Quantized Yang-Mills (1+1) and the Segal-Bargmann-Hall Transform

Joint with Brian Hall

Bruce Driver

Department of Mathematics, 0112
University of California at San Diego, USA
http://math.ucsd.edu/~driver

Cornell 6th Summer School
Cornell, July 19-30, 2010

Preliminaries

In this talk;

1. We are going to extend results in [Gross \& Malliavin, 1996, Hall \& Sengupta, 1998] which shows how to get one of Hall's transform introduced in [Hall, 1994].
2. Along the way we will describe the Yang-Mill's quantization problem.
3. Following [Driver \& Hall, 1999] (motivated by [Landsman \& Wren, 1997]) we will see that a solution to the $Y M_{2}$-quantization problem ($2=1+1$ (space+time) dimensions) gives rise to a one parameter family of Hall - transforms which interpolate between his two original transforms.
4. See [Albeverio et al., 1999] for the Segal-Bargmann transform as related to the stochastic quantization of $Y M_{2}$.

Fock Spaces

Definition 1 (Bosonic Fock spaces). Given a real Hilbert space, H and $t>0$, let;

$$
\operatorname{Mult}_{n}(H, \mathbb{C})=\left\{\alpha: H^{n} \xrightarrow{\text { Multi-Linear }} \mathbb{C}:\|\alpha\|_{\operatorname{Mult}_{n}(H, \mathbb{C})}^{2}<\infty\right\}
$$

where

$$
\begin{gathered}
\|\alpha\|_{\operatorname{Mult}_{n}(H, \mathbb{C})}^{2}=\sum_{h_{1}, \ldots, h_{n} \in S}\left|\alpha\left(h_{1}, \ldots, h_{n}\right)\right|^{2} \\
\operatorname{Sym}_{n}(H, \mathbb{C})=\left\{\alpha \in \operatorname{Mult}_{n}(H, \mathbb{C}): \alpha \text { is symmetric }\right\},
\end{gathered}
$$

and

$$
\mathcal{F}(H ; t):=\left\{\alpha=\left(\alpha_{n}\right)_{n=0}^{\infty} \in \prod_{n=0}^{\infty} \operatorname{Sym}_{n}(H, \mathbb{C}):\|\alpha\|_{t}^{2}<\infty\right\}
$$

where

$$
\|\alpha\|_{t}^{2}:=\sum \frac{t^{n}}{n!}\left\|\alpha_{n}\right\|_{\operatorname{Mult}_{n}(H, \mathbb{C})}^{2}
$$

Examples

Example 1. Suppose $\left(W, H=H_{\mu}, \mu\right)$ is an abstract Wiener space and $f \in \mathcal{P}\left(W^{*}\right)$ then;

$$
\alpha_{n}:=D_{x}^{n} f \in \operatorname{Sym}_{n}(H, \mathbb{C})
$$

where

$$
D_{x}^{n} f\left(h_{1}, \ldots, h_{n}\right):=\left(\partial_{h_{1}} \ldots \partial_{h_{n}} f\right)(x),
$$

and

$$
\alpha=\left(\alpha_{n}\right)_{n=0}^{\infty} \in \cap_{t>0} \mathcal{F}(H ; t) .
$$

Moreover,

$$
f(h)=\sum_{n=0}^{\infty} \frac{1}{n!} \alpha_{n}(h, \ldots, h)
$$

for all $h \in H$.

Example 2. If $H=L^{2}([0, T], \mathbb{R})$ then

$$
L^{2}\left([0, T]^{n}, \mathbb{C}\right) \ni u \rightarrow \alpha_{u} \in \operatorname{Mult}_{n}(H, \mathbb{C})
$$

where

$$
\alpha_{u}\left(h_{1}, \ldots, h_{n}\right):=\int_{[0, T]^{n}} u\left(s_{1}, \ldots, s_{n}\right) h_{1}\left(s_{1}\right) \ldots h_{n}\left(s_{n}\right) d \mathbf{s} .
$$

is unitary. $\left(\mathbf{s}:=\left(s_{1}, \ldots, s_{n}\right).\right)$
Example 3. Similarly if $H=L^{2}([0, T], \mathbb{R})$ and

$$
\Delta_{n}(T):=\left\{\mathbf{s} \in[0, T]: 0 \leq s_{1} \leq s_{2} \leq \cdots \leq s_{n} \leq T\right\}
$$

then

$$
L^{2}\left(\Delta_{n}(T), \mathbb{C}\right) \ni u \rightarrow \alpha_{u} \in \operatorname{Sym}_{n}(H, \mathbb{C})
$$

is an isomorphism where

$$
\alpha_{u}\left(h_{1}, \ldots, h_{n}\right):=\sum_{\sigma \in \operatorname{Perm}_{n}} \int_{\Delta_{n}(T)} u\left(s_{1}, \ldots, s_{n}\right) h_{\sigma 1}\left(s_{1}\right) \ldots h_{\sigma n}\left(s_{n}\right) d \mathbf{s}
$$

In this case

$$
\left\|\alpha_{u}\right\|_{\operatorname{Mult}_{n}(H, \mathbb{C})}^{2}=n!\int_{\Delta_{n}(T)}|u(\mathbf{s})|^{2} d \mathbf{s}
$$

Summary of Lecture 5

Theorem 2 (Fock, Itô, Kakutani, Segal, Bargmann). Let μ and ν be non-degenerate Gaussian measures on $\left(W, \mathcal{B}_{W}\right)$ with $H_{\mu}=H_{\nu}$ as vector spaces. Then the following diagram of unitary maps commute,

$$
\begin{aligned}
& L^{2}(W, \mu * \nu) \xrightarrow{S_{\mu, \nu}} \mathcal{H} L^{2}\left(W_{\mathbb{C}}, \mu \times \nu\right) \\
& \quad F_{\mu * \nu} \mid \\
& \mathcal{F}\left(H_{\mu * \nu}\right) \ni \alpha \longrightarrow \alpha_{\mathbb{C}} \in \mathcal{F}\left(F_{\mu \times \nu}+i H_{\mu}\right)
\end{aligned}
$$

where $S_{\mu, \nu}$ is the generalized Segal-Bargmann map;

$$
S_{\mu, \nu} p:=\nu_{2} * p_{\mathbb{C}}=\left(\nu_{2} * p\right)_{\mathbb{C}}
$$

and where for any Gaussian measure γ on $\left(W, \mathcal{B}_{W}\right) F_{\gamma}$ is the Fock-Itô-Kakutani isomorphism defined by

$$
L^{2}(\gamma) \ni f \rightarrow F_{\gamma} f:=\left(D_{0}^{n}(\gamma * f)\right)_{n=0}^{\infty} \in \mathcal{F}\left(H_{\gamma}\right)
$$

Comments:

1. As vector space $H_{\mu}+i H_{\nu}=H_{\mathbb{C}}$ but as real inner product spaces $H_{\mu}+i H_{\nu}=H_{\mu} \times H_{\nu}$.
2. $\mathcal{F}_{\mathbb{C}}\left(H_{\mu}+i H_{\nu}\right)$ denotes the Fock space of complex multi-linear forms on $H_{\mu}+i H_{\nu}$.

Yang-Mills set up

- $K=S U(2)$ or S^{1} or a compact Lie Group

$$
S U(2)=\left\{g:=\left[\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right]: a, b \in \mathbb{C} \ni|a|^{2}+|b|^{2}=1\right\}
$$

- $\mathfrak{k}=\operatorname{Lie}(K)$, e.g. $\operatorname{Lie}(S U(2))=s u(2)$

$$
s u(2)=\left\{A:=\left[\begin{array}{cc}
i \alpha & -\bar{\beta} \\
\beta & -i \alpha
\end{array}\right]: \alpha \in \mathbb{R} \text { and } \beta \in \mathbb{C}\right\}
$$

- Lie bracket: $[A, B]=A B-B A=: a d_{A} B$
- $\langle A, B\rangle=-\operatorname{tr}(A B)=\operatorname{tr}\left(A^{*} B\right)$
(a fixed Ad - K - invariant inner product)
- $M=\mathbb{R}^{d}$ or $T^{d}=\left(S^{1}\right)^{d}$.
- $\mathcal{A}=L^{2}\left(M, \mathfrak{k}^{d}\right)$ - the space of connection 1 -forms.
- For $A \in \mathcal{A}$ and $1 \leq i, k \leq d$, let

$$
\begin{aligned}
& \nabla_{k}^{A}:=\partial_{k}+a d_{A_{k}} \text { (covariant differential) } \\
& \quad \text { and } \\
& F_{k i}^{A}\left.:=\partial_{k} A_{i}-\partial_{i} A_{k}+\left[A_{k}, A_{i}\right] \text { (Curvature of } A\right)
\end{aligned}
$$

Yang - Mills Equations (in the temporal gauge)

For $A(t) \in \mathcal{A}$, i.e. for $(t, x) \in \mathbb{R} \times M$,

$$
A(t, x)=\left(A_{1}(t, x), A_{2}(t, x), \ldots, A_{d}(t, x)\right) \in \mathfrak{k}^{d}
$$

the Y.M. equations are the Euler Lagrange equations for the action functional,

$$
I_{T}(A)=\frac{1}{4} \int_{[0, T] \times \mathbb{R}^{d}} F^{A}(t, x) \cdot F^{A}(t, x) d x d t
$$

where

$$
F^{A}(t, x) \cdot F^{A}(t, x)=\sum \eta^{\mu} \eta^{\nu} \operatorname{tr}\left[F_{\mu, \nu}^{A}(t, x) F_{\mu, \nu}^{A}(t, x)\right]
$$

and $\eta=(1,-1,-1, \ldots,-1)$.
Using

$$
\begin{aligned}
\partial_{B} F_{j, k}^{A}(x) & =\partial_{j} B_{k}-\partial_{k} B_{j}+\left[B_{j}, A_{k}\right]+\left[A_{j}, B_{k}\right] \\
& =\nabla_{j}^{A} B_{k}-\nabla_{k}^{A} B_{j}=: d^{A} B
\end{aligned}
$$

we find

$$
\begin{aligned}
\left(\partial_{B} I_{T}\right)(A) & =\frac{1}{2} \int_{[0, T] \times \mathbb{R}^{d}} d^{A} B \cdot F^{A}(t, x) d x d t \\
& =\frac{1}{2} \int_{[0, T] \times \mathbb{R}^{d}} B \cdot\left(d^{A}\right)^{*} F^{A}(t, x) d x d t .
\end{aligned}
$$

Therefore the Euler Lagrange equations are,

$$
\left(d^{A}\right)^{*} F^{A}(t, x)=0
$$

Writing out these equation explicitly give the Yang - Mills PDE's,

$$
\begin{align*}
\dot{A}(t) & =E(t) \quad \text { (i.e. define } E(t):=\dot{A}(t)) \tag{1}\\
\dot{E}_{i}(t) & =\ddot{A}_{i}=\sum_{k=1}^{d} \nabla_{k}^{A} F_{k i}^{A}=: Q(A, \partial A) \text { (Dynamical Eqs.) } \tag{2}\\
0 & =\nabla^{A} \cdot E=\sum_{k=1}^{d} \nabla_{k}^{A} E_{k} \text { (Constraint Eqs.) } \tag{3}
\end{align*}
$$

Remark 3. The Yang - Mills equations are invariant under the Gauge group, $\mathcal{G}:=C^{\infty}(M, K)$ which acts on \mathcal{A} by

$$
\begin{equation*}
A \in \mathcal{A} \rightarrow A^{g}=g^{-1} A g+g^{-1} \nabla g \tag{4}
\end{equation*}
$$

This is a group action, namely $\left(A^{g}\right)^{k}=A^{g k}$ for $g, k \in \mathcal{G}$.

Maxwell's Equations $\left(d=3 K=S^{1}\right)$

If $d=3, K=S^{1}$ and we set

$$
E(t):=\dot{A}(t) \text { and } B(t)=\nabla \times A(t),
$$

then the Yang - Mills equations become Maxwell's Equations:

$$
\begin{gathered}
\dot{E}=-\nabla \times B \text { and } \dot{B}=\nabla \times E \\
\nabla \cdot E=0 \text { and } \nabla \cdot B=0
\end{gathered}
$$

Newton Form of the Y. M. Equations

Define the potential energy functional, $V(A)$, by

$$
V(A):=\frac{1}{2} \int_{\mathbb{R}^{d}} \sum_{1 \leq j<k \leq d}\left|F_{j, k}^{A}(x)\right|^{2} d x
$$

Then the dynamics equation may be written in Newton form as

$$
\ddot{A}(t)=-\left(\operatorname{grad}_{\mathcal{A}} V\right)(A) .
$$

The conserved energy is thus

$$
\begin{equation*}
\text { Energy }(A, \dot{A})=\frac{1}{2}\|\dot{A}\|_{\mathcal{A}}^{2}+V(A) \tag{5}
\end{equation*}
$$

The weak form of the constraint Eq. (3) is, for $h \in C_{c}^{\infty}(M, \mathfrak{k})$,

$$
0=\left(\nabla^{A} \cdot E, h\right)_{L^{2}(M ; \mathfrak{k})}=-\left(E, \nabla^{A} h\right)_{\mathcal{A}}
$$

Review Canonical Quantization

CONCEPT	CLASSICAL	QUANTUM		
STATE SPACE	$T^{*} \mathbb{R}^{d} \cong \mathbb{R}^{d} \times \mathbb{R}^{d} \ni(p, q)$	$\begin{aligned} & K=P L^{2}\left(\mathbb{R}^{d}, d m\right) \\ & \psi \in L^{2}\left(\mathbb{R}^{d}, d m\right) \ni\\|\psi\\|_{K}=1 \end{aligned}$		
OBSERVABLES Examples Angular Momentum	$\begin{aligned} & \text { Functions on } T^{*} \mathbb{R}^{d} \\ & p_{k} \\ & q_{k} \\ & H(q, p)=\frac{1}{2 m} p \cdot p+V(q) \\ & (q \times p)_{k}=\sum_{l, j} \varepsilon_{k j l} q_{j} p_{l} \end{aligned}$	S.A. ops. on K $\begin{aligned} & \hat{p}_{k}=\frac{\hbar}{i} \frac{\partial}{\partial q_{k}} \\ & \hat{q}_{k}=M_{q_{k}} \\ & \hat{H}=-\frac{\hbar^{2}}{2 m} \Delta+V(q) \\ & \frac{1}{i} \sum_{l, j} \varepsilon_{k j l} \hat{q}_{j} \hat{p}_{l} \end{aligned}$		
DYNAMICS	Newtons Equations of Motion $\ddot{q}(t)=-\nabla V(q(t))$	Schrödinger, Eq. $i \hbar \dot{\psi}(t)=\hat{H} \psi(t), \quad \psi(t) \in K$		
MEASUREMENTS	Evaluation $f(q, p)$	$\langle\psi, \theta \psi\rangle \text { - expected }$ value.		

Formal Quantization of the Y. M. - Equations

Open Problem. When $d=3$, "Quantize" the Yang - Mills equations and show the resulting quantum - mechanical Hamiltonian has a mass gap. See www.claymath.org.

Let us explain the formal quantization of the Y. M. equations:

Raw quantum Hilbert Space: $\mathbb{H}=L^{2}(\mathcal{A}$, " $\mathcal{D} A$ " $)$

$$
\begin{array}{r}
\text { Position: }(A, k) \rightsquigarrow M_{(A, k)} \\
\text { Momentum: }(E, k) \rightsquigarrow \frac{1}{i} \partial_{k} \text { for } k \in C_{c}^{\infty}\left(\mathbb{R}^{d}, \mathfrak{k}^{d}\right) \\
\text { Energy Function: } K . E .+P . E . \rightsquigarrow H:=-\frac{1}{2} \Delta_{\mathcal{A}}+M_{V}
\end{array}
$$

Recall that the Potential Energy (V) is given by

$$
V(A):=\frac{1}{2} \int_{\mathbb{R}^{d}} \sum_{1 \leq j<k \leq d}\left|F_{j, k}^{A}(x)\right|^{2} d x
$$

Constraints

We must also quantize the constraint functionals:

$$
\begin{aligned}
\left(E, \nabla^{A} h\right)_{\mathcal{A}} & =\sum_{k \in O . N . B .(\mathcal{A})}\left(k, \nabla^{A} h\right)_{\mathcal{A}}(E, k)_{\mathcal{A}} \\
& \rightsquigarrow \sum_{k \in O . N . B .(\mathcal{A})}\left(k, \nabla^{A} h\right)_{\mathcal{A}} \frac{1}{i} \partial_{k}=\frac{1}{i} \partial_{\nabla^{A} h}
\end{aligned}
$$

Remark 4. Since

$$
\sum_{\text {EO.N.B. }(\mathcal{A})} \partial_{k}\left(k, \nabla^{A} h\right)_{\mathcal{A}}=\sum_{k \in O . N . B .(\mathcal{A})}(k,[k, h])_{\mathcal{A}}=\sum_{k \in O . N . B .(\mathcal{A})} 0=0,
$$

there is no ordering ambiguity in the quantization of $\left(E, \nabla^{A} h\right)_{\mathcal{A}}$.

Definition 5. For each $h \in C_{c}^{\infty}(M, \mathfrak{k})$, let X^{h} be the vector field on \mathcal{A} defined by:

$$
X^{h}(A):=\nabla^{A} h=\nabla h+a d_{A} h
$$

With this notation we want to trim down the raw Hilbert space to:

$$
\mathbb{H}_{\text {physical }}=\{F \in \mathbb{H}: \overbrace{X^{h} F:=\partial_{\nabla_{h} h} F=0}^{\text {Constraint Conditions }} \forall h \in C_{c}^{\infty}\left(\mathbb{R}^{d}, \mathfrak{k}\right)\}
$$

Theorem 6 (Concrete description of $\mathbb{H}_{\text {physical }}$). The physical Hilbert space is given by,

$$
\mathbb{H}_{\text {physical }}=\left\{F \in \mathbb{H}: F\left(A^{g}\right)=F(A) \forall A \in \mathcal{A}, g \in \mathcal{G}\right\}
$$

Proof: First observe that

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{0} A^{e^{t h}} & =\left.\frac{d}{d t}\right|_{0}\left(A d_{e^{-t h}} A+e^{-t h} \nabla e^{t h}\right) \\
& =-[h, A]+\nabla h=a d_{A} h+\nabla h=X^{h}(A) .
\end{aligned}
$$

Q.E.D.

Hence X^{h} generates the flow, $A \rightarrow A^{e^{t h}}$. Therefore the following are equivalent:

1. $X^{h} F=0$ for all $h \in C_{c}^{\infty}(M, \mathfrak{k})$
2. $F \circ e^{t X^{h}}=F$ for all $h \in C_{c}^{\infty}(M, \mathfrak{k})$
3. $F\left(A^{e^{h}}\right)=F(A)$ for all $h \in C_{c}^{\infty}(M, \mathfrak{k})$
4. $F\left(A^{g}\right)=F(A) \forall A \in \mathcal{A}, g \in \mathcal{G}$.

Wilson loop variable description of $\mathbb{H}_{\text {physical }}$

Definition 7 (Restricted Gauge Group). $\mathcal{G}_{0}:=\{g \in \mathcal{G}: g(0)=i d\}$.
Let $\mathcal{L}=\mathcal{L}(M)$ loops on M based at $o \in M$.

Definition 8. Let $/ /{ }^{A}(\sigma) \in K$ be (left invariant) parallel translation along $\sigma \in \mathcal{L}$, that is $/ /^{A}(\sigma):=/ /_{1}^{A}(\sigma)$, where

$$
\frac{d}{d t} / /_{t}^{A}(\sigma)+\sum_{i=1}^{d} \dot{\sigma}_{i}(t) A_{i}(\sigma(t)) / /_{t}^{A}(\sigma)=0 \text { with } / /_{0}^{A}(\sigma)=i d .
$$

Theorem 9 (Loop Variable Theorem). Suppose $A, B \in \mathcal{A}$. Then $/ /^{A}(\sigma)=/ /^{B}(\sigma)$ for all $\sigma \in \mathcal{L}$ iff $A=B^{g}$ for some $g \in \mathcal{G}_{0}$. We call the function, $A \rightarrow / / A(\sigma)$, a "Loop variables" on $\mathcal{A} / \mathcal{G}_{0}$.

Proof:

- If $A=B^{g}$ for some $g \in \mathcal{G}_{0}$ and $\sigma:[0,1] \rightarrow M$ such that $\sigma(0)=o$, then

$$
/ /^{A}(\sigma)=/ /^{B^{g}}(\sigma)=g(\sigma(1))^{-1} / /^{B}(\sigma) .
$$

- Hence if $A=B^{g}$ and $\sigma \in \mathcal{L}$, then $/ /^{A}(\sigma)=/ /^{B}(\sigma)$.
- If $/ /^{A}(\sigma)=/ /^{B}(\sigma)$ for all $\sigma \in \mathcal{L}$, define $g(\sigma(1))=/ /^{B}(\sigma) / /^{A}(\sigma)^{-1}$ for all $\sigma:[0,1] \rightarrow M$ such that $\sigma(0)=o$.
- Then g is well defined and $A=B^{g}$.
Q.E.D.

Corollary 10.

$$
\begin{aligned}
\mathbb{H}_{\text {physical }} & =\left\{F \in \mathbb{H}: F\left(A^{g}\right)=F(A) \forall A \in \mathcal{A}, g \in \mathcal{G}\right\} \\
& " "\left\{F \in L^{2}(\mathcal{A}, \mathcal{D} A): F=F\left(\left\{/ /^{A}(\sigma): \sigma \in \mathcal{L}\right\}\right)\right\} .
\end{aligned}
$$

Restriction to $d=1$ (general K)

$S^{1}=[0,1] /(0 \sim 1) \ni \theta$ and write $\partial_{\theta}=\frac{\partial}{\partial \theta}$

In this case,

- $\mathcal{A}=L^{2}\left(S^{1}, \mathfrak{k}\right), \quad$ Configuration space
- $\mathcal{G}_{0}=\left\{g \in H^{1}\left(S^{1} \rightarrow K\right): g(0)=g(1)=i d \in K\right\}$, Gauge Group
- $A^{g}=A d_{g^{-1}} A+g^{-1} g^{\prime}$
- $\mathbb{H}=$ " $L^{2}(\mathcal{A}, \mathcal{D} A)$ " Raw Hilbert Space
- $\mathbb{H}_{\text {physical }}=\left\{F \in \mathbb{H}: F_{\phi}(A)=\phi(/ / 1(A)), \phi: K \rightarrow \mathbb{C}\right\}$, where $/ / \theta(A) \in K$ is the solution to

$$
\frac{d}{d \theta} / / \theta(A)+A(\theta) / /_{\theta}(A)=0 \text { with } / / 0(A)=i d \in K
$$

$/ / 1(A) \in K$ is the holonomy of A.

- $F^{A} \equiv 0$ when $d=1$ and therefore, $V(A) \equiv 0$. No curvature in 1 d
- $H=-\frac{1}{2} \Delta_{\mathcal{A}} \quad$ (Quantum Hamiltonian) Raw Hamiltonian

A Physics Idea

Theorem 11 (Heuristic: c.f. Witten 1991, CMP 141.). Suppose K is simply connected and for ϕ let $F_{\phi}(A):=\phi\left(/ /{ }_{1}(A)\right)$, then

$$
\phi \in L^{2}(K, d \text { Haar }) \rightarrow F_{\phi} \in \mathbb{H}_{\text {physical }}
$$

is a "Unitary" map which intertwines $\Delta_{\mathcal{A}}$ and Δ_{K}, i.e.

$$
\begin{equation*}
\Delta_{\mathcal{A}}[\phi \circ / / 1]=\Delta_{\mathcal{A}} F_{\phi}=F_{\Delta_{K} \phi}=\left(\Delta_{K} \phi\right) \circ / / 1 . \tag{6}
\end{equation*}
$$

Goal: Give a precise meaning to the previous idea.

To do this we will "regularize" $\mathcal{D} A$ by the Gaussian measure

$$
d \tilde{P}_{s}(A)=\frac{1}{Z_{s}} \exp \left(-\frac{1}{2 s}|A|_{\mathcal{A}}^{2}\right) \mathcal{D} A
$$

with the idea of letting $s \rightarrow \infty$ at the end to "recover" $\mathcal{D} A$.
The measure \tilde{P}_{s} is a Gaussian measure living on a certain completion, $\overline{\mathcal{A}}$, of \mathcal{A}.

A Realization of $\overline{\mathcal{A}}$ as $W(\mathfrak{k})$

- $W(\mathfrak{k}):=\{\omega \in C([0,1] \rightarrow \mathfrak{k}): \omega(0)=0\}$
- $W(K):=\{g \in C([0,1] \rightarrow K: g(0)=e \in K\}$
- $H(\mathfrak{k}):=\left\{h \in W(\mathfrak{k}): \int_{0}^{1}\left|h^{\prime}(s)\right|^{2} d s<\infty\right\}$
- Note that $\partial_{\theta}: H(\mathfrak{k}) \rightarrow \mathcal{A}=L^{2}\left(S^{1} ; \mathfrak{k}\right)$ is isometric.
- Define $\overline{\mathcal{A}}:=\partial_{\theta} W(\mathfrak{k})$. Completed Connection Forms
- $\tilde{P}_{s} \rightarrow P_{s}$ - Wiener measure on $W(\mathfrak{k})$ with variance s.
- $/ /_{\theta}(A) \rightarrow / /_{\theta}(a)$ where for $a \in W(\mathfrak{k})$,

$$
d / /_{\theta}(a)+a^{\prime}(\theta) / /_{\theta}(a)=0 \text { with } / /_{0}(a)=i d \in K
$$

- The action of gauge group, $A \rightarrow A^{g}$ goes over to

$$
a \rightarrow a_{s}^{g}=\int_{0}^{s}\left(g^{-1}(\sigma) d a(\sigma) g(\sigma)+g^{-1}(\sigma) d g(\sigma)\right)
$$

Gross' Ergodicity Theorem

The following theorem is a stochastic version of the Loop Variable Theorem, item 2. of Theorem 9 .

Theorem 12 ([Gross, 1993]). Let

$$
\begin{aligned}
\mathbb{H}_{\text {physical }}^{s} & :=\left[L^{2}\left(W(\mathfrak{k}), P_{s}\right)\right]^{\mathcal{G}_{0}} \\
& =\left\{F \in L^{2}\left(W(\mathfrak{k}), P_{s}\right): F\left(a^{g}\right)=F(a) \text { for } P_{s} \text { a.e. } a\right\}
\end{aligned}
$$

Then

$$
\mathbb{H}_{\text {physical }}^{s}=\left\{F=f(/ / 1): f \in L^{2}\left(K, p_{s}(x) d x\right)\right\} .
$$

where

$$
p_{s}(x) d x=P_{s}-\operatorname{Law}(/ / 1) .
$$

Remark 13. The action, $F(a) \rightarrow F\left(a^{g}\right)$ is not unitary except in the limit as $s \rightarrow 0$. The unitarized action has no non-trivial fixed elements in $L^{2}\left(W(\mathfrak{k}), P_{s}\right)$, see
[Driver \& Hall, 2000] for a proof using the Fourier Wiener transform. Hence it would be a
BAD idea to unitarize this action.
Corollary 14. The function, p_{s}, is the convolution heat kernel on K. Since
$\lim _{s \rightarrow \infty} p_{s}(x)=1$,

$$
\lim _{s \rightarrow \infty} \mathbb{H}_{\text {physical }}^{s} \cong L^{2}(K, d x)
$$

An Explanation for Eq. (6)

Recall Eq. (6) states $\Delta_{\mathcal{A}}[\phi \circ / / 1]=\left(\Delta_{K} \phi\right) \circ / / 1$

- If we let S_{0} be an orthonormal basis of $H(\mathfrak{k})$ and

$$
\begin{equation*}
\Delta_{H(\mathfrak{k})}=\sum_{h \in S_{0}} \partial_{h}^{2} \tag{7}
\end{equation*}
$$

then the assertion in Eq. (6) becomes:

$$
\begin{equation*}
\Delta_{H(\mathfrak{k})}(\phi \circ / / 1) \stackrel{?}{=}\left(\Delta_{K} \phi\right) \circ / /_{1} \tag{8}
\end{equation*}
$$

Proof: (Heursitic explanation.)

- Use $\langle\cdot, \cdot\rangle$ on \mathfrak{k} to construct a bi-invariant metric on $T K$.
- Let $H(K)$ be the space of finite energy paths on K starting at $e \in K$.
- Equip $H(K)$ with the right invariant metric induced from the metric on

$$
H(\mathfrak{k}):=\operatorname{Lie}(H(K)) .
$$

Then it is a fact that the "Cartan Rolling Map, $\psi: H(\mathfrak{k}) \rightarrow H(K)$ defined by

$$
\psi(a):=/ / .(a)
$$

is an isometric isomorphism of Riemannian manifolds. Consequently we may "conclude" that ψ intertwines the Laplacian, $\Delta_{H(\mathfrak{k})}$ on $H(\mathfrak{k})$ with the Laplacian, $\Delta_{H(K)}$ on $H(K)$, i.e.

$$
\begin{equation*}
\Delta_{H(\mathfrak{k})}(f \circ \psi)=\left(\Delta_{H(K)} f\right) \circ \psi \tag{9}
\end{equation*}
$$

When $f(g)=\varphi(g(1))$, one can show

$$
\Delta_{H(K)} f(g)=\left(\Delta_{K} \varphi\right)(g(1))
$$

and therefore Eq. (9) implies,

$$
\Delta_{H(\mathfrak{k})}(\phi \circ / / 1)=\left(\Delta_{K} \phi\right) \circ / /{ }_{1}
$$

Q.E.D.

Why is this Explanation not Satisfactory

- The operator $\Delta_{H(\mathfrak{k})}$ makes sense on smooth cylinder functions.
- However, $\phi \circ / / 1$ is not a cylinder function.
- Problematic Theorem: The densely defined operator $\Delta_{H(\mathfrak{k})}$ on $L^{2}\left(W(\mathfrak{k}), P_{s}\right)$ is not closable.

Proof. Consider the case $\mathfrak{k}=\mathbb{R}$ and $s=1$, so that $\mu=P_{1}$ is standard Wiener measure. Let

$$
f(a)=2 \int_{0}^{1} a_{\theta} d a_{\theta}=a_{1}^{2}-1
$$

a cylinder function. One computes

$$
\Delta_{H(\mathfrak{k})} f(a)=\sum_{h \in S_{0}} 2 h_{1}^{2}=2
$$

On the other hand, we have $f(a)=\lim _{|\mathcal{P}| \rightarrow 0} f_{\mathcal{P}}(a)$ where $f_{\mathcal{P}}(a)$ is the cylinder function

$$
f_{\mathcal{P}}(a)=2 \sum_{s_{i} \in \mathcal{P}} a_{s_{i}}\left(a_{s_{i+1}}-a_{s_{i}}\right) .
$$

But

$$
\Delta_{H(\mathfrak{k})} f_{\mathcal{P}}(a)=0!
$$

(Compare with the harmonic function

$$
\left.\left(x_{1}+x_{2}+\cdots+x_{n}\right) x_{n+1} \text { on } \mathbb{R}^{n+1} .\right)
$$

Therefore $\lim _{|\mathcal{P}| \rightarrow 0} f_{\mathcal{P}}=f$ while

$$
0=\lim _{|\mathcal{P}| \rightarrow 0} \Delta_{H(\mathfrak{k})} f_{\mathcal{P}}(a) \neq \Delta_{H(\mathfrak{k})} f=2
$$

Segal - Bargmann Theory

- Let $\mathfrak{k}_{\mathbb{C}}=\mathfrak{k}+i \mathfrak{k}$ be the complexification of \mathfrak{k}
- $K_{\mathbb{C}}=$ the complexification of K, e.g. $S U(2)_{\mathbb{C}}=S L(2, \mathbb{C})$.
- For $s>t / 2$, let $M_{s, t}$ be the Gaussian measure on $W\left(\mathfrak{k}_{\mathbb{C}}\right)$,

$$
M_{s, t}=\operatorname{Law}(\sqrt{s-t / 2} \alpha+i \sqrt{t / 2} \beta)
$$

where α and β are independent standard $\left(\mathfrak{k},\langle\cdot, \cdot\rangle_{\mathfrak{k}}\right)$ - valued Brownian motions.
Theorem 15 (Segal- Bargmann). There exists an isometry

$$
S_{t}: L^{2}\left(W(\mathfrak{k}), P_{s}\right) \rightarrow L^{2}\left(W\left(\mathfrak{k}_{\mathbb{C}}\right), M_{s, t}\right)
$$

such that

$$
\left(S_{t} f\right)(c)=\int f_{\mathbb{C}}(c+a) d P_{t}(a)=\left(e^{\frac{t}{2} \Delta_{H(\mathfrak{k})}} f\right)_{\mathbb{C}}(c)
$$

For all polynomial cylinder functions f. Moreover Ran $\left(S_{t}\right)=$ closure of Holomorphic cylinder functions.

Proof: Apply our generalized Segal-Bargmann theorem with

$$
\begin{aligned}
& \mu:=P_{s-t / 2}=\operatorname{Law}(\sqrt{s-t / 2} \alpha) \\
& \nu:=P_{t / 2}=\operatorname{Law}(\sqrt{t / 2} \beta)
\end{aligned}
$$

so that

$$
\begin{aligned}
S_{t} & =P_{t} *(\cdot)=\nu_{2} *(\cdot), \\
\mu \times \nu & =M_{s, t}, \quad \text { and } \\
\mu * \nu & =\operatorname{Law}(\sqrt{s-t / 2} \alpha+\sqrt{t / 2} \beta)=P_{s}
\end{aligned}
$$

Q.E.D.

Theorem 16 (Stochastic Representation Theorem). S_{t} is also characterized by

$$
S_{t} \int_{\triangle_{n}}\left\langle\alpha(\tau), d a^{\otimes^{n}}(\tau)\right\rangle=\int_{\triangle_{n}}\left\langle\alpha_{\mathbb{C}}(\tau), d c^{\otimes^{n}}(\tau)\right\rangle
$$

where $\alpha: \Delta_{n} \rightarrow \mathfrak{k}$ is a deterministic function.

Proof: Suppose that

$$
\alpha(\tau)=1_{J_{1} \times J_{2} \times \cdots \times J_{n}}(\tau) \eta
$$

with $\eta \in \mathfrak{k}^{\otimes n}$ and $J_{i}=\left(s_{i}, t_{i}\right]$ are intervals such that $J_{i}<J_{k}$ for all $i<k$, i.e. $t_{i}<s_{k}$. Let $a\left(J_{i}\right):=a_{t_{i}}-a_{s_{i}}$ and

$$
f(a)=\int_{\triangle_{n}}\left\langle\alpha(\tau), d a^{\otimes^{n}}(\tau)\right\rangle=\left\langle\eta, a\left(J_{1}\right) \otimes \cdots \otimes a\left(J_{n}\right)\right\rangle
$$

then

$$
f_{\mathbb{C}}(c)=\int_{\triangle_{n}}\left\langle\alpha(\tau), d c^{\otimes^{n}}(\tau)\right\rangle=\left\langle\eta, c\left(J_{1}\right) \otimes \cdots \otimes c\left(J_{n}\right)\right\rangle
$$

where $c\left(J_{i}\right):=c_{t_{i}}-c_{s_{i}}$.

Since $a \rightarrow\left\langle\eta,\left(c\left(J_{1}\right)+a\left(J_{1}\right)\right) \otimes \cdots \otimes\left(c\left(J_{n}\right)+a\left(J_{n}\right)\right)\right\rangle$ is a Harmonic polynomial of a;

$$
\begin{aligned}
S_{t} f(c) & :=\int_{W(\mathfrak{k})} f_{\mathbb{C}}(c+a) d P_{t}(a) \\
& =\int_{W(\mathfrak{k})}\left\langle\eta,\left(c\left(J_{1}\right)+a\left(J_{1}\right)\right) \otimes \cdots \otimes\left(c\left(J_{n}\right)+a\left(J_{n}\right)\right)\right\rangle d P_{t}(a) \\
& =\left\langle\eta, c\left(J_{1}\right) \otimes \cdots \otimes c\left(J_{n}\right)\right\rangle \\
& =f_{\mathbb{C}}(c)
\end{aligned}
$$

By a limiting argument one then shows in geneal that

$$
S_{t}\left(\int_{\triangle_{n}}\left\langle\alpha_{\mathbb{C}}(\tau), d(c+a)^{\otimes^{n}}(\tau)\right\rangle\right)=\int_{\triangle_{n}}\left\langle\alpha_{\mathbb{C}}(\tau), d c^{\otimes^{n}}(\tau)\right\rangle
$$

The Main Theorem

Theorem 17 ([Gross \& Malliavin, 1996, Driver \& Hall, 1999]). Let

$$
d / /_{\theta}+d a_{\theta} \circ / /_{\theta}=0 \text { with } / /_{0}=I d .
$$

relative to P_{s} and

$$
d / /{ }_{\theta}^{\mathbb{C}}+d c_{\theta} \circ / /{ }_{\theta}^{\mathbb{C}}=0 \text { with } / /{ }_{0}^{\mathbb{C}}=I d .
$$

relative to $M_{s, t}$. Then for all $f \in L^{2}(K, d x)$,

$$
S_{t} f(/ / 1)=F\left(/ / /_{1}^{\mathbb{C}}\right)
$$

where F is the unique Holomorphic function on $K_{\mathbb{C}}$ such that

$$
\left.F\right|_{K}=e^{\frac{t}{2} \Delta_{K}} f
$$

Morally speaking:

$$
\begin{gathered}
S_{t} H=\left(e^{\frac{t}{2} \Delta_{H(\mathfrak{l})}} H\right)_{\mathbb{C}} \in \mathcal{H} L^{2}\left(W\left(\mathfrak{k}_{\mathbb{C}}\right)\right) \\
\left(e^{\frac{t}{2} \Delta_{H(\mathfrak{l}}} f(/ / 1)\right)_{\mathbb{C}}=\left(e^{\frac{t}{2} \Delta_{K}} f\right)_{\mathbb{C}}\left(/ /_{1}^{\mathbb{C}}\right) \\
\text { so on "restricting" to } W(\mathfrak{k}) \\
e^{\frac{t}{2} \Delta_{H(\mathfrak{t})}} f(/ / 1)=\left(e^{\frac{t}{2} \Delta_{K}} f\right)\left(/ /_{1}\right)
\end{gathered}
$$

which we interpret as a rigorous version of the statement that

$$
\triangle_{H(\mathfrak{k})}[f(/ / 1)]=\left(\triangle_{K} f\right)\left(/ /{ }_{1}\right)
$$

The generators of $/ /_{\theta} \in K \& / /{ }_{\theta}^{\mathbb{C}} \in K_{\mathbb{C}}$

Proposition 18. Let

- $\left\{X_{k}: k=1, \ldots, \operatorname{dim} \mathfrak{k}\right\}$ be an orthonormal basis for \mathfrak{k}
- $Y_{k}=J X_{k}$, where J is the complex structure on $\mathfrak{k}_{\mathbb{C}}$.

Then

1. The generator of the diffusion, $/ /_{\theta} \in K$, is

$$
\Delta_{K}=\sum X_{k}^{2}
$$

2. The generator of the diffusion, $/ /_{\theta}^{\mathbb{C}} \in K_{\mathbb{C}}$, is

$$
A_{s, t}=(s-t / 2) \sum X_{k}^{2}+\frac{t}{2} \sum Y_{k}^{2}
$$

Corollary: Hall's Transform

Let $\rho_{s}(d x)=\operatorname{Law}(/ / 1)$ and $m_{s, t}(d g)=\operatorname{Law}\left(/ /_{1}^{\mathbb{C}}\right)$, i.e.

$$
\begin{aligned}
\rho_{s}(x) & =\left(e^{s \Delta_{K} / 2} \delta_{e}\right)(x) \text { for } x \in K \quad \& \\
m_{s, t}(g) & =\left(e^{A_{s, t} / 2} \delta_{e}\right)(g) \text { for } g \in K_{\mathbb{C}} .
\end{aligned}
$$

Corollary 19 (A One Parameter family of Hall's Transforms). The map

$$
L^{2}\left(K, \rho_{s}\right) \ni f \rightarrow\left(e^{t \Delta_{K} / 2} f\right)_{\mathbb{C}} \in \mathcal{H} L^{2}\left(K_{\mathbb{C}}, m_{s, t}\right)
$$

is unitary.
This theorem interpolates between the two previous versions of Hall's transform corresponding to $s=\infty$ and $s=\frac{t}{2}$. (END)

Proof Sketch of Main Theorem 17.

For the proof we will need the following notation and facts:

- $\left\{X_{k}: k=1, \ldots, \operatorname{dim} \mathfrak{k}\right\}$ be an orthonormal basis for \mathfrak{k}
- $Y_{k}=J X_{k}$, where J is the complex structure on $\mathfrak{k}_{\mathbb{C}}$.
- Let Δ_{K} be the generator of $/ / \theta, \quad \Delta_{K}=\sum X_{k}^{2}$.
- Let $A_{s, t}$ be the generator of $/ /{ }_{\theta}^{\mathbb{C}}$,

$$
A_{s, t}=(s-t / 2) \sum X_{k}^{2}+\frac{t}{2} \sum Y_{k}^{2}
$$

- Notice that if Φ is a holomorphic function, then $Y_{k} \Phi=i X_{k} \Phi$ so that

$$
A_{s, t} \Phi=(s-t) \Delta_{K} \Phi
$$

- The X_{k} and Y_{k} commute with Δ_{K}.

Proof. (Proof of Main Theorem 17.) Let $\Phi=\left(e^{t \Delta_{K} / 2} f\right)_{\mathbb{C}}$ denote the analytic continuation of $e^{t \Delta_{K} / 2} f$ to $K_{\mathbb{C}}$. Using $\left[\Delta_{K}, X_{k}\right]=0$ and the Veretennikov and Krylov formula,

$$
f(/ / 1)=\sum_{n=0}^{\infty} \int_{\Delta_{n}}\left\langle\alpha_{n}, d a^{\otimes n}(\tau)\right\rangle
$$

where $\alpha_{n}=\left(D^{n} e^{s \Delta_{K} / 2} f\right)(e)$. Therefore

$$
S_{t}[f(/ / 1)]=\sum_{n=0}^{\infty} \int_{\Delta_{n}}\left\langle\left(\alpha_{n}\right)_{\mathbb{C}}, d c^{\otimes n}(\tau)\right\rangle
$$

Similarly,

$$
\Phi\left(/ /_{1}^{\mathbb{C}}\right)=\sum_{n=0}^{\infty} \int_{\Delta_{n}}\left\langle\beta_{n}, d c^{\otimes n}(\tau)\right\rangle
$$

where

$$
\begin{aligned}
\beta_{n} & =\left(D^{n} e^{A_{s, t} / 2} \Phi\right)(e)=\left(D^{n} e^{(s-t) \Delta_{K} / 2} \Phi\right)(e) \\
& =\left(D^{n} e^{(s-t) \Delta_{K} / 2}\left(e^{t \Delta_{K} / 2} f\right)_{\mathbb{C}}\right)(e) \\
& =\left[D^{n}\left(e^{s \Delta_{K} / 2} f\right)_{\mathbb{C}}(e)\right]_{\mathbb{C}}=\left(\alpha_{n}\right)_{\mathbb{C}}
\end{aligned}
$$

This shows,

$$
S_{t}[f(/ / 1)]=\Phi\left(/ /{ }_{1}^{\mathbb{C}}\right)=\left(e^{t \Delta_{K} / 2} f\right)_{\mathbb{C}}\left(/ /{ }_{1}^{\mathbb{C}}\right)
$$

as was to be shown.
Remark 20. See Dimock 1996, and Landsman and Wren ($\cong 1998$) for other approaches to "canonical quantization" of $Y M_{2}$.
(END NOW FOR SURE!)

Related and Further Reading

Here are some references of related along with some more recent developments.
More references: [Gordina, 2002, Gordina, 2000b, Gordina, 2000a], [Driver, 1997b, Driver, 1997a, Driver, 1995, Driver \& Gordina, 2007b, Driver \& Gordina, 2007a, Driver \& Gordina, 2007c, Driver \& Gordina, 2009b, Driver \& Gordina, 2009a, Driver \& Gordina, 2008, Driver \& Gross, 1997, Driver et al., 2010, Driver et al., 2009a, Driver et al., 2009b, Driver \& Hall, 2000, Driver \& Hall, 1999]
[Cecil, 2009, Cecil, 2008, Cecil \& Driver, 2008]
[Hall, 2001, Hall, 1994, Hall, 2008a, Hall, 2008b, Hall, 2002,
Hall \& Lewkeeratiyutkul, 2004, Hall \& Mitchell, 2008, Hall \& Sengupta, 1998]
[Malliavin \& Malliavin, 1990, Malliavin, 1990] [Melcher, 2009]

References

[Albeverio et al., 1999] Albeverio, Sergio, Hall, Brian C., \& Sengupta, Ambar N. 1999.
The Segal-Bargmann transform for two-dimensional Euclidean quantum Yang-Mills. Infin. dimens. anal. quantum probab. relat. top., 2(1), 27-49.
[Cecil, 2008] Cecil, Matthew. 2008. The Taylor map on complex path groups. J. funct. anal., 254(2), 318-367.
[Cecil, 2009] Cecil, Matthew. 2009. The Ricci curvature of finite dimensional approximations to loop and path groups. Bull. sci. math., 133(4), 383-405.
[Cecil \& Driver, 2008] Cecil, Matthew, \& Driver, Bruce K. 2008. Heat kernel measure on loop and path groups. Infin. dimens. anal. quantum probab. relat. top., 11(2), 135-156.
[Driver, 1995] Driver, Bruce K. 1995. On the Kakutani-Itô-Segal-Gross and Segal-Bargmann-Hall isomorphisms. J. funct. anal., 133(1), 69-128.
[Driver, 1997a] Driver, Bruce K. 1997a. Integration by parts and quasi-invariance for heat kernel measures on loop groups. J. funct. anal., 149(2), 470-547.
[Driver, 1997b] Driver, Bruce K. 1997b. Integration by parts for heat kernel measures revisited. J. math. pures appl. (9), 76(8), 703-737.
[Driver \& Gordina, 2008] Driver, Bruce K., \& Gordina, Maria. 2008. Heat kernel analysis on infinite-dimensional Heisenberg groups. J. funct. anal., 255(9), 2395-2461.
[Driver \& Gordina, 2009a] Driver, Bruce K., \& Gordina, Maria. 2009a. Integrated Harnack inequalities on Lie groups. J. differential geom., 83(3), 501-550.
[Driver \& Gordina, 2009b] Driver, Bruce K., \& Gordina, Maria. 2009b. Square integrable holomorphic functions on infinite-dimensional heisenberg type groups. Probab. theory relat. fields, Online first, 48 pages.
[Driver \& Gordina, 2007a] Driver, Bruce K., \& Gordina, Masha. 2007a. Heat kernel analysis on infinite-dimensional Heisenberg groups. preprint, tbd, 40+ pages.
[Driver \& Gordina, 2007b] Driver, Bruce K., \& Gordina, Masha. 2007b. Integrated harnack inequalities on Lie groups. preprint, tbd, 40 pages.
[Driver \& Gordina, 2007c] Driver, Bruce K., \& Gordina, Masha. 2007c. Square-integrable holomorphic functions on an infinite-dimensional Heisneberg type groups. preprint, tbd, 40+pp.
[Driver \& Gross, 1997] Driver, Bruce K., \& Gross, Leonard. 1997. Hilbert spaces of holomorphic functions on complex Lie groups. Pages 76-106 of: New trends in stochastic analysis (Charingworth, 1994). World Sci. Publ., River Edge, NJ.
[Driver \& Hall, 1999] Driver, Bruce K., \& Hall, Brian C. 1999. Yang-Mills theory and the Segal-Bargmann transform. Comm. math. phys., 201(2), 249-290.
[Driver \& Hall, 2000] Driver, Bruce K., \& Hall, Brian C. 2000. The energy representation has no non-zero fixed vectors. Pages 143-155 of: Stochastic processes, physics and geometry: new interplays, ii (leipzig, 1999). Providence, RI: Amer. Math. Soc.
[Driver et al., 2009a] Driver, Bruce K., Gross, Leonard, \& Saloff-Coste, Laurent. 2009a. Holomorphic functions and subelliptic heat kernels over Lie groups. J. eur. math. soc. (jems), 11(5), 941-978.
[Driver et al., 2009b] Driver, Bruce K., Gross, Leonard, \& Saloff-Coste, Laurent. 2009b. Surjectivity of the Taylor map for complex nilpotent Lie groups. Math. proc. cambridge philos. soc., 146(1), 177-195.
[Driver et al., 2010] Driver, Bruce K., Gross, Leonard, \& Saloff-Coste, Laurent. 2010. Growth of taylor coefficients over complex homogeneous spaces. To appear in the tohoku mathematical journal, 62, No. 3 (September, 2010)., 51 pages.
[Gordina, 2000a] Gordina, Maria. 2000a. Heat kernel analysis and Cameron-Martin subgroup for infinite dimensional groups. J. funct. anal., 171(1), 192-232.
[Gordina, 2000b] Gordina, Maria. 2000b. Holomorphic functions and the heat kernel measure on an infinite-dimensional complex orthogonal group. Potential anal., 12(4), 325-357.
[Gordina, 2002] Gordina, Maria. 2002. Taylor map on groups associated with a II_{1}-factor. Infin. dimens. anal. quantum probab. relat. top., 5(1), 93-111.
[Gross, 1993] Gross, Leonard. 1993. Uniqueness of ground states for Schrödinger operators over loop groups. J. funct. anal., 112(2), 373-441.
[Gross \& Malliavin, 1996] Gross, Leonard, \& Malliavin, Paul. 1996. Hall's transform and the Segal-Bargmann map. Pages 73-116 of: Itô's stochastic calculus and probability theory. Tokyo: Springer.
[Hall, 1994] Hall, Brian C. 1994. The Segal-Bargmann "coherent state" transform for compact Lie groups. J. funct. anal., 122(1), 103-151.
[Hall, 2001] Hall, Brian C. 2001. Harmonic analysis with respect to heat kernel measure. Bull. amer. math. soc. (n.s.), 38(1), 43-78 (electronic).
[Hall, 2002] Hall, Brian C. 2002. Geometric quantization and the generalized Segal-Bargmann transform for Lie groups of compact type. Comm. math. phys., 226(2), 233-268.
[Hall, 2008a] Hall, Brian C. 2008a. Berezin-Toeplitz quantization on Lie groups. J. funct. anal., 255(9), 2488-2506.
[Hall, 2008b] Hall, Brian C. 2008b. The heat operator in infinite dimensions. Pages 161-174 of: Infinite dimensional stochastic analysis. QP-PQ: Quantum Probab. White Noise Anal., vol. 22. World Sci. Publ., Hackensack, NJ.
[Hall \& Lewkeeratiyutkul, 2004] Hall, Brian C., \& Lewkeeratiyutkul, Wicharn. 2004.
Holomorphic Sobolev spaces and the generalized Segal-Bargmann transform. J. funct. anal., 217(1), 192-220.
[Hall \& Mitchell, 2008] Hall, Brian C., \& Mitchell, Jeffrey J. 2008. Isometry theorem for the Segal-Bargmann transform on a noncompact symmetric space of the complex type. J. funct. anal., 254(6), 1575-1600.
[Hall \& Sengupta, 1998] Hall, Brian C., \& Sengupta, Ambar N. 1998. The Segal-Bargmann transform for path-groups. J. funct. anal., 152(1), 220-254.
[Landsman \& Wren, 1997] Landsman, N. P., \& Wren, K. K. 1997. Constrained quantization and θ-angles. Nuclear phys. $b, 502(3), 537-560$.
[Malliavin \& Malliavin, 1990] Malliavin, Marie-Paule, \& Malliavin, Paul. 1990. Integration on loop groups. I. Quasi invariant measures. J. funct. anal., 93(1), 207-237.
[Malliavin, 1990] Malliavin, Paul. 1990. Hypoellipticity in infinite dimensions. Pages 17-31 of: Diffusion processes and related problems in analysis, vol. i (evanston, il, 1989). Progr. Probab., vol. 22. Boston, MA: Birkhäuser Boston.
[Melcher, 2009] Melcher, Tai. 2009. Heat kernel analysis on semi-infinite Lie groups. J. funct. anal., 257(11), 3552-3592.

Extension to the Path Space

Now let $\tilde{\rho}_{t}:=/ / * P_{t}=$ the law of $/ /$ relative to P_{t}.
Theorem 21. There exists an isometry

$$
B_{t}: L^{2}(W(K), \operatorname{Law}(/ /)) \rightarrow L^{2}\left(W\left(K_{\mathbb{C}}\right), \operatorname{Law}\left(/ /{ }^{\mathbb{C}}\right)\right)
$$

such that for all cylinder functions $f \in L^{2}\left(W(K), P_{s}\right), B_{t} f$ is a Holomorphic cylinder function on $W\left(K_{\mathbb{C}}\right)$ such that

$$
\left(B_{t} f\right)(y)="\left(e^{\frac{t}{2} \Delta_{H(K)}} f\right)(y) "=\int f(x y) \tilde{\rho}_{t}(d x) \forall y \in H(K) .
$$

Moreover, Ran $\left.\left(B_{t}\right)\right)$ is the closure of the holomorphic cylinder functions and the following diagram commutes

$$
\begin{array}{ccc}
L^{2}\left(W(\mathfrak{k}), P_{s}\right) & \xrightarrow{S_{t}} & \mathcal{H} L^{2}\left(W\left(\mathfrak{k}_{\mathbb{C}}\right), M_{s, t}\right) \\
\downarrow / / & \underset{\sim}{\circlearrowleft} & \underset{/}{ }{ }^{(/ \mathbb{C}} \\
L^{2}\left(W(K), / / * P_{s}\right) & \xrightarrow{B_{t}} & \mathcal{H} L^{2}\left(W\left(K_{\mathbb{C}}\right), / /{ }_{*}^{\mathbb{C}} M_{s, t}\right)
\end{array}
$$

i.e.

$$
S_{t}(f \circ / /)=\left(B_{t} f\right) \circ / / \mathbb{C}
$$

Path Space Result Explanation

Proof. (An explanation rather than a proof.) Let $y \in H(K)$ and consider

$$
\int_{W(K)} f(x y) \tilde{\rho}_{t}(d x)=\int_{W(\mathfrak{k})} f(/ /(a) \cdot y) P_{t}(d a) .
$$

Notice that

$$
/ /^{-1}(z)=\int_{0}^{.} z^{-1} \delta z . \quad \text { (Inverse of the Itô Map.) }
$$

so that

$$
\begin{aligned}
/ /^{-1}(/ /(a) y) & =\int(/ /(a) y)^{-1} \delta(/ /(a) y) \\
& =\int y^{-1} / /(a)^{-1} \delta(/ /(a) y) \\
& =\int A d_{y^{-1}} \delta a+\int y^{-1} \delta y \\
& =\int A d_{y^{-1}} \delta a+/ /^{-1}(y)
\end{aligned}
$$

Therefore,

$$
/ /(a) y=/ /\left(\int A d_{y^{-1}} d a+/^{-1}(y)\right)
$$

Noting that

$$
\operatorname{Law}\left(\int A d_{y^{-1}} d a\right)=\operatorname{Law}(a)
$$

we learn that

$$
\begin{aligned}
\left(B_{t} f\right)(y) & =\int_{W(K)} f(x y) \tilde{\rho}_{t}(d x)=\int_{W(\mathfrak{k})} f(/ /(a) \cdot y) P_{t}(d a) \\
& =\int_{W(\mathfrak{k})} f\left(/ /\left(\int A d_{y^{-1}} d a+/ /^{-1}(y)\right)\right) P_{t}(d a) \\
& =\int_{W(\mathfrak{k})} f\left(/ /\left(a+/ /^{-1}(y)\right)\right) P_{t}(d a) \\
& =S_{t}(f \circ / /)\left(/ /^{-1}(y)\right) .
\end{aligned}
$$

Now replace $y \rightarrow / /(a)$ in the above identity to find

$$
\left(B_{t} f\right)(/ /(a))=S_{t}(f \circ / /)(a),
$$

i.e.

$$
\left(B_{t} f\right) \circ / /=S_{t}(f \circ / /)
$$

Isometry Property

By the way one checks the isometry property from this result as follows. On one hand

$$
\int_{W(\mathfrak{k})}\left|\int_{\Delta_{n}}\left\langle\alpha(\tau), d a^{\otimes^{n}}(\tau)\right\rangle\right|^{2} d P_{s}(a)=s^{n} \int_{\triangle_{n}}|\alpha(\tau)|^{2} d \tau
$$

while on the other

$$
\int_{W\left(\mathfrak{e}_{\mathbb{C}}\right)}\left|\int_{\Delta_{n}}\left\langle\alpha_{\mathbb{C}}(\tau), d c^{\otimes^{n}}\right\rangle\right|^{2} d M_{s, t}(c)=s^{n} \int_{\Delta_{n}}|\alpha(\tau)|^{2} d \tau
$$

To prove this last assertion, consider the expectation of the stochastic integral:

$$
\begin{aligned}
\mathbb{E}\left|\int_{\alpha}^{\beta} f(\tau) d c(\tau)\right|^{2} & =\mathbb{E}\left|\int_{\alpha}^{\beta} f(\tau) d a(\tau)+i f(\tau) d b(\tau)\right|^{2} \\
& =\mathbb{E} \int_{\alpha}^{\beta}|f(\tau)|^{2} d \tau\left(s-\frac{t}{2}\right)+\frac{t}{2} \mathbb{E} \int_{\alpha}^{\beta}|f(\tau)|^{2} d \tau \\
& =s \int_{\alpha}^{\beta}|f(\tau)|^{2} d \tau
\end{aligned}
$$

where $f(\tau)$ is assumed to be adapted. Hence the result follows by writing
$\int_{\Delta_{n}}\left\langle\alpha_{\mathbb{C}}(\tau), d c^{\otimes^{n}}\right\rangle$ as an iterated integral. For example if $n=2$,

$$
\begin{aligned}
\mathbb{E} & \left|\int_{\Delta_{2}}\left\langle\alpha_{\mathbb{C}}(\tau), d c^{\otimes^{2}}\right\rangle\right|^{2} \\
& =\mathbb{E}\left|\int_{0 \leq \tau_{1} \leq \tau_{2} \leq 1}\left\langle\alpha_{\mathbb{C}}\left(\tau_{1}, \tau_{2}\right), d c\left(\tau_{1}\right) \otimes d c(\tau)\right\rangle\right|^{2} \\
& =\int_{0}^{1} d \tau_{2} \sum_{\xi} s \mathbb{E} \int_{0 \leq \tau_{1} \leq \tau_{2}}\left|\left\langle\alpha_{\mathbb{C}}\left(\tau_{1}, \tau_{2}\right), d c\left(\tau_{1}\right) \otimes \xi\right\rangle\right|^{2} \\
& =\int_{0}^{1} d \tau_{2} \sum_{\xi, \eta} s^{2} \int_{0 \leq \tau_{1} \leq \tau_{2}} d \tau_{1}\left|\left\langle\alpha_{\mathbb{C}}\left(\tau_{1}, \tau_{2}\right), \eta \otimes \xi\right\rangle\right|^{2} \\
& =s^{2} \int_{0 \leq \tau_{1} \leq \tau_{2} \leq 1}\left|\alpha_{\mathbb{C}}\left(\tau_{1}, \tau_{2}\right)\right|^{2} d \tau_{1} d \tau_{2} \\
& =s^{2} \int_{\Delta_{2}}\left|\alpha_{\mathbb{C}}\left(\tau_{1}, \tau_{2}\right)\right|^{2} d \tau_{1} d \tau_{2}
\end{aligned}
$$

where ξ and η in the above expression is running over an orthonormal basis of \mathfrak{k}.

A gradient computation

We would like to compute the gradient of $V(A)$ where

$$
V(A):=\frac{1}{2} \int_{\mathbb{R}^{d}} \sum_{1 \leq j<k \leq d}\left|F_{j, k}^{A}(x)\right|^{2} d x
$$

To this end, we recall that $F_{j, k}^{A}(x)=\partial_{j} A_{k}-\partial_{k} A_{j}+\left[A_{j}, A_{k}\right]$ and therefore,

$$
\begin{aligned}
\partial_{B} F_{j, k}^{A}(x) & =\partial_{j} B_{k}-\partial_{k} B_{j}+\left[B_{j}, A_{k}\right]+\left[A_{j}, B_{k}\right] \\
& =\nabla_{j}^{A} B_{k}-\nabla_{k}^{A} B_{j}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\partial_{B} V(A) & =\int_{\mathbb{R}^{d}} \sum_{1 \leq j<k \leq d}\left\langle F_{j, k}^{A}(x), \partial_{B} F_{j, k}^{A}(x)\right\rangle d x \\
& =\frac{1}{2} \int_{\mathbb{R}^{d}} \sum_{1 \leq j, k \leq d}\left\langle F_{j, k}^{A}(x), \partial_{B} F_{j, k}^{A}(x)\right\rangle d x \\
& =\frac{1}{2} \int_{\mathbb{R}^{d}} \sum_{1 \leq j, k \leq d}\left\langle F_{j, k}^{A}, \nabla_{j}^{A} B_{k}-\nabla_{k}^{A} B_{j}\right\rangle d x \\
& =\frac{1}{2} \int_{\mathbb{R}^{d}} \sum_{1 \leq j, k \leq d}\left(\left\langle-\nabla_{j}^{A} F_{j, k}^{A}, B_{k}\right\rangle+\left\langle\nabla_{k}^{A} F_{j, k}^{A}, B_{j}\right\rangle\right) d x \\
& =-\int_{\mathbb{R}^{d}} \sum_{1 \leq j, k \leq d}\left\langle\nabla_{j}^{A} F_{j, k}^{A}, B_{k}\right\rangle d x .
\end{aligned}
$$

Therefore we learn that

$$
[\operatorname{grad} V(A)]_{k}(x)=-\sum_{j=1}^{d} \nabla_{j}^{A} F_{j, k}^{A}
$$

as claimed.

