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Preliminaries






1

Where we are going

These lectures are devoted to the following two vague questions.

Question 1.1. Given a real manifold W equipped with a measure p. Does there
exist a complexification W = W 4+ iW of W, a measure uc on We, and a
unitary map U : L? (W, ) — HL? (Wg, uc) where HL?* (Wg, uc) denotes the
holomorphic L? — functions on We.

Question 1.2. Given a pointed complex manifold (G, 0) equipped with a mea-
sure \. Let
D := {“derivatives” of f at o: f € H(G)}

be the derivative space associated to #H (G) (the holomorphic functions on
G) and let T : H (G) — D be the “Taylor map;”

Tf := {“derivatives” of f at o}.
Can we;

1. characterize the derivative space, D?
2. Find the norm, ||-||5, on D such that

/ |fIPd\ = |Tf|5 forall f e H(G).
G

We will only be able to provide some partial answers to these questions by
way of a few examples where W and G are Lie groups or homogenous spaces
equipped with “heat kernel measures.” The prototypical example we have in
mind here goes under the names of the Segal-Bargmann transform and the
It6 chaos expansion. The original context of this theorem was for the case
where W is a Banach space equipped with a Gaussian measure — for example
W =C([0,T],R) equipped with Wiener measure p, i.e. the law of a Brownian
motion. In this classical case everyone knows that Brownian motion is intimately
related to the heat equation on R. However are point of view will be to exploit
the less widely appreciated fact that p is related to a heat equation on W.

Here is the outline of these lectures;

1. Preliminary measure theoretic and holomorphic function theory for Banach
spaces.

. Gaussian measures an Banach spaces including;

a) The Cameron-Martin space and theorem and
b) heat equation interpretations.

. Gaussian processes as Gaussian measures along with the informal path in-

tegral description of Brownian motion and how to interpret it rigorously.

. A detour into path integral quantization;

a) basic idea in for finite dimensional configurations spaces
b) Hilbert space support properties of Gaussian measures
c¢) applications to (not) understanding quantum field theories.

. Heat kernel smoothing, the Segal - Bargmann transforms, and the Kakutani-

Ito-Fock space isomorphisms

. Applications to canonical quantization of Yang-Mills in 1+1 dimensions

leading to Gross’ generalization of the Kakutani-Ito-Fock space isomor-
phisms and Hall’s generalization of the Segal Bargmann transform.

. Topics that might of been covered but alas were not;

a) The Taylor isomorphism for arbitrary finite dimensional Lie groups
equipped with subelliptic heat kernel measures.

b) Extensions of parts of this theory to path and loop groups, Hilbert —
Schmidt groups (see Masha Gordina’s lectures), and infinite dimensional
nilpotent Lie group — see the work of Matt Cecil and Tai Melcher.

¢) Interpretation of path integrals on manifolds.
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Banach Space Preliminaries

Given a real Banach space W, we let W* denote the continuous dual of W
and By be the Borel o — algebra on W. Given a probability measure, u, on By,
we let ji: W* — C be its Fourier transform defined by

A(a) = /W @ dy (z).

2.1 Measurability and Density Facts

Definition 2.1 (Cylinder functions). To any non-empty subset, L, of W*
we let FCX(L) denote those f: W — R of the form

f:F(a17a27"'7an) (21)

for somen € N, F € C>*(R"™), and {a;}._, C L. Similarly let FP(L) denote
the polynomial cylinder functions f as in Eq. where now F: R™ - R is a
polynomial function on R™.

We will use the following standard results through out these notes.

Theorem 2.2. If W and V' be real separable Banach spaces, 1 < p < oo, and
w and v be probability measures on (W, Bw ) and (V,By) respectively, then;

. By @ By = B(va).

. The vector space operations are measurable on W.

. LP (W, By, i) is separable.

Af o (L) = Bw then FC(L) is dense in LP (W, By, 1) .

. If L is a subspace of W* such that o (L) = By then {eio‘ fa € ﬁ} is total
i LP (W, Bw, /L) .

. If L is a subspace of W* such that o (L) = Bw and filz = 0|z, then p=v.

f L is a subspace of W* such that for all o € L there exists e = e (a) > 0
such that efl®l € LY (W,Bw,u), then FP (L) is a dense subspace of
Ly (W7 BW? M) :

D G Lo~

o

Proof. For a full proof of these results of |6, Chapter ??]. Here I will just
give a brief hint at the proofs.

1. By the separability of W along with the Hahn - Banach theorem one may
find {a, },—; C W* such that ||z|y;, = sup,, |ay, (z)|. The result now follows
from Exercise 2.1] below.

2. Let pyw and py denote the projections of W x V' to W and V respectively.
Then

Bw @By =c(a:aeW)@o(B: 5V

({aopy :ae WiuU{Bopw : BeV™})
({aopy +Bopw : (o, B) € W* x V*})
({0 e WxV)}) =Bwxy.

3. The vector space operations are continuous and hence measurable by item
2.

4. This is a consequence of the fact that By, is countably generated say by

{B(zn,r):n € Nandr e Qy} where {x,} -, is a countable dense subset
of W.

5-7. These are applications of the multiplicative systems theorem.
p

g
=0
g

8. If ]:’P(W)L ¢ LP then by the Hahn Banach theorem there exists A € (LP)*
such that A # 0 while A\(FP(W)) = {0}. Under these assumptions it can
be shown that A (e’*) = 0 for all @ € L. From item 6. it now follows that
A = 0 which is a contradiction.

Exercise 2.1. Suppose that £ C W*. Show that o (L) = Bw iff |||y} is o (£)
— measurable.

The following is a typical example for W and L.

Ezample 2.3 (Canonical Continuous Stochastic Processes). Suppose that T €
(0,00) is given and let W := C ([0, T],R) and

= ma t)].
ol = max [z (6)
By the Stone — Weierstrass theorem we know that (W, ||-||;,) is a separable
Banach space. For ¢ € [0,T] let oz € W* be the evaluation maps, a; () = x (t).
Since
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Illw = sup |ay
teQn(0,T]

it follows from Exercise that o (£) = By when £ = {a;: 0<t < T} or
L = spang {a; : 0 <t <T}. In particular if p is a probability measure on
(W, Bw) , then u is completely determined by its finite dimensional distributions
or equivalently by /i restricted to £ = spang {a; : 0 <t <T}.

Assumption 1 Through out these notes W will be a separable Banach space
which is taken to be real unless otherwise specified.

2.2 Holomorphic Functions

The following material is taken directly from [8 Section 5.1]. Let X and Y be
two complex Banach space and for a € X and § > 0 let

Bx (a,9) ={z € X : ||z —a| yx <4}
be the open ball in X with center a and radius 9.

Definition 2.4. Let D be an open subset of X. A function u : D — Y is said
to be holomorphic (or analytic) if the following two conditions hold.

1. uw is locally bounded, namely for all a € D there exists an rq > 0 such that
M, =sup{|lu(z)|ly : x € Bx (a,7q)} < .

2. The function u is complex Gateauz differentiable on D, i.e. for each a € D
and h € X, the function A\ — u(a+ \h) is complex differentiable at A =
0ecC.

(Holomorphic and analytic will be considered to be synonymous terms for
the purposes of this paper.)

Typically the easiest way to check that A — u (a + Ah) is holomorphic in a
neighborhood of zero is to use Morera’s theorem which I recall for the reader’s
convenience.

Theorem 2.5 (Morera’s Theorem). Suppose that 2 is an open subset of C
and f € C(£2) is a complex function such that

/f(z)dz =0 for all solid triangles T C 2, (2.2)
orT
then f is holomorphic on (2.
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The notion of holomorphic given in Definition looks rather weak but
it is equivalent to a much stronger notion as described in Theorem This
theorem gathers together a number of basic properties of holomorphic functions
which may be found in [22]. (Also see [21].) One of the key ingredients to all
of these results is Hartog’s theorem, see [22, Theorem 3.15.1] or Theorem 1.6
in |30, Theorem 1.6 on p. 7] and Exercise [2.2 below.

Theorem 2.6. If u : D — Y is holomorphic, then there exists a function u' :
D — Hom (X,Y), the space of bounded complex linear operators from X to
Y, satisfying

1.Ifa €D, x € Bx (a,1,/2), and h € Bx (0,7,/2), then
AM,
ra (ra = 2|7l x)

In particular, u is continuous and Frechét differentiable on D.
2. The function v’ : D — Hom (X,Y) is holomorphic.

lu(z +h) —u(z) - (@) h]ly < [ (2.3)

Remark 2.7. By applying Theorem [2.6] repeatedly, it follows that any holomor-
phic function, v : D — Y is Frechét differentiable to all orders and each of the
Frechét differentials are again holomorphic functions on D.

Proof. By [22, Theorem 26.3.2 on p. 766.], for each a € D there is a lin-
ear operator, v’ (a) : X — Y such that du(a+ M) /d\ =0 = «' (a)h. The
Cauchy estimate in Theorem 3.16.3 (with n = 1) of |22] implies that if a € D,
x € Bx(a,r,/2) and h € Bx (0,7,/2) (so that © + h € Bx (a,7,)), then
[lv' () hlly < M,. It follows from this estimate that

sub {16/ (@) lom(x.v) * © € Bx (a,70/2) } < 2Mafra. (2.4)

and hence that ' : D — Hom (X, Y) is a locally bounded function. The estimate
in Eq. appears in the proof of the Theorem 3.17.1 in [22] which completes
the proof of item 1.

To prove item 2. we must show u’ is Gateaux differentiable on D. We will
in fact show more, namely, that v’ is Frechét differentiable on D. Given h € X,
let Fy, : D — Y be defined by Fj (z) := ' (z) h. According to [22, Theorem
26.3.6], F}, is holomorphic on D as well. Moreover, if a« € D and « € B (a,r,/2)

we have by Eq. (2.4) that
1En ()l < 2Ma [l x /7a-
So applying the estimate in Eq. (2.3) to F},, we learn that

4 (2Mo [|hlx /7a)

|1Fn (z + k) — Fy (z) = F} (2) klly < ——
PRI e (e — 2kl )

Ikl (2.5)
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for z € B(a,r,/4) and ||k|| y < ro/4, where
/ d d ! 2
Fy (z) k= P\ loFpn (x 4+ X&) = a\ou (z+ Xk) h =: (6°u) (z; R, k).

Again by [22, Theorem 26.3.6], for each fixed z € D, (6%u) (z; h, k) is a contin-
uous symmetric bilinear form in (h, k) € X x X. Taking the supremum of Eq.
(2.5) over those h € X with ||h| y = 1, we may conclude that
o o4 8) = (2) = 520 (5B
= sup |Fy(z+k)—Fp(z) - F, () klly
17l x=1
4(2M,/ra)

S (% - 20kly)

This estimate shows «' is Frechét differentiable with «”(x) €

Hom (X, Hom (X,Y)) being given by u” (z)k = (6%u) (z;-,k) € Hom (X,Y)

for all k € X and 2 € D. ]
Here is an exercise to give you a feel for this theorem.

2
&l -

Exercise 2.2 (Baby Hartog’s theorem). Let f : C> — C be a function
such that z — f(z,w) is holomorphic for each w € C and w — f(z,w) is
holomorphic for each z € C. Further assume that f is locally bounded. Show
that f is a smooth function on C? using the following outline.

1. Show (z,w) — f (z,w) is jointly measurable. Hint: approximate f by func-
tions of the form Y 1¢ (2) f (2, w) where the sum is over a countable par-
tition {Q} of C and z¢g € Q for each Q.

2. Use the one dimensional Cauchy integral formula twice to find,

flzw) = (mlr) b b e

_ (L F(Cy(s),Ca (b)) (e )
- (2772’) /[0,1]2 (C1(s) = 2) (C2 (1) — w) C1 (s) G2 (t) dsdt (2.6)

where C7 and Cs denote appropriately chosen contours surrounding z and
w respectively.

3. Conclude from items 1. and 2. that you may differentiate f in both z and
w as many times as you please.

Lemma 2.8 (Holomorphic L?). Let M be a finite dimensional complex an-
alytic manifold and p be a smooth positive measure on M. Let H(M) denote the
holomorphic functions on M. Then H(M)NL3(p) is a closed subspace of L2(p)
and for each compact subset K C M there exists Ci < oo such that

Page: 7 job: Cornell
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max [f (m)| < Ck [[fll 2, ¥ f € H(M) (2.7)

Moreover, if f, — f in L%(p) as n — oo, then f, and df, converges to f and
df respectively uniformly on compact subsets of M.

Proof. Since the property that a function on M is holomorphic is local, it
suffices to prove the lemma in the case that M = D; and p = 1, where for any
R >0,

Dp:={2€C%:|z| < RVi=1,2,...d}. (2.8)

Let f be a holomorphic function on D1, 0 < a < 1, and z € D,. By the mean
value theorem for holomorphic functions;

) = ) |

d
Fal{zg e 71030 T] b, (2.9)
[0,27]4 j=1
where r = (r1,79,...,74) € R¥suchthat 0 < r; < e =1—aforalli=1,2,...,d.
Multiplying (2.9) by 71 - - - 74 and integrating each r; over [0, €) shows

£(2) = (me?) /D F(z + ONE),

where \ denotes Lebesgue measure on C?. In particular, for each o < 1,

sup [f(2)] < (m(1 = a)*) || fllrz
z2ED,

which can be pieced together to prove Eq. . Therefore, an L2~ convergent
sequence of holomorphic functions is uniformly convergent on compact subsets
of Dy and so the limit is also holomorphic. Since the derivatives of locally
uniformly convergent holomorphic functions are locally uniformly convergent
(see your proof of Exercise , it follows that L2 convergence also implies
uniform convergence of the differentials on compact sets. ]
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3

Gaussian Measure Preliminaries

Definition 3.1. A measure p on (W, Bw) is called a (mean zero) Gaussian
measure provided that every element o € W* is Gaussian random variable.
We will refer to (W, Bw, 1) as a Gaussian space.

A word of warning: I am going to drop the adjective, “mean zero” and
simply refer to a Gaussian measure or Gaussian probability and intend for you
to understand that it is a mean zero.

The condition that every a € W* is Gaussian relative to p is equivalent to
assuming that W* C L? (i) and

fi() == e 2% for all o € W* (3.1)

where ¢, (o) := g, (o, ) and
qu (o, B) = /W a(z) B (x)du (z) for all o, 8 € W™, (3.2)

For any finite subset {ax},_; and a; € R we have Y, _; agoy, € W* and is
therefore Gaussian and in particular

i n 1<
/ ezzkzl “kakdu = e*%q#(Zkzl a’“a’“) =exp | —= Z arparqy, (Ozk, al)
w 2 k=1

Hence we see that {ay},_, are jointly Gaussian random variables.

Definition 3.2. We say that a Gaussian measure p on (W,Bw) is non-
degenerate if q,, is positive definite on W*, i.e. (W*,q,) is an inner product
space. (This condition turns out to be equivalent to the support of u being all of

Corollary 3.3. The quadratic form q: W* x W* — R in Eq. 8 continu-
ous, i.e. there exists Cy € (0,00) such that

g (. D) < Callally - [1Bllw for all a, p € W (3-3)

Proof. Because of the Cauchy—Schwarz inequality

lg (o, B)] < vVala)v/a(B)

and so it suffices to show

Cy := sup la(a )] < 00. (3.4)

2
acw*|lally.

(By convention we will typically define 0/0 = 0 in this type of ratio.) If Cy = 0o
in Eq. (3.4) we could find {ay},-; C W* such that E [02] = ¢ (o, ) =1
while limy,, || ||}y = 0. However this is not possible since

q(an,an) = —2Infi(ay,)] = 72111/ e @y () — —2In (1) =0
w

by the DCT. while ¢ (ap, ) — 00 ]

Exercise 3.1. Suppose that u is a Gaussian measure on (W, B) and for 6 € R,
let Rg: W x W — W x W be the “rotation” mapﬂ given by

Ry(z,y) = (xcosf — ysinb, ycosb + xsin b). (3.5)
Then for all f € (B(WXW))Z) = (BW & BW)b and 0 € R,
| tewdi@ant) = [ fBalea)du@dut), (30
WxwW WxWwW

i.e. p X p is invariant under the rotations Ry for all § € R. (See Theorem (3.5
for a strong converse to this exercise.)

Hint: compute both sides of Eq. when f (z,y) = e¥@¥) and ¢ €
(W x W)*. You will also want to use that

W*xW* 3 (a,8) = aop; +Bopy € (W x W)*

is a linear isomorphism of Banach spaces where p; : W x W — W is the
projection map onto the i** — factor. Thus

(vopr+Bops)(z,y) =a(x)+ Ly Ve,yeW.

L Ifp; : WX W — W is projection onto the i*® — factor for ¢ = 1, 2, then p;o Ry (z,y)is

linear combination of x and y. As the vector space operations are measurable it
follows that p; o Ry is measurable for ¢ = 1 and 2 and therefore Ry is Bw ® Bw —
measurable. Alternatively one observes that Ry : W x W — W x W is continuous
and B(w xw) = Bw ® Bw which again shows that Ry is measurable.
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Theorem 3.4 (Ferniques Theorem). Suppose that p is any measure on
(W, Bw) such that p x p is invariant under rotation by 45°, i.e. (u x p)o R~ =
X i where

R(z,y) = %(x—y,y—&—x). (3.7)

Then there exists € = & (u) > 0 such that

/ esl‘w”evdu (z) < 0. (3.8)
w

In particular p has moments to all orders. (For the proof of this theorem see [0,
Theorem ??] (also see [4, Theorem 2.8.5] or [24, Theorem 3.1]).)

Proof. Since

z
ef=1 +/ eydy =1 +/ 1O§y§zeydya
0 R

2
/ el dp(z) = / (1 +/ 1ogyga|x|2€ydy> dp(z)
w w R
—1+ [ dy erplele]? > ) (39)
0
Because of this formula it suffices to show that there are constants, C' € (0, 00)
and B € (1,00) such that

u(el|z)|? > y) < Ce™PY for all y > 0. (3.10)

For if we use Eq. (3.10) in Eq. (3.9)), we will have

/ ee\lm\lzdu(x) <1+ c/ dy eVe P =1+ L < 0. (3.11)
w 0 p-1

We will now prove Eq. (3.10). By replacing y with et2, Eq. (3.10) is equivalent
to showing
2 2
p(llz]| > t) < Ce P8 = Ce™ " for all t > 0, (3.12)

where v := fe. Because we are free to choose € > 0 as small as we like, it suffices
to prove that Eq. (3.12]) for some v > 0. Let P = pu x pon W x W and let
t > s > 0. Then by the R, 4 invariance of P,

plllzll < s)pllzll = t) = P(|z[] < s and [y]| > ¢)

z—y
=P — | >t
( V2 H‘ >
< P(|||=|| - [ly|l| < V2s and ||z|| + ||y|| > V2¢).

Tty

H<s nd

Page: 12 job: Cornell

Let a = ||z|| and b = ||y|| and notice that if |a — b| < v/2s and a + b > /2t then

\/§t§a+b§b+\/§s+b:2b+\/§sand
\/§t§a+b§a+a+\/§s:2a+\/§s

from which it follows that

t—s t—s
a > and b >

V2 T V2

as seen in Figure [3.1] below. Combining these expressions shows

b

21/2t_

2%
g~ >

)

-1
/(t-S)O T
a
0 9% 2%
Fig. 3.1. The region R is contained in the region a > t\;g and b > t\;g.
— S
z|| <s z|| >t Pl |z > and
el < syl = ) < P (Jol = 2% and ) = *)

— [u |x||>t‘s]

which is to say for t > s > 0,

1 t—s.]°
< MEED) {M(HQUH > \/ﬁ)} : (3.13)

21-Jul-2010/21:42

plllzll = )
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We will now complete the proof by iterating Eq. (3.13)). Define tg = s and then
define {t,} -, inductively so that

tn+1 — S

7 =t, for all n (3.14)
ie.
tpy1 = s + V2, (3.15)
and (by a simple induction argument)
n n+1 n+1
. 272 —1] 22
= 7’/2 =
tn si;z Soia—T < Sy (3.16)

Then by Eq. (3.13))

: {u(IImH > b1 = 5)] _ [pdl=]l = tn)]

plllell = tsa) < NG p(llz]] < s)

]l <'s)

or equivalently

ang1(s) = ]l > tngr) (=l > )\ — o2 (s
n(8) == T ) <<uwws@) = onls).

Iterating this inequality implies

an(s) < ol (s) with ag(s) = M
S (F ) (3.17)
B p(llzll > tn) < p(ljz]] < s) (040(8))2" for all n. (3.18)

We now fix an s > 0 sufficiently large so that ag(s) < 1 and suppose t > 2s is
given. Choose n so that ¢, <t <t,41 =5+ V/2t,, in which case (as0<t—s<

V2ty,) ,
_ 2
V2 (21/2 — 1)
i.e.
(212 -1)° 2

Combining this with Eq. (3.18]), using ao(s) < 1, shows

u(llzl > ) < p(llz) = tn)
< p(llzll < 5) (ao(s))*" < p(llz]l < 5)pt="
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where
21/2_1)2
pi=(ao(s)) +7  €(0,1).

Since t > 2s is equivalent to (£ —s) > t/2, we have (t —s)® > (¢/2)° and
therefore il
plllell = 6) < p(lle] < s)e” 5"
which is sufficient to prove Eq. 1) with v = “1” | and C chosen to be a
sufficiently large constant. ]
As stated Theorem [3.4] seems to say something about measures more general
than Gaussian measures but as is well know this not the case.

Theorem 3.5. If i is a probability measure such that p X p is invariant under
R4, then p is a Gaussian measure on (W, Bw). As usual we will have ji =

e~ 2% where q (@) := q(a, @) and

1(0.8) = [ () @) du(a) for alla,p e W

w

(See Feller [11), Section III.4, pp. 77-80] for more general theorems along these
lines.)

Proof. By Fernique’s Theorem bound in Eq. (3.8), # has moments to
all orders and ji(«) is infinitely differentiable in «. In fact for any oo € W*, the
function,

Coz— “i(za)” ::/ e @) dy, ()
w

is holomorphic. The invariance of X p under rotation by 7/4 and the formula,
JOX (oo py+ B opr) = ji(e)ji(B), implieg]

mmmmzﬂ(lm+ﬂ0ﬂ<1<—a+m>VaﬂEWﬂ. (3.19)

V2 V2
Taking o = 0 and then § = 0 in this equation implies,
1 1
[l =al— 0| — VBeW* 3.20
£1(B) M(ﬁ5>l~b<\/§ﬁ> B (3.20)
1 1
o) =0| —=a|f| ——=a)] YaecW* 3.21
u()u(ﬁ)u(ﬂ) (3.21)
21t = aopy + Bop; then with R = R4 as in Eq. we find,
Y (R@Y) = Jsil = yy+ o)
= 25 llo+5) (@) + (5= o) ().
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14 3 Gaussian Measure Preliminaries
and in particular we learn

(b)) =)o () v

For t € R near zero we know that { (%a) # 0 and hence we may conclude

that . ;
g (‘ﬁ“) - (ﬁ“)

for ¢ near zero and hence by the principle of analytic continuation this equation
in fact holds for all ¢t € C and in particular for ¢t = V2 from which we learn
that i (—a) = fi («) for all @« € W*. Since fi (o) = i (—a) = 4 (o) we may now
conclude that fi is real.

Iterating Eq. implies,

i(B) = ji <(1>n ﬂ) B for all n € Ny. (3.22)

Let f(t) := ji(tB) so that f(0) =1, f(0) = 0 (since f (t) is odd), and

¢ _ d ? itB(x)
0= ), e

So by Taylor’s theorem,;

/ B2 (2) dp () = —q (8)

1
ft)=1=2a(®)*+0(#)
while by Eq. ;

=) -

A simple calculus exercise now shows

{1 . %q (B)27" +0 (2—3"/2)] "

1
— fiq(ﬂ) as n — 00.

1
Thus we have shown
la (ﬁ) = /:L(B) = f (1) = 67%q(ﬁ) = e*%Varu(ﬁ)’
i.e. i = e %2 and so y is a (possibly degenerate) Gaussian measure. n

Corollary 3.6. Suppose that L is a linear subspace of W* such that o (L) = Bw
and 1 s a probability measure on (W, By ) such that every element a € L is a
mean - zero Gaussian random variable. Then p is a Gaussian measure.
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Proof. Let

LoL={pe(WxW) a=1v(,0)€Landf:=v(0,) €L}
={aopi+Bopre (WxW) :a,p€L}

where p; : W x W — W is projection onto the i*" — factor. We then have that

o(LoL)y=c({aopr:ac LiU{Bops:B €L}
=0 (L)®0o (L) =Bw ®Bw = Buwxw)-

So in order to show (u X w) oAR;/l4 = p X p it suffices to show see item 7 of
Theorem D {(,u X ) o R;/ﬂ =11 X pon £ & L which we now do.
Let ¢ (x,y) = a(x) + B (y) with o, 8 € L. Then

L (e -y ty) = — [a(2) + B(x) + A ) — a )

’(/}ORTF/4 (l’,y) = ﬁ

€
V2
so that
[ wye R} ()
= m (7/} © Rﬂ'/4)

o1
- /waexp <Z\@ [a(z) +B(z)+ B (y) — (y)}) dp () dy (y)

— e~ lalatB)+a(B—a)] _ o—7[2a(e)+24(B)] _ m (1) .

Example 3.7 (Gaussian  processes and  Gaussian — measures).  Suppose
that {Y;}y<;<r 1s a stochastic process with continuous sample paths,
W :=C([0,T],R), and oy () = z (t) for all z € W and 0 < ¢ < T. Recall from

Example we know that o {at}teQﬁ[O,T] = By . Therefore we may view Y’

as a W — valued random variable and define y := Law (Y.) as a measure on
(W, Bw) .

If we further assume that {Y;},.;o; is a mean zero Gaussian process, then
(W, By, ) is a Gaussian measure space. To prove this apply Corollarymvvlth
L := span{ay : 0 <t <T}. Note that for &« = Y " | a;ay, in £ we have that
al S a;Yy,, ie Law, (o) = Lawp (Y., a;Y;,) . By assumption Y- ; a; Y3,
is Gaussian and therefore so is a.

Ezample 3.8 (Brownian Motion). Suppose that {B.},- is a Brownian motion.
Then B induces a Gaussian measure, g on W := {z € C ([0,T],R) : x (0) = 0}
which is uniquely specified by its covariances;
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/ z(s)x(t)du(z) =sAtforall 0 <s,t<T.
w

Let us end this chapter now with a simple but useful lemma regarding the
convergence properties of jointly Gaussian random variables.

Lemma 3.9. If for {Y,} 7, U{Y'} are random variables such that {Y,,Y} is

a mean zero Gaussian vector for each n and Y, BY asn— oo, then Y, —Y
in LP (P) for all1 < p < co and ¥ — ¥ in L? (P).

Proof. By assumption, aY,, + bY is Gaussian for all a,b € R and therefore

EelaYn+bY) _ e%E(aYn-i-be and

EeflaYn+bY) e—%IE(aYn+bY)2

In particular,
) 1
E [e'(y_y”)} = exp (_QE (Y — Yn)z)
which along with the DCT shows

o =E(Y — Yn)2 =—-2InE {ei(y_y")} — 0 asn — oo.

If N is a standard normal random variable then Y —Y,, 4 v 0, N and therefore,
E(Y —Y,)" = 0?/?E[NP] = 0 as n — oo

which is the first assertion. The second assertion now follows by the following
simple computation;

E <|6Y _eYn |2> K (ezy 4 en _ 2eYn,+Y)

1 2 1 2 1 2
eFAEY? | H4EY, _ 9 E(Ya+Y)
2 2 1 2
Q2EY? | 2EY? 9 QE(2Y)? _

Corollary 3.10. If {Y:},~ is a Gaussian process with continuous sample paths
then Ry >t — Y; € LP (P) is continuous for all 1 < p < oo.

Exercise 3.2. Suppose that {Y,,} _, is a sequence of random variables such
that (Y,,Y:,) is a mean zero Gaussian random vector for all m # n and Y,
converges to some Y in probability. Show that Y is Gaussian and that (V,Y;,)
is again a mean zero Gaussian random vector for each n € N.






4

Gaussian basics 1

In this chapter suppose that W is a finite dimensional real Banach space
and ¢ : W* x W* — R is a non-negative symmetric quadratic form on W*.

Notation 4.1 Let
Nul (q) :== {a € W* : ¢(a) = 0} (4.1)

be the null space of q and
H=H,=Nul(q):={¢eW:(a,&) =0 VaecNu(g} (4.2)

be the backwards annihilator of Nul(q). (If q is non-degenerate, i.e. Nul(q) =
{0}, then H = W.) We call H the “horizontal space” associated to q. We
may also refer to H as the Cameron-Martin space associated to q.

Lemma 4.2. There is a unique inner product, (-,-)y , on H such that for any
orthonormal base {hy},—, (m :=dim (H)) of H we have

m

q(a,B) = (o, hi)(B, hy) for all o, B € W*. (4.3)

k=1
In particular

q(a)= = > [a, hi) . (4.4)

k=1
Moreover, let
la (@) .
x|y = sup ——= (with 0/0 :=0), 4.5
%]l e a@ ( / ) (4.5)
then
H={heW:|h|y < oo} (4.6)

and ||h||3; = (h,h) g for all h € H.

Proof. The form ¢ descends to a strictly positive definite quadratic form,
g, on W*/Nul(q) and the map

W*/Nul(q) > (¢ + Nul(q)) = a|g € H* (4.7

is a linear isomorphism of vectors spacesﬂ Using this isometry, ¢ induces an
inner product, (-, )., on H* and hence, by the Riesz theorem, an inner prod-
uct, (-, )z, on H. Suppose that {hy};, is any orthonormal basis of (H, (-,-))
and «, 8 € W*. Then

q(a,8) = q(a+Nul(q), 8+ Nul(q) = (alm, Blu)g- = Y (v, i) (B, ha)-
k=1

If © ¢ H there exists a € Nul (¢g) such that « (z) # 0 and therefore from Eq.
(#.5),
la(@)] _ la(o)] _

llzll gz > =
" q () 0

For h € H we have and o € W* we have h = ;" | (hi, h) z by and so

m

Z hk, Ha hk
k=1

with equality if we choose @ € W* such that a(hy) = (hg,h) for all k =

hka Za hk hh)Hq( )
k=1 k=1

1,...,m. From these observations it follows that
Ol
2 = sup S g foralhe B
” HH Jpies q(a) ( )H

! Here is the argument. Let N := dim W and {5 } be a basis for W* such that
{6 m <1< N} is a basis for K and let {el} be the corresponding dual basis.
Since for any x € W we have x = Zl 1 <5 x> €; and

H:{mEW:<5i,x>:Of0rm<i§N},

it follows that H = span{e;};~,. So letting R : W* — H" be the restriction
map, Ra = a|m, it follows that Ra = 0 iff (a,e;) = 0for 1 < i < niff a €
span {Ei tm <t < N} iff @ € K. Thus it follows that Eq. indeed defines an
isomorphism of vector spaces.
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Theorem 4.3. As above assume that dimW < oo and g : W* x W* — R is
a non-negative symmetric quadratic form and let {hy};", be an orthonormal
basis for H C W as in Lemmam .4 If {Ny} -, is any i.i.d. sequence of standard
normal random variables, then p := Law (>_,—, Nxhy)is a Gaussian measure
with i = e~ 92, i.e. Eq. holds. Moreover, for every bounded measurable
function, f: W — R we have

[ stu= [ sae= [ sorew (g )an )

where dh denotes Lebesgue measure on H and Z = (27r)m/2 is the normalization

constant so that
1 1.
Z Hexp —§||h||H dh =1.

Proof. Let S:=)";" , Nyhj and @ € W*. Then
f(a) = / e @dy(z) =E [eio‘(s)} =E
w
1 < 1
= exp <—2 Var (Z Nia (hk)>> = exp <—2 Z o? (hk)> = ¢ 29(@),
k=1

k=1

[673 >ohe Nka(hk)}

Similarly,

_EIf(S)] = 1Y, o
| fin=Elr(5) /m e (Zxkhk>e di

from which Eq. (4.8) easily follows by making the orthogonal change of variables,
h =" xihy. u

Remark 4.4. Notice from the above theorem we learn that p(H,) = 1 when
dim H,, < oo. It turns out that the same ideas of this proof work for infinite
dimensional Gaussian measure space (W, By, 1) as well. In this case we will
have

oo
S = Z Nihy convergent in W
k=1

and Law (S) = p, see Theorem and Theorem below. However, let us
note that S is convergent in H iff Y ;- | NZ < oo while by the strong law of
large numbers we know that

I B
%ﬂ“ma;]vk:l
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and therefore "7, N2 = oo a.s. This is a strong indication that u (H,) = 0
which is indeed always true when dim H,, = oo, see Lemma below for more
details.

Theorem 4.5 (Baby Fernique’s Theorem). Suppose that (W, u) is a Gaus-
sian measure space with dim W < oo, then there exists € > 0 such that

/ ecll=liv gy, () < 0.
w

(The general version of this theorem removes the restriction that dim W < c0.)

Proof. Recall that ¢ () < C? ||04H?,V for some C < oo and therefore,

o (h)] o (h)|
> sup ———— = — [|h]ly -
q(a) " aew-Cllally  C W

[hllg = sup
acW*

Thus it follows that

/ eslleli gy (o / esllalld gy, (
w H
/ec Hh”Hd/J/ (h) = 1 m/2/ cesl\h\l"};exp —1||h||2 dh
o o 2 WIH
m/2
L / Cellbly gxep (—=
27T H 2
1\"/2 m/2 m/2
_(27r> (1—205) <1—205> =0

which is valid provided that 2Ce < 1. [

IN

(1 202) [l )

Theorem 4.6 (Characterization of H). Suppose that (W, ) is a Gaussian
measure space with dim W < oo and define J = J,, : L? (u) — W by

1= | f@e dut).
Further let K be the subspace of L? (1) defined by
={[a] € L*(p):ac€ w*}.
Then J (L* (1)) = H and Jg := J|x : K — H is a unitary map such that
(h,Ja)y =a(h) YVaeW" and h € H. (4.9)

In particular,
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mo={ [ t@eane)sery={ [ f@edu:sert).
w w
The adjoint map for J* : H — L? (u) is given by J* = lel an satisfies

(J*h) () = 1m (x) (h,z)y for p — ae. x. (4.10)

(The value of J*h on W \ H is not uniquely determined as this is a set of p —
measure zero. Notice that JJ* =idy.)

Proof. Since u (W \ H) = 0 we also have
15 = [ f@adute) e B
H

which shows that J (L? (n)) C H. Moreover if a € W*, then using the notation
in the proof of Theorem [.3| we find

JO[ZE[O( (S) S] =K Z NkNlOz (hk) hl :Za(hk) hk.
k=1 kel
As we may choose v € W* such that (a(hq),...,a(hy)) is any m — tuple we

please, we may now conclude that JK = H. Moreover J is unitary since

m

1Tall} =" a(h)? = q(a) = [lal72(, -
k=1

IfaeW*and h=Jf € H, then
(hJo)y = (Jf, Jo)yy = (f7O‘)L2(u)

= [ f@al) du)

which is Eq. (4.9)).
Now suppose that h = Ja with o € W* and f € L? (i), then

(J*hs Nz = (TN g = (T, I f) gy = (@ 2 = (Jg ha f)
which shows J*h = J'h. If k € H, then
(J*h) (k) = a (k) = (Ja, k) iy = (h k)

from which gives Eq. (4.10)).
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Notation 4.7 We sometimes abuse notation and simply write (h,x), for
(J*h) (z) even when H is a proper subspace of W.

Theorem 4.8 (Baby Cameron Martin Theorem). For h € W let
wn (A):=pu(A—="h). The pp, < p iff h € H and if h € H then

dpp, . 1
U =P (J h— 2||h%,> : (4.11)

Proof. This is a simple matter of using the change of variables formula. Let
h € H and f: W — R be a bounded measurable function. Then

/Wf(w)duh(w)=/Wf(fff+h)du(w)=/Hf(w+h)du(w)

_ %/Hf(x + h) exp (—; IIxIE) da
~ 5 [ r@es (=5l nl, ) do
— [ 1o (o) = 1% ) due)

from which Eq. (4.11) follows. If h ¢ H, then up (H+h) = p(H+h—h) =
w(H)=1while u(H)=1and HN (H + h) = 0. [
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5

The Heat Equation Interpretation

For this section, suppose that (W, By, i) is a Gaussian measure space with
f=e % and H = H,.

Lemma 5.1. Suppose o; € W* for 1 <i<n, F € C>®(R"), and
f=F(a1,...,a,) € FC® (ay,...,an) C FC>® (W™). (5.1)

Then for any choice of orthonormal basis S C H we have

n

Za;%f: Z q(ai,aj) (878,F) (al,...,an). (52)

hes ij=1
where Oy f (w) == o f (w + th).

Proof. The proof consists of the chain rule along with the fact that
q (O[, B) = ZhES (67 (h) ﬂ (h) . Indeed,

8hf = Z(&F) (al,...,an)-ai (h)

8,%]” = Z (0;0,F) (a1,...,0n) - o; (h)aj (h)
ij=1
and therefore and

D= (00F) (a1, an) - Y ai(h)ay (h)
hes 4,5=1 hes

= 3" 400 05) (;0:F) (0, ., o).

i,5=1
]

Remark 5.2. Equation demonstrates that its left member is independent of
the choice of orthonormal basis, .S, for H while its right member is independent
of how f is represented in the form of Eq. (5.1)). For this reason the following
definition makes sense. (Also see Exercise

Definition 5.3. Associated to u is the second order differential operator L =
L, acting on FC> (W*) defined by either;

Luf =Y 0pf forall f € FC™ (W*)
hesS

or by

n

Lu[F(on,..om)] = Y qlai,0) (0;0:F) (oa, ..., o)

ij=1

where S is any orthonormal basis for H and {a;};_, C W* and F € C*> (R")
are arbitrary.

Exercise 5.1. Show that
L.f(z)= / (('“);f) (x)du (y) for all z € W.
W

This gives another proof that L, is well defined.
Remark 5.4. We may recover ¢ = ¢, from L := L, since for ai,ay € W* we
have with F (z1,22) = 2122 that

2
L(Oél 'Ozg) = Z q(ai,aj) (8j81F) (Oél, .. .,an) = 2q (a1,a2>.

i,j=1
In this way we see that the map ¢ — L is injective.

Lemma 5.5. Suppose that N = dimW < oo and L is a constant coefficient
purely second order semi-elliptic differential operators, i.e. L =7 g" 0,0, for

some basis {ei}f\il of W and (gij) > 0. Then L = L, where p is the unique
Gaussian measure on W such that i = e~9/2 where

1(0,8) = 3 L(af) = 30 o i) (B,¢5). (5.3)

This allows us to conclude that the map q — L9 is a one to one correspondence
between the non-negative quadratic forms on W* and the the constant coefficient
purely second order semi-elliptic differential operators acting on C? (W) .
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Proof. It is clear that ¢ defined by Eq. (5.3) is a non-negative quadratic
form on W* and therefore

=> (o, hi) (B, ) (5.4)

k=1

for some linearly independent subset of W. Lettlng {6 } be the dual basis
to {ez}i:1 it follows by comparing Egs. (5.3) and Wlth a=cand B =¢’

that -
g7 = (e hu) (7, )

k=1

Since

Z <5i’ hk> Oe, = a&(ai,hwei = On,

i

we may now conclude,
L=> g90.,0., = ZZ &' hi) (€7, hi) e, 0, = Z%
%] k=1 ,j

Definition 5.6. Given L C W* let P (L) = R[L] denote the space polynomial
functions on W based on L. Thus f € P (L) iff there exists n € N, o; € L for
1 <i < n, and a polynomial function p : R™ — R such that f =p(a1,...,ap).

Theorem 5.7 (Heat Interpretation). Let (W, Bw,p) be a Gaussian space
and L = L,. Then

/W 7 (o4 Vi) duw) = (¢225) @) forall fePW)  (55)

where 00 n
etL/2f — T;);' <t2L> f. (finite sum) (5.6)

Proof. For « € W* and h € W we have, dpe'® = ia (h) e'® and therefore it
follows that
Le'™ = Z (i (R))? - €' = —q () €
hes

and therefore
oo

etL/2eioc _ Z LT: <L> el — eftq(a)/2eio¢
n! \ 2

n=0
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while

/W ev(x("c-&-\/;y) du (y) — eia(m) / ei\/foz(y)dlu (y)

w
_ eia(w)ef%q(\/za) — ta(@)/2 i)

So we have shown
(etL/26ia) () :/ e (=HVH) gy (y) .
w
Differentiating this equation in « relative to aq,...,a, € W* we find,
eth/? (i .. i) €] = Oay . O, etl/2eie

- /W i ( + \/Ey) iy, ( - \/Ey) e (V) ay(y).

Evaluating this equation at a = 0 € W* then shows

eL/Q(al...an):/Wal ('+\/£y)...an <+\/7?y> du (y) .

You are asked to justify these computations in Exercise [5.3] and 5.6 below. m
Exercise 5.2. Show

etl/? (i1 .. i) €] = Oa, - - Dy, et 2e (5.7)
Hint: you might use the Cauchy estimates to simplify your life.

Exercise 5.3. Use the following outline in order to prove Eq. (5.5) with ¢t = 1.
Let a,aq,...,ar € W* for some k € N.

1. Show for all z € R that
/ aFe=dy = e? ((ioz)/l€ ei’m) (0) (5.8)
w

by differentiating the identity

oo

. 1 "

n=0

k — times in z making use of the identity

() [
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2. Taking z = 0 in Eq. (5.8)) shows

/ oFdy =e* (a¥) (0).
w

Polarize this identity by computing O, ... 0, of both sides in order to
conclude

/ o ..o dp = [e% (al...ak)} (0). (5.11)
w
3. Use Eq. (5.11) along with linearity and the translation invariance of L (i.e.
Lf(z+-)] = (Lf) (z + ) to prove Eq. (5.5).
Corollary 5.8. For allg e P(W*), x € W, and t > 0,

/W o (24 Viy) du () = (/%) (). (5.12)

Proof. When ¢t = 0 both sides of Eq. (5.12)) are equal to g (z) and so we
may assume that ¢ > 0. Applying Eq. 1} with f(z) = ¢ (\/ix) and using

(Lf) (z) =t(Lg) (Vtz) shows,
/W g (\/im + \/iy) du (y) = (eL/Qf) (z) = (etL/zg> (\/ix) .

The proof is then complete by replacing = by %x in this equation. [

Exercise 5.4 (Integration by Parts). Suppose that (z,y) € R x R¥™' —
f(z,y) € C and (z,y) € Rx R — g(x,y) € C are measurable functions
such that for each fixed y € R, x — f(x,y) and x — g(z,y) are continuously
differentiable. Also assume f - g, 0, f - g and f - J,g are integrable relative to
Lebesgue measure on R x R4 where 0, f(z,y) := 4 f(z+t,y)|t=0. Show

/ 0ot (2, ) - g(a,y)dody = — / F(2,y) - Oagla, y)dady.  (5.13)
RxR4-1 RxRd—1

Hints: Let ¢ € C°(R) be a function which is 1 in a neighborhood of

0 € R and set ¢.(z) = ¥(ex). First verify Eq. (5.13) with f(z,y) replaced by
Ye(x) f(x,y) by doing the x — integral first. Then use the dominated convergence

theorem to prove Eq. (5.13) by passing to the limit, ¢ | 0.

Solution to Exercise (5.4). By assumption, 9, [¢:(z)f(z,y)] - g(z,y) and
Ve () f(2,9)0:9(x,y) are in L*(R™), so we may use Fubini’s theorem and follow
the hint to learn
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/ dy/az [Ve(@) f(z,9)] - (2, y)dw
Rn—1 R
= —/ dy/ [Ve(x) f(z,y)] - Ozg(x, y)d, (5.14)
Rn—1 R

wherein we have done and integration by parts. (There are no boundary terms
because 1. is compactly supported.) Now

O [Ve(@) f (2, y)] = Outhe(@) - f(2,y) + Ve(2)0 f (2, y)
= 51//(”)]”(% y) + ws(x)aa:f(mvy)

and by the dominated convergence theorem and the given assumptions we have,
as € | 0, that

[ evensen stedoay| < e [ 11 gten)ldady 0

n

Ve ()02 f (2, y) - g(x,y)dxdy — [ 0.f(z,y) - g(x,y)drdy and

RTL Rn
| Ve@)f(@,y) - Qegla y)dedy = [ f(z,9) - Dagla,y)dedy
where C' = sup,¢p ¢/ ()| . Combining the last three equations with Eq. (5.14))
shows
[ ot gpdsdy == [ () Ouglo)dady
RxRm—1 RxRn—1
as desired.

Exercise 5.5 (Gaussian Integration by parts). If h € H and f € P (W*),
then

/ Onf (x) dp (z) = / (2, h) s f (2) dpt ().
w w
This formula actually holds for any f € C' (W) such that f, f, and (-,h) f

are ;. — integrable.

Exercise 5.6. Let f € C? (W) such that f and its first and second derivatives
grow (for example) at most exponentially at infinity. Show that

F (t,x) ::/ f<x+\/fy)du(y)Vt>0anda:EW (5.15)
w
satisfies the heat equation,
O p(tay= L (LF) () (5.16)
g (h2) =3 ,T) . )

Hint: use the fact that u (W \ H) = 0 and the results of Exercise
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Definition 5.9 (Convolutions). The convolution p*v of two probability mea-
sures, i and v on (W, By ) is the probability measure defined by

per@)i= [ L) dae)dv )
WxWwW
for all A € By . The convolution may also be written as;

prv@) = [ va-adu@) = [ wa-pav).

If f: W — C is a bounded (or non-negative) measurable function we define

wr f (a /fx— ) dpt (3).

It is a simple matter to check that u * v is the unique probability measure
on (W, By) such that

/fd(u*V)=/ f (@ + ) dp () dv (3)
w W xW

for all bounded measurable functions f : W — C. We also use below that

[ @smw= [ pe—gdumae = [ sae

where p" (A) := p(—A) for all A € By .

Exercise 5.7. Suppose that y and v are two Gaussian measures on W. Show
w* v is again Gaussian with ¢,.., = ¢, + ¢, and L., = L, + L,. (Hint: you
might use Exercise for the last assertion.)

Definition 5.10 (Dilating p). If (W, Bw, ) is a Gaussian probability space
andt >0 let

e (A) = /W 14 (\/ia:) dp(z) = (t‘l/zA) for all A € By

When py * f is defined we write

e =y f.

It is easily verified that

| s = [ 1 (Vig) ntw
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for all bounded and measurable functions f : W — C. This result then implies
fx = e '/2 g0 that yu; is again a Gaussian measure with qu, = tq,. When
dim W < oo, the change of variables formula shows that

1

br3 HyHHd
(2nt)™ o Y

d (y) = 1m (y)

where this last equation is short hand for

1
e (A) = / )™ —e 2t”y”de for all A € By.
AnH

Exercise 5.8. Let (W, By, 1) be a Gaussian probability space and {u;},-, be
as in Definition [5.10} Show ju * jus = fir4s for all s,¢ > 0. In particular conclude
that p* pu = ps.

Remark 5.11. All of the above results reflect the fact that

m/2
1
o (2) = (> o Nzl

2nt
is the fundamental solution to the heat equation (5.16) on H C W.
Example 5.12. Let W = R? and
_1g2
2

e
V2T
and f € L'* (ug). Then H = R x {0},

du (z,y) = dx 6o (dy)

1.2
—2tT

e
d:U/t (.’I,‘,y) = \/%

dx 6o (dy)

and

s P ad) = [ 1 (@) + o) Sdobo ()
- [ 1@+ @) s

,;zz
2t
x4+ a,b) ———
/f 27rt
1

b a)zd
/f “ V2t v

By assumption we have
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oo>/fxy dxdody /fxO :/;Hda:

and so there is no control of f (z,y) for y not equal to zero. (Notice that f =g
v ® 0 — a.e. iff f(-,0) = g(-,0) v — a.e.) Hence it is clear that we can only
expect py * f (a,b) to make sense for b = 0. It his case it follows that for a € C

we have ) )
efﬁ(xfa)

(e % 1) (a,0) = /R F0)

which is analytic in a.






6

The Gaussian Basics 11

Most of the finite dimensional statements above hold in infinite dimensions
with a few exceptions. The most notable exception is that the Cameron-Martin
space, H,, in Theorem has measure zero whenever dim H,, = oo. In what
follows we frequently make use of the fact that

Cp = / ||| dp (z) < oo for all 1 < p < oo (6.1)
w

which certainly holds in light of Fernique’s Theorem (Also see Skorohod’s
inequality,

/ e/\HﬂC”wdu (z) < oo for all A < oo; (6.2)
w

see for example [24] Theorem 3.2].)

6.1 Gaussian Structures

The next theorem forms the natural extension of Lemma [£.2] and Theorem [4.6]
to the infinite dimensional setting. This material is well known and may be
(mostly) found in the books [24] and [4]. In particular, the following theorem is
based in part on |4, Lemma 2.4.1 on p. 59] and [4, Theorem 3.9.6 on p. 138].

Theorem 6.1. Let W be a real separable Banach space and (W, Bw, ) be a
Gaussian measure space as in Definition Forxz e W let

e, = sup DL
2T S Vet

and define the Cameron-Martin subspace, H = H,, C W, by

(with 0/0 := 0) (6.3)

H={heW:|h|y <oo}. (6.4)
Then;
1. (H, ||| z) ts a normed space such that
Pl < vV C2||h|ly  for all h € H, (6.5)
where Cy is as in .

2. For f € Re L? (), let

3§ = Juf =hyi= [ 2 5(@) dute) € W. (6.6)

w

where the integral is to be interpreted as a Bochner integmlﬂ Then Jf € H
and J : Re L? (n) — H is a contraction.

3. Now suppose that K is the closure of W* in Re L?(u1). Then Jx := J|x :
K — H 1is an isometry.

4. Moreover, J(K) = H and therefore Jx : K — H is an isometric isomor-
phism of real Banach spaces. Since K is a real Hilbert space it follows that
Il  is a Hilbertian norm on H.

5. H is a separable Hilbert space and

(Ju,h)g = u(h) for allu € W* and h € H. (6.7)

6. The quadratic form q may be computed as

= u(hi)v(h) (6.8)

k=1

where {hy}7°2 | is any orthonormal basis for H.
7. If q is non-degenerate, the Cameron-Martin space, H, is dense in W.

Notice that by Item 1. H < W is continuous and hence so is W* Z—> H* =
H = (-,")u+. Eq. (6.8 asserts that

q= (7)

8. If {hy}rey is any orthonormal basis for H and {Ny};-, are a sequence of
i.i.d. standard normal random variables, then;
a) S =3 po, Niphy converges in W a.s. and in LP (u; W) for all1 <p <
oo. (Also see Theorem [8.6 below.)

xXW**

! Notice that

/ lof @) du(@) < VT 1l < o0
X

so the integrand is indeed Bochner integrable.



28 6 The Gaussian Basics 11
b) Law (S) = p.
¢) Ja =372 a(hg)hy for all o € W*.
d) If f € L? (1) and h € H, then

(Jf R = (£ T h) 1o, - (6.9)

Alternatively stated J* = ng where J* : H — L? (u) is the adjoint of
J. (Incidentally, as we will see later, J*h is the Wiener integral of h in
the Brownian motion setting.)

e) If f € L*(p) then Jf =S 00, (f, I he) hus.

9. Let Wy := HW be the closure of H inside of W. Then Wy is again a
separable Banach space and p(Wo) = 1. If we let po = plpy, then
(Wo, Bw,, tt0) is a non-degenerate Gaussian measure space. Moreover,
q (u,v) = qo (ulwy, vlw,) for all u,v € W* where qo = g, i.e.

qo (u,v) := /W w(z)v(z)dpo ().

Proof. See Theorem in [6]. We will prove each item in turn.

1. Using Eq. (3.3]) we find

lu (h)|
Hh”W = sup
wew=\{0} ||/l

u(h
< swp O,
uew=\{0} \/q (u,u) /Cy

and hence if ||h||; = 0 then [|A]|;;, = 0 and so h = 0. If h,k € H, then for
allu e W7, Ju(h)| < |[hllg v/q(u) and |u(k)] <[]l /q(u) so that
lu(h + k)| < u(h)] + [u(B)] < (17l g + [[Fll7) V().

This shows h +k € H and ||h+ k|| < ||k 4 + ||E|l; - Similarly, if A € R
and h € H, then Ah € H and ||Ah||; = || ||k|| 4 - Therefore H is a subspace
of W and (H, ||-|| ;) is a normed space.

2. For f € ReL?(p) and u € W*

wf) = [ar@dua) | = [u@ @@ = @ 1)y, (610

\i4 w

and hence

u (O < Null g2y 11l 22y = Va@) [1£1 2

which shows that Jf € H and ||Jf]|; < ||fHL2(M) }
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3. Let f € K and choose u,, € W* such that L?(u) — lim,, o0 %, = f. Then

macro:

Jun@F @)@ g2

w

lim Ln (/)] = lim

= [1fll 220

||unHL2(M) a HfHL?(u)

from which it follows ||J f||; = || f]| x - So we have shown that J : K — H
is an isometry.

We now wish to show that Jx := J|x : K — H is surjective, i.e. given
h € H we are looking for an f € K such that

h=tf= [ 2f @ duo).
w
This will be the case iff

h(u) :==u(h)=u(Jf) = /Wu(x)f(:n) dp (z) = (u, ) for all u e W*.

In order to see that this equation has a solution f, notice that

ﬁ(ﬂ)‘ = [u(h)] < V) 17l g = lull L2y 121l = llullg 121l

for all w € W* which is dense in K. Therefore h extends continuously to K
and so by the Riesz representation theorem for Hilbert spaces, there exists
an f € K such that h (u) = (u, f) for allu e W* C K.

H is a separable since it is unitarily equivalent to K C L*(W, B, u) and
L?(W, B, 1) is separable. Suppose that u € W*, f € K and h = Jf € H.
Then

(Ju,h)H = (J’U,7Jf)H = (U,f)K

- /W u(x) f(z)du(z) = u ( /W f (m)du(w)>
=u(Jf) = u(h).

Let {h;};=, be an orthonormal basis for H, then for u,v € W*,

oo

q(u,v) = (u,v)k = (Ju, Jv)g = Y _(Ju, hi) g (hi, Jv) g
=1

= Zu(hi)v(hz’)

wherein the last equality we have again used Eq. (6.7)).
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7. If u € W* such that u|g = 0, then by Eq. it follows that g (u,u) =0
and since ¢ is an inner product we must have v = 0. Alternatively this last
assertion follows from Eq. (6.7));

q(u,u) = (Ju, Ju)g = u(Ju) = 0.

It now follows as a consequence of the Hahn—Banach theorem that H must
be a dense subspace of W.

a) I will omit the proof of 8a. which relies on basic Martingale theory for
Gaussian measures on Banach spaces which may be found in [6, Part
VIII] and [29).

b) As simple computation shows that

E {eia(s)} = exp (; i o (hk)2> = exp <;q (a, a)>

k=1

which is enough to show Law (S) = p.
¢) Making use of 8b. we have

Ja=E[a(5)S] = lim E [a (ZN: Nkhk> ZN: Nlhl]

-, > BN ()= 30

k,l=1 =

d) For o € W* and f € L? (1) we have
(JfJa)y =a(Jf)=(fa)p2, -

By continuity it then follows that (Jf,Jg)r2(,) = (f,9)12(,) for all
g € K. Taking g = J;(Ih then implies Eq. .
e) For f € L? (1) we have

oo

Z f, J* hk Lz(u) hy, = Z (fv 1hk)L2(u) hi
k=1

k=1

Tf=> (Jf )y
k=1
wherein we have used Eq. for the last equality.

8. As S in part 8a takes values in Wy a.s., it follows that y = Law (5) is
concentrated on Wy. The remaining assertions are all easy and will be left
to the reader.
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6.1 Gaussian Structures 29

Exercise 6.1. Suppose that (W, By, 1) and (V, By, v) are two Gaussian mea-
sure spaces. Show;

1. (W x V,Bwxv,u X V) is a Gaussian measure space.

2. quxv (V) = qu (¥ (-,0)) + g (¢ (0,-)) for all p € (W x V)™
3. H,x, = H,, x H, as Hilbert spaces.

Exercise 6.2. Let ¢ > 0 and D; : W — W be the dilation operator given by
Dy () = vtz and let 1y := poD; . In more detail we have p1; (A) := p (t71/2A)
for all A € By and

/Wfdut:/ (Vir) du (x

for all bounded measurable functions on W. Let T} f := f o Dy and J; := J,,
with J = J;. Show;

/ foDydu(x (6.11)

1. ||:L"qu =t ”IH?It for all x € W and hence H,,, = H,, as sets with (h,k)HH =
t(h,k)HM for all h,k € Hy,.

2. Ty : LP (uy) — LP (p) is isometric isomorphism of Banach spaces for all
1 <p<oo.

3. Jt = Dt|HJTt on L2 (’UJt) .

4. J* =Ty J! Dy, ie. for h € H and z € W we have

\% (Jih) (\/%:U) (1 — a.e. x).

5. f « € W* and h = Jia € H show that Jh and J*h have a unique
continuous version and for these versions we have Jh = %J *h.

(J7h) (z) =

Hint: if you get stuck this exercise is mostly a special case of Proposition

below.

Remark 6.2. By Lemma [3.9] and Exercise [3.2] it follows that each f € K is a
mean zero Gaussian random variable. As K is a subspace it follow that K C
L? (1) consists of jointly Gaussian random variables.

Proposition 6.3 (Pushing forward (may omit)). Suppose that (W, By, 1)
is a Gaussian probability space and let T : W — Wy be a bounded lin-
ear transformation to a separable Banach space Wy. Let py := Tep and for

2
fo € Ko := W(;*L (ko) let

— 12
Jofo == fo (o) zodpo (w0) fo € Ko := W o),
Wo

Then;
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30 6 The Gaussian Basics 11

1. po is a Gaussian measure on (Wy, Bw,) with qo (o) = q (g o T),
2. Hy=T(H),

3. TJTY™ = Jy and T|5;J = JoT™,

4. TT5 = Idg,, and

5. Tlxu(r| )+ * Nul (T|g)*" — Hy is unitary.

Proof. Let oy € Wy, then
fio () = / @) (Top) (z0) = / Ty = e~aleeT)/2
Wo w

which shows that pg is a Gaussian measure with g = go T%. Given x € W we

have ) )
2 |lao (Tz)| lag o T ()| 2
|72, = sup = sup = < llall%,

apeWyg 4o (@) ageWy 4 (goT)

which shows that T'(H) C Hyp and T'|i : H — Hy is a contraction.
Now suppose that ag € W, then

TJ[aooT}:T/

aOOT(x)xdu(x):/ apoT (x)Tx du(x)
w

W
= / o (y)y dpo (y) = Joa.
Wo

By a simple limiting argument it now follows that TJT* = Jy and from this
identity we learn that

Hy = JoKy = TJTHKO CTJK=TH

from which we may now conclude that Hy =T (H).
Let us simply write T* for T|};. Then for a € W and 8 € W* we have

(T*Joar, JB) g = (Joo, TIB) y, = (a0 T) (JB) = (J (a0 T),JB)

from which it follows that T*Jy = JT*. Using this identity and item 2. we
learn that TT*Jy = TJT" = Jy which implies TT* = Idp,.
The last identity implies that 7™ is an isometry since

(T*ho, T*ko) gy = (ho, TT" ko) gy, = (ho, Idszoko) g, = (hos ko) g, -

Since T* is an isometry Ran (T*) is closed and hence Ran (T*) = Nul (T)" . It
now follows that

Tlnry: = (T%) " Nul(T)* = Ran (T*) — Hy

is also an isometry and therefore T|Nu1(T‘H)L : Nul (T|H)L — Hy is unitary.
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Better way: Let {h,} _, C Nul (T|x)" C H be an orthonormal basis

for Nul (T|g)" and {kn} 2, be an orthonormal basis for Nul(T|g). It then
follows that Law (302 | Npyhy + >0y NI ky,) = p where {N,,, N}, } | are i.i.d.
standard normal random variables and the sums are convergent in W. Therefore

po = Tyt = Law (T <i Nphy, + i Nﬂ%))
n=1 n=1
= Law (i NnThn>

n=1

where the latter sum is convergent in Wy. Thus if ap € W then ag 4
oo Noag (Thy,) (ap distributed by po = Tipe) and hence is Gaussian. More-
over it follows that

2 00

= Z [0‘0 (Thn)]2 .

n=1

q0 (Olo) =E

i Nynag (Thy,)
n=1

Asthe {Th,},7 | are linearly independent, it follows that Hy is the Hilbert space
with {Th,,} ~, being an orthonormal basis for Hy. Notice that if {a,} C ¢2,
then > | ayh, converges in H and hence in W and therefore

n=1 n=1

showing the latter sum is convergent in Wj. Thus we have show that Hy =

T (Nul (T|H)L) = TH and that Tlyy s : Nul(T]s)" = Ho is a unitary
map. [

6.2 Cameron-Martin Theorem

Lemma 6.4. Let (W, B, i) be a non-degenerate (for simplicity) Gaussian mea-
sure space . Then there exists {uy}re; C W* C K which is an orthonormal
basis for K and satisfies

oo
(7 = luk (2)[* for all z € W. (6.12)
k=1
In particular,
H:=H, = {OCEWIZM (x)2<oo} € Bw. (6.13)
k=1

Moreover, if dim W = oo then u (H) = 0.
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Proof. If {uy},-, C W* is any orthonormal basis for K, then for any
xr € H C W we will have

lzlF = (@ Jur)gy = Y lux (). (6.14)
k=1 k=1

To get this identity to hold for all € W we will choose the {u},.; more
carefully. To this first choose {a,} -, C W* such that ||z|,, = sup,, |an ()]
for all z € W as mentioned in the proof of Theorem [2.2] Now from the {u},-
by applying the Graham-Schmidt process to the {an} CW*C K CL?(p).
I claim the resulting sequence {uy},-, is complete and hence an orthonormal
basis for K. To see this suppose that f € K is perpendicular to {uk}zo:l , then

0= (fiur)p = (Jf, Jup) g = u (Jf) for all k. (6.15)

Now for each n € N we know that («,,uxr) = 0 for all k¥ > n so that a,, =
>or_y (an,ug) uy as elements of K which implies

Q<an_2(anauk) ) =

k=1

2
= 0.

L2 ()

n
Qp — § ana uk
k=1

Because ¢ is non-degenerate we may now conclude that «,, = 22:1 (un, ug) ug,
as element of W*. So we may now conclude from this remark and Eq.
that ay, (Jf) = 0 for all n and therefore ||Jf|;, = sup, |a, (Jf)| = 0. Having
shown Jf = 0 also shows f =0 (J : K — H is isometric) which proves the
assertion that {uy}y- , is complete. We now fix this choice for {u} for the rest
of the proof.

If + € W satisfies Y o, |uk (z)? < oo we may define h =
Sore uk(x) Jur, € H. The sum converges in H and hence also in W
and therefore for all m € N,

h)zZuk( U (Jug) = Zuk (Jug, Jum) g = U ().

Since ug (x — h) = 0 for all & it follows from the argument above that z = h € H.
Thus we have shown Y oo |uy (z)]> < oo implies & € H which combined with

Eq. (6.14) shows that 377, |uy, (z)]* < 0o iff z € H. As Eq. (6.12) holds on H

and both ||x||§{ =oc and > oo |uk (z)]* = oo for # ¢ H we can conclude that
Eq. holds for all z € W.

Since {ug}re; C W* is an orthonormal basis for K, the {ux},., are i.i.d.
standard normal random variables. Therefore by an application of the strong
law of large numbers,
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6.2 Cameron-Martin Theorem 31
1
lim *Z\Ul@ @) =Elu’=1 (u-ae z). (6.16)

On the other hand if z € H, then lim, o = >0 [ug (z)]> = 0 and so p (H) =
0.
[

Theorem 6.5 (Cameron-Martin). Let (H,W,p) be a Gaussian measure
space as above and for h € W let up(A) = u(A —h) for all A € Bw. Then
un < wiff h € H and if h € H then

dpp . 1

B exp (- gl
Moreover if h € W\ H (i.e. |h||; = o0), then up L p. (Since J* = Jit, if
h = Ja, then J*h = a where o (k) = (Ja, k) y = (h, k) for all k € H. For this
reason it is often customary to abuse notation and write J*h = (h,-) .)

Proof. I will only prove here that puj < p when h € H. See, for example, |6l
Proposition ??] for a proof of the orthogonality assertions.
We must show

/ Fz + h)du(z) = / e =z I £ () dp(x)
w

W
for all f € (Bw), . It suffices to show that
/W P+ gy () = /eiv’(x>eJ*h—%llhl‘%du(a:) (6.17)

for all p € W*.
We will start by verifying Eq. (6.17) when h = Jy € JW* for some ¢ € W*.
For h of this form J*h =1 a.s. and

p(h) =@ (JY) = (Jo, J)g = q(,¥) .
Therefore the left side of Eq. (6.17)) is given by

eie(h) o=3a(e.0) _ gialeh)—5a(e.9)
while the right side by;

/ewm T h= 0% gy () = / ¢i9(®) (@)= 3a08) g1y ()
w
w

1 1
— efﬁq(wvw) exp (2 /W (w + Z¢)2 d/J:)

— o 39(p0)tiale )+ 5a(¥,) — 5a(P,))

— cia(p ) —3a(e.p)
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32 6 The Gaussian Basics 11

For general h € H we may choose ¢,, € W* so that h, := Ji, = hin H
or equivalently so that 1, — J*h in K C L? (). It then follows from Lemma
m that e¥» — e’/ " in L? (1) . Using this remark, it is easy to pass to the limit
in Eq. with h replaced by h,, in order to show Eq. holds for all

heH. u
Remark 6.6. Despite the fact that p (H) = 0 and infinite dimensional Lebesgue
measure does not exists and that Z below should be (27T)d1m a2 00, one

should still morally think that u is the measure given by

1 1
“due) = 111 (2) g oxo (el ) P

The Cameron-Martin theorem is easy to understand with this heuristic; namely
by making the formal change of variables, x — x — h we “find,”

dnn ()= g e (3 e =1y ) Do = 1)

N|= N~

L2 1.0
exp (= ol = 3 Il + (2.0) ) P

—exp ((hv o) = bl ) (o).

We have use the formal translation invariance of Dz in the second line.

See L. Gross [15] for a historical perspective and a nice analogy between
Gaussian measures and Lebesgue measure on R where QQ plays the role of H.

Exercise 6.3. Let (W, By, i) be a non-degenerate Gaussian probability space.
Show that p (B (z,g)) > 0 for all z € W and € > 0 where B (z,¢) is the open
ball in W of radius € centered at x.

Theorem 6.7 (Integration by Parts). Let h € H and f € FC® (W*) such
that f and O f does not grow too fast at infinity. Then

/W Onfdu = /W J*h - fdp.

First Proof.. Assuming enough regularity on f to justify the interchange
of the derivatives involved with the integral we have, using the Cameron-Martin
theorem, that

d d
/W On fdyi = /W Slof o+ th)dp (2) = o /W f (e + th) du (2)

d t2
= lo [ gexp (ern =S nl ) du= [ 5orhduto).
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It is not really necessary in this proof that f be a cylinder function. [

Second Proof.. By replacing W by Wy = H" if necessary we may assume
that (W, By, 1) is a non-degenerate Gaussian probability space. Given a cylin-
der function f = F (ay,. .., q,) we may assume (if not apply Gram—Schmidt to
the {ay}y_,) that the {a;};_, form an orthonormal subset of (W*,q) . Extend
this set to an orthonormal basis, {ay },—, , for K. Then for any N > n, by finite
dimensional integration by parts,

/W O fd — /W S (DF) (an, - an) o (h) dp

k=1

n 1 n/2 L
= Zak (h) DyF (ay,...,an) <> e~ zlalen gq
R™ 27
k=1
n 1 n/2 L
= Zak (h)/ apF (ay,...,a,) () e zlalkn gq
n 2
k=1
:Zak(h)/ ap - F(ag,...,an)du

N
= (h)/ - Fay,... o) du (6.18)
wherein we have used

/ak~F(a1,...,an)du:/ ozkd,u~/ F(oa1,...,an)dp=0forall k >n
w w w

because oy, is independent of {1, ..., ay}. Since
N 00
]\}iinoo;ak (h) Jay, = ]; (Ja, h) y Jog = h

it follows from Theorem that
N
> ag (h)ag = Jth = J*h in L ().
k=1

Thus letting N — oo in Eq. (6.18) completes the second proof.

6.3 The Heat Interpretation

The heat interpretation of a Gaussian measure remains essentially unchanged
when going to the infinite dimensional setting. In fact, when acting on cylinder
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functions the results really come back to the finite dimensional — see the second
proof of integration by parts in Theorem

Exercise 6.4 (Compare with Exercise [5.6)). Let (W, By, 1) be a Gaussian
probability space (dim W = oo permissible). Suppose f € FC? (W*) such that
f and its first and second derivatives grow (for example) at most exponentially
at infinity. Show that

F (t,x):= /Wf<x+\/fy) du(y) Ve>0and x € W. (6.19)

satisfies the heat equation,

0 1

5 (LF) (t,z). (6.20)






7

Gaussian Process as Gaussian Measures

In this chapter let {Y;},,., be a mean zero Gaussian random process
having continuous sample paths. As in Example[2.3] let W := C ([0,7],R) and
u = Law (Y") be the associated Gaussian measure on (W, By) . Recall that we
have also defined «; € W* to be the evaluation map ay (x) = x (¢) for allz € W
and 0 < t < T. Our immediate goal in this chapter is to better understand
(W, Bw, i) . In particular we want to describe the associate Cameron-Martin
spaces for such process. Of course the case where {Y;} is a Brownian motion
holds special interest for us.

7.1 Reproducing Kernel Hilbert Spaces

In what follows (as in Lemma let
A={0=tg<tr < - <t, =T}

and w4 : W — W be the projection map defined by w4z = y where y = z on A
and y” (t) = 0 for t ¢ A. (So w4 () is a piecewise linear approximation to z.)
Further let

Hy:=ma,(W)={heH=H,:h'(t)=0ift ¢ A}.

Lemma 7.1. To each n € N let A, := {%T 0<k < n} and let ™, = Ty,
W — W be as above. Then;

1.mp (x) > 2 in W as n — oo for each x € W.
2. If a € W*, then o, := aom, converges to a as n — 0o both pointwise on
W and in L? () .

12
3. IfK := W*L (”), then span {ay : 0 <t < T} is a dense subspace of K.
Proof. We prove each item in turn.

1. The convergence is a simple consequence of the fact that every x € W is
uniformly continuous.

2. The pointwise convergence follows directly from item 1. The L? (i) — con-
vergence may be deduced from Lemma or using the DCT along with
the uniform estimate;

| (2)] < el lImn (@)l < lelly- 2]l -
Notice that |||, € L? () by Fernique’s theorem.

3. Because 7, (x) is completely determined by the values of z on A, it follows
that a,, = a0, is a linear combination of {a;},., . Thus it follows that
every a € W* is in the L? (1) — closure of span {o } ., which suffices to
prove item 3. T

Theorem 7.2 (The Cameron-Martin Space for Y). Let K =

L*(P)
{span {Yt}OSth} Then the Cameron-Martin space H, associate to

w is given by {hZ A= K’} where forZ € K;
hZ(t)zlE[Y}Z] for0<t<T.
Moreover if Z1,7, € K, then
(hzohz) g, =E |2 2]

72

Proof. Letting K := W*L (&) we know from Theorem [6.1] that H, =

Ju (K) = J, (L*(p)) . For Z € K we can find a Z € K such that Z=7ZoY.
Therefore

hy () =EWZoY] = [ (@) Z (@) dn (@) = 1 (7,2)

and hence h; = J,Z € H,. Similarly if 21,22 € K there exists Z1,725 € K
such that Z = Z;0Y and we have

(hzl’hZ2)H = (JuZ1 uZa)y, = / [Z1Z5]dp = E [21 : Zz] .
H I w

]

By Lemma [3.9| we know that [0, T] >t — Y, € L?(P) is continuous. Since
L*(P) x L*(P) 3 (f,9) — (f:9)12(py € R is a continuous function it follows
directly that h; (t) = E [YtZ} is a continuous function of ¢. Of course this is a

consequence of the general theory as well.
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Definition 7.3 (Reproducing Kernel). Let G = Gy : [0,T]> — R be the
reproducing kernel associate to Y define by

G (s,t):=E[Y:Y:] = / x(s)x (t)du(x).
w
Proposition 7.4. The reproducing kernel satisfies;
1. (Continuity.) G : [0,T]* — R is continuous and G (t,-) € H, for all 0 <
t<T.
2. (Reproducing property.) (G (t,-), h)HH =h(t) forallh € H, andt € [0,T].
3. (Pointwise bounds.) If h € Hy, and 0 < t < T, then |h(t)] < /G (t,1) -
17l g, - In particular,

< .
By < [ G (60)- 1],

Moreover these bounds are sharp.
4. (Totality.) {G(t,"):0<t<T} is a total subset of H,, i.e.
span{G (t,-) : 0 <t < T} is dense in H,.

Proof. The continuity of G follows from the comments before Definition [7.3]
and moreover G (t,-) = hy, € H,. If h = h; € H,, we will have,

(G(tv')vh)H“:(h‘YuhZ)H‘ _E[Yt }_h ()

which proves the reproducing property. By the Cauchy—Schwarz inequality and
the reproducing property,

BOP=]G )0 |
<G (& )13, I,
= (G(t,),G(t))y, [Bl3, =G 1) b, -

If we choose a ty € [0,T] such that G (t,t9) = maxo<i<7 G (t,t) and let h =
G (to,"), then Hh||H, = /G (to,tp) and

b (t0) = G (0 to) = (s, VG0 ) -l

which show that the given bounds are sharp.

The fact that {G (¢,-) : 0 <t <T} is a total in H, follows from the fact
that {V; : 0 <t < T} is total in K. Alternatively, if h € H,, is perpendicular to
{G(t,"):0<t<T} then 0 = (h,G (¢, ), = h(t) for all ¢ which shows that
h must be zero. ]

Much of what we have just proved for G holds more generally as you are
asked to show in the next exercise.
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Exercise 7.1 (Reproducing Kernel Hilbert Spaces). Let H be a subspace
of W:= C([0,T],R) (can replace [0,T] by a more general topological space if
you wish) which is equipped with a Hilbertian norm, [-||; , such that ||k, <
C' ||kl for all h € H. Then;

1. for each t € [0,T] there exists G (t,-) € H such that h(t) = (G (t,"),h)y
for all h € H. Moreover G (t,s) = (G(t,-),G (s,-)) showing that G is a
symmetric function of (s,t).

. The map [0,T] >t — G (¢,-) € H is continuous.

. (s,t) = G (s,t) is continuous.

AG(t,-) :0<t¢<T} is total in H.

. H is necessarily a separable Hilbert space.

JIf {h,},2, is any orthonormal basis for H and 0 < s,¢ < T, then

> b (s) hn () = G (5,1)

where the sum is absolutely convergent.
7. Each h € H satisfies the continuity estimate,

A (t) = h(s)| < bl - VG (t:8) + G (s,5) = 2G (s, 1).

O U i W N

As a check on computation so far recall that C([0,T] — R)" is isomorphic
to the space of signed measures on [0, 7] under the identification;

a(m):/o x (t) da (t)

when « is a signed measure on [0,7]. So if @ and 3 are two singed measures,

then
/TY¢A>Aan<ﬂ

// Y,Y;] da (s) dB (¢

On the other hand,

qu (o, B) =

//Gstda s)dg (t)

/ / (s,t)da(s)dpB(t :/ / hy () da(s)dp (t)
n=1
[e%s} T
=;/ @Ammw@
=D al
n=1
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where I leave it to you to justify the interchanges of sum and integrals used
above. The last two displayed equations are consistent with Eq. , i.e. that

qu (a, ﬁ) = ZZ; a (hn) B (hn) .
Example 7.5 (The Classical Cameron — Martin Space). Let

W ={z € C([0,T] = R) : (0) = 0}

and let H denote the set of functions h € W which are absolutely continuous
and satisty (h,h) fo |h/(s)|?ds < oo. The space H is called the Cameron-
Martin space and is a Hilbert space when equipped with the inner product

T
(h, k) = / B (s)k'(s)ds for all h,k € H.
0
By the fundamental theorem of calculus we have for h € H that
¢ T
h(t) = / h' (o) do = / lo<ih' (0)do = (G (t,-),h) g
0 0

provided we define

G(t,s) = / lo<¢do = min (s,t). (7.1)

0

The function in Eq. (7.1)) is the reproducing kernel for H. Consequently we may

conclude that
min (s, t) Z B (

for any orthonormal basis {h,}22; of H and we have the “Sobolev
for h € H;

)

inequality

h(t) = b (s)| = [Pl Vs +t =2s At = [[h]l g V]t =5

for all 0 < s,t < T. Of course we could also prove this inequality directly;

/:h’(T)dT
< \//:|h’(7')|2d7'~\//:12dT§ Al VE—s

[h(t) = h(s)] =

forall0<s<t<T.
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7.2 The Example of Brownian Motion 37
7.2 The Example of Brownian Motion
Theorem 7.6 (Brownian Motion). Let W = {z € C([0,7] — R) : (0) = 0},

{Bt}g<i<p be a Brownian motion, and let p := Law (B.) as a measure on
(W, Bw ). Then H,, is the classical Cameron-Martin space described in Example

7.3
Proof. The reproducing kernel for H, is
G (s,t) =E[BsBy] = s A t.

which is also that reproducing kernel of H described in Example As G (t,-)
is a total subset of both H,, and H and the inner products of G (¢, -) and G (s, -)
is G (s,t) when computed in either Hilbert space it follows that H = H,, as
Hilbert spaces. [

Remark 7.7. If we did not know about H ahead of time how might of we deter-
mined H,, explicitly? Here is one method. By the general theory we know that
{G(t,-): 0 <t <T}is a total subset of H,. If h =" | ;G (t;,-) then

Rl%, = > A (G (ti,), G = > ANG (i ty).
ij=1 ij=1
But
T
G(s,t)=sNt= / lo<s - lo<ido
0

and so it follows that

IhHH Z i\ / lo<t, - lo<t do

1,7=1

/ Z Aidjlo<t; + lo<t,do

i,j=1
T| n T 9
:/ S Mlo<, do:/ W ()2 dor
0 =1 B 0

I now want to convince you that it is reasonable to heuristically view Wiener
measure = Law (B) as

macro: svmonob.cls date/time: 21-Jul-2010/21:42



38 7 Gaussian Process as Gaussian Measures

where Dz is the non-existent Lebesgue measure on H = H,, and Z is an ill- Theorem 7.10. If « € W* then

defined a normalizing constant.
If B is a Brownian motion and f(x) = F (x|4), then with yo = 0 and
Aj = tj — tj—l we have

n

Ef(B]= [ Flyn--un Hpt] —ty (Yj-1,95) dy;

we have

1

=— | F,...,un)exp | == — (vi —vi—1)? | dus ... dys,.
Zi .. (Y1s---»Yn) XD Q;Aj(yg yi—1)? | dyr ... dy

Letting T = Ty : R* 5 H, be defined by T} (y) =z iff x € Hy and z (t;) = y;
for all 7 we see that

SISy £ VR AN LN
;X](yy Yj—1) —;( A, )AJ_/O| (s)|” ds.

Therefore we may conclude that

T
E[f(B)] = ZLA . f () exp (—;/0 |2/ (s)|2ds> dm ()

where ma (dy) = Ty (dy; - . . dy,) is a Lebesgue measure on H,.
Corollary 7.8. For all bounded measurable functions, f : W — R, we have

1
ZA HA

T
el = / o’ (s)] ds.

Corollary 7.9. If f : W — R is a bounded continuous function on W then

B (ra (B) = - [ @exp (= el ) dma ).

where

f(:n)exp (; x||§{) dmy (z) =E[f (B)].

lim —
\A\Igo ZA

Proof. This follows directly from Corollary([7.8land the DCT as 74 (B) — B
as |4] — 0. n

Exercise 7.2 (Projection Lemma). Show 7|g is an orthogonal projection
onto Hy and that Hi = {k € H : k|, = 0}.
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- E [em(B)}

E {emw)} — o 3llal3

Proof. By Corollary along with the projection lemma of Exercise

T o ia(x) - 2 d
‘ l\mo /A e exp < 5 llzl% | dma ()

=1l **1 || || = **1 || H2
1m ex o OT ex Q * .
A= p Al > p 9 H

date/time:
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Path Integral Quantization (A word from a sponsor)

Let V : RNV — R is a smooth potential such that V(x) — oo as |z| — oo
with associated classical equations of motion,

i(t) = —grad V (z (t)) with z (t) € RV,

The corresponding quantum mechanical Hamiltonian is
1
Hy := —§A + V acting on L? (RNJn) .

Let
Mo =info (Hp), and  Hy2o = Aol
to be the lowest eigenvalue and corresponding ground state (£2y) for Hy.
Lemma 8.1. If ) € L? (RY) , then e=*Ho=20)yy — (4, 024) 2y as t T 0.
Proof. Use the spectral theorem. [

Notation 8.2 Now let v be the “measure” on C (R, RN) given informally by

du(x) = %exp (— /]R E(&(t),x(t) dt) Dz (8.1)
where 1
E(&(t),2(t) = 5l& O +V (x(2)

is the classical energy os the classical system. Here Z is a normalization constant
so that p is a probability measure.

Theorem 8.3 (Heuristic). For nice f and g on RY,
[ 1) g ®)dn@) = (.Qu) 0
C(R,RN)

where
d\ = D3dm and Q; := M_re™" =) Mg

,t(HO,

Note that Q, acting on L? (Rd, )\) is unitarily equivalent to e AoD) geting

on L? (Rd, dm) .

Proof. Let ¢, > 0 be nice functions on R? - say ¢,v € L> N L' and let
{Bt}_s<;<p be a Brownian motion on with initial distribution ¢. Then using
the Feynman-Kac formula for Brownian motion,

1 o= Iy B0t p N o i )
Z/(;([_TIHRN) f((0) gz ()¢ (2 (=T))¢ (x(T))D

1 [T
“«__» ?]Etp |:€ ffT V(B(t))dtf (BO) g (Bt) © (BfT) w (BT):|
(o, PrMyP My Pr ), (Pg% MfPtOMgP%—tw)m

(0. Porb),,, B (0, POab),.
— (20, fP; (90)),, = (f,Qu9), -

Note that the boundary conditions wash out — there are no phase transitions
in one dimension. [ |

The moral of this theorem is that from knowledge of classical quantities
only we can recover the ground state by

[ e = [ 1@ 9@
C(R,RN) RN
and the renormalized Hamiltonian, H — \g, via

d
10 L, T O 9 0) () = (720, (H = XaD) (20),-

8.1 Hints at Quantum Field Theoretic Complications

Ezample 8.4 (Klein-Gordon equation). The classical non-linear Klein-Gordon
equation is;
Qi+ (—Aa+m*)p+1' (p) =0 (8.2)

where ¢ : R x R? — R. We now view (8.2) as an ordinary differential equation
for ¢(t) € ReL?(R?, dr) satisfying

G(t) + (=A+m?)p(t) + v () =0 (8.3)
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or equivalently
¢(t) = —gradV (p(1))
where

Vo= [ 3o @l + 2ot )+ v )]

Here one typically thinks of v as being an even polynomial like v () = Ap?

with A > 0.
The path integral quantization method leads us to consider,

) = gexp (= [ at 5160 Ban +V (0 0)] ) Do

= exp <_ /RM [; Ve ()] + m;@(y)Q +v(p (y))} dy) Dy

where y = (t,2) € R¥!. We want to consider what happens when we try to
makes sense out of this expression as measure. One way to do this is to let

dpro () = %eXp (— /Rdﬂ [; Vo (y)|* + m;w (y)ﬂ dy) Dy (8.4)

and then try to write

ant)=g-ow (= [ vew)an) dun o). (85)

The problem with this strategy is that unless d = 0 (the case of quantum
mechanics) the measure 1 has to be realized on some space of distributions for
which ¢ (y) is not defined and certainly not v (¢ (v)) . See Glimm and Jaffe for
a whole book on this subject. Here are a few more details to help spark your
interest.

We are now going to explore what happens when we try to make sense out
of Gaussian measures which are given informally as;

() =g (5 [ [[Te@l +me@? + o @) ) D

(For notational simplicity I have now replaced d + 1 by d so please remember
that d is the dimension of space x time.) This is a prototypical expression which
occurs in the physics literature on quantum field theory.

Theorem 8.5. Suppose (W, (-,-)y,) is a Hilbert space and p is a Gaussian mea-
sure on (W,Bw). Let H = H,, C W be the Cameron-Martin space associated
to p so that
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fi(p) = emzelmelmm v e W, (8.6)
Then the inclusion map, i : H — W, is Hilbert Schmidt (H.S.). In fact,

lillrs o= > Ihllfy = / ][5 dp(z) < oo
k w

where {hy}r—, is any orthonormal basis for H.

Proof. Let {¢;}52, C W be an orthonormal basis for W and {hx};—, be
an orthonormal basis for H. Then integrating the identity,

oo

2|3y =D (2,)iy for all z € W,
J=1

with respect to p implies,

/ |3y dp = Z / & = 3 (&) (&) ) -
p
Zzhkagj

k=1 j=1

oo

= Z hkagj

k=

2 12
Z 1l = 1l s -

.
=
[

oo
o0

This completes the proof since [, |||} di < oo by Fernique’s Theorem ]

Theorem 8.6. If H and W be Hilbert spaces such that the inclusion map, H i)
W, is a Hilbert-Schmidt, then there exists a Gaussian measure pu on (W, By)
such fi = exp (—3q (a)) where

¢ () = llafallz. = Y Ju(he)]®
k=1

where {hy}re, is any O.N. basis for H.

Proof. Let {hj}72; be an orthonormal basis for H. The assumption that ¢
is Hilbert-Schmidt means that

o0 (o)
2 o2 112
Z [hellw = Z llihklly = il < oo
k=1 k=1

Let {Nj},—, be iid. standard normal random variables on some probability
space, (§2,B, P) and for n € N, let
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Sm =Y Nihy € HCW.
k=1

We then have for n > m that

n 2
Z Nihy,

k=m+1 w

> E[NeN) (hi, ba)y, =
k,l=m+1 k=m+1

E”Sn - SmHI2/V =K

n

Therefore,
L2(P)— lim |Sn = Sml}y =0
m,n—o0

from which one shows that S = lim,, . S,, exists in L? (P) and as in the proof
of Theorem [£.3] we may conclude that

E {emw] — e—3al@)
so that p = Law (5) is the desired Gaussian measure on W. ]

Remark 8.7. Suppose that (W, (-, ")y, , 1) is a Gaussian space with W being a
Hilbert space and H = H,, C W. If {h; };";1 is any orthonormal basis for H and
r1, Ty € W, then

/W (xlvx)W (xQ’x)W d:u (m) = ((.%‘17 ')W (x2’ )W)H* = Z (ml? hj)W (x27 hj)W

j=1

Z 1, Zh .TQ,ihj)W = Z (i*xl, hj)H (i*IQ, h])H
1 j=1

j=
= (I"x1, 0" @) g = (@1, 187 22) y = (21,07 22)yy -

Remark 8.8. Let us recall that the trace of a positive operator, B : H — H is
defined in the usual way as;

[e%S)
E Bek, ek
k=1

The sum is independent of basis since, by the general spectral theorem we may
write B = A% with A > 0 and then

Z (Beg,ex)y = Z (A%er,er) Z Aeg, Ae)y = ”A”HS
k=1 k=1 k=1

Page: 41 job: Cornell

Z Hhk||‘2/v — 0 as m,n — 0.

8.1 Hints at Quantum Field Theoretic Complications 41

so that tr(B) = HAHi[S which we know is basis independent. We say that
B > 0 is trace class if tr (B) < oo. Recall that we have seen that Hilbert-
Schmidt operators are compact and therefore if B > 0 and is trace class then
B = A? where A is Hilbert-Schmidt and hence compact and therefore B is also
compact. As an aside here are some equivalent conditions for a linear operator,
A: H — W to be Hilbert-Schmidt.

Proposition 8.9 (Trace formulas). Suppose that H and W are Hilbert spaces
and A : H — W is a bounded linear operator. Then;

tr(A74) = [| Al 75 = A" |75 = tr(AA7).

Proof. If {e;} is an O.N. basis for H, then

AT s = lAekllfy = (Aex, Aex)y, = Y (A" Aeg, )y = tr (A" A).
k k k

Replacing A by A* above then shows ||A*||?{S = tr (AA*) and we have already
) 2
seen that [|A*|%s = 1Al s - |

Lemma 8.10. If H is a Hilbert space and A : H — H is a positive trace
class operator. We may define (z,y) , := (Az,y) for all x,y € H. Then let W
denote the completion of H in the norm, ||| 4 := \/(-,-) 4. Then the inclusion
map, i : H — W will be Hilbert Schmidt and hence W wzll support a Gaussian
measure with variance determined by H.

Ezample 8.11. Now consider the “measure” dug (¢) of Eq. (8.4). In this setting
one may show that x can not be constructed on L? (Rd) no matter the dimension
dE| In this case H is the Sobolev space

H= {gp € L* (RY): / (|Vg0\2 +m2<p2) dm < oo} .
Rd
Letting i : H — L? (Rd) be the inclusion map we want to compute

.2 . .
il g = tr (i 4°) = tx (i) .

I now claim that i* = (—A + mQ)_1 . Indeed, if u := i*g, then

(f,9) 2= (if,9) ;2 :(f,u)H:/Rd (Vf.Vqumzf.u)d:vaGH,

! When d = 1 it comes close to working but there are problems due to the fact that

R is not compact.
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42 8 Path Integral Quantization (A word from a sponsor)

which, by Elliptic regularity or by the Fourier transform, implies the distribu-
tion, Aw, is an L? — function and

(f:9)12 = (f. (=A+m*)u).

Hence we have (—A + mz) u=gori*g=u= (—A + m2)_1 g as claimed.
Informally, now,

tr(ii*) = /Rd (—A+m2)71 (x, ) dr = co.

because when d > 2, (—A+ m2)_1 (z,x) = oo and or d = 1
(7A+m2)71 (z,2) =c>0for all z € R.

To give a rigorous proof, notice that ¢7* is unitarily equivalent to the the
multiplication operator, (Ic2 + mz) ~! Wwhich has continuous spectrum, it follows
that (—A + m?) ~! is not compact let alone trace class. In general on non-atomic
spaces with no infinite atoms any non-zero multiplication operator is not trace
class. Indeed, suppose M} is the multiplication operator on L? (W, m) and ob-
serve that we may assume f > 0 since M| = M. Then for some £ > 0 we will
have u (f > &) > 0. Since m is non-atomic, we may write {f > €} as a disjoint

o0
union of {4;} where co > m (A,) > 0. Then the functions, { ml(A )lAJ}
g

j=1
forms an orthonormal subset of L? (m) and therefore,

Notation 8.12 Let T? — the d — dimensional torus which we identify with
[0,27]* / «~ where « is the usual identification of the endpoints. We will denote

points in [0,27r]d by 0 and let df denote normalized Haar measure on T?. For
any s € R let and f € C* (']Td) let

1712 2= 32 (Il +m?) [ F )|
nezd
where

fn):= [ f(O)e ™.
’]I‘d

Then let L2 (T%) be the closure (completion) of C* (T?) in the |||, so that
L? (']Td) is the Sobolev space of “functions” with s — derivatives in L? (Td) .
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We will use below that || flly = [|f||2(74) and

113 = [, (195 @3+ m? I ()] a.

Ezample 8.13. Part of the problem above was the non-compactness of R?. To

em-e

avoid this issue, let us replace R¢ by T¢. In this case {} is an
P Y N .

orthonormal basis for H = L? (Td) equipped with the inner product;

(F.9) 130 = / [VFO)- Vg (0)+mPf (8)g(6)] db.

Hence if 7 : L? (Td) — L2 (Td) =172 (Td) is the inclusion map, then

2
in-0

il ‘ !
s =Y |——— =y —
nezt || flInl® +m2| , ., neze [[]|” +m

which is finite iff d = 1. When d = 2 the sum is logarithmically divergent
and it is worse when d = 3. This can also be understood by noting that

(—A+m?) - (0 — ) has the same singularity structure as Example above.

In light of this example we see that we need to take W even bigger than
L? (']Td) and in fact we have to take W to be a space of distributions. This is
at the heart of the infinities arising in Quantum field theory. For example the

expression,
/ v (e (y))dy
]R’H'l

appearing in Eq. does not make sense when ¢ is only a distribution. (For
example of v (¢) = Ag* then we might have to deal with v (5 (y)) = & (y)* where
0 is the delta distribution. As I hope you know 4 (y)4 is very singular.)
However when d = 2 we just miss and need only take W = L2 (’]I‘d) for any
s < 0 as — however only just barely when d = 2. For example for any s € R and

feC>(T?),
S A 2
1AIZ = 3 (Il +m2) | F o)
nez?
Where f(n) := [o, £ (0) e=0d6. So ||flls = | f 7222 I£17 = II£ll; and for
any s < 0, ||f|\§ < ||f||g Let W, denote the completion of C* (T?) in the s

— norm. This is the Sobolev space of s — derivatives in L. For any s < 0, the
inclusion map, ¢ : H = W; — W is Hilbert Schmidt. Indeed, we now have
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Heat smoothing and pointwise bounds

Notation 9.1 (Derivative operators) If f : W — C is a smooth function
near some point v € W and n € N, let D*f : W™ — C be the n'" — order
derivatives of f at x defined by

D;Lf (hh ey hn) = (8h1 e 8hnf) (,CC) ,
where for any h € W we let
(O1) (2) = oS o+ th)

be the directional dem’vativcﬂ of f at x in the “direction” h.

Theorem 9.2 (Heat Kernel Smoothing). Let (W,Bw,u) be a Gaussian
probability space and p € (1,00). Then;

1. For all f € LP (u) and h € H := H,,, f(h+-) € LP~ (u) and

pes @)= [ wandnt) = [ e (s 50l )

is well defined and satisfies the following pointwise bounds;

s £ (W < 1oy €70 M5 for atl b e H. (9.1)

2. The resulting function, pu* f : H — C admits an analytic continuation to
Hc := H+1iH — the complezification of H. In particular px f is real analytic
on H.

3. The derivatives may be computed as;

D (s f) (hay. .. hy) = /H fOh, ... 0n, (h - e[‘]*h*%”h\ﬁz}) dy.

(See [, Corollary 1.9 on p. 507] for a Lie group version of Eq. (9.1)).)

! The term directional derivative is a bit of a misnomer here since the derivative
depends on both the direction and the length of h and not just the direction of A.

Proof. 1. The first technical point here is that an element of L? (1) is an
equivalence class of functions rather than a fixed function so we need to know
that the integral is independent of the choice of function in this equivalence
class. However by the Cameron-Martin theorem we know that p and p (- — h)
have the same null sets so this technical point is OK. Moreover, by the Cameron
Martin theorem we learn that

en = [ rosaant = [ ges (-3l ) g

As exp (J;jh -3 ||h||§{) € L~ (u) it follows by Holder’s inequality that the
latter integral is well defined and hence so is the first. In more detail let ¢ =
p/ (p — 1) be the conjugate exponent to p. Then using J*h LN (O, ||h||i1) and
Holder’s inequality,

= f(R)] < / |f|exp (J#h— B |h||H> dys
w
xp 1 2
<1 fllo HeJ h=3 Il Lo
4 1IAI3 I
e ziH ”f”LF(u) He ’Lq(#)
= ¢zl ||f||LP(u) \q/m
_ o blnl% [V e lIhl%

_1 2 1. 2
— e~ zllhlE ”f”LP(u) ez IhlE

A

1 _ 2 1 2
= Hf||Lp(H)€2”(q Dhlly — 1£1l o ) €370 1211

proving Eq. (9.1)).
We may easily extend the latter expression to Hc by defining

W@ = [ sew (- 3B) du

where if z = h + ik € Hg, Jyz = Jyh +iJjk, and B : He X He — C is
the complex bilinear (not sequilinear) extension of the inner product on H. If
w € He as well and AeéC we have



(/j' % f) (Z + )\U)) :/ f . eJ;z-&-)\J:w—%[B(z,z)+2)\B(z,w)+>\2B(w,w)] du
w

which is a holomorphic function of A by Morera’s and Fubini’s theorem. (See
the proof of Lemma below for more details on this type of argument.)
Hence we have shown p * f has an analytic continuation to Hc.

Moreover, from this expression we learn that we may differentiate p* f (h)
relative to h as many times as we like to find

(Oky -+ Ok f) (h)
1
— [ g0 o e (g 500 )|
w
1
= [ 5o Gt i) - feso (i 5 100 )| e
w

A key point here is that O [h— Jih] = Jrk which is clear be-
cause J;, is a linear map. Moreover by Lemma we may conclude that
Ok (h — exp (J;‘h)) = J,k - exp (J;h) where the derivative holds in all L? for

all 1 <p < . ]

Exercise 9.1. The pointwise bounds in Eq. (9.1) are tight in the sense that it
is not possible to decrease the coefficient of -1 appearing in the exponent

in Eq. (9.1). In your proof you may as well assume that W = R? and du (z) =
(27r)_d/2 e~ 277dz. Suggestion: compute p * f., where f. (z) = exp (22 - 2)
and observe that f, € LP (u) for all z < %.
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Fock Spaces

Suppose that H and K are two Hilbert spaces and @ : H x K — C is a
multilinear form which is continuous in each variable separately. Then for each
k € K we have sup ;=1 | (h, k)| = [|a (-, k)| - < oo by assumption. Therefore
{a (R, )} =1 are point wise bounded collection of continuous linear functionals
on K and so by the uniform boundedness principle they are uniformly bounded,
ie.

sup sup |a(h,k)|= sup |la(h,-)| g =: C < 0.
IRll=1|lkll=1 llhll=1

Thus o : H x K — C is continuous.
Lemma 10.1. Suppose that a: H x K — R is a continuous bilinear form, then
la*:= Y la(h k)
heS,keA
is independent of choice of orthonormal bases S for H and A for K.
Proof. Let & : H — K be the unique linear operator such that
a(h, k) = (ah, k), forallhe H and k € K.

That is it § : K* — K is the inverse or the map K 3 k — (k,-) € K*, then
ah = Boal(h,-). Notice that

lahlx = sup [(ah, k)| = sup |a(h k)| < Clh]g
Ikl =1 Ikl =1

so that & is a bounded operator. Moreover we have
2 ~ 2 <2 <112
Yoo lathk)P= Y [(@hk)gl* =) |an” = |l
heS,keA heS,keA hesS
and the latter quantity is known to be basis independent. ]

Proposition 10.2. Suppose that o : Hy x --- x H, — R is a contz’nuousﬂ
multi-linear form. Then

! The continuity assertion is equivalent to the existstence of a C' < oo such that
a(he, oy b)) < Cllhallg, -l g,
for all h; € H;.

o= > Ja(hy,.. k)

h1€851,...;,hn €S
is independent of the choices of orthonormal bases, S;, for H;.

Proof. The best way do this is as follows. Let A; be other bases for H;, then
for any u; € Hy and 1 < i <n we have h = a (u1,...,%—1,h,Uit1,...,Uy) is
a continuous linear functional on H; and therefore

Do lalun i Byt ) [P = (e i) [
hesS;

which is independent of the choice of basis. Thus we find that

Z |Oé(]€1,...,kifl,hi,...,hn”z

(kl,...,k171)6A1 XX Aj_q
(Pgsees hip)€S; XX Sn

= Z Z |Oé(k'1,...,]{ii_l,hi,...,hn)|2

(kl,‘..,ki,1)€A1><---><Ai,1 h;€S;
(hig1sshn)€Sjp1 XX Sn

_ 3 S Jatkry . ki, b))

(kl,...,ki_l)e/ll XX Aj_1 ki €A
(Pig1sehn)€ESjqp1 XX Sn

- Z ‘Oé(k'h...,ki,hi+17...,hn)|2

(k1,.,ks)EAL XX Ay
(Pig1seshn)€ES g1 XX Sn

and so it follows by induction that
2 2
> lo (K, ... kn)]? = > la(hy, ... b2
(K1yeeskn)EAL XX Ay h1€S1,....;hn€Sn

Even better suppose that o : H; x --- x H,, — H is another Hilbert space
is multi-linear form which is continuous in each of its variables. Then

2
Z ||a(u17"’7ui717h7ui+17"~7un)”H
heS;

= ||a(u1,...,ui_1,~,ui+1,...,un)||HS(Hi’H)
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which is basis independent. The same argument as above now allows us to
change the basis one slot at a time to see that the whole thing is basis indepen-
dent. ]

Definition 10.3. If p : H" — C be a multilinear form which is continuous in
each of its variables and we let

2 2
ol Muate,, (m,c) = > lp(ha, ... )l (10.1)
(h1yehn)ES1X X Sy

where S C H is any orthonormal basis of H. Further let Mult,, (H,C) denote
those p such that ||p||12v1u1tn(H,<C) < oo where by convention, Multg (H,C) = C

with inner product, (Z7w)Mu1t0(H,C) = zw. As we saw above these definitions
are well defined. We further let

Sym,, (H,C) = {a € Mult,, (H,C) : « is symmetric} .

Below we will usually just write ||p|| for ||pllxps,, (7r,c) s it should be clear from
context which norm we mean.

Lemma 10.4. Mult,, (H,C) is a complex Hilbert space in when equipped with
the inner product,

(1, P2) st (11,0) = Z p1(hi,..o hp) - p2(ha,.. hy). (10.2)
hi,...hn €S

Proof. The sum defining the inner product in Eq. converges by
the Cauchy - Schwarz inequality and clearly defines an inner product on
Mult,, (H,C) whose associated norm is given by Eq. (10.1)). Since the inner
product may be recovered from the norm by polarization it must be basis in-
dependent. So it only remains to show Mult,, (H,C) is a complete space.

To simplify notation let [[p]| == [lplly, (sr.cy - S0 let {px}iy be a Cauchy
sequence in Mult,, (H,C). As any unit vectors h € H is part of an orthonormal
basis for H it easily follows that {pj, (h1, ..., hn)}re; is a Cauchy sequence for all
(h1,...,hy) € H™ Thus we know that p (hy,...,hy) := limg_00 pr (B1,- .., )
exists and the resulting function, p : H™ — C is still multi-linear. By the uniform
boundedness principle it is continuous in each of its variables as well. We now
use Fatou’s lemma to learn,
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lp = ]l = > o (h1, - ) = pie (B h) P
(hl,...hn)eslx'“XSn

(h1,...hn)ESTX XS,

< liminf > lpr (ha, - hy) = pie (ha, ... he)]?

l—o00
(h1,...hp)ESTX XSy,

liminf oy (ha, .. hn) = pi (hi,. .. ha)|

= liminf ||p; — pi|®> — 0 as k — oco.
l—o0

Ezxample 10.5. Suppose that a1, ...,a, € H*, then we may define an element
a1 ® - ® ay € Mult, (H,C) by
a1 @ @ap (hi,...,hy) :Hai(hi).

Similarly oy V-V, :=) 0g1 ® -+ @ 0oy, € Sym,, (H, C) where the sum is
over all permutations of {1,2,...,n}. Observe that

n
2 2
o @ -+ @ oy, 0y = H llcvi [«
=1

and that

| V- - \/CthMult (HC) = ( 01 @ - ®am,zaﬂ®...®am>
Mult,, (H,C)

n
= 5 || adlvaT7 § |I O‘a‘ruam

=1 o, 7 i=1

=2 L em s =Y [T oo

i=1 o =1

3

Example 10.6. Suppose that f: H — C is a smooth function near z € H, then
Drf . H" — C (see Notation defines a multi-linear symmetric function
on H since mixed partial derivatives commute. If we further assume that f €
FC* (H*) so that f = F((k1,"),-..,(km,-)) for some k; € H, then DI f €
Sym,, (H,C) and

m

Dif= Y (0.0, F) (k1) oy (b)) (ks ) @ @ (Kiy ) -

i1,ein=1
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Remark 10.7. Let P,, (H*) be the space of homogeneous polynomials of degree
n on H. When dim H < co. the map

Sym, (H,C)>a — (x = a(z,z,...,z)) € P, (H") (10.3)

is a linear isomorphism with inverse map given by
1
Pn(H)>p— EDS‘pE Sym,, (H,C). (10.4)

When dim H = oo it is no longer true that P, (H*) and Sym,, (H,C) are
isomorphic. To describe better what is going on in this case let Mult™® (H, C)
denote those o € Mult,, (H,C) such that & = P*a for some finite rank or-
thonormal projection on H where P*« (hy,...,hy,) := a(Phy,...,Ph,). We
also let Sym™® (H,C) = Mult®® (H,C) N Sym,, (H,C).

Proposition 10.8. The map in Eq. (10.4) is a linear isomorphism from
P, (H*) onto Sym™®(H,C) and Sym™® (H,C) is a dense subspace in
Sym,, (H,C).

Proof. Let S be an orthonormal basis for H and {S;},;°, C S such that
Sy 1 S with # (S;) < oo for all . Further let Pz := 3, o (2, h) h be orthogonal
projection onto H; := spanS;. Then give a € Sym,, (H,C) let a; := Pfa €
Sym®¢ (H,C) and p; () := aq(z,...,x) in P, (H) with LDyp = ay. So to
finish the proof of the assertion it suffices to show a; — a in Sym,, (H,C). This
however follows from the DCT for sums. Indeed, for hq,...,h, € S, we have

|(a - al) (hlv' . -ahn)|2 <2 |a (hla .- -ahn)|2
while
lim |(a — a;) (h, ..., hn)]> = 0.
l—o0

Definition 10.9 (Fock spaces). Given a real Hilbert space, H and t > 0, let
T (H;t) = {a = ()2 : v € Mult,, (H,C) and ||} < oo} and
F(H;t) ={aeT (H;t): a, € Sym,, (H,C)}

where

tn
2 2
ey = E ﬁ ||an||Multn(H,C)'

We call T (H;t) the full Fock space over H and F (H;t) the Bosonic Fock
space over H.

The full Fock space T (H;t) is a Hilbert space when given the inner product,

tn
(aaﬂ)t = Z nl (a’fﬂﬁn)Multn(H,(C)
for all o, 8 € T (H;t) and F (H;t) is a Hilbert subspace of T (H;t).
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Segal Bargmann Transforms

11.1 Three key identities

Let (W, By, v) be a real Gaussian probability space with Cameron-Martin space
H:=H, and B := L, := Zhesv 6}% where S, is an orthonormal basis for H.
(We assume dim W < oo for the moment but it is not really needed). Given
frgeP(W*), neN,and hy,...,h, € H, let

DYf(h1,... hy) = (Ony ... 0n, ) ().

As mixed partial derivatives commute it follows that DY f € Sym, (H,C).
Further let of := (D2 f)>2, which is inF (H;t) for all t > 0 when f € P (W*).

Theorem 11.1 (Key identity 1). Let f,g € P(W*), x € W, and t > 0, then

n

_ B2 " s
otB/2 [e tB/2f ¢ tB/2g} (z) = (af,a9), = Z — (D} £, D29 yane, (11.0)

n=0
(11.1)
and in particular

_ _ — 1
(e B2 B/zg)Lz(V) — (ag,ag)l =3 = (D6, Di ey - (11:2)
n=0

Proof. Below we will suppress x from the notation with the understanding
that all formulas are to evaluated at x. To further simplify the notion let

F,:=e B/2f and G, := e *8/2y.

By simple calculus we have,

% (272 £ 1)) = %etm (B(F.G,) - BE, -G, — F,- BG,)
= Z €tB/2 (8th . 8hét)
heSsS
_ Z otB/2 [eftB/Zahf ) eftB/Qahg} .
heSs

It now follows by induction that

i—:(etw [F-Gl) = > PR [eB R, oy, [ e B, 0,0
hi,...,hn €S

Because e!B/2 [e7tB/2 f . ¢=tB/2g] is a polynomial in ¢, Taylor’s theorem implies

nl dtn
= n! dt
- tn n n —
= Z — (D" f, D" §)state,, (11,0)
— nl
as claimed. Equation ([11.2]) follows immediately from Eq. (11.1)) with ¢ = 1 and
z=0. [ ]

Recall from Theorem that for all f,g € P (W*);

oo

- _BJ2- Lo hne pn
eP/? {6 B/zf e B/zg} = Z nl (D"f,D g)Multn(Hl,,(C) : (11.3)

n=0

Notation 11.2 Let We = W + iW denote the complexification of W, W& =

Home (W, C) be the continuous complex linear functionals on W, and I/V(é~ =
Hompg (W, C) be the continuous real linear functionals on W¢. Further let B be

the operator acting on P (Wé) given by

heS,
We will also abuse notation and view B =3, o 92, as on operator on both
P (W) and on P (Wg) :

Theorem 11.3 (Key identity 2). If f,g € P (W{) (the holomorphic polyno-
mial functions on W¢), the

B = . 1 n n
oB/2 {eB/zf , 6B/2g] = Z — (D™ £, D" 9)ytune, (11,.0) - (11.4)
n=0

! The identity in this theorem is not as key as the other two key identities. We will
in fact only use it in the proof of the third key identity.
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Proof. Let ~
u(t) = otB/2 [etB/2f ] etB/Qg}
which is a polynomial in ¢ and therefore as usual,
_ - 1 ,
eB/? [eB/2f . 63/29} =u(l)= Z —u™ (0).

n!
n=0

Moreover, we have for f,g € P (W{) and h € H,;
Oinf =1i0nf, Oing = Oing = i0ng = —iOng,

Bf = —Bf, Bg = —Bg, and

B(fg)=Bf-g+[Bg+2 Y Onf-0ng
hesS,

— —Bf-g—fBg+2Y Ouf - 0hg. (11.5)

heS,

If f,geP(aa,...,a,) with {aq,...,a,} C W§, we can choose S, so that h L
{JLa1lw,...,Jyay|w} for all but at most n element of S,. This is equivalent
to

#{heS,:a1(h)=-=a,(h)=0} <n.

With such a choice the sum appearing in Eq. (11.5)) is really a finite sum.
The computations now go as before, namely

1 .- -
a(t) = 56tB/z [B [etB/Qf ) etB/2§} 4 BelBI2f . (tB/2G 1 (tBI2f . BetB/2g

:etE/Q [Z 8h€tB/2f'ahetB/2§
hesS,

_ Z otB/2 [etB/2ahf ) 6tB/28hg} '

heS,

Hence by induction we learn that

u™ (t) = Z etB/2 [etB/zﬁhl O, f-€BPo .  0n G

h1yeshn €S,

and therefore,
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o0

P2 (B2 P < u(l) = 3~ (0)
n:
n=0

n=0 " hi,...hn€S.

=1
= Z ] (D" f, D" 9)nrats, (11, -
n=0 "

Notation 11.4 Associated to a probability measure p on (W, By) are two the
two probability measures p X &g and dg X p on We =W +iW = W x W. We
will continue to denote u X &g by u and we will denote §g X p by . Thus the
measures p and [ satisfy;

[ = | fdu ana [ san= | #liyauta)

for all bounded measurable functions f on Wc.

Lemma 11.5. Suppose that p and v are two probability measures on (W, By) .

LIf p (1) + v () < ooﬂfor some n € N then p* v (||-||y,) < oo.
2. If there exists ¢ > 0 such that p(efl'llw) + v (eslFlw) < oo then p *

v (eEH'||W) < 0o as well.
3 If p(|]]ly) < oo and f : W — R satisfies |f| < C(1+ ||-|[iy) then there
ezists C' < oo such that |px f| < C" (1 + |-|w) -

Exercise 11.1. Prove Lemma [[T.5

Corollary 11.6 (Key identity 3). Continuing the notation in Theorem
forall f,g e P(W{),

Bl (f g =Pl [ePf-ePy). (11.6)
Alternatively we may write this as,
vi[f-gl=vxvax f-roxg] (11.7)

where vy := v x v and for a measurable function u : W — C with polynomial
growth,

(v+u)(z):= /Wu(z—x)du(x) = /Wu(z—l—x)du(x)
and

(7 u) (2) = /Wu(z —iz)dv (z) = /Wu(erix)dy(:z:)

* 1 will often write p (f) for [, fdpu.
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First proof. By Theorem and we know that
oB/2 {G—B/Qf ) 6—3/29} — (B2 {eB/2f ] 63/29} .

Replacing f and g by eP/2f and eP/2g respectively in this equality proves Eq.
(111.6). ]
Second proof. In this direct proof we will adapt the argument in Hall |19 p.

820]. For h € H, we define two differential operators on P (Wé) ;
1 , 5 1 )
Zh = 5 [8h — z@ih] and Zh = 5 [8h + Zaih} .

For f € P(W¢) we have Zyf = Opf, Znf =0, Znf =0, Znf = Znf = Ouf,
and i
Z,%+Z§:§(ah 92,) -
From these observations it follows that
ePf.efg= enes, Z;%f . phes, Zﬁg
_ eZhes, (Zh"‘Zh) [f g] —e32 Zhes,, (8h ) [f g]
=258 [1g).

B/2 to both sides of this identity completes the proof. [

Applying e
Corollary 11.7. Let pu be any measure on (W,Bw) such that p(||-||y,) < oo
for alln € N. Then for all f,g € P (W¢) we have

|t d(u*u)/WC[VQ*wa*g]dmxu).

Proof. Integrate Eq. (11.7)) relative to p. In doing so we make use the fact
that v is symmetric and therefore,

/Wc weFldu= [ weFldn= [ Py ()det)
[ Farnd@due = [ Faps)
WxW w

for F': W — [0, o0] measurable and
/ ﬂ*qu:/ (0 F)(x)du(x)
We w

[ ([ re-mae)ae

[ Fatipdi@d)= [ Fauxo).
WxW WxW
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11.2 The Segal-Bargmann Transform

Definition 11.8. Suppose that W is a complex Banach space and p is any
probability measure on By such that p(|-||3,) < oo for all n € N. We let
HL? () denote the L? (p) — closure of P (W*) — the holomorphic polynomial
functions on W.

Remark 11.9. If dim W < oo and p is a non-degenerate (i.e. H, = W) Gaussian
probability measure on (W, By ), then we will see in Theorem below that
P (W*) is a dense subspace of the Hilbert space (see Lemma [2.8) HL? (W, i) .
Thus HL? (W, 1) = HL? (W, 1) in this case.

Theorem 11.10 (Generalized Segal-Bargmann transform). Let i be any
measure on (W, By ) such that u (es”'”W) < 0o for some e > 0. Then there exists
a unique unitary map

Sy L*(W,puxv) — HL? (We, p x v)
such that for allp € P (W*),

S/L,up =2 *pc = (eBp)(C

Proof. In light of Lemma Fernique’s Theorem and Theorem
we know that P (W*) is a dense subspace of L? (u*v). Therefore it follows
that the isometric map in Corollary [I1.7] extends uniquely to a unitary map
from L2 (W, pu* v) to HL? (We, u X v). |

In the case where p and v are both non-degenerate Gaussian measures we
can compute Sy, , f more explicitly.

Corollary 11.11. If p and v are both Gaussian measures on W with full sup-
port (i.e. H, =W =H,) and f € L* (uxv), then;

1. for all x € W the following integral exists,

(vax f)( /fx— )dvs (y) .

2.vax f 1 Hyy = W — C is smooth and even admits a unique analytic
continuation, (v2 * f) to all of We.

Supf=Wwa*f)e —puxv as.

4. The resulting Segal - Bargmann map,

o

Spw : L2 (W s v) — HL? (We,pu x v),

18 unitary.
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Proof. 1. Let us write H for H, and z -y for (z,y)y . Further let C be
the unique positive operator (matrix) on H such that (z,y) H, = Cx -y for all
x,y € H. Further let A := pu % v and observe that

du;iix) X exp (iz . x> and

D), (_;(Hcrlx-x) — exp (—;(I—D)x.x)

where D = C (I + C’)f1 and 0 < D < I as can be seen by the spectral theorem.
Using this notation it follows that

f(z —y)dva (y)

w
[ rwen (-3 @)
N exp (—§(x—y) - (x—y))
Wf(y) o (LT =D)y-y) dA (y)
=e‘iz'm/wf(y)exp(;x y—iy y+2(1 D)y- y) dA (y) -

To verify the latter integral is well defined it suffices to show

eXp(;x y—iy Y+ = (I D)y- y) € L? (d\ (y))

which is the case since,

1 1 1 1
—(I-D)x- o Zgp oy — =y Z(I=D)y-
2( )T T+ (Qxy 1Y y+2( )y y)
1 1 1
=Ty-Sy Yty (1 D)y-y=ux- y=5Dy-y

and therefore,

Jo

dA (y)

1 1
eXp(2 Y-yt (I D)y- y)

1
cx/ exp(az-y—Dy-y)dy<oo
w 2
as D > 0.

2. The analytic continuation, F'(z), of z — [, f (= —

y) dvo (y) is given by

F (z) = (const.) e4zz/f K (z,y)dX\(y)
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where

1 1
K (z,v) :eXp<22 y— gy vty (I D)y- y)

The fact that
z—>/ fy) K (z,y)d\(y)

is analytic follows either by Morera’s Theorem [2.5] or by differentiating past the
integral. (See the proof of Lemma below for more details on this type of
argument.) The details are left to the reader.

3. As pu x v is a positive smooth measure on W it follows from Lemma [2.§|
that the evaluation maps,

HL? We,uxv)>F = F(2)eC

are continuous linear functionals on HL? (W, u x v) . Therefore if p,, € P (W*)
with p, — f in L? (\) then

(S f) () = Tim (Syupn) (2)

On the other hand since K (z,-) € L? ()) it also follows that

lim [ pa(9) K () dA (y /f K (2,9) dA(y)

n— oo w

Putting these two observations together allows us to conclude that

(Sun ) (2) = (const.) - e~ 477 / FW K (29) dA(y) = (v e (2).

4. The unitarity of S, , from L? (W, u* v) to HL* (Wg, u X v) now follows
from Theorem [11.10/ and Remark [11.9
]

11.2.1 Examples

Bargmann [3] introduces three forms of the Segal-Bargmann transform. I will
describe the two most interesting forms of the transform in the next two exam-
ples — the third form is rather trivially obtained from one of these forms.

Ezample 11.12 (Standard form 1). In Corollary [11.11] m take W = R? and p =
v = P,y where P, = !4/25, i.e.

P, (dz) = py (z) do == (2mt) Y2 e 577y, (11.8)

Then we have shown
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[ ek~ [ |
(%) [

<1> (P, % f)c (2)]” exp (—1zz> dzdy. (11.9)

it

(et f) (sz)\ dP,y5 (x) AP,y (y)

tA/Qf)C (z + iy)‘ et dudy

where
_ (9t~ 1
(P Do) = 2n) 2 [ f@en (~5 0= (0= 2) ) an

Ezample 11.13 (Standard form 2). In Corollary take W = R? and
v = Py and p = m, where m is Lebesgue measure. Technically this is not
allowed since m is not a probability measure and certainly does not integrate
polynomials. Nevertheless blindly going ahead using m * P, = m suggests that
we should expect

/Rd |f ()] dm (z) = <7r1t>d/2 /Cd (P f)e (2)]) exp (—;qﬁ’) dzdy (11.10)

where we are now writing y? for y-y. As it turns out we may derive this formula

rigorously from Eq. (11.9).
Following Hall [16, p. 149], for f € L?(m) apply Eq. (11.9) with f by

f//Pt € L in Eq. (11.9) shows,

[ wras - (;)/@

where

2

(Pt X f@)c (z)] exp (1 |z|2> dzdy (11.11)

f B 1 d/4 e~ %= (z— z)?
(pt*ﬁt)C(z)—(m) /R @

Using the identity,

we learn that

<Pt x \/%)C (2) = (217#)(1/462122 /R exp (it (z — 22)2> () dx

d/4
(1> e / (4rt)? po, (x — 22) f (2) dr
Rd

1\ ¥4 .
()" et e e,
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Using this result in Eq. (11.11]) then gives,

[r@ras=ci [ Jer @20 o exp (< 14F) daay
= Ct/ |(6mf)(c (22)|2 et Re(=%) exp (1 |22> dxdy
cd

1 d 1 d/2 4 J 1 d/2

Re (z2) - |z|2 =a?— 9% - (m2 + y2) = —2°

and so we have shown

/2
[ir@ra=it () [ 1e2nceaf e (~202) doy

Making the change of variables, z — %z then implies,

[s@ra=(35)" [ o oo (- ) as

= [ 120 @) dop (@)
which is Eq. .

Ezample 11.14 (Interpolating forms). In this example we wish to “interpolate”
between the two standard forms. In order to do so we apply Corollary [11.11
with W = R? and = P, and v = P, to arrive at the identity,

where

Now

[ r@r .. @)
= [ 1o f)c o+ i) aps ) a0

_ <27T\1/(E)d/@ |(Pos * f)e (z + i) exp (— Bj + ZD dady.
(11.12)

This gives the results in Example [11.12] when o = s = t/2. Moreover for f €

L? (m) we may multiply Eq. (11.12) by (27ro)d/2 and then let ¢ — oo in order
to formally arrive at Eq. (11.10) with ¢t = s. In a little more detail,
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58 11 Segal Bargmann Transforms

oxo [ ar e = [ 7" [ rwies (—

—>/ |f (@) dz as 0 — oo
Rd

and similarly
(270)"/? RHS ([[L12)

2 2
=) 2 [ [(Pre e o i) oo (= |5+ 5| ) oy
— (27rs)_d/2/ |(Pas * f)e (z + iy)|QeXp ( y) dxdy

cd
= [ 1Pes f)c o+ i) doP. ()

In the next two examples we explore what happens if y or v degenerate to
0.

Example 11.15. Let W = R?, W = C%, v = §p and p be a probability measure
on (W, Bw) as in Theorem [11.10] We then have , pxv = &g, vo = §p*dy = dpand
vg % f = f. Therefore Theorem |[11.10|states that

/ Ip (2)[? dpt () = / Ipe (& + i) du () b (dy)

= [ e @lau (o)

which gives no new information.
Incidentally, notice that

2 (u®do)

HL? (1 ® 60) == HP (We) =P W)

since for any holomorphic polynomial p on ce,

1912 sy = /W Ip (¢ + i) [ (d) b (dy) = /W Ip ()2 (d2)

C

The following example can essentially be found in Hall |19, Theorem 2.2].

Ezample 11.16 (Fourier Wiener Transform). Let W = R, W = C%, p = do,
v =P, (see Eq. (11.8)), and S = S5, p,. By Theorem [11.10

/ 1 @) pe () do = / 1SF ()2 6o (d) Py (dy)
Rd cd
= [ 1£ @l Pit) (11.13)
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for all f € L?(P;). Similarly to Example [11.15| we may easily conclude that
the map,

L*(RYP) > f— (2 — f(ilmz)) € HL? (C%, 60 x Py)

is unitary.
If f a function on R? with (for example) at most exponential growth one
easily shows that Sf (z) is given explicitly as,

Sf(z)= (47rt)7d/2 y f(x)exp (_41t (x — z)2) dx.

Soif g € C, (Rd, (C) we may take f:= g/,/p; in the above formulas in order to
find,

where

Taking z = ¢y then implies,

S (9/v/be) (iy) = Cre¥ g (y/21)
where
i) = [ g(@erda
Rd
is the Fourier transform of g. Therefore Eq. with f := g/,/pi becomes

[ la@Pdz=c2 [ 1a@/20P * P (a)
Rd
(4mt)~ / 1§ (y/2t)* dy

= (271') /Rd Iﬁ(y)IQdy=/Rd 1§ (27y)|2 dy

which is the isometry property of the Fourier transform. Because the maps
S:L? (R, P) — HL? (C%, 60 x P,) =2 L* (R%, P;) and
L? (R, dz) 5 g — g//p € L* (RY, )

are unitary we have actually given a proof of the fact that the Fourier transform,
g — g (2 (-)) is a unitary map on L* (R%,dz) .
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12

The Kakutani-Ito-Fock space isomorphism

(Some old stuff has now been moved to the bone yard ??. BRUCE: see
Chapter ?? below for some Q.M. interpretation of this stuff.))

12.1 The Real Case

As usual let (W, By, 1) be a Gaussian probability space. If H := H,, is a proper
subspace of W it is not true that the restriction map,

PW*o>p—plgeP(H,

is one to one. which is a bit annoying. However notice that if p,q € P (W*) with
p = q (u as.) then p = q on H the conversely. Thus P (W*)/ ~ and P (H*)
are isomorphic where p ~ ¢ iff p = ¢ (p a.s.) iff p = g on H. For the sake of
simplicity and with no real loss in generality let us assume in this section that
H =W, i.e. pu is non-degenerate.

In what follows we will simply write F (H) for F (H; 1) — see Definition [10.9]

Theorem 12.1 (Fock Space Isomorphism I). For f € L*(u) let F,f =
(DY (o f))ory s then E,f € F(H) and F,, : L* () — F (H) is unitary.

Proof. First off from Theoremwe know that p* f is smooth on H, = W
so that it makes sense to even write D (u* f). Secondly, from Proposition
and Theorem (with v = p) we know that F,|pqy-) is an isometry
from P (W*) onto a dense subset of F (H) and hence extends uniquely to a
unitary transformation, F), : L? (u) — F (H). It only remains to show that
Fuf = (D (*f))nzg-

Let hi,...,h, € H and define I (f) := [Op, ...0n, (ux* f)](0) for all f €
L? (). Accordlng to Theorem [9 - this is a bounded linear functional. Thus
if f € L?(u) and py € P(W*) such that pp — f in L?(u) we will have
I(pr) = 1(f). We also have Dy (u * p,) — D (p* f) and therefore,

Dy (u* f) (b ... hg) = lim Dy (s pr) (b, ... ha) = lim E(py) = 1(f)

which completes the proof. [

Ezample 12.2 (Pointwise bounds revisited). As a simple application of Theorem
12.1)we can give another proof of the pointwise bounds in Eq. (9.1)) when p = 2.
Since px f is real analytic for f € L? (i) we may express i f as a Taylor series,

o £ 1) =31 (§) lemolin £ )
n=0
=3 L opr O =S Ikl (35) )
n=0 n=0

where h := h/|hl| i - An application of the Cauchy - Schwarz inequality (in
2 () shows,

e F (b)) < inm? = é!(azf) of 5

n=0

NS 1,
o5 O 1 (G0l )

_—

If S C H is an orthonormal basis for H such that h € S, then

11 Z2 0 = Z Y 10O fOF
n=0 hl, whn€S

S

0 n!

which combined with the previously displayed inequality gives the pointwise
bound in Eq. (9.1)) when p = 2, namely that

871

’ 2

1
fx £ < 11y 050 (G 1015

Definition 12.3. The n'" level Hermite (or homogeneous chaos) sub-
space of L? (W, p) is the space Fy, (u) = e~ Lu/2P, (W*), where P, (W*) de-

notes the space of homogeneous polynomials of degree n on W.
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Proposition 12.4 (Hermite/Chaos Expansion). Let (W, By, 1) be a non-
degenerate Gaussian probability space. Then;

1. F, [Fyn (w)] = Sym,, (H,,C) and for any o € Sym,, (H,,C),
ISR S
F, a=—e (z = a(z,...,x)). (12.1)

2. L? (W, 1) is the orthogonal Hilbert space direct sum of the subspaces Fy, (1)
forn =0,1,2..., i.e. every f € L* (W, ) has a unique orthogonal direct
sum decomposition of the form

F=" fo with fn € Fu (). (12.2)
n=0

3. Writing eFn/2f for ux f, the f, in Eq. are computed via

fn = %efm(x — amel/21)(0). (12.3)

4. Fn (1) is the set of all polynomials on W of degree n which are orthogonal
to all polynomials of degree at most n — 1.

Proof. Let us write H for H,, F for F,, and L for L, in this proof.
1. If f = e /2p € F, () for some p € P, (W*), then
(Ff), = Db [+ e /2| = Df [e"/2e71/%)]
= Dlgp = 0k,nDop

where the last equality is a consequence of the fact that p is homogeneous
of degree n. This shows that F [F, (1)] C Sym,, (H,,C).
Conversely if f € F(H) with Ff = « € Sym,, (H,C), let

1
g = EG_L”/Q(Q]‘_)O((J;,“-;x))E]:n(u’)'

Then

1
Fg= EDSL {,u*e_L“/Q (x%a(m,...,x))}

1

= —Dg {eL/*/Qe_L“/2 (x = al(z,... ,x))}
nl
1 n

= D0 [a(x,...,2)] =«

By Theorem F is unitary and therefore f = g a.s. and we proved Eq.
(Z1) and Sym, (H,,C) C F [ Fo ()]
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2. & 3. These items follow directly from item 1. and Theorem [12.1] as f, =

FU(ES),]-

4. Noting that e™/2 : P (W*) — P (W*) is degree preserving we see that
Fn () = e /2P, (W*) is contained inside the degree n — polynomials
in P (W*). Moreover &7_,F (1) is equal to the degree n polynomials in
P (W*). This is because if p € P (WW*) is a degree n — polynomial, then by
items 2. and 3.,

p:

M8
==

e_L/Q(x — 856”21))(0)
P !

0

I
NE
==

o (@ 95 p)(0) € Do ().

>
Il

0

Hence we may conclude that J, (1) is perpendicular to @&} Fj (1) which
is precisely the degree n—1 polynomials in P (W*) . Moreover if p € P (W*)
is a degree n polynomial (i.e. p € &}_,F (1)) which is orthogonal to the
degree n — 1 polynomials (i.e. p L ®}'Z) Fx (1)) we must have p € Fy, () .
|

Remark 12.5. Combining the results of items 2. and 3. of Proposition if
f € L?(p) then

f= Z %eiw/z (x = 92 (ux* f)(0)) (orthogonal terms).

n=0
We will write this succinctly as

oo

Fl) = 3 e H 2w = a2 (o) (12.4)
n=0
v ety L anetrino) 125)
n=0

In words, to find the Hermite decomposition of f € L? (1) apply eX/? to f, then
compute the Taylor expansion of the result, then apply e /2 to each term in
this expansion. So formally the theorem represents the assertion that

-L/ L2

Idpzy =e % o Taylor, o /2.

12.2 (Weakly) complex compatible Gaussian measures

Now suppose that W is a complex vector space and let W* := Hom¢ (W, C)
be the complex dual of W and W := Homg (W, R) be the space of real linear
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forms on W — that is W1 is the real dual space of W where we forget about the
complex structure on W. Further let p be a Gaussian measure on W by which
we mean

fi(a) = e 24 for all o € W

where ¢ : WT x W' — R is a non-negative quadratic form. A priori the a
Gaussian measure on W has no knowledge of the complex structure on W. The
minimal sort of compatibility we would like here is for the Cameron-Martin
space, H = H,, of 1 to be at complex subspace of W, i.e. of i{H = H. This need
not be the case in general, just take W = C with u = v ® dy9 where v is the
standard normal distribution. In this case H,, = R C C which is a real but not
complex subspace.

Lemma 12.6. Let j1 be a Gaussian measure on W, then iH, = H,, is equivalent
to the condition on q that q (a) =0 iff ¢ (a0 M;) = 0.
Proof. Recall that
H =Nul(q)" :={z € W : a(z) = 0 whenever ¢ (a) = 0}.
Thus iz € H iff
a (iz) = 0 whenever ¢ (o) = 0.

Thus if ¢ (o) = 0 iff ¢ (o M;) = 0 and = € H, then a(x) = 0 when ¢ (a) =
implies a o M; () = 0 when ¢ (oo M;) = 0 which is equivalent to a (iz) =
when ¢ (o) = 0 showing that iz € H.

0
0

Conversely suppose that iH = H. Then using H = Nul (q)L or equivalently
Nul (q) = HO it follows that Nul (¢) = (iH)" . Therefore a € Nul (q) iff o (H) =
{0} iff a(iH) = {0} iff c« o M; (H) = {0} iff a0 M; € Nul(q). |

Definition 12.7. If W is a finite dimensional complex vector space, we say that
a Gaussian measure i on W is weakly compatible with the complex structure
iff Nul (M}")" q) = Nul(q) iff iH, = H,,, i.e. iff H, is a complex subspace of
w.

We say that i compatible with the complex structure on W if q (oo M;) =
q(a) for all « € WT. This condition is equivalent to p being invariant under
M;, i.e. po M[l = U.

Ezxample 12.8. If pu is non—degenerateﬂ then p is of course weakly compatible
with the complex structure. Conversely if p is weakly compatible with the
complex structure we may replace W by H and assume that p is non-degenerate
with out any real loss of generality. (If © were not weakly compatible with the
complex structure, the measure p would be supported on a real but not complex
subspace of W.)

1 It should now be clear that j is non-degenerate if any one of the following equivalent
conditions hold; 1) g, is positive definite, 2) H, = W, or 3) the support of u is all
of W.
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Ezample 12.9. Suppose that (W, By, i) is a real Gaussian measure space and
let A=pxpon We=W+iW 2W x W (the complexification of W). Then A
is compatible with the complex structure on W. To see this let o, 3 € W* and
P (z +1y) = a(x) + B (y) so that ¢ is the general element of Wé. Then

YoM (z+iy) =9 (ix—y) = —a(y) + 5 ().
Recall that ¢x (¥) = ¢, () + ¢, (B) and therefore,

qx (Yo M;) = qu (B) + du (—a) = 'm (o) + Ay (B) =ax (¥).

Proposition 12.10. Suppose that \ is a compatible Gaussian measure on a
complex Banach space, W and let H := H) be the Cameron-Martin space. Then
liz||; = x|l g for all z € W and there is a unique complex inner pmducﬂ ()
on H such that

(h, k) =Re(h,k) for all h,k € H.

Consequently if S is a orthonormal basis for (H,(-,-)) as a complex Hilbert
space then S U iS is an orthonormal basiéﬂ for (H,(-,-)y) as a real Hilbert
space. See (8, Theorem 2.3 | for some more information along these lines.

Proof. For the first item we have

. N2 2
il sap (G o M (o)
" acwt  q(a) aewt q(aoM;)
o ()| 2
= sup = ||z

acwt ¢ (O()

wherein we have used ¢ (o M;) = ¢ («) and the fact that Wi > a — ao M; €
WT is a bijection. Polarizing the identity ||Mlh||§{ = Hh||i1 for all h € H implies

(M;ih, Mik),; = (h, k), for all h,k € H.

Replacing k by —M;k shows (M;h, k), = — (h, M;k) so that M; skew -adjoint.
I leave it to the reader to check that we have to define (-,-) by

2 We take our complex inner products to be conjugate linear in the second variable.

For example on C™ the standard complex inner product is given by (z,w) = z - @
where
n
Zz-w = Z ZLWE.
k=1

3 In the complex compatible case when dealing with holomorphic functions we often
use the basis S rather than S U 4S. This convention is responsible for numerous
strange looking factors of 2 appearing in the holomorphic theory.
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62 12 The Kakutani-Ito-Fock space isomorphism
(h, k) := (h,k) — i (ih, k)

and that by doing so we arrive at the desired complex inner product on H.
]
Proposition loosely states that Example is essentially the only
class of example of complex compatible Gaussian measures. Take Wgr, = R-S C
W to be the real span of S and then take p := Law (Zhes Zp - h) where
{Zn}}cg are ii.d. standard normal random variables. Then W = Wge+iWge =
(WRe)e and A = g x g under this identification. Now back to the general theory.

12.3 Complex (Weakly) Kakutani-It6-Fock space
isomorphism

Let W be a complex finite dimensional Banach space and p be a non-degenerate
Gaussian measure on W and let H = H,, —so H,, = W as vector spaces. Ignoring
the complex structures on H and W we still have Fock and Hermite expansion
results in Theorem and Proposition Our goal here is to describe these
expansions on the Hilbert subspace of holomorphic functions inside of L? ().
The key new ingredient is contained in the next lemma.

Lemma 12.11. Suppose that W is a complex vector space and p is a non-
degenerate Gaussian measure on W. Then p* f is a holomorphic function on
H, =W forall f e HL*(u).

Proof. Let f € HL? (1) . The first thing we want to prove is that px f is still
holomorphic. So we have to show for each z,y € W that F () := pxf (x + Ay) is
holomorphic for A near 0 in C. Recall, using the baby Cameron-Martin Theorem

that

pef@= [ fa=2n) (12.6)
— [ e+ n@)
w
:/ £(2) e@n—Hll  (ds) (12.7)
w

Replacing f by |f] in this equation and using 2 (, -) ; under p is Gaussian with
variance 4 ||x||§{ along with the Cauchy-Schwarz inequality shows

—1iz2 .
pe @) = [ 17 @ =2l uldz) < B 7 g - een]
_Lzl2 14z 14012
= 1 llpagy - e i Vedthell = | £] o, - 2171,

L2 (n)
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Thus if T is a solid triangle contained in C we have

/ / 1 (24 2y — 2)] o (d2) AN < [1f 12 - / 1T+ Ml | < oo,
oT JW oT

Since A — f (x + Ay — 2z) is holomorphic it follows by Fubini’s theorem along
with Morera’s Theorem 2.5 that

/STF()\)dA:/aTu*f(er)\y—z)d)\
:/W [ 8Tf(:1c+)\y—z)d)\}u(dz):0.

Since T was arbitrary, another application of Morera’s Theorem [2.5] implies F
is holomorphic. [

Definition 12.12. Given a complex Hilbert space, H, let
MultS (H,C) := {a € Mult,, (H,C) : a is complex multi-linear}

Sym¢ (H,C) := Sym,, (H,C) N MultS (H,C)

and
FE(H) = {a € F(H):a, €SymS (H,C) Vne No}.

(So o € Sym,, (H,C) iff « € Sym,, (H,C) and
O[(ihl,hg,...,hn) :ia(h17h27...,hn) fOT all (h17~-~7hn) EH”)

Example 12.13. If dimH < oo and f : H — C is a function which is holo-
morphic near 0 € H, then Djf € Sym% (H,C) for all n € Ny, see Theorem

Theorem 12.14 (Fock/Hermite Expansions IT). Suppose that W is a com-
plex finite dimensional vector space and p is a non-degenerate Gaussian measure
on W. Let HF, (1) = Fn (u) N HL? (1) — the holomorphic polynomials inside
of Fpn (u). Then;

1. Fy [HL? ()] = FC(H).

2. F,, [HF, (n)] = Sym§, (H,C) = e~ L/21™) where H™) denotes the homoge-
neous holomorphic polynomials of degree n.

3. HL? (u) = & o HF, (1) (orthogonal direct sum,).

4.if f € HL? (u) and f = oo fnis the Hermite expansion from Proposition
then fn, € HF, () for all n.

5. HF, (n) is the set of all holomorphic polynomials on W of degree n which
are orthogonal to all holomorphic polynomials on W of degree n—1 or less.
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6. The holomorphic polynomials on W are dense in HL? (W, p) .

Proof. To simplify notation let H = H,, L = L, and F = F},.

1. & 2. By Lemma [12.11} if f € HL?(u) then p * f is still holomorphic and

therefore [Ff], = Dy [u* f] € Sym$ (H,C) for all n € N. This shows
that F [HL?(p)] € FC(H) and that F[HF, (p)] C Sym (H,C). If
o € Sym¢ (H,C), then p(z) := a(x,..., ) is complex differentiable and
therefore a holomorphic polynomial. Since partial derivations preserve the
class of holomorphic functions we may conclude that F~la = e~ %/2[p] is

holomorphic and in F,, (u). Therefore F~! [Symg (H, (C)] C HF, (1) and

so Sym® (H,C) C F [HF, (1)) and we have proved the first equality in item
2. Ifa = (a,) € F€(H), then F~la =37 F~la, is in HL? (u) as each
term is in HL? (u) and HL? (i) is a closed subspace of L? (1) . This shows
that F~! [FC (H)] C HL? (u),i.e. FC(H) C F [HL? (1)] which completes
the proof of item 1.

Since

HM) = {a: —a(z,...,r) € SymS(H,(C)}
it follows from Eq. that

HF, (1) = F~! [symif (H, (C)} — L2 [HW] .

3. & 4. Ttem 3. and 4. follows directly from items 1. and 2. and the fact that

FC(H) = @, SymS (H,C) (orthogonal direct sum).
5. Let H,, = @Z;O’H(k) be the holomorphic polynomials of degree less than or
equal to n. Since e L/2H,, = H,, we see that

Hy = Bp_ge “PHE) = &1 HFi (1) -

Therefore if p € H,, is orthogonal to #H,—1 then p € &}_HF, (1) and
p L @} ZyHF, (1) which implies p € HF,, (u) . Conversely if p € HF, (1),
then p € F, (u) and therefore perpendicular to all polynomials of degree
less than n and in particular to the holomorphic polynomials of degree less
than n.

6. If f € HL*(p) and f = > o7 fn is its Hermite expansion, then py :=
ZnN:o fn is a holomorphic polynomial for each N € N. Moreover, py — f
in L2 ().
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Notation 12.15 Let H be a real Hilbert space and Hc = H + iH be its com-
plexification. Given a real multilinear form, o : H" — C, we let ac be the
unique complex multi-linear form on HE such that ac = o on H™.

The next theorem shows that the Segal-Bargmann transform acts on the
Fock space by this very simple complexification operation.

Theorem 12.16. Let W be a finite dimensional real Banach space and p and
v be non-degenerate Gaussian measures on (W,Bw) so that Hu., = H, =
H, = W as sets. Then the Segal-Bargmann transform S, , : L* (W, p*v) —
HL? (W, u X v) (see Corollary satisfies FjxuSuuf = (Fusww f)e for all
feL?W,uxv), i.e. the following diagram commutes,

Spv
L2 (W, v) HL?> (W, p X v)

Fl iF

F(Hpw)>a—sac € F(H,+iH,)

Moreover the action of Sy, Fn (uxv) = HF, (1 X v) is given by
Suw [eiL“*”/Qp} = e~ Luxv /2. (12.8)

(We write H,, + iH, rather than Hc to indicate that as a real Hilbert space
H,+iH,=H,x H,.)

Proof. Let Ty, := Fjuix Sy, Fib- Since Ly = Ly + Ly, Ly, = L+ Ly,

and S, ,p = [e‘L"p]C for p € P (W*) we see that

S,u,,l/ |:€_Lu*u/2pi| — |:6_LV6_%(LH+LV)p:|

7%(L;L*Lu)

_ | ,—i@u.-L.)
= e 2\
=TTl

7L}L><l//2

=e pC:e_%(L“'i_L”)p(C:e

This proves Eq. (12.8)). Hence if « € Sym,, (H) and p (z) := Lo (z,...,2), then
Tu,ua = F,U«XVSH,V |:€_L’””/2p:| = FHXVC_LMXV/QPC

= Dg |:€L“X”/267L“X”/2pc}

= Diipc = ac € Sym,, (Hyx, = H, +iH,)
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Remark 12.17. The theory described above is particularly nice in the special
case where ;4 = v so that u X ¥ = pu x p is compatible with the complex
structure on Wc. In this case the following properties hold;

1. quxp (o M;) = qux, (@) so that g,,x,, is invariant under M*.

2. The inner product on H,, x H,, = H,,+iH,, is now the real part of a complex
inner product and with this complex inner product H, + iH, = (H,). as
Hilbert spaces.

3. If f is holomorphic then

Lyxuf = (Lu + Eu) f= (Lu - Lu) f=0,

i.e. holomorphic functions are now harmonic. Consequently, e~ Lr#xu/2p = p
whenever p is a holomorphic polynomial.
4. The Fock-It6-Kakutani isometry for an element f € HL? (Wc,u x p) is
now simply given by
Fuxuf = (Dgy );.Lo:o

which we will simply refer to as a Taylor map.
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