
1

Summary: Weak Convergence of Random Sums

• For each n ∈ N, let {Xn,k}nk=1 be independent random variables and let

Sn :=

n∑
k=1

Xn,k and (1.1)

fnk (λ) := E
[
eiλXn,k

]
(characteristic function of Xn,k). (1.2)

• The goal of this chapter is to discuss some of the possible weak limits of
such {Sn}∞.n=1 under various conditions.

1.1 I.I.D. Sums

Definition 1.1. A probability distribution, µ, on (R,BR) is infinitely di-
visible iff for all n ∈ N there exists i.i.d. nondegenerate random variables,

{Xn,k}nk=1 , such that Xn,1 + · · ·+Xn,n
d
= µ.

The previous definition may also be formulated as;

1. For all n ∈ N there should exists a non-degenerate probability measure, µn,
on (R,BR) such that µ∗nn = µ.

2. For all n ∈ N, µ̂ (λ) = [gn (λ)]
n

for some non-constant characteristic func-
tion, gn.

Example 1.2. The normal and Poisson distributions are infinitely divisible. Lin-
ear combination of independent infinitely divisible random variables is again
infinitely divisible. All of the distributions you found in Exercise ?? are in-
finitely divisible. If µ is infinitely divisible, then µ

Example 1.3. If µ ({−1}) = 1
2 = µ ({1}) , then µ̂ (λ) = cosλ. If µ were infinitely

divisible there would exists fn (λ) = µ̂n (λ) such that cosλ = fn (λ) . But in

particular this would imply, f2 (λ)
2

= cosλ which would imply f2 (λ) is smooth
and differentiating this equation gives,

− sinλ = 2f2 (λ) f ′2 (λ) =⇒ f ′2 (λ) =
− sinλ

2f2 (λ)
=
− sinλ

±2
√

cosλ

which is not smooth. Similarly, if dµ (x) = 1
21[−1,1] (x) dx then µ̂ (λ) = sinλ

λ is
not infinitely divisible.

Exercise 1.1. Suppose n ∈ N, {Xj}nj=1 are i.i.d. random variables, and Z =

X1 + · · ·+Xn. If Λ ⊂ [0,∞) is a countable or finite set such that P (Z ∈ Λ) = 1
and P (Z = 0) > 0 (this implies 0 ∈ Λ), show P (X1 ∈ Λ) = 1.

Corollary 1.4. Suppose Λ ⊂ [0,∞) is a finite set such that 0 ∈ Λ and # (Λ) ≥
2. If µ ∈ P (R) is supported on Λ, i.e. µ (Λ) = 1 and µ ({λ}) > 0 for all λ ∈ Λ,
then µ is not infinitely divisible. Thus no finitely supported random variable is
infinitely divisible.

Proof. If µ is n-divisible, then there exists {Xj}nj=1 i.i.d. random variables
such that Z = X1 + · · ·+Xn is distributed according to µ. By Exercise 1.1 we
know that there eixsts Λn ⊂ Λ such that P (X1 ∈ Λn) = 1. Moreover, we must
have 0 ∈ Λn for otherwise P (Z > 0) = µ ({0}) = 0. We also must have

nΛn ⊂
n times︷ ︸︸ ︷

Λn + · · ·+ Λn ⊂ Λ.

For large enough n this is only possible if Λn = {0} in which case Xj = 0
a.s. and hence Z = 0 a.s. But this contradicts # (Λ) ≥ 2. Hence µ can not be
inifinitely divisible.

Notation 1.5 For x, λ ∈ R, let

β (λ, x) :=
eiλx − 1− iλx

x2
= −λ

2

2

∫ 1

0

eitλx2 (1− t) dt

where the second equality comes from Taylor’s theorem applied to eiλx. We
extend β (λ, ·) to R̄ by setting β (λ,±∞) = 0.

Example 1.6 (Exercise ??). Recall from Exercise ??, if ν is any finite measure
(R,BR) , there exists a (necessarily unique) probability measure µ on (R,BR)
such that µ̂ = eψ where

ψ (λ) =

∫
R

eiλx − 1− iλx
x2

dν (x) =

∫
R
β (λ, x) dν (x) . (1.3)

By replacing ν by 1
nν, there exists a probability measure, µn, so that µ̂n = e

1
nψ

and so µ = µ∗nn which shows µ is infinitely divisible.
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Lemma 1.7. If X is a random variable such E
[
eiλX

]
= f (λ) = eψ(λ) with ψ

as in Eq. (1.3), then E
[
X2
]

= ν (R) <∞ and EX = 0.

Proof. The function β (λ, x) is a smooth function of (λ, x) ∈ R2 and by
direct calculation (first for x 6= 0 and then for all x by continuity) we find,

βλ (λ, x) = i
eiλx − 1

x
= −λ

∫ 1

0

eitλxdt and

βλ,λ (λ, x) = −eiλx.

Therefore, since ν is a finite measure and we may differentiate past the integral
twice to find,

ψ′ (λ) =

∫
R
i
eiλx − 1

x
dν (x) and ψ′′ (λ) = −

∫
R
eiλxdν (x)

and the evaluating at λ = 0 shows

ψ′ (0) = 0 and ψ′′ (0) = −ν (R) .

It now follows from Theorem ?? that E
[
X2
]
<∞. Since one one hand,

f ′ = ψ′f, f ′′ = (ψ′)
2
f + ψ′′f,

f ′ (0) = 0, and f ′′ (0) = −ν (R) ,

and while on the other hand,

f ′ (λ) = E
[
iXeiλX

]
and f ′′ (λ) = −E

[
X2eiλX

]
,

it follows that EX = 0 and E
[
X2
]

= ν (R) .

Theorem 1.8 (Lévy Kintchine formula). A probability measure µ on
(R,BR) is infinitely divisible iff µ̂ (λ) = eψ(λ) where

ψ (λ) = iλb− 1

2
aλ2 +

∫
R\{0}

(
eiλx − 1− iλx · 1|x|≤1

)
dν (x) (1.4)

for some b ∈ R, a ≥ 0, and some measure ν on R \ {0} such that∫
R\{0}

(
x2 ∧ 1

)
dν (x) <∞. (1.5)

[Note that the term − 1
2aλ

2 in Eq. (1.4) the logarithm of the characteristic func-
tion of N (0,

√
a) .]

Theorem 1.9. Suppose that µ is a probability measure on (R,BR) and
Law (X) = µ. Then µ is infinitely divisible iff there exits an array,
{Xn,k : 1 ≤ k ≤ mn} with {Xn,k}mn

k=1 being i.i.d. such that
∑mn

k=1Xn,k =⇒ X
and mn ↑ ∞ as n→∞.

Proof. The only non-trivial direction is (⇐=) . I will only prove the special
case where mn = n. [See Kallenberg [?, Lemma 15.13, p. 294] for the needed
result involving the tail bounds needed to cover the full case. ]

Fix a k ∈ N. Then for n ∈ N we we decompose Snk into k i.i.d. summands{
Sin
}k
i=1

by

Snk =

nk∑
k=1

Xnk,k =

k∑
i=1

Sin,

where

Sin =

ki∑
j=k(i−1)+1

Xnk,j .

Since Snk =⇒ X as n → ∞ we know that {Snk}∞n=1 is tight and there exists
ε (r) ↓ 0 as r ↑ ∞ such that

sup
n∈N

P (|Snk| > r) ≤ ε (r) .

By independence,

P
(
S1
n > r

)k
= P

(
Sin > r for 1 ≤ i ≤ k

)
≤ P (Snk > kr) ≤ P (|Snk| > kr) ≤ ε (kr)

and similarly,

P
(
−S1

n > r
)k

= P
(
−Sin > r for 1 ≤ i ≤ k

)
≤ P (−Snk > kr) ≤ P (|Snk| > kr) ≤ ε (kr) .

Together this shows P
(∣∣S1

n

∣∣ > r
)
≤ 2ε (kr) → 0 as r ↑ ∞ which shows that{

S1
n

}∞
n=1

has tight distributions as well.

Thus there exists a subsequence {nl} such that S1
nl

=⇒ Y as l → ∞. Let

{Yi}ki=1 be i.i.d. random variables with Yi
d
= Y. Then by Exercise ?? it follows

that

Sknl
=

k∑
i=1

Sinl
=⇒ Y1 + . . . Yk

from which we conclude that X
d
= Y1 + · · ·+ Yk. Since k was arbitrary we have

shown X is infinitely divisible.
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1.2 Independent but not identical summands

• We now no longer assume that the {Xn,k}nk=1 are identically distributed.
• We do introduce normalization conditions (see Assumption 1 below).
• We will also impose conditions so that no one term, Xn,k “dominates” the

sum,
∑n
k=1Xn,k.

Assumption 1 (Normalizations) Assume E [Xn,k] = 0, σ2
n,k = E

[
X2
n,k

]
<

∞, and Var (Sn) =
∑n
k=1 σ

2
n,k = 1.

Definition 1.10 (No One Dominator Conditions). Let {Xn,k} be as above.

(LiC) {Xn,k}nk=1 satisfy the Liapunov condition (LiapC) iff

lim
n→∞

n∑
k=1

E |Xn,k|α = 0 for some α > 2. (1.6)

(LC) {Xn,k} satisfies the Lindeberg Condition (LC) iff

lim
n→∞

n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
= 0 for all t > 0. (1.7)

[Since
∑n
k=1 E

[
X2
n,k : |Xn,k| > t

]
is a decreasing function of t it suffices to

check (LC) along any sequence of {tl} with tl ↓ 0.]
(M) {Xn,k} satisfies condition (M) if

Dn := max
{
σ2
n,k = Var (Xn,k) : k ≤ n

}
→ 0 as n→∞. (1.8)

(UAN) {Xn,k} is uniformly asymptotic negligibility (UAN) if for all ε > 0,

lim
n→∞

max
k≤n

P (|Xn,k| > ε) = 0. (1.9)

*Can ignore this condition in the summary.

Each of these conditions imposes constraints on the size of the tails of the
{Xn,k} , see Lemma 1.12 below where it is shown (LC) =⇒ (M) =⇒ (UAN) .
Condition (M) asserts that all of the terms in the sum

∑n
k=1 σ

2
n,k = Var (Sn) =

1 are small so that no one term is contributing by itself. Since σ2
n,k = E

[
X2
n,k

]
,

if t > 0, then

0 ≤ σ2
n,k − E

[
X2
n,k : |Xn,k| ≤ t

]
= E

[
X2
n,k : |Xn,k| > t

]
and so (LC) condition is equivalent to

lim
n→∞

n∑
k=1

(
σ2
n,k − E

[
X2
n,k : |Xn,k| ≤ t

])
= 0. ((LC’))

Thus the variance of Xn,k has to be coming with high probability from small
fluctuations around 0 rather than from large fluctuations happening with low
probability.

Lemma 1.11. Let {Xn,k}nk=1 for n ∈ N be as in Assumption 1. Then
(LiapC) =⇒ (LC) holds. More generally, if {Xn,k} satisfies the Liapunov
condition,

lim
n→∞

n∑
k=1

E
[
X2
n,kϕ (|Xn,k|)

]
= 0

where ϕ : [0,∞) → [0,∞) is a non-decreasing function such that ϕ (t) > 0 for
all t > 0, then {Xn,k} satisfies (LC) .

Proof. We prove the generalization here;

n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
≤

n∑
k=1

E
[
X2
n,k

ϕ (|Xn,k|)
ϕ (t)

: |Xn,k| > t

]

≤ 1

ϕ (t)

n∑
k=1

E
[
X2
n,kϕ (|Xn,k|)

]
→ 0 as n→∞.

Lemma 1.12. Let {Xn,k : 1 ≤ k ≤ n <∞} be as above, then (LiapC) =⇒
(LC) =⇒ (M) =⇒ (UAN) . Moreover the Lindeberg Condition (LC) implies
the following strong form of (UAN) ,

n∑
k=1

P (|Xn,k| > ε) ≤ 1

ε2

n∑
k=1

E
[
|Xn,k|2 : |Xn,k| > ε

]
→ 0. (1.10)

1.2.1 Limits under (LC)

Theorem 1.13 (Lindeberg-Feller CLT (I)). Suppose {Xn,k} satisfies (LC)
and the hypothesis in Assumption 1, then

Sn =⇒ N (0, 1) . (1.11)

Conversely, if {Xn,k} satisfies (M) and Sn =⇒ N (0, 1) (i.e. the central limit
theorem in Eq. (1.11) holds), then {Xn,k} satisfies (LC) . So under condition
(M) , Sn converges to a normal random variable iff (LC) holds.
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Notation 1.14 For x, λ ∈ R, let

β (λ, x) :=
eiλx − 1− iλx

x2
= −λ

2

2

∫ 1

0

eitλx2 (1− t) dt (1.12)

where the second equality comes from Taylor’s theorem applied to eiλx. We
extend β (λ, ·) to R̄ by setting β (λ,±∞) = 0.

1.2.2 Limits under (M)

Theorem 1.15 (Limits under (M)). Suppose {Xn,k}nk=1 satisfy property
(M) and the normalizations in Assumption 1. If Sn :=

∑n
k=1Xn,k =⇒ L

for some random variable L, then

fL (λ) := E
[
eiλL

]
= exp

(∫
R
β (λ, x) dν (x)

)
(1.13)

for some finite positive measure, ν, on (R,BR) with ν (R) ≤ 1.

Proof. Let µn,k := P ◦X−1
n,k is the law of Xn,k, fn,k (λ) = E

[
eiλXn,k

]
, and

use E [Xn,k] = 0 to write,

ϕn,k (λ) = fn,k (λ)− 1 = E
[
eiλXn,k − 1

]
= E

[
eiλXn,k − 1− iλXn,k

]
=

∫
R

(
eiλx − 1− iλx

)
dµn,k (x) ∼ −λ

2

2

∫
R
x2dµn,k (x) = −λ

2

2
σ2
n,k.

So under condition (M) we expect ϕn,k (λ) to be small for large n which sug-
gests,1

fSn
(λ) = E

[
eiλSn

]
=

n∏
k=1

fn,k (λ) =

n∏
k=1

(1 + ϕn,k (λ))

∼=
n∏
k=1

eϕn,k(λ) = exp

(
n∑
k=1

ϕn,k (λ)

)
. (1.15)

If we let ν∗n :=
∑n
k=1 µn,k, then

1 This is in fact correct, since Lemma 1.21 indeed implies

lim
n→∞

[
E
[
eiλSn

]
− exp

(
n∑
k=1

(fn,k (λ)− 1)

)]
= 0. (1.14)

n∑
k=1

ϕn,k (λ) =

n∑
k=1

∫
R

(
eiλx − 1− iλx

)
dµn,k (x)

=

∫
R\{0}

(
eiλx − 1− iλx

)
dν∗n (x) .

The measure ν∗n satisfies,∫
R
x2dν∗n (x) =

n∑
k=1

∫
R
x2dµn,k (x) =

n∑
k=1

σ2
n,k = 1

and so if we define dνn (x) := x2dν∗n (x) , then νn is a probability measure and
we find,

n∑
k=1

ϕn,k (λ) =

∫
R\{0}

β (λ, x) dνn (x) =

∫
R
β (λ, x) dνn (x)

and so we expect,

fL (λ) = lim
n→∞

fSn (λ) = E
[
eiλSn

]
= lim
n→∞

exp

(∫
R̄
β (λ, x) dνn (x)

)
.

The measure {νn}∞n=1 are (automatically) tight on R̄ and so by passing to a
subsequence if necessary we can assert that νn =⇒ ν̄ on R̄ (we may loose some
mass to ±∞) and therefore this leads to

fL (λ) = exp

(∫
R̄
β (λ, x) dν̄ (x)

)
= exp

(∫
R
β (λ, x) dν̄ (x)

)
.

In the last equality we have used β (λ,±∞) = 0. The result is now complete by
letting ν = ν̄|BR . The measure ν now satisfies, ν (R) = ν̄ (R) ≤ ν̄

(
R̄
)

= 1.
We can replace the normalization assumption that Var (Sn) = 1 for all n

and replace it with the following property.

Definition 1.16. We say that {Xn,k}nk=1 has bounded variation (BV ) iff

sup
n

Var (Sn) = sup
n

n∑
k=1

σ2
n,k <∞. (1.16)

Corollary 1.17 (Limits under (BV )). Suppose {Xn,k}nk=1 are independent
mean zero random variables for each n which satisfy properties (M) and (BV ) .
If Sn :=

∑n
k=1Xn,k =⇒ L for some random variable L, then

fL (λ) = exp

(∫
R
β (λ, x) dν (x)

)
(1.17)

where ν – is a finite positive measure on (R,BR) . [Note that f ′L (0) = 0 so that
EL = 0.]
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Remark 1.18 (L is inifinitely divisible). The limit L in Corollary 1.17 is infinitely
divisible. [This is obvious as

µ̂k (λ) := exp

(
1

k

∫
R

eiλx − 1− iλx
x2

dν (x)

)
= exp

(∫
R

eiλx − 1− iλx
x2

d
(ν
k

)
(x)

)
defines a probability measure such that µ∗kk = Law (L) .] Here is another check
though; fL (λ) = eψ(λ) where

ψ (λ) = iλb− 1

2
aλ2 +

∫
R\{0}

(
eiλx − 1− iλx · 1|x|≤1

)
dν̃ (x) ,

dν̃ (x) =
1

x2
1|x|>0dν (x) , a = ν ({0}) and b = −

∫
|x|≥1

xdν̃ (x) .

Theorem 1.19 (A Poisson Limit Theorem). For each n ∈ N, let {Yn,k}nk=1
be independent Bernoulli random variables with P (Yn,k = 1) = pn,k and
P (Yn,k = 0) = qn,k := 1− pn,k. Suppose;

1. limn→∞
∑n
k=1 pn,k = a ∈ (0,∞) and

2. limn→∞max1≤k≤n pn,k = 0. (So no one term is dominating the sums in
item 1.)

Then Sn =
∑n
k=1 Yn,k =⇒ Z where Z is a Poisson random variable with

mean a. (See [?, Section 2.6] for more on this theorem.)

Proof. Let Zn
d
= Poi (

∑n
k=1 pn,k) , then by the law of rare events in Theo-

rem ??, we know that

dTV (Zn, Sn) ≤
n∑
k=1

p2
n,k ≤ max

1≤k≤n
pn,k ·

n∑
k=1

pn,k.

From the assumptions it follows that limn→∞ dTV (Zn, Sn) = 0 and from
part 3. of Exercise ?? we know that limn→∞ dTV (Zn, Z) = 0. Therefore,
limn→∞ dTV (Z, Sn) = 0 and this proves Sn =⇒ Z.

Exercise 1.2. This problem uses the same notation and assumptions as
in Theorem 1.19 and in particular {Yn,k}nk=1 be independent Bernoulli random
variables with P (Yn,k = 1) = pn,k and P (Yn,k = 0) = qn,k := 1 − pn,k. Let
Xn,k := Yn,k − pn,k. Show;

1. Explain why S̄n =
∑n
k=1Xn,k =⇒ L := Z − a where a =

limn→∞
∑n
k=1 pn,k and Z is a is a Poisson random variable with mean a as

in Theorem 1.19

2. Show directly that {Xn,k}nk=1 does not satisfy the Lindeberg condition
(LC) .

3. Show {Xn,k}nk=1 satisfy condition (M) , i.e. that sup1≤k≤n EX2
n,k = 0.

4. Show Var
(
S̄n
)

=
∑n
k=1 σ

2
n,k =

∑n
k=1 pn,k (1− pn,k) → a as n → ∞ which

suffices to show condition (BV ) holds.
5. Find a finite measure ν on R such that

fL (λ) = EeiλL = exp

(∫
R

eiλx − 1− iλx
x2

dν (x)

)
.

1.3 Appendix (Estimates):

Lemma 1.20. Suppose that ai, bi ∈ C with |ai| , |bi| ≤ 1 for i = 1, 2, . . . , n.
Then ∣∣∣∣∣

n∏
i=1

ai −
n∏
i=1

bi

∣∣∣∣∣ ≤
n∑
i=1

|ai − bi| .

By Taylor’s thoerem, then∣∣eiy − 1
∣∣ ≤ |y| ∧ 2 for y ∈ R (1.18)

and
|ez − 1− z| ≤ |z|2 /2 if Re z ≤ 0. (1.19)

Lemma 1.21. Suppose that {Xn,k} satisfies property (M) , i.e. Dn :=
maxk≤n σ

2
n,k → 0. If we define,

ϕn,k (λ) := fn,k (λ)− 1 = E
[
eiλXn,k − 1

]
,

then for each λ ∈ R;

1. limn→∞maxk≤n |ϕn,k (λ)| = 0 and
2. fSn

(λ)−
∏n
k=1 e

ϕn,k(λ) → 0 as n→∞, where

fSn
(λ) = E

[
eiλSn

]
=

n∏
k=1

fn,k (λ) .

Proof. For any ε > 0 we have, making use of Eq. (1.18) and Chebyschev’s
inequality, that

|ϕn,k (λ)| = |fn,k (λ)− 1| ≤ E
∣∣eiλXn,k − 1

∣∣ ≤ E [2 ∧ |λXn,k|]
≤ E [2 ∧ |λXn,k| : |Xn,k| ≥ ε] + E [2 ∧ |λXn,k| : |Xn,k| < ε]

≤ 2P [|Xn,k| ≥ ε] + |λ| ε ≤
2σ2

n,k

ε2
+ |λ| ε.
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Therefore,

lim sup
n→∞

max
k≤n
|ϕn,k (λ)| ≤ lim sup

n→∞

[
2Dn

ε2
+ |λ| ε

]
= |λ| ε→ 0 as ε ↓ 0.

For the second item, observe that

Reϕn,k (λ) = Re fn,k (λ)− 1 ≤ 0 =⇒
∣∣∣eϕn,k(λ)

∣∣∣ = eReϕn,k(λ) ≤ 1.

Therefore, by Lemma 1.20 and the estimate (1.19) we find;∣∣∣∣∣
n∏
k=1

eϕn,k(λ) −
n∏
k=1

fn,k (λ)

∣∣∣∣∣ ≤
n∑
k=1

∣∣∣eϕn,k(λ) − fn,k (λ)
∣∣∣

=

n∑
k=1

∣∣∣eϕn,k(λ) − (1 + ϕn,k (λ))
∣∣∣

≤ 1

2

n∑
k=1

|ϕn,k (λ)|2

≤ 1

2
max
k≤n
|ϕn,k (λ)| ·

n∑
k=1

|ϕn,k (λ)| .

Since EXn,k = 0 we may write express ϕn,k as

ϕn,k (λ) = E
[
eiλXn,k − 1− iλXn,k

]
and then using estimate in Eq. (1.19) again shows

n∑
k=1

|ϕn,k (λ)| =
n∑
k=1

∣∣E [eiλXn,k − 1− iλXn,k

]∣∣
≤

n∑
k=1

∣∣∣∣E [1

2
|λXn,k|2

]∣∣∣∣ ≤ λ2

2

n∑
k=1

σ2
n,k =

λ2

2
.

Thus we have shown,∣∣∣∣∣
n∏
k=1

fn,k (λ)−
n∏
k=1

eϕn,k(λ)

∣∣∣∣∣ ≤ λ2

4
max
k≤n
|ϕn,k (λ)|

and the latter expression tends to zero by item 1.

1.4 Stable Distributions

Definition 1.22. A non-degenerate distribution µ = Law (X) on R is stable
if whenever X1 and X2 are independent copies of X, then for all a, b ∈ R there

exists c, d ∈ R such that aX1 + bX2
d
= cX + d with some constants c and d.

Example 1.23. Gaussians are stable but Poisson random variables are not.

Lemma 1.24. If µ is a stable distribution then it is infinitely divisible.

Theorem 1.25. A probability measure µ on R is a stable distribution iff µ is
Gaussian or µ̂ (λ) = eψ(λ) where

ψ (λ) = iλb+

∫
R

(
eiλx − 1− iλx

1 + x2

)
m11x>0 −m21x<0

|x|1+α dx

for some constants, 0 < α < 2, mi ≥ 0 and b ∈ R.
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