Preliminaries

In this talk;

1. We are going to extend results in [Gross & Malliavin, 1996, Hall & Sengupta, 1998]

. . which shows how to get one of Hall’s transform introduced in [Hall, 1994].

Quantized Yang-Mills (1 + 1) and the Segal-Bargmann-Hall

Transform 2. Along the way we will describe the Yang-Mill's quantization problem.

Joint with Brian Hall

3. Following [Driver & Hall, 1999] (motivated by [Landsman & Wren, 1997]) we will see
that a solution to the Y M, —quantization problem (2 = 1 + 1 (space+time)

Bruce Driver dimensions) gives rise to a one parameter family of Hall — transforms which
Department of Mathematics, 0112 interpolate between his two original transforms.

University of California at San Diego, USA

http://math.ucsd.edu/~driver 4. See [Albeverio et al., 1999] for the Segal-Bargmann transform as related to the

stochastic quantization of Y M,.
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Fock Spaces Examples
Definition 1 (Bosonic Fock spaces). Given a real Hilbert space, H and t > 0, let; Example 1. Suppose (W, H = H,,, ;1) is an abstract Wiener space and f € P (IV¥)
, C  77n Multi-Linear C- 2 then;
Mult,, (H,C) = qa: H" 7= ey, (o) < 00 oy, = D! f € Sym, (H,C)
where where
ol ey = D lor(h,. bl Dyf (b, hy) = (O, O, f) (),
h1,eeshn €S and
Sym,, (H,C) = {a € Mult,, (H,C) : v is symmetric} , a = (ap),Zy € M=o F (H;t).
and Moreover,
o0 S 1
0 2 — _
F(H:t) = {a = (@) € [[ Svm, (H,C) - lalf? < oo} f(h) = ZO ot (h,...h)
n=0 n=
where forallh € H.

2 t" 2
lallf =~ ol ey
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Example 2. If H = L*([0, 7], R) then
L*([0,T]",C) > u — o, € Mult,, (H,C)

where
ay (hy, .., hy) = / w(st, .oy 8p) h(81) ... hy (8n)ds.
[O,T]”

is unitary. (s == (s1,...,8,).)

Example 3. Similarly if H = L*([0, 7], R) and
A(T):={s€[0,T]:0< s <s9<--- <5, <T}

then
L* (A, (T),C) 3 u — a, € Sym, (H,C)
is an isomorphism where

ay (hyy ..o hy) = Z /A()u(sl,...,sn)hgl(sl)...hgn(sn)ds.
71T

oePerm,,
In this case

2 2
T Ap— / fus)? ds.
A (T)
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Summary of Lecture 5

Theorem 2 (Fock, It6, Kakutani, Segal, Bargmann). Let ;1 and v be non-degenerate
Gaussian measures on (W, By) with H,, = H,, as vector spaces. Then the following
diagram of unitary maps commute,

L2 (W, v) ML (We, % v)

F(Hpw) 2 a—ac € F(H,+iH,))

where S, , is the generalized Segal-Bargmann map;

Su,l/p =Vykpe = (VQ *p)([:
and where for any Gaussian measure v on (W, By) F., is the Fock—It6-Kakutani
isomorphism defined by

L*(y) 3 f = Fyf = (Dg (v * f))olg € F (H).

Comments:

1. As vector space I, + iIl, = Hc but as real inner product spaces
H,+iH,=H, x H,.

2. Fc (H, + iH,) denotes the Fock space of complex multi-linear forms on H,, + iH,.
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Yang-Mills set up

e K = SU(2) or S* or a compact Lie Group
SU(2) = {g:— {Z _d } ca,beC > |a|2+|b|2—1}
ot =Lie(K),eg. Lie(SU(2)) = su(2)

su(?)—{A;_ [Zg _i} :aeRandBEC}

i
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e Lie bracket: [A, B] = AB — BA =: ad B

e (A, B) = —tr(AB) = tr(A*B)
(a fixed Ad — K — invariant inner product)

o M =Rlor T = (5')".

o A = L*(M,€%) - the space of connection 1-forms.

eForAec Aand1 < i,k <d,let

Vf := O), + ady, (covariant differential)
and
Ffl = 0pA; — 0;A + [Ar, Aj] (Curvature of A)
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Yang — Mills Equations (in the temporal gauge)

For A(t) € A,ie. for (t,z) € R x M,
A(t,x) = (A (t,x), Ay (t, ), ..., Ag(t, @) € &
the Y.M. equations are the Euler Lagrange equations for the action functional,

1 )
Ir(A) = / FA(t,z) - FA(t, z)dxdt
4 [0,T]xR4
where
FA(t,z) - FA(t,z) Zn“n tr nyt I)FA (t, x)]
andn = (l,—l,—l,...7—1).
Using
OpF) (x) = 0;Br — OuB; + [B;, Al + [A;, By
= V!B, — VB, = d'B
we find
1 )
(Oplr) (A) = = / d'B - FA(t, x)dxdt
2 [0,T)xR4
1 *
== / B (d*) FA(t, z)dwdt.
2 [0,T]xR4
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Therefore the Euler Lagrange equations are,
(a*)" FA(t, ) = 0.
Writing out these equation explicitly give the Yang — Mills PDE’s,
At)=FE(t) (e define E(t):= A(t))

Ei(t) =|4; = Z ViFl = Q(A,0A) [Dynamical Egs.)

d
0=V* E= Z V,fEk (Constraint Egs.)
k=1

Remark 3. The Yang — Mills equations are invariant under the Gauge group,

G := C*™ (M, K) which acts on A by
AcA— A=gAg+g7'Vyg.
This is a group action, namely (A9)" = A% for g k € G.
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Maxwell’s Equations (i =3 k = 51

Ifd =3, K =S'and we set

E(t)=A(t)and B(t)=V x A(t),

then the Yang — Mills equations become Maxwell’s Equations:

E=-VxBandB=Vx FE

V-E=0andV-B=0.
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Newton Form of the Y. M. Equations

Define the potential energy functional, V" (A) , by

/Rd Z | z)[’de.

1<j<k<d

Then the dynamics equation may be written in Newton form as

At) = — (grad V) (4).

The conserved energy is thus
. 1, .
Energy (A,A) =5 HAH?4 +V(A).

The weak form of the constraint Eq. (3) is, for h € C2° (M, £),
0= (V" E,h) — (B, V"),

L2(M:E)
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Review Canonical Quantization

H(q, p)
Angular Momentum | (g X p), = D7, €xjig;pi

CONCEPT CLASSICAL QUANTUM
STATE TRIZRIxRY> (p,q) |K = PL*R? dm)
SPACE Y € LARY dm) 3 |9, = 1.
OBSERVABLES | Functions on TR’ S.A.ops. on K
A~ h0
Pk Pk = oq
Examples Qr ar = M,,

2mp p+Vi(q) ﬁ——ﬁA+V()
Z“Ek;zq]pz

DYNAMICS

Newtons Equations of Motion | Schrédinger, Eq.

Hy(t), ¥(t) € K

q(t) = —=VVi(q(t)) ih(t) =
MEASUREMENTS | Evaluation (W, 00) —
f(q, p) value.

expected
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Formal Quantization of the Y. M. — Equations

Open Problem. When d = 3, “Quantize” the Yang — Mills equations and show the
resulting quantum — mechanical Hamiltonian has a mass gap. See www.claymath.org.

Let us explain the formal quantization of the Y. M. equations:

Raw quantum Hilbert Space: H = L? (A, “DA")
Position: (A, k) ~ M
1
Momentum: (E, k) ~ ;8;f for k € C°(R?, £9)
1l
Energy Function: K.E. + P.E. ~~ H = —§AA + My

Recall that the Potential Energy (V') is given by

=3[, ¥ Irbwpa

l<]<k<d
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Constraints

We must also quantize the constraint functionals:

(E’ vAh)A: Z

k€O.N.B.(A)
>
k€O.N.B.(A)
Remark 4. Since

> ok V)= D

k€O.N.B.(A) k€O.N.B.(A)

(K, [k, 1]) 4 =

1, 1
(k,Vh) 430k =

(k, V4R) (B, k) 4

;avAh

Z 0=0,

k€O.N.B.(A)

there is no ordering ambiguity in the quantization of (E, VAh)A
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Definition 5. For each h € C° (M, £) , let X" be the vector field on A defined by:
X"(A) =V = Vh+ adah.

With this notation we want to trim down the raw Hilbert space to:

Constraint Conditions

FeH: X"F:=0gy,F=0YheCRE

thysical =

Theorem 6 (Concrete description of Hnysicar)- The physical Hilbert space is given by,

thysica/:{FeHﬁF<Ag):F(A)VAGA, geg}
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Proof: First observe that
d g d —th h
ah}A = %h) (Ad(j—thA + e "ve! )
= —[h, A] + Vh = adsh + Vhi= X" (A).

Q.E.D.

Hence X generates the flow, A — A" Therefore the following are equivalent:
1. X"F =0forall h € C*(M,¥)

2. FoeX" = Fiorall h € C°(M, )

3. F (Ae”) — F(A)forall h € C(M, ¥)

4. F(A9)=F(A)VAe A geg.

Bruce Driver 17 Cornell, July 19 - 30, 2010

Wilson loop variable description of IH,, sical

Definition 7 (Restricted Gauge Group). Gy :={g € G : g (0) = id} .

Let L = L (M) loops on M based at o € M.
"

Definition 8. Let //* (0) € K be (left invariant) parallel translation along o € L, that

s /(@) = 1/ 0), where
d
&1 0)+ D60 Ao 0)/1410) =i /1 0) =
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Theorem 9 (Loop Variable Theorem). Suppose A, B € A. Then /A (o) = //® () for
allo € L iff A = BY for some g € Gy. We call the function, A — //* (), a “Loop
variables” on A/G.

Proof:

o If A= BYforsome g € Gyand o : [0, 1] — M such that o (0) = o, then
[/ e) =/ (0)=g(a(1))"//" (o).
e Henceif A= BYand o € L, then //* (o) = //P (o).

oli //4(c)=//P (o) forallo € L, define g (o (1)) = //P (a)//* ()" forall
o :[0,1] — M such that o (0) = o.

e Then g is well defined and A = BY.

Q.E.D.
Corollary 10.

thysica/:{FeHiF(Ag):F(A)VAEA7 geg}

w2 F e IXADA): F=F ({//*(c) e L})}.
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Restriction to ¢« -1 (general k)

Sl = [07 1]/<0 ~ 1) > 9and write 0@ = %

In this case,
A Configuration space
eGy={ge H(S' > K):g(0)=g(1) =id € K}, Gauge Group

e A= Ad, 1A+ g7'q

Bruce Driver 20 Cornell, July 19 - 30, 2010




o H =“L*(A, DA) Raw Hilbert Space

o Hinysica = {F € H : Fiy(A) = ¢(//1(4)), ¢ : K — C}, where //9(A) € K is the
solution to

d%//o(A) + A(6)//4(A) = 0with //o(A) = id € K.
//1(A) € K is the holonomy of A.

e 4 =0 when d = 1 and therefore, V (A) = 0. No curvature in 1d

e H=—3A, (Quantum Hamiltonian) Raw Hamiltonian
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A Physics Idea

Theorem 11 (Heuristic: c.f. Witten 1991, CMP 141.). Suppose K is simply connected
and for ¢ let Fyy (A) == ¢(//1(A)), then

¢ € L*(K, dHaar) — F; € Hppysicar
is a “Unitary” map which intertwines A 4 and A, i.e.
Aulpo//i] = DuFy = Fags = (Axg)o //1. 6)

Goal: Give a precise meaning to the previous idea.

To do this we will “regularize” D A by the Gaussian measure

AP(A) = Loy (21 |A|i> DA

with the idea of letting s — oo at the end to “recover” D A.

The measure P, is a Gaussian measure living on a certain completion, A, of A.
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A Realization of 1 as w ({%)

e W)= {we C(0,1] = &) : w(0) = 0}
e W(K):={geC([0,1]] - K:g(0)=e€ K}

o H(E):= {h € W (&): []|I (s)]ds < oo}

e Note that 9 : H(€) — A = L?(S';£) is isometric.

o Define A := 0V (£). Completed Connection Forms

e P, — P, — Wiener measure on W (£) with variance s.

o //9(A) = //s(a) where for a € W (E),
d//g(a)+d (0)//e(a) = 0 with //o(a) = id € K.

e The action of gauge group, A — AY goes over to

0 af= / (g (0)da(0)g(0) + g7 (o) dg (o)

0
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Gross’ Ergodicity Theorem

The following theorem is a stochastic version of the Loop Variable Theorem, item 2. of
Theorem 9.

Theorem 12 ([Gross, 1993)). Let

thys:ca/ [LZ (W (E) ’ PS)] &
={FeL*(W(®),P,): F(a) = F(a) for P, ae. a}.
Then
phys:cal {F f // f € L2 (K pS( )dT>}
where

ps(x)dx = Ps-Law(//1).
Remark 13. The action, F' (a) — F (a”) is not unitary except in the limit as s — 0. The
unitarized action has no non-trivial fixed elements in L* (W (£), P,) , see
[Driver & Hall, 2000] for a proof using the Fourier Wiener transform. Hence it would be a
BAD idea to unitarize this action.

Corollary 14. The function, p, is the convolution heat kernel on K. Since
limg oo ps() = 1,

hm H ~ [A(K,dx).

physical —
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An Explanation for Eq. (6)
Recall Eq. (6) states A (¢ o //1] = (Axp) o //1

e If we let Sy be an orthonormal basis of H () and

Apey =Y, 7

hesSy

then the assertion in Eqg. (6) becomes:

A (b0 /1) = (Ake)o //1. ®

Proof: (Heursitic explanation.)

e Use (-, -) on t to construct a bi-invariant metric on T K.
e Let H (K) be the space of finite energy paths on K starting ate € K.

e Equip H (K) with the right invariant metric induced from the metric on
H (%) .= Lie (H (K)).
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Then it is a fact that the “Cartan Rolling Map, @ : H (£) — H (K) defined by

¥(a)=//(a)
is an isometric isomorphism of Riemannian manifolds. Consequently we may “conclude”
that ¢ intertwines the Laplacian, Ay ) on H (£) with the Laplacian, Ay x) on H (K),
i.e.
Agey (fo) = (AH(K)f) 0. (9)
When f (g) = ¢ (g (1)), one can show
AH(A')f (9) = (Axy) (g (1))

and therefore Eq. (9) implies,
| A (00 //1) = (Axg)o /)1 |

Q.E.D.
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Why is this Explanation not Satisfactory

e The operator A H(e) makes sense on smooth cylinder functions.
e However, ¢ o //; is not a cylinder function.

e Problematic Theorem: The densely defined operator Ay ) on L2(W (£), P,) is not
closable.

Proof. Consider the case £ =R and s = 1, so that u = P, is standard Wiener measure.
Let

1
fla) = 2/ agdag = ai — 1
0
a cylinder function. One computes
AH(e)f<a) = Z 2h? =2
hES“

On the other hand, we have f(a) = limp|_, fp(a) where fp(a) is the cylinder

function
f73<a> =2 Z asi(asm - a!ﬁ)'
S;EP
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But
Ay fr(a) = 0!
(Compare with the harmonic function

(@1 4+ 22+ -+ + )T ON R
Therefore limp|_,o fp = f while

0= lim A A =)
A nefrla) # Apw f
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Segal - Bargmann Theory

o Let £c = £ + i€ be the complexification of £
e K¢ = the complexification of K, e.g. SU(2)c = SL(2,C).

e For s > t/2, let M, be the Gaussian measure on W (£¢),

M, = Law (M(Jc + 7\/1‘/7 ﬂ)

where « and §3 are independent standard (¥, (-, -)¢) — valued Brownian motions.

Theorem 15 (Segal- Bargmann). There exists an isometry
Sp: LAW(), Py) — LYW (kc), M)
such that

<&ﬁ@w—/dac+wdamw—w%wvmw»

For all polynomial cylinder functions f. Moreover Ran (S;) = closure of Holomorphic
cylinder functions.
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Proof: Apply our generalized Segal-Bargmann theorem with
= Py_y/5 = Law (\/5 - t/2a>
v:i= Py = Law (Vt/?ﬁ)

so that

St:Pt*('>:V2*(')7
wxv=D>M:, and

w* v = Law <\/5 —t/20+ \/1‘725) =P,

Q.E.D.

Theorem 16 (Stochastic Representation Theorem). S; is also characterized by

5 [talr)da(0) = [ fact),de(r)

JAYS Ay

where o : A\,, — t is a deterministic function.
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Proof: Suppose that

Oz(T) = 1,]1><,]2><A“><J”(T)77
with n € €% and J; = (s;, t;] are intervals such that J; < Ji foralli < k, i.e. ; < sj.
Leta(J;) == ay, — as, and

)= [[(ae).da (1) = () &+ S al)

An
then
fele) = [ {alr)ode () = (ncl) @+ @ ),
AI!
where ¢ (J;) == ¢, — ¢, Q.E.D.
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Since a — (1, (¢(J1) + a(J1)) @ - - @ (e(J,) + a(J,,))) is a Harmonic polynomial of a;

Sif () == . fele+ a)dPi(a)

- /W " . (c(J) + a(1) ® -+ @ (c(Jn) + alJ,))dP(a)

=n,c(J) @ @c(Jn))
= fe(c)

By a limiting argument one then shows in geneal that

s, /mamamw@%w —/wamwwm»

VAYS Ay

Bruce Driver 32 Cornell, July 19 - 30, 2010




The Main Theorem

Theorem 17 ([Gross & Malliavin, 1996, Driver & Hall, 1999]). Let
d//p+dago [/g=0with//y=Id.
relative to P, and
d/)S +dego ] /S =0 with /S = Id.
relative to M. Then for all f € L*(K,dx),
Sif(//) = F(//T)
where I is the unique Holomorphic function on K¢ such that

t

Flg = e’ f.

Morally speaking: )
SiH = (ex*10 H)c € HL* (W (E¢))

(250 f(//1)c = (€< fle(//T)

S0 on “restricting” to W (&)

e f(/ /1) = (525 £)(/ /1)

which we interpret as a rigorous version of the statement that

Duew [F(//0) = (BxF) (//0)-
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C
The generators of //, c K & /g € Kc
Proposition 18. Let
o {X;:k=1,...,dim¢} be an orthonormal basis for ¢
e Y, = JX,, where J is the complex structure on c.

Then

1. The generator of the diffusion, /[y € K, is
Ag =) XL
2. The generator of the diffusion, // g € Kg, is

Ag=(s—1/2)> XP+ % SOy
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Corollary: Hall’'s Transform

Let py(dx) = Law(//1) and m, +(dg) = Law(//%), i.e.
ps(x) = ((:'SA"'/268) (x)forze K &

ms(g) = (e*/%5,) (g) for g € Kc.

Corollary 19 (A One Parameter family of Hall's Transforms). The map
LXK, ps) > f — ("7 f) o € HLX(Kc,may)

is unitary.

This theorem interpolates between the two previous versions of Hall’s transform

corresponding to s = oo and s = % (END)
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Proof Sketch of Main Theorem 17.

For the proof we will need the following notation and facts:

o {X;:k=1,...,dim¢} be an orthonormal basis for £
e Y, = JX,, where J is the complex structure on £c.

e Let A be the generator of / /5, Ay = X7

e Let A, be the generator of //,

As,t:<s—t/2)zxg+§zykg

e Notice that if ® is a holomorphic function, then Y, = ¢ X;;® so that

As,tq) = (S - t) AKq)

e The X and Y}, commute with A .
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Proof. (Proof of Main Theorem 17.) Let & = (e”AK/Qf)(C denote the analytic continuation
of e!26/2f to K. Using [Af, X;] = 0 and the Veretennikov and Krylov formula,

101 =Y [ tamda(r)

n=0

where &, = (D"e**5/2f) (e). Therefore

mmm-ZAwww@m»

n=0

where

Bu= (D"e™20) (e) = (D"l 26120) (e)
_ (Dne(sft)A/(/Z (etA,(/Qf)(c) (e)
— [Dn (esAK/Qf)(C (e>]c - (an)([j ;

This shows,

Self(//0] = @(/[T) = (¢242f) e (//7)

as was to be shown.

Similarly, Remark 20. See Dimock 1996, and Landsman and Wren ( = 1998) for other approaches
to “canonical quantization” of Y M.
- . END NOW FOR SURE!)
W[5 =3 [ (Bhden(r) (

n=0 Ay
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Extension to the Path Space

Now let p; := //.P; = the law of // relative to P,.
Theorem 21. There exists an isometry
By : (W (K), Law(//)) = L*(W (Kc), Law(/ /%))

such that for all cylinder functions f € L*(W (K), P,), B;f is a Holomorphic cylinder
function on W (K¢ ) such that

REFERENCES

Path Space Result Explanation

Proof. (An explanation rather than a proof.) Let y € H(K) and consider

/fxyptdx /f// y)Pi(da).

B = (2 f) "= [ fanito) ¥y € HIEK) et |
i ) o : /)7 z) = / 25z, (Inverse of the Ito Map.)
Moreover, Ran (B;)) is the closure of the holomorphic cylinder functions and the so that 0
following diagram commutes
-1
O c - -
oy o R - / a5 /(o)
LW(K),/[«Ps) — HL*(W(Kc), [/ M)
ie. = ,115a+/y15y
Silfo/))=(Bif)o /[ / ’
= [ Adsdas 11
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Therefore,

=11 ( [ adaas i70)

Law (/ Adylda> = Law (a),

/ Fla)lda) = / 7//(@) - )Pdda)

W(K)

Noting that

we learn that

//(/Ad ada+ /)My >Ptda>
W (t)
_ / £/ (a+ /7)) Pdda)

W)

=Si(fo /N (/7' W)-

Now replace y — // (a) in the above identity to find

(Bf)(// (@) = S (feo//)(a),
(Bif)o [/ =Si(fo/]).
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Isometry Property

By the way one checks the isometry property from this result as follows. On one hand

| [at1a @) an = s A/ o),

W) A,

while on the other
2

/ Z<ad7),dc®n> dM,(c) = 5"/|a(7)2d7.

Wi(te) Ay
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To prove this last assertion, consider the expectation of the stochastic integral:

8 2 3 2
E/ f(r)de(r)| =E / f(m)da(r) + i f(7)db(T)

B g

—E [ Iftr)Par (s~ )+ 5B [ 10)ar
&)

:s/ |f (1) dr,

where f (7) is assumed to be adapted. Hence the result follows by writing
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J {ac(r),dc®") as an iterated integral. For example if n = 2,
AH

2

=E

/0< ) <1<ac(7’1, 72),de(m1) @ de(T))

Josn<ns

_/ dTQZSE/ [(ac(T1, ), de(T1) @ €)|”
0<m<m

/dTQZ / d71\<a(c(7'1,7'2),'r}®§>|2
0<711<7

&n

- 52/ lac(m, 7'2)\2 dridm
0<n<n<l

82/|ac(7'1,7'2)|2d7'1d7'2
Ny

where & and 7 in the above expression is running over an orthonormal basis of €.

Bruce Driver 50 Cornell, July 19 - 30, 2010

A gradient computation

We would like to compute the gradient of V' (A) where
/ S |FA) P,
RY ) i k<d
To this end, we recall that F} (x) = 9;Ar — 0, A; + [A;, Aj] and therefore,
83Fﬁ (T) = 3]'Bk., — 8k.BJ~ + [Bj, A;J + [Aj, Bk}
= V!B, - VB,
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and hence

dpV (A /R > (F),0pF (2)) da

1<j<k<d
/ (x), GBF (x )>dx
Re 1<]L<d
/ (F{3, VB, = Vi'B)) da
R o5, A<d
ApA A A
/ > (~V/Fi B+ (ViF} B))) da
Rd1<7k<d
/ F/\. By) da.
R 1<j,1s<d
Therefore we learn that
[gradV (A Z \% AFJA,C
as claimed.
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