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Part I

Preliminaries





1

Where we are going

These lectures are devoted to the following two vague questions.

Question 1.1. Given a real manifold W equipped with a measure µ. Does there
exist a complexificaiton WC of W, a measure µC on WC, and a unitary map
U : L2 (W,µ) → HL2 (WC, µC) where HL2 (WC, µC) denotes the holomorphic
L2 – functions on WC.

Question 1.2. Given a pointed complex manifold (G, o) equipped with a mea-
sure λ. Let

D := {“derivatives” of f at o : f ∈ H (G)}

be the derivative space associated to H (G) (the holomorphic functions on
G) and let T : H (G)→ D be the “Taylor map;”

Tf := {“derivatives” of f at o} .

Can we;

1. characterize the derivative space, D?
2. Find the norm, ‖·‖D , on D such that∫

G

|f |2 dλ = ‖Tf‖2D for all f ∈ H (G) .

We will only be able to provide some partial answers to these questions by
way of a few examples where W and G are Lie groups or homogenous spaces
equipped with “heat kernel measures.” The prototypical example we have in
mind here goes under the names of the Segal-Bargmann transform and the
Itô chaos expansion. The original context of this theorem was for the case
where W is a Banach space equipped with a Gaussian measure – for example
W = C ([0, T ] ,R) equipped with Wiener measure µ, i.e. the law of a Brownian
motion. In this classical case everyone knows that Brownian motion is intimately
related to the heat equation on R. However are point of view will be to exploit
the less widely appreciated fact that µ is related to a heat equation on W.

Here is the outline of these lectures;

1. Review Gaussian measure on Banach spaces.
2. Introduce the Segal-Bargman transform on flat finite dimensional spaces.

(Masha does this?)

3. Put items 1. and 2. together and explain Segal - Bargmann for Gaussian
measure on Banach spaces and make contact with multiple Itoˆintegrals –
Itô Chaos on W

4. Quantize Yang-Mills – Explain the paper I wrote with Brian Hall on YM 2.
5. This should lead into Hall’s theorem in finite dimension and the finite di-

mensional extensions of the Taylor map to Lie groups.
6. Segal Bargmann on Lie Groups
7. Extensions of the Theory – Give a survey of some or our results in the

infinite dimensional Heisenberg groups.





2

Banach Space Preliminaries

Given a real Banach space W, we let W ∗ denote the continuous dual of W
and BW be the Borel σ – algebra on W. Given a probability measure, µ, on BW
we let µ̂ : W ∗ → C be its Fourier transform defined by

µ̂ (α) =

∫
W

eiα(x)dµ (x) .

2.1 Measurability and Density Facts

Definition 2.1 (Cylinder functions). To any non-empty subset, L, of W ∗

we let FC∞c (L) denote those f : W → R of the form

f = F (α1, α2, . . . , αn) (2.1)

for some n ∈ N, F ∈ C∞c (Rn), and {αi}ni=1 ⊂ L. Similarly let FP(L) denote
the polynomial cylinder functions f as in Eq. (2.1) where now F : Rn → R is a
polynomial function on Rn.

We will use the following standard results through out these notes.

Theorem 2.2. If W and V be real separable Banach spaces, 1 ≤ p < ∞, and
µ and ν be probability measures on (W,BW ) and (V,BV ) respectively, then;

1. BW = σ (W ∗) .
2. BW ⊗ BV = B(W×V ).
3. The vector space operations are measurable on W.
4. Lp (W,BW , µ) is separable.
5. If σ (L) = BW then FC∞c (L) is dense in Lp (W,BW , µ) .
6. If L is a subspace of W ∗ such that σ (L) = BW then

{
eiα : α ∈ L

}
is total

in Lp (W,BW , µ) .
7. If L is a subspace of W ∗ such that σ (L) = BW and µ̂|L = ν̂|L, then µ = ν.
8. If L is a subspace of W ∗ such that for all α ∈ L there exists ε = ε (α) > 0

such that eε|α| ∈ L1 (W,BW , µ) , then FP (L) is a dense subspace of
Lp (W,BW , µ) .

Proof. For a full proof of these results of [7, Chapter ??]. Here I will just
give a brief hint at the proofs.

1. By the separability of W along with the Hahn - Banach theorem one may
find {αn}∞n=1 ⊂W ∗ such that ‖x‖W = supn |αn (x)| . The result now follows
from Exercise 2.1 below.

2. Let pW and pV denote the projections of W × V to W and V respectively.
Then

BW ⊗ BV = σ (α : α ∈W ∗)⊗ σ (β : β ∈ V ∗)
= σ ({α ◦ pV : α ∈W ∗} ∪ {β ◦ pW : β ∈ V ∗})
= σ ({α ◦ pV + β ◦ pW : (α, β) ∈W ∗ × V ∗})
= σ

({
ψ : ψ ∈ (W × V )

∗})
= BW×V .

3. The vector space operations are continuous and hence measurable by item
2.

4. This is a consequence of the fact that BW is countably generated say by
{B (xn, r) : n ∈ N and r ∈ Q+} where {xn}∞n=1 is a countable dense subset
of W.

5-7. These are applications of the multiplicative systems theorem.

8. If FP(W )
Lp

6⊆ Lp then by the Hahn Banach theorem there exists λ ∈ (Lp)∗

such that λ 6= 0 while λ(FP(W )) = {0}. Under these assumptions it can
be shown that λ

(
eiα
)

= 0 for all α ∈ L. From item 6. it now follows that
λ ≡ 0 which is a contradiction.

Exercise 2.1. Suppose that L ⊂ W ∗. Show that σ (L) = BW iff ‖·‖W is σ (L)
– measurable.

The following is a typical example for W and L.

Example 2.3 (Canonical Continuous Stochastic Processes). Suppose that T ∈
(0,∞) is given and let W := C ([0, T ] ,R) and

‖x‖W := max
t∈[0,T ]

|x (t)| .

By the Stone – Weierstrass theorem we know that (W, ‖·‖W ) is a separable
Banach space. For t ∈ [0, T ] let αt ∈W ∗ be the evaluation maps, αt (x) = x (t) .
Since
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‖·‖W = sup
t∈Q∩[0,T ]

|αt|

it follows from Exercise 2.1 that σ (L) = BW when L = {αt : 0 ≤ t ≤ T} or
L = spanR {αt : 0 ≤ t ≤ T} . In particular if µ is a probability measure on
(W,BW ) , then µ is completely determined by its finite dimensional distributions
or equivalently by µ̂ restricted to L = spanR {αt : 0 ≤ t ≤ T} .

Assumption 1 Through out these notes W will be a separable Banach space
which is taken to be real unless otherwise specified.

2.2 Holomorphic Functions

The following material is taken directly from [8, Section 5.1]. Let X and Y be
two complex Banach space and for a ∈ X and δ > 0 let

BX (a, δ) := {x ∈ X : ‖x− a‖X < δ}

be the open ball in X with center a and radius δ.

Definition 2.4. Let D be an open subset of X. A function u : D → Y is said
to be holomorphic (or analytic) if the following two conditions hold.

1. u is locally bounded, namely for all a ∈ D there exists an ra > 0 such that

Ma := sup {‖u (x)‖Y : x ∈ BX (a, ra)} <∞.

2. The function u is complex Gâteaux differentiable on D, i.e. for each a ∈ D
and h ∈ X, the function λ → u (a+ λh) is complex differentiable at λ =
0 ∈ C.

(Holomorphic and analytic will be considered to be synonymous terms for
the purposes of this paper.)

Typically the easiest way to check that λ→ u (a+ λh) is holomorphic in a
neighborhood of zero is to use Morera’s theorem which I recall for the reader’s
convenience.

Theorem 2.5 (Morera’s Theorem). Suppose that Ω is an open subset of C
and f ∈ C(Ω) is a complex function such that∫

∂T

f(z)dz = 0 for all solid triangles T ⊂ Ω, (2.2)

then f is holomorphic on Ω.

The next theorem gathers together a number of basic properties of holo-
morphic functions which may be found in [21]. (Also see [20].) One of the key
ingredients to all of these results is Hartog’s theorem, see [21, Theorem 3.15.1].

Theorem 2.6. If u : D → Y is holomorphic, then there exists a function u′ :
D → Hom (X,Y ), the space of bounded complex linear operators from X to
Y , satisfying

1. If a ∈ D, x ∈ BX (a, ra/2), and h ∈ BX (0, ra/2), then

‖u (x+ h)− u (x)− u′ (x)h‖Y 6
4Ma

ra (ra − 2 ‖h‖X)
‖h‖2X . (2.3)

In particular, u is continuous and Frechét differentiable on D.
2. The function u′ : D → Hom (X,Y ) is holomorphic.

Remark 2.7. By applying Theorem 2.6 repeatedly, it follows that any holomor-
phic function, u : D → Y is Frechét differentiable to all orders and each of the
Frechét differentials are again holomorphic functions on D.

Proof. By [21, Theorem 26.3.2 on p. 766.], for each a ∈ D there is a lin-
ear operator, u′ (a) : X → Y such that du (a+ λh) /dλ|λ=0 = u′ (a)h. The
Cauchy estimate in Theorem 3.16.3 (with n = 1) of [21] implies that if a ∈ D,
x ∈ BX (a, ra/2) and h ∈ BX (0, ra/2) (so that x + h ∈ BX (a, ra)), then
‖u′ (x)h‖Y 6Ma. It follows from this estimate that

sup
{
‖u′ (x)‖Hom(X,Y ) : x ∈ BX (a, ra/2)

}
6 2Ma/ra. (2.4)

and hence that u′ : D → Hom (X,Y ) is a locally bounded function. The estimate
in Eq. (2.3) appears in the proof of the Theorem 3.17.1 in [21] which completes
the proof of item 1.

To prove item 2. we must show u′ is Gâteaux differentiable on D. We will
in fact show more, namely, that u′ is Frechét differentiable on D. Given h ∈ X,
let Fh : D → Y be defined by Fh (x) := u′ (x)h. According to [21, Theorem
26.3.6], Fh is holomorphic on D as well. Moreover, if a ∈ D and x ∈ B (a, ra/2)
we have by Eq. (2.4) that

‖Fh (x)‖Y 6 2Ma ‖h‖X /ra.

So applying the estimate in Eq. (2.3) to Fh, we learn that

‖Fh (x+ k)− Fh (x)− F ′h (x) k‖Y 6
4 (2Ma ‖h‖X /ra)
ra
2

(
ra
2 − 2 ‖k‖X

) · ‖k‖2X (2.5)

for x ∈ B (a, ra/4) and ‖k‖X < ra/4, where
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2.2 Holomorphic Functions 7

F ′h (x) k =
d

dλ
|0Fh (x+ λk) =

d

dλ
|0u′ (x+ λk)h =:

(
δ2u
)

(x;h, k) .

Again by [21, Theorem 26.3.6], for each fixed x ∈ D,
(
δ2u
)

(x;h, k) is a contin-
uous symmetric bilinear form in (h, k) ∈ X ×X. Taking the supremum of Eq.
(2.5) over those h ∈ X with ‖h‖X = 1, we may conclude that∥∥u′ (x+ k)− u′ (x)− δ2u (x; ·, k)

∥∥
Hom(X,Y )

= sup
‖h‖X=1

‖Fh (x+ k)− Fh (x)− F ′h (x) k‖Y

6
4 (2Ma/ra)

ra
2

(
ra
2 − 2 ‖k‖X

) ‖k‖2X .
This estimate shows u′ is Frechét differentiable with u′′ (x) ∈
Hom (X,Hom (X,Y )) being given by u′′ (x) k =

(
δ2u
)

(x; ·, k) ∈ Hom (X,Y )
for all k ∈ X and x ∈ D.

The following well known fact has been taken directly from [5, Lemma 3.2].

Lemma 2.8 (Holomorphic L2). Let M be a finite dimensional complex an-
alytic manifold and ρ be a smooth positive measure on M. Let H(M) denote
the holomorphic functions on M. Then H(M) ∩ L2(ρ) is a closed subspace of
L2(ρ). Moreover, if fn → f in L2(ρ) as n → ∞, then fn and dfn converges to
f and df respectively uniformly on compact subsets of M.

Proof. Since the property that a function on M is holomorphic is local, it
suffices to prove the lemma in the case that M

.
= D1 and ρ = 1, where for any

R > 0,
DR

.
= {z ∈ Cd : |zi| < R ∀i = 1, 2, . . . d}. (2.6)

Let f be a holomorphic function on D1, 0 < α < 1, and z ∈ Dα. By the mean
value theorem for holomorphic functions;

f(z) = (2π)−d
∫

[0,2π]d
fn({zj + rje

√
−1θj}dj=1)

d∏
j=1

dθj , (2.7)

where r = (r1, r2, . . . , rd) ∈ Rd such that 0 ≤ ri < ε
.
= 1−α for all i = 1, 2, . . . , d.

Multiplying (2.7) by r1 · · · rd and integrating each ri over [0, ε) shows

f(z) = (πε2)−d
∫
Dε

f(z + ξ)λ(dξ),

where λ denotes Lebesgue measure on Cd. In particular, for each α < 1,

sup
z∈Dα

|f(z)| ≤ (π(1− α)2)−d‖f‖L2 .

Therefore, an L2– convergent sequence of holomorphic functions is uniformly
convergent on compact subsets of D1 and so the limit is also holomorphic. Since
the derivatives of uniformly convergent holomorphic functions are uniformly
convergent, it follows that L2 convergence also implies uniform convergence of
the differentials on compact sets.
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3

Basic Gaussian Measure Concepts

Definition 3.1. A measure µ on (W,BW ) is called a (mean zero) Gaussian
measure provided that every element α ∈ W ∗ is Gaussian random variable.
We will refer to (W,BW , µ) as a Gaussian space.

A word of warning: I am going to drop the adjective, “mean zero” and
simply refer to a Gaussian measure or Gaussian probability and intend for you
to understand that it is a mean zero.

The condition that every α ∈ W ∗ is Gaussian relative to µ is equivalent to
assuming that W ∗ ⊂ L2 (µ) and

µ̂(α) := e−
1
2 qµ(α) for all α ∈W ∗ (3.1)

where qµ (α) := qµ (α, α) and

qµ (α, β) =

∫
W

α (x)β (x) dµ (x) for all α, β ∈W ∗. (3.2)

For any finite subset {αk}nk=1 and ak ∈ R we have
∑n
k=1 akαk ∈ W ∗ and is

therefore Gaussian and in particular∫
W

ei
∑n
k=1 akαkdµ = e−

1
2 qµ(

∑n
k=1 akαk) = exp

−1

2

n∑
k,l=1

akalqµ (αk, αl)

 .

Hence we see that {αk}nk=1 are jointly Gaussian random variables.

Definition 3.2. We say that a Gaussian measure µ on (W,BW ) is non-
degenerate if qµ is positive definite on W ∗, i.e. (W ∗, qµ) is an inner product
space. (This condition turns out to be equivalent to the support of µ being all of
W.)

Lemma 3.3. If for {Yn}∞n=1 ∪ {Y } are random variables such that {Yn, Y } is

a mean zero Gaussian vector for each n and Yn
P→ Y as n→∞, then Yn → Y

in Lp (P ) for all 1 ≤ p <∞ and eYn → eY in L2 (P ) .

Proof. By assumption, aYn + bY is Gaussian for all a, b ∈ R and therefore

Ee(aYn+bY ) = e
1
2E(aYn+bY )2 and

Eei(aYn+bY ) = e−
1
2E(aYn+bY )2 .

In particular,

E
[
ei(Y−Yn)

]
= exp

(
−1

2
E (Y − Yn)

2

)
which along with the DCT shows

δn := E (Y − Yn)
2

= −2 lnE
[
ei(Y−Yn)

]
→ 0 as n→∞.

If N is a standard normal random variable then Y −Yn
d
=
√
δnN and therefore,

E (Y − Yn)
p

= δp/2n E [Np]→ 0 as n→∞

which is the first assertion. The second assertion now follows by the following
simple computation;

E
(∣∣eY − eYn ∣∣2) =E

(
e2Y + e2Yn − 2eYn+Y

)
=e

1
2 4EY 2

+ e
1
2 4EYn2

− 2e
1
2E(Yn+Y )2

→ e2EY 2

+ e2EY 2

− 2e
1
2E(2Y )2 = 0.

Exercise 3.1. Suppose that {Yn}∞n=1 is a sequence of random variables such
that (Yn, Ym) is a mean zero Gaussian random vector for all m 6= n and Yn
converges to some Y in probability. Show that Y is Gaussian and that (Y, Yn)
is again a mean zero Gaussian random vector for each n ∈ N.

Corollary 3.4. The quadratic form q : W ∗ ×W ∗ → R in Eq. (3.2) is continu-
ous, i.e. there exists C2 ∈ (0,∞) such that

|q (α, β)| ≤ C2 ‖α‖W · ‖β‖W for all α, β ∈W ∗. (3.3)

Proof. Because of the Cauchy–Schwarz inequality

|q (α, β)| ≤
√
q(α)

√
q(β)

and so it suffices to show
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C2 := sup
α∈W∗

|q (α, α)|
‖α‖2W∗

<∞. (3.4)

(By convention we will typically define 0/0 = 0 in this type of ratio.) If C2 =∞
in Eq. (3.4) we could find {αn}∞n=1 ⊂ W ∗ such that q (αn, αn) = 1 while
limn→∞ ‖αn‖W∗ = 0. However this is not possible since,

q (αn, αn) = −2 ln[µ̂(αn)] = −2 ln

∫
W

eiαn(x)dµ (x)→ −2 ln (1) = 0

by the DCT. while q (αn, αn)→∞

Exercise 3.2. Suppose that µ is a Gaussian measure on (W,B) and for θ ∈ R,
let Rθ : W ×W →W ×W be the “rotation” map1 given by

Rθ(x, y) = (x cos θ − y sin θ, y cos θ + x sin θ). (3.5)

Then for all f ∈ (B(W×W ))b = (BW ⊗ BW )b and θ ∈ R,∫
W×W

f(x, y)dµ(x)dµ(y) =

∫
W×W

f(Rθ(x, y))dµ(x)dµ(y), (3.6)

i.e. µ × µ is invariant under the rotations Rθ for all θ ∈ R. (See Theorem 3.6
for a strong converse to this exercise.)

Hint: compute both sides of Eq. (3.6) when f (x, y) = eiψ(x,y) and ψ ∈
(W ×W )

∗
.

Theorem 3.5 (Ferniques Theorem). Suppose that µ is any measure on
(W,BW ) such that µ×µ is invariant under rotation by 45o, i.e. (µ× µ)◦R−1 =
µ× µ where

R(x, y) =
1√
2

(x− y, y + x).

Then there exists ε = ε (µ) > 0 such that∫
W

eε‖x‖
2
W dµ (x) <∞. (3.7)

In particular µ has moments to all orders. (For the proof of this theorem see [7,
Theorem ??] (also see [4, Theorem 2.8.5] or [23, Theorem 3.1]).)

1 If pi : W×W →W is projection onto the ith – factor for i = 1, 2, then pi◦Rθ (x, y) is
linear combination of x and y. As the vector space operations are measurable it
follows that pi ◦ Rθ is measurable for i = 1 and 2 and therefore Rθ is BW ⊗ BW –
measurable. Alternatively one observes that Rθ : W ×W →W ×W is continuous
and B(W×W ) = BW ⊗ BW which again shows that Rθ is measurable.

Proof. Since

ez = 1 +

∫ z

0

eydy = 1 +

∫
R

10≤y≤ze
ydy,

∫
W

eε‖x‖
2

dµ(x) =

∫
W

(
1 +

∫
R

10≤y≤ε‖x‖2e
ydy

)
dµ(x)

= 1 +

∫ ∞
0

dy eyµ(ε‖x‖2 ≥ y). (3.8)

Because of this formula it suffices to show that there are constants, C ∈ (0,∞)
and β ∈ (1,∞) such that

µ(ε‖x‖2 ≥ y) ≤ Ce−βy for all y ≥ 0. (3.9)

For if we use Eq. (3.9) in Eq. (3.8), we will have∫
W

eε‖x‖
2

dµ(x) ≤ 1 + C

∫ ∞
0

dy eye−βy = 1 +
C

β − 1
<∞. (3.10)

We will now prove Eq. (3.9). By replacing y with εt2, Eq. (3.9) is equivalent to
showing

µ(‖x‖ ≥ t) ≤ Ce−βεt
2

= Ce−γt
2

for all t ≥ 0, (3.11)

where γ := βε. Because we are free to choose ε > 0 as small as we like, it suffices
to prove that Eq. (3.11) for some γ > 0. Let P = µ × µ on W ×W and let
t ≥ s ≥ 0. Then by the Rπ/4 invariance of P,

µ(‖x‖ ≤ s)µ(‖x‖ ≥ t) = P (‖x‖ ≤ s and ‖y‖ ≥ t)

= P

(∥∥∥∥x+ y√
2

∥∥∥∥ ≤ s and

∥∥∥∥x− y√2

∥∥∥∥ ≥ t)
≤ P (|‖x|| − ‖y||| ≤

√
2s and ‖x‖+ ‖y‖ ≥

√
2t).

Let a = ‖x‖ and b = ‖y‖ and notice that if |a− b| ≤
√

2s and a+ b ≥
√

2t then

√
2t ≤ a+ b ≤ b+

√
2s+ b = 2b+

√
2s and

√
2t ≤ a+ b ≤ a+ a+

√
2s = 2a+

√
2s

from which it follows that

a ≥ t− s√
2

and b ≥ t− s√
2
,

as seen in Figure 3.1 below. Combining these expressions shows
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Fig. 3.1. The region R is contained in the region a ≥ t−s√
2

and b ≥ t−s√
2
.

µ(‖x‖ ≤ s)µ(‖x‖ ≥ t) ≤ P
(
‖x‖ ≥ t− s√

2
and ‖y‖ ≥ t− s√

2

)
=

[
µ(‖x‖ ≥ t− s√

2
)

]2

,

which is to say for t ≥ s ≥ 0,

µ(‖x‖ ≥ t) ≤ 1

µ(‖x‖ ≤ s)

[
µ(‖x‖ ≥ t− s√

2
)

]2

. (3.12)

We will now complete the proof by iterating Eq. (3.12). Define t0 = s and then
define {tn}∞n=1 inductively so that

tn+1 − s√
2

= tn for all n (3.13)

i.e.
tn+1 = s+

√
2tn (3.14)

and (by a simple induction argument)

tn = s

n∑
i=0

2i/2 = s
2
n+1
2 − 1

21/2 − 1
≤ s 2

n+1
2

21/2 − 1
. (3.15)

Then by Eq. (3.12)

µ(‖x‖ ≥ tn+1) ≤ 1

µ(‖x‖ ≤ s)

[
µ(‖x‖ ≥ tn+1 − s√

2
)

]2

=
[µ(‖x‖ ≥ tn)]

2

µ(‖x‖ ≤ s)

or equivalently

αn+1(s) :=
µ(‖x‖ ≥ tn+1)

µ(‖x‖ ≤ s)
≤
(
µ(‖x‖ ≥ tn)

µ(‖x‖ ≤ s)

)2

=: α2
n(s).

Iterating this inequality implies

αn(s) ≤ α2n

0 (s) with α0(s) =
µ(‖x‖ ≥ s)
µ(‖x‖ ≤ s)

, (3.16)

i.e.
µ(‖x‖ ≥ tn) ≤ µ(‖x‖ ≤ s) (α0(s))

2n
for all n. (3.17)

We now fix an s > 0 sufficiently large so that α0(s) < 1 and suppose t ≥ 2s is
given. Choose n so that tn ≤ t ≤ tn+1 = s+

√
2tn in which case (as 0 ≤ t− s ≤√

2tn) (
t− s√

2

)2

≤ t2n ≤
2s2(

21/2 − 1
)2 2n,

i.e.

2n ≥
(
21/2 − 1

)2
4s2

(t− s)2
.

Combining this with Eq. (3.17), using α0(s) < 1, shows

µ(‖x‖ ≥ t) ≤ µ(‖x‖ ≥ tn)

≤ µ(‖x‖ ≤ s) (α0(s))
2n ≤ µ(‖x‖ ≤ s)ρ(t−s)2

where

ρ := (α0(s))
(21/2−1)

2

4s2 ∈ (0, 1).

Since t ≥ 2s is equivalent to (t− s) ≥ t/2, we have (t− s)2 ≥ (t/2)
2

and
therefore

µ(‖x‖ ≥ t) ≤ µ(‖x‖ ≤ s)e−
|ln ρ|

4 t2

which is sufficient to prove Eq. (3.11) with γ = |ln ρ|
4 and C chosen to be a

sufficiently large constant.
As stated Theorem 3.5 seems to say something about measures more general

than Gaussian measures but as is well know this not the case.
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Theorem 3.6. If µ is a probability measure such that µ× µ is invariant under
Rπ/4, then µ is a Gaussian measure on (W,BW ) . As usual we will have µ̂ =

e−
1
2 q where q (α) := q (α, α) and

q (α, β) :=

∫
W

α (x)β (x) dµ (x) for all α, β ∈W ∗.

(See Feller [11, Section III.4, pp. 77-80] for more general theorems along these
lines.)

Proof. By Fernique’s Theorem 3.5 bound in Eq. (3.7), µ has moments to
all orders and µ̂(α) is infinitely differentiable in α. In fact for any α ∈W ∗, the
function,

C 3z → “µ̂ (zα) ” :=

∫
W

eizα(x)dµ (x)

is holomorphic. The invariance of µ×µ under rotation by π/4 and the formula,
µ̂× µ(α ◦ p1 + β ◦ p1) = µ̂(α)µ̂(β), implies

µ̂(α)µ̂(β) = µ̂

(
1√
2

(α+ β)

)
µ̂

(
1√
2

(−α+ β)

)
∀ α, β ∈W ∗. (3.18)

Taking α = 0 and then β = 0 in this equation implies,

µ̂(β) = µ̂

(
1√
2
β

)
µ̂

(
1√
2
β

)
∀ β ∈W ∗ (3.19)

µ̂(α) = µ̂

(
1√
2
α

)
µ̂

(
− 1√

2
α

)
∀ α ∈W ∗ (3.20)

and in particular we learn

µ̂

(
1√
2
α

)
µ̂

(
− 1√

2
α

)
= µ̂

(
1√
2
α

)
µ̂

(
1√
2
α

)
∀ α ∈W ∗.

For t ∈ R near zero we know that µ̂
(

t√
2
α
)
6= 0 and hence we may conclude

that

µ̂

(
− t√

2
α

)
= µ̂

(
t√
2
α

)
for t near zero and hence by the principle of analytic continuation this equation
in fact holds for all t ∈ C and in particular for t =

√
2 from which we learn

that µ̂ (−α) = µ̂ (α) for all α ∈W ∗. Since µ̂ (α) = µ̂ (−α) = µ̂ (α) we may now
conclude that µ̂ is real.

Iterating Eq. (3.19) implies,

µ̂ (β) = µ̂

((
1√
2

)n
β

)2n

for all n ∈ N0. (3.21)

Let f (t) := µ̂ (tβ) so that f (0) = 1, ḟ (0) = 0 (since f (t) is odd), and

f̈ (0) =

(
d

dt

)2

t=0

∫
W

eitβ(x)dµ (x) = −
∫
W

β2 (x) dµ (x) := −q (β) .

So by Taylor’s theorem;

f (t) = 1− 1

2
q (β) t2 +O

(
t3
)

while by Eq. (3.21);

f (1) =
[
f
(

2−n/2
)]2n

=

[
1− 1

2
q (β) 2−n +O

(
2−3n/2

)]2n

.

A simple calculus exercise now shows

ln f (1) = 2n · ln
(

1− 1

2
q (β) 2−n +O

(
2−3n/2

))
→ −1

2
q (β) as n→∞.

Thus we have shown

µ̂ (β) = µ̂ (β) = f (1) = e−
1
2 q(β) = e−

1
2 Varµ(β),

i.e. µ̂ = e−q/2 and so µ is a (possibly degenerate) Gaussian measure.

Corollary 3.7. Suppose that L is a linear subspace of W ∗ such that σ (L) = BW
and µ is a probability measure on (W,BW ) such that every element α ∈ L is a
mean - zero Gaussian random variable. Then µ is a Gaussian measure.

Proof. Let

L ⊕ L =
{
ψ ∈ (W ×W )

∗
: α := ψ (·, 0) ∈ L and β := ψ (0, ·) ∈ L

}
=
{
α ◦ p1 + β ◦ p2 ∈ (W ×W )

∗
: α, β ∈ L

}
where pi : W ×W →W is projection onto the ith – factor. We then have that

σ (L ⊕ L) = σ ({α ◦ p1 : α ∈ L} ∪ {β ◦ p2 : β ∈ L})
= σ (L)⊗ σ (L) = BW ⊗ BW = B(W×W ).

So in order to show (µ× µ) ◦ R−1
π/4 = µ × µ it suffices to show see item 7 of

Theorem 2.2)
[
(µ× µ) ◦R−1

π/4

]̂
= µ̂× µ on L ⊕ L which we now do.

Let ψ (x, y) = α (x) + β (y) with α, β ∈ L. Then

ψ ◦Rπ/4 (x, y) =
1√
2
ψ (x− y, x+ y) =

1√
2

[α (x) + β (x) + β (y)− α (y)]
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so that[
(µ× µ) ◦R−1

π/4

]̂
(ψ)

= µ̂× µ
(
ψ ◦Rπ/4

)
=

∫
W×W

exp

(
i

1√
2

[α (x) + β (x) + β (y)− α (y)]

)
dµ (x) dµ (y)

= e−
1
4 [q(α+β)+q(β−α)] = e−

1
4 [2q(α)+2q(β)] = µ̂× µ (ψ) .

Example 3.8 (Gaussian processes and Gaussian measures). Suppose
that {Yt}0≤t≤T is a stochastic process with continuous sample paths,
W := C ([0, T ] ,R) , and αt (x) = x (t) for all x ∈W and 0 ≤ t ≤ T. Recall from

Example 2.3 we know that σ
(
{αt}t∈Q∩[0,T ]

)
= BW . Therefore we may view Y

as a W – valued random variable and define µ := Law (Y·) as a measure on
(W,BW ) .

If we further assume that {Yt}0≤t≤T is a mean zero Gaussian process, then
(W,BW , µ) is a Gaussian measure space. To prove this apply Corollary 3.7 with
L := span {αt : 0 ≤ t ≤ T} . Note that for α =

∑n
i=1 aiαti in L we have that

α
d
=
∑n
i=1 aiYti , i.e. Lawµ (α) = LawP (

∑n
i=1 aiYti) . By assumption

∑n
i=1 aiYti

is Gaussian and therefore so is α.

Example 3.9 (Brownian Motion). Suppose that {Bt}t≥0 is a Brownian motion.
Then B induces a Gaussian measure, µ on W := {x ∈ C ([0, T ] ,R) : x (0) = 0}
which is uniquely specified by its covariances;∫

W

x (s)x (t) dµ (x) = s ∧ t for all 0 ≤ s, t ≤ T.





Part II

Finite Dimensional Gaussian Measures





4

The Gaussian Basics I

In this chapter suppose that W is a finite dimensional real Banach space
and q : W ∗ ×W ∗ → R is a non-negative symmetric quadratic form on W ∗.

Notation 4.1 Let
Nul (q) := {α ∈W ∗ : q(α) = 0} (4.1)

be the null space of q and

H = Hq = Nul (q)
0

:= {ξ ∈W : 〈α, ξ〉 = 0 ∀ α ∈ Nul (q)} (4.2)

be the backwards annihilator of Nul (q) . (If q is non-degenerate, i.e. Nul (q) =
{0} , then H = W.) We call H the “horizontal space” associated to q. We
may also refer to H as the Cameron-Martin space associated to q.

Lemma 4.2. There is a unique inner product, (·, ·)H , on H such that for any
orthonormal base {hk}mk=1 (m := dim (H)) of H we have

q (α, β) =

m∑
k=1

〈α, hk〉〈β, hk〉 for all α, β ∈W ∗. (4.3)

In particular

q (α) = (α, α)q =

m∑
k=1

|〈α, hk〉|2. (4.4)

Moreover, let

‖x‖H := sup
α∈W∗

|α (x)|√
q (α)

(with 0/0 := 0), (4.5)

then
H = {h ∈W : ‖h‖H <∞} (4.6)

and ‖h‖2H = (h, h)H for all h ∈ H.

Proof. The form q descends to a strictly positive definite quadratic form,
q̄, on W ∗/Nul (q) and the map

W ∗/Nul (q) 3 (α+ Nul (q))→ α|H ∈ H∗ (4.7)

is a linear isomorphism of vectors spaces.1 Using this isometry, q̄ induces an
inner product, (·, ·)H∗ , on H∗ and hence, by the Riesz theorem, an inner prod-
uct, (·, ·)H , on H. Suppose that {hk}mk=1 is any orthonormal basis of (H, (·, ·)H)
and α, β ∈W ∗. Then

q (α, β) = q̄ (α+ Nul (q) , β + Nul (q)) = (α|H , β|H)H∗ =

m∑
k=1

〈α, hk〉〈β, hk〉.

If x /∈ H there exists α ∈ Nul (q) such that α (x) 6= 0 and therefore from Eq.
(4.5),

‖x‖H ≥
|α (x)|√
q (α)

=
|α (x)|

0
=∞.

For h ∈ H we have and α ∈W ∗ we have h =
∑m
k=1 (hk, h)H hk and so

|α (h)|2 =

∣∣∣∣∣
m∑
k=1

(hk, h)H α (hk)

∣∣∣∣∣
2

≤
m∑
k=1

(hk, h)
2
H ·

m∑
k=1

α (hk)
2

= (h, h)H q (α)

with equality if we choose α ∈ W ∗ such that α (hk) = (hk, h) for all k =
1, . . . ,m. From these observations it follows that

‖h‖2H := sup
α∈W∗

|α (h)|2

q (α)
= (h, h)H for all h ∈ H.

1 Here is the argument. Let N := dimW and
{
εi
}N
i=1

be a basis for W ∗ such that{
εi : m < i ≤ N

}
is a basis for K and let {ei}Ni=1 be the corresponding dual basis.

Since for any x ∈W we have x =
∑N
i=1

〈
εi, x

〉
ei and

H =
{
x ∈W :

〈
εi, x

〉
= 0 for m < i ≤ N

}
,

it follows that H = span {ei}mi=1 . So letting R : W ∗ → H∗ be the restriction
map, Ra = a|H , it follows that Ra = 0 iff 〈a, ei〉 = 0 for 1 ≤ i ≤ n iff a ∈
span

{
εi : m < i ≤ N

}
iff a ∈ K. Thus it follows that Eq. (4.7) indeed defines an

isomorphism of vector spaces.
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Theorem 4.3. As above assume that dimW < ∞ and q : W ∗ ×W ∗ → R is
a non-negative symmetric quadratic form and let {hk}mk=1 be an orthonormal
basis for H ⊂W as in Lemma 4.2. If {Nk}mk=1 is any i.i.d. sequence of standard
normal random variables, then µ := Law (

∑m
k=1Nkhk)is a Gaussian measure

with µ̂ = e−q/2, i.e. Eq. (3.1) holds. Moreover, for every bounded measurable
function, f : W → R we have∫

W

fdµ =

∫
H

fdµ =
1

Z

∫
H

f (h) exp

(
−1

2
‖h‖2H

)
dh (4.8)

where dh denotes Lebesgue measure on H and Z = (2π)
m/2

is the normalization
constant so that

1

Z

∫
H

exp

(
−1

2
‖h‖2H

)
dh = 1.

Proof. Let S :=
∑m
k=1Nkhk and α ∈W ∗. Then

µ̂ (α) =

∫
W

eiα(x)dµ (x) = E
[
eiα(S)

]
= E

[
ei

∑m
k=1Nkα(hk)

]
= exp

(
−1

2
Var

(
m∑
k=1

Nkα (hk)

))
= exp

(
−1

2

m∑
k=1

α2 (hk)

)
= e−

1
2 q(α).

Similarly,∫
W

fdµ = E [f (S)] =

∫
Rm

1

(2π)
m/2

f

(
m∑
k=1

xkhk

)
e−

1
2

∑m
k=1 x

2
kdx

from which Eq. (4.8) easily follows by making the orthogonal change of variables,
h =

∑m
k=1 xkhk.

Theorem 4.4 (Baby Fernique’s Theorem). Suppose that (W,µ) is a Gaus-
sian measure space with dimW <∞, then there exists ε > 0 such that∫

W

eε‖x‖
2
W dµ (x) <∞.

(The general version of this theorem removes the restriction that dimW <∞.)

Proof. Recall that q (α) ≤ C2 ‖α‖2W for some C <∞ and therefore,

‖h‖H = sup
α∈W∗

|α (h)|√
q (α)

≥ sup
α∈W∗

|α (h)|
C ‖α‖W

=
1

C
‖h‖W .

Thus it follows that

∫
W

eε‖x‖
2
W dµ (x) =

∫
H

eε‖x‖
2
W dµ (x)

≤
∫
H

eCε‖h‖
2
Hdµ (h) =

(
1

2π

)m/2 ∫
H

eCε‖h‖
2
H exp

(
−1

2
‖h‖2H

)
dh

=

(
1

2π

)m/2 ∫
H

eCε‖h‖
2
H exp

(
−1

2
(1− 2Cε) ‖h‖2H

)
dh

=

(
1

2π

)m/2(
2π

1− 2Cε

)m/2
=

(
1

1− 2Cε

)m/2
<∞

which is valid provided that 2Cε < 1.

Theorem 4.5 (Characterization of H). Suppose that (W,µ) is a Gaussian
measure space with dimW <∞ and define J = Jµ : L2 (µ)→W by

Jf :=

∫
W

f (x)x dµ (x) .

Further let K be the subspace of L2 (µ) defined by

K :=
{

[α] ∈ L2 (µ) : α ∈W ∗
}
.

Then J
(
L2 (µ)

)
= H and J |K : K → H is a unitary map such that (h, Jα)H =

α (h) for all α ∈W ∗ and h ∈ H. In particular,

Hµ =

{∫
W

f (x)x dµ (x) : f ∈ K
}

=

{∫
W

f (x)x dµ (x) : f ∈ L2 (µ)

}
.

The adjoint map for J∗ : H → L2 (µ) is given by

(J∗h) (x) = 1H (x) (h, x)H for µ – a.e. x.

Notice that JJ∗ = idH .

Proof. Since µ (W \H) = 0 we also have

Jf =

∫
H

f (x)x dµ (x) ∈ H

which shows that J
(
L2 (µ)

)
⊂ H. Moreover if α ∈W ∗, then using the notation

in the proof of Theorem 4.3 we find

Jα = E [α (S)S] = E

 m∑
k,l=1

NkNlα (hk)hl

 =

m∑
k1

α (hk)hk.
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As we may choose α ∈ W ∗ such that (α (h1) , . . . , α (hm)) is any m – tuple we
please, we may now conclude that JK = H. Moreover J is unitary since

‖Jα‖2H =

m∑
k=1

α (hk)
2

= q (α) = ‖α‖2L2(µ) .

Finally for α ∈W ∗ and h = Jf ∈ H we have

(h, Jα)H = (Jf, Jα)H = (f, α)L2(µ)

=

∫
W

f (x)α (x) dµ (x)

= α

(∫
W

f (x)x dµ (x)

)
= α (Jf) = α (h) .

Let {αn}mn=1 ⊂ W ∗ be chosen to be an orthonormal basis of K. Then J∗ :
H → L2 (µ) is given by

(J∗h, f)L2(µ) = (h, Jf)H =

m∑
n=1

(h, Jαn)H (Jαn, Jf)H

=

m∑
n=1

αn (h) (αn, f)L2(µ) =

(
m∑
n=1

αn (h)αn, f

)
L2(µ)

from which it follows that

J∗h =

m∑
n=1

αn (h)αn ∈ L2 (µ) .

Notice that

(J∗h) (k) =

m∑
n=1

αn (h)αn (k) =

m∑
n=1

(Jαn, h)H (Jαn, k)H = (h, k)H

for all k ∈ H while the value of J∗h on W \H is not uniquely determined as
this is a set of µ – measure zero.

Notation 4.6 We will often suggestively write (h, x)H for (J∗h) (x) .

Theorem 4.7 (Baby Cameron Martin Theorem). For h ∈ W let
µh (A) := µ (A− h) . The µh � µ iff h ∈ H and if h ∈ H then

dµh
dµ

= exp

(
J∗h− 1

2
‖h‖2H

)
. (4.9)

Proof. This is a simple matter of using the change of variables formula. Let
h ∈ H and f : W → R be a bounded measurable function. Then∫

W

f (x) dµh (x) =

∫
W

f (x+ h) dµ (x) =

∫
H

f (x+ h) dµ (x)

=
1

Z

∫
H

f (x+ h) exp

(
−1

2
‖x‖2H

)
dx

=
1

Z

∫
H

f (x) exp

(
−1

2
‖x− h‖2H

)
dx

=

∫
H

f (x) exp

(
(h, x)H −

1

2
‖h‖2H

)
dµ (x)

from which Eq. (4.9) follows. If h /∈ H, then µh (H + h) = µ (H + h− h) =
µ (H) = 1 while µ (H) = 1 and H ∩ (H + h) = ∅.
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5

The Heat Equation Interpretation

For this section, suppose that (W,BW , µ) is a Gaussian measure space with
µ̂ = e−q/2 and H = Hµ.

Lemma 5.1. Suppose αi ∈W ∗ for 1 ≤ i ≤ n, F ∈ C∞ (Rn) , and

f = F (α1, . . . , αn) ∈ FC∞ (α1, . . . , αn) ⊂ FC∞ (W ∗) . (5.1)

Then for any choice of orthonormal basis S ⊂ H we have

∑
h∈S

∂2
hf =

n∑
i,j=1

q (αi, αj) (∂j∂iF ) (α1, . . . , αn) . (5.2)

where ∂hf (ω) := d
dt |0f (ω + th) .

Proof. The proof consists of the chain rule along with the fact that
q (α, β) =

∑
h∈S α (h)β (h) . Indeed,

∂hf =

n∑
i=1

(∂iF ) (α1, . . . , αn) · αi (h)

∂2
hf =

n∑
i,j=1

(∂j∂iF ) (α1, . . . , αn) · αi (h)αj (h)

and therefore and∑
h∈S

∂2
hf =

n∑
i,j=1

(∂j∂iF ) (α1, . . . , αn) ·
∑
h∈S

αi (h)αj (h)

=

n∑
i,j=1

q (αi, αj) (∂j∂iF ) (α1, . . . , αn) .

Remark 5.2. Equation (5.2) demonstrates that its left member is independent of
the choice of orthonormal basis, S, for H while its right member is independent
of how f is represented in the form of Eq. (5.1). For this reason the following
definition makes sense. (Also see Exercise 5.1.)

Definition 5.3. Associated to µ is the second order differential operator L =
Lµ acting on FC∞ (W ∗) defined by either;

Lµf =
∑
h∈S

∂2
hf for all f ∈ FC∞ (W ∗)

or by

Lµ [F (α1, . . . , αn)] =

n∑
i,j=1

q (αi, αj) (∂j∂iF ) (α1, . . . , αn)

where S is any orthonormal basis for H and {αi}ni=1 ⊂ W ∗ and F ∈ C∞ (Rn)
are arbitrary.

Exercise 5.1. Show that

Lµf (x) =

∫
W

(
∂2
yf
)

(x) dµ (y) for all x ∈W.

This gives another proof that Lµ is well defined.

Remark 5.4. We may recover q = qµ from L := Lµ since for α1, α2 ∈ W ∗ we
have with F (x1, x2) = x1x2 that

L (α1 · α2) =

2∑
i,j=1

q (αi, αj) (∂j∂iF ) (α1, . . . , αn) = 2q (α1, α2) .

In this way we see that the map q → Lq is injective.

Lemma 5.5. Suppose that N = dimW < ∞ and L is a constant coefficient
purely second order semi-elliptic differential operators, i.e. L =

∑
gij∂ei∂ej for

some basis {ei}Ni=1 of W and
(
gij
)
≥ 0. Then L = Lµ where µ is the unique

Gaussian measure on W such that µ̂ = e−q/2 where

q (α, β) :=
1

2
L (αβ) =

∑
gij 〈α, ei〉 〈β, ej〉 . (5.3)

This allows us to conclude that the map q → Lq is a one to one correspondence
between the non-negative quadratic forms on W ∗ and the the constant coefficient
purely second order semi-elliptic differential operators acting on C2 (W ) .
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Proof. It is clear that q defined by Eq. (5.3) is a non-negative quadratic
form on W ∗ and therefore

q (α, β) =

m∑
k=1

〈α, hk〉 〈β, hk〉 (5.4)

for some linearly independent subset of W. Letting
{
εi
}N
i=1

be the dual basis

to {ei}Ni=1 it follows by comparing Eqs. (5.3) and (5.4) with α = εi and β = εj

that

gij =

m∑
k=1

〈
εi, hk

〉 〈
εj , hk

〉
.

Since ∑
i

〈
εi, hk

〉
∂ei = ∂∑

i〈εi,hk〉ei = ∂hk

we may now conclude,

L =
∑
i,j

gij∂ei∂ej =

m∑
k=1

∑
i,j

〈
εi, hk

〉 〈
εj , hk

〉
∂ei∂ej =

m∑
k=1

∂2
hk

= Lq.

Definition 5.6. Given L ⊂ W ∗ let P (L) = R [L] denote the space polynomial
functions on W based on L. Thus f ∈ P (L) iff there exists n ∈ N, αi ∈ L for
1 ≤ i ≤ n, and a polynomial function p : Rn → R such that f = p (α1, . . . , αn) .

Theorem 5.7 (Heat Interpretation). Let (W,BW , µ) be a Gaussian space
and L = Lµ. Then∫

W

f
(
x+
√
ty
)
dµ (y) =

(
etL/2f

)
(x) for all f ∈ P (W ∗) (5.5)

where

etL/2f :=

∞∑
n=0

1

n!

(
tL

2

)n
f. (finite sum) (5.6)

Proof. For α ∈W ∗ and h ∈W we have, ∂he
iα = iα (h) eiα and therefore it

follows that
Leiα =

∑
h∈S

(iα (h))
2 · eiα = −q (α) eiα

and therefore

etL/2eiα =

∞∑
n=0

tn

n!

(
L

2

)n
eiα = e−tq(α)/2eiα

while ∫
W

eiα(x+
√
ty)dµ (y) = eiα(x)

∫
W

ei
√
tα(y)dµ (y)

= eiα(x)e−
1
2 q(
√
tα) = e−tq(α)/2eiα(x).

So we have shown (
etL/2eiα

)
(x) =

∫
W

eiα(x+
√
ty)dµ (y) .

Differentiating this equation in α relative to α1, . . . , αn ∈W ∗ we find,

etL/2
[
(iα1 . . . iαn) eiα

]
= ∂α1

. . . ∂αne
tL/2eiα

=

∫
W

iα1

(
·+
√
ty
)
. . . iαn

(
·+
√
ty
)
eiα(·+

√
ty)dµ (y) .

Evaluating this equation at α = 0 ∈W ∗ then shows

eL/2 (α1 . . . αn) =

∫
W

α1

(
·+
√
ty
)
. . . αn

(
·+
√
ty
)
dµ (y) .

You are asked to justify these computations in Exercise 5.3 and 5.6 below.

Exercise 5.2. Show

etL/2
[
(iα1 . . . iαn) eiα

]
= ∂α1

. . . ∂αne
tL/2eiα. (5.7)

Hint: you might use the Cauchy estimates to simplify your life.

Exercise 5.3. Use the following outline in order to prove Eq. (5.5) with t = 1.
Let α, α1, . . . , αk ∈W ∗ for some k ∈ N.

1. Show for all z ∈ R that∫
W

αkeizαdµ = e
L
2

(
(iα)

k
eizα

)
(0) (5.8)

by differentiating the identity∫
W

eizαdµ = e−z
2q(α)/2 =

∞∑
n=0

1

n!

(
−q (α)

2

)n
z2n (5.9)

k – times in z making use of the identity(
−q (α)

2

)n
=

[(
L

2

)n
eizα

]
(0) (5.10)
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2. Taking z = 0 in Eq. (5.8) shows∫
W

αkdµ = e
L
2

(
αk
)

(0) .

Polarize this identity by computing ∂α1
. . . ∂αk of both sides in order to

conclude ∫
W

α1 . . . αk dµ =
[
e
L
2 (α1 . . . αk)

]
(0) . (5.11)

3. Use Eq. (5.11) along with linearity and the translation invariance of L (i.e.
L [f (x+ ·)] = (Lf) (x+ ·)) to prove Eq. (5.5).

Corollary 5.8. For all g ∈ P (W ∗) , x ∈W, and t ≥ 0,∫
W

g
(
x+
√
ty
)
dµ (y) =

(
etL/2g

)
(x) . (5.12)

Proof. When t = 0 both sides of Eq. (5.12) are equal to g (x) and so we
may assume that t > 0. Applying Eq. (5.5) with f (x) = g

(√
tx
)

and using

(Lf) (x) = t (Lg)
(√
tx
)

shows,∫
W

g
(√

tx+
√
ty
)
dµ (y) =

(
eL/2f

)
(x) =

(
etL/2g

)(√
tx
)
.

The proof is then complete by replacing x by 1√
t
x in this equation.

Exercise 5.4 (Integration by Parts). Suppose that (x, y) ∈ R× Rd−1 →
f(x, y) ∈ C and (x, y) ∈ R× Rd−1 → g(x, y) ∈ C are measurable functions
such that for each fixed y ∈ Rd, x → f(x, y) and x → g(x, y) are continuously
differentiable. Also assume f · g, ∂xf · g and f · ∂xg are integrable relative to
Lebesgue measure on R× Rd−1, where ∂xf(x, y) := d

dtf(x+ t, y)|t=0. Show∫
R×Rd−1

∂xf(x, y) · g(x, y)dxdy = −
∫
R×Rd−1

f(x, y) · ∂xg(x, y)dxdy. (5.13)

Hints: Let ψ ∈ C∞c (R) be a function which is 1 in a neighborhood of
0 ∈ R and set ψε(x) = ψ(εx). First verify Eq. (5.13) with f(x, y) replaced by
ψε(x)f(x, y) by doing the x – integral first. Then use the dominated convergence
theorem to prove Eq. (5.13) by passing to the limit, ε ↓ 0.

Exercise 5.5 (Gaussian Integration by parts). If h ∈ H and f ∈ P (W ∗) ,
then ∫

W

∂hf (x) dµ (x) =

∫
W

(x, h)H f (x) dµ (x) .

This formula actually holds for any f ∈ C1 (W ) such that f, ∂hf, and (·, h)H f
are µ – integrable.

Exercise 5.6. Let f ∈ C2 (W ) such that f and its first and second derivatives
grow (for example) at most exponentially at infinity. Show that

F (t, x) :=

∫
W

f
(
x+
√
ty
)
dµ (y) ∀ t > 0 and x ∈W. (5.14)

satisfies the heat equation,

∂

∂t
F (t, x) =

1

2
(LF ) (t, x) . (5.15)

Hint: use the fact that µ (W \H) = 0 and the results of Exercise 5.5.

Definition 5.9 (Convolutions). The convolution µ∗ν of two probability mea-
sures, µ and ν on (W,BW ) is the probability measure defined by

µ ∗ ν (A) :=

∫
W×W

1A (x+ y) dµ (x) dν (y)

for all A ∈ BW . The convolution may also be written as;

µ ∗ ν (A) =

∫
W

ν (A− x) dµ (x) =

∫
W

µ (A− y) dν (y) .

If f : W → C is a bounded (or non-negative) measurable function we define

µ ∗ f (x) =

∫
W

f (x− y) dµ (y) .

It is a simple matter to check that µ ∗ ν is the unique probability measure
on (W,BW ) such that∫

W

fd (µ ∗ ν) =

∫
W×W

f (x+ y) dµ (x) dν (y)

for all bounded measurable functions f : W → C. We also use below that∫
W

(f ∗ µ) dν =

∫
W×W

f (x− y) dµ (y) dν (x) =

∫
W

fd (µr ∗ ν)

where µr (A) := µ (−A) for all A ∈ BW .

Exercise 5.7. Suppose that µ and ν are two Gaussian measures on W. Show
µ ∗ ν is again Gaussian with qµ∗ν = qµ + qν and Lµ∗ν = Lµ + Lν . (Hint: you
might use Exercise 5.1 for the last assertion.)
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24 5 The Heat Equation Interpretation

Definition 5.10 (Dilating µ). If (W,BW , µ) is a Gaussian probability space
and t > 0 let

µt (A) :=

∫
W

1A

(√
tx
)
dµ (x) = µ

(
t−1/2A

)
for all A ∈ BW .

When µt ∗ f is defined we write

etL/2f = µt ∗ f.

It is easily verified that∫
W

fdµt =

∫
H

f
(√

ty
)
dµ (y)

for all bounded and measurable functions f : W → C. This result then implies
µ̂t = e−tq/2 so that µt is again a Gaussian measure with qµt = tqµ. When
dimW <∞, the change of variables formula shows that

dµt (y) = 1H (y)
1

(2πt)
m e
− 1

2t‖y‖
2
Hdy

where this last equation is short hand for

µt (A) =

∫
A∩H

1

(2πt)
m e
− 1

2t‖y‖
2
Hdy for all A ∈ BW .

Exercise 5.8. Let (W,BW , µ) be a Gaussian probability space and {µt}t>0 be
as in Definition 5.10. Show µt ∗µs = µt+s for all s, t > 0. In particular conclude
that µ ∗ µ = µ2.

Notation 5.11 (Derivative operators) If f : W → C is a smooth function
near some point x ∈ W and n ∈ N, let Dn

xf : Wn → C be the nth – order
derivatives of f at x defined by

Dn
xf (h1, . . . , hn) := (∂h1

. . . ∂hnf) (x) ,

where for any h ∈W we let

(∂hf) (x) =
d

dt
|0f (x+ th)

be the directional derivative1 of f at x in the “direction” h.

Lemma 5.12 (Smoothing Lemma). If p > 1 and t > 0, then;

1 The term directional derivative is a bit of a misnomer here since the derivative
depends on both the direction and the length of h and not just the direction of h.

1. For all f ∈ Lp (µt) and h ∈ H := Hµ, f (h+ ·) ∈ Lp− (µt) and

µt ∗ f (h) =

∫
W

f (y + h) dµt (y)

=

∫
H

f exp

(
J∗t h−

1

2t
‖h‖2H

)
dµt

is well defined.
2. The resulting function, µt ∗ f : H → C admits an analytic continuation

to HC := H + iH – the complexification of H. In particular µt ∗ f is real
analytic on H.

3. The derivatives may be computed as;

Dn
0 (µt ∗ f) (h1, . . . , hn) =

∫
H

f (y) ∂h1
. . . ∂hn

(
h→ e

1
t [(y,h)H−

1
2‖h‖

2
H ]
)
dµt (y) .

(See Lemma ?? below for the infinite dimensional version.)

Proof. The first technical point here is that an element of L2 (µt) is an
equivalence class of functions rather than a fixed function so we need to know
that the integral is independent of the choice of function in this equivalence
class. However by the Cameron-Martin theorem we know that µt and µt (· − h)
have the same null sets so this technical point is OK. Moreover, by the Cameron
Martin theorem we learn that

(µt ∗ f) (h) =

∫
W

f (h+ x) dµt (x) =

∫
W

f exp

(
J∗t h−

1

2t
‖h‖2H

)
dµt.

As exp
(
J∗t h− 1

2t ‖h‖
2
H

)
∈ L∞− (µt) it follows by Hölder’s inequality that the

latter integral is well defined and hence so is the first. We may easily extend
the latter expression to HC by setting

(µt ∗ f) (z) =

∫
W

f exp

(
J∗t z −

1

2t
B (z, z)

)
dµt

where if z = h+ ik ∈ HC, J
∗
t z := J∗t h+ iJ∗t k and similarly B : HC ×HC → C

is the complex bilinear extension of the inner product on H. If w ∈ HC as well
and λ∈C we have

(µt ∗ f) (z + λw) =

∫
W

f · eJ
∗
t z+λJ

∗
t w− 1

2t [B(z,z)+2λB(z,w)+λ2B(w,w)] dµt

which is a holomorphic function of λ by Morera’s and Fubini’s theorem. (See
the proof of Lemma 8.7 below for more details on this type of argument.) Hence
we have shown µt ∗ f has an analytic continuation to HC.
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5 The Heat Equation Interpretation 25

Moreover, from this expression we learn that we may differentiate µt ∗ f (h)
relative to h as many times as we like to find

(∂k1 . . . ∂knµt ∗ f) (h)

=

∫
W

f · ∂k1 . . . ∂kn
[
h→ exp

(
J∗t h−

1

2t
‖h‖2H

)]
dµt

=

∫
W

f · pn (Jt∗k1, . . . , J
∗
t kn) ·

[
exp

(
J∗t h−

1

2t
‖h‖2H

)]
dµt.

A key point here is that ∂k [h→ J∗t h] = J∗t k which is clear and J∗t is a linear
map. Moreover by Lemma 3.3 we may conclude that ∂k (h→ exp (J∗t h)) =
J∗t k · exp (J∗t h) where the derivative holds in all Lp for all 1 ≤ p <∞.

Remark 5.13. All of the above results reflect the fact that

pt (x) :=

(
1

2πt

)m/2
e−

1
2t‖x‖

2
H

is the fundamental solution to the heat equation (5.15) on H ⊂W.

Example 5.14. Let W = R2 and

dµ (x, y) =
e−

1
2x

2

√
2π

dx δ0 (dy)

and f ∈ L1+ (µt) . Then H = R× {0} ,

dµt (x, y) =
e−

1
2tx

2

√
2πt

dx δ0 (dy)

and

(µt ∗ f) (a, b) =

∫
R2

f ((a, b) + (x, y))
e−

1
2tx

2

√
2πt

dx δ0 (dy)

=

∫
R
f ((a, b) + (x, 0))

e−
1
2tx

2

√
2πt

dx

=

∫
R
f (x+ a, b)

e−
1
2tx

2

√
2πt

dx

=

∫
R
f (x, b)

e−
1
2t (x−a)2

√
2πt

dx.

By assumption we have

∞ >

∫
R2

f (x, y)
p e
− 1

2tx
2

√
2πt

dx δ0 (dy) =

∫
R2

f (x, 0)
p e
− 1

2tx
2

√
2πt

dx

and so there is no control of f (x, y) for y not equal to zero. (Notice that f = g
γ ⊗ δ0 – a.e. iff f (·, 0) = g (·, 0) γ – a.e.) Hence it is clear that we can only
expect µt ∗ f (a, b) to make sense for b = 0. It his case it follows that for a ∈ C
we have

(µt ∗ f) (a, 0) =

∫
R
f (x, 0)

e−
1
2t (x−a)2

√
2πt

dx

which is analytic in a.
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Fock Spaces

Suppose that H and K are two Hilbert spaces and α : H × K → C is a
multilinear form which is continuous in each variable separately. Then for each
k ∈ K we have sup‖h‖=1 |α (h, k)| = ‖α (·, k)‖H∗ <∞ by assumption. Therefore
{α (h, ·)}‖h‖=1 are point wise bounded collection of continuous linear functionals
on K and so by the uniform boundedness principle they are uniformly bounded,
i.e.

sup
‖h‖=1

sup
‖k‖=1

|α (h, k)| = sup
‖h‖=1

‖α (h, ·)‖K∗ =: C <∞.

Thus α : H ×K → C is continuous.

Lemma 6.1. Suppose that α : H ×K → R is a continuous bilinear form, then

‖α‖2 :=
∑

h∈S,k∈Λ

|α (h, k)|2

is independent of choice of orthonormal bases S for H and Λ for K.

Proof. Let α̃ : H → K be the unique linear operator such that

α (h, k) = (α̃h, k)K for all h ∈ H and k ∈ K.

That is it β : K∗ → K is the inverse or the map K 3 k → (k, ·) ∈ K∗, then
α̃h = β ◦ α (h, ·) . Notice that

‖α̃h‖K = sup
‖k‖=1

|(α̃h, k)K | = sup
‖k‖=1

|α (h, k)| ≤ C ‖h‖H

so that α̃ is a bounded operator. Moreover we have∑
h∈S,k∈Λ

|α (h, k)|2 =
∑

h∈S,k∈Λ

|(α̃h, k)K |
2

=
∑
h∈S

|α̃h|2 = ‖α̃‖2HS

and the latter quantity is known to be basis independent.

Proposition 6.2. Suppose that α : H1 × · · · ×Hn → R is a continuous1 multi-
linear form. Then

1 The continuity assertion is equivalent to the existstence of a C <∞ such that

|α (h1, . . . , hn)| ≤ C ‖h1‖H1
. . . ‖hn‖Hn

for all hi ∈ Hi.

‖α‖2 :=
∑

h1∈S1,...,hn∈Sn

|α (h1, . . . , hn)|2

is independent of the choices of orthonormal bases, Si, for Hi.

Proof. The best way do this is as follows. Let Λi be other bases for Hi, then
for any ul ∈ Hl and 1 ≤ i ≤ n we have h → α (u1, . . . , ui−1, h, ui+1, . . . , un) is
a continuous linear functional on Hi and therefore∑
h∈Si

|α (u1, . . . , ui−1, h, ui+1, . . . , un)|2 = ‖α (u1, . . . , ui−1, ·, ui+1, . . . , un)‖2H∗i

which is independent of the choice of basis. Thus we find that∑
(k1,...,ki−1)∈Λ1×···×Λi−1

(hi,...,hn)∈Si×···×Sn

|α (k1, . . . , ki−1, hi, . . . , hn)|2

=
∑

(k1,...,ki−1)∈Λ1×···×Λi−1

(hi+1,...,hn)∈Si+1×···×Sn

∑
hi∈Si

|α (k1, . . . , ki−1, hi, . . . , hn)|2

=
∑

(k1,...,ki−1)∈Λ1×···×Λi−1

(hi+1,...,hn)∈Si+1×···×Sn

∑
ki∈Λi

|α (k1, . . . , ki, hi+1, . . . , hn)|2

=
∑

(k1,...,ki)∈Λ1×···×Λi
(hi+1,...,hn)∈Si+1×···×Sn

|α (k1, . . . , ki, hi+1, . . . , hn)|2

and so it follows by induction that∑
(k1,...,kn)∈Λ1×···×Λn

|α (k1, . . . , kn)|2 =
∑

h1∈S1,...,hn∈Sn

|α (h1, . . . , hn)|2 .

Even better suppose that α : H1 × · · · ×Hn → H is another Hilbert space
is multi-linear form which is continuous in each of its variables. Then∑

h∈Si

‖α (u1, . . . , ui−1, h, ui+1, . . . , un)‖2H

= ‖α (u1, . . . , ui−1, ·, ui+1, . . . , un)‖HS(Hi,H)
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which is basis independent. The same argument as above now allows us to
change the basis one slot at a time to see that the whole thing is basis indepen-
dent.

Definition 6.3. If ρ : Hn → C be a multilinear form which is continuous in
each of its variables and we let

‖ρ‖2Multn(H,C) :=
∑

(h1,...hn)∈S1×···×Sn

|ρ (h1, . . . , hn)|2 (6.1)

where S ⊂ H is any orthonormal basis of H. Further let Multn (H,C) denote

those ρ such that ‖ρ‖2Multn(H,C) < ∞ where by convention, Mult0 (H,C) = C
with inner product, (z, w)Mult0(H,C) := zw̄. As we saw above these definitions
are well defined. We further let

Symn (H,C) = {α ∈ Multn (H,C) : α is symmetric} .

Below we will usually just write ‖ρ‖ for ‖ρ‖Multn(H,C) as it should be clear from
context which norm we mean.

Lemma 6.4. Multn (H,C) is a complex Hilbert space in when equipped with the
inner product,

(ρ1, ρ2)Multn(H,C) =
∑

h1,...hn∈S

ρ1 (h1, . . . , hn) · ρ2 (h1, . . . , hn). (6.2)

Proof. The sum defining the inner product in Eq. (6.2) converges by
the Cauchy - Schwarz inequality and clearly defines an inner product on
Multn (H,C) whose associated norm is given by Eq. (6.1). Since the inner prod-
uct may be recovered from the norm by polarization it must be basis indepen-
dent. So it only remains to show Multn (H,C) is a complete space.

To simplify notation let ‖ρ‖ := ‖ρ‖Multn(H,C) . So let {ρk}∞k=1 be a Cauchy

sequence in Multn (H,C) . As any unit vectors h ∈ H is part of an orthonormal
basis forH it easily follows that {ρk (h1, . . . , hn)}∞k=1 is a Cauchy sequence for all
(h1, . . . , hn) ∈ Hn. Thus we know that ρ (h1, . . . , hn) := limk→∞ ρk (h1, . . . , hn)
exists and the resulting function, ρ : Hn → C is still multi-linear. By the uniform
boundedness principle it is continuous in each of its variables as well. We now
use Fatou’s lemma to learn,

‖ρ− ρk‖2 =
∑

(h1,...hn)∈S1×···×Sn

|ρ (h1, . . . , hn)− ρk (h1, . . . , hn)|2

=
∑

(h1,...hn)∈S1×···×Sn

lim inf
l→∞

|ρl (h1, . . . , hn)− ρk (h1, . . . , hn)|2

≤ lim inf
l→∞

∑
(h1,...hn)∈S1×···×Sn

|ρl (h1, . . . , hn)− ρk (h1, . . . , hn)|2

= lim inf
l→∞

‖ρl − ρk‖2 → 0 as k →∞.

Example 6.5. Suppose that α1, . . . , αn ∈ H∗, then we may define an element
α1 ⊗ · · · ⊗ αn ∈ Multn (H,C) by

α1 ⊗ · · · ⊗ αn (h1, . . . , hn) =

n∏
i=1

αi (hi) .

Similarly α1 ∨ · · · ∨ αn :=
∑
σ ασ1 ⊗ · · · ⊗ ασn ∈ Symn (H,C) where the sum is

over all permutations of {1, 2, . . . , n} . Observe that

‖α1 ⊗ · · · ⊗ αn‖2Multn(H,C) =

n∏
i=1

‖αi‖2H∗

and that

‖α1 ∨ · · · ∨ αn‖2Multn(H,C) =

(∑
σ

ασ1 ⊗ · · · ⊗ ασn,
∑
τ

ατ1 ⊗ · · · ⊗ ατn

)
Multn(H,C)

=
∑
σ,τ

n∏
i=1

(ασi, ατi)H∗ =
∑
σ,τ

n∏
i=1

(αστi, ατi)H∗

=
∑
σ,τ

n∏
i=1

(ασi, αi)H∗ = n!
∑
σ

n∏
i=1

(ασi, αi)H∗ .

Example 6.6. Suppose that f : H → C is a smooth function near x ∈ H,
then Dn

xf : Hn → C (see Notation 5.11) defines a multi-linear symmetric
function on H since mixed partial derivatives commute. If we further assume
that f ∈ FC∞ (H∗) so that f = F ((k1, ·) , . . . , (km, ·)) for some ki ∈ H, then
Dn
xf ∈ Symn (H,C) and

Dn
xf =

m∑
i1,...,in=1

(∂i1 . . . ∂inF ) ((k1, ·) , . . . , (km, ·)) (ki1 , ·)⊗ · · · ⊗ (kin , ·) .
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Remark 6.7. Let Pn (H∗) be the space of homogeneous polynomials of degree
n on H. When dimH <∞. the map

Symn (H,C) 3 α→ (x→ α (x, x, . . . , x)) ∈ Pn (H∗) (6.3)

is a linear isomorphism with inverse map given by

Pn (H∗) 3 p→ 1

n!
Dn

0 p ∈ Symn (H,C) . (6.4)

When dimH = ∞ it is no longer true that Pn (H∗) and Symn (H,C) are
isomorphic. To describe better what is going on in this case let Multalg

n (H,C)
denote those α ∈ Multn (H,C) such that α = P ∗α for some finite rank or-
thonormal projection on H where P ∗α (h1, . . . , hn) := α (Ph1, . . . , Phn) . We
also let Symalg

n (H,C) = Multalg
n (H,C) ∩ Symn (H,C) .

Proposition 6.8. The map in Eq. (6.4) is a linear isomorphism from Pn (H∗)
onto Symalg

n (H,C) and Symalg
n (H,C) is a dense subspace in Symn (H,C) .

Proof. Let S be an orthonormal basis for H and {Sl}∞l=1 ⊂ S such that
Sl ↑ S with # (Sl) <∞ for all l. Further let Plx :=

∑
h∈Sl (x, h)h be orthogonal

projection onto Hl := spanSl. Then give α ∈ Symn (H,C) let αl := P ∗l α ∈
Symalg

n (H,C) and pl (x) := αl (x, . . . , x) in Pn (H) with 1
n!D

n
0 pl = αl. So to

finish the proof of the assertion it suffices to show αl → α in Symn (H,C) . This
however follows from the DCT for sums. Indeed, for h1, . . . , hn ∈ S, we have

|(α− αl) (h1, . . . , hn)|2 ≤ 2 |α (h1, . . . , hn)|2

while
lim
l→∞

|(α− αl) (h1, . . . , hn)|2 = 0.

Definition 6.9 (Fock spaces). Given a real Hilbert space, H and t > 0, let

T (H; t) :=
{
α = (αn)

∞
n=0 : αn ∈ Multn (H,C) and ‖α‖2t <∞

}
and

F (H; t) := {α ∈ T (H; t) : αn ∈ Symn (H,C)}

where

‖α‖2t :=
∑ tn

n!
‖αn‖2Multn(H,C) .

We call T (H; t) the full Fock space over H and F (H; t) the Bosonic Fock
space over H.

The full Fock space T (H; t) is a Hilbert space when given the inner product,

(α, β)t :=
∑ tn

n!
(αn, βn)Multn(H,C)

for all α, β ∈ T (H; t) and F (H; t) is a Hilbert subspace of T (H; t) .





7

Segal Bargmann Transforms

7.1 Three key identities

Let (W,BW , ν) be a real Gaussian probability space with Cameron-Martin space
H := Hν and B := Lν :=

∑
h∈Sν ∂

2
h where Sν is an orthonormal basis for H.

(We assume dimW < ∞ for the moment but it is not really needed). Given
f, g ∈ P (W ∗) , n ∈ N, and h1, . . . , hn ∈ H, let

Dn
xf (h1, . . . , hn) := (∂h1

. . . ∂hnf) (x) .

As mixed partial derivatives commute it follows that Dn
xf ∈ Symn (H,C) .

Further let αfx := (Dn
xf)
∞
n=0 ∈ F (H; t) for all t > 0.

Theorem 7.1 (Key identity 1). Let f, g ∈ P (W ∗) , x ∈W, and t > 0, then

etB/2
[
e−tB/2f · e−tB/2ḡ

]
(x) =

(
αfx, α

g
x

)
t

=

∞∑
n=0

tn

n!
(Dn

xf,D
n
x ḡ)Multn(H,C)

(7.1)
and in particular(

e−B/2f · e−B/2g
)
L2(ν)

=
(
αf0 , α

g
0

)
1

=

∞∑
n=0

1

n!
(Dn

0 f,D
n
0 ḡ)Multn(H,C) . (7.2)

Proof. Below we will suppress x from the notation with the understanding
that all formulas are to evaluated at x. To further simplify the notion let

Ft := e−tB/2f and Gt := e−tB/2ḡ.

By simple calculus we have,

d

dt

(
etB/2

[
Ft · Ḡt

])
=

1

2
etB/2

(
B
(
FtḠt

)
−BFt · Ḡt − Ft ·BḠt

)
=
∑
h∈S

etB/2
(
∂hFt · ∂hḠt

)
=
∑
h∈S

etB/2
[
e−tB/2∂hf · e−tB/2∂hḡ

]
.

It now follows by induction that

dn

dtn

(
etB/2

[
Ft · Ḡt

])
=

∑
h1,...,hn∈S

etB/2
[
e−tB/2∂h1

. . . ∂hnf · e−tB/2∂h1
. . . ∂hn ḡ

]
.

Because etB/2
[
e−tB/2f · e−tB/2ḡ

]
is a polynomial in t, Taylor’s theorem implies

etB/2
[
e−tB/2f · e−tB/2ḡ

]
=

∞∑
n=0

tn

n!

dn

dtn

(
etB/2

[
Ft · Ḡt

])
|t=0

=

∞∑
n=0

tn

n!
(Dnf,Dnḡ)Multn(H,C)

as claimed. Equation (7.2) follows immediately from Eq. (7.1) with t = 1 and
x = 0.

Recall from Theorem 7.1 that for all f, g ∈ P (W ∗) ;

eB/2
[
e−B/2f · e−B/2ḡ

]
=

∞∑
n=0

1

n!
(Dnf,Dng)Multn(Hν ,C) . (7.3)

Notation 7.2 Let WC = W + iW denote the complexification of W, W ∗C =

HomC (W,C) be the continuous complex linear functionals on W, and W
†

C :=
HomR (W,C) be the continuous real linear functionals on WC. Further let B̃ be

the operator acting on P
(
W
†

C

)
given by

B̃ :=
∑
h∈Sν

∂2
ih.

We will also abuse notation and view B =
∑
h∈Sν ∂

2
ih as on operator on both

P (W ) and on P
(
W
†

C

)
.

Theorem 7.3 (Key identity 2). If f, g ∈ P (W ∗C) (the holomorphic polyno-
mial functions on WC), then1

eB̃/2
[
eB/2f · eB/2ḡ

]
=

∞∑
n=0

1

n!
(Dnf,Dng)Multn(Hν ,C) . (7.4)

1 The identity in this theorem is not as key as the other two key identities. We will
in fact only use it in the proof of the third key identity.
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Proof. Let
u (t) := etB̃/2

[
etB/2f · etB/2ḡ

]
which is a polynomial in t and therefore as usual,

eB̃/2
[
eB/2f · eB/2ḡ

]
= u (1) =

∞∑
n=0

1

n!
u(n) (0) .

Moreover, we have for f, g ∈ P (W ∗C) and h ∈ Hν ;

∂ihf = i∂hf, ∂ihḡ = ∂ihg = i∂hg = −i∂hḡ,

B̃f = −Bf, B̃ḡ = −Bḡ, and

B̃ (fḡ) = B̃f · ḡ + fB̃ḡ + 2
∑
h∈Sν

∂ihf · ∂ihḡ

= −Bf · ḡ − fBḡ + 2
∑
h∈Sν

∂hf · ∂hḡ. (7.5)

If f, g ∈ P (α1, . . . , αn) with {α1, . . . , αn} ⊂W ∗C , we can choose Sν so that h ⊥
{Jνα1|W , . . . , Jναn|W } for all but at most n element of Sν . This is equivalent
to

# {h ∈ Sν : α1 (h) = · · · = αn (h) = 0} ≤ n.

With such a choice the sum appearing in Eq. (7.5) is really a finite sum.
The computations now go as before, namely

u̇ (t) =
1

2
etB̃/2

[
B̃
[
etB/2f · etB/2ḡ

]
+BetB/2f · etB/2ḡ + etB/2f ·BetB/2ḡ

]
= etB̃/2

[∑
h∈Sν

∂he
tB/2f · ∂hetB/2ḡ

]
=
∑
h∈Sν

etB̃/2
[
etB/2∂hf · etB/2∂hḡ

]
.

Hence by induction we learn that

u(n) (t) =
∑

h1,...,hn∈Sν

etB̃/2
[
etB/2∂h1

. . . ∂hnf · etB/2∂h1
. . . ∂hn ḡ

]
and therefore,

eB̃/2
[
eB/2f · eB/2ḡ

]
= u (1) =

∞∑
n=0

1

n!
u(n) (0)

=

∞∑
n=0

1

n!

∑
h1,...,hn∈Sν

[∂h1 . . . ∂hnf · ∂h1 . . . ∂hn ḡ]

=

∞∑
n=0

1

n!
(Dnf,Dng)Multn(Hν ,C) .

Notation 7.4 Associated to a probability measure µ on (W,BW ) are two the
two probability measures µ × δ0 and δ0 × µ on WC = W + iW ∼= W ×W. We
will continue to denote µ × δ0 by µ and we will denote δ0 × µ by µ̃. Thus the
measures µ and µ̃ satisfy;∫

WC

fdµ =

∫
W

fdµ and

∫
WC

fdµ̃ =

∫
W

f (ix) dµ (x)

for all bounded measurable functions f on WC.

Lemma 7.5. Suppose that µ and ν are two probability measures on (W,BW ) .

1. If µ (‖·‖nW ) + ν (‖·‖nW ) <∞2 for some n ∈ N then µ ∗ ν (‖·‖nW ) <∞.
2. If there exists ε > 0 such that µ

(
eε‖·‖W

)
+ ν

(
eε‖·‖W

)
< ∞ then µ ∗

ν
(
eε‖·‖W

)
<∞ as well.

3. If µ (‖·‖nW ) < ∞ and f : W → R satisfies |f | ≤ C (1 + ‖·‖nW ) then there
exists C ′ <∞ such that |µ ∗ f | ≤ C ′ (1 + ‖·‖nW ) .

Exercise 7.1. Prove Lemma 7.5.

Corollary 7.6 (Key identity 3). Continuing the notation in Theorem 7.3,
for all f, g ∈ P (W ∗C) ,

eB/2 [f · ḡ] = eB̃/2
[
eBf · eB ḡ

]
. (7.6)

Alternatively we may write this as,

ν ∗ [f · ḡ] = ν̃ ∗ [ν2 ∗ f · ν2 ∗ ḡ] (7.7)

where ν2 := ν ∗ ν and for a measurable function u : WC → C with polynomial
growth,

(ν ∗ u) (z) :=

∫
W

u (z − x) dν (x) =

∫
W

u (z + x) dν (x)

and

(ν̃ ∗ u) (z) :=

∫
W

u (z − ix) dν (x) =

∫
W

u (z + ix) dν (x)

2 I will often write µ (f) for
∫
W
fdµ.
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First proof. By Theorem 7.1 and 7.3 we know that

eB/2
[
e−B/2f · e−B/2ḡ

]
= eB̃/2

[
eB/2f · eB/2ḡ

]
.

Replacing f and g by eB/2f and eB/2g respectively in this equality proves Eq.
(7.6).

Second proof. In this direct proof we will adapt the argument in Hall [18, p.

820]. For h ∈ Hν we define two differential operators on P
(
W
†

C

)
;

Zh :=
1

2
[∂h − i∂ih] and Z̄h :=

1

2
[∂h + i∂ih] .

For f ∈ P (W ∗C) we have Zhf = ∂hf, Z̄hf = 0, Zhf̄ = 0, Z̄hf̄ = Zhf = ∂hf̄ ,
and

Z2
h + Z̄2

h =
1

2

(
∂2
h − ∂2

ih

)
.

From these observations it follows that

eBf · eB ḡ = e
∑
h∈Sν Z

2
hf · e

∑
h∈Sν Z̄

2
h ḡ

= e
∑
h∈Sν (Z2

h+Z̄2
h) [f · ḡ] = e

1
2

∑
h∈Sν (∂2

h−∂
2
ih) [f · ḡ]

= e
1
2 (B−B̃) [fḡ] .

Applying eB/2 to both sides of this identity completes the proof.

Corollary 7.7. Let µ be any measure on (W,BW ) such that µ (‖·‖nW ) <∞ for
all n ∈ N. Then for all f, g ∈ P (W ∗C) we have∫

W

f · ḡ d (µ ∗ ν) =

∫
WC

[ν2 ∗ f · ν2 ∗ ḡ] d (µ× ν) .

Proof. Integrate Eq. (7.7) relative to µ. In doing so we make use the fact
that ν is symmetric and therefore,∫

WC

[ν ∗ F ] dµ =

∫
W

[ν ∗ F ] dµ =

∫
W×W

F (x− y) dν (y) dµ (x)

=

∫
W×W

F (x+ y) dν (y) dµ (x) =

∫
W

Fd (µ ∗ ν)

for F : W → [0,∞] measurable and∫
WC

ν̃ ∗ Fdµ =

∫
W

(ν̃ ∗ F ) (x) dµ (x)

=

∫
W

(∫
W

F (x− iy) dν (y)

)
dµ (x)

=

∫
W×W

F (x+ iy) dµ (x) dν (y) =

∫
W×W

Fd (µ× ν) .

7.2 The Segal-Bargmann Transform

Definition 7.8. Suppose that W is a complex Banach space and µ is any prob-
ability measure on BW such that µ (‖·‖nW ) < ∞ for all n ∈ N. We let ḢL2 (µ)
denote the L2 (µ) – closure of P (W ∗) – the holomorphic polynomial functions
on W.

Remark 7.9. If dimW <∞ and µ is a non-degenerate (i.e. Hµ = W ) Gaussian
probability measure on (W,BW ) , then we will see in Theorem 8.10 below that
P (W ∗) is a dense subspace of the Hilbert space (see Lemma 2.8) HL2 (W,µ) .
Thus ḢL2 (W,µ) = HL2 (W,µ) in this case.

Theorem 7.10 (Generalized Segal-Bargmann transform). Let µ be any
measure on (W,BW ) such that µ

(
eε‖·‖W

)
< ∞ for some ε > 0. Then there

exists a unique unitary map

Sµ,ν : L2 (W,µ ∗ ν)→ ḢL2 (WC, µ× ν)

such that for all p ∈ P (W ∗) ,

Sµ,νp = ν2 ∗ pC =
(
eBp

)
C .

Proof. In light of Lemma 7.5, Fernique’s Theorem 3.5, and Theorem 2.2, we
know that P (W ∗) is a dense subspace of L2 (µ ∗ ν) . Therefore it follows that
the isometric map in Corollary 7.7 extends uniquely to a unitary map from
L2 (W,µ ∗ ν) to ḢL2 (WC, µ× ν) .

In the case where µ and ν are both non-degenerate Gaussian measures we
can compute Sµ,νf more explicitly.

Corollary 7.11. If µ and ν are both Gaussian measures on W with full support
(i.e. Hµ = W = Hν) and f ∈ L2 (µ ∗ ν) , then;

1. for all x ∈W the following integral exists,

(ν2 ∗ f) (x) =

∫
W

f (x− y) dν2 (y) .

2. ν2 ∗ f : Hµ∗ν = W → C is smooth and even admits a unique analytic
continuation, (ν2 ∗ f)C to all of WC.

3. Sµ,νf = (ν2 ∗ f)C – µ× ν a.s.
4. The resulting Segal - Bargmann map,

Sµ,ν : L2 (W,µ ∗ ν)→ HL2 (WC, µ× ν) ,

is unitary.
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34 7 Segal Bargmann Transforms

Proof. 1. Let us write H for Hν and x · y for (x, y)Hν . Further let C be
the unique positive operator (matrix) on H such that (x, y)Hµ = Cx · y for all
x, y ∈ H. Further let λ := µ ∗ ν and observe that

dν2 (x)

dx
∝ exp

(
−1

4
x · x

)
and

dλ (x)

dx
∝ exp

(
−1

2
(I + C)

−1
x · x

)
= exp

(
−1

2
(I −D)x · x

)
where D = C (I + C)

−1
and 0 < D < I as can be seen by the spectral theorem.

Using this notation it follows that∫
W

f (x− y) dν2 (y)

∝
∫
W

f (y) exp

(
−1

4
(x− y) · (x− y)

)
dy

∝
∫
W

f (y)
exp

(
− 1

4 (x− y) · (x− y)
)

exp
(
− 1

2 (I −D) y · y
) dλ (y)

= e−
1
4x·x

∫
W

f (y) exp

(
1

2
x · y − 1

4
y · y +

1

2
(I −D) y · y

)
dλ (y) .

To verify the latter integral is well defined it suffices to show

exp

(
1

2
x · y − 1

4
y · y +

1

2
(I −D) y · y

)
∈ L2 (dλ (y))

which is the case since,

−1

2
(I −D)x · x+ 2

(
1

2
x · y − 1

4
y · y +

1

2
(I −D) y · y

)
= x · y − 1

2
y · y +

1

2
(I −D) y · y = x · y − 1

2
Dy · y

and therefore,∫
W

∣∣∣∣exp

(
1

2
x · y − 1

4
y · y +

1

2
(I −D) y · y

)∣∣∣∣2 dλ (y)

∝
∫
W

exp

(
x · y − 1

2
Dy · y

)
dy <∞

as D > 0.
2. The analytic continuation, F (z) , of x→

∫
W
f (x− y) dν2 (y) is given by

F (z) = (const.) · e− 1
4 z·z

∫
W

f (y)K (z, y) dλ (y)

where

K (z, y) := exp

(
1

2
z · y − 1

4
y · y +

1

2
(I −D) y · y

)
The fact that

z →
∫
W

f (y)K (z, y) dλ (y)

is analytic follows either by Morera’s Theorem 2.5 or by differentiating past the
integral. (See the proof of Lemma 8.7 below for more details on this type of
argument.) The details are left to the reader.

3. As µ× ν is a positive smooth measure on WC it follows from Lemma 2.8
that the evaluation maps,

HL2 (WC, µ× ν) 3 F → F (z) ∈ C

are continuous linear functionals on HL2 (WC, µ× ν) . Therefore if pn ∈ P (W ∗)
with pn → f in L2 (λ) then

(Sµ,νf) (z) = lim
n→∞

(Sµ,νpn) (z) .

On the other hand since K (z, ·) ∈ L2 (λ) it also follows that

lim
n→∞

∫
W

pn (y)K (z, y) dλ (y) =

∫
W

f (y)K (z, y) dλ (y) .

Putting these two observations together allows us to conclude that

(Sµ,νf) (z) = (const.) · e− 1
4 z·z

∫
W

f (y)K (z, y) dλ (y) = (ν2 ∗ f)C (z) .

4. The unitarity of Sµ,ν from L2 (W,µ ∗ ν) to HL2 (WC, µ× ν) now follows
from Theorem 7.10 and Remark 7.9.

7.2.1 Examples

Bargmann [3] introduces three forms of the Segal-Bargmann transform. I will
describe the two most interesting forms of the transform in the next two exam-
ples – the third form is rather trivially obtained from one of these forms.

Example 7.12 (Standard form 1). In Corollary 7.11 take W = Rd and µ = ν =
Pt/2 where Pt = et∆/2δ0, i.e.

Pt (dx) = pt (x) dx := (2πt)
−d/2

e−
1
2tx·xdx. (7.8)

Then we have shown
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7.2 The Segal-Bargmann Transform 35∫
Rd
|f (x)|2 dPt (x) =

∫
Cd

∣∣∣(et∆/2f)
C

(x+ iy)
∣∣∣2 dPt/2 (x) dPt/2 (y)

=

(
1

πt

)d ∫
Cd

∣∣∣(et∆/2f)
C

(x+ iy)
∣∣∣2 e− 1

t (x·x+y·y)dxdy

=

(
1

πt

)d ∫
Cd
|(Pt ∗ f)C (z)|2 exp

(
−1

t
z · z̄

)
dxdy. (7.9)

where

(Pt ∗ f)C (z) = (2πt)
−d/2

∫
Rd
f (x) exp

(
− 1

2t
(x− z) · (x− z)

)
dx.

Example 7.13 (Standard form 2). In Corollary 7.11 take W = Rd and ν = Pt/2
and µ = m, where m is Lebesgue measure. Technically this is not allowed since
m is not a probability measure and certainly does not integrate polynomials.
Nevertheless blindly going ahead using m ∗ Pt = m suggests that we should
expect∫

Rd
|f (x)|2 dm (x) =

(
1

πt

)d/2 ∫
Cd
|(Pt ∗ f)C (z)|2 exp

(
−1

t
y2

)
dxdy (7.10)

where we are now writing y2 for y ·y. As it turns out we may derive this formula
rigorously from Eq. (7.9).

Following Hall [15, p. 149], for f ∈ L2 (m) apply Eq. (7.9) with f by f/
√
pt ∈

L in Eq. (7.9) shows,∫
Rd
|f (x)|2 dx =

(
1

πt

)d ∫
Cd

∣∣∣∣(Pt ∗ f
√
pt

)
C

(z)

∣∣∣∣2 exp

(
−1

t
|z|2
)
dxdy (7.11)

where (
Pt ∗

f
√
pt

)
C

(z) =

(
1

2πt

)d/4 ∫
Rd

e−
1
2t (z−x)2

e−
1
4tx

2
f (x) dx.

Using the identity,

− 1

2t
(z − x)

2
+

1

4t
x2 = − 1

4t
(x− 2z)

2
+

1

2t
z2

we learn that(
Pt ∗

f
√
pt

)
C

(z) =

(
1

2πt

)d/4
e

1
2t z

2

∫
Rd

exp

(
− 1

4t
(x− 2z)

2

)
f (x) dx

=

(
1

2πt

)d/4
e

1
2t z

2

∫
Rd

(4πt)
d/2

p2t (x− 2z) f (x) dx

=

(
1

2πt

)d/4
(4πt)

d/2
e

1
2t z

2

(P2t ∗ f)C (2z) .

Using this result in Eq. (7.11) then gives,∫
Rd
|f (x)|2 dx = Ct

∫
Cd

∣∣∣e 1
2t z

2 (
et∆f

)
C (2z)

∣∣∣2 exp

(
−1

t
|z|2
)
dxdy

= Ct

∫
Cd

∣∣(et∆f)C (2z)
∣∣2 e 1

t Re(z2) exp

(
−1

t
|z|2
)
dxdy

where

Ct =

(
1

πt

)d(
1

2πt

)d/2
(4πt)

d
= 4d

(
1

2πt

)d/2
.

Now
Re
(
z2
)
− |z|2 = x2 − y2 −

(
x2 + y2

)
= −2y2

and so we have shown∫
Rd
|f (x)|2 dx = 4d

(
1

2πt

)d/2 ∫
Cd

∣∣(et∆f)C (2z)
∣∣2 exp

(
−2

t
y2

)
dxdy.

Making the change of variables, z → 1
2z then implies,∫

Rd
|f (x)|2 dx =

(
1

2πt

)d/2 ∫
Cd

∣∣(et∆f)C (z)
∣∣2 exp

(
− 1

2t
y2

)
dxdy

=

∫
Cd

∣∣(et∆f)C (z)
∣∣2 dxPt (dy)

which is Eq. (7.10).

Example 7.14 (Interpolating forms). In this example we wish to “interpolate”
between the two standard forms. In order to do so we apply Corollary 7.11 with
W = Rd and µ = Pσ and ν = Ps to arrive at the identity,∫

Rd
|f (x)|2 dPσ+s (x)

=

∫
Cd
|(P2s ∗ f)C (x+ iy)|2 dPσ (x) dPs (y)

=

(
1

2π
√
σs

)d ∫
Cd
|(P2s ∗ f)C (x+ iy)|2 exp

(
−
[
x2

2σ
+
y2

2s

])
dxdy. (7.12)

This gives the results in Example 7.12 when σ = s = t/2. Moreover for f ∈
L2 (m) we may multiply Eq. (7.12) by (2πσ)

d/2
and then let σ → ∞ in order

to formally arrive at Eq. (7.10) with t = s. In a little more detail,
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(2πσ)
d/2
∫
Rd
|f (x)|2 dPσ+s (x) =

[
σ

σ + s

]d/2 ∫
Rd
|f (x)|2 exp

(
−

[
|x|2

2 (σ + s)

])
dx

→
∫
Rd
|f (x)|2 dx as σ →∞

and similarly

(2πσ)
d/2 ·RHS (7.12)

= (2πs)
−d/2

∫
Cd
|(P2s ∗ f)C (x+ iy)|2 exp

(
−
[
x2

2σ
+
y2

2s

])
dxdy

→ (2πs)
−d/2

∫
Cd
|(P2s ∗ f)C (x+ iy)|2 exp

(
−y

2

2s

)
dxdy

=

∫
Cd
|(P2s ∗ f)C (x+ iy)|2 dxPs (dy)

In the next two examples we explore what happens if µ or ν degenerate to
δ0.

Example 7.15. Let W = Rd, WC = Cd, ν = δ0 and µ be a probability measure
on (W,BW ) as in Theorem 7.10. We then have , µ∗ν = δ0, ν2 = δ0 ∗ δ0 = δ0and
ν2 ∗ f = f. Therefore Theorem 7.10 states that∫

W

|p (x)|2 dµ (x) =

∫
WC

|pC (x+ iy)| dµ (x) δ0 (dy)

=

∫
W

|pC (x)| dµ (x)

which gives no new information.
Incidentally, notice that

ḢL2 (µ⊗ δ0) := HP (WC)
L2(µ⊗δ0) ∼= P (W )

L2(µ)
= L2 (W,µ)

since for any holomorphic polynomial p on Cd,

‖p‖2L2(µ⊗δ0) =

∫
WC

|p (x+ iy)|2 µ (dx) δ0 (dy) =

∫
W

|p (x)|2 µ (dx) .

The following example can essentially be found in Hall [18, Theorem 2.2].

Example 7.16 (Fourier Wiener Transform). Let W = Rd, WC = Cd, µ = δ0,
ν = Pt (see Eq. (7.8)), and S = Sδ0,Pt . By Theorem 7.10,∫

Rd
|f (x)|2 pt (x) dx =

∫
Cd
|Sf (z)|2 δ0 (dx)Pt (dy)

=

∫
Rd
|Sf (iy)|2 Pt (dy) (7.13)

for all f ∈ L2 (P1) . Similarly to Example 7.15 we may easily conclude that the
map,

L2
(
Rd, Pt

)
3 f → (z → f (i Im z)) ∈ ḢL2

(
Cd, δ0 × Pt

)
is unitary.

If f a function on Rd with (for example) at most exponential growth one
easily shows that Sf (z) is given explicitly as,

Sf (z) = (4πt)
−d/2

∫
Rd
f (x) exp

(
− 1

4t
(x− z)2

)
dx.

So if g ∈ Cc
(
Rd,C

)
we may take f := g/

√
pt in the above formulas in order to

find,

S (g/
√
pt) (z) = (4πt)

−d/2
∫
Rd

g (x)√
pt (x)

e−
1
4t (x−z)2dx

= Ct

∫
Rd
g (x) e

1
4tx·xe−

1
4t (x−z)2dx

= Cte
− 1

4t z
2

∫
Rd
g (x) e

1
2tx·zdx,

where
Ct := (2πt)

d/4
(4πt)

−d/2
.

Taking z = iy then implies,

S (g/
√
pt) (iy) = Cte

1
4ty

2

ĝ (y/2t)

where

ĝ (y) :=

∫
Rd
g (x) eiy·xdx

is the Fourier transform of g. Therefore Eq. (7.13) with f := g/
√
pt becomes∫

Rd
|g (x)|2 dx = C2

t

∫
Rd
|ĝ (y/2t)|2 e 1

2ty
2

Pt (dy)

= (4πt)
−d
∫
Rd
|ĝ (y/2t)|2 dy

=

(
1

2π

)d ∫
Rd
|ĝ (y)|2 dy =

∫
Rd
|ĝ (2πy)|2 dy

which is the isometry property of the Fourier transform. Because the maps

S : L2
(
Rd, Pt

)
→ ḢL2

(
Cd, δ0 × Pt

) ∼= L2
(
Rd, Pt

)
and

L2
(
Rd, dx

)
3 g → g/

√
pt ∈ L2

(
Rd, Pt

)
are unitary we have actually given a proof of the fact that the Fourier transform,
g → ĝ (2π (·)) is a unitary map on L2

(
Rd, dx

)
.

Some where around
here see the Ham-
burg moment prob-
lem section ??.

Page: 36 job: Cornell macro: svmonob.cls date/time: 16-Jul-2010/16:09



8

The Kakutani-Itô-Fock space isomorphism

(Some old stuff has now been moved to the bone yard ??. BRUCE: see
Chapter ?? below for some QM interpretation of this stuff.))

8.1 The Real Case

As usual let (W,BW , µ) be a Gaussian probability space. If H := Hµ is a proper
subspace of W it is not true that the restriction map,

P (W ∗) 3 p→ p|H ∈ P (H∗) ,

is one to one. which is a bit annoying. However notice that if p, q ∈ P (W ∗) with
p = q (µ a.s.) then p = q on H the conversely. Thus P (W ∗) / ∼ and P (H∗)
are isomorphic where p ∼ g iff p = q (µ a.s.) iff p = q on H. For the sake of
simplicity and with no real loss in generality let us assume in this section that
H = W, i.e. µ is non-degenerate.

In what follows we will simply write F (H) for F (H; 1) – see Definition 6.9.

Theorem 8.1 (Fock Space Isomorphism I). For f ∈ L2 (µ) let Fµf :=
(Dn

0 (µ ∗ f))
∞
n=0 , then Fµf ∈ F (H) and Fµ : L2 (µ)→ F (H) is unitary.

Proof. First off from Lemma 5.12 we know that µ∗f is smooth on Hµ = W
so that it makes sense to even write Dn

0 (µ ∗ f) . Secondly, from Proposition
6.8 and Theorem 7.1 (with ν = µ) we know that Fµ|P(W∗) is an isometry
from P (W ∗) onto a dense subset of F (H) and hence extends uniquely to a
unitary transformation, Fµ : L2 (µ) → F (H) . It only remains to show that
Fµf := (Dn

0 (µ ∗ f))
∞
n=0 .

Let h1, . . . , hn ∈ H and define l (f) := [∂h1 . . . ∂hn (µ ∗ f)] (0) for all f ∈
L2 (µ) . According to Lemma 5.12 this is a bounded linear functional. Thus
if f ∈ L2 (µ) and pk ∈ P (W ∗) such that pk → f in L2 (µ) we will have
l (pk)→ l (f) . We also have Dn

0 (µ ∗ pk)→ Dn
0 (µ ∗ f) and therefore,

Dn
0 (µ ∗ f) (h1, . . . , hn) = lim

k→∞
Dn

0 (µ ∗ pk) (h1, . . . , hn) = lim
k→∞

l (pk) = l (f)

which completes the proof.

Definition 8.2. The nth level Hermite (or homogeneous chaos) sub-
space of L2 (W,µ) is the space Fn (µ) = e−Lµ/2Pn (W ∗) , where Pn (W ∗) de-
notes the space of homogeneous polynomials of degree n on W.

Proposition 8.3 (Hermite/Chaos Expansion). Let (W,BW , µ) be a non-
degenerate Gaussian probability space. Then;

1. Fµ [Fn (µ)] = Symn (Hµ,C) and for any α ∈ Symn (Hµ,C) ,

F−1
µ α =

1

n!
e−Lµ/2 (x→ α (x, . . . , x)) . (8.1)

2. L2 (W,µ) is the orthogonal Hilbert space direct sum of the subspaces Fn (µ)
for n = 0, 1, 2 . . . , i.e. every f ∈ L2 (W,µ) has a unique orthogonal direct
sum decomposition of the form

f =

∞∑
n=0

fn with fn ∈ Fn (µ) . (8.2)

3. Writing eLµ/2f for µ ∗ f, the fn in Eq. (8.2) are computed via

fn =
1

n!
e−L/2(x→ ∂nx e

L/2f)(0). (8.3)

4. Fn (µ) is the set of all polynomials on W of degree n which are orthogonal
to all polynomials of degree at most n− 1.

Proof. Let us write H for Hµ, F for Fµ, and L for Lµ in this proof.

1. If f = e−L/2p ∈ Fn (µ) for some p ∈ Pn (W ∗) , then

(Ff)k = Dk
0

[
µ ∗ e−L/2p

]
= Dk

0

[
eL/2e−L/2p

]
= Dk

0p = δk,nD
n
0 p

where the last equality is a consequence of the fact that p is homogeneous
of degree n. This shows that F [Fn (µ)] ⊂ Symn (Hµ,C) .
Conversely if f ∈ F (H) with Ff = α ∈ Symn (H,C) , let

g :=
1

n!
e−Lµ/2 (x→ α (x, . . . , x)) ∈ Fn (µ) .

Then
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Fg =
1

n!
Dn

0

[
µ ∗ e−Lµ/2 (x→ α (x, . . . , x))

]
=

1

n!
Dn

0

[
eLµ/2e−Lµ/2 (x→ α (x, . . . , x))

]
=

1

n!
Dn

0 [α (x, . . . , x)] = α.

By Theorem 8.1, F is unitary and therefore f = g a.s. and we proved Eq.
(8.1) and Symn (Hµ,C) ⊂ F [Fn (µ)] .

2. & 3. These items follow directly from item 1. and Theorem 8.1 as fn =
F−1 [(Ff)n] .

4. Noting that eL/2 : P (W ∗) → P (W ∗) is degree preserving we see that
Fn (µ) = e−L/2Pn (W ∗) is contained inside the degree n – polynomials
in P (W ∗) . Moreover ⊕nk=0Fk (µ) is equal to the degree n polynomials in
P (W ∗) . This is because if p ∈ P (W ∗) is a degree n – polynomial, then by
items 2. and 3.,

p =

∞∑
k=0

1

k!
e−L/2(x→ ∂kxe

L/2p)(0)

=

∞∑
k=0

1

k!
e−L/2(x→ ∂kxe

L/2p)(0) ∈ ⊕nk=0Fk (µ) .

Hence we may conclude that Fn (µ) is perpendicular to ⊕n−1
k=0Fk (µ) which

is precisely the degree n−1 polynomials in P (W ∗) . Moreover if p ∈ P (W ∗)
is a degree n polynomial (i.e. p ∈ ⊕nk=0Fk (µ)) which is orthogonal to the
degree n− 1 polynomials (i.e. p ⊥ ⊕n−1

k=0Fk (µ)) we must have p ∈ Fn (µ) .

Remark 8.4. Combining the results of items 2. and 3. of Proposition 8.3, if
f ∈ L2 (µ) then

f =

∞∑
n=0

1

n!
e−tL/2 (x→ ∂nx (µ ∗ f) (0)) (orthogonal terms).

We will write this succinctly as

f(x) =

∞∑
n=0

1

n!
e−L/2(x→ ∂nx e

L/2f)(0) (8.4)

“ = ” e−L/2
∞∑
n=0

1

n!
(x→ ∂nx e

L/2f)(0). (8.5)

In words, to find the Hermite decomposition of f ∈ L2 (µ) apply eL/2 to f, then
compute the Taylor expansion of the result, then apply e−L/2 to each term in
this expansion. So formally the theorem represents the assertion that

IdL2(µ) = e−L/2 ◦ Taylor0 ◦ eL/2.

8.2 The Complex Case

Now suppose that W is a complex vector space. We now wish to assume that
H = Hµ is a complex subspace of W. (This need not be the case in general,
just take W = C with µ = γ ⊗ δ0 where γ is the standard normal distribution.
In this case Hµ = R ⊂ C which is a real but not complex subspace.)

Lemma 8.5. Let µ be a Gaussian measure on W, then iHµ = Hµ is equivalent
to the condition on q that q (α) = 0 iff q (α ◦Mi) = 0.

Proof. Recall that

H = Nul (q)
⊥

:= {x ∈W : α (x) = 0 whenever q (α) = 0} .

Thus ix ∈ H iff
α (ix) = 0 whenever q (α) = 0.

Thus if q (α) = 0 iff q (α ◦Mi) = 0 and x ∈ H, then α (x) = 0 when q (α) = 0
implies α ◦Mi (x) = 0 when q (α ◦Mi) = 0 which is equivalent to α (ix) = 0
when q (α) = 0 showing that ix ∈ H.

Conversely suppose that iH = H. Then using H = Nul (q)
⊥

or equivalently

Nul (q) = H0 it follows that Nul (q) = (iH)
0
. Therefore α ∈ Nul (q) iff α (H) =

{0} iff α (iH) = {0} iff α ◦Mi (H) = {0} iff α ◦Mi ∈ Nul (q) .

Definition 8.6. If W is a finite dimensional complex vector space, we say
that a Gaussian measure µ on W is compatible with the complex structure iff
Nul

(
(M tr

i )
∗
q
)

= Nul (q) iff iHµ = Hµ, i.e. iff Hµ is a complex subspace of W.

If µ is non-degenerate1 then µ is of course compatible with the complex
structure. Conversely if µ is compatible with the complex structure we may
replace W by H and assume that µ is non-degenerate with out any real loss of
generality. (If µ were not compatible with the complex structure, the measure
µ would be supported on a real but not complex subspace of W.) Ignoring the
complex structures on H and W we still have Fock and Hermite expansion
results in Theorem 8.1 and Proposition 8.3. Our goal here is to describe these
expansions on the Hilbert subspace of holomorphic functions inside of L2 (µ) .
The key new ingredient is contained in the next lemma.

1 It should now be clear that µ is non-degenerate if any one of the following equivalent
conditions hold; 1) qµ is positive definite, 2) Hµ = W, or 3) the support of µ is all
of W.
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Lemma 8.7. Suppose that W is a complex vector space and µ is a non-
degenerate Gaussian measure on W. Then µ ∗ f is a holomorphic function on
Hµ = W for all f ∈ L2 (µ) .

Proof. Let f ∈ HL2 (µ) . The first thing we want to prove is that µ∗f is still
holomorphic. So we have to show for each x, y ∈W that F (λ) := µ∗f (x+ λy) is
holomorphic for λ near 0 in C. Recall, using the baby Cameron-Martin Theorem
4.7, that

µ ∗ f (x) =

∫
W

f (x− z)µ (dz) (8.6)

=

∫
W

f (x+ z)µ (dz)

=

∫
W

f (z) e(x,z)H−
1
2‖x‖

2
Hµ (dz) . (8.7)

Replacing f by |f | in this equation and using 2 (x, ·)H under µ is Gaussian with

variance 4 ‖x‖2H along with the Cauchy-Schwarz inequality shows

µ ∗ |f | (x) =

∫
W

|f (x− z)|µ (dz) ≤ e− 1
2‖x‖

2
H ‖f‖L2(µ) ·

∥∥∥e(x,·)H
∥∥∥
L2(µ)

= ‖f‖L2(µ) · e
− 1

2‖x‖
2
H ·
√
e

1
2 4‖x‖2H = ‖f‖L2(µ) · e

1
2‖x‖

2
H .

Thus if T is a solid triangle contained in C we have∫
∂T

∫
W

|f (x+ λy − z)|µ (dz) |dλ| ≤ ‖f‖L2(µ) ·
∫
∂T

e
1
2‖x+λy‖2H |dλ| <∞.

Since λ → f (x+ λy − z) is holomorphic it follows by Fubini’s theorem along
with Morera’s Theorem 2.5 that∫

∂T

F (λ) dλ =

∫
∂T

µ ∗ f (x+ λy − z) dλ

=

∫
W

[∫
∂T

f (x+ λy − z) dλ
]
µ (dz) = 0.

Since T was arbitrary, another application of Morera’s Theorem 2.5 implies F
is holomorphic.

Definition 8.8. Given a complex Hilbert space, H, let

MultCn (H,C) := {α ∈ Multn (H,C) : α is complex multi-linear}

SymC
n (H,C) := Symn (H,C) ∩MultCn (H,C)

and
FC (H) :=

{
α ∈ F (H) : αn ∈ SymC

n (H,C) ∀ n ∈ N0

}
.

(So α ∈ Symn (H,C) iff α ∈ Symn (H,C) and

α (ih1, h2, . . . , hn) = iα (h1, h2, . . . , hn) for all (h1, . . . , hn) ∈ Hn.)

Example 8.9. If dimH <∞ and f : H → C is a function which is holomorphic
near 0 ∈ H, then Dn

0 f ∈ SymC
n (H,C) for all n ∈ N0, see Theorem 2.6.

Theorem 8.10 (Fock/Hermite Expansions II). Suppose that W is a com-
plex finite dimensional vector space and µ is a non-degenerate Gaussian measure
on W. Let HFn (µ) = Fn (µ) ∩ HL2 (µ) – the holomorphic polynomials inside
of Fn (µ) . Then;

1. Fµ
[
HL2 (µ)

]
= FC (H) .

2. Fµ [HFn (µ)] = SymC
n (H,C) = e−L/2H(n) where H(n) denotes the homoge-

neous holomorphic polynomials of degree n.
3. HL2 (µ) = ⊕∞n=0HFn (µ) (orthogonal direct sum).
4. if f ∈ HL2 (µ) and f =

∑∞
n=0 fnis the Hermite expansion from Proposition

8.3, then fn ∈ HFn (µ) for all n.
5. HFn (µ) is the set of all holomorphic polynomials on W of degree n which

are orthogonal to all holomorphic polynomials on W of degree n−1 or less.
6. The holomorphic polynomials on W are dense in HL2 (W,µ) .

Proof. To simplify notation let H = Hµ, L = Lµ, and F = Fµ.

1. & 2. By Lemma 8.7, if f ∈ HL2 (µ) then µ ∗ f is still holomorphic and
therefore [Ff ]n = Dn

0 [µ ∗ f ] ∈ SymC
n (H,C) for all n ∈ N. This shows

that F
[
HL2 (µ)

]
⊂ FC (H) and that F [HFn (µ)] ⊂ SymC

n (H,C) . If

α ∈ SymC
n (H,C) , then p (x) := α (x, . . . , x) is complex differentiable and

therefore a holomorphic polynomial. Since partial derivations preserve the
class of holomorphic functions we may conclude that F−1α = e−L/2 [p] is

holomorphic and in Fn (µ) . Therefore F−1
[
SymC

n (H,C)
]
⊂ HFn (µ) and

so SymC
n (H,C) ⊂ F [HFn (µ)] and we have proved the first equality in item

2. If α = (αn) ∈ FC (H) , then F−1α =
∑∞
n=0 F

−1αn is in HL2 (µ) as each
term is in HL2 (µ) and HL2 (µ) is a closed subspace of L2 (µ) . This shows
that F−1

[
FC (H)

]
⊂ HL2 (µ) , i.e. FC (H) ⊂ F

[
HL2 (µ)

]
which completes

the proof of item 1.
Since

H(n) =
{
x→ α (x, . . . , x) : α ∈ SymC

n (H,C)
}

it follows from Eq. (8.1) that

HFn (µ) = F−1
[
SymC

n (H,C)
]

= e−L/2
[
H(n)

]
.
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3. & 4. Item 3. and 4. follows directly from items 1. and 2. and the fact that
FC (H) = ⊕∞n=0 SymC

n (H,C) (orthogonal direct sum).
5. Let Hn = ⊕nk=0H(k) be the holomorphic polynomials of degree less than or

equal to n. Since e−L/2Hn = Hn we see that

Hn = ⊕nk=0e
−L/2H(k) = ⊕nk=0HFk (µ) .

Therefore if p ∈ Hn is orthogonal to Hn−1 then p ∈ ⊕nk=0HFk (µ) and
p ⊥ ⊕n−1

k=0HFk (µ) which implies p ∈ HFn (µ) . Conversely if p ∈ HFn (µ) ,
then p ∈ Fn (µ) and therefore perpendicular to all polynomials of degree
less than n and in particular to the holomorphic polynomials of degree less
than n.

6. If f ∈ HL2 (µ) and f =
∑∞
n=0 fn is its Hermite expansion, then pN :=∑N

n=0 fn is a holomorphic polynomial for each N ∈ N. Moreover, pN → f
in L2 (µ) .

8.3 The Segal-Bargmann Action on the Fock Expansions

Notation 8.11 Let H be a real Hilbert space and HC = H+ iH be its complex-
ification. Given a real multilinear form, α : Hn → C, we let αC be the unique
complex multi-linear form on Hn

C such that αC = α on Hn.

The next theorem shows that the Segal-Bargmann transform acts on the
Fock space by this very simple complexification operation.

Theorem 8.12. Let W be a finite dimensional real Banach space and µ and
ν be non-degenerate Gaussian measures on (W,BW ) so that Hµ∗ν = Hµ =
Hν = W as sets. Then the Segal-Bargmann transform Sµ,ν : L2 (W,µ ∗ ν) →
HL2 (WC, µ× ν) (see Corollary 7.11) satisfies Fµ×νSµ,νf = (Fµ∗νf)C for all
f ∈ L2 (W,µ ∗ ν) , i.e. the following diagram commutes,

L2 (W,µ ∗ ν)

Fµ∗ν

��

Sµ,ν // HL2 (WC, µ× ν)

Fµ×ν

��
F (Hµ∗ν) 3 α // αC ∈ F (Hµ + iHν)

Moreover the action of Sµ,ν : Fn (µ ∗ ν)→ HFn (µ× ν) is given by

Sµ,ν

[
e−Lµ∗ν/2p

]
= e−Lµ×ν/2pC. (8.8)

(We write Hµ + iHν rather than HC to indicate that as a real Hilbert space
Hµ + iHν = Hµ ×Hν .)

Proof. Let Tµ,ν := Fµ×νSµ,νF
−1
µ∗ν . Since Lµ∗ν = Lµ +Lν , Lµ×ν = Lµ + L̃ν ,

and Sµ,νp =
[
e−Lνp

]
C for p ∈ P (W ∗) we see that

Sµ,ν

[
e−Lµ∗ν/2p

]
=
[
e−Lνe−

1
2 (Lµ+Lν)p

]
C

=
[
e−

1
2 (Lµ−Lν)p

]
C

= e−
1
2 (Lµ−Lν)pC = e−

1
2 (Lµ+L̃ν)pC = e−Lµ×ν/2pC.

This proves Eq. (8.8). Hence if α ∈ Symn (H) and p (x) := 1
n!α (x, . . . , x) , then

Tµ,να = Fµ×νSµ,ν

[
e−Lµ∗ν/2p

]
= Fµ×νe

−Lµ×ν/2pC

= Dn
0

[
eLµ×ν/2e−Lµ×ν/2pC

]
= Dn

0 pC = αC ∈ SymC
n (Hµ×ν ∼= Hµ + iHν)

Remark 8.13. The theory described above is particularly nice in the special case
where µ = ν. In this case the following properties hold;

1. qµ×µ (α ◦Mi) = qµ×µ (α) so that qµ×µ is invariant under M tr
i .

2. The inner product on Hµ×Hµ
∼= Hµ+iHµ is now the real part of a complex

inner product and with this complex inner product Hµ + iHµ = (Hµ)C as
Hilbert spaces.

3. If f is holomorphic then

Lµ×µf =
(
Lµ + L̃µ

)
f = (Lµ − Lµ) f = 0,

i.e. holomorphic functions are now harmonic. Consequently, e−Lµ×µ/2p = p
whenever p is a holomorphic polynomial.

4. The Fock-Itô-Kakutani isometry for an element f ∈ HL2 (WC, µ× µ) is
now simply given by

Fµ×µf = (Dn
0 f)
∞
n=0

which we will simply refer to as a Taylor map.
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The Gaussian Basics II

Most of the finite dimensional statements above hold in infinite dimensions
with a few exceptions. The most notable exception is that the Cameron-Martin
space, Hµ in Theorem 9.1, has measure zero whenever dimHµ = ∞. In what
follows we frequently make use of the fact that

Cp :=

∫
W

‖x‖pW dµ (x) <∞ for all 1 6 p <∞ (9.1)

which certainly holds in light of Fernique’s Theorem 3.5. (Also see Skorohod’s
inequality, ∫

W

eλ‖x‖W dµ (x) <∞ for all λ <∞; (9.2)

see for example [23, Theorem 3.2].)

9.1 Gaussian Structures

The next theorem forms the natural extension of Lemma 4.2 and Theorem 4.5
to the infinite dimensional setting. This material is well known and may be
(mostly) found in the books [23] and [4]. In particular, the following theorem is
based in part on [4, Lemma 2.4.1 on p. 59] and [4, Theorem 3.9.6 on p. 138].

Theorem 9.1. Let W be a real separable Banach space and (W,BW , µ) be a
Gaussian measure space as in Definition 3.1 For x ∈W let

‖x‖Hµ := sup
u∈W∗

|u(x)|√
q(u, u)

(with 0/0 := 0) (9.3)

and define the Cameron-Martin subspace, H = Hµ ⊂W, by

H = {h ∈W : ‖h‖H <∞} . (9.4)

Then;

1. (H, ‖·‖H) is a normed space such that

‖h‖W 6
√
C2 ‖h‖H for all h ∈ H, (9.5)

where C2 is as in (9.1.

2. For f ∈ ReL2 (µ) , let

Jf = Jµf := hf :=

∫
W

x f(x) dµ(x) ∈W, (9.6)

where the integral is to be interpreted as a Bochner integral.1. Then Jf ∈ H
and J : ReL2 (µ)→ H is a contraction.

3. Now suppose that K is the closure of W ∗ in ReL2(µ). Then JK := J |K :
K → H is an isometry.

4. Moreover, J(K) = H and therefore JK : K → H is an isometric isomor-
phism of real Banach spaces. Since K is a real Hilbert space it follows that
‖·‖H is a Hilbertian norm on H.

5. H is a separable Hilbert space and

(Ju, h)H = u(h) for all u ∈W ∗ and h ∈ H. (9.7)

6. The quadratic form q may be computed as

q(u, v) =

∞∑
k=1

u(hk)v(hk) (9.8)

where {hk}∞k=1 is any orthonormal basis for H.
7. If q is non-degenerate, the Cameron-Martin space, H, is dense in W.

Notice that by Item 1. H
i
↪→W is continuous and hence so is W ∗

itr

↪→ H∗ ∼=
H = (·, ·)H∗ . Eq. (9.8 asserts that

q = (·, ·)H∗
∣∣
W∗×W∗ .

8. If {hk}∞k=1 is any orthonormal basis for H and {Nk}∞k=1 are a sequence of
i.i.d. standard normal random variables, then;

a) S :=
∑∞
k=1Nkhk converges in W a.s. and in Lp (µ;W ) for all 1 ≤ p <

∞.
1 Notice that ∫

X

‖xf(x)‖ dµ(x) ≤
√
C2 ‖f‖L2(µ) <∞,

so the integrand is indeed Bochner integrable.
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b) Law (S) = µ.
c) Jα =

∑∞
k=1 α (hk)hk for all α ∈W ∗.

d) If f ∈ L2 (µ) and h ∈ H, then

(Jf, h)H =
(
f, J−1

K h
)
L2(µ)

. (9.9)

Alternatively stated J∗ = J−1
K where J∗ : H → L2 (µ) is the adjoint of

J. (Incidentally, as we will see later, J∗h is the Wiener integral of h in
the Brownian motion setting.)

e) If f ∈ L2 (µ) then Jf =
∑∞
k=1

(
f, J−1

K hk
)
hk.

9. Let W0 := H̄W be the closure of H inside of W. Then W0 is again a
separable Banach space and µ (W0) = 1. If we let µ0 := µ|BW0

then
(W0,BW0 , µ0) is a non-degenerate Gaussian measure space. Moreover,
q (u, v) = q0 (u|W0

, v|W0
) for all u, v ∈W ∗ where q0 = qµ0

, i.e.

q0 (u, v) :=

∫
W0

u (x) v (x) dµ0 (x) .

Proof. See Theorem 9.1 in [7]. We will prove each item in turn.

1. Using Eq. (3.3) we find

‖h‖W = sup
u∈W∗\{0}

|u (h)|
‖u‖W∗

6 sup
u∈W∗\{0}

|u (h)|√
q (u, u) /C2

6
√
C2 ‖h‖H ,

and hence if ‖h‖H = 0 then ‖h‖W = 0 and so h = 0. If h, k ∈ H, then for

all u ∈W ∗, |u(h)| 6 ‖h‖H
√
q(u) and |u(k)| 6 ‖k‖H

√
q(u) so that

|u(h+ k)| 6 |u(h)|+ |u(k)| 6 (‖h‖H + ‖k‖H)
√
q(u).

This shows h + k ∈ H and ‖h+ k‖H 6 ‖h‖H + ‖k‖H . Similarly, if λ ∈ R
and h ∈ H, then λh ∈ H and ‖λh‖H = |λ| ‖h‖H . Therefore H is a subspace
of W and (H, ‖·‖H) is a normed space.

2. For f ∈ ReL2 (µ) and u ∈W ∗

u (Jf) = u

∫
W

xf(x)dµ(x)

 =

∫
W

u(x)f(x)dµ(x) = (u, f)L2(µ) (9.10)

and hence

|u (Jf)| 6 ‖u‖L2(µ) ‖f‖L2(µ) =
√
q(u) ‖f‖L2(µ)

which shows that Jf ∈ H and ‖Jf‖H 6 ‖f‖L2(µ) .

3. Let f ∈ K and choose un ∈W ∗ such that L2(µ)− limn→∞ un = f. Then

lim
n→∞

|un (Jf)|√
q(un)

= lim
n→∞

∣∣∣∣∫
W

un(x)f(x)dµ(x)

∣∣∣∣
‖un‖L2(µ)

=
‖f‖2L2(µ)

‖f‖L2(µ)

= ‖f‖L2(µ)

from which it follows ‖Jf‖H = ‖f‖K . So we have shown that J : K → H
is an isometry.

4. We now wish to show that JK := J |K : K → H is surjective, i.e. given
h ∈ H we are looking for an f ∈ K such that

h = Jf =

∫
W

xf (x) dµ (x) .

This will be the case iff

ĥ(u) := u (h) = u (Jf) =

∫
W

u (x) f (x) dµ (x) = (u, f)K for all u ∈W ∗.

In order to see that this equation has a solution f, notice that∣∣∣ĥ(u)
∣∣∣ = |u(h)| 6

√
q(u) ‖h‖H = ‖u‖L2(µ) ‖h‖H = ‖u‖K ‖h‖H

for all u ∈W ∗ which is dense in K. Therefore ĥ extends continuously to K
and so by the Riesz representation theorem for Hilbert spaces, there exists
an f ∈ K such that ĥ (u) = (u, f)K for all u ∈W ∗ ⊂ K.

5. H is a separable since it is unitarily equivalent to K ⊂ L2(W,B, µ) and
L2(W,B, µ) is separable. Suppose that u ∈ W ∗, f ∈ K and h = Jf ∈ H.
Then

(Ju, h)H = (Ju, Jf)H = (u, f)K

=

∫
W

u(x)f(x)dµ(x) = u

(∫
W

xf(x)dµ(x)

)
= u(Jf) = u(h).

6. Let {ei}∞i=1 be an orthonormal basis for H, then for u, v ∈W ∗,

q(u, v) = (u, v)K = (Ju, Jv)H =

∞∑
i=1

(Ju, ei)H(ei, Jv)H

=

∞∑
i=1

u(ei)v(ei)

wherein the last equality we have again used Eq. (9.7).
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7. If u ∈ W ∗ such that u|H = 0, then by Eq. (9.8) it follows that q (u, u) = 0
and since q is an inner product we must have u = 0. Alternatively this last
assertion follows from Eq. (9.7);

q(u, u) = (Ju, Ju)H = u(Ju) = 0.

It now follows as a consequence of the Hahn–Banach theorem that H must
be a dense subspace of W.

a) I will omit the proof of 8a. which relies on basic Martingale theory for
Gaussian measures on Banach spaces which may be found in [7, Part
VIII] and [28].

b) As simple computation shows that

E
[
eiα(S)

]
= exp

(
−1

2

∞∑
k=1

α (hk)
2

)
= exp

(
−1

2
q (α, α)

)
which is enough to show Law (S) = µ.

c) Making use of 8b. we have

Jα = E [α (S)S] = lim
N→∞

E

[
α

(
N∑
k=1

Nkhk

)
N∑
l=1

Nlhl

]

= lim
N→∞

N∑
k,l=1

E [NkNl]α (hk)hl =

∞∑
k=1

α (hk)hk.

d) For α ∈W ∗ and f ∈ L2 (µ) we have

(Jf, Jα)H = α (Jf) = (f, α)L2(µ) .

By continuity it then follows that (Jf, Jg)L2(µ) = (f, g)L2(µ) for all

g ∈ K. Taking g = J−1
K h then implies Eq. (9.9).

e) For f ∈ L2 (µ) we have

Jf =

∞∑
k=1

(Jf, hk)H hk =

∞∑
k=1

(f, J∗hk)L2(µ) hk =

∞∑
k=1

(
f, J−1

K hk
)
L2(µ)

hk

wherein we have used Eq. (9.9) for the last equality.

8. As S in part 8a takes values in W0 a.s., it follows that µ = Law (S) is
concentrated on W0. The remaining assertions are all easy and will be left
to the reader.

Exercise 9.1. Suppose that (W,BW , µ) and (V,BV , ν) are two Gaussian mea-
sure spaces. Show;

1. (W × V,BW×V , µ× ν) is a Gaussian measure space.
2. qµ×ν (ψ) = qµ (ψ (·, 0)) + qν (ψ (0, ·)) for all ψ ∈ (W × V )

∗
.

3. Hµ×ν = Hµ ×Hν as Hilbert spaces.

Exercise 9.2. Let t > 0 and Dt : W → W be the dilation operator given by
Dt (x) =

√
tx and let µt := µ◦D−1

t . In more detail we have µt (A) := µ
(
t−1/2A

)
for all A ∈ BW and∫

W

fdµt =

∫
W

f
(√

tx
)
dµ (x) =

∫
W

f ◦Dt dµ (x) (9.11)

for all bounded measurable functions on W. Let Ttf := f ◦ Dt and Jt := Jµt
with J = J1. Show;

1. ‖x‖2H = t ‖x‖2Ht for all x ∈W and hence Hµt = Hµ as sets with (h, k)Hµ =

t (h, k)Hµt
for all h, k ∈ Hµ.

2. Tt : Lp (µt) → Lp (µ) is isometric isomorphism of Banach spaces for all
1 ≤ p <∞.

3. Jt = Dt|HJTt on L2 (µt) .
4. J∗ = TtJ

∗
t Dt, i.e. for h ∈ H and x ∈W we have

(J∗h) (x) =
1√
t

(J∗t h)
(√

tx
)

(µ – a.e. x).

5. If α ∈ W ∗ and h = Jtα ∈ H show that J∗t h and J∗h have a unique
continuous version and for these versions we have J∗t h = 1

t J
∗h.

Hint: if you get stuck this exercise is mostly a special case of Proposition
9.3 below.

Remark 9.2. By Lemma 3.3 and Exercise 3.1 it follows that each f ∈ K is a
mean zero Gaussian random variable. As K is a subspace it follow that K ⊂
L2 (µ) consists of jointly Gaussian random variables.

Proposition 9.3 (Pushing forward (may omit)). Suppose that (W,BW , µ)
is a Gaussian probability space and let T : W → W0 be a bounded lin-
ear transformation to a separable Banach space W0. Let µ0 := T∗µ and for

f0 ∈ K0 := W ∗0
L2(µ0)

let

J0f0 :=

∫
W0

f0 (x0)x0dµ0 (x0) f0 ∈ K0 := W ∗0
L2(µ0)

.

Then;
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1. µ0 is a Gaussian measure on (W0,BW0
) with q0 (α0) = q (α0 ◦ T ) ,

2. H0 = T (H) ,
3. TJT tr = J0 and T |∗HJ = J0T

tr,
4. TT |∗H = IdH0

, and

5. T |Nul(T |H)⊥ : Nul (T |H)
⊥ → H0 is unitary.

Proof. Let α0 ∈W ∗0 , then

µ̂0 (α0) =

∫
W0

eiα(x0)d (T∗µ) (x0) =

∫
W

eiα◦T dµ = e−q(α◦T )/2

which shows that µ0 is a Gaussian measure with q0 = q ◦ T tr. Given x ∈W we
have

‖Tx‖2H0
= sup
α0∈W∗0

|α0 (Tx)|2

q0 (α0)
= sup
α0∈W∗0

|α0 ◦ T (x)|2

q (α0 ◦ T )
≤ ‖x‖2H

which shows that T (H) ⊂ H0 and T |H : H → H0 is a contraction.
Now suppose that α0 ∈W ∗0 , then

TJ [α0 ◦ T ] = T

∫
W

α0 ◦ T (x)xdµ (x) =

∫
W

α0 ◦ T (x)Tx dµ (x)

=

∫
W0

α0 (y) y dµ0 (y) = J0α0.

By a simple limiting argument it now follows that TJT tr = J0 and from this
identity we learn that

H0 = J0K0 = TJT trK0 ⊂ TJK = TH

from which we may now conclude that H0 = T (H) .
Let us simply write T ∗ for T |∗H . Then for α ∈W ∗0 and β ∈W ∗ we have

(T ∗J0α, Jβ)H = (J0α, TJβ)H0
= (α ◦ T ) (Jβ) = (J (α ◦ T ) , Jβ)H

from which it follows that T ∗J0 = JT tr. Using this identity and item 2. we
learn that TT ∗J0 = TJT tr = J0 which implies TT ∗ = IdH0

.
The last identity implies that T ∗ is an isometry since

(T ∗h0, T
∗k0)H = (h0, TT

∗k0)H0
= (h0, IdH0

k0)H0
= (h0, k0)H0

.

Since T ∗ is an isometry Ran (T ∗) is closed and hence Ran (T ∗) = Nul (T )
⊥
. It

now follows that

T |Nul(T )⊥ = (T ∗)
−1

: Nul (T )
⊥

= Ran (T ∗)→ H0

is also an isometry and therefore T |Nul(T |H)⊥ : Nul (T |H)
⊥ → H0 is unitary.

Better way: Let {hn}∞n=1 ⊂ Nul (T |H)
⊥ ⊂ H be an orthonormal basis

for Nul (T |H)
⊥

and {kn}∞n=1 be an orthonormal basis for Nul (T |H) . It then
follows that Law (

∑∞
n=1Nnhn +

∑∞
n=1N

′
nkn) = µ where {Nn, N ′n}

∞
n=1 are i.i.d.

standard normal random variables and the sums are convergent in W. Therefore

µ0 = T∗µ = Law

(
T

( ∞∑
n=1

Nnhn +

∞∑
n=1

N ′nkn

))

= Law

( ∞∑
n=1

NnThn

)

where the latter sum is convergent in W0. Thus if α0 ∈ W ∗0 then α0
d
=∑∞

n=1Nnα0 (Thn) (α0 distributed by µ0 = T∗µ) and hence is Gaussian. More-
over it follows that

q0 (α0) = E

[ ∞∑
n=1

Nnα0 (Thn)

]2
 =

∞∑
n=1

[α0 (Thn)]
2
.

As the {Thn}∞n=1 are linearly independent, it follows thatH0 is the Hilbert space
with {Thn}∞n=1 being an orthonormal basis for H0. Notice that if {an} ⊂ `2,
then

∑∞
n=1 anhn converges in H and hence in W and therefore

T

( ∞∑
n=1

anhn

)
=

∞∑
n=1

anThn

showing the latter sum is convergent in W0. Thus we have show that H0 =

T
(

Nul (T |H)
⊥
)

= TH and that T |Nul(T |H)⊥ : Nul (T |H)
⊥ → H0 is a unitary

map.

9.2 Cameron-Martin Theorem

Lemma 9.4. Let (W,B, µ) be a non-degenerate (for simplicity) Gaussian mea-
sure space . Then there exists {uk}∞k=1 ⊂ W ∗ ⊂ K which is an orthonormal
basis for K and satisfies

‖x‖2H =

∞∑
k=1

|uk (x)|2 for all x ∈W. (9.12)

In particular,

H := Hµ =

{
x ∈W :

∞∑
k=1

|uk (x)|2 <∞

}
∈ BW . (9.13)

Moreover, if dimW =∞ then µ (H) = 0.
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Proof. If {uk}∞k=1 ⊂ W ∗ is any orthonormal basis for K, then for any
x ∈ H ⊂W we will have

‖x‖2H =

∞∑
k=1

(x, Juk)
2
H =

∞∑
k=1

|uk (x)|2 . (9.14)

To get this identity to hold for all x ∈ W we will choose the {uk}∞k=1 more
carefully. To this first choose {αn}∞n=1 ⊂ W ∗ such that ‖x‖W = supn |αn (x)|
for all x ∈W as mentioned in the proof of Theorem 2.2. Now from the {uk}∞k=1

by applying the Graham-Schmidt process to the {αn} ⊂ W ∗ ⊂ K ⊂ L2 (µ) .
I claim the resulting sequence {uk}∞k=1 is complete and hence an orthonormal
basis for K. To see this suppose that f ∈ K is perpendicular to {uk}∞k=1 , then

0 = (f, uk)K = (Jf, Juk)H = uk (Jf) for all k. (9.15)

Now for each n ∈ N we know that (αn, uk) = 0 for all k > n so that αn =∑n
k=1 (αn, uk)uk as elements of K which implies

q

(
αn −

n∑
k=1

(αn, uk)uk

)
=

∥∥∥∥∥αn −
n∑
k=1

(αn, uk)uk

∥∥∥∥∥
2

L2(µ)

= 0.

Because q is non-degenerate we may now conclude that αn =
∑n
k=1 (αn, uk)uk

as element of W ∗. So we may now conclude from this remark and Eq. (9.15)
that αn (Jf) = 0 for all n and therefore ‖Jf‖W = supn |αn (Jf)| = 0. Having
shown Jf = 0 also shows f = 0 (J : K → H is isometric) which proves the
assertion that {uk}∞k=1 is complete. We now fix this choice for {uk} for the rest
of the proof.

If x ∈ W satisfies
∑∞
k=1 |uk (x)|2 < ∞ we may define h :=∑∞

k=1 uk (x) Juk ∈ H. The sum converges in H and hence also in W
and therefore for all m ∈ N,

um (h) =

∞∑
k=1

uk (x)um (Juk) =

∞∑
k=1

uk (x) (Juk, Jum)H = um (x) .

Since uk (x− h) = 0 for all k it follows from the argument above that x = h ∈ H.
Thus we have shown

∑∞
k=1 |uk (x)|2 < ∞ implies x ∈ H which combined with

Eq. (9.14) shows that
∑∞
k=1 |uk (x)|2 <∞ iff x ∈ H. As Eq. (9.12) holds on H

and both ‖x‖2H = ∞ and
∑∞
k=1 |uk (x)|2 = ∞ for x /∈ H we can conclude that

Eq. (9.12) holds for all x ∈W.
Since {uk}∞k=1 ⊂ W ∗ is an orthonormal basis for K, the {uk}∞k=1 are i.i.d.

standard normal random variables. Therefore by an application of the e strong
law of large numbers,

lim
n→∞

1

n

n∑
k=1

|uk (x)|2 = E |u1|2 = 1 (µ – a.e. x). (9.16)

On the other hand if x ∈ H, then limn→∞
1
n

∑n
k=1 |uk (x)|2 = 0 and so µ (H) =

0.

Theorem 9.5 (Cameron-Martin). Let (H,W,µ) be a Gaussian measure
space as above and for h ∈ W let µh(A) = µ(A − h) for all A ∈ BW . Then
µh � µ iff h ∈ H and if h ∈ H then

dµh
dµ

= exp

(
J∗h− 1

2
‖h‖2H

)
.

Moreover if h ∈ W \ H (i.e. ‖h‖H = ∞), then µh ⊥ µ. (Since J∗ = J−1
K , if

h = Jα, then J∗h = α where α (k) = (Jα, k)H = (h, k) for all k ∈ H. For this
reason it is often customary to abuse notation and write J∗h = (h, ·)H .)

Proof. I will only prove here that µh � µ when h ∈ H. See, for example, [7,
Proposition ??] for a proof of the orthogonality assertions.

We must show∫
W

f(x+ h)dµ(x) =

∫
W

eJ
∗h− 1

2‖h‖
2

f(x)dµ(x)

for all f ∈ (BW )b . It suffices to show that∫
W

eiϕ(x+h)dµ(x) =

∫
eiϕ(x)eJ

∗h− 1
2‖h‖

2
Hdµ(x) (9.17)

for all ϕ ∈W ∗.
We will start by verifying Eq. (9.17) when h = Jψ ∈ JW ∗ for some ψ ∈W ∗.

For h of this form J∗h = ψ a.s. and

ϕ (h) = ϕ (Jψ) = (Jϕ, Jψ)H = q (ϕ,ψ) .

Therefore the left side of Eq. (9.17) is given by

eiϕ(h)e−
1
2 q(ϕ,ϕ) = eiq(ϕ,ψ)− 1

2 q(ϕ,ϕ)

while the right side by;∫
W

eiϕ(x)eJ
∗h− 1

2‖h‖
2
Hdµ(x) =

∫
W

eiϕ(x)eψ(x)− 1
2 q(ψ,ψ)dµ(x)

= e−
1
2 q(ψ,ψ) exp

(
1

2

∫
W

(ψ + iϕ)
2
dµ

)
= e−

1
2 q(ϕ,ϕ)+iq(ϕ,ψ)+ 1

2 q(ψ,ψ)− 1
2 q(ψ,ψ)

= eiq(ϕ,ψ)− 1
2 q(ϕ,ϕ).
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For general h ∈ H we may choose ψn ∈ W ∗ so that hn := Jψn → h in H
or equivalently so that ψn → J∗h in K ⊂ L2 (µ) . It then follows from Lemma
3.3 that eψn → eJ

∗h in L2 (µ) . Using this remark, it is easy to pass to the limit
in Eq. (9.17) with h replaced by hn in order to show Eq. (9.17) holds for all
h ∈ H.

Remark 9.6. Despite the fact that µ (H) = 0 and infinite dimensional Lebesgue

measure does not exists and that Z below should be (2π)
dimH/2

= ∞, one
should still morally think that µ is the measure given by

“dµ (x) = 1H (x)
1

Z
exp

(
−1

2
‖x‖2H

)
Dx.”

The Cameron-Martin theorem is easy to understand with this heuristic; namely
by making the formal change of variables, x→ x− h we “find,”

dµh (x) =
1

Z
exp

(
−1

2
‖x− h‖2H

)
D (x− h)

=
1

Z
exp

(
−1

2
‖x‖2H −

1

2
‖h‖2H + (x, h)H

)
Dx

= exp

(
(h, x)H −

1

2
‖h‖2H

)
dµ (x) .

We have use the formal translation invariance of Dx in the second line.

Exercise 9.3. Let (W,BW , µ) be a non-degenerate Guassian probability space.
Show that µ (B (x, ε)) > 0 for all x ∈ W and ε > 0 where B (x, ε) is the open
ball in W of radius ε centered at x.

Theorem 9.7 (Integration by Parts). Let h ∈ H and f ∈ FC∞ (W ∗) such
that f and ∂hf does not grow too fast at infinity. Then∫

W

∂hfdµ =

∫
W

J∗h · fdµ.

First Proof.. Assuming enough regularity on f to justify the interchange
of the derivatives involved with the integral we have, using the Cameron-Martin
theorem, that∫

W

∂hfdµ =

∫
W

d

dt
|0f (x+ th) dµ (x) =

d

dt
|0
∫
W

f (x+ th) dµ (x)

=
d

dt
|0
∫
W

f exp

(
tJ∗h− t2

2
‖h‖2H

)
dµ =

∫
W

f · J∗h dµ (x) .

It is not really necessary in this proof that f be a cylinder function.

Second Proof.. By replacing W by W0 = H̄W if necessary we may assume
that (W,BW , µ) is a non-degenerate Gaussian probability space. Given a cylin-
der function f = F (α1, . . . , αn) we may assume (if not apply Gram–Schmidt to
the {αk}nk=1) that the {αk}nk=1 form an orthonormal subset of (W ∗, q) . Extend
this set to an orthonormal basis, {αk}∞k=1 , for K. Then for any N ≥ n, by finite
dimensional integration by parts,∫

W

∂hfdµ =

∫
W

n∑
k=1

(DkF ) (α1, . . . , αn)αk (h) dµ

=

n∑
k=1

αk (h)

∫
Rn
DkF (a1, . . . , an)

(
1

2π

)n/2
e−

1
2 |a|

2
Rnda

=

n∑
k=1

αk (h)

∫
Rn
akF (a1, . . . , an)

(
1

2π

)n/2
e−

1
2 |a|

2
Rnda

=

n∑
k=1

αk (h)

∫
W

αk · F (α1, . . . , αn) dµ

=

N∑
k=1

αk (h)

∫
W

αk · F (α1, . . . , αn) dµ (9.18)

wherein we have used∫
W

αk · F (α1, . . . , αn) dµ =

∫
W

αkdµ ·
∫
W

F (α1, . . . , αn) dµ = 0 for all k > n

because αk is independent of {α1, . . . , αn} . Since

lim
N→∞

N∑
k=1

αk (h) Jαk =

∞∑
k=1

(Jαk, h)H Jαk = h

it follows from Theorem 9.1 that

N∑
k=1

αk (h)αk → J−1
K h = J∗h in L2 (µ) .

Thus letting N →∞ in Eq. (9.18) completes the second proof.

9.3 The Heat Interpretation

The heat interpretation of a Gaussian measure remains essentially unchanged
when going to the infinite dimensional setting. In fact, when acting on cylinder
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functions the results really come back to the finite dimensional – see the second
proof of integration by parts in Theorem 9.7.

Exercise 9.4 (Compare with Exercise 5.6). Let (W,BW , µ) be a Gaussian
probability space (dimW =∞ permissible). Suppose f ∈ FC2 (W ∗) such that
f and its first and second derivatives grow (for example) at most exponentially
at infinity. Show that

F (t, x) :=

∫
W

f
(
x+
√
ty
)
dµ (y) ∀ t > 0 and x ∈W. (9.19)

satisfies the heat equation,

∂

∂t
F (t, x) =

1

2
(LF ) (t, x) . (9.20)





10

Gaussian Process as Gaussian Measures

In this chapter let {Yt}0≤t≤T be a mean zero Gaussian random process
having continuous sample paths. As in Example 2.3, let W := C ([0, T ] ,R) and
µ := Law (Y·) be the associated Gaussian measure on (W,BW ) . Recall that we
have also defined αt ∈W ∗ to be the evaluation map αt (x) = x (t) for all x ∈W
and 0 ≤ t ≤ T. Our immediate goal in this chapter is to better understand
(W,BW , µ) . In particular we want to describe the associate Cameron-Martin
spaces for such process. Of course the case where {Yt} is a Brownian motion
holds special interest for us.

10.1 Reproducing Kernel Hilbert Spaces

Lemma 10.1. To each n ∈ N let Λn :=
{
k
nT : 0 ≤ k ≤ n

}
and let πn : W →W

be the projection map defined by πn (x) = y where y = x on Λn and y′′ (t) = 0
for t /∈ Λn. (So πn (x) is a piecewise linear approximation to x.) Then;

1. πn (x)→ x in W as n→∞ for each x ∈W.
2. If α ∈ W ∗, then αn := α ◦ πn converges to α as n → ∞ both pointwise on
W and in L2 (µ) .

3. If K := W ∗
L2(µ)

, then span {αt : 0 ≤ t ≤ T} is a dense subspace of K.

Proof. We prove each item in turn.

1. The convergence is a simple consequence of the fact that every x ∈ W is
uniformly continuous.

2. The pointwise convergence follows directly from item 1. The L2 (µ) – con-
vergence may be deduced from Lemma 3.3 or using the DCT along with
the uniform estimate;

|αn (x)| ≤ ‖α‖W∗ ‖πn (x)‖W ≤ ‖α‖W∗ ‖x‖W .

Notice that ‖·‖W ∈ L2 (µ) by Fernique’s theorem.
3. Because πn (x) is completely determined by the values of x on Λn it follows

that αn = α ◦ πn is a linear combination of {αt}t∈Λn . Thus it follows that

every α ∈W ∗ is in the L2 (µ) – closure of span {αt}0≤t≤T which suffices to
prove item 3.

Theorem 10.2 (The Cameron-Martin Space for Y ). Let K̃ ={
span {Yt}0≤t≤T

}L2(P )

. Then the Cameron-Martin space Hµ associate to

µ is given by
{
hZ̃ : Z̃ ∈ K̃

}
where for Z̃ ∈ K̃;

hZ̃ (t) = E
[
YtZ̃

]
for 0 ≤ t ≤ T.

Moreover if Z̃1, Z̃2 ∈ K̃, then(
hZ̃1

, hZ̃2

)
Hµ

= E
[
Z̃1 · Z̃2

]
.

Proof. Letting K := W ∗
L2(µ)

we know from Theorem 9.1 that Hµ =

Jµ (K) = Jµ
(
L2 (µ)

)
. For Z̃ ∈ K̃ we can find a Z ∈ K such that Z̃ = Z ◦ Y·

Therefore

hZ̃ (t) = E [YtZ ◦ Y ] =

∫
W

αt (x)Z (x) dµ (x) = αt (JµZ)

and hence hZ̃ = JµZ ∈ Hµ. Similarly if Z̃1, Z̃2 ∈ K̃ there exists Z1, Z2 ∈ K
such that Z̃i = Zi ◦ Y and we have(

hZ̃1
, hZ̃2

)
Hµ

= (JµZ1, JµZ2)Hµ =

∫
W

[Z1Z2] dµ = E
[
Z̃1 · Z̃2

]
.

By Lemma 3.3 we know that [0, T ] 3 t → Yt ∈ L2 (P ) is continuous. Since
L2 (P ) × L2 (P ) 3 (f, g) → (f, g)L2(P ) ∈ R is a continuous function it follows

directly that hZ̃ (t) = E
[
YtZ̃

]
is a continuous function of t. Of course this is a

consequence of the general theory as well.

Definition 10.3 (Reproducing Kernel). Let G = GY : [0, T ]
2 → R be the

reproducing kernel associate to Y define by

G (s, t) := E [YsYt] .
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Proposition 10.4. The reproducing kernel satisfies;

1. (Continuity.) G : [0, T ]
2 → R is continuous and G (t, ·) ∈ Hµ for all 0 ≤

t ≤ T.
2. (Reproducing property.) (G (t, ·) , h)Hµ = h (t) for all h ∈ Hµ and t ∈ [0, T ] .

3. (Pointwise bounds.) If h ∈ Hµ and 0 ≤ t ≤ T, then |h (t)| ≤
√
G (t, t) ·

‖h‖Hµ . In particular,

‖h‖W ≤
√

max
0≤t≤T

G (t, t) · ‖h‖Hµ .

Moreover these bounds are sharp.
4. (Totality.) {G (t, ·) : 0 ≤ t ≤ T} is a total subset of Hµ, i.e.

span {G (t, ·) : 0 ≤ t ≤ T} is dense in Hµ.

Proof. The continuity of G follows from the comments before Definition
10.3 and moreover G (t, ·) = hYt ∈ Hµ. If h = hZ̃ ∈ Hµ we will have,

(G (t, ·) , h)Hµ = (hYt , hZ̃)
Hµ

= E
[
YtZ̃

]
= hZ̃ (t)

which proves the reproducing property. By the Cauchy–Schwarz inequality and
the reproducing property,

|h (t)|2 =
∣∣∣(G (t, ·) , h)Hµ

∣∣∣2
≤ ‖G (t, ·)‖2Hµ ‖h‖

2
Hµ

= (G (t, ·) , G (t, ·))Hµ ‖h‖
2
Hµ

= G (t, t) ‖h‖2Hµ .

If we choose a t0 ∈ [0, T ] such that G (t0, t0) = max0≤t≤T G (t, t) and let h =

G (t0, ·) , then ‖h‖Hµ =
√
G (t0, t0) and

h (t0) = G (t0, t0) =

(
max

0≤t≤T

√
G (t, t)

)
· ‖h‖Hµ

which show that the given bounds are sharp.
The fact that {G (t, ·) : 0 ≤ t ≤ T} is a total in Hµ follows from the fact

that {Yt : 0 ≤ t ≤ T} is total in K̃. Alternatively, if h ∈ Hµ is perpendicular to
{G (t, ·) : 0 ≤ t ≤ T} then 0 = (h,G (t, ·))Hµ = h (t) for all t which shows that
h must be zero.

Much of what we have just proved for G holds more generally as you are
asked to show in the next exercise.

Exercise 10.1 (Reproducing Kernel Hilbert Spaces). Let H be a sub-
space of W := C ([0, T ] ,R) (can replace [0, T ] by a more general topological
space if you wish) which is equipped with a Hilbertian norm, ‖·‖H , such that
‖h‖W ≤ C ‖h‖H for all h ∈ H. Then;

1. for each t ∈ [0, T ] there exists G (t, ·) ∈ H such that h (t) = (G (t, ·) , h)H
for all h ∈ H. Moreover G (t, s) = (G (t, ·) , G (s, ·)) showing that G is a
symmetric function of (s, t) .

2. The map [0, T ] 3 t→ G (t, ·) ∈ H is continuous.
3. (s, t)→ G (s, t) is continuous.
4. {G (t, ·) : 0 ≤ t ≤ T} is total in H.
5. H is necessarily a separable Hilbert space.
6. If {hn}∞n=1 is any orthonormal basis for H and 0 ≤ s, t ≤ T, then

∞∑
n=1

hn (s)hn (t) = G (s, t)

where the sum is absolutely convergent.
7. Each h ∈ H satisfies the continuity estimate,

|h (t)− h (s)| ≤ ‖h‖H ·
√
G (t, t) +G (s, s)− 2G (s, t).

Example 10.5 (The Classical Cameron – Martin Space). Let W =
{x ∈ C([0, T ]→ R) : x(0) = 0} and let H denote the set of functions h ∈ W

which are absolutely continuous and satisfy (h, h) =
∫ T

0
|h′(s)|2ds < ∞. The

space H is called the Cameron-Martin space and is a Hilbert space when
equipped with the inner product

(h, k) =

∫ T

0

h′(s)k′(s)ds for all h, k ∈ H.

By the fundamental theorem of calculus we have for h ∈ H that

h (t) =

∫ t

0

h′ (σ) dσ =

∫ T

0

1σ≤th
′ (σ) dσ = (G (t, ·) , h)H

provided we define

G (t, s) =

∫ s

0

1σ≤tdσ = min (s, t) . (10.1)

The function in Eq. (10.1) is the reproducing kernel for H. Consequently we
may conclude that

min (s, t) =

∞∑
n=1

hn(s)hn(t)

for any orthonormal basis {hn}∞n=1 of H and we have the “Sobolev” inequality
for h ∈ H;

|h(t)− h (s)| = ‖h‖H
√
s+ t− 2s ∧ t = ‖h‖H

√
|t− s|
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for all 0 ≤ s, t ≤ T. Of course we could also prove this inequality directly;

|h(t)− h (s)| =
∣∣∣∣∫ t

s

h′ (τ) dτ

∣∣∣∣
≤

√∫ t

s

|h′ (τ)|2 dτ ·

√∫ t

s

12dτ ≤ ‖h‖H
√
t− s

for all 0 ≤ s ≤ t ≤ T.

10.2 The Example of Brownian Motion

Theorem 10.6 (Brownian Motion). Let W = {x ∈ C([0, T ]→ R) : x(0) = 0} ,
{Bt}0≤t≤T be a Brownian motion, and let µ := Law (B·) as a measure on
(W,BW ) . Then Hµ is the classical Cameron-Martin space described in Example
10.5.

Proof. The reproducing kernel for Hµ is

G (s, t) = E [BsBt] = s ∧ t.

which is also that reproducing kernel of H described in Example 10.5. As G (t, ·)
is a total subset of both Hµ and H and the inner products of G (t, ·) and G (s, ·)
is G (s, t) when computed in either Hilbert space it follows that H = Hµ as
Hilbert spaces.

Remark 10.7. If we did not know about H ahead of time how might of we
determined Hµ explicitly? Here is one method. By the general theory we know
that {G (t, ·) : 0 ≤ t ≤ T} is a total subset of Hµ. If h =

∑n
i=1 λiG (ti, ·) then

‖h‖2Hµ =

n∑
i,j=1

λiλj (G (ti, ·) , G (tj , ·))Hµ =

n∑
i,j=1

λiλjG (ti, tj) .

But

G (s, t) = s ∧ t =

∫ T

0

1σ≤s · 1σ≤tdσ

and so it follows that

‖h‖2Hµ =

n∑
i,j=1

λiλj

∫ T

0

1σ≤ti · 1σ≤tjdσ

=

∫ T

0

n∑
i,j=1

λiλj1σ≤ti · 1σ≤tjdσ

=

∫ T

0

∣∣∣∣∣∣
n∑
j=1

λj1σ≤tj

∣∣∣∣∣∣
2

dσ =

∫ T

0

|h′ (σ)|2 dσ.

The goal of the next few exercise is to convince you that it is reasonable to
heuristically view Wiener measure µ := Law (B) as

dµ (x) =
1

Z
exp

(
−1

2

∫ T

0

x′ (s)
2
ds

)
Dx.

where Dx is the non-existent Lebesgue measure on H = Hµ and Z is an ill-
defined a normalizing constant.

Exercise 10.2 (Projection Lemma). Let Λ = {0 = t0 < t1 < · · · < tn = T} .
Following Lemma 10.1, let πΛ : W → W be the projection map defined by
πΛx = y where y = x on Λ and y′′ (t) = 0 for t /∈ Λ. (So πΛ (x) is a piecewise
linear approximation to x.) Let

HΛ := πΛ (W ) = {h ∈ H = Hµ : h′′ (t) = 0 if t /∈ Λ} .

Show πΛ|H is an orthogonal projection onto HΛ and that H⊥Λ =
{k ∈ H : k|Λ = 0} .

Exercise 10.3 (Approximation theorem). For each n ∈ N let Λn :={
k
nT : 0 ≤ k ≤ n

}
and πn := πΛn : W → H as above. Show for any bounded

continuous function f : W → R that∫
W

f (x) dµ (x) = lim
n→∞

1

Zn

∫
HΛn

f (h) e−
1
2‖h‖

2
Hdλn (h) (10.2)

where λn is Lebesgue measure on HΛn and Zn = (2π)
n/2

.
Hint: from Lemma 10.1 and the DCT, one easily shows that∫

W

f (x) dµ (x) = lim
n→∞

∫
W

f (πn (x)) dµ (x) . (10.3)

Now compute the law of πn under µ by computing its Fourier transform.

Exercise 10.4. Here is a slightly different and perhaps more intuitive outline
indicating that H in Example 10.5 is the Cameron-Martin space for Brownian
motion. Let Λ = {0 = t0 < t1 < · · · < tn = T} be a partition of [0, T ] , ∆i =
ti − ti−1, and B be a Brownian motion. Further let Zi := 1√

∆i

(
Bti −Bti−1

)
.

The exercise is to understand the following outline.

1. Observe that {Zi}ni=1 are i.i.d. standard normal random variables.

2. Let Y := πΛ (B) . Using the fact that Ẏ (t) = 1√
∆i
Zi for ti−1 < t < ti we

see that Y is linear transformation of the {Zi} . Therefore Y is Gaussian
and by the change of variables formula,
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E [f (Y )] =
1

ZΛ

∫
HΛ

f (y) exp

(
−1

2
‖y‖2HΛ

)
dy

provided ‖·‖2HΛ is chosen so that ‖Y ‖2HΛ =
∑n
i=1 Z

2
i . As

Z2
i =

∫ ti

ti−1

Ẏ (t)
2
dt

we learn that

‖Y ‖2HΛ =

n∑
i=1

∫ ti

ti−1

Ẏ (t)
2
dt =

∫ T

0

Ẏ (t)
2
dt = ‖Y ‖2H .

3. Combining these results with the observation in Eq. (10.3) shows again that
Eq. (10.2) holds.
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