercise uncorrelated random variables are typically not
independent. However, if the random variables involved are jointly Gaussian
(see Definition , then independence and uncorrelated are actually the
same thing!

Lemma 15.25. Suppose that Z = (X,Y)tr is a Gaussian random vector with
X € R¥ and Y € R, Then X is independent of Y iff Cov (X;,Y;) = 0 for all
1<i<kandl <j <I. Thislemma also holds more generally. Namely if
{Xl}ln:1 is a sequence of random vectors such that (Xl, . ,X") is a Gaussian

random vector. Then {Xl};;l are independent iff Cov (Xf,X};) = 0 for all
1 #1 and i and k.

Proof. We know by Exercise that if X; and Y; are independent, then
Cov (X;,Y;) = 0. For the converse direction, if Cov (X;,Y;) =0forall1 <i <k
and 1 < j <[ and z € R¥ and y € R, then

Var(z- X +y-Y)=Var(z-X)+ Var(y-Y)+2Cov(z-X,y-Y)
=Var(z-X)+Var(y-Y).

Therefore using the fact that (X,Y") is a Gaussian random vector,

E [ XevY] =K |:ei(x~X+y~Y):|
1
= exp <—2Var(fc-X+y~Y)+E(x-X+y~Y))

= exp (—;Var(x-X)+iE(x~X) — ;Var(y-Y)—i-i]E(y-Y))
=F [eiz~X] -E [eiy‘Y] ,

and because x and y were arbitrary, we may conclude from Theorem [15.15| that
X and Y are independent. [

Corollary 15.26. Suppose that X : £2 — R* and Y : 2 — R are two indepen-
dent random Gaussian vectors, then (X,Y) is also a Gaussian random vector.
This corollary generalizes to multiple independent random Gaussian vectors.

Proof. Let € R* and y € R!, then
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E {ei(az,y)-(X,Y)} -F [ei(w-X+y~Y)} -E [eiw-Xeiy-Y] —-E [em-x] E [eiy-Y]

—exp (—;Var(wX)—i—iE(:c-X))

X exp <—;Var (y-Y)+iE (y~Y)>
—exp <;Var(x-X)+iE(x~X);Var(y-Y)JriIE(y-Y))
—exp (—;Var(x~X+y-Y)+iIE(x-X+y-Y)>

which shows that (X,Y) is again Gaussian. |

Notation 15.27 Suppose that {X;}._, is a collection of R — valued variables or
1L 11
RY - valued random vectors. We will write X, + Xo+ ...+ X, for X1+ +X,

under the additional assumption that the {X;};_, are mdependent.

Corollary 15.28. Suppose that {Xi}?=1 are independent Gaussian random
variables, then S,, := Z?:l X, is a Gaussian random variables with :

Var (S ZVar i) and ES, = ZEXi, (15.9)

i.e.
1L 11 11 n n
Xi + Xo ...+ XniN<ZVar(Xi),ZIEXi> .
=1 =1

In particular if {X;};2, are i.i.d. Gaussian random variables with EX; = p and
0% = Var (X;), then

pl N( 02) and (15.10)

—npd

oy

Equation (15.11) is a very special case of the central limit theorem while Eq.
115.10) leads to a very special case of the strong law of large numbers, see

Corollary[15.29

Proof. The fact that S,,, % — i, and % are all Gaussian follows from

Corollary [15.28[and Lemma|14.28|or by direct calculation. The formulas for the
variances and means of these random variables are routine to compute. [

Sn _
Sn N(0,1). (15.11)
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198 15 Independence

Recall the first Borel Cantelli-Lemma [10.15| states that if {A,,} -, are mea-
surable sets, then

iP(An) <00 = P({A,i0})=0. (15.12)

Corollary 15.29. Let {X;};, be i.i.d. Gaussian random variables with EX; =
w and 0% = Var (X;) . Then lim,, 37“ = u a.s. and moreover for every a < %,
there exists N : 2 — NU{oo}, such that P (N, = 00) =0 and

S
"—u‘gn_o‘fornzNa.
n

In particular, lim,, % =l a.s.

Il

Proof. Let 7 < N (0,1) so that 7=
and Eq. ((10.46)),
EORE

Sn
Pl|——pu|> =P
(5 =+l=) -2 (7
- 1 [ yne\> g2
exp|—= | — =exp|—==n].
= oxp 2\ o P72
Taking e = n~ with 1 — 2a > 0, it follows that
S’ﬂ —a S 1 12«
n—u‘zn )g;exp<—wn < 00
and so by the first Borel-Cantelli lemma,

P ({ = —u’ > pa i.o.}) _o.

% — ,u‘ < n~% a.a., and in particular lim,, .

N (0, ‘L:) . From the Eq. (15.10

g

ﬁé)

ag

Sn
=4 a.s.

Therefore, P — a.s.,
]

15.3 Summing independent random variables

Suppose that (£2, B, P) is a probability space and X; : {2 — R are random
variables for 1 < j < n. Let p = Lawp (X1,...,X,,) so that

E[f(X1,...,Xpn)] = Rnf(x)du(x) where x := (21, ...,2,) .
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If we let S,, = X1 +---+ X,,, then
Lawp (S,) (B) = P (S, € B) =E[15 (Sy)]

:‘/nlB(xl‘i’""FIn)du(x)'

Let us now restrict to the case n = 2 and suppose that X; and X, are indepen-
dent random variables with laws 1 and po respectively, then

Lawp (X1 + X2) (B) = /Rz Lp (21 + 22) diy @ pia (21, 22)
= /Rdlh (1) /Rdm (z2) 1p (21 + 2)
= /Rd,ul (xl)/Rd,uz (r2) 1p—a, (22)
= / po (B — 1) dps (z1).
R

Similarly by reversing the order we did the integrals we also have
Lawp (X1 + X2) (B) = / p1 (B — x2) dpg (x2) .
R

Definition 15.30 (Convolution of measures). If p; and ps are two prob-
ability measure on (Rd,BRd) the convolution of p1 and pe is the probability
measure on (Rd,BRd) denoted by py * po which is defined by

ul*uz(3)=/

(B — ) dps ().
Rd

As we saw above we have

Ml*u2(3)=u2*u1(3)=/

p2 (B = x)dpa (x)
Rd

:/ 1 (1 + x2)d (p1 ® p2) (x1,22)
R4 xRd

and moreover if X1,Xs : 2 — R are independent random vectors with
Lawp (Xz) = Uy, then Lawp (Xl + Xg) = 1 * U3.

Exercise 15.4. Suppose that X 2N (0,(12) and Y £ N (O,bQ) and X and
Y are independent. Show by direct computation using the formulas for the
distributions of X and Y that X +Y = N (0,a® + b?).
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Exercise 15.5. Show that the sum, N7 + Ny, of two independent Poisson ran-
dom variables, N7 and N, with parameters A1 and Ao respectively is again a
Poisson random variable with parameter A1 + A2. (You could use generating

Ll
functions or do this by hand.) In short Poi (A1) + Poi (A2) £ Poi (A + A2).

Recall from Definition [10.61|that T" > 0 is an exponential with parame-
ter \ € [0,00) provided, P (T > x) = e~** for all x > 0 or equivalently,

P(T € (z,z + dz]) = 1,50 e dx,

i.e. for all bounded measurable functions, f: Ry — R we have
E(f (D)= [ flz)heda.
0

[We will write T LE () for short.] Taking f (x) = e~ '* above shows
A

E[e™*" :/ Ae Me T dy = for t + A > 0.
[e ] ; e e T Nti ort+ A >
If we write A = 1/6, then
1 [ 1
Ele ] == /ety = f 1>0. 15.1
[e=*"] 9/0 e e "dx T ortd+1>0 (15.13)

Theorem 15.31. Let § > 0. If {T]}f:1 are i.i.d. E(1/0) - random wvariables,

then
b1 e—m/@

05T (k)

where -
I (k)= / #*~te=%dx for all k > 0.
0

Proof. From Eq. and independence it directly follows that
1 k
E [e_t(T1+“'+T’“)] = (Htﬂ) for t6 +1 > 0.
On the other hand if we differentiate Eq. (k — 1)-times with respect to
t it follows that

E [Tk—le—tT} — <_d)k1 E [e—tT] — 1/00 xk—le—w/Ge—tmdx
di 6/,

= (k—1)1-0* 1 (1+0)"
= (k= 1)} 71 [Tt IO
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k—1 —(k4+Vka
Fig. 15.1. Here are some plots of vk (k + \/Ex) % for £ = 10, 50 and

100. These plots indicate how appropriately scaled and translated sums of independent
E (1) — random variables converge in law to a standard normal.

In particular, it follows that

0k (k)

which holds for all ¢ > 0 and this suffices to prove Eq. (15.14]). ]

Exercise 15.6 (Gamma Distributions). Let X be a positive random vari-
able. Fo k,0 > 0, we say that X iG:aummau(kﬁ) if

(X, P) (dx) = f (x;k,0) dx for = > 0,

where

—z/0
. k=1 ©
fx;k,0) :=x 55T (F)

Find the moment generating function (see Definition [10.58), Mx (t) = E [¢"¥]
for t < §~1. Differentiate your result in ¢ to show

for x > 0, and k,0 > 0.

E[X™] =k(k+1)...(k+m—1)0™ for all m € No.
In particular, E[X] = k@ and Var (X) = k6?. (Notice that when k = 1 and
o=x1 Xx<LEMN).)
Ezample 15.32 (Gamma Distribution Sums). We will show here that

Ll
Gamma(k, ) + Gamma(l,0) =Gamma(k+1,0). In Exercise [15.6] you
showed if k,0 > 0 then

! We now no longer assume k is an integer.
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200 15 Independence
E [etX] =(1- Ht)fk fort <0~!

where X is a positive random variable with X iGamma(k, 0), ie.

—x/0

(X, P) (dz) = aF=1 -5

T () dx for z > 0.

Suppose that X and Y are independent Random variables with

X g(}amma(k,@) and Y gGamma(l,@) for some [ > 0. It now follows
that

E {et(X+Y):| ) [etXetY} ) [etX} E [etY]

=(1-0)F -0t =1 -0t "D,

Therefore it follows from Exercise that X +Y gGamrna(k +1,0).

Ezample 15.33 (Exponential Distribution Sums). If {T}},_, are independent
random variables such that T, < E (A\g) for all k, then

1L 11 1l .
T, + Ty + ... + Tn:Gamma(n,)\ )

This follows directly from Example [15.32| using E () :Gamma(l,)ﬁl) and
induction. We will verify this directly later on in Corollary

Example |15.32| may also be verified using brute force. To this end, suppose
that f: Ry — R, is a measurable function, then

—x/0 —y/0
BU V)= | F @0 gy

1
1

— k—1,1-1_—(z+y)/6
T T () Rif(:chy)x y' e dzdy.

Let us now make the change of variables, z = x and z = = 4 y, so that dady =
dxdz, to find,

Elf(X+Y)] =

1
= —— lo<z<s<oo k=1, . \l—-1_—2/6 .
9’“‘”1"(16)[‘([)/ 0<z<z<oof (2) 377 (2 =) e dxdz

(15.15)
To finish the proof we must now do that x integral and show,

e I (5 1)
/Oxk Yz —a) Hde = 2P ThTl)
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(In fact we already know this must be correct from our Laplace transform
computations above.) First make the change of variable, x = zt to find,

/ a1 (2 — x)l_l dx = 2"71B (k1)
0
where B (k,1) is the beta — function defined by;
1
B (k1) := / t*=1 (1 — 1) dt for Rek,Rel > 0. (15.16)
0

Combining these results with Eq. (15.15]) then shows,

E[f (X +Y)] = m /OOO f(z)2FHte=2/0q, (15.17)

Since we already know that

(oo}
/ ZRH=Le=2/00 — 9P (k4 1)
0

it follows by taking f =1 in Eq. (15.17)) that

B(k,1)

T ORI (R) (1) PTG+

which implies,
(k) I" (1)
I'(k+1) "

Therefore, using this back in Eq. (15.17) implies

B (k1) = (15.18)

1 o0
Elf(X+Y) = W(k‘f'l)/o f(z) 28 te=2/0q,

from which it follows that X +Y gGamma(k +1,0).
Let us pause to give a direct verification of Eq. (|15.18]). By definition of the
gamma function,

F(k)F(l):/

xk_le_myl_le_ydxdy:/ 2"y e ) dady.
R

2 2
+ Ry

_ -1 _
z/ 2"z — ) T e Fdadz
0<zr<z<oo

Making the change of variables, x = z and z = x + y it follows,
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rkrq= / 2z — o) e P dadz.
0<r<z<0

Now make the change of variables, x = zt to find,

r(k)r(z)z/ooo dze_z/l dt ()51 (2 — £2)' 1

0

00 1
:/ efzzerrlfle./ tkfl (1 _t)lfl dt
0 0
—I(k+1)B(k1).

Definition 15.34 (Beta distribution). The § — distribution is

71— )Y dt
i,y (1) = ( )

B (z,y)
Observe that
L(z+1) I (y)
/1td,u (t) = Bla+ly) _ F(Tyﬂz; oz
e = Torw
0 B (z,y) Ty T+y
and
L(x4+2)I(y)
o B(@.y) Lo~ (e ty+ 1) (e ty)

15.4 A Strong Law of Large Numbers

Theorem 15.35 (A simple form of the strong law of large numbers).
If {X,}>_, is a sequence of i.i.d. random variables such that E {|Xn|4} < 00,
then

lim - =4 a.s.

n—oo M
where Sy, ==Y} _, X and p:=EX,, = EX;.
Exercise 15.7. Use the following outline to give a proof of Theorem

1. First show that 2?7 < 1 + 2% for all z > 0 and 1 < p < 4. Use this to
conclude;
E|X," <1+E|X,|[* <ocofor1<p<4.

Thus v:=E [\Xn - u|4] and the standard deviation (0?) of X,, defined by,

o? =R [X2] - =E [(Xn - M)Q} < 0,

are finite constants independent of n.
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2. Show for all n € N that

5]

(Thus 2= — p in L* (P).)
3. Use item 2. and Chebyshev’s inequality to show

—1 _ 1) 4
P(S’n—u’>s>§n Y+3(1-n )0'.

n ein?
4. Use item 3. and the first Borel Cantelli Lemma [[0.15 to conclude
lim, 00 S—; = [ a.s.

% (ny +3n(n — 1)0*)

% [n_17 +3 (1 — n_l) 04} .

15.5 A Central Limit Theorem

In this section we will give a preliminary a couple versions of the central limit
theorem following [28, Chapter 2.14]. If { X };/_, is a sequence of real or vector
valued random variables we let

SX =X+ + X,
We will also use the following notation throughout this section.

Remark 15.56. If f € C3(R) with M := sup,cp ff(3) (z)| < oo, then by Tay-
lor’s theorem |f (z)] < C (1 + |x|3) N (@) < C (1 + |x\2) ,and |f7 ()] <
C (1+ |z|) for some C' < oo. This remark will be used in the computations

below in order to see that f(U), f' (U), and f” (U) are all integrable random
variables for U € L3 (P).

The next lemma contains the key to the results in this section.

Lemma 15.37. Suppose that {U, X, Y} are independent random variables such
that E ||U]* + |X|* + |Y|3] < 00, EX = EY, and EX? = EY?2. Then for every
function, f € C?(R) with M := sup,p ‘f(?’) (x)| < 00,

B +X) ~ U+ < 5 E[IXP+ v

[This lemma has a natural extension to a similar statement when {U, X,Y'} are
independent random vectors.]
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Proof. By Taylor’s theorem for u, A € R there exists ¢ (u, A) between u
and A so that

Flut A)= () + /() At 3" () A2 47 (1, 4) (15.19)

where

I A)] = | 3£ (e (u,4)) 47| < S 1AP

Using Eq. (15.19)) with u = U and A= X and u=U and A =Y shows,
1
FUFX)=fU+Y)=f (U)X =Y]+5"(U) [x?

Taking expectations of this equation making use of the independence of
{U, X,Y} and the assumptions that EX = EY and EX? = EY? shows,

M

EIf(U+X) ~fU+Y)]| = [E[ (U, X) —r UV < 5 E[|x]°+ Y P].

Corollary 15.38. Suppose that {Xy}y_, and {Y;}._, are independent L? (P)-
random variables such that EXy, = EY), and EX? = EY}? for all k. If f € C3 (R)
with M := sup,cp }f(‘?’ | < 00, then

B (s3) ~ £ (SO < 5 ZE[IXkI + [f?

Proof. For k € {0,1,2,...,n} let
Vi=Xi+ -+ X1+ X+ Y+ + Y,
with the convention that
=Sy =Y+ +Y,,and V, =S5 = X1+ + X,,.
Further let
Up =V - Xpo=Xa+ -+ Xp1 + Y1+ + Y,

so that
Vi =Uk + X and Vi1 = Uy + Y.

By a telescoping series argument along with the triangle inequality and Lemma

[15.37] we find,
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—Y?]+r (U, X)-r (U,Y).

[E[f(S2) -

Z f (Vi)

Z J Uk + X)) — f (Up + Yi)]

Z [ Uk + Xi) = f (U + Y2)]|

< ykzﬁ (1%l + 193f°]
=1
| ]

Corollary 15.39. Suppose that { Xy}, and {Yy}r—, are i.i.d. L* (P)-random
variables with EXy = 0 = EY) and Var (X;) = Var (V7). If f € C3(R) with
M :=sup,cp |f(3) ()| < oo, then

1 1 M 5 7 1
J— — PR < —. J—
‘]E{f(\/ﬁSn) f(\/ﬁSn>H3! [E[|X1| —|—|Y1|H\/ﬁ—>0asn—>oo.
[Informally this says that Law (—jﬁSri() = Law (—%S}:) when n is large.]

Proof. By Corollary [15.37| with X;, - —=X}, and V;, — —=Y} it follows

that v v
el () o (o)< e T

M 1

< ETRRTF] [E {|X1|3 + |Y1|3H .

Lemma 15.40. If Z £ N (0,02), then E|Z|° = \/8/703

Proof. if Z = N (()702) , then Z 4 VN (0,1) and so by Eq. (10.44) with
B = 3 we have,
E|Z°| = "N (0, 1) = \/8/md”. (15.20)

Here is the direct computation in this case;

2 2 o 2
|2)* e Pdz = — e 24z,
\/ / V21 Jo

Letting y = 22/2 so that dy = zdz and 22 = 2y, it follows that

E|N (0,1)]
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E|N (0,1)] e_yd—iz — =+/8/m.
NP = o [T = =5 = VT

Theorem 15.41. Suppose that {Xy},_, are independent L® (P)-random vari-
ables, uy = EXy, 07 = Var (Xj),

W= i”’“ = iEXk, and o? = iai = iVar(Xk).
k=1 k=1 k=1 k=1

If f € C? (R) with M := sup,cp |f(3) (z)| < oo, then

|E[f(SX) = f (N (1,0%))]] _];{ZIEPX,CMM +ak\/§]. (15.21)

k=1

Now replace f (x) by f (x + p) to find the better estimate which does not change
the value of M.

Proof. Let {Y;};_, be independent random variables such that Yj 4

N (0, Var (X)) so that SY LN (0,02) . We now apply Corollary [15.38| with
X, replaced by Xy — ug to find,

[E[f (Sa =) = F (N (0.0°)][ = [E[f (52 = n) = f (Sa)]]

M n
< N Z]E [|Xk - Mk|3 + |Yk|3}
k=1

M 3
=37 Z]E [|Xk — px|” + 8/7702} .
k=1
Replacin f in this estimate by f (z + ) while using p+N (0, 0?) ZN (1, 0%)
gives Eq. (15.21]) n
Example 15.42. Suppose that there is a constant C' < oo such that
E|X), — EX;|* < C Var (X;,)*? for each k, (15.22)

then the estimate in Eq. (15.21]) gives,

2 This does not change the bound on the third derivative.
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M 8\ v 3

k=1
M 8 n )
(03 o S
M 8\
T (C + \/;> 7 kfllaxn T

d
Thus if maxg—_1, . n 0% is small then SX =N (,u,02 .
Note: one way to achieve Eq. (15.22) is to let {Zj}§:1 be a fixed col-
lection of mean zero, variance one, L°(P) random variables and let C' :=

=
=
=
|
“\.‘
=
<
Q
=
[N\

IN

maxi<j<pE \Zj|3 . Then if each X}, satisfies, X}, 4 o1 Zj~+ . for some j = j (k),
then

E|Xp — EX* = E|owZ,° = 03E|Z,|* < Co? = C Var (X3)%/2.

Corollary 15.43 (Central limit theorem). Suppose that {Xj},—, are i.i.d.
L3 (P)-random variables with EX), = 0 and Var (Xy) = 02 and Z N (0,0%).
If f € C3(R) with M := sup,eg | f® (z)| < 00, then

’IE [f (1555) —f(N (0,&))” < ]?\f [E1X + 8/wa3}-i — 0 asn — oo,

vn vn
Proof. We apply Example [15.42| with X}, replaced by ﬁXk so that o, =
. 3
I e N 12 T -0
- 3/2 32 g8
Var (%Xk) Var (X1)
and hence
M [(E|X,]? 8 o
X 2 2
Bl - < 5 (B0 )
which gives the desired estimate. [

Notation 15.44 Given a square integrable random variable Y, let

Y = Ya(f))/ where o (Y) := \/E(Y —EY)? = \/Var ().
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Ezample 15.45. Suppose that 0 < p < 1 and {Y,, },~ | are i.i.d. random variables
with P(Y, =1) = p and P(Y,, =0) = 1 — p, then EY,, = p = EY,? so that
Var (Y,,) = p—p? =p(1 —p). Then with f as above we know that

/ (SY"”’N —E[F(V0,1)]. (15.23)

lim E[f(SY)] = lim E
7 (5)] np (1 —p)

n—oo n— oo

Note that in general we can not expect that Eq. (15.23)) holds for all bounded
measurable functions f. Indeed if we let

D:=uy2, k_inpzogkgn
np (1 —p)

then 1pe (5’}{) =0 and m (D) = 0 and therefore,
_ 1 2
lim E[f(SY)] =0 1:—/1c eV 2dy.
I (7)) =0#1= = [1o ey

Lemma 15.46. Suppose that {Vn,W boo s
ables such that lim, . E[f (V,) — (Wn) =
lim, oo E[f (Vi) = fF (W) = 0 for all f € C.
ous functions, f: R — R.

a collection of random wvari-
0 for all f € C*(R), then
(R), for all bounded continu-

Proof. For such a function, f € C.(R), we may ﬁn(ﬂ fr € C*[R)
with all supports being contained in a compact subset of R such that ¢ :=
sup,cr |f () — fx (x)| = 0 as k — oo. We then have,

Ef (Vo) —Ef (Wa)| <[Ef (Va) — Efk( )I
<E|f (Va) = fr (Vn)\

+ |Efr (Vo) = Efe Wo)| +E|fis (Wn) — f (W)
<2 + ‘Efk (Vn) Efx (Wn)‘ .

Therefore it follows that

limsup [Ef (Vi) = Ef (Wy)| < 2e + limsup [Ef (Vi) — Efie (Wa))]

n—roo n—oo

=2¢, —> 0as k — oo.

3 We will eventually prove this standard real analysis fact later in the course.
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Corollary 15.47. Suppose that {W} U {W,} 2| is a collection of random
variables such that lim, . Ef (W,) = Ef (W) for oll f € C*(R), then
Wn = W asn — oo where “=> " is used to denote weak convergence, i.e.
lim, oo Ef (W,,) = Ef (W) for all bounded continuous functions, f : R — R.

Proof. By Lemma [[5.46 with V;, = W for all n, we know that
lim, oo Ef (W,) = Ef (W) for all f € C.(R). According to Theorem [26.32

below this suffices to conclude the result of the theorem. [ |

Ezample 15.48 (A rare event limit theorem). In this example let n € N (n >>
1), o > 0, and 1 > o > 0 be given such that ¢> = > _, o7. Further
suppose that {Z;},_, are independent Bernoulli random variables such that
P(Z,=1)=p, =1— P(Z; =0) where py, is chosen so that

oy = Var (Zy) = pr — p},

1
pk2<1m>’ ( pr = oF when o), << 1).

We then let Xj := Z; — pir. and note that in this case,
E|Xil” =pr- (1—pr)’ + (1 —pi) P}
= pr (1 - pr) {(1 — )’ +pﬂ
:O']% [1+2(pifpk)] :0,3 [1+20ﬂ %J,%

and so E |Xk|3 ~ o} rather than of. The error estimate in Eq. (15.21) is no
longer small and in fact S;X is not close in distribution to N (0, 0“) . Indeed,

if we let p = Y _| pg, then S;¥ = SZ —p € Ny — p and no such highly
discrete random variable can approximate a distribution which is a density times
Lebesgue measure. [Construct a continuous function which well approximates
the characteristic function of the range of S\ .]

As a special cases, if pr = % for 1 < k < n, then by Exercise

1
p(s§+)\zsf:k)gEAke_)‘ for k << n

ie.

d
and so S:X + X = Poi ()\) when n is large. We will revisit this example in more
generality later in Theorem

Remark 15.49 (Moral of the story). Let u € R and 02 > 0 be given and suppose
that means ({1 }4;) and variances ({7}, _,) have been chosen so that y =
Sor_i g and 02 = 3"} 0. In the discussion above we have been considering
what the distribution of S;X may look like When { Xk} k=1 if independent random
variables with EX; = p, and Var (X;) = o3. Here is a summary of what we
have found.

macro: svmonob.cls date/time: 25-Feb-2019/8:12



LIFE|X), — ] < Co} and maxy, oy, is small, then SX é N (u, %) which is
a form of the central limit theorem. So informally, the central limit theorem
says the result of adding lots of independent noises which are in some sense
“small in height” is a normal distribution.

2. On the other hand if we take X, = Zp — pxr where P(Zp =1) = pp =
1 — P (Z;, = 0) and the pj, are chosen so that o7 = Var (Xj). Then is this

case what typically happens is that SZ é Poi (p) where p = >} pr =
o?. So informally, the law of rare events says the result of adding lots of
independent “rare” Bernoulli noises (so not small in height) is a Poisson
distribution.

3. In particular, the limiting distribution of random independent sums is not
uniquely determined by specifying the means and the variances of the sum-

mands.
Advice: Skip to Section [I5.6]

15.5.1 * More central limit theorem results

We end this section with a few more central limit theorem variants.

Theorem 15.50 (A CLT proof w/o Fourier). Suppose that {Xj},~, C
L3 (P) is a sequence of independent random variables such that

C:=supE|X), — EX;[° < o0
k
Then for every function, f € C3(R) with M := sup,cp |f 3 (z | < 0o we have

[Ef (N) —Ef (S,)] < 3% (1 + \/8/7r) S (15.24)

where ) i
S, = o5 [Sp —ES,] with Sy := X1 + -+ X,
and NZ N (0,1). In particular, if we further assume that
1
0 = liminf —o (S, )? = llrlrggfﬁ;Var ) >0, (15.25)
then
‘Ef(N)—Ef(S’nH:O(\/lﬁ) asn — 0o (15.26)

which is to say, S, is “close” in distribution to N, which we abbreviate by

_d
Sn & N for large n. (It should be noted that the estimate in Eq. (15.24)) is valid
for any finite collection of random variables, { Xy}, _, .)
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Proof. Let YV, = % so that
Var (Xk)
_ 2 __ _
EYk = O, T, = Var(Yk) = 0_2 (Sn) ,

IESY =0, and Var (SY)

Then according to Theorem

[E[f(SY) - f(N(0,1))]] < o Z UXk—]EXk Ug\/ﬂ
El Z +U’“\/§]
=3 [0371(5 ) \/E,é”g] '

By Jensen’s (or Holder’s) inequality (see Chapter [17] below),

X, —EX, |?
(Shn)

which combined with the previous inequality gives Eq. (|15.24]).

< C
~ 03(Sy)

3/2
ol = (E|Yk|2) <E[Y,[*=E

]
By a slight modification of the proof of Theorem [15.50| we have the following
central limit theorem.

Theorem 15.51 (A CLT proof w/o Fourier). Suppose that {X,}.~ | is a

sequence of i.i.d. random variables in L*(P), S, := X1 + -+ X, and N <
N (0,1). Then for every function, f € C? (R) with M = SUP,cR |f( ) ( ‘ < 00
and f" being uniformly continuous on R we have,

nh_)rr;OIEf (S,) =Ef(N).
Proof. In this proof we use the following form of Taylor’s theorem;
1
fl@+A)—f(z)=f(x) A+ if” (z) A + 7 (x, A) A (15.27)

where .
r(z, A) = / 7 (@4 t4) — £ (@)] (1 — ) dt.

Taking Eq. (15.27) with A replaced by § and subtracting the results then implies
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Flat )~ f(a+6) = () (A—0)+ 3 f" (@) (42

where now,

— 6% +p(z,A4,0)

p(z,A,08) =r(x,A) A —r(z,6) §°.

Since f” is uniformly continuous it follows that

e(4Q) ::%sup{|f"(x+tA)ff(x)|:xERandOStﬁl}%O

Thus we may conclude that

1 1
|r<z,A>|s/0 If”(x+tA)ff”(o:)\(lft)dtS/O 2 (A) (1 - t)dt = £ ().

and therefore that
o (@, 4,6)] < e (4) A2 + £ (5) 62

So working just as in the proof of Theorem [15.50] we may conclude,
n
[Ef (N) ~Ef (S.)] < Y IRl
k=1

where now,
|Ri| = & (Ny) Nif + ¢ (Yz) V.
Since the {Yj};_, and the {N,};_, are i.i.d. now it follows that

|Ef (N) —Ef (Sn)| <n-El[e(Ny)Nf+e (Y1) V7],

Since Var (S,,) = n- Var (X1), we have Y7 = ngXl Var (Ny) = Var (Y1) = 1

and therefore Ny 4 \/%N . Combining these observations shows,

2 EX; AXl_IE)(l2
|Ef(N) —Ef (Sn ’<El (\/>N>N (fo()ﬁ))( Uz(Xl))

which goes to zero as n — co by the DCT. ]

Corollary 15.52. Suppose that { X, }ZO 1 5 a sequence of independent random
vamables then under_the hypothesis on this sequence in either of Theorem
or Theorem [15.51] we have S, = N (0,1), ie. hmn_moIEf( ) =
IEf ( 1)) for all f: R — R which are bounded and continuous.

Proof. This result follows directly from Theorem [[5.50] or Theorem [I5.51]
along with Corollary |

For more on the methods employed in this section the reader is advised
to look up “Stein’s method.” In Chapters and below, we will relax
the assumptions in the above theorem. The proofs later will be based in the
characteristic functional or equivalently the Fourier transform.
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Corollary 15.53 (Bone Yard?). Suppose that {X,},_, is a sequence of
i.i.d. random variables in L3 (P), C = E|X; —EX,|> < o0, S, == X; +

-+ X, and N 4 N (0,1). Then for every function, f € C3(R) with
M = sup,cp |f(3) (z)| < oo we have [BRUCE: which formula below is cor-
rect?]

IEf (N) —Ef (S,)] < (1 v \/8/7) )3/2 (15.28)

( NE + 8/7r> % (15.29)

(This is a specialized form of the “Berry—Esseen theorem.”) If n = EX; and
0% = Var (X1), then

A
SIS °°

- Sn — np
Sp = ———
V/no

[l

= S, =nu++v/noS, Znu+/noN(0,1).

d
That is we should have S,, = N (nﬂ, na2) .

Proof. Applying Corollary [15.43| with X}, replaced by X}, gives,

o X M o 13 1
B[ (5 - s ]| < 5 [E1%G P+ B/ =

where 5
X, —EX;
Var (X1)

B c
Var (X1)3/2 .

E|X |’ =E

15.5.2 *Why not Poisson limits

In this subsection we wish to better understand the special nature of normal
random variables in the central limit theorem by showing how we can not make
use of Poisson random variables in this context. Recall that a Ng-valued random
variable is Poisson with parameter A > 0 (written X < Poi (M) provided

)\k

P(X=k)= e ~ for k € No.

From Exercise [10.14] if X < Poi () then

macro: svmonob.cls date/time: 25-Feb-2019/8:12



EX =X = Var(X) and
o0 k
_ szie—x _ A1)
k!
k=0

Using EXF = A(z=1)

) 2—1€ , we learn

(4
( d) Az— 1)_)\26)\(z 1) = EX = ),
dz

(-

d
dz
s
“dz

Proposition 15.54. If X 2 Poi (M), then

) )\(z 1 _ )\222 +)\z) e/\(z—l) — EXZ2 = )2 4+
) =1 = [(A222 4+ X2) Az + 20222 4+ Az] 27D

= EX3 =X\ +3\2+\

E[Xy— A’ =E|X\—EX,[> =X +0(\?) as A 0. (15.30)

Proof. Let us first observe that (by Jensen’s inequality — a forward refer-
ence) that
EX MNP <EIX - AP <E(X+A)>.

Since
3
E(X+)\)’=E [X?’i (2> X2 £N2X] £ 2| =2+ 0 ()Y,
we conclude that Eq. (15.30) holds. [

So if X £ Poi(02) — 0% and Y £ N (0,0%) then EX = 0 = EY and
Var (X) = 02 = Var (V). On the other hand,

E|Y |’ = co®/? while E|X|* = O (0?).

Thus we see the third moments of a Poi (02) — 02 random variable with small
variance are very large compared to the third moments of a N (O, 02) random
variable. So large in fact that we can not use the Poisson random variables in
place of normal random variables to arrive at Poisson laws being the limits in
the central limit theorem.

Ezample 15.55. Recall from Exer(nse if {X;};_, are i.id. with X; 4

Poi(A/n), then X = S, =Y " | X, g P01(/\). From Exercise [10.14] we know
that

Page: 207 job: prob

15.6 Renyi Theorem (an Examples of Independence) 207
EX =\ = Var (X)
and so we might expect from Corollary [15.53|that 222 = S, should be close to

Vo
the standard normal and in fact by letting n — oo we might errantly conclude

that X—‘)\’\ AN (0,1). To see what is going on let us consider the estimate in

Eq. which states,
X — A M E|X; — EX4|?
10051 (52 sy 1+ 9

VA Var (X1)3/2
M E|X; — EX;|?
= N ( 8/71') W
= 3“&3/2 (1 + \/8/7) (E X1 — IEXl\?’) n. (15.31)

[Recall that X; 2 Poi(\/n) so that E|X; —EX;|> is still a function of
A/n.] Using Proposition (with A — A/n) in Eq. (15.31) then shows with

=4 (1+ \/8/7) that

’Ef (N)—Ef <XﬁA> ‘ < ;;n. D 10 ((/\/n)2>] .

Letting n — oo implies

(15.32)

'Ef() 1Ef<X A)‘SK

VA VX
We certainly can not conclude from this estimate that X is Gaussian which is

good as it is not. On the other hand if X, 4 Poi (\), then Eq. (15.32) does

imply RN
\ -

VA

where the convergence “ = 7 is weak convergence as described in Lemma
[15.46] below.

= N (0,1) as A — oo,

15.6 Renyi Theorem (an Examples of Independence)

Definition 15.56 (Ranks). For n € N, let R} denote those (z1,2, ...,%,) €
R™ for which each entry is distinct, i.e. #{x1,22,...,2,} = n. We further
define, for 1 <k <n, Ry :R? — {1,2,...,n} by
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k
Rk (1'171:27 ce 71‘71) = Z lszIk
j=1

so that Ry, (x1, 22, ..., xy) is the rank of v, among (z1,22, ..., xx) . [We clearly
may view Ry as functions on infinite lists, (x1,22,...), of distinct numbers as

well.]

For n € N, let S,, denote the collection of permutations, o, of {1,2,...,n},
ie.oe S, iff o:{1,2,...,n} = {1,2,...,n} is a bijection.

Definition 15.57 (Rank order). For (z1,x2, ...,x,) € R} there is a unique
permutation, o € Sy, such that T,(1) < Ty2) < -+ < Ty(n)- We refer to

(ma(l)a To(2)s--- 7xa(n))

as the rank order of (z1,x2, ...,T,) E| The rank order can be described by
the unique permutation, o € S,, so that Ry ((xg(l),xa(g), e ,xg(n))) =1 for
1<k <n.

Example 15.58. If (21,2, 3,24, T5, 6, 27,...) = (9,—8,3,7,23,0,—11,...),
then Ry = 1 (which is always true), Ry = 2, R3 = 2, Ry = 2, R5 = 1,
Rg = 5, and R; = 7. Observe that rank order, from lowest to highest, of
(z1,22,23,24,x5) is (x2, T3, T4, T1,T5) so that

(12345
7= \23415)"
Given the rank ordered list, (—8,3,7,9,23), and the ranks Ry = 1, Ry = 2,

Rs =2, Ry = 2, Rs = 1 we may recover the original ordering working backwards
as follows;

Rs =1 = (*,%,%,%,23), leaving (—8,3,7,9)
Ry =2 = (%,%,%,7,23), leaving (—8,3,9)
R3 =2 = (%,%,3,7,23), leaving (—8,9)
Ry =2 = (%,—8,3,7,23), leaving (9)

(

Ri=1 = (9,-8,3,7,23).

In the first line we had R5 = 1 and so we needed to take x5 = 23 (the largest el-
ement from (—8,3,7,9,23)) leaving (—8,3,7,9) for the remaining entries. Since
Ry = 2 we had to take x4 = 7 (the second largest element from (—8,3,7,9))
leaving (—8,3,9) for the remaining entries, etc. etc.

4 See Definition [16.11] below for an extension of these notions where repetitions in
the list are allowed.
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We have
(12345
- \41235
and the ranks of (41235) are (Ry, Ra,..., R5) = (1,2,2,2,1) which are the

same as the ranks of (9, —8,3,7,23). This is not an accident.

Proposition 15.59. Given (21,2, ...,z,) € RY, let 0 € Sy, be chosen so that

Yj = Ty(j) 08 increasing in j and let ey := Ry (1,22, ..., 2n) € {1,2,...,k} for
each 1 <k < n. Then we may recover (z1,s2, ..., %) (hence o) from knowing
the unordered list {x1,...,x,} and the ranks (e1,...,ey,). Moreover

Ri(z1,22,...,2y) =Ry (07" (1),...,07 " (n)) for 1 <k<n. (15.33)

Proof. The argument in Example can be extended to prove the first
assertion of the proposition. So I will only concentrate on proving Eq. .
To this end, let y; = x,(;) so that y; is increasing in j and zy = y,-1(). We
then have

k k
Ry, (56‘1,1‘27...,1'70 = E 196;‘23% = E :lyﬁ—l(_7)2y0—1<k)
1

j=1 =
k

10—1(j)20_1(’f) = Ry (J_l 1,... 70_1 (n)) )
j=1

wherein the third equality we have used y,-1(j) > yo—1(x) iff 07 (j) > 071 (k).
m

Lemma 15.60 (No Ties). Suppose that X and Y are independent random
variables on a probability space (2,8, P). If F' (z) := P (X < z) is continuous,
then P(X =Y) =0.

Proof. Let 4 (A) := P(X € A) and v (A) = P(Y € A). Because F' is con-
tinuous, u ({y}) = F (y) — F (y—) = 0, and hence

P(X=Y)=E[l{x=y}] = /RQ Lig—yyd (@ V) (2,y)
~ [ [ w1 = [ nHar)

:/ROdz/(y):O.
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Lemma 15.61. If {X;};_, are i.i.d. random variables and f : R" — R is a
bounded measurable function, then

]Ef( 1),...,Xa(n)):Ef(Xl,...,Xn) foralla € S,.
Proof. Let u = Lawx;, (P), then by Fubini’s theorem,
Ef (Xoqs- Xa(m)
= / f (xa(l) <> Ta(n) ) d,U/ (111‘1) d/"‘ (xn)

/d,u La(n) /d/,l, La(n— 1) /dM xa(l xa(l)7"'7ma(n))

/duyn/duynl /duyl (Y15, Yn)

=Ef(X1,...,Xn).
| |

Theorem 15.62. Let {X},-, be i.i.d. and assume that F (z) := P (X} < z)
is continuous so by Lemma[I5.60 we know that

P(X,=X;)=0 foralli#j.

Fizing an n € N, let o € S,, be the random permutation (defined almost surely)
such that
Xa'(l) < XU(Q) << X

O(n)"

Then Law, (P) is the uniform distribution on Sy, i.e.
1
P{oc=a})= ] for all « € S,,. (15.34)
We also have Law,—1 (P) is the uniform distribution on Sy
Proof. Let a € S, then
{O’ = Oé} = {X ) < Xa(g) < Xa(n>}
and so
P({o=a})=E [1Xu(1><xa(2)<~-<x(,(n)] =E[lx,<x,<<x,] =t cn (15.35)
Since

1= Z P({oc=a})=cn-#(Sn) =cp-nl,

a€S,
we have ¢, = 1/n! and hence Eq. (15.34) follows from Eq. (15.35]). ]
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Lemma 15.63. Let S be a finite set and p be the uniform probability on S, i.e.
w({w}) =1/|S] for all w € S. Further suppose that for each 1 < j < n, there
is a function, R; : S — E;, where E; is a finite set. If

Sow—Rw):=(R (w),...,R, (w)) € By x--- x E, (15.36)

is a bijection, then {R;};_, are p-independent and Law, (R;) = p; where p;
is the uniform measure on E; for each 1 < j < n.

Proof. Given € = (e1,...,&,) € By X -+ X E, we know that {R =¢} is a
one point subset of S and hence

P(R=¢) _\Sl 1;[|E| jl;[luj({%'})
=@ ® py ({e1} x -+ x {en})
Zul®"'®Mn({(51a-~-a5n)})'

This shows Law, (R) = 11 ® - - - ® p1,, and the result now follows by the general
equivalence of independence with product measures. [

Corollary 15.64. If R; : S,, — E; := {1,...,j} are the rank functions for
1 <j<nandS, is equipped with the uniform distribution, then {R; }?:1 are
p-independent p(R; = k) = % for1 <j k<n.

Theorem 15.65 (Renyi Theorem). Let {Xj};il be i.i.d. and assume that
F(z) := P(X; <) is continuous and R; = R; (X1,...,X;) be the rank of
X, among (X1,...,X;). Then {Rj};il is an independent sequence with

1
P(Rj:k):gforkzl,Q,...,j

In particular, if we let
A; ={Xj is a record} = {R; = 1} = {X; = max (X1,..., Xj)},

then

Proof. Fixing n € N and let ¢ be the random permutation such that such

that X1 < Xpo < -+ < Xgn. Then we have seen that o and hence o~ ! are

uniformly distributed on §,, and that
Rij=R;(c7'(1),....,07" (n)).

The result is now a direct consequence of Corollary [15.64] [
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15.7 The Second Borel-Cantelli Lemma

Lemma 15.66. The following two estimates hold;
1—x<e ™™ forallx € R, and

1
—1n(1—x)§2xfor0§x§§.

[The second inequality may be written as In(1 —x) > —2x or equivalently,
l—x>e 2 forx<1/2.]

Proof. The first bound follows by the convexity of e~ see Figure|15.2| For

Fig. 15.2. A graph of 1 — x and e™* showing that 1 —x < e™* for all x.

the second bound we use

x 1 xT
—In(1-=2) :/ —dy </ 2dy = 2.
o 1—v 0

For {a,},—, C[0,1] and N € N, let

M

H (1-ap):= lim (1—ay).
- 4—>oon_

The limit exists since Hﬁi ~ (1 —ay,) decreases as M increases.
Proposition 15.67. Let {a,},—, C [0,1] then;
Zan<oo = lim (1-ay)=1, and

N—o0
n=1 n=N
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i = ﬁ(l—an)zoforallNeN.

n=N

In particular,

lim
N—o0

s 1Y a, < o0
(1= an) = {OifZZo_lan:oo'

n=

Proof. Case 1 where Z _1 Gn < 00. In this case lim,, o a, = 0 and hence
if N is sufficiently large we know that 0 < a,, < 1/2 for all n > N and hence

0< Z—ln(l—an)g Z2an—>0asN—>oo.

n=N
Therefore,
0 M .
II @-an) = lim (1—an) = lim e 2onoy n=an)
M —o00 M — 00
n=N n=N

= e 2amen=an) Ly 0=0 ] a0 N o 0.

[Alternatively,
M M
H 1—ay,) > H e 20n = 6722
n=N n=N
and so

which again gives the same result as

oo . oo
lim 6_2 Zn:N On — e_2th”°° Zn:N n — 6_2'0 = eO = 1]
N —oc0

Case 2 where z;o:l a, = 0o. Since 1 — a,, < e~ % it follows that

nﬁv (1—-ay,) = llglooH (1—ay)

n=N

< llm e On — hm B_Zn N an
M— o0 M —o00
e
| ]
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Lemma 15.68 (Second Borel-Cantelli Lemma). Suppose that {A,},._ | are
independent sets. If

i P(4,) =0, (15.37)
n=1

then
P({A, io})=1. (15.38)

Combining this with the first Borel Cantelli Lemma gives the (Borel)
Zero-One law,

0 if Y2 P(A,)<o0
P (A, io.)= .
L if 220:1 P(A;) =00

Proof. Recall that
{An 10} =Ny Unsn An <= {4, 1.0} =UF_; Nusn A5
and hence by Proposition
P ({4 i0.}%) = P(UFoi Mz A7) = lim P (Nn>n A7)

M
T : M ae _ 1 . B
= i P (o) = Jim i 11 (=P 4.)
o0

o 1Y P(A,) <oo

_I\/lgnoon:N (1 P(An)) - {Olf Z;’lo:lp(An) = 00
from which the result follows.

|

Ezample 15.69 (Example continued). Suppose that {X,} are now
independent Bernoulli random variables with P(X,=1) = p, and

P(X,=0) = 1—p,. Then P(lim, 0 X, =0) = 1 iff > p, < oo. In-
deed, P (limy, 500 X, =0) =1iff P (X, =0a.a.)=1iff P(X, =11i0.)=0iff
Son=>P(X,=1) <oc.

Proposition 15.70 (Extremal behaviour of iid random variables). Sup-
pose that {Xn}zoz1 18 a sequence of i.i.d. random variables and ¢, is an increas-
ing sequence of positive real numbers. If

Z P(X1>ac,) =00 forall0<a<1 and (15.39)

n=1

P (X1 > ac,) < oo foralll < a < oo, (15.40)

M8

n=1
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then x
limsup — =1 a.s. (15.41)

n—oo CTL

Proof. By Borel zero-one law, Eqs. (15.39) and (15.40) imply

P(X, >ac,i0.n)=1foralla<1
and for all a > 1,
P(X,>ac,i0.n)=0 < P(X, <ac, aa.n)=1.

Thus if we let

2, = {Xn > (1 — ;) Cn i.o.} n {Xn < <1 + }C) Cn .8. n}7

then P (§2;) =1 and on (2,

X 1 X 1
limsup — > (1 — kz) and limsup — < (1 + ) . (15.42)

n—oo Cn n—oo Cn k

So if we let 2y := N, (2, then P (£2y) =1 and and on (2,

X, 1 X, 1
limsup — > (1_k> and limsup — < (1+k) V keN.

n—o0 Cn n—oo Cn

Letting k£ — oo in the previous inequalities shows

X X
limsup — > 1 and limsup —= < 1 on 2.
n—oo Cn n—oo Cn

Ezample 15.71. Let {E,},~, be a sequence of i.i.d. random variables with ex-
ponential distributions determined by

P(E,>z)=e¢ @9 or P(E, <z)=1-¢ @V0,
Observe that P (FE,, < 0) = 0) so that E,, > 0 a.s.) Then for ¢,, > 0 and o > 0,
(

we have - - -
ZP(En > ac,) = Ze*acn = Z (e*c")a.
n=1 n=1 n=1

Hence if we choose ¢, = Inn so that e~ = 1/n, then we have

iP(En > alnn) :i (i)a

n=1 n=1

which is convergent iff & > 1. So by Proposition [15.70] it follows that

. E,
limsup — =1 a.s.
n—oo 1IN
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Ezample 15.72. Let {X,,},~, be i.i.d. standard normal random variables. Then
by Mills’ ratio (see Lemma [10.65]),

1
P(Xn > OLCn) ~ mefoc?ci/?

Now, suppose that we take ¢, so that

e nl? = 1 = ¢, =+/2In(n).
n

It then follows that
1 7042 ln(n) _ 1 1

\/ﬂa\/an(n)e " 2ay/mIn(n) n

P(Xn > acn) ~

and therefore -
ZP(XnZCvcn):ooifa<1
n=1

and

ZP(XnZacn)<ooifa>l.

n=1

Hence an application of Proposition [15.70| shows

lim sup =1 a.s..

Xn
n—oo 2Inn

Ezample 15.73. * Suppose now that {X,,}~ , are i.i.d. distributed by the Pois-
son distribution with intensity, A, i.e.

In this case we have

and

k=n k=n
D =N B
= 2 =
n! Z(k—&—n)! ~ nl ];Ok' n!
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Thus we have shown that

A A"
Z e A< P(X;>n) < S
n! n!
Thus in terms of convergence issues, we may assume that
AF A
PXi>2z)~v — v ——
( ) x! V2rxe Tx®

wherein we have used Stirling’s formula,
@~ 2rze e,
Now suppose that we wish to choose ¢,, so that
P(X1>cy) ~1/n.

This suggests that we need to solve the equation, * = n. Taking logarithms of
this equation implies that

Inn
r=-—
Inx
and upon iteration we find,
. Inn Inn B Inn
In(p2) M) =@ L) L(5E)
- Inn
lo (n) — L3 (n) + L3 (x)
k - times

——
where {j, =Inolno---oln. Since, x <In(n), it follows that {3 () < {3 (n) and

hence
. In (n) ~In(n) (1+O<€3(n)>>
2 (n) + 0 (L3 (n))  £2(n) tr(n)) )"
Thus we are lead to take ¢, := ZEZ)) We then have, for « € (0,00) that

(acy)™™ = exp (ac, [Ina + Inc,))

— exp (a In (n) [Ina+ £ (n) — 05 (n)])

62 (n)
Ina — 4¢3 (n) ] )
—expla|———=+1|In(n
P ( [ o (n) )
— na(l"l‘fn(a))
where
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__Ina—/{3(n)
en (@) : &)
Hence we have
Aaen (\/e)* 1
P (X1 > acy) ~ ~ .
(X1 2 acn) V2rac,em e (ac,)™" /271ac, netten(a)
Since lnn e
In(\/e)*" = ac, In (N e) = am In(\/e) =Inn® %
2N

it follows that

e =

Therefore,

In(A\/e)

n® 0m 1 [l (n) 1
[n(n) no(ten(@) — \[ In (n) ne(1+n (@)
fz(n)

where d,, (o) = 0 as n — co. From this observation, we may show,

P(Xy > acy) ~

(o]
ZP(Xlzacn)<ooifo¢>1and

n=1

ZP(Xlzacn):ooifa<1

n=1

and so by Proposition [I5.70] we may conclude that

lim sup =1 as.

P T () /6 ()

15.8 Kolmogorov and Hewitt-Savage Zero-One Laws

Definition 15.74. Let ({2, B, P) be a probability space. A o — field, F C B is
almost trivial iff P (F) = {0,1}, i.e. P(A) € {0,1} for all A€ F.

The following conditions on a sub-o-algebra, 7 C B are equivalent; 1) F
is almost trivial, 2) P (A) = P (A)® for all A € F, and 3) F is independent
of itself. For example if F is independent of itself, then P (A) = P(ANA) =
P(A)P(A) for all A € F which implies P (A) = 0 or 1. If F is almost trivial
and A,B € F, then P(ANB)=1=P(A)P(B) if P(A) = P(B) =1 and
P(ANB)=0= P(A)P(B) if either P(A) =0 or P(B) = 0. Therefore F is
independent of itself.
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Lemma 15.75. Suppose that X : 2 — R is a random wvariable which is F
measurable, where F C B is almost trivial. Then there exists ¢ € R such that
X =c a.s.

Proof. Since {X = 0o} and {X = —o0} are in F, if P(X =o00) > 0 or
P(X =—-00) > 0, then P(X =00) = 1 or P(X = —00) = 1 respectively.
Hence, it suffices to finish the proof under the added condition that P (X € R) =
1.

For each z € R, {X < z} € F and therefore, P (X < z) is either 0 or 1. Since
the function, F (z) := P (X <z) € {0,1} is right continuous, non-decreasing
and F'(—o0) = 0 and F (+00) = 1, there is a unique point ¢ € R where F' (¢) =1
and F'(c—) = 0. At this point, we have P (X =¢) = 1.

Alternatively if X : {2 — R is an integrable F measurable random vari-
able, we know that X is independent of itself and therefore X? is integrable
and EX2 = (EX)® =: 2. Thus it follows that E [(X — 6)2:| =0,ie. X =c¢
a.s. For general X : 2 — R, let Xpr := (M AX)V (=M), then Xy = EX
a.s. For sufficiently large M we know by MCT that P (|X| < M) > 0 and since
X = Xy =EX) as.on {|X| < M}, it follows that ¢ = EX), is constant in-
dependent of M for M large. Therefore, X = limy; o0 Xs = limp; oo € = c.
|

Lemma 15.76. Suppose (Y, p) is a separable metric space, f : 2 =Y is F/By
- measurable, where F C B is almost trivial. Then there exists ¢ € Y such that
f=cas

Proof. Let D C Y be a countable dense set. Since Y = UyepB (y,1) there
must exists a y; € D so that P (f~ (B (y1,1))) > 0 and since F is almost
trivial we must in fact have P (f~! (B (y1,1))) = 1. Similarly, since B (y1,1) =
UyepB (y1,1) N B (y,1/2), the same logic shows there exists y» € D so that
P(f~'(B(y1,1)) N B (y2,1/2)) = 1. Continuing this way inductively allows
us to find {yn}po; C D so that 1 = P (f~'(Qy)) for all n where Q, =
Ny (B (y,,1/j)) . Since

1= lim P (f71(Qn)) =P (f7(N72,1Qn))
it follows that N, @, # 0. Since diam (NS ,Q,) < diam @, < 2/n — 0 as
n — 0o, it follows that NS, Q) can contain at most one point and hence in
this case N22,Q,, = {c} for some point in Y. We then have P (f~! ({c})) =1,

ie. f=ca.s. [
Let {X,},2, be a sequence of random variables on a measur-
able space, (£2,B). Let B, = o(X1,...,X,),Bx = o(X1,Xs,...),

Tn =0 (Xnt1, Xnt2,.-.), and T := N2 T, C Bs. We call T the tail o —
field and events, A € T, are called tail events.
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Proposition 15.77 (Kolmogorov’s Zero-One Law). Suppose that P is a
probability measure on (£2,B) such that {X,,} | are independent random vari-
ables. Then T is almost trivial, i.e. P (A) € {0,1} for all A € T. In particular
the tail events in Example[15.78 have probability either 0 or 1.

Proof. For each n € N, T C ¢ (Xp+1, Xnt2,...) which is independent of
B, = o (Xi,...,X,). Therefore T is independent of UB, which is a multi-
plicative system. Therefore 7 and is independent of Bo, = 0 (UB,,) = V22, B,,.
As T C By it follows that T is independent of itself, i.e. 7 is almost trivial.

|

Ezample 15.78. Let {X,,} | be independent random variables as above, S,, :=
X1+ -+ X, and {b,},~, C (0,00) such that b, T co. Here are some example
of tail events and tail measurable random variables:

1. {3, X,, converges} € T. Indeed,

{Z X converges} = { Z X converges} T,

k=1 k=n+1

for all n € N. Hence P ({>_,, X,, converges}) = 0 or 1.

2. Both limsup X,, and liminf,_,. X,, are 7 — measurable.
n—oo

3. For any k € N,

n—o0 b, n—00 by,

from which it follows that {limnﬁoo f—" = 0} € T for all k. Similarly one

shows that lim sup f—” and lim inf,,_ o g—" are tail measurable random vari-
n—oo n

S

n
brn

Su

> = c_ a.s. for some
"

ables and hence lim sup ¢4 and liminf,,

_ n—oo
ct+ € R.
4. {lim X,, exists in R} = {lim sup X,, = liminf, .. Xn} € T and similarly,

n—oo

{lim % exists in R} = {limsup % = lim inf in} eT

n n—oo n n—0o0 n

and
{limS" exists in ]R} = {—oo < limsup Sn = lim inf Sn < oo} eT.
by, n—oo On n—oo by,

All of these sets have probability 0 or 1.
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Ezample 15.79. Suppose that {A,,} ~, are independent sets and let X,, := 14,
for all n and 7 = Np>10 (Xpn, Xpt1,...). Then {4, i.0.} € T and therefore
by the Kolmogorov 0-1 law, P ({4, i.0.}) = 0 or 1. Of course, in this case the
Borel zero - one law (Lemma tells when P ({A,, i.0.}) is 0 and when it
is 1 depending on whether Y >~ | P (A,) is finite or infinite respectively.

15.8.1 Hewitt-Savage Zero-One Law

In this subsection, let £2 := R® = RN and X, (w) = w, forallw € 2 and n € N,
and B := o (X1, Xa,...) be the product o — algebra on 2. We say a permutation
(i.e. a bijective map on N), 7 : N — N is finite if 7 (n) = n for a.a. n. Define
T : 82— 2 by Ty (w) = (Wa1,Wr2,...). Since X; 0 Ty (w) = wry = Xy (w) for
all 4, it follows that T, is B/B — measurable.

Let us further suppose that p is a probability measure on (R, Bg) and let
P = ®52,pu be the infinite product measure on (£2 =R, B). Then {X,}~,
are i.i.d. random variables with Lawp (X,,) = p for all n. If 7 : N — N is a finite
permutation and A; € By for all i, then

T (A x Ay x Az X ...) = Ap 1y X Apoig X ...

Since sets of the form, A; X A X A3 x ..., form a m — system generating B and

8

POTﬂ__l(A1XA2><A3X...): /L(Aﬂ—li)

1

S

=T

/L(Ai):P(A1XA2><A3X...),
1

o
Il

we may conclude that Po T ! = P.

Definition 15.80. The permutation tnvariant o — field, S C B, is the col-
lection of sets, A € B such that T, (A) = A for all finite permutations m. (You
should check that S is a o — field!)

Proposition 15.81 (Hewitt-Savage Zero-One Law). Let p be a probabil-
ity measure on (R,Br) and P = @22 u be the infinite product measure on
(2 =RY,B) so that {X,},2, (recall that X, (w) = wy,) is an i.i.d. sequence
with Lawp (X,,) = p for alln. Then S is P — almost trivial.

Proof.Let B€ S, f=1pg,and g =G (X4,...,X,) beaoc (X1, Xo,..., X})
— measurable function such that sup,c(, [¢ (w)| < 1. Further let 7 be a finite
permutation such that {w1,...,7n} N{1,2,...,n} =0 — for example we could
take w (j)=j+n,7(j+n)=jforj=1,2,...,n,and 7 (j + 2n) = j + 2n for
all j € N. Then go T, = G (Xr1,- .., Xzn) is independent of g and therefore,
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(Eg)* =Eg-ElgoTy] =E[g-goTy].

Since foTr = ly-1 ) = 1p = f, it follows that Ef =Ef2=E[f-foT,] and
therefore,

[Ef — (Bg)’| = |E[f - foTa —g- g0 T
<E|f—glfoTx|+E|g[foTr —goTx]
<SE|f—gl+E|foTi—goT =2E|f ~g|.  (15.43)

According to Corollary [12.20] (or see Corollary or Theorem 7.7/ or Exercise
12.6)), we may choose g = gi as above with E|f — gx| — 0 as n — oo and so

passing to the limit in Eq. (15.43)) with ¢ = g;, we may conclude,
|P(B) - P(B)| = |Ef - (Bf)| <0

That is P (B) € {0,1} for all B € S. |
In a nutshell, here is the crux of the above proof. First off we know that
for B € § C B, there exists g which is ¢ (Xy,...,X,) — measurable such that
f:=1p = g. Since Po T ! = P it also follows that f = f o T = g o T. For
judiciously chosen 7, we know that g and g o T}, are independent. Therefore

Ef?=E[f - foT, ®E[g-goT,]=E[g]-E[goT,] = (Eg)> = (Ef)*.

As the approximation f by g may be made as accurate as we please, it follows
that P (B) = Ef2 = (Ef)° = [P (B))* forall B€ S.

Ezample 15.82 (Some Random Walk 0—1 Law Results). Continue the notation
in Proposition [I5.81]

1. As above, if S,, = X7 + --- + X,,, then P (S, € Bio.) € {0,1} for all
B € Bg. Indeed, if 7 is a finite permutation,

T ({S, € Bio})={S, 0T, € Bio} ={S, € Bio.}.

Hence {S,, € B i.0.} is in the permutation invariant o — field, §. The same
goes for {S,, € B a.a.}
2. If P(X; #0) > 0, then limsup S,, = co a.s. or limsup S,, = —c0 a.s. Indeed,

n—oo n—oo

n—oo n— oo n—oo

T;l {limsup S, < :17} = {hmsupSn oT, < x} = {limsup Sy < x}

which shows that lim sup S,, is S — measurable. Therefore, lim sup .S,, = ca.s.
n—oo n—oo

for some ¢ € R. Since (X3, X3,...) 4 (X1, Xo,...) it follows (see Corollary

12.31| and Exercise |12.9)) that
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¢ =limsup S, ilimsup (Xo+ X5+ -+ Xp11)
n—oo n— oo
=limsup (Sp+1 — X1) = limsup Sp41 — X1 = ¢ — X;.
n—oo n—oo
By Exercise below we may now conclude that ¢ = ¢ — X; a.s. which
is possible iff ¢ € {£oo} or X7 = 0 a.s. Since the latter is not allowed,

limsup S,, = oo or limsup S,, = — a.s.
n—oo n—oo

3. Now assume that P(X; #0) > 0 and X, L X, ie P(X,€A) =
P(—X;€A) for all A € Bg. By 2. we know limsup S, = ¢ a.s. with

n— oo

¢ € {xoo}. Since {X,,},—, and {—X,} —, are iid. and —X,, 4 X,, it
follows that {X,}°2, < {—X,}°°, The results of Exercises and

then imply that ¢ 4 lim sup S, 4 lim sup (—S,) and in particular

n— oo n—oo
¢ = limsup (—8,) = —liminf S,, > —limsup S,, = —c.
n— 00 n—0o0 n—00
Since the ¢ = —oo does not satisfy, ¢ > —c¢, we must ¢ = co. Hence in this

symmetric case we have shown,

limsup S,, = oo and liminf S,, = —oco a.s.
n—00 n—00
Alternatively. If limsup .S, = —oo a.s., then since S, £ —S, we would
n—oo
have
—oo = limsup (—S,) = —liminf S,
n—00 n—oo

and this would imply

oo = liminf S,, <limsup S, = — a.s.
n—00 n—o00

which is not possible.

Exercise 15.8. Suppose that (§2, B, P) is a probability space, Y : 2 — R is a

random variable and ¢ € R is a constant. Then Y = c a.s. if Y 4 c.

15.9 Another Construction of Independent Random
Variables*

This section may be skipped as the results are a special case of those given above.
The arguments given here avoid the use of Kolmogorov’s existence theorem for
product measures.
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Ezxample 15.83. Suppose that 2 = A™ where A is a finite set, B = 2, P ({w}) =
[1j=1 gj (w;) where g; : A — [0,1] are functions such that 37, , ¢; (A) = 1. Let
Ci = {A" ' x Ax A" : AC A}. Then {C;}]_, are independent. Indeed, if
B; = A1 x A; % Anii, then

ﬂBi=A1XA2X~'~><An

and we have

P(NB;) = 3 o) =1]>  a™

WEAI XA XX A, i=1 i=1 A\EA;

while

P(B;) = 3 [Ta@w)=> ar.

WEAI—Lx A; x An—i i=1 AEA;

Ezxample 15.84. Continue the notation of Example [15.83] and further assume
that 4 C R and let X; : 2 — A be defined by, X; (w) = w;. Then {X;}" |
are independent random variables. Indeed, o (X;) = C; with C; as in Example

M5.83

Alternatively, from Exercise 7?7, we know that

Ep lH fi (Xi)] = HEP [fi (X))

for all f; : A — R. Taking A; C A and f; := 14, in the above identity shows
that

P(XleAl,...,XnEAn)ZEp

1114 (Xi)] = HEP [1a, (X5)]

i=1

1

n

N

as desired.

Theorem 15.85 (Existence of i.i.d simple R.V.’s). Suppose that {q;};_,
is a sequence of positive numbers such that Z?:o q; = 1. Then there exists a se-
quence { Xy}, of simple random variables taking values in A = {0,1,2...,n}
n ((0,1], B,m) such that
m({X1 = il,...,Xk :Zz}) = qil qlk

for all iy,ia, ... i € {0,1,2,...,n} and all k € N. (See Example above
and Theorem below for the general case of this theorem.)
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Proof. For i = 0,1,...,n, let o_; = 0 and o0; := Zz:o ¢; and for any
interval, (a,b], let

T; ((a,b]) :==(a+ 0i-1 (b—a),a+ o; (b— a)].
Given i1, 1i9,...,ir € {0,1,2,...,n}, let
Tivsigsine = Tin (Tiy (- Ty, ((0,1])))
and define { X}~ on (0,1] by
X = > (Y P
i1,02, i €{0,1,2,...,n}

see Figure Repeated applications of Corollary shows the functions,
X : (0,1] — R are measurable.

L o
s 3

( Jo | Ju

~ =X,=° ] X, =|
O 2/3

Xz =1

v - 1

jo,o anO)L \ :r\/o - ‘i‘]

s L= 117
_XzzD 1

Fig. 15.3. Here we suppose that po = 2/3 and p1 = 1/3 and then we construct J;
and J; i, for I,k € {0,1}.

pLL

Observe that

m (T; ((a,b])) = ¢; (b — a) = qim ((a,b]), (15.44)
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and so by induction,
M (i io,in) = QinQin_y - - Qi -
The reader should convince herself/himself that
{Xi=i1,.. X =0} =Jisin,...in
and therefore, we have
m({ X1 =i, , X =4:}) = m (Jiy i) = iy - Gy
as desired. -

Corollary 15.86 (Independent variables on product spaces). Suppose
A ={0,1,2...,n}, ¢ > 0 with Y1 yqi = 1, 2 = A = AN, and for
1 €N/ letY; : 2 — R be defined by Y; (w) = w; for all w € §2. Further let
B :=o0cM,Ys,...,Y,, ...). Then there exists a unique probability measure,
P : B —10,1] such that

P({Yl :7:1,...7Yk :Zz}) = Qil q,k
Proof. Let {X;}" | be as in Theorem and define T": (0,1] — 2 by
T(z)=(X1(2), X2 (2),...., Xy (2),...).

Observe that T is measurable since Y; o T = X; is measurable for all i. We now
define, P := T,m. Then we have

m (T ({Y1 =i1,.... Ve = i3}))
m({YloT:u,,YkoT:zl})
m({Xl :Zl77Xk :Z’L}) =iy - - - Qi+

P({Y1=i1,..., Y =is}) =

Theorem 15.87. Given a finite subset, A C R and a function q : A — [0,1]
such that ), ., q(X) = 1, there exists a probability space, (£2,B8,P) and an
independent sequence of random variables, {X,} ~ | such that P (X, = \) =
q(N) for all X € A.

Proof. Use Corollary [15.13] to shows that random variables constructed in
Example or Theorem [15.85| fit the bill. [ |

Proposition 15.88. Suppose that {X,} | is a sequence of i.i.d. random
variables with distribution, P(X, =0) = P (X, =1) = %. If we let U :=
S 27X, then P(U < x) = (0Vx)AL, i.e. U has the uniform distribution

n=1

on [0,1].
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Proof. Let us recall that P (X, =0a.a.) =0 = P(X,, =1 a.a.). Hence
we may, by shrinking {2 if necessary, assume that {X, =0aa.} = 0 =
{X,, =1 a.a.} . With this simplification, we have

and hence that
3 1 1 3
Q. - < e
o< fo<ofteu<?)
= {X1 :O}U{Xl =1,X5 :0}
From these identities, it follows that

1 1 1 1 3 3

More generally, we claim that if = 377, £;277 with ¢; € {0,1}, then
P{U<z) =z (15.45)

The proof is by induction on n. Indeed, we have already verified (|15.45)) when
n = 1,2. Suppose we have verified (|15.45) up to some n € N and let z =

> j=1;277 and consider

P<U<x+2’(”+1)) :P(U<x)+P(a:§U<x+2’(”“))
:a:+P(x§U<x+2_("+1)).

Since
{x sU<z+ 27(71“)} = [ {X; = &;}] N {Xpy1 =0}

we see that
P (:v <U<zx+ 2*(”“)) — 9—(n+1)

and hence
P (U <z+ 2_("+1)) =g +2- (D)

which completes the induction argument.
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Since x — P (U <x) is left continuous we may now conclude that
P(U < z) =z for all x € (0,1) and since x — z is continuous we may also
deduce that P (U < z) = z for all z € (0,1). Hence we may conclude that

PU<z)=(0Vzx)ALl

]
We may now show the existence of independent random variables with ar-
bitrary distributions.

Theorem 15.89. Suppose that {j,}.—, are a sequence of probability measures
on (R,Bgr). Then there exists a probability space, (£2,B,P) and a sequence
{Y,}o2 | independent random variables with Law (Y,,) := Po Y, ' = p, for all
n.

Proof. By Theorem [15.87] there exists a sequence of i.i.d. random variables,
{Z,};, ,such that P(Z, = 1) = P (Z, = 0) = 1. These random variables may
be put into a two dimensional array, {X; ; : ¢,j € N}, see the proof of Lemma

For each i, let U := 7%, 27X, j — o ({X”}]oil) — measurable random

variable. According to Proposition [T5.88] U; is uniformly distributed on [0, 1].
Moreover by the grouping Lemma |15.20) {0‘ <{Xi)j };‘il)} are independent
=/ )i=1

o — algebras and hence {U;};, is a sequence of i.i.d.. random variables with
the uniform distribution.

Finally, let F;(z) := p((—o0,z]) for all z € R and let G;(y) =
inf {z : F; (x) > y}. Then according to Theorem Y; := G; (U;) has p; as

its distribution. Moreover each Y; is o (‘{Xi,j};il — measurable and therefore

the {Y;};, are independent random variables. |



16

The Standard Poisson Process

16.1 Poisson Random Variables

Recall from Exercise [10.14] that a Random variable, X, is Poisson distributed
with intensity, a, if

k

P(X =k)=—e *for all k € Ny.

Iz

We will abbreviate this in the future by writing X £ Poi (a) . Let us also recall

that
Zz 76 —a _ 0z,—a _ 60,(;:71)
k=0

and as in Exercise [10.14{ we have EX = a = Var (X).

Lemma 16.1. If X = Poi(a) and Y = Poi (b) and X and Y are independent,
then X +Y = Poi(a+b).

Proof. For k € Ny,

k
P(X+Y:k:):ZP(X:l,Y:I~:—l ZP Y =k—1)
_ —(a k
_Z —a@ bkl _¢€ (a+t) k alpk—!
—)! k! !
=0
e <a+b>
=7 (a+b)

Alternative Proof. Notice that
E [ZX+Y] =E [ZX} E [zy} = 0D E) —oxp (a4 D) (2 — 1)).
This suffices to complete the proof. ]

Lemma 16.2. Suppose that {N;};-, are independent Poisson random variables
with parameters, {\;};o, such that X := Y >, \; < oo. Then N := Y 2 N; is
Poisson with parameter .

Proof. By Lemma foreachn e N, > | N, = < Pois (3o, A;) . Since
for each k € No, {>°1 | N; =k} L {N =k} asn T oo we have

(20, )"
p(N]’g)7L11%r1;<jp<§1A7\7k>nhﬁngO exp< E /\>
AF Y
= e

which shows N £ Pois (N). ]

Lemma 16.3. Suppose that {N;};°, are independent Poisson random variables
with parameters, {\;},o, such that > > A; = co. Then > 2| N; = 0 a.s.

Proof. From Figure we see that 1 —e™* > 2 (1A ) for all A > 0.
Therefore,

oo F———————t—t—

4 5
ambda

Fig. 16.1. This plot shows, 1 —e™* > 1 (1 A )).

oo

ZPN>1:i i %Z/\mlzoo

i=1 i=1 i=1
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and so by the second Borel Cantelli Lemma, P ({N; > 1 i.0.}) = 1. From this
it certainly follows that Y .o N; = oo a.s.
Alternatively, let A, = Ay +--- 4+ )\, then

o] n k—lAl
P(ZNz'Zk) ZP<ZN¢2]€> :1—e*A"ZT:L—>1asn—>oo.
i=1 i=1 =0

Therefore P (Y 2, N; > k) =1 for all k € N and hence,

(o) oo

16.2 Exponential Random Variables

Recall from Definition [10.61| that T < E (A) is an exponential random variable
with parameter A € [0,00) provided, P (T >t) = e~ for all t > 0. We have

seen that )
al7l __
E [6 ] = m for a < A. (161)
ET = A~! and Var (T) = A~2, and (see Theorem [10.62)) that T being exponen-

tial is characterized by the following memoryless property;

P(T>s+tlT'>s)=P(T>t) forall s,t>0.

Theorem 16.4. Let {Tj};’;l be independent random variables such that T} <
E(X\j) with 0 < \j < oo for all j. Then:

LIfY 2 At < oo then P(3 0 Ty =o00) =0 (ie. P(> 07 T, <o0) =
1).
2. IfF > At =00 then P(} 02 T,, = 00) = 1.

(By Kolmogorov’s zero-one law (see Proposition it follows that
P30 T, =) is always either 0 or 1. We are showing here that

n=1

P Ty=00)=14ff E[> 7, T,] = 00.)

Proof. 1. Since

E iTn :iE[Tn] = iknl < o0
n=1 n=1 n=1
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2. By the DCT, independence, and Eq. (16.1]) with a = —1,

N
[=S) N
E [e_ 2 T”} = lim E [e_ anTn] = lim E [e_T"}
N—o00 N —o00 el
N 1 0o
g I () = I
where
1 1
anp =1 =

Sl 1A

Hence by Exercise 77, E [e_ :Cle”} = 0 iff o = >.°7  a, which hap-

n=1
pens iff >°°°  A\;! = oo as you should verify. This completes the proof since
E {e_ 2 T”} =0iffe” 2 T = 0 a.s. or equivalently > >° | T,, = co a.s.
]

16.2.1 Appendix: More properties of Exponential random
Variables*

Theorem 16.5. Let I be a countable set and let {Ty},.; be independent ran-
dom wariables such that Ty ~ E(q) with ¢ = Y ,c;qx € (0,00). Let
T := infy T} and let K = k on the set where T; > Ty, for all j # k. On the
complement of all these sets, define K = % where x is some point not in I. Then

P(K =x%)=0, K and T are independent, T ~ E(q), and P (K = k) = q1/q.
Proof. Let k € I and ¢t € Ry and A,, Cy I such that A, T I\ {k}, then

P(K=kT>t) ZP(ﬂj7gk{Tj >Tet, T > 1) = li_>m P(ﬁjeAn {Tj > T}, T > t)

= lim 1p.94, - 1 d ( £ ) et gt
n— 00 [0,00)An ULk} jl_;l[ ti >ty tpe>tAHn {J}]EAn qk k

n

where p,, is the joint distribution of {T; }jeA,L . So by Fubini’s theorem,
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P(K =FkT>t)= lim lequtkdtk/ H Lt - Lyy>edpn <{tj}je/1n)
[0,00)

n—oo [, An jea
00
= lim P (ijAn {T] > tk}) qke_qktkdtk

/ P (ﬂj¢k {T > 7'}) qke_q”dT

e VTqe” T dr = e YT qrdr
-/ 1 [0

J#k Jel

/ R qde:/ e gpdr = Lemat, (16.2)
t q

Taking ¢ = 0 shows that P(K =k) = % and summing this on k shows

P(K e€I) =1 so that P(K ==%) = 0. Moreover summing Eq. (16.2) on k
now shows that P (T >1t) =e —at so that T' is exponential. Moreover we have

shown that
P(K=kT>t)=P(K=k)P(T >1t)

proving the desired independence. [

Theorem 16.6. Suppose that S ~ E (\) and R ~ E (u) are independent. Then
fort > 0 we have

P(S<t<S+R)=AP(R<t<R+5).

Proof. We have

t
P(S§t<S+R):u/ Ae NP (t < s+ R)ds
0

t
:u)\/ e M=) gg
0

! —(A—p)t
= M)\e_”t/ e~ Amsds = e M. %
0

A—p
ef,utief)\t
:'LL)\-

A—p

which is symmetric in the interchanged of u and A.Alternatively:
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P(S<t<S+R)= )\,u/ 1S<t<s+re_)‘S P dsdr

/ds/ dre Me kT

:)\/ dse s k(=5
0
t
:)\e_“t/ dse~A—m)s
0

1— e~ (A—p)t

= e M
A—p
_ )\e—ut _ e—)\t
A—p
Therefore,
e—ut _ e—)\t
pP (S <t<S+R)=pu
A—p
which is symmetric in the interchanged of 1 and A and hence
—put e—/\t
P(R<t<SH+R)=
(R<t<S+R) -

Example 16.7. Suppose T is a positive random variable such that

P(T>t+s|T>s)=P(T >t) for all s,t >0, or equivalently
P(T>t+s)=P(T>t)P(T >s) forall s,t >0,

then P (T >t) = e~ for some a > 0. (Such exponential random variables

are often used to model “waiting times.”) The distribution function for T is

Fr(t):= P(T <t)=1—e"%0 Since Fr(t) is piecewise differentiable, the

law of T, p1 :== P o T~1, has a density,

dp (t) = Fp (t) dt = ae”™ " 1;>0dt.

Therefore,
E iaT] __ —at 1)\tdt a =0\
) = [ ae Ty
Since a
(A =1 and 4’ (\) = —2
W =i AN =20
it follows that
~1 0 ~1 0 2
Er=P 0 _ 1 g = O _ 2
) ) a
and hence Var (T) = & — (%)2 =a?
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222 16 The Standard Poisson Process

16.3 The Standard Poisson Process

Let {T%}4-, be an i.i.d. sequence of random exponential times with parameter
A, ie. P(Ty € [t,t + dt]) = Ae *dt. For eachn € Nlet W,, :=Ty +---+ T, be

the “waiting time” for the n'" event to occur. Because of Theorem we
know that lim,,_,.o W,, = 0o a.s.

Definition 16.8 (Poisson Process I). For any subset A C Ry let N (A) :=
>0 14 (Wy) count the number of waiting times which occurred in A. When
A = (0,t] we will write, Ny := N ((0,t]) for all t > 0 and refer to {Ni},~, as
the Poisson Process with intensity \. (Observe that {N; =n} =W, <t <
Whi1.)

The next few results summarize a number of the basic properties of this
Poisson process. Many of the proofs will be left as exercises to the reader. We
will use the following notation below; for each n € N and T > 0 let

Ay (T) :={(wg,...,wp) ER":0<wy <wg < -+ <wy <T}
and let
Ap = Urs0A, (T) = {(wy,...,wp) ER": 0 < wy <wg < -+ < wy < 00}
(We equip each of these spaces with their Borel o — algebras.)

Exercise 16.1. Show m,, (4,, (T)) = T"/n! where m,, is Lebesgue measure on
Bgn.

Exercise 16.2. If n € N and g : A,, — R bounded (non-negative) measurable,
then

Elg(Wh,...,W,)] = / g (wi,wa,... wy) A"e ndw ... dw,.  (16.3)
A'Vl,

As a simple corollary we have the following direct proof of Theorem [15.31
or Example [15.33]

Corollary 16.9. If n € N, then W, iGmmna(n, )\_1) .

Proof. Taking g (w1, ws,...,wy,) = f(w,) in Eq. (16.3) we find with the
aid of Exercise [[6.1] that

E[f(W,)] = /A I (wn) N'e™ndw, . . . dw,

o wn—l N
— )\TL — ’wd
which shows that W, gGamma(n, A7) [
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Corollary 16.10. Ift € Ry and f : A, (t) = R is a bounded (or non-negative)
measurable function, then

E[f (Wy,...,Wy): Ny =n]
= \"e M / f(wy,wa, ... wy,)dws ... dw,. (16.4)
Ay (t)

Proof. Making use of the observation that {N; =n} = {W,, <t < W11},
we may apply Eq. (16.3) at level n 4+ 1 with

g (w17w27 .. ';wn+1) = f (wlvaa oo 7wn) 1wn§t<wn+1
to learn
E[f (Wy,...,Wy): Ny =n]

n+1_—Aw,
= / f(wi,wa, ..., wy) X' et dwy .. dwypdwn, 41
0<wq < LWy <E<Wp 41

= / f(wy,we, ... wy) Ae Mdw; . .. dw,,.
An(t)

Exercise 16.3. Show N; < Poi (At) for all t > 0.

Definition 16.11 (Order Statistics). Suppose that Xi,...,X, are non-
negative random variables such that P (X; = X;) =0 for all i # j. The order
statistics of X1,...,X, are the random variables, X1, Xo, ..., X, defined by

X, = min max{X;:i€e A 16.5
o= i s ) (16.5)

where A always denotes a subset of {1,2,...,n} in Eq. .

The reader should verify that X; < X, < --- < X, {X1,..., X} =
{Xl,ffg,...,f(n} with repetitions, and that X < Xy < < X, if
Xi # X for all i # j. In particular if P(X; = X;) = 0 for all ¢ # j then
P(Ui;ﬁj {X,L' = Xj}) =0and X; < Xo <--- < X, as.

Exercise 16.4. Suppose that Xi,..., X, are non—negativeﬂ random variables
such that P (X; = X;) =0 for all ¢ # j. Show;

! The non-negativity of the X; are not really necessary here but this is all we need
to consider.
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1. If f: A, — R is bounded (non-negative) measurable, then

E[f(Xl,..., )] S E[f (Ko,

ocES,
where S, is the permutation group on {1,2,...,n}.
2. If we further assume that {Xy,...,X,} are i.i.d. random variables, then

E[f(Xl,...,Xn)] =l E[f (X1,...,

Xan):Xal<X02<"'<Xan]a

(16.6)

Xn) X< X< <Xy
(16.7)
(It is not important that f (f(l, . ,Xn) is not defined on the null set,
Uiz {Xi = X5} )
3. f : R} — R is a bounded (non-negative) measurable symmetric function
(ie. f(Woty- e Won) = f(wi,...,wy) for all o € S, and (wy,...,w,) €
R?) then

E[f (Xan)] —E[f(X1,....X,)].

4. Suppose that Y7,... Y, is another collection of non-negative random vari-
ables such that P (Y; =Y;) = 0 for all ¢ # j such that

Elf (X1, X)) =E[f (Y1,...,Y5)]

for all bounded (non-negative) measurable symmetric functions from R} —
R. Show that (Xy,...,%,) £ (Va,....7,)
Hint: if g : A, — R is a bounded measurable function, define f : R} — R
by;
f (yla ce ayn) = Z Ly <yon<<yond (yal, Yo2, - - - ayan)
oEeS,

and then show f is symmetric.

Exercise 16.5. Let ¢ € Ry and {U;}]_, be i.i.d. uniformly distributed random
variables on [0, t] . Show that the order statistics, ((71, e Un> , of (Uy,...,Up)
has the same distribution as (W1,...,W,,) given Ny = n. (Thus, given N; =
n, the collection of points, {W7,..., Wy}, has the same distribution as the
collection of points, {Uy,...,U,}, in [0,¢].)

Theorem 16.12 (Joint Distributions). If {Ai}le C Bjp,y 1is a partition

of [0,t], then {N (Ai)}f:1 are independent random variables and N (A) <

Poi (Am (A)) for all A € By with m(A) < oo. In particular, if 0 < t; <
ty < -0 < tp, then {Nti — Nti—l}?zl are independent random variables and
N, — N, & Poi (A (t—s)) for all 0 < s <t < oo. (We say that {N:},~, is a
stochastic process with independent increments.) B
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16.3 The Standard Poisson Process
Proof. If z € C and A € Bjp ), then

SN D0 1aWe) {Ny =n}.

Let n € N, z; € C, and define

Z:‘:l Lay (wi)

flw,...;wy) = 2f

Z};:’=1 Lag (wi)
which is a symmetric function. On Ny = n we have,
A N(A
z N( 1)...zk( ®) =f(Wy,...,Wy,)
and therefore,

E[zl (Al).,.zlch(Ak)Wt :n] =E[f (Wi,...,W,)|N; =n]

—E[f (Ur,...,Up)]
E {lejl SR 1Ak(Ul)}

E {( iAl(Ui) B ;Ak(Ui))]

(B[ ey

()

I
=

.
Il
-

~
=

<~o—\n—l

223

wherein we have made use of the fact that {A4;}]_, is a partition of [0,¢] so that

14, (U1) 1Ak(U1
2]

ZzllA

Thus it follows that
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date/time: 25-Feb-2019/8:12



224 16 The Standard Poisson Process

E [Z{V(Al) . ..z,iV(A’“)} ZE { (Ak)|Nt = n] P (N; =n)

Il
g

I
o
s
o)
7N
>~

= exp ()\

From this result it follows that {N (4;)}!"_, are independent random variables

and N (A) = Poi(Am (A)) for all A € Br with m (A) < oco.
Alternatively; suppose that a; € Ny and n :=a; + - -+ + ag, then

P[N(Al):ala"'7 (Ak)_a'k|Nt_n

k ay

B all.r.“. ar! g [m(tAl)}

nl L [m (4]
- tin 11;[1 al!

and therefore,

N (A1) = as,
=P| (A1)
K

N (Ay) = ax]
N (Ag) = ag|Ny =n]- P (N, =n)

n! m (A" ()"
tH[ (al!n] e )
I | (LICD ST

al!

ZlAl ; _alforlglgk]

which shows that {N (Al)}f:1 are independent and that N (A4;) 2 Poi (Am (4;))

for each .
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Remark 16.13. If A € Bjp o) with m (A) = oo, then N (A) = oo a.s. To prove
this observe that N (A) =1 lim,, 0 N (AN [0,n]) . Therefore for any k € N, we
have

P(N(A)>k)>P(N(AN[0,n]) > k)

— 1 manon) y A0, n)))’

i — 1 asn — oo.

0<i<k
This shows that N (4) > k a.s. for all k € N, i.e. N (A) = o0 a.s.

Exercise 16.6 (A Generalized Poisson Process I). Suppose that (S, Bg, )
is a finite measure space with p1 (S) < oc. Define 2 = >"°7 5™ where S° = {*},
were * is some arbitrary point. Define By, to be those sets, B = > 7, B,, where
B, € Bgn = B?" — the product o — algebra on S™. Now define a probability
measure, P, on ({2, Bp) by

=1
P(B) = MY Sy (By)
n!
n=0

where p®° ({x}) = 1 by definition. (We denote P schematically by P :=
e & er® ) Finally for ever w € £2, let N, be the point measure on (S, Bs)
defined by; N, =0 and

Nw:Z(SSi ifw=1(s1,...,8,) € S" forn > 1.

i=1
So for A € Bg, we have N, (A) =0 and N, (A) =Y 14 (s;). Show;

1. For each A € Bg, w — N,, (A) is a Poisson random variable with intensity
w(A), ie. N(A) =Poi(u(4)).

2. If {A},—, C Bg are disjoint sets, the {w — N, (Ax)},-, are independent
random variables.

An integer valued random measure on (S,Bg) (2 > w — N,,) satisfying
properties 1. and 2. of Exercise is called a Poisson process on (S, Bg)
with intensity measure p. For more motivation as to why Poisson processes
are important see Proposition and/or Remark below.

Exercise 16 7 (A Generalized Poisson Process II). Let (S, Bg, (1) be as in
Exercise [16.6] {Y;};~, be i.i.d. S — valued Random variables with Lawp (Y;) =

w() /p(S ) and v be a Poi (1 (S)) — random variable which is independent of
{Yi} . Show N := "7, dy, is a Poisson process on (S, Bg) with intensity mea-
sure, . Hints:
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1. Assume that {A},—, C Bs is a measurable partition of S and show
{N (Ag)}j-, are i.id. with N (Ay) = Poi (u (Ax)) for each k.
2. Model your proof of item 1. on either of the proofs of Theorem

Exercise 16.8 (A Generalized Poisson Process III). Suppose now that
(S, Bg, 1) is a o — finite measure space and S = Y=, S is a partition of S such
that 0 < 1 (S;) < oo for all I. For each [ € N, using either of the construction
above we may construct a Poisson point process, N, on (S, Bg) with intensity
measure, f; where p; (A) == p(ANS;) for all A € Bs. We do this in such a
what that {N;},2, are all independent. Show that N := ) > N, is a Poisson
point process on (S, Bg) with intensity measure, u. To be more precise observe
that N is a random measure on (S, Bg) which satisfies (as you should show);

1. For each A € Bg with p(A) < oo, show N (A4) < Poi (1 (A)). Also show
N (A) =0 as. if p(A) = 0.

2. If {A},—, C Bs are disjoint sets with p (Ax) < oo, show {N (Ay)},., are
independent random variables.

16.4 Poission Process Extras*

(This subsection still needs work!) In Definition [16.8 we really gave a construc-
tion of a Poisson process as defined in Definition [I6.14] The goal of this section
is to show that the Poisson process, {Ni},, as defined in Definition is
uniquely determined and is essentially equivalent to what we have already done
above.

Definition 16.14 (Poisson Process II). Let (12,8, P) be a probability space
and N; : £2 — Ny be a random variable for each t > 0. We say that {Nt}tZO s a
Poisson process with intensity A if; 1) No =0, 2) Ny — Ny £ Poi (A(t—9)) for
all0 < s <t < o0, 3) {Nt},~, has independent increments, and 4) t — Ny (w)
is right continuous and non-decreasing for all w € £2.

Let Ny (w) =1 limpeo Ny (w) and observe that N =
S o(Ne — Nk—1) = oo as. by Lemma [16.3] Therefore, we may and do
assume that N, (w) = oo for all w € £2.

Lemma 16.15. There is zero probability that {N;},, makes a jump greater
than or equal to 2. B

Proof. Suppose that T € (0,00) is fixed and w € {2 is sample point where
t — Ni (w) makes a jump of 2 or more for ¢ € [0,T]. Then for all n € N we

must have w € Up_, {NET —~ Ni—1p 2> 2} . Therefore,

Page: 225 job: prob

macro: svmonob.cls

16.4 Poission Process Extras* 225

P*({w:10,T] >t — Ny (w) has jump > 2})

< f:P (N%T ~Nicag > 2) = io (T2/n2) = O (1/n) = 0
k=1

k=1

as n — oo. I am leaving open the possibility that the set of w where a jump
size 2 or larger is not measurable. [

Theorem 16.16. Suppose that {N;},~, is a Poisson process with intensity A
as in Definition [16.17, -

W, :=inf{t: N, =n} for alln € Ny

be the first time Ny reaches n. (The {W,},—, are well defined off a set of
measure zero and W, < Wy for all n by the right continuity of {N¢},~,-)
Then the {T,, := W, — Wy,_1}.—, are i.i.d. E(\) — random variables. Thus the
two descriptions of a Poisson process given in Definitions and[16.1) are
equivalent.

Proof. Suppose that J; = (a;,b;] with b; < a;41 < oo for all i. We will
begin by showing

n—1
POy Wi € Ji}) = Xn [[ m () - / =N gy, (16.8)
i=1 In
— )\”/ e M dwy ... dw,. (16.9)
JiXJag XX Iy

To show this let K; := (b;—1, a;] where by = 0. Then
NPy Wi € Ji} = iy {N (K;) = 0} N NP5 {N (i) = 0} N {N (J,) > 2}

and therefore,

n n—1
P (ﬂ?zl {WZ S JZ}) = Hef/\m(Ki) . H e*)\m(Ji)Am (Jz) . (1 . efAm(‘]n))
=1

=1
n—1
— /\n—l H m(Jl) . [e—)\an _ e—)\bn]
=1

n—1
=X () / e du,,.
i=1

n

We may now apply a m — A — argument, using o ({J1 X -+ x J,}) = Ba,,
to show
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E[g(Wl,...,Wn)]:/ g(wi,...,wy) e Mndw; ... dw,
Ay,

holds for all bounded Ba, /Br measurable functions, g : 4,, — R. Undoing
the change of variables you made in Exercise [I6.2] allows us to conclude that
{T,};2, are iid. E (X\) — distributed random variables. [



17

LP — spaces

Let (£2,B, 1) be a measure space and for 0 < p < oo and a measurable

function f: 2 — C let
1/p
1l = ( / Ifl”du> a7.1)

[flloc = inf{a > 0: u(|f| > a) =0} (17.2)

and when p = oo, let

For 0 < p < o0, let
LP(£2,B,1) ={f: 2 — C: f is measurable and ||f||, < oo}/ ~

where f ~ g iff f = g a.e. Notice that ||f —g||, =0 iff f ~ g and if f ~ g then
Ifll, = llgllp- In general we will (by abuse of notation) use f to denote both
the function f and the equivalence class containing f.

Remark 17.1. Suppose that ||f|lcc < M, then for all a > M, p(|f| > a) =0 and
therefore u(|f] > M) = limy, oo u(|f| > M +1/n) =0, ie. |f(w)] < M for -
a.e. w. Conversely, if |f| < M a.e. and a > M then u(|f] > a) = 0 and hence
[Iflloc < M. This leads to the identity:

Iflloo =inf{a>0:|f(w)| <afor u—ae w}.

17.1 Modes of Convergence

Let {fn},—; U{f} be a collection of complex valued measurable functions on
2. We have the following notions of convergence and Cauchy sequences.

Definition 17.2. 1. f, — f a.e. if there is a set E € B such that u(E) = 0
and limy, oo 1gefr, = 1ge f.
2. fn = f in p — measure if limy, oo u(|fn— f| >€) =0 for alle > 0. We
will abbreviate this by saying fn — f in L° or by fn 2 f.
3. fo— fin LV iff f € LP and f, € L? for all n, and lim,, s || fn — £, = 0.

Definition 17.3. 1. {f,} is a.e. Cauchy if there is a set E € B such that
w(E) =0 and{1ge fn} is a pointwise Cauchy sequences.

2. {fu} is Cauchy in u — measure (or L° — Cauchy) if imy, oo 1(|fr— fm| >
e) =0 for alle > 0.
3. {fn} is Cauchy in L if lim,, oo || frn — fm||p =0.

When p is a probability measure, we describe, f;, % f as f, converging
to f in probability. If a sequence {f,} —, is LP — convergent, then it is L?
— Cauchy. For example, when p € [1,00] and f, — f in LP, we have (using
Minkowski’s inequality of Theorem below)

1fn = full, < I fo = fll, + If = fmll, = 0 as m,n — oc.
The case where p = 0 will be handled in Theorem below.

Lemma 17.4 (L? — convergence implies convergence in measure). Let
p € [1,00). If {fn} C LP is LP — convergent (Cauchy) then {f.} is also conver-
gent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (10.2)),

1 1
— p p _ p —— p
p(flz0=n(fF 2 e < 5 [ 117 du= 101
and therefore if {f,} is LP? — Cauchy, then

1
wlfn = fml 2 €) < ;Dan - fm“ﬁ —0asm,n — oo

showing {f,} is LY — Cauchy. A similar argument holds for the LP — convergent
case. |

Example 17.5. Let us consider a number of examples here to get a feeling for
these different notions of convergence. In each of these examples we will work
in the measure space, (R+, B= BR+,m) .

1. Let f, = %1[0771] as in Figure In this case f,, - 0 in L' but f, — 0
a.e.,fn, = 01in L for all p > 1 and f, = 0.
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1317
W r
. 1:| -
0.5
0.0 t t } i
L] 1 1 3 4
X

Fig. 17.1. Graphs of f,, = %1[o,n] forn=1,2,3,4.

2. Let fn = 11,5 as in the figure below. Then f, — 0 a.e., yet f, - 0 in
any LP —space or in measure.

= 1.6
y t ¥ ‘ —
1] 2 4 /] 2 4
X X
1.5 1.5
¥ — ¥ —
L] 1]
L] 2 4 L] 2 4
X X

3. Now suppose that f, =n-1jg 1/, as in Figure In this case f,, — 0
a.e., fn — 0 but f, -» 0 in L' or in any LP for p > 1. Observe that
I £all, = n'=VP for all p > 1.

i

Fig. 17.2. Graphs of f,, =n -1, forn =1,2,3,4.

4. ForneNand 1<k <n,let g, := 1(@75]. Then define {f,} as

(f1, fo, f3,--+) = (91,1, 92,1, 92,2, 93,15 93,2+ 93,3, 94,1, 94,2, 94,3, G4, 4> - - - )
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as depicted in the figures below.

(3]
1

i

A4

00 05 10 00 05 10
x X
yit— vli — ‘.-'% —
S0t 0 T 0
00 05 10 00 05 10 00 035 10
X X X

For this sequence of functions we have f, — 0 in LP for all 1 < p < co and
fn 30 but f, - 0 a.e. and f, - 0 in L. In this case, ||gn7k|\p = (%)Up
for 1 < p < oo while ||g, k]|, = 1 for all n, k.

17.2 Almost Everywhere and Measure Convergence

Theorem 17.6 (Egorov: a.s. =—> convergence in probability). Suppose
w(2) =1 and f,, — f a.s. Then for all ¢ > 0 there exists E = E. € B such

that W(E) < € and f,, — f uniformly on E°. In particular f, -~ f asn — oc.

Proof. Let f,, — f a.e. Then for all ¢ > 0,
0= u({Ifn — I > = 0. n})

= Jim g | (J {lfa=f1>2) (17.3)

n>N

> li]{[njupli(ﬂfN — fl>¢€})

from which it follows that f,, - f as n — oo.

We now prove that the convergence is uniform off a small exceptional set.
By Eq. (17.3)), there exists an increasing sequence { Ny };—, , such that p(Ej) <
€27" where
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Ey = U {'f"_f|>li}'

If we now set E := US| By, then u(FE) < Y, e27% = ¢ and for w ¢ E we have
|fn (W) = f(w)] < ¢ for all n > Ny and k € N. That is f, — f uniformly on
E°. ]

(o)
Lemma 17.7. Suppose a, € C and |ap+1 — an| < &, and > &, < oo. Then
- n=1
lim a, =a € C exists and |a — ap| < 6, := > ex.

n—oo k=n

Proof. Let m > n then

m—1 00
< >0 lakgr —ag] < Y0 ep =06,

k=n k=n

m—1
|am — an| = | 2 (art1 — ax) (17.4)

k=n

S0 [am — an| < dmin(m,n) — 0 as ,m,n — oo, i.e. {a,} is Cauchy. Let m — oo
in (17.4) to find |a — an| < 6,. ]

Remark 17.8 (Basic Trick). A basic “trick” we will use repeatedly below is that
if e >0 and a,b > 0 such that a + b > ¢, then either a > /2 or b > ¢/2. A
variant of this idea if that if ,, > 0 and ¢ := ZZO=1 €n < 00, then if a, > 0

satisfies Z;'Lo:l an, > ¢ we must have a,, > ¢, for at least one n.

Theorem 17.9. Let (£2,B, 1) be a measure space and {f,} —, be a sequence
of measurable functions on 2.

1. If f and g are measurable functions and fn, = f and f, 25 g then f = g
a.e.

2. If frn B f and gn 25 g then M, — Mf for all X € C and fy, + gn = [ +g.

3. If fo &5 f then {fn}oe, is Cauchy in measure.

4. If { fu}or, is Cauchy in measure, there exists a measurable function, f, and
a subsequence g; = fn, of {fn} such that lim; .o g; := f exists a.e.

5. (Completeness of convergence in measure.) If {f,} —, is Cauchy in
measure and f is as in item 4. then f, X f.

Proof. We take each item in turn.

1. Suppose that f and g are measurable functions such that f, LN g and
fn B fasn — oo and € > 0 is given. Since

[f =gl <|f = fal +1fa — gl
if e >0 and |f — g| > ¢, then either |f — f,| > ¢/2 or |f,, — g| > €/2. Thus

it follows
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{If =gl >e} c{lf = ful > /2y Uflg = ful > €/2},

and therefore,

w(lf =gl >e) < pllf = fal > €/2) + ulg = ful > €/2) = 0 as n — oo.

Hence
s o> 0 =u (0 {ir=a1> 1) < Su(ir-ai> 1) o
n=1
ie. f=ga.e.

The first claim is easy and the second follows similarly to the proof of the
first item.

Suppose fn, = f, e > 0and m,n € N, then |f, —
So by the basic trick in Remark

Sl S = fal+1fm = f1.

w(fo = fml =) <p(fu—fl>e/2)+u(|fm — f] > €/2) = 0 as m,n — oc.

Suppose {f,} is LY (u) — Cauchy and choose a n; € N so that n; is strictly
increasing to oo and g; = f,,; satisfies,

w({lgj1 —g;l >277}) <277,

Since 7%, p({lgjr1 — g1 >277}) < oo it follows by the first Borel-
Cantelli lemma it follows that, p-a.e., |g;+1 — g;| < 277 for a.a. j and hence,
p-a.e.,

N 0

gN+1 =91+ Z (9j+1—95) > =g+ Z (gj+1 —95) -
j=1 j=1

We define f = 0 on the exceptional set coming from the first Borel-Cantelli
lemma.

It |f—gnii| > SN2 = 27N then 3. 1941 — g5l >
> ien+1277. So by the basic trick in Remark m

{If —gnual >27V} C U a1 {19541 — 951 > 277},

and hence
0 .
p({If —onveal >2773) < Y0 p({lgger —gil > 277}) <27
j=N+1

So if € > 0 if given, we have
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p1f = fal > D < ({1 = gvial > 5 1) 4 (lgwsa = ful > 5)

and hence
. €
p{|f = ful >€}) < hj{[nsupu (|9N+1 — fal > 5) — 0 as n — oo.
—00

Corollary 17.10 (Dominated Convergence Theorem). Let (12,8, 1) be a
measure space. Suppose {fn}, {gn}, and g are in L* and f € L° are functions
such that

|fn‘§gn a.e., fni>f7 gni>gv and /gn_>/g as m — oo.

Then f € L' and lim, o || f — full, = 0, i.e. fr, — f in L'. In particular

Proof. First notice that |f| < g a.e. and hence f € L! since g € L!. To see
that |f| < g, use item 4. of Theorem to find subsequences {f,, } and {gn, }
of {fn} and {g,} respectively which are almost everywhere convergent. Then

[fl= lm [fo [ < lm gn, =g ae.

If (for sake of contradiction) lim, o ||f — fall; # O there exists ¢ > 0 and a
subsequence {f,,} of {f.} such that

/|f = [l = € for all k. (17.5)

Using item 4. of Theorem again, we may assume (by passing to a further
subsequences if necessary) that f,, — f and g, — ¢ almost everywhere.

Noting, |f — farl < g+ gn. — 29 and [ (9 + gn,) — [ 29, an application of the
dominated convergence Theorem [10.28] implies limy o0 [ |f — fn,| = 0 which

contradicts Eq. (17.5)). ]

Exercise 17.1 (Fatou’s Lemma). Let ({2, B, 1) be a measure space. If f,, > 0
and f, > f, then [, fdu < liminf, o [,, fadp.

Lemma 17.11. Suppose 1 < p < oo, {fn},—y C LP(n), and f, 5 f
then || fll, < lminf,co||fnll,. Moreover if {fa}o, U{f} C LP(u), then

n=1

1f = Full, = 0 a5 n = 00 iff i o || full, = [I£]l, < 00 and fu 2 f.
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Proof. Choose a subsequence, gp = fn,, such that liminf, ||fn||p =
limg 00 |9kl » - By passing to a further subsequence if necessary, we may further
assume that g — f a.e. Therefore, by Fatou’s lemma,

||f\|§=/ Iflpdu=/ lim ng\pduéliminf/ |gk|” dp = Timinf || £, ||

which proves the first assertion.
If If=fal, = 0 as n — oo, then by the triangle inequality,

A1, = 1fall,| < 1F = full, which shows [ 1fal” = [ISI if fu = f in
LP. Chebyschev’s inequality implies f, —— f if f, — f in LP.

Conversely if lim,, o || foll, = [ f]l, < o0 and f, Ly folet By = |f — ful?
and G, := 2271[|f|” + |fu|"]. Then F,, 2 1] F, <G, € L', and [ G, — [ G

where G := 27 |f|” € L'. Therefore, by Corollary [17.10, [ |f — f.|" = [ F, —
Jo=o. ]

Exercise 17.2. Let (§2, B, 1) be a measure space, p € [1,00), and suppose that
0< felL' (n),0< f, € L' (p) for all n, f, - f, and J fndp — [ fdp. Then
fn— fin L' (p). [In particular, if f, f, € LP (u) and f, — f in LP (i), then
[fal” = [P in L (k) ]

Proposition 17.12. Suppose (£2,B, 1) is a probability space and {f,},-, be a
sequence of measurable functions on 2. Then {fn},—_, converges to f in prob-
ability iff every subsequence, {f1}," of {fn},—1 has a further subsequence,
{fI3>2 ), which is almost surely convergent to f.

Proof. If {f,},-, is convergent and hence Cauchy in probability then any
subsequence, {f},} -, is also Cauchy in probability. Hence by item 4. of Theo-
rem[17.9|there is a further subsequence, { f/}> | of {f,}°" | which is convergent
almost surely.

Conversely if {f,},—, does not converge to f in probability, then there
exists an € > 0 and a subsequence, {n;} such that infy u (|f — fn,| >€) > 0.
Any subsequence of {f,, } would have the same property and hence can not be
almost surely convergent because of Egorov’s Theorem ]

Corollary 17.13. Suppose (2, B, 1) is a probability space, f, —— f and g, -
g and ¢ : R — R and ¢ : R?> — R are continuous functions. Then

1o (fa) S (),
2.9 (fnygn) = ¥ (f,9), and
3. fn'gn L>fg

! This is becuase |Fy,| > e iff |f — fn| > e'/P.
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Proof. Item 1. and 3. follow from item 2. by taking ¢ (z,y) = ¢ (z) and
¥ (z,y) = x - y respectively. So it suffices to prove item 2. To do this we will
make repeated use of Theorem

Given any subsequence, {n;}, of N there is a subsequence, {n}} of {n;}
such that f,, — f a.s. and yet a further subsequence {nj} of {n}} such that
gny — g a.s. Hence, by the continuity of v, it now follows that

Jim 6 (fursguy ) =0 (f19) as.
which completes the proof. [
Ezample 17.14. 1t is not possible to drop the assumption that p(§2) < oo in
Corollary For example, let 2 = R, B = Bg, it = m be Lebesgue measure,
fn(x) = % and g, (r) = 22 = g (). Then f, 0, gn & g while f,,g, does not
converge to 0 = 0+ g in measure. Also if we let o (y) = 4%, f, () = x+1/n and
f(x) =z for all € R, then f, & f while

(o)~ o (N @) = (e + 1/n)? —a? = 2oy 1

does not go to 0 in measure as n — oc.

17.3 Jensen’s, Holder’s and Minkowski’s Inequalities

Theorem 17.15 (Jensen’s Inequality). Suppose that (£2,B,p) is a proba-
bility space, i.e. p is a positive measure and u(2) = 1. Also suppose that
f e LYn), f: 2 — (a,b), and ¢ : (a,b) — R is a convex function, (i.e.
¢" () >0 on (a,b).) Then

<p</gfdu> S/{)@(f)du

where if ¢ o f ¢ L'Y(u), then o o f is integrable in the extended sense and
Jow(f)dp = .

Proof. Let t = [, fdu € (a,b) and let § € R (8 = ¢ (t) when ¢ (t) exists),
be such that ¢(s) — ¢(t) > B(s —t) for all s € (a,b). (See Lemma [I7.66) and
Figure when ¢ is C! and Theorem below for the existence of such a
B in the general case.) Then integrating the inequality, p(f) — o(t) > B(f — ),
implies that

dp — = dp — .
0< [ ehin=ol) = | etnau—se([ rin)
Moreover, if ¢(f) is not integrable, then ¢(f) > ¢(t) + B(f — t) which shows

that negative part of ¢(f) is integrable. Therefore, [, ¢(f)du = oo in this case.
[
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Lemma 17.16. If ¢ € C' (R — R) is a conver function such that ¢ (a) < 0
and ¢ (b) > 0 for some —co < a < b < o0, then there exists A > 0 such that
|x] < Ap () + B for all x € R. In particular if X : 2 — R is a random variable
such that o (X) € L' (P), then X € L* (P).

Remark 17.17. Proof. By convexity,
)+ o) (z—1t) <p(x) for all z,t € R. (17.6)

Choosing t € (a,b) such that ¢ (t) = 0 implies that ¢ (z) > —K = ¢ (t) > —0
so that ¢ () + K > 0. For x > 0 we use t = b in Eq. (17.6) to conclude

¢ (z) — ¢ (b)
em
—¢(b)(w()+K)+<b 50) ) A=A, (p(z)+ K) + By

where Ay > 0. Similarly z < 0 we use t = a in Eq. (17.6) to show

xSWaSA_(cp(z)+K)+B_

where A_ > 0. The result now follows by taking A = max(A_,A;) and B =
max (At K+ By, A_K+B_).

Note: the qualitative proof is that ¢ (a) < 0 implies |¢ (a)] (—z) S ¢ () as
2 — —oo and the ¢ (b) > 0 implies ¢ (b) x < ¢ (z) as © — oo. ]

Ezxample 17.18. Since e” for v € R, —Inx for x > 0, and P forz > 0and p > 1
are all convex functions, we have the following inequalities

exp < /Q fd,u) < /(Z efdu, (17.7)
AmwwmeAmw)

’/;fmlpg ([ 1) < [ 15 an

Ezample 17.19. As a special case of Eq. (17.7)), if p;,s; > 0 for i = 1,2,...,n
and Yo, i =1, then

and for p > 1,

1P "1 n g

n X n 1 i 223 .

S1...8y = e2ima 0 — g iy B M < g —emsit = g t, (17.8)
i=1 Pi =1 Pi
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Indeed, we have applied Eq. lj with 2 ={1,2,...,n}, pu=>", iéi and
f (@) == Inst". As a special case of Eq. (17.8)), suppose that s,t,p,q € (1,00)
with ¢ = 555 (ie. ]% + % = 1) then

1 1
st < —sP 4 1. (17.9)
P q

(When p = ¢ = 1/2, the inequality in Eq. - ) follows from the inequality,
0<(s—1)%)

As another special case of Eq. , take p; = n and s; = ag/n with a; > 0,
then we get the arithmetic geometric mean inequality,

1 n
Yay ... .an < - Z a;. (17.10)
i=1

Ezample 17.20. Let (£2,B,u) be a probability space, 0 < p < ¢ < oo, and
f: 2 — C be a measurable function. Then by Jensen’s inequality,

q/p
p p\q/P _ q
(/Qlfl du) S/Q(\fl) du—/nlfl i

from which it follows that |||, < [ f[l, . In particular, L? (u) C L7 (p) for all
0 < p < g < 0. See Corollary [17.34] for an alternative proof.

Theorem 17.21 (Ho6lder’s inequality). Suppose that 1 < p < co and q :=

%7 or equivalently p~" 4+ ¢~ = 1. If f and g are measurable functions then

1fglly < [1£1lp - [lgllq- (17.11)

Assuming p € (1,00) and || f|l, - lglly < oo, equality holds in Eq. (17.11) iff |f”

and |g|? are linearly dependent as elements of L' which happens iff

gl I 15 = lgllg If1” ae. (17.12)

Proof. The cases p =1 and ¢ = oo or p = co and ¢ = 1 are easy to deal
with and will be left to the reader. So we now assume that p,q € (1,00). If
Ifllg =0 or oo or ||g|l, = 0 or oo, Eq. (17.11)) is again easily verified. So we will
now assume that 0 < || fllg, [lg]l, < co. Taking s = |f[/[|f[l, and t = [gl/[|gll,
in Eq. (17.9)) gives,

] I S S
_ < — + —
Iflpllglle = 2 IFl — a llgll?

1)
with equality iff |g/llgllq| = £ /LA™ = [FP/9/1F15'7, e lalellfIE =
lgllZ|f[” . Integrating Eq. (17.13) implies

(17.13)

Page: 232 job: prob

A falln < 1
1 £llpllgllq

with equality iff Eq. m 117.12)) holds. The proof is finished since it is easily checked
that equality holds in Eq. (17.11)) when |f|” = c|g|? of |g|? = ¢|f|” for some
constant c. [ |

Ezample 17.22. Suppose that a; € C for k =1,2,...,n and p € [1,00), then

n

P
> a

k=1

<P aglP (17.14)

Indeed, by Holder’s inequality applied using the measure space, {1,2,...,n}
equipped with counting measure, we have
> x| =

n n 1/p n 1/q n 1/p
Za’“ 1)< (Z |ak|P> <Z 1q> — pl/a (Z ak|p>
k=1 k=1 k=1 k=1 k=1

where ¢ = 55 Taking the p*™ — power of this inequality then gives, Eq. (17.15]).

Theorem 17.23 (Generalized Holder’s inequality). Suppose that f; : 2 —
C are measurable functions for i = 1,...,n and p1,...,pn and r are positive
numbers such that Z?:l pi_1 =L then

n
<TT I,
i1

Proof. One may prove this theorem by induction based on Hélder’s Theo-
rem [I7.2T) above. Alternatively we may give a proof along the lines of the proof
of Theorem [I7.21] which is what we will do here.

Since Eq. is easily seen to hold if [|fi||,, = 0 for some i, we will

assume that [|f;||, > 0 for all i. By assumption, S o =1, hence we may

replace s; by sI and p; by p;/r for each 7 in Eq. (17.8) to find

n

(17.15)

T

n (87)Pi/T n sPi
87 S’I S 7 =r 2 .
Lo ; pi/r ; pi

Now replace s; by |fi[ / || fill,,, in the previous inequality and integrate the result

to find
n
1
p1/|f1 Zh
pi Y12

1
<y
. sz' Il .fi

i=1

Hfz

i=1

T, il ||fz

Pi

n
=2,
=1 ’L
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Definition 17.24. A norm on a vector space Z is a function ||-|| : Z — [0, 00)
such that

1. (Homogeneity) ||Mf]| = A IS for all X €F and f € Z.
2. (Triangle inequality) || f + gll < [|fIl + llgl| for all f,g € Z.
3. (Positive definite) ||f|| = 0 implies f = 0.

A pair (Z,||-]|) where Z is a vector space and ||| is a norm on Z is called a
normed vector space.

Theorem 17.25 (Minkowski’s Inequality). If 1 <p < oo and f,g € LP (n)
then

1+ gllp < [1£1lp + llgllp- (17.16)

In particular, (Lp (n), ||||p> is a normed vector space for all 1 < p < co.

Proof. When p = oo, |f| < || f|l, a-e. and |g] < |g]|, a.e. so that |f + g <
[fI+ 19l < [[fll + ll9ll a-e. and therefore

1 +9llee < 1flloe + 19l -

When p < oo,

[f +gl” < (2max (], |g])" = 2" max (|f|", [g]") < 2" (|1 +1gI"),
which impliesE| f+g € LP since
Lf +gllp < 22 (I£1I + lgllp) < oo

Furthermore, when p = 1 we have

||f+g||1:/ \f+g|duS/ Ifldu+/ gl = 11 + gl
(9] 0 (9]

We now consider p € (1,00). We may assume | f + g||», || f]l, and ||g][, are
all positive since otherwise the theorem is easily verified. Integrating

[f+glP =1f +gllf + P~ < (L] +1gDIf + 9P
and then applying Holder’s inequality with ¢ = p/(p — 1) gives
[1r+alans [ 1115+ gP tau+ [ 1ol 15+ 9P ta
o) Q Q

-1
< (Ifllp + lgllp) 1f + gl" " llg, (17.17)
2 In light of Example the last 2P in the above inequality may be replaced by

or—1,
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where

I1F 4+ glP e = / (I +glP~")0dp = / 4 glPdu=f +gln.  (17.18)
(9] (9]

Combining Egs. (17.17) and (17.18)) implies

1+ gllp < £ llpl1f + glB/e + llgllp |l £ + g5/ (17.19)
Solving this inequality for || f + g||, gives Eq. (17.16)). ]

17.4 Completeness of LP — spaces

Definition 17.26 (Banach space). A normed wvector space (Z,|]]) is a
Banach space if is is complete, i.e. all Cauchy sequences are conver-
gent. To be more precise we are assuming that if {xn}fbozl C Z satis-
fies, limp, nosoo ||Tn — Tm|| = 0, then there exists an x € Z such that

lim,, 00 || — 20| = 0.

Theorem 17.27. Let |||, be as defined in Eq. (17.4), then
(L>(02,B,p),||llo.) i a Banach space. A sequence {f,},., C L con-

verges to [ € L iff there exists E € B such that u(E) = 0 and f, — f
uniformly on E°¢. Moreover, bounded simple functions are dense in L.

Proof. By Minkowski’s Theorem |||, satisfies the triangle inequality.
The reader may easily check the remaining conditions that ensure ||| is a
norm. Suppose that {f,} —, C L is a sequence such f, — f € L™, ie.
Ilf = fallo = 0 as n — oco. Then for all k € N, there exists Nj < oo such that

w(lf = fal > k™) =0 for all n. > Ny,
Let
b= Uzozl Un>nN, {lf_fn| > k_l}.

Then p(E) = 0 and for z € E¢, |f(z) — fu(z)] < k7! for all n > Nj. This
shows that f, — f uniformly on E°. Conversely, if there exists E € B such that
w(E) =0 and f, — f uniformly on E¢, then for any € > 0,

p(lf = fol Zze) =p{lf = fal Zef NES) =0
for all n sufficiently large. That is to say limsup || f — fn|l < € for all ¢ > 0.
j — 00

The density of simple functions follows from the approximation Theorem [9.41
So the last item to prove is the completeness of L°°.

Suppose €mpn = |[fm — fallo — 0 as m,n — oo. Let E,,
{lfn = fm| > emn} and E := UE,, ,,, then u(E) = 0 and
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234 17 LP? — spaces

sup |fm (m) - fn (x)l < Em,n — 0 as m,n — o0.
reE¢c

Therefore, f := lim,,_, o, fr exists on E¢ and the limit is uniform on E°. Letting
f=limy, o0 1ge fr, it then follows that lim, || fn — fl|., = 0. [

Theorem 17.28 (Completeness of LP(u)). For 1 < p < oo, LP(u) equipped
with the LP — norm, |||, (see Eq. ), is a Banach space.

Proof. By Minkowski’s Theorem |||, satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure [|-[|,,
is a norm. So we are left to prove the completeness of LP(u) for 1 < p < oo, the
case p = oo being done in Theorem

Let {fn},~, C LP(u) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma , {fn} is L°-Cauchy (i.e. Cauchy in measure) and by Theorem
there exists a subsequence {g;} of {f,} such that g; — f a.e. By Fatou’s
Lemma,

loy = 71 = [ Jim g, — gupdie <t int [ lg; — guPPa

— lim inf|lg; — gall? i s 0.
Jim in llgi — gxllh = 0asj— oo

In particular, ||f|l, < |lg; — fllp + ll9;llp < oo so the f € LP and g, L% f. The
proof is finished because,

1 = Fllp < fn = gillp + llg; = Fllp — 0 as j,n — oo
Alternative method of constructing {g;}. Choose {gj = fn, }]Oil where
{n; }Joil is an increasing subsequence so that 7% [|gj4+1 — 9ill, < oo and let

U:=3"7019j+1 — gj| where go = 0. Then

N
MCT ..
1T, =" Jim > lgjt1 — g5l
=0 )
N

(o)

< A}gnmz lgi+1 = gill, = D llgj+1 — g;ll,, < o0
§=0 3=0

and therefore U < oo a.e. But on the set {U < oo} of full measure, the sum

Z;io (g9j+1 — g;) is absolutely convergent and therefore

N
f = lim Z (gj4+1 —g) = ngnoo gN-1 exists a.e.

N—o00 4
Jj=0
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(]

See Definition for a very important example of where completeness is
used. To end this section we are going to record a few results we will need later
regarding subspace of LP () which are induced by sub — o — algebras, By C B.

Lemma 17.29. Let (£2, B, 1) be a measure space and By be a sub — o — algebra
of B. Then for 1 < p < oo, the map i : LP (£2,Bg, u) — LP (2,8, 1) defined by
i ([fly) = [f] is a well defined linear isometry. Here we are writing,

[flo={9 € L? (2,Bo,p) : g= [ a.e.} and
[fl={9elP(2,B,u):g=f a.e}.

Moreover the image of i, i (L? (£2,Bg, 1)) , is a closed subspace of LP (2,8, ).

Proof. This is proof is routine and most of it will be left to the reader. Let us
just check that i (LP (£2, By, i) , is a closed subspace of L? (§2, B, 11) . To this end,
suppose that i ([f,],) = [fn] is a convergent sequence in L? ({2, B, ) . Because,
i, is an isometry it follows that {] j”n]O}:o:1 is a Cauchy and hence convergent
sequence in LP (2, Bo, p) . Letting f € LP (£2, By, p) such that || f — full 15, —
0, we will have, since i is isometric, that [f,] = [f] =i ([f],) € i (L? (£2, Bo, 1))
as desired. ]

Exercise 17.3. (In this exercise the reader should refer to Lemma for
context and the notation used here.) Let ({2, B, ) be a measure space and By
be a sub — o — algebra of B. Further suppose that to every B € B there
exists A € By such that p(BAA) = 0. Show for all 1 < p < oo that
1 (LP (£2,Bo, 1)) = LP(£2,B,u), i.e. to each f € LP (2,58, ) there exists a
g € LP (£2,By, 1) such that f = g a.e. Hints: 1. verify the last assertion for
simple functions in L? (£2, By, it) . 2. then make use of Theorem and Exer-
cise 0.6

Exercise 17.4. Suppose that 1 < p < oo, (£2, B, i) is a o — finite measure space
and By is a sub — ¢ — algebra of B. Show that i (LP (£2, By, ) = L? (2,8, 1)
implies; to every B € B there exists A € By such that u(BAA) = 0.

Convention: From now on we will drop the cumbersome notation and
simply identify [f] with f and LP (£2, By, u) with its image, i (L? (£2, By, 1)) , in
L? (2,8, ).

17.5 Density Results
Theorem 17.30 (Density Theorem). Let p € [1,00), (£2, B, 1) be a measure

space and M be an algebra of bounded R — valued measurable functions such
that
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1.MC L? (u,R) and o (M) = B.
2. There exists 1, € M such that ¥, — 1 boundedly.

Then to every function f € LP(u,R), there exist p, € M such that
limy, 00 || f — gpn||LP(”) =0, i.e. M is dense in LP (u,R).

Proof. Fix k € N for the moment and let H denote those bounded B —
measurable functions, f : 2 — R, for which there exists {¢,} .-, C M such
that limy o0 ||k f = @nll s,y = 0. A routine check shows H is a subspace of
the bounded measurable R — valued functions on 2, 1 € H, M C H and H
is closed under bounded convergence. To verify the latter assertion, suppose
fn € Hand f, — f boundedly. Then, by the dominated convergence theorem,
im0 0w (f = fr)ll Loy = OE| (Take the dominating function to be g =
[2C |9y |]” where C is a constant bounding all of the {|f,|} —;.) We may now
choose ¢,, € M such that [[¢n — ¥k full 1o, < L then

lim SEP qukf - (‘0"”“’(#) <lim sup ||1/)k (f - fn)HLP(#)
n oo n— o0

+lim sup [[Yxfn — nllpegy =0  (17.20)
n—oo
which implies f € H.
An application of Dynkin’s Multiplicative System Theorem now shows
H contains all bounded measurable functions on £2. Let f € LP (u) be given. The
dominated convergence theorem implies limy_, ||1/Jk1{|f‘§k}f — f||Lp(u) = 0.

(Take the dominating function to be g = [2C' | f|]” where C is a bound on all of

the |¢x|.) Using this and what we have just proved, there exists ¢, € M such
that

1
|61 g p1<hy f = %HLW) <5

The same line of reasoning wused in Eq. (17.20) now implies
limg o0 [|f — sokHLP('u) =0. u

Ezample 17.31. Let p be a measure on (R, Bgr) such that p([-M,M]) < oo
for all M < co. Then, C. (R,R) (the space of continuous functions on R with
compact support) is dense in LP (u) for all 1 < p < oo. To see this, apply
Theorem with M = C. (R,R) and %}, being the function which is 1 on
[—k,k], 0 on R\ (—(k+1),k+1), interpolates linearly between 0 and 1 on
[-(k+1),—k] and on [k, k +1].

Theorem 17.32. Suppose p € [1,0), A C B C 2% is an algebra such that
o(A) =B and p is o — finite on A. Let S(A, ) denote the measurable simple
functions, ¢ : 2 — R such {p =y} € A for ally € R and u({p # 0}) < oc.
Then S(A, 1) is dense subspace of LP(u).

3 Tt is at this point that the proof would break down if p = co.
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Proof. Let M := S(A, ). By assumption there exists 2, € A such that
w(2) <ooand 2, T Pask — oco. If A € A, then 2;NA € Aand (2, N A) <
oo so that 1g,na € M. Therefore 14 = limg_ 00 10,14 is 0 (M) — measurable
for every A € A. So we have shown that A C o (M) C B and therefore B =
o(A) C o(M) C B, ie. o (M) = B. The theorem now follows from Theorem
after observing v, := 1g, € M and v, — 1 boundedly. m

Theorem 17.33 (Separability of L? — Spaces). Suppose, p € [1,0), A C B
is a countable algebra such that o(A) = B and p is o — finite on A. Then LP(u)
18 separable and

D={) a;jla, :a; € Q+iQ, A; € A with u(A;) < oo}
18 a countable dense subset.

Proof. Tt is left to reader to check D is dense in S(A, ) relative to the LP(u)
— norm. Once this is done, the proof is then complete since S(A, 1) is a dense

subspace of L? (i) by Theorem [17.32 |

17.6 Relationships between different LP — spaces

The LP(u) — norm controls two types of behaviors of f, namely the “behavior
at infinity” and the behavior of “local singularities.” So in particular, if f blows
up at a point z¢ € {2, then locally near zq it is harder for f to be in LP(u)
as p increases. On the other hand a function f € LP(u) is allowed to decay
at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect LP(u) C L9(u) or L9(u) C LP(u). However,
there are two notable exceptions. (1) If u(£2) < oo, then there is no behavior at
infinity to worry about and L4(u) C LP(u) for all ¢ > p as is shown in Corollary
below. (2) If p is counting measure, i.e. u(A) = #(A), then all functions
in LP(p) for any p can not blow up on a set of positive measure, so there are no
local singularities. In this case LP(u) C L(u) for all ¢ > p, see Corollary
below.

Corollary 17.34 (Example [17.20| revisited). If pu(2) < o0 and 0 < p <
q < oo, then LI(u) C LP(u), the inclusion map is bounded and in fact

1_1
A1, < (]G £, -
Proof. Take a € [1,00] such that

1 1 1
- =+, ie.a=-2L
p a gq g—p
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Then by Theorem

11
11, = 1F - UL, < 1 Fllg - 1lla = m(2) (1 fllg = () 2| £l
The reader may easily check this final formula is correct even when ¢ = oo
provided we interpret 1/p — 1/00 to be 1/p. (]
The rest of this section may be skipped.

Ezample 17.35 (Power Inequalities). Let a := (ay,...,a,) with a; > 0 for i =
1,2,...,n and for p € R\ {0}, let

1 n l/p
o, (130
=1

Then by Corollary |17.34 p — ||a||p is increasing in p for p > 0. For p = —¢ < 0,

we have
-1/ 1/q _
all, : ( }j ) [P (E—— 1
a a; = = |-
1 1)? a
n Z;L:l (?) g
where % :=(1/a1,...,1/ay). So for p < 0, as p increases, ¢ = —p decreases, so

that H%Hq is decreasing and hence ||é||q_1 is increasing. Hence we have shown
that p — |la|[, is increasing for p € R\ {0}.

¢/ay ... a,. To prove this, write a? =
ePlnai — 1 4 plna; + O (p2) for p near zero. Therefore,

1 n » 1 n )
— a, =1+p— Ina; + O (p
n; n; (r*)

We now claim that lim, o [|af|, =

Hence it follows that

1/p 1/p
hm||aH hm( Za) *hm <1+p ZlnalJrO( ))

=1
1

= en i M = AT an.
So if we now define [|al|, := {/a1... @, the map p € R — |[a]|, € (0,00) is
continuous and increasing in p.
We will now show that lim,,, [|al|,, = max; a; = M and lim,,_o [laf, =
min; a; =: m. Indeed, for p > 0,
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and therefore,
1 1/17
(3) ar<lal, <
n

Since (%)1/1) — 1asp — oo, it follows that lim,,, [|al|, = M. For p = —¢ <0,
we have

1 1 .
hm llall, = hm <H1H ) = e, i/an) = Tm =m = mina;.

Conclusion. If we extend the definition of [lal|, to p = 0o and p = —o0
by |all,, = max;a; and |ja||__ = min;a;, then R 3p — lall, € (0,00) is a
continuous non-decreasing function of p.

Proposition 17.36. Suppose that 0 < py < p1 < oo, A € (0,1) and py €
(po,p1) be defined by
1 1—X A
- = + R
Px Po p1
with the interpretation that \/py = 0 if p1 = 00E| Then LP» C LPo + LP1, q.e.
every function f € LP> may be written as f = g+ h with g € LP° and h € LP'.
For1<py<p <o and f e LPo+ [P [et

11 = int {llgll,, + kIl f = g+h}.

(17.21)

Then (LPo + LP ||-||) is a Banach space and the inclusion map from LP* to
Lo+ LP1 is bounded; in fact ||f|| < 2| fl,, for all f € LP>.

Proof. Let M > 0, then the local singularities of f are contained in the
set FE := {|f| > M} and the behavior of f at “infinity” is solely determined by
f on E€. Hence let g = flg and h = flge so that f = g + h. By our earlier
discussion we expect that g € LP° and h € LP* and this is the case since,

Po
Po __ p — f
lally = [ 177 vpoae =30 [ |
f P
< MPo
<vm [

4 A little algebra shows that A may be computed in terms of po, px and p1 by

Ligi>n

Ligjsar < MPOTPA|fIPY < o0

N= Po PrTPx
P P1—po
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and

Lipi<m

IRl = 11 £1i1<ae ) :/lf\f’l 1 pi<ar :Mm/ S

fp)\
<MP1
<[4

Moreover this shows

If]| < M1=pr/Po ”fHPA/Po 1 M/ ||me/p1 ‘

Ligicar < MPETPA|f][PY < o0

Taking M = A ||f||,, then gives

1l < (Wmaim o xime/mn) g g

and then taking A = 1 shows || f|| < 2| f]|,, - The proof that (LF° + L1 -||) is
a Banach space is left as Exercise [17.12] to the reader. [

Corollary 17.37 (Interpolation of LP — norms). Suppose that 0 < pg <
p1 < 00, A € (0,1) and px € (po,p1) be defined as in Fq. (17.21]), then LP° N
LPr C LP» and

£ 11y < 10 £ 11y (17.22)
Further assume 1 < pg < px < p1 < 00, and for f € LP° N LP* [et
1A= 1Ay + 1A, -

Then (LPoNLP*||-||) is a Banach space and the inclusion map of LP° N LP* into
LP> s bounded, in fact

I£],, < max (A%, (1— A7) (||f||p0 n ||f||p1) _ (17.23)

The heuristic explanation of this corollary is that if f € LP° N L', then f
has local singularities no worse than an LP* function and behavior at infinity
no worse than an LP° function. Hence f € LP* for any py between py and pj.

Proof. Let A be determined as above, a = pg/\ and b = p; /(1 — A), then
by Theorem

17y = (L 1A2 <  fut=, = g,

It is easily checked that ||| is a norm on LP° N LP'. To show this space is
complete, suppose that {f,} C LP° N LP* is a ||-|| — Cauchy sequence. Then
{fn} is both LPo and L”1 Cauchy. Hence there exist f € LP° and g € LP* such
that lim, o ||f — = 0 and lim, o ||g — f"”m = 0. By Chebyshev’s
inequality (Lemma “ 17.4) f, — f and f, — ¢ in measure and therefore by
Theorem [17.9 _ f = g ae. It now is clear that lim, o ||f — fnl] = 0. The
estimate in Eq. is left as Exercise to the reader. |
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Remark 17.38. Combining Proposition [17.36| and Corollary [17.37] gives
LPO N Lpl C LPA C LPO + Lpl
for 0 < pg < p1 < o0, A € (0,1) and py € (po,p1) as in Eq. (17.21)).

Corollary 17.39. Suppose now that y is counting measure on {2. Then LP(u) C
L() for all 0 < p < q < oo and |[f], < ],

Proof. Suppose that 0 < p < ¢ = 0o, then

IF11% = sup {|f (@) sz € 2} < 3~ |f (@)1 = |11l

e

Le. [[flloo < [Ifl, for all 0 < p < co. For 0 < p < ¢ < oo, apply Corollary (17.37
with pp = p and p; = oo to find

A1, < IFIE/ AN S < AR AL = N f, -

17.6.1 Summary:

LPoNLPr C L9 C LPo + LP* for any q € (po,p1)-
If p < g, then £7 C ¢4 and || f[|, < [If],-

Since p(|f| >¢) < e P || f[l,, L? — convergence implies LY — convergence.

=W o=

L% — convergence implies almost everywhere convergence for some subse-

quence.

5. If u(2) < oo then almost everywhere convergence implies uniform con-
vergence off certain sets of small measure and in particular we have L° —
convergence.

6. If u(2) < oo, then L? C LP for all p < g and L9 — convergence implies LP

— convergence.

17.7 Uniform Integrability
Let (£2,B, 1) be a probability space, 1 < p < oo, and {f} U {f,},—, be a

collection of random variables. The goal of this section is to find necessary and
sufficient conditions on {f,},—, such that f,, — f in L? (u).

Notation 17.40 For f € L'(u) and E € B, let

u(:B) = [ fan.
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238 17 LP? — spaces

and more generally if A, B € B let

u(fsAB)= [ pn
ANB
When u is a probability measure, we will often write E[f : E] for u(f : E) and
E[f: A, B] for u(f: A, B).

Definition 17.41. A collection of functions, A C L'(pn) is said to be umi-
formly integrable (U.I.) if,

lim sup g (|f|: |f| > a) = 0. (17.24)
a—r 00 fEA
In words, A C L* (i) is uniformly integrable if “tail expectations” can be made
uniformly small.

Example 17.42.1f A C L' (u) and there exists a dominating function, g €
L' (1), such that |f| < g for all f € A, then A is uniformly integrable. In-
deed,

?ugu(lfl fl>a)<p(g:g>a) = 0asatoo
€
by the dominated convergence theorem.

Corollary 17.43. If A = {f1,...,fn} C L' (n) is a finite set then A is uni-
formly integrable.

Proof. Let g = Y7 | | fil € L* (u) so that |f| < g for all f € A. The result
now follows from the previous example. [

Ezample 17.44. Suppose that A := {X,,};~, C L' (1) is a sequence of random
variables which all have the same law, then A is uniformly integrable. This is
because, p (| Xn| : | Xn| > a) = p(|X1] : | X1] > a), and so

sup p (| Xn| 0 | Xn] > a) =p(|X1]: 1 X1] > a) = 0as a? .

This example illustrates the fact that uniform integrability is really is a condi-
tion on the collection of measures, {Law, (X): X € A}, on (C, Be).

Ezample 17.45 (U.I. Ezample). If for some 1 < p < oo, M :=supxc 4 E|X|" <
oo, then A C L' (P) is U.I. Indeed,

ﬁﬂ<w>plLM2a1§

sup E[|X|: |X]| > a] <
sup E[1X] £ |X| > a < 2

E[|X]:|X|>a] <E

and so

1—>Oasa—>oo.
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Ezample 17.46. Suppose that A := {X,} 2, C L'(u) is a sequence of i.i.d.
random variables such that u (| X1]| > a) > 0 for all a € (0,00), i.e. X, is not
essentially bounded. The smallest dominating function for all of the |X,| is
Y :=sup,, | X,|. However, since

oo

f: |X\>a:2 (1X1| > a) = oo,
n=1

the second Borel Cantelli lemma implies that p ({|X,| > a i.0.}) = 1 from which
it follows that Y > a a.s. Since a > 0 was arbitrary we conclude that Y = oo
a.s. Thus we can not use Example to show A is uniformly integrable. Of
course we do know by Example that A is uniformly integrable.

Exercise 17.5. Suppose A is an index set, {fa},c and {ga},c4 are two col-
lections of random variables and C' € (0,00) . If {ga } 4 4 is uniformly integrable
and | fo| < Clge| for all a € A, show {fuo},c 4 is uniformly integrable as well.
[An an example which occurs in the dominated convergence theorem is when
go =9 € L' () for all a € A.]

Lemma 17.47. If A C L' (p) is uniformly integrable, then sup ;e 4 || f|l; < ooﬂ

Proof. Choose a € (0, o) sufficiently large so that sup se 4 gt (|f] 2 [f] > @) <
1. Then for f € A,

1y = p (L f1: 11 = a) + p(f] = [f] < a) <1+ ap(2).
u

Lemma 17.48. If Let {fn}ff:l 18 a collection of random wvariables such that

fn 55 0. Then for every a € (0,00), gn = faljf,j<a — 0 in LP (u) for all
1<p<oo.

Proof. As |g,| < |f.] it follows that g, £ 0 as n — co. Since |g,| < a, we
now apply the dominated convergence theorem (Corollary [17.10]) to conclude
limy o0 [|gnll, = 0. |

Proposition 17.49. If {f,},_, is a sequence of random wvariables, then
limy, o0 | frll; =0 iff fr 50 and {futory is uniformly integrable.

® This is not necessarily the case if 4 (£2) = oo. Indeed, if 2 = R and p = m is
Lebesgue measure, the sequences of functions, { frni= 1[,,1,”]}20:1 are uniformly
integrable but not bounded in L (m).

macro: svmonob.cls date/time: 25-Feb-2019/8:12



Proof. (=) Suppose that lim, o an||1 = 0. By Chebyschev’s inequal-
ity,
p(lful >e) <= ||an1 — 0 as n — oo,

ie. f, 5 0asn— oo If N €N, then
sup (| ful = [fnl = a) < | sup p(|ful 2 [ful = a)| V sup [|fall
n n<N n>N

and since by Corollary [17.43]

lim sup M('fnl : |fn| > (l) =0
aToo <« N
we conclude that

lm |sup (| fnl : [fu] = a)| < sup [|fu], VN €N.
atoo n n>N

As the right side of this inequality goes to zero in the limit as NV — oo it follows
that {f,},—, is uniformly integrable.

(«=) Now suppose that f, 2 0 and { fn}o— is uniformly integrable. Then
given any a € (0,00),

1fally = p(ful) = 1 (1fal Ligai<a) + (1l = [ fal = a)
< i (falLiga<a) +Sllipu(\fk| L fil > a).
From Lemma lim,, o0 1t (|fn| 1|fn\<a) = (0 and therefore,
limsup | fufly < sup g ([fel : [fil = a) = O'as a1 oo,
[

Definition 17.50. A collection of functions, A C L'(p) is said to be umi-
formly absolutely continuous (UAC) if for all € > 0 there exists § > 0
such that
sup i (|f| : E) < € whenever u(E) < 4. (17.25)
fea

Equivalently put,

%iﬁr)lsup{uﬂﬂ: E):feAdand u(E)<d} =0. (17.26)
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Ezample 17.51 (Optional). 1 claim that A = {f} with f € L' (u) is uniformly
absolutely continuous. If not there would exist and € > 0 and F,, € B such that
w(|f|: En) > e while lim,, o u (E,) = 0. But this is not possible since 1, f £
0 as n — oo and [1g, f| < |f| € L' (u) and so by dominated convergence
theorem (Corollary [17.10)),

< . . — 3 =
e < lim p(|f|: En) = lim p(|1p, f])

Remark 17.52 (Optional). Tt is not in general true that if {f,} C L'(u) is
uniformly absolutely continuous implies sup,, || fn||; < oo. For example take

2 ={x} and p({x}) = 1. Let f,,(*) = n. Since for § < 1 a set E C {2 such that
w(E) < 6 is in fact the empty set and hence {f,} -, is uniformly absolutely
continuous. However, for finite measure spaces without “atoms”, for every § > 0
we may find a finite partition of {2 by sets {Eg}lzzl with p(Ey) < 0, see Lemma
below. If Eq. holds with € = 1, then

k
plful) =Y w1 fal - Be) <
=1

showing that u(|f,|) <k for all n.

Proposition 17.53. A subset A C L' (i) is uniformly integrable iff A C L* (i)
is bounded and uniformly absolutely continuous.

Proof. ( = ) We have already seen that uniformly integrable subsets, A,
are bounded in L! (1) . Moreover, for f € A, and E € B,

u(lfl = E) = p(f] |fl = M, E) + p(lf] - [f| < M, E)
<pf1 112 M) + Mp(E).

Therefore,
timsup {1 (1f]5 E) : £ € A and p(E) < 6} < sup (] 5 | = M) = 0 s M
fea
which verifies that A is uniformly absolutely continuous.
(<=) Let K :=supyc, || fll; < oo. Then for f € A, we have
p(|fl >a) <|fll;/a < K/aforall a> 0.

Hence given € > 0 and § > 0 as in the definition of uniform absolute continuity,
we may choose a = K/ in which case

sup p(|f|: [f] 2 a) <e
fea

Since ¢ > 0 was arbitrary, it follows that lim, o supse p (|| [f| > a) =0 as
desired. ]
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Definition 17.54 (Generalized UAC). A collection of functions, A C L' ()
is said to be gemeralized uniformly absolutely continuous (GUAC) if
for all e > 0 there exists 6 > 0 such that supsc p(|f|h) < e for all random
variables, h, such that 0 < h <1 and p(h) <.

Exercise 17.6. Prove that a subset A C L! (i) is uniformly integrable iff A C
L' (u) is bounded and is GUAC. Hint: modify the proof of Proposition [17.53

Corollary 17.55. Suppose {fo}naca and {gataca are two uniformly integrable
collections of functions, then {fo + ga}aca 18 also uniformly integrable.

Proof. By Proposition [17.53) {fa},ca and {ga},ea are both bounded
in L' (1) and are both uniformly absolutely continuous. Since ||fa + gall; <
[ fall; + llgall; it follows that {fa + ga}aca is bounded in L' (u) as well.
Moreover, for € > 0 we may choose § > 0 such that u(|fs]: E) < e and
1 (|ga] : E) < & whenever p (E) < 6. For this choice of £ and §, we then have

p|fo+ gal - B) < p(lfal +1gal - E) < 2¢ whenever pu (E) <6,

showing {fo + ga},c4 uniformly absolutely continuous. Another application of
Proposition [17.53| completes the proof. [

Corollary 17.56. If 1 <p < 0o and {f,}oe; U{f} C LP (u), then {|fn|"}r,
is uniformly integrable iff {|fn — f|p}n=1 is uniformly integrable.

Proof. (= ) By Holder’s inequality,
= S <25 (1l + £V
and so by Corollary [17.55| and Exercise it follows that {|f, — f['}.—, is

uniformly integrable.
(«<=) The proof here is similar but now based on

2
q

[fnl” < o = FLH AP <20 (1o = FI7 4 117

Exercise 17.7 (Problem 5 on p. 196 of Resnick generalized). Suppose
that {X,} -, is a sequence of integrable and random variables which are

identically distributed. Show {%}Zo:l is uniformly integrable where, as usual,
S, =X1+---+X, foralln eN.
Suggestions:

1. First show {X,,} -, are U.IL using the direct definition and the identically
distributed assumption.
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2. Use the results of item 1. along with Proposition |17.53|to show {%}:}:1 is
uniformly integrable. [Via this method you will actually show; if {X,,} >,
is U.I. then so is {%}:;1 ]

Theorem 17.57 (Vitali Convergence Theorem). Let 1 < p < oo, (2, B, 11)
be a finite measure space, A := {fn} —, be a sequence of functions in Lp( )7
and f : 2 — C be a measurable functwn Then f € LP (u) and ||f — fn||p

asn — 00 iff fn 5 f and {|fnlP}2, is uniformly integrable.

Proof. ( = ) If f,, = f in LP (i) then by Chebyschev’s inequality f, 5
Lemma [17.4l By assumption |f — f,|" — 0 in L' (u) and so, by Proposition

m 17.49 {| f fn| }o°_, is uniformly integrable. It then follows by Corollary |1
that {|f.|"},—, is umformly integrable.

(<=) Assume f, & fasn — oo and {|fnlPo2, is umformly integrable.

Ther’ by Fatou’s Lemma (Exercise [17.1)) and Lemma
/ |fIP du < liminf/ |fnl? dp < sup/ |[fnl? dp < o0,

ie. f € LP(u). From Corollary [17.56/ we now know that {|f — f,|"} —, is
uniformly integrable. As f,, & f is equivalent to |f, — f|* £ 0 we may apply
Proposition [17.53[to show |f — fu|” — 0in L' (), ie. f, = fin LP (u). m

Ezample 17.58. Let 2 = [0,1], B = Bjg,1) and P = m be Lebesgue measure on
B. Then the collection of functions, f. := %1[075] for € € (0,1) is bounded in
L' (P), f- = 0 ae. as e} 0 but

0= / hm fedP # hm fEdP =1
Q

E

This is a typical example of a bounded and pointwise convergent sequence in L*
which is not uniformly integrable. This is easy to check directly as well since,

sup m (|fe|:|fe] > a) =1 for all a > 0.
€€(0,1)

Ezample 17.59. Let 2 = [0,1], P be Lebesgue measure on B = Bjg 1}, and for
e € (0,1) let a. > 0 with lim. o ac = oo and let f. := aclp.). Then Ef. = ea.
and so sup,g || fe]|; =1 K < oo iff ca. < K for all €. Since

SupE[fs i M] = sup [gas : ]-aEZM]a
e e

if { .} is uniformly integrable and § > 0 is given, for large M we have ea. < § for
¢ small enough so that a. > M. From this we conclude that lim sup, 10 (eae) <6

5 We are actually reproving Lemma [17.11] here.
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and since 0 > 0 was arbitrary, lim. g ea. = 0 if {fc} is uniformly integrable. By ie. -
reversing these steps one sees the converse is also true. T, d
Alternatively. No matter how a. > 0 is chosen, lim. | f- = 0 a.s.. So from () 0 ' (y)dy Z (1) (@ Aanis =z Aan)

=0
Theorem [17.57] if {f.} is uniformly integrable we would have to have "
By construction ¢ is continuous, ¢(0) = 0, ¢'(x) is increasing (so ¢ is convex)

hﬂ)l (eae) = lifol Ef. =E0=0. and ¢'(z) > (n+ 1) for © > a,. In particular
€ =5

ox) _ pla) + (n+ 1)z

The following Lemma gives a concrete necessary and sufficient conditions >
x x

for verifying a sequence of functions is uniformly integrable.

>n+1 for x > a,

from which we conclude lim, o ¢(z)/2 = co. We also have ¢'(z) < (n+1) on

Lemma 17.60. Suppose that p(2) < oo, and A C L°(£2) is a collection of 0 ] and theref
,an+1] and therefore

functions.
1. If there exists a measurable function ¢ : Ry — Ry such that p(z) < (n+ 1)z for < anya.
limg, 00 = d
imy o0 () /2 = 00 an So for f € A,
K= fcurju(@(lfl)) < o0, (17.27)
€
e(lf1) Z 1 (@D anansa (1F])
then A is uniformly integrable. (A typical example for ¢ in item 1. is p (x) =
aP for some p > 1.)
2. *(Skip this if you like.) Conversely if A is uniformly integrable, there exists < Z n+1)u ‘f| 1 a,L,an+1](|f|))
a non-decreasing continuous function ¢ : Ry — Ry such that (0) = 0,
limy s oo = d Eq. (17.27) is valid. >
im, o0 9(2) /2 = 00 and Eq. (17.27) is vali <Z (n+1)u(f11f2a,) Z (n+1)e,,
Proof. 1. Let ¢ be as in item 1. above and set €, := sup, >, ﬁ — 0 as n=0
a — 0o by assumption. Then for f € A and hence
|/ su < n+1)e, < oo.
5151512 @) = (T 1) 1112 @) < (e 11D+ 111 > e, sup s (PlIf) < 3 (0 + D),
<l (F))za < Koo "
and hence Exercise 17.8. Show directly that if u(2) < oo, ¢ is as in Lemma [17.60
lim sup p (|f] 1171>0) < lim Ke, =0. and {f,} C L' () such that f, & f and K := sup, E[¢ (|fn])] < oo, then
a0 feA areo lf — full, = 0 as n — .
2. *(Skip this if you like.) By assumption, e, := sup c s (1f11)f5a) — 0 as
a — 0o. Therefore we may choose a, 1 co such that 17.7.1 Uniform Integrability Summary
i (n+1)eq, < 00 Let (12, B, P) be a probability space, 1 < p < oo, and {X,,}~, C L? (P). Using
— " the theorems in the previous section one may verify the following assertions.
where by convention ag := 0. Now define ¢ so that ¢(0) = 0 and o The following are equivalent;
. L {]X,["},7, is uniformly integrable.
2. {X,}5°, is bounded in L? (P), and {|X,[’} 7, is uniformly absolutely
! — 1 nin=1 ’ n n=1
7 nz:;) (Dl (), continuous.
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e Either of the three following conditions are sufficient to show {|X,['} _, is
uniformly integrable;
1. There exists Y € L' (P) such that |X,|” <Y a.s. for all n.
2. There exists Y € L! (P) such that | X[’ — Y in L' (P) as n — co.
3. There exists p < p < oo such that sup,, E|X, |’ < c.

o If {X,} 7, and {Y,} ~, C LP(P) are two sequences such that both
{1Xn["},_, and {|Y,,|"},_, are uniformly integrable, then {|X,, + AY,|"} —_,
is also uniformly integrable for all A € C.

e Let X : 2 — C be arandom variable. Then the following are equivalent;

1. X e LP (P) and X, 55 X as n — oco.

2. X, %% X and {|X,|"}.—, is uniformly integrable.

3. X, B X, {X,,}°2 | is bounded in LP (P), and {|X,|"} ~, is uniformly
absolutely continuous.

17.7.2 Atoms

Lemma 17.61 (Saks’ Lemma [10, Lemma 7 on p. 308]). Suppose that
(£2, B, P) is a probability space such that P has no atoms. (Recall that A € B is
an atom if P (A) > 0 and for any B C A with B € B we have either P (B) =0
or P(B) = P(A).) Then for every § > 0 there exists a partition {E;},_, of
2 with uw(Ee) < 6. (For related results along this line also see [9,/15,(20,24] to
name a few.)

Proof. For any A € B let
B(A) :=sup{P(B): BC Aand P(B) <4d}.

We begin by showing if 1 (A) > 0 then 3(A) > 0. As there are no atoms there
exists Ay C A such that 0 < P (A1) < P (A). Similarly there exists Ay C A\ A;
such that 0 < P (A;) < P (A\ A;) and continuing inductively we find {A,},~ ,
disjoint subsets of A such that A, C A\ (A;U---UA,_1) and

0< P(A,) <P(A\ (A U---UA,_1)).

As > ° 1A, C A we must have > | P(A,) < P(A) < co and therefore
lim;, o0 P (A,) = 0. Thus for sufficiently large n we have 0 < P (A,) < § and
therefore 8 (4) > P (4,,) > 0.

Now to construct the desired partition. Choose A; C {2 such that § >
P (Ay) > 18(2).1f P(£2\ A;) > 0 we may then choose Ay C 2\ A; such that
§ > P(Az) > 1B(£2\ [A1 U A;]). We may continue on this way inductively to
find disjoint subsets {Ay};_; of 2

52 P(4) > 562\ [A U+ U A1)
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with either P(2\[AU---UA,4]) > 0. If it happens that
P(2\[A1U---UA,]) = 0 it is easy to see we are done. So we may as-
sume that process can be carried on indefinitely. We then let F' := 2\ U2, Ay
and observe that

B(F)<B(NR2\[A1U---UA,_1]) <2P(A4,) > 0asn — o

as

iP(An) < P(N) < oo.
n=1

But by the first paragraph this implies that P (F) = 0. Hence there exists
n < oo such that P(Q\UZ;}Ak) < 4. We may then define Ey, = Ay for
1<k<n—-land E, =2 \UZ;}Ak in order to construct the desired partition.
]

Corollary 17.62. Suppose that (£2, B, P) is a probability space such that P has
no atoms. Then for any o € (0,1) there exists A € B with P (A) = a.

Proof. We may assume the a € (0,1/2). By dividing {2 into a partition
{El};\il with P (E;) < a/2 we may let A; := UF_| E; with k chosen so that
P(A;) < abut

a< P(A1UEk4) < —a.

N W

Notice that a/2 < P (A1) < a. Apply this procedure to 2\ A; in order to find
As D Ajp such that a/4 < P(As) < . Continue this way inductively to find
Ay, 1T A such that P (A4,) T a= P (A). (BRUCE: clean this proof up.) |

17.8 Exercises

Exercise 17.9. Let f € LPN L for some p < oo. Show || f||, = limg—e0 || f]], -
If we further assume p(X) < oo, show [|f]l, = limg e [|f|, for all mea-
surable functions f : X — C. In particular, f € L* iff limg o || f[[, < oo.
Hints: Use Corollary to show limsup,_,. [[fll, < [Ifll. and to show
liminfy oo [|fll, = [ fl Tet M < [[f],, and make use of Chebyshev’s in-
equality.

Exercise 17.10. Let co > a,b > 1 with a=! 4+ b~! = 1. Give a calculus proof

of the inequality
a b

st§8—+t—foralls,t20.
a b

Hint: by taking s = 2t%/®, show that it suffices to prove
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xﬁx——i—lforallxzo.
a b

and then maximize the function f (x) =z — x*/a for z € [0, c0).

Exercise 17.11. Prove Eq. (17.23)) in Corollary [17.37] (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a,b > 1 with a=! +b~! = 1 chosen
appropriately,
s¢ b
st < — + —
a

b
applied to the right side of Eq. (17.22).

Exercise 17.12. Complete the proof of Proposition [17.36| by showing (L? +
L™ |||l is a Banach space.

Exercise 17.13. Let ({2, B, 1) be a probability space. Show directly that for
any g € L'(pn), A = {g} is uniformly absolutely continuous. (We already know

this is true by combining Example [17.42 with Proposition [17.53])

Exercise 17.14. Suppose that (§2, B, P) is a probability space and {X,,} - | is
a sequence of uncorrelated (i.e. Cov (X,,, X,,) = 0 if m # n) square integrable
random variables such that p = EX,, and 02 = Var (X,,) for all n. Let S,, :=

X1+ + X,,. Show ’|%—u“§:%2—>0asn—>oo.

Exercise 17.15. Suppose that {X,,} -, are i.i.d. integrable random variables
and S, == X; + -+ X, and p = EX,,. Show, 22 — p in L' (P) as n —
oo. (Incidentally, this shows that {STL"}ZO:l is U.I. Hint: for M € (0,00), let
XM= X; 1x,<p and SM = XM + -+ + X and use Exerciseto see

that
M

S,
= S EXMin L2 (P) C L' (P) for all M.
n
Using this to show lim, . H% _EX1H1 = 0 by getting good control on

Su— S|l and [EX, —EX}Y|.

n

Exercise 17.16. Suppose 1 < p < oo, {X,},—, are iid. random variables
such that E|X, [’ < oo, S, := X1 + -+ X,, and pu := EX,,. Show, %‘ = i
in L? (P) as n — oco. Hint: explain why 3" | X;[” — E|X;|” in L' (P) and

oo
then use this show { 57” p} is U.I. — this is not meant to be hard!
n=1

17.9 Appendix: Convex Functions

Reference; see the appendix (page 500) of Revuz and Yor.
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Definition 17.63. Given any function, ¢ : (a,b) — R, we say that ¢ is convex
if for alla < xg <21 <b and t €10,1],

w(xy) < hg:i= (1 —t)p(xo) + to(xq) for allt € ]0,1], (17.28)

where
xp:=xo+t(x1 —xo) = (1 — V) + taq, (17.29)

see Figure below.

Fig. 17.3. A convex function along with three cords corresponding to o = —5 and
21 =—-229=—2and z1 = 5/2, and o = —5 and x1 = 5/2 with slopes, m; = —15/3,
mgo = 15/6 and ms = —1/2 respectively. Notice that mi < ms3 < ma.

Lemma 17.64. Let ¢ : (a,b) — R be a function and

F(zg,71) := %:O(QTO)

fora <xy <z <D

Then the following are equivalent;

1. ¢ is convez,
2. F (o, x1) is non-decreasing in xo for all a < o < x1 < b, and
3. F (xg,21) s non-decreasing in x1 for all a < xy < 21 < b.

Proof. Let x; and h; be as in Eq. , then (z¢, hy) is on the line segment
joining (zg, ¢ (z0)) to (z1,¢ (z1)) and the statement that ¢ is convex is then
equivalent to the assertion that ¢ (z;) < hy for all 0 < ¢ < 1. Since (x4, hy) lies
on a straight line we always have the following three slopes are equal;
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T20 ¥

(W) Ry

6 4 2 0 2 WaXx
\ 1
X

Fig. 17.4. A convex function with three cords. Notice the slope relationships; m; <
ms S mao.

he — ¢ (z0) _ ¢ (@1) —w(z0) _ p(21) —he

Ty — Zo T1 — Zo L1 — Tt

In light of this identity, it is now clear that the convexity of ¢ is equivalent to
either,

F (0, 22) = () —p(@0) _ he—p(xo) _ p(21) —p(20) _ F (50, 21)

Ty — X B T 1 — X
or
_ —h _
F($0,$1> _ (p(ml) 90(330) _ Sp(xl) t < (P(.’L']) ‘P(mt) _ F(mt,ml)
xr1 — X Tl — Tt Tl — Tt
holding for all ¢ < xy < x71. ]

Lemma 17.65 (A generalized FTC). If p € PC* ((a,b) — R)ﬂ then for all
a<x<y<b,

w(y)—w(x)Z[yw'(t)dt-

" PC* denotes the space of piecewise C* — functions, i.e. ¢ € PC* ((a,b) — R) means
the ¢ is continuous and there are a finite number of points,
{a=ap<a1<az<- - <apn-1<an,=">b},
isC! forall j =1,2,...,n.

such that ¢| [aj—1,05]N(a.b)
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Proof. Let by,...,b,_1 be the points of non-differentiability of ¢ in (z,y)
and set by = x and b; = y. Then

l

oY) — (@)= [ br) — ¢ (br)]

k=1

! by Y
:Z/ @’(t)dtz/ ¢ (t)dt.

k=1"bk-1 x

]
Figure below serves as motivation for the following elementary lemma
on convex functions.

Fig. 17.5. A convex function, ¢, along with a cord and a tangent line. Notice that
the tangent line is always below ¢ and the cord lies above ¢ between the points of
intersection of the cord with the graph of ¢.

Lemma 17.66 (Convex Functions). Let ¢ € PC! ((a,b) — R) and for = €
(a,b), let

’ BT

o (z+) —l}gré W and
Py g P@ER) — o (@)

¢ (z=)=lim h

(Of course, ¢’ (x£) = ¢ (z) at points x € (a,b) where ¢ is differentiable.)
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1.If ¢ (x) < @' (y) for all a < x <y < b with x and y be points where ¢ is
differentiable, then for any xo € (a,b), we have ¢' (xog—) < ¢ (xo+) and
form € (¢’ (z0—) , ¢’ (z0+)) we have,

¢ (zo) + m (x — x0) <@ (x) V20,2 € (a,b). (17.30)

2. If p € PC?((a,b) — Rﬁ with " (x) > 0 for almost all x € (a,b), then Eq.
holds with m = ¢’ () .

3. If either of the hypothesis in items 1. and 2. above hold then ¢ is convex.

(This lemma applies to the functions, e’ for all X\ € R, |z|* for a > 1,
and —Inz to name a few exzamples. See Appendiz[I7.9 below for much more on
convez functions.)

Proof. 1. If zj is a point where ¢ is not differentiable and A > 0 is small, by
the mean value theorem, for all ~ > 0 small, there exists ¢y (h) € (zg, 20 + h)
and c_ (h) € (g — h,xo) such that

QO('IO - }i)h_ @(xo) — (pl (C_ (h)) < S0/ (C+ (h)) _ @(xo + h’f)L - @(330)

Letting A | 0 in this equation shows ¢’ (vg—) < ¢’ (zo+). Furthermore if
T < xg < y with  and y being points of differentiability of ¢, the for small
h >0,

¢ (2) < @' (e (h) < ¢ (cx (h) < ¢ () -
Letting h | 0 in these inequalities shows,
¢ (@) < ¢’ (w0—) < ¢ (wot+) < ¢ (). (17.31)

Now let m € (¢’ (zo—), ¢ (z0+)). By the fundamental theorem of calculus in

Lemma [17.65| and making use of Eq. (17.31)), if x > zo then
o) = p(eo) = [

Zo

x x

go’(t)dtZ/ m dt =m (z — o)

Zo

and if x < xo, then

xo xo
@ (zo) — @ (x) :/ go'(t)dtg/ m dt =m (zo— ).
x T
8 PC? denotes the space of piecewise C? — functions, i.e. ¢ € PC? ((a,b) — R) means
the ¢ is C! and there are a finite number of points,
{a=ap<a1<az < <apn-1<an=">b},

such that <p|[aj is C? forall j =1,2,...,n.

,1,aj]ﬂ(a,b)
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These two equations implies Eq. (17.30]) holds.
2. Notice that ¢’ € PC! ((a,b)) and therefore,

y
gp’(y)—(p’(x):/ O (t)dt>0foralla <z <y<b

which shows that item 1. may be used.
Alternatively; by Taylor’s theorem with integral remainder (see Eq.

(110.59) with F' = ¢, a = ¢, and b = x) implies

1
¢ () = ¢ (z0) + ¢ (z0) (z — 20) + (2 — $0)2/0 ©" (xo+ 7 (x —20)) (1 —7)dT
> ¢ (x0) + ¢ (o) (x — 20) .

3. For any & € (a,b), let he (z) := ¢ (z0) + ¢’ (20) (z — zo) . By Eq. (17.30))
we know that he (z) < ¢ (x) for all &,z € (a,b) with equality when ¢ = = and
therefore,

@ (r)= sup he ().
£€(a,b)

Since he is an affine function for each & € (a,b) , it follows that
he (20) = (1 =) he (20) + the (21) < (1 = 1) ¢ (x0) + L (21)

for all ¢t € [0,1]. Thus we may conclude that

¢ (x1) = sup he (z1) < (1—1) @ (20) + b (1)
ge(and)

as desired.
*For fun, here are three more proofs of Eq. (17.28]) under the hypothesis of
item 2. Clearly these proofs may be omitted.
3a. By Lemma below it suffices to show either
d ¢(y) —¢(x)

d p(y) —p(2) >0or &

>0fora<z<y<b.
dx y— dy y—x

For the first case,

doW—v@) el —e)—¢ @)y —=)
dv y-—=z (y — )’

:/0 o (x+t(y—z)) (1—t)dt > 0.

Similarly,
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do) —v@) _ ¢Wy—2)—lply) —¢@)]
dy Y-z (y — =)

where we now use,

1
w(x)—so(y):<P'(y)(x—y)+(:v—y)2/0 Syt —y)) (1 t)dt

so that
Ot Rl GOV ) :(x_y)z/lgp//(ymx_y))u_Mzo
(y —x) 0
again.
3b. Let

f@):=p)+t(p@)—p@)—plut+tv—u).

Then f(0) = f (1) =0 with f (t) = — (v —u)* " (u+t (v —u)) <0 for almost
all t. By the mean value theorem, there exists, ¢y € (0,1) such that f (t9) =0
and then by the fundamental theorem of calculus it follows that

fey=[ fr)dt.

to

In particular, f(t) < 0 for t > to and f(t) > 0 for t < to and hence f () >
f(1)=0fort>tyand f(¢t) > f(0) =0 for t <, ie f(t)>0.

3c. Let b : [0,1] — R be a piecewise C2 — function. Then by the fundamental
theorem of calculus and integration by parts,

h(t):h(0)+/0 h(T)dT:h(O)-i-th(t)—/O h(7)7dr

Thus we have shown,
t
h(£) = h(0) + th (1) —/ h () rdr and
0

1
h(t):h(l)Jr(tfl)h(t)Jr/t h(r)(r —1)dr.

So if we multiply the first equation by (1 — ¢) and add to it the second equation
multiplied by ¢ shows,
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h(t)=(1—1t)h(0)+th(1)— /1 G (t,7)h(r)dr, (17.32)
0

where ( it
T(1—-t)ifr <t
G(t7) '_{t(l—T) ifr>¢

(The function G (t,7) is the “Green’s function” for the operator —d?/dt? on
[0,1] with Dirichlet boundary conditions. The formula in Eq. is a stan-
dard representation formula for h (¢) which appears naturally in the study of
harmonic functions.)

We now take h (t) := ¢ (z9 + ¢ (x1 — 20)) in Eq. to learn
@ (xo +t (21— x0)) = (1 = 1) @ (x0) + tp (z1)
— (21 — 20)° /01 G, 7)p(xg+ 7 (21 —20)) dT
<@ =t)p(xo) +tp(21),
because ¢ > 0 and G (t,7) > 0. |

Example 17.67. The functions exp(x) and —log(z) are convex and |z|” is
convex iff p > 1 as follows from Lemma [I7.66]

Ezample 17.68 (Proof of Lemma ??7). Taking ¢ (x) = e~% in Lemma|17.66} Eq.
(17.30) with 29 = 0 implies (see Figure ,

l—z<gp(x)=e"forall z €R.

Taking ¢ () = e~ 2% in Lemma [17.66] Eq. (17.28) with zg = 0 and z; = 1
implies, for all ¢ € [0, 1],

1
e_t§<p<(1—t)0+t2)
1 . 1

wherein the last equality we used e™! < % Taking ¢ = 2z in this equation then
gives (see Figure ?7)
1
e <l—zgfor0<z< 7 (17.33)
Theorem 17.69. Suppose that ¢ : (a,b) — R is convex and for x,y € (a,b)
with x < y, leﬂ

9 The same formula would define F (x,y) for  # y. However, since F (z,y) =

F (y,z), we would gain no new information by this extension.
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py) —p(z)

F(z,y) = =

Then;

1. F (z,y) is increasing in each of its arguments.
2. The following limits exist,

ol (z) = F (z,24) := liinF (x,y) < 0o and (17.34)
ylx
¢_(y) = F(y—y) = lim F" (2, y) > —oo. (17.35)

3. The functions, ¢! are both increasing functions and further satisfy,
—oco<¢ ()< (2) <y (y) <cVa<z<y<b. (17.36)
4. For any t € [90’_ (36) ) <,0Q_ (36)] )
o) >p(x)+tly—x) for alz,y € (a,b). (17.37)
¢ (B)|}. Then

lp(y) =@ (@)] < Ky — x| forall z,y € [, 5].

5. Fora<a<pf<b, let K:=max{|¢ (a)

)

That is ¢ is Lipschitz continuous on [«, 8] .

6. The function @', is right continuous and ¢’ is left continuous.

7. The set of discontinuity points for ', and for ¢’ are the same as the set of
points of non-differentiability of . Moreover this set is at most countable.

Proof. BRUCE: The first two items are a repetition of Lemma [17.64]

1. and 2. If we let hy = tp(z1) + (1 — t)p(zo), then (x4, ht) is on the line
segment joining (xg, ¢ (zo)) to (z1,¢ (1)) and the statement that ¢ is convex
is then equivalent of ¢ (z;) < hy for all 0 < ¢ < 1. Since

he =@ (x0) _ p(x1) = (x0) _ (1) =M
T — To 1 — T 1 — T

the convexity of ¢ is equivalent to

¢ () — (@) _ I —¢(xo) _ ¢ (21) = ¢ (20)
T+ — X T Ty — X T — X

for all zg < x; < 19

and to

(@) —p @) _ wlx) =l _ p(21) =@ ()

1 — X xr1— T T, — Tt

for all zg < 2 < 7.

Convexity also implies
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o) —p(@o)  h—p(wo) wlr) =l < @(5'31)—@(3%).

Ty — X Ty — X Ty — Ty €Tl — Tt

These inequalities may be written more compactly as,

¢ (v) — ¢ (u) < e (w) — ¢ (u) < @ (w) — ¢ (v)

, (17.38)

valid for all ¢ < u < v < w < b, again see Figure m The first (second)
inequality in Eq. shows F'(z,y) is increasing y (). This then implies
the limits in item 2. are monotone and hence exist as claimed.

3. Let a < x < y < b. Using the increasing nature of F,

—00 < (p/— (LU) = F(.’IJ—,Q?) S F(l’,$+> = Lp/+ (:E) < o0
and
¢\ (z) = F (z,2+) < F (y—,y) = ¢ (y)
as desired.

4. Let t € [¢_ (x),¢, (z)] . Then

1S @) = F(@04) < Fa,y) = £ =20

or equivalently,
ey) = ¢(x)+t(y—=) fory >z
Therefore Eq. (17.37) holds for y > x. Similarly, for y < z,

o) —p(y)

t>¢ (x)=F(z—,2) > F(y,x) = T —y

or equivalently,
e) zp@) —t@—y) =@ +t(y—=) fory <=

Hence we have proved Eq. (17.37)) for all z,y € (a,b) .
5. Fora<a<z<y<pf<b, we have

¢ (a) <@\ () = F(z,24) < F(z,y) < F (y—y) = ¢ (y) < ¢ (B)

(17.39)
and in particular,

—K < ¢, (a)

IA
A
P
=
IA
=

This last inequality implies, |¢ (y) — ¢ ()] < K (y — ) which is the desired
Lipschitz bound.
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6. Fora < c <z <y <b, wehave ¢, () =F (z,2+) < F (x,y) and letting
x | ¢ (using the continuity of F') we learn ¢/, (¢c+) < F' (c,y). We may now let
y 1 ¢ to conclude ¢/, (c+) < ¢/, (¢). Since ¢’ (¢) < ¢/, (c+), it follows that
¢ (c) = ¢ (c+) and hence that ¢/, is right continuous.

Similarly, for a < z < y < ¢ < b, we have ¢’ (y) > F (z,y) and letting
y T ¢ (using the continuity of F) we learn ¢’ (¢c—) > F (z,¢). Now let 1 ¢ to
conclude ¢’ (c—) > ¢’ (c). Since ¢’ (¢) > ¢’ (¢—), it follows that ¢’ (c¢) =
¢ (c—), i.e. ¢ is left continuous.

7. Since ¢4 are increasing functions, they have at most countably many
points of discontinuity. Letting « 1 v in Eq. , using the left continuity
of ', shows ¢’ (y) = ¢/ (y—). Hence if ¢’ is continuous at y, ¢’ (y) =
¢ (y+) = ¢/, (y) and ¢ is differentiable at y. Conversely if ¢ is differentiable
at y, then

o (=) =¢" (W) =¢" () = ¢4 )
which shows ¢/, is continuous at y. Thus we have shown that set of discontinuity
points of ¢/, is the same as the set of points of non-differentiability of . That
the discontinuity set of ¢’ is the same as the non-differentiability set of ¢ is
proved similarly. m

Corollary 17.70. If ¢ : (a,b) — R is a convex function and D C (a,b) is a
dense set, then

# W) = sup [o (@) + ¢l (@) (y —2)] forall 2,y € (a,0).

Proof. Let ¢+ (y) = sup,ep [¢ () + ¢+ (2) (y — )] . According to Eq.
above, we know that ¢ (y) > ¢+ (y) for all y € (a,b) . Now suppose that
z € (a,b) and z,, € A with x,, T x. Then passing to the limit in the estimate,
V- (y) 2 ¢ (@) + ¢- (xn) (y — zn), shows ¥_(y) > ¢ (2) + ¢_ (z)(y— ).
Since = € (a,b) is arbitrary we may take z = y to discover ¥_ (y) > ¢ (y) and
hence ¢ (y) = ¥— (y) . The proof that ¢ (y) = ¥+ (y) is similar. ]

Lemma 17.71. Suppose that ¢ : (a,b) — R is a non-decreasing function such

that
1

0 (2 (o + y>) < Lle@) o] for allzy € (a.b). (17.40)

then ¢ is convex. The result remains true if @ is assumed to be continuous
rather than non-decreasing.

Proof. Let 29,21 € (a,b) and x4 := x¢+¢ (z1 — x0) as above. For n € N let
D, = {4 :1 <k < 2"} . We are going to being by showing Eq. (17.40) implies

o(xt) < (1 =t)@(x) +tp(x1) forall t € D :=U,D,. (17.41)
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We will do this by induction on n. For n = 1, this follows directly from Eq.

(17.40)). So now suppose that Eq. (17.41)) holds for all t € D,, and now suppose
that ¢ = 251 € D, ;. Observing that

1
Ty = = (l‘ k +Ik+1>
2 on—1 i

we may again use Eq. (17.40) to conclude,

¢ (1) < % (cp (xwgl) +o (xz%ll»

Then use the induction hypothesis to conclude,
L (1= 55) ¢ (x0) + gaere (1) >
T - on—1 on—1
plz) < 5 <+(1 — L) o (20) + £ o (21)
(1 =) ¢ (z0) +tp (1)

IN

as desired.
For general ¢t € (0,1), let 7 € D such that 7 > ¢. Since ¢ is increasing and

by Eq. (17.41)) we conclude,
@) S(ar) < (1—=7)¢(20) + 700 (21) -

We may now let 7 | ¢ to complete the proof. This same technique clearly also
works if we were to assume that ¢ is continuous rather than monotonic. ]
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Hilbert Space Basics

Definition 18.1 (Inner Product Space). Let H be a complex vector space.
An inner product on H is a function, (-|-) : H x H — C, such that

1. {ax + by|z) = a(x|z) + bly|z) i.e. x — (x|z) is linear.

2. (zly) = (y|z).
3. ||z||? == (z|z) > 0 with ||z]|*> = 0 iff x = 0.

Notice that combining properties (1) and (2) that x — (z|x) is conjugate
linear for fixed z € H, i.e.

(zlaz + by) = a(zla) + bizly).

The following identity will be used frequently in the sequel without further
mention,

lz +yl1* = (@ +yle +y) = |2 + lyl* + (oly) + (ylz)
= [l + [lyl* + 2Re(z[y). (18.1)

Theorem 18.2 (Schwarz Inequality). Let (H,{(:|-)) be an inner product
space, then for all x,y € H

[(@ly)] < [lz]l Iyl
and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y # 0 and observe;
if 2 = ay for some a € C, then (z|y) = a||y||* and hence

2
[(zly)| = lad Iyl = llzlllyll

Now suppose that x € H is arbitrary, let 2 := = — ||ly|| =2 (z|y)y. (So ||lyl|~2(z|y)y
is the “orthogonal projection” of x along y, see Figure [18.1}) Then

) 1P el o (aly)
os||z||2=Hx— Y Iyl1? - 2Refal 2Ly
Pk TR Pk

_ HxHZ _ |<x|y>|2

W7

from which it follows that 0 < [jy|?||z||* — |{(z|y)|* with equality iff 2 = 0 or
equivalently iff z = ||y|| %(z|y)y. ]

(zly)
iz Y

x 2=z —

I~

0 \/\ <9J\?|/

lyl®

Yy
Fig. 18.1. The picture behind the proof of the Schwarz inequality.

Corollary 18.3. Let (H,(:|-)) be an inner product space and ||z| = +/(z|x).
Then the Hilbertian norm, ||-||, is a norm on H. Moreover (-|-) is continuous
on H x H, where H is viewed as the normed space (H, ||-||).

Proof. If z,y € H, then, using Schwarz’s inequality,

Iz +ylI* = llzl” + llyll* + 2Relzly)
<l + llyll* + 2l iyl = (=] + ly])*-

Taking the square root of this inequality shows ||-|| satisfies the triangle inequal-
ity.

Checking that ||-|| satisfies the remaining axioms of a norm is now routine
and will be left to the reader. If z,y, Az, Ay € H, then

[(z + Azly + Ay) — (z|y)| = [(z|Ay) + (Az|y) + (Az|Ay)|
< lzl[l1Ay|l + l[yll[|Az]| + | Az]||| Ayl
— 0 as Az, Ay — 0,

from which it follows that (-|-) is continuous. |

Definition 18.4. Let (H, (-|-)) be an inner product space, we say x,y € H are
orthogonal and write x L y iff (x|y) = 0. More generally if A C H is a set,
x € H is orthogonal to A (write x L A) iff (zly) = 0 for ally € A. Let
At ={z € H:x L A} be the set of vectors orthogonal to A. A subset S C H
is an orthogonal set if © L y for all distinct elements x,y € S. If S further
satisfies, |||l =1 for all x € S, then S is said to be an orthonormal set.
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Proposition 18.5. Let (H, (-|-)) be an inner product space then
1. (Parallelogram Law)
lla + 0] + [la = b][* = 2[|all* + 2|b]|* (18.2)

for all a,b € H.
2. (Pythagorean Theorem) If S C; H is a finite orthogonal set, then

doa

zeS

2

=3 | (18.3)

zes

3. If AC H is a set, then A+ is a closed linear subspace of H.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;

lla + B> + [|a — b]*
= llall* + [IblI* + 2Re(alb) + [la]|* + [|b]|* — 2Re(alb)
= 2||al® + 2[}b],

and

2

doall =0 > w =Y (@l

reS zeS yeS T,yeS
= (alr) = >
zeS zeS

Item 3. is a consequence of the continuity of (-|-) and the fact that
At = Ngea Nul((|z))

where Nul((-|z)) = {y € H : (y|x) = 0} — a closed subspace of H. Alternatively,
if x, € AL and x,, — x in H, then

0= lim 0= lim (x,|a) = < le xn|a> = (z]a) Vae A

n—oo n—oo

which shows that ©z € AL. ]

Definition 18.6. A Hilbert space is an inner product space (H,({:|-)) such
that the induced Hilbertian norm is complete.
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Ezample 18.7. For any measure space, (2,8, ), H := L? (u) with inner prod-
uct,

o) = [ )7 @) du ()
is a Hilbert space — see Theorem [17.28| for the completeness assertion.

Definition 18.8. A subset C' of a vector space X is said to be convex if for all
x,y € C the line segment [z,y] := {tx + (1 —t)y : 0 <t < 1} joining x to y is
contained in C' as well. (Notice that any vector subspace of X is conver.)

Theorem 18.9 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M C H is a closed convexr subset of H. Then for any x € H
there exists a unique y € M such that

—y|| = d(z, M) = inf ||z — z]|.
lz = yll = d(x, M) = inf o —z|

Moreover, if M is a closed vector subspace of H, then the point y may also be
characterized as the unique point in M such that (x —y) L M.

Proof. Let x € H, § := d(x, M), and y, 2 € M. Noting that
Iz =yl* = lI(z = 2) = (y — )|,

it follows by the parallelogram law (Eq. that

lz=yl* + 1z =) + (y — @)l = 2|z — 2|* + 2 |ly — ||
Since ¢ = Z;—y € M (see Figure , we further have

Iz = 2) + (y—2)|” = ||z +y — 22" = 4 e — 2| * > 46°.
Combining the previous two displayed equations implies,

Iz —yll* +46% < 2|z —x|* + 2|y — =] *. (18.4)

Uniqueness. If y, 2 € M minimize the distance to x, then ||y — z|| = § =

Iz = z|| and it follows from Eq. (18.4) that y = =.
Existence. Let y,, € M be chosen such that ||y, —z|| = 6, — 0 = d(z, M).

Taking y = y,, and z = y,, in Eq. (18.4) shows
[y — yml? < 202, + 262 — 46 — 0 as m,n — oo.

Therefore, by completeness of H, {yn}ff=1 is convergent. Because M is closed,
y := lim y, € M and because the norm is continuous,
n—oo
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Fig. 18.2. In this figure y, 2 € M and by convexity, c = (z +y) /2 € M.

ly =zl = lim lly, — 2l = 6 = d(z, M).
n—oo

So y is the desired point in M which is closest to z.
Orthogonality property. Now suppose M is a closed subspace of H and
x € H. Let y € M be the closest point in M to x. Then for w € M, the function

9(t) = llz — (y + tw)|* = [l — y|I* - 2tRe(z — ylw) + *|Jw]?

has a minimum at ¢ = 0 and therefore 0 = ¢'(0) = —2Re(x — y|w). Since
w € M is arbitrary, this implies that (z —y) L M, see Figure [I8.3] Finally

0 tw M

Fig. 18.3. The orthogonality relationships of closest points.
suppose y € M is any point such that (z —y) L M. Then for z € M, by
Pythagorean’s theorem,
lz =2l = llz —y +y— 2> = |z = y|* + ly — 2| > [l — 9|

which shows d(x, M)? > ||z — y||?. That is to say y is the point in M closest to
x.
[
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Remark 18.10. If M is a finite dimensional subspace of H and and {e;}!_, is

an orthonormal basis for M, then (w:=z — >, (z|e;) e;) L M. Therefore,

2]* = wl* + ||> (zle:) e:|| = d® (z, M) + > |(xles)|” (18.5)
i=1 i=1
and .
d (z, M) = ||2%|| = > [zles) . (18.6)
i=1

Suppose v € H \ {0}, M =span{u}, and 4 := u/ ||u||. Then from Eq. (18.6),
0 < d*(x, M) = ||a°|| = [(@|@)* = [|2*|| = [(2[u)|* / |lul®
from which the Cauchy-Schwarz inequality,
[(zlu)|* < Jl]|* ||

follows. Moreover the proof shows that equality holds iff z € M, i.e. x = Au for
some A € C.

Corollary 18.11. If M C H s a proper closed subspace of a Hilbert space H,
then H =M @ M*.

Proof. If z € M N M~ then z L z, ie. ||z]|* = (z|z) = 0. So M N M+ =
{0}. Given z € H, let m € M be the closest point in M to x in which case
r—méeMt iez=m+(x—m)eM+ M= ]

Definition 18.12 (Orthogonal Projection). H be a Hilbert space and M C
H be a closed subspace. The orthogonal projection of H onto M (denoted
by Pyr) is the projection map associated to the direct sum decomposition, H =
Ma&M?', ie Py (m + mJ‘) =m for allm € M and m* € M. Alternatively
we may describe Py by either, 1) Pyx is the unique element in M closest to
x or 2) Pyx is the unique element in M such that (x — Pyz) L M, i.e. such
that

(x|m) = (Pp(x)|m) for allm € M. (18.7)

Notation 18.13 (Range and Null Space) Given a linear transformation
AV — W, we will let Ran(4) = {AveW:veV} and Nul(4) =
{veV:Av—0€ W} denote the range and the null-space of A respectively.

Theorem 18.14 (Projection Theorem). Let H be a Hilbert space and M C
H be a closed subspace. The orthogonal projection Py satisfies:

1. Pys is linear projection, i.e. P]%/I = Pyy;.
2. Ran(Pys) = M and Nul(Py) = M+.
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3. Py is self-adjoint, i.e. (Pyaly) = (x|Pay) for all z,y € H.
4. If N C M C H is another closed subspace, the Py Py = Py Py = Py
(Smallest subspace wins.)

Proof. Items 1. and 2. are standard facts of any projection associated to a
direct sum decomposition which in our case is H = M & M.
For item 3. Let 2,y € H, then since (x — Pyz) and (y — Pyy) are in M+,

(Pyly) = (Pux|Pyy +y — Puy) = (P Pay)
= (Pyz + (z — Pyz)|Puy) = (2| Ppy)-

Item 4. If N C M C H it is clear that Py, Py = Py since Py; = Id on
N = Ran(Py) C M. To see that Py Py = Py, let z,y € H and use item 3. to
find,

(PN Pyr,y) = (x, Py Pny) = (x, Pny) = (Pyx,y) .

Since this holds for all y € H we conclude that Py Pyxz = Pyx for all x € H.
[

Exercise 18.1. Suppose M is a subset of H, then M*+ = span(M) where (as
usual), span (M) denotes all finite linear combinations of elements from M.

Notation 18.15 IfA: X — Y is a linear operator between two normed spaces,
we let

|| Az|]
Y = sup |lAz], .
cex\{o} 1Zlx  jz =1

[A]l =

We refer to ||All as the operator norm of A and call A a bounded operator if
|A]| < co. We further let L (X,Y) be the set of bounded operators from X to
Y.

Exercise 18.2. Show that a linear operator, A : X — Y, is a bounded iff it is
continuous.

Definition 18.16. Suppose that A : H — H is a bounded operator. The
adjoint of A, denoted A*, is the unique operator A* : H — H such that
(Az|y) = (z|A*y). (The proof that A* exists and is unique will be given in
Proposition below.) A bounded operator A : H — H is self - adjoint or
Hermitian if A = A*.

Theorem 18.17 (Riesz Theorem). Let H* be the dual space of H, i.e. [ €
H* iff f : H— F is linear and continuous. The map

zeH-Ls (|2) € H* (18.8)
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is a conjugate linemﬂ isometric isomorphism, where for f € H* we let,

Wl = sup L@ 17 @)

zeH\{0} ||| lz]|=1

Proof. Let f € H* and M =Nul(f) — a closed proper subspace of H since f
is continuous. If f = 0, then clearly f () = (-|0). If f # 0 there exists y € H\ M.
Then for any o € C we have e := a (y — Pyry) € M*. We now choose a so that
f(e)=1. Hence if z € H,

fla—f(@)e)=f(z)—f(z)f(e)=f(z)—[f(x) =0,

which shows x — f (z)e € M. As e € M~ it follows that

0= (z— f(x)ele) = (zle) = f (x) [le]”

which shows f (-) = (-|z) = jz where z := ¢/ ||e||* and thus j is surjective.
The map j is conjugate linear by the axioms of the inner products. Moreover,
for x,z € H,
[(zl2)] < ||zl ||z]| for all z € H

with equality when « = z. This implies that ||jz[ ;. = ||(:|2)|| z~ = ||2|| . There-
fore j is isometric and this implies j is injective.
]

Proposition 18.18 (Adjoints). Let H and K be Hilbert spaces and A : H —
K be a bounded operator. Then there exists a unique bounded operator A* :
K — H such that

(Azly) g = (x|A*y) g for allx € H and y € K. (18.9)

Moreover, for all A,B € L(H,K) and A € C,

1. (A+AB)" = A* + \B*,

2. A = (A")* = A,

3. A"l = [|All and

4 A" Al = |A].

5.If K = H, then (AB)" = B*A*. In particular A € L(H) has a bounded
inverse iff A* has a bounded inverse and (A*)™' = (A’l)* .

! Recall that j is conjugate linear if

j (21 + CEZQ) = jZl —+ @jZQ

for all 21,22 € H and a € C.
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Proof. For each y € K, the map x — (Ax|y)k is in H* and therefore there
exists, by Theorem a unique vector z € H (we will denote this z by
A* (y)) such that

(Az|y)k = (x|2z)y for all z € H.

This shows there is a unique map A* : K — H such that (Az|y)x = (x| A*(y)) g
forall x € H and y € K.
To see A* is linear, let y1,y2 € K and A € C, then for any = € H,

(Az|yr + M)k = (Azfyr) k + MAz[y2)
= (x| A" (1)) + M| A" (y2)) 1
= (z[A%(y1) + A" (y2)) =

and by the uniqueness of A*(y; + Ay2) we find
A" (1 + Ay2) = A% (y1) + AA™ (y2).

This shows A* is linear and so we will now write A*y instead of A*(y).
Since

(AYlr)m = (z|A*y)m = (Azly)x = (y|Az) K
it follows that A** = A. The assertion that (A + AB)" = A* + AB* is Exercise
LS.

Items 3. and 4. Making use of Schwarz’s inequality (Theorem [18.2)), we
have

[A*| = sup [A"K]
keK:|[k||=1
— sup sup  [(A"K[)]
keK:|[k||=1 he H:||h||=1
= sup sup  [(k|Ah)| = sup [|AR[ = [[A]
heH:||h||=1 ke K:|[k||=1 heH:|[h]|=1

so that ||A*|| = || Al . Since

* * 2
[AZA] < [[A*][ |l = [[Al

and
IAI® = sup [[AR|*= sup [(AB|AR)]
heH:||h||=1 heH:||h||=1
—  sup  |[(WATAR)| < sup [|A*AR| = |A*4|  (18.10)
heH:||h]|=1 heH:||h|=1

we also have ||A*A| < ||A||* < ||A* A which shows ||A|® = ||A*A]|.
Alternatively, from Eq. (18.10]),
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2 * *
[A[I" < A" A]| < [[A][]A" (18.11)
which then implies ||A|| < ||A*||. Replacing A by A* in this last inequality
shows ||A*|| < ||A|l and hence that ||A*|| = ||A]|. Using this identity back in

Eq. (18.11)) proves ||A|]* = || A*A]|.
Now suppose that K = H. Then

(ABh|k) = (Bh|A*k) = (h|B* A™k)
which shows (AB)" = B*A*. If A~! exists then

(A A" = (A4 =I" =1 and
AA Y =AM =r"=1

This shows that A* is invertible and (4*)™' = (A_l)*. Similarly if A* is
invertible then so is A = A**. |

Exercise 18.3. Let H, K, M be Hilbert spaces, A, B € L(H, K), C € L(K, M)
and A € C. Show (A + AB)* = A* + AB* and (CA)" = A*C* € L(M, H).

Exercise 18.4. Let H = C"™ and K = C™ equipped with the usual inner
products, i.e. (z|lw)g = z-w for z,w € H. Let A be an m x n matrix thought of
as a linear operator from H to K. Show the matrix associated to A* : K — H
is the conjugate transpose of A.

Lemma 18.19. Suppose A: H — K is a bounded operator, then:

1. Nul(A4*) = Ran(A)*.

2. Ran(A) = Nul(A4*)*.

3. if K=H and V C H is an A — invariant subspace (i.e. A(V) C V), then
V=L is A* — invariant.

Proof. An element y € K is in Nul(A*) iff 0 = (A*y|z) = (y|Az) for all
x € H which happens iff y € Ran(A)*. Because, by Exercise Ran(A) =
Ran(A)*+, and so by the first item, Ran(A) = Nul(A*)+. Now suppose A(V) C
V and y € V| then

(A*ylx) = (y|Az)y =0forall z € V

which shows A*y € V. [
The next elementary theorem (referred to as the bounded linear transfor-
mation theorem, or B.L.T. theorem for short) is often useful.

Theorem 18.20 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach space, and S C Z is a dense linear subspace of Z. If T : S — X is a
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bounded linear transformation (i.e. there exists C' < oo such that | Tz|| < C'| z||
for all z € 8), then T has a unique extension to an element T € L(Z,X) and
this extension still satisfies

|Tz|| < Clz|| for all z € S.
Proof. Let z € Z and choose z, € S such that 2z, — z. Since
ITzm — Tzn|| < Cllzm — 2zn|| — 0 as m,n — oo,

it follows by the completeness of X that lim, .., Tz, =: Tz exists. Moreover,
if w, € § is another sequence converging to z, then

T2 — Twn|| < Cllzn —wn| = Cllz =2 =0

and therefore Tz is well defined. It is now a simple matter to check that T :
Z — X is still linear and that

|Tz|| = lim [|Tz,] < lim C||z,| = C|z| for all z € Z.
n—oo n—oo

Thus T is an extension of T to all of the Z. The uniqueness of this extension is
easy to prove and will be left to the reader. [

18.1 Compactness Results for LP — Spaces™

In this section we are going to identify the sequentially “weak” compact subsets
of LP (§2,B, P) for 1 < p < oo, where ({2, B, P) is a probability space. The key
to our proofs will be the following Hilbert space compactness result.

Theorem 18.21. Suppose {mn}zozl is a bounded sequence in a Hilbert space H
(i.e. C :=sup, ||z,| < 00), then there exists a sub-sequence, yy := Tp, and an
x € H such that limg_,o (yx|h) = (x|h) for all h € H. We say that yj converges
to x weakly in this case and denote this by y, — .

Proof. Let Hy := span(zy, : k € N). Then Hy is a closed separable Hilbert
subspace of H and {zy},.,; C Hy. Let {h,,},~; be a countable dense subset of
Hy. Since [{zg|hy)| < ||lzk || |hn ]l < C ||hy|| < oo, the sequence, {(@k|hn)}re, C
C, is bounded and hence has a convergent sub-sequence for all n € N. By the
Cantor’s diagonalization argument we can find a a sub-sequence, yi := xy, , of
{zy} such that limg_,o (yx|hn) exists for all n € N.

We now show ¢ (2) := limy_,00 (Y |2) exists for all z € Hy. Indeed, for any
k,l,n € N, we have
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Hyklz) — (wil2)| = uke — wil2)] <y — vilha)) + [y — wilz — I |
< Hyr — vilhn)| +2C ||z — ho |-

Letting k£, — oo in this estimate then shows

limsup [(yx|2) — (wi]2)] < 2C ||z = |-

k,l—o00

Since we may choose n € N such that ||z — k|| is as small as we please, we may
conclude that limsup,, ;.. [(yx|2) — (v1]2)], i.e. ¢ (2) := limg 00 (yr|2) exists.

The function, @ (z) = limg_ o (2|yx) is a bounded linear functional on H
because

| (2)] = liminf [(z|yy)| < Cl=]]-
e el

Therefore by the Riesz Theorem [18.17] there exists © € Hy such that @ (z) =
(z|x) for all z € Hy. Thus, for this € Hy we have shown

klim (yk|z) = (z|z) for all z € Hy. (18.12)
—00

To finish the proof we need only observe that Eq. (18.12)) is valid for all
z € H. Indeed if z € H, then z = 29 + z; where 290 = Py,z € Hy and 2z, =
z — Pp,z € Hy . Since yi, x € Hy, we have

lim (yrlz) = lim (yx|z0) = (x|20) = (z|z) for all z € H.
k—o0 k—o0
(]
Since unbounded subsets of H are clearly not sequentially weakly compact,
Theorem [I8.21]states that a set is sequentially precompact in H iff it is bounded.
Let us now use Theorem [I8:2]] to identify the sequentially compact subsets of
L (£2,B, P) for all 1 < p < oco. We begin with the case p = 1.

Theorem 18.22. If {X,,},~, is a uniformly integrable subset of L* (2,8, P),
there ezists a subsequence Yy, := X,,, of {X,},—, and X € L' (£2,B, P) such
that

klim E[Yih] =E[XRh] for all h € By. (18.13)
—00
Proof. For each m € N let X" := X, 1|x, |<m- The truncated sequence

{Xm}>° | is a bounded subset of the Hilbert space, L? (£2, B, P) , for all m € N.
Therefore by Theorem [18.21} {Xﬁl}zozl has a weakly convergent sub-sequence
for all m € N. By Cantor’s diagonalization argument, we can find Y;* := X"

and X™ € L? ({2, B, P) such that Y;™ X X™ as m — oo and in particular

lim E[Y{"h] = E[X™}] for all h € By.
—00
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Our next goal is to show X™ — X in L (£2, B, P). To this end, for m < M
and h € B, we have

B [(X™ = X™) p]| = Jim |E[(V;" = ¥") B <liminf B [[Y;" = Y[ [A]
< bl - Bmint E(Vi] M > Y] >

< ] -l inf B [[¥i] : [Y] > m).

Taking h = sgn(XM — X™) in this inequality shows
E[| X — X™|] < liminfE[|Yy| : [Vi| > m]
k—o0
with the right member of this inequality going to zero as m, M — oo with
M > m by the assumed uniform integrability of the {X,}. Therefore there

exists X € L' (£2, B, P) such that lim,, o, E|X — X™| = 0.
We are now ready to verify Eq. ((18.13) is valid. For h € B,

[E[(X —Yy) Al < [E[(X™ = ¥") B[ + [E[(X — X™) B][ + [E[(Yx — ¥}™) A

< EX™ = YE") Al + 7]l - (B[X = X[+ E[[Yx] : [Ya| > m])

< E[(X™ — V) ) + ]l - (E[X - X7+ supE il Y] > m]) |

Passing to the limit as £ — oo in the above inequality shows

imsup[ECX ~ ) ] < [l (B X = X"+ supE Vi ] > ] )
k—o0 l

Since X™ — X in L! and sup, E[|Y}| : |Y;| > m] — 0 by uniform integrability,

it follows that, limsup,_, . |[E[(X — Y%) h]| = 0. |

Ezample 18.23. Let (2,8, P) = ((O7 1), Bo,1), m) where m is Lebesgue measure
and let X, (w) = 2"1p~,<9-n. Then EX,, = 1 for all n and hence {X,} -, is
bounded in L! (£2, B, P) (but is not uniformly integrable). Suppose for sake of
contradiction that there existed X € L' (2, B, P) and subsequence, Y} := X,,,
such that Y3, = X. Then for h € By, and any € > 0 we would have

E[Xhl. ] = Jim B [Yihl 1] =0.

Then by DCT it would follow that E[Xh] = 0 for all h € B, and hence that
X = 0. On the other hand we would also have

0=E[X-1]= lim E[Y;-1] =1

k— o0

and we have reached the desired contradiction. Hence we must conclude that
bounded subset of L! (£2, B, P) need not be weakly compact and thus we can
not drop the uniform integrability assumption made in Theorem [I8:22]
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When 1 < p < 0o, the situation is simpler.
Theorem 18.24. Let p € (1,00) and ¢ =p(p — 1)71 € (1,00) be its conjugate

exponent. If {X,} 2 | is a bounded sequence in LP (£2,B, P), there exists X €
L? (2,8, P) and a subsequence Yy, := X,,, of {X,,},—, such that

lim E[Yih] = E[Xh] for all h € L9 (2,8, P). (18.14)

k—o0

Proof. Let C' := sup,cy[|Xn|, < co and recall that Lemma guar-
antees that {X,} 7, is a uniformly integrable subset of L' (£2, B, P). There-
fore by Theorem there exists X € L' (2,B,P) and a subsequence,
Y. := X, , such that Eq. holds. We will complete the proof by showing;
a) X € L? (§2,B, P) and b) and Eq. is valid.

a) For h € B, we have

£ [XH]| < liminf B[] < limint [, - 4], < C A1
For M < oo, taking h = sgn(X) |X|’F1 1) x)<n in the previous inequality shows
E[IX]" 1xj<u] < € [[sen(X) X7 1|X\sMHq

_ 1/q
=C (]E [|X|(p D 1\X|§MD <C(E[XP 1x<ar))
from which it follows that
(E[IXP xen]) " < (B [XP 1xi<u]) T < €

Using the monotone convergence theorem, we may let M — oo in this equation
to find | X[, = (E[X]")"/" < C < oo.

b) Now that we know X € LP(£2,B,P), in make sense to consider
E[(X —Yy)h] for all h € L? (2, B, P) . For M < oo, let h™ := hlj,j<pr, then

[E[(X = Yi) hl| < [E[(X = Yi) b] | + [E [(X = Yi) ALy
< |E[(X = Ya) AM]| + X = Yall, [[hL s ],
< |E [(X = Ya) hM][ +2C ||l a ], -
Since h™ € By, we may pass to the limit & — oo in the previous inequality to

find,
limsup |E [(X — Y%) h]| < 2C ||h1‘h|>MHq.

k—oco

This completes the proof, since th\h\>MHq — 0 as M — oo by DCT. [
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18.2 Exercises

Exercise 18.5. Suppose that {M,,} 7, is an increasing sequence of closed sub-
spaces of a Hilbert space, H. Let M be the closure of My := U5, M,,. Show
limy, 00 Prr, x = Py for all x € H. Hint: first prove this for x € My and then
for x € M. Also consider the case where z € M.

Exercise 18.6 (A “Martingale” Convergence Theorem). Suppose that
{M,},7_, is an increasing sequence of closed subspaces of a Hilbert space, H,
P, := Py, and {x,},_, is a sequence of elements from H such that z, =
Pz, 41 for all n € N. Show;

1. Phx, =x, foralll <m <n < oo,

2. (xy, — ) L M, for all n > m,

3. ||zn] is increasing as n increases,

4. if sup,, [|zn]| = limp—eo ||2n|| < oo, then z = lim,_,o =, exists in M and
that x, = P,z for all n € N. (Hint: show {z,},-  is a Cauchy sequence.)

Remark 18.25. Let H = ¢? := L? (N, counting measure),
M, ={(a(1),...,a(n),0,0,...):a(i) € Clor 1 <i<n},

and z, (i) = l;<p, then x,, = Py, for all n > m while chn”2 =n 7T oo as
n — oo. Thus, we can not drop the assumption that sup,, ||, || < co in Exercise
LS. 6

The rest of this section may be safely skipped.

Exercise 18.7. *Suppose that (X, ||-||) is a normed space such that parallelo-
gram law, Eq. , holds for all z,y € X, then there exists a unique inner
product on (-|-) such that ||| := /(z|z) for all z € X. In this case we say that
[I]| is a Hilbertian norm.



19

Conditional Expectation

In this section let (£2,8, P) be a probability space and G C B be a sub —
sigma algebra of B. We will write f € G iff f : {2 — C is bounded and f is
(G, Bc) — measurable. If A € B and P (A) > 0, we will let

E[X : 4]
P (4)

P(ANB)

E[X|A] := P A)

and P (B|A) :=E[1p|4] :=
for all integrable random variables, X, and B € B. We will often use the fac-
torization Lemma [0.42]in this section. Because of this let us repeat it here.

Lemma 19.1. Suppose that (Y,F) is a measurable space and Y :—=Yisa
map. Then to every (o(Y),Bg) — measurable function, H : §2 — R, there is a
(F,Bg) — measurable function h: Y — R such that H=hoY.

Proof. First suppose that H = 14 where A € o(Y) =Y 1(F). Let B€ F
such that A = Y~}(B) then 14 = ly-1py = 1p oY and hence the lemma
is valid in this case with h = 1. More generally if H = 3" a;14, is a simple
function, then there exists B; € F such that 14, = 1p,0Y and hence H = hoY
with h := 3" a;1p, — a simple function on R.

For a general (F, Bg) — measurable function, H, from {2 — R, choose simple
functions H,, converging to H. Let h,, : Y — R be simple functions such that
H, = h, oY. Then it follows that

H = lim H, =limsup H,, =limsuph, oY =hoY
n—0o0 n—oo n—00

where h := limsup h,, — a measurable function from Y to R. [
n—o0

Definition 19.2 (L? — Conditional Expectation). Let Eg : L?(£2,B, P) —
L?(02,G, P) denote orthogonal projection of L*(§2,B,P) onto the closed sub-
space L*(£2,G, P). For f € L?(£2,B, P), we say that Egf € L*(£2,G, P) is the
conditional expectation of [ given G.

Remark 19.3 (Basic Properties of Eg). Some remarks on this definition are in
order. Let f € L2(02,B, P).

1. We are identifying L?(§2, G, P) with its image,

M = {[g]L2(Q7B7P) 1g € LQ(_Q’gvp)},

in L2(£2, B, P). From Lemma we know that M is a closed subspace
of L2(2,B, P).

2. Thus given f € L2(£2,B, P), we may compute the orthogonal projection
(Theorem onto M, Pur [flr20,5.p)s f [flr2(0,8p)- By definition
of M, Pr [flr2(0.5.p) = [Fli2(0,g,p) for some F € L%(2,G, P) which is
uniquely determined up to sets of measure 0. We will usually abuse notation
and write F' = Eg f when this holds. [Please note: in general for any fixed
w e 2, (Egf) (w) is not well defined unless P ({w}) > 0. It is only then that
one can guarantee that F (w) = F (w) if F = F a.s.]

3. By the orthogonal projection Theorem we know that F' € L?(02,G, P)
is Egf a.s. iff either of the following two conditions hold;

a) |lf = Flly < |If —gll, for all g € L?(£2,G, P) or
b) E[fh] = E[Fh] for all h € L%(£2,G, P).

4. L' (P) — contractivity: E|Egf| < E|f| for all f € L*(£2,B, P). To prove
this, let ' := Egf (i.e. F is a version of Eg f) and take h := 1p_4oL in item
3b. above to find;

EUF] = |Firpg| =EIfA] <ELfA] <EIA).

5. Moreover if Go C G; C B then L?(§2,Gy, P) C L?(£2,G1, P) C L?(2,B, P)
and therefore by Theorem [18.14]

Eg,Eg, f = Eg,Eg, f = Eg, f as. for all f € L? (22,8, P). (19.1)

Lemma 19.4. If f € L2(£2,B, P) and F € L?(£2,G, P) then the following are
equivalent;

E[f: A|=E[F: A] forall A€ g, (19.2)
E[fh] =E[Fh] for allh € G, and (19.3)
F=Egf a.s.

Proof. If Eq. (19.2)) holds, then by linearity we have E [fh] = E [Fh] for all
G — measurable simple functions, h and hence by the approximation Theorem

and the DCT for all h € G,,. Therefore Eq. (19.2)) implies Eq. (19.3). If Eq.
(19.3) holds and h € L%(£2,G, P), we may use DCT to show
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. 119.3) .
E[fh] =" lim E [fhlp<,] =" lim E[Fhlj<n] "< E[FA],

by Condition 3b of Remark [19.3| shows F' = Egf a.s.. Taking h = 14 with
A € G Condition 3b. or Remark [19.3] we learn that Eq. (19.2) is satisfied as
well. ]
Let us record the following special cases of Lemmas [10.24] and [10.25] which
will be useful in the proofs below.

Lemma 19.5. Let f, g € L*(£2,B, P) be real valued functions then the following
are equivalent;

1. f <g a.s.
2.E[fh] <Elgh] for all0 < h € B,.
3.E[f:Al<E[g:A] forall A€ B.

Moreover, the same results hold under the hypothesis that f,g : £2 — [0, 0]
are measurable functions.

Proof. It is clear that 1. = 2. = 3. and so it suffices to show 3. = 1.
To this end let X = g— f and note that we are given E[X : A] > 0 for all A € B.
Taking A = 1x ¢ in this equation implies,

and so
0= —E[Xlx<0} :E[‘Xllx<0] — ‘Xllx<0 =0 a.s.

and this implies P (X < 0) =0, ie. X =g— f >0 a.s.
To prove the “moreover” assertion it again suffices to show 3. =— 1.
Letting A = {g < n} it follows that

E[flig<n] SE[gligen] <n<oo

and so flgy<pny and glgy<, are in L'. Now taking A = {g < n}NB with B € B
we also have
E [.fl{ggn} : B] <E [gl{ggn} : B] VBeB

and so by what we have just proved, fli,<,} < gl{y<,} a.s. Letting n — oo
in this equation shows fl(;co) < gl{y<oo} a.s.. This completes the proof since
on the set {g = oo} we certainly have f < oo =g. (]

Theorem 19.6. Let (£2, B, P) and G C B be as above and let f,g € L'(£2, B, P).
The operator Bg : L*(2, B, P) — L?(02,G, P) extends uniquely to a linear con-
traction from L'(2,B, P) to L*(£2,G, P). This extension enjoys the following
properties;
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LIff>0,P —a.s thenEgf >0, P — a.s.

. Monotonicity. If f > g, P — a.s. there Egf > Egg, P — a.s.

. L — contraction property. |Egf| <Eg|f|, P — a.s.

. Averaging Property. If f € LY (Q2,B,P) then F = Egf iff F €
LY(2,G,P) and

Bl WO DO~

E(Fh) = E(fh) for all h € G,. (19.4)

5. Pull out property or product rule. If g € G, and f € L*(£2,B, P), then

Eg(gf) =g ']nga P -as.
6. Tower or smoothing property. If Go C G C B. Then

Eg,Eg, f = Eg,Eg, f = Eg, f a.s. for all f € L* (2,8, P). (19.5)
Proof. By the definition of orthogonal projection, f € L?(§2,B, P) and
h e gb)
E(fh) = E(f -Egh) = E(Eg - h). (19.6)
Taking
——F _ Egf
h =sgn(Egf) := @1|ng|>0 (19.7)

in Eq. shows
E([Egf|) = E(Egf - h) = E(fh) < E(|fh]) < E(|f])- (19.8)

It follows from this equation and the BLT (Theorem that Eg extends
uniquely to a contraction form L!(§2, B, P) to L'(£2,G, P). Moreover, by a sim-
ple limiting argument, Eq. remains valid for all f € L' (£2,B,P) and
h € Gp. Indeed, (without reference to Theorem it fn = flifj<n €
L?(2,B,P), then f, — f in L'(£2,B, P) and hence

E[|Eg fn — Egfnll = E[|Eg (fn — fu)] S E[|fn — full = 0 as m,n — oco.

By the completeness of L'(£2,G,P), F := L'(£2,G, P)-lim,_,o, Egf, exists.
Moreover the function F' satisfies,

E(F-h) = E( lim Egf,-h) = lim B(fy-h) =E(f - h) (19.9)

for all h € G, and by Proposition there is at most one, F € L'(£2,G, P),
which satisfies Eq. (19.9). We will again denote F' by Egf. This proves the
existence and uniqueness of F' satisfying the defining relation in Eq. of
item 4. The same argument used in Eq. again shows E|F| < E|f| and
therefore that Eg : L' (2,8, P) — L' (2,G, P) is a contraction.

We now prove the remaining items in turn.

date/time: 25-Feb-2019/8:12
