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Preliminaries

In this talk;

1. We are going to extend results in [Gross & Malliavin, 1996, Hall & Sengupta, 1998]
which shows how to get one of Hall’s transform introduced in [Hall, 1994].

2. Along the way we will describe the Yang-Mill’s quantization problem.

3. Following [Driver & Hall, 1999] (motivated by [Landsman & Wren, 1997]) we will see
that a solution to the YM2 –quantization problem (2 = 1 + 1 (space+time)
dimensions) gives rise to a one parameter family of Hall – transforms which
interpolate between his two original transforms.

4. See [Albeverio et al., 1999] for the Segal-Bargmann transform as related to the
stochastic quantization of YM2.
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Fock Spaces

Definition 1 (Bosonic Fock spaces). Given a real Hilbert space, H and t > 0, let;

Multn (H,C) =
{
α : Hn Multi-Linear→ C : ‖α‖2Multn(H,C) <∞

}
where

‖α‖2Multn(H,C) =
∑

h1,...,hn∈S
|α (h1, . . . , hn)|2 ,

Symn (H,C) = {α ∈ Multn (H,C) : α is symmetric} ,
and

F (H ; t) :=

{
α = (αn)

∞
n=0 ∈

∞∏
n=0

Symn (H,C) : ‖α‖2t <∞
}

where

‖α‖2t :=
∑ tn

n!
‖αn‖2Multn(H,C) .
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Examples

Example 1. Suppose (W,H = Hμ, μ) is an abstract Wiener space and f ∈ P (W ∗)
then;

αn := Dn
xf ∈ Symn (H,C)

where
Dn
xf (h1, . . . , hn) := (∂h1 . . . ∂hnf ) (x) ,

and
α = (αn)

∞
n=0 ∈ ∩t>0F (H ; t) .

Moreover,

f (h) =

∞∑
n=0

1

n!
αn (h, . . . , h)

for all h ∈ H.
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Example 2. If H = L2 ([0, T ] ,R) then

L2 ([0, T ]n ,C) 	 u→ αu ∈ Multn (H,C)

where

αu (h1, . . . , hn) :=

∫
[0,T ]n

u (s1, . . . , sn)h1 (s1) . . . hn (sn) ds.

is unitary. (s := (s1, . . . , sn) .)

Example 3. Similarly if H = L2 ([0, T ] ,R) and

Δn (T ) := {s ∈ [0, T ] : 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ T}
then

L2 (Δn (T ) ,C) 	 u→ αu ∈ Symn (H,C)

is an isomorphism where

αu (h1, . . . , hn) :=
∑

σ∈Permn

∫
Δn(T )

u (s1, . . . , sn)hσ1 (s1) . . . hσn (sn) ds.

In this case

‖αu‖2Multn(H,C) = n!

∫
Δn(T )

|u (s)|2 ds.
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Summary of Lecture 5
Theorem 2 (Fock, Itô, Kakutani, Segal, Bargmann). Let μ and ν be non-degenerate
Gaussian measures on (W,BW ) with Hμ = Hν as vector spaces. Then the following
diagram of unitary maps commute,

L2 (W,μ ∗ ν)
Fμ∗ν

��

Sμ,ν ��HL2 (WC, μ× ν)
Fμ×ν
��

F (Hμ∗ν) 	 α ��αC ∈ F (Hμ + iHν)

where Sμ,ν is the generalized Segal-Bargmann map;

Sμ,νp := ν2 ∗ pC = (ν2 ∗ p)C
and where for any Gaussian measure γ on (W,BW ) Fγ is the Fock–Itô-Kakutani
isomorphism defined by

L2 (γ) 	 f → Fγf := (Dn
0 (γ ∗ f ))∞n=0 ∈ F (Hγ) .

Comments:

1. As vector space Hμ + iHν = HC but as real inner product spaces
Hμ + iHν = Hμ ×Hν.

2. FC (Hμ + iHν) denotes the Fock space of complex multi-linear forms on Hμ + iHν.
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Yang-Mills set up

• K = SU(2) or S1 or a compact Lie Group

SU(2) =

{
g :=

[
a −b̄
b ā

]
: a, b ∈ C 	 |a|2 + |b|2 = 1

}

• k = Lie(K), e.g. Lie(SU(2)) = su(2)

su(2) =

{
A :=

[
iα −β̄
β −iα

]
: α ∈ R and β ∈ C

}
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• Lie bracket: [A,B] = AB − BA =: adAB

• 〈A,B〉 = −tr(AB) = tr(A∗B)
(a fixed Ad – K – invariant inner product)

•M = Rd or Td =
(
S1
)d

.

• A = L2(M, kd) – the space of connection 1-forms.

• For A ∈ A and 1 ≤ i, k ≤ d, let

∇A
k := ∂k + adAk

(covariant differential)
and

FA
ki := ∂kAi − ∂iAk + [Ak,Ai] (Curvature of A)
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A := ∂ + ad∂k dAk Ak
∇A
k

FAFA := ∂ A − ∂ A + [A ,A ]∂kAAi ∂i∂∂ AAk Ak Ai]FkiFF

2 dA = L2(M, kd)



Yang – Mills Equations (in the temporal gauge)

For A (t) ∈ A, i.e. for (t, x) ∈ R×M,

A (t, x) = (A1 (t, x) , A2 (t, x) , . . . , Ad (t, x)) ∈ kd

the Y.M. equations are the Euler Lagrange equations for the action functional,

IT (A) =
1

4

∫
[0,T ]×Rd

FA(t, x) · FA(t, x)dxdt

where
FA(t, x) · FA(t, x) =

∑
ημην tr

[
FA
μ,ν(t, x)F

A
μ,ν(t, x)

]
and η = (1,−1,−1, . . . ,−1) .

Using

∂BF
A
j,k (x) = ∂jBk − ∂kBj + [Bj,Ak] + [Aj,Bk]

= ∇A
j Bk −∇A

k Bj =: d
AB

we find

(∂BIT ) (A) =
1

2

∫
[0,T ]×Rd

dAB · FA(t, x)dxdt

=
1

2

∫
[0,T ]×Rd

B · (dA)∗ FA(t, x)dxdt.
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Therefore the Euler Lagrange equations are,(
dA
)∗
FA(t, x) = 0.

Writing out these equation explicitly give the Yang – Mills PDE’s,

Ȧ (t) = E (t) (i.e. define E (t) := Ȧ (t)) (1)

Ėi (t) = Äi =

d∑
k=1

∇A
k F

A
ki =: Q (A, ∂A) (Dynamical Eqs.) (2)

0 = ∇A · E =

d∑
k=1

∇A
k Ek (Constraint Eqs.) (3)

Remark 3. The Yang – Mills equations are invariant under the Gauge group,
G := C∞ (M,K) which acts on A by

A ∈ A → Ag = g−1Ag + g−1∇g. (4)

This is a group action, namely (Ag)k = Agk for g, k ∈ G.
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−−1 −−1Ag = g−1Ag + g−1∇∇g.

(Constraint Eqs.)

(Dynamical Eqs.)

Maxwell’s Equations (d = 3 K = S1)

If d = 3, K = S1 and we set

E (t) := Ȧ (t) and B (t) = ∇× A (t) ,

then the Yang – Mills equations become Maxwell’s Equations:

Ė = −∇× B and Ḃ = ∇× E

∇ · E = 0 and ∇ · B = 0.
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Newton Form of the Y. M. Equations

Define the potential energy functional, V (A) , by

V (A) :=
1

2

∫
Rd

∑
1≤j<k≤d

|FA
j,k(x)|2dx.

Then the dynamics equation may be written in Newton form as

Ä (t) = − (gradAV ) (A) .

The conserved energy is thus

Energy
(
A, Ȧ

)
=

1

2

∥∥Ȧ∥∥2

A + V (A) . (5)

The weak form of the constraint Eq. (3) is, for h ∈ C∞
c (M, k) ,

0 =
(∇A · E, h)

L2(M ;k)
= − (

E,∇Ah
)
A .
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Review Canonical Quantization

CONCEPT CLASSICAL QUANTUM

STATE T ∗Rd ∼= Rd ×Rd 	 (p, q) K = PL2(Rd, dm)
SPACE ψ ∈ L2(Rd, dm) 	 ‖ψ‖K = 1.

OBSERVABLES Functions on T ∗Rd S.A. ops. on K
pk p̂k =

�

i
∂
∂qk

Examples qk q̂k =Mqk

H(q, p) = 1
2mp · p + V (q) Ĥ = − �2

2mΔ+ V (q)
Angular Momentum (q × p)k =

∑
l,j εkjlqjpl

1
i

∑
l,j εkjlq̂jp̂l

DYNAMICS Newtons Equations of Motion Schrödinger, Eq.
..
q(t) = −∇V (q(t)) i�ψ̇(t) = Ĥψ(t), ψ(t) ∈ K

MEASUREMENTS Evaluation 〈ψ, θψ〉 – expected
f (q, p) value.
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Formal Quantization of the Y. M. – Equations

Open Problem. When d = 3, “Quantize” the Yang – Mills equations and show the
resulting quantum – mechanical Hamiltonian has a mass gap. See www.claymath.org.

Let us explain the formal quantization of the Y. M. equations:

Raw quantum Hilbert Space: H = L2 (A, “DA”)
Position: (A, k)�M(A,k)

Momentum: (E, k)� 1

i
∂k for k ∈ C∞

c (Rd, kd)

Energy Function: K.E. + P.E.� H := −1

2
ΔA +MV

Recall that the Potential Energy (V ) is given by

V (A) :=
1

2

∫
Rd

∑
1≤j<k≤d

|FA
j,k(x)|2dx.
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1
H := − Δ +MΔA MVMM

2

H
2 “ ”)= L2 ((AA, “DDA”

Constraints

We must also quantize the constraint functionals:(
E,∇Ah

)
A =

∑
k∈O.N.B.(A)

(
k,∇Ah

)
A (E, k)A

�
∑

k∈O.N.B.(A)

(
k,∇Ah

)
A
1

i
∂k =

1

i
∂∇Ah

Remark 4. Since∑
k∈O.N.B.(A)

∂k
(
k,∇Ah

)
A =

∑
k∈O.N.B.(A)

(k, [k, h])A =
∑

k∈O.N.B.(A)

0 = 0,

there is no ordering ambiguity in the quantization of
(
E,∇Ah

)
A .
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quantize the constraint functionals:

1
∂ A∂∇∂∂ AAhi

�

Definition 5. For each h ∈ C∞
c (M, k) , let Xh be the vector field on A defined by:

Xh (A) := ∇Ah = ∇h + adAh.

With this notation we want to trim down the raw Hilbert space to:

Hphysical =

⎧⎨
⎩F ∈ H :

Constraint Conditions︷ ︸︸ ︷
XhF := ∂∇AhF = 0 ∀ h ∈ C∞

c (Rd, k)

⎫⎬
⎭ .

Theorem 6 (Concrete description of Hphysical). The physical Hilbert space is given by,

Hphysical = {F ∈ H : F (Ag) = F (A) ∀ A ∈ A, g ∈ G} .
.
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Proof: First observe that
d

dt
|0Aeth =

d

dt
|0
(
Ade−thA + e−th∇eth)

= − [h,A] +∇h = adAh +∇h = Xh (A) .

Q.E.D.

Hence Xh generates the flow, A→ Aeth.Therefore the following are equivalent:

1. XhF = 0 for all h ∈ C∞
c (M, k)

2. F ◦ etXh
= F for all h ∈ C∞

c (M, k)

3. F
(
Aeh

)
= F (A) for all h ∈ C∞

c (M, k)

4. F (Ag) = F (A) ∀ A ∈ A, g ∈ G.
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Proof:
d thet| Ae =|0A
dt

h= Xh (A) .

Wilson loop variable description of Hphysical

Definition 7 (Restricted Gauge Group). G0 := {g ∈ G : g (0) = id} .
Let L = L (M) loops on M based at o ∈M.

Definition 8. Let //A (σ) ∈ K be (left invariant) parallel translation along σ ∈ L, that
is //A (σ) := //A1 (σ) , where

d

dt
//At (σ) +

d∑
i=1

σ̇i (t)Ai (σ (t)) //
A
t (σ) = 0 with //A0 (σ) = id.
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G := {{g ∈ G : g (0) = idd} .G0

/A/1/ (σ) := //A1 (σ)///A

Theorem 9 (Loop Variable Theorem). Suppose A,B ∈ A. Then //A (σ) = //B (σ) for
all σ ∈ L iff A = Bg for some g ∈ G0. We call the function, A→ //A (σ) , a “Loop
variables” on A/G0.

Proof:

• If A = Bg for some g ∈ G0 and σ : [0, 1] →M such that σ (0) = o, then

//A (σ) = //B
g

(σ) = g (σ (1))−1 //B (σ) .

• Hence if A = Bg and σ ∈ L, then //A (σ) = //B (σ) .

• If //A (σ) = //B (σ) for all σ ∈ L, define g (σ (1)) = //B (σ) //A (σ)−1 for all
σ : [0, 1] →M such that σ (0) = o.

• Then g is well defined and A = Bg.

Q.E.D.

Corollary 10.

Hphysical = {F ∈ H : F (Ag) = F (A) ∀ A ∈ A, g ∈ G}

“ ∼= ”
{
F ∈ L2(A,DA) : F = F

({
//A (σ) : σ ∈ L})} .
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/A /B for//A (σ) = //B (σ)
gall iff for somel σ ∈ L f A = Bg g ∈ G .G0.

Restriction to d = 1 (general K)

S1 = [0, 1]/ (0 ∼ 1) 	 θ and write ∂θ =
∂
∂θ

In this case,

• A = L2(S1, k),

• G0 = {g ∈ H1(S1 → K) : g(0) = g(1) = id ∈ K},

• Ag = Adg−1A + g−1g′

Bruce Driver 20 Cornell, July 19 - 30, 2010

2 1A = L2(S1, k), Configuration space

Gauge Group



• H =“L2(A,DA)”

• Hphysical = {F ∈ H : Fφ(A) = φ(//1(A)), φ : K → C} , where //θ(A) ∈ K is the
solution to

d

dθ
//θ(A) + A(θ)//θ(A) = 0 with //0(A) = id ∈ K.

//1(A) ∈ K is the holonomy of A.

• FA ≡ 0 when d = 1 and therefore, V (A) ≡ 0.

• H = −1
2ΔA (Quantum Hamiltonian)
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Raw Hilbert Space

H H C}= {{F ∈ : F (A) = φ(// (A)), φ : K → C}Hphysical FφFF ( /1(• H

No curvature in 1d

Raw Hamiltonian

A Physics Idea

Theorem 11 (Heuristic: c.f. Witten 1991, CMP 141.). Suppose K is simply connected
and for φ let Fφ (A) := φ(//1(A)), then

φ ∈ L2 (K, dHaar) → Fφ ∈ Hphysical

is a “Unitary” map which intertwines ΔA and ΔK, i.e.

ΔA [φ ◦ //1] = ΔAFφ = FΔKφ = (ΔKφ) ◦ //1. (6)

Goal: Give a precise meaning to the previous idea.

To do this we will “regularize” DA by the Gaussian measure

dP̃s(A) =
1

Zs
exp

(
− 1

2s
|A|2A

)
DA

with the idea of letting s→ ∞ at the end to “recover” DA.
The measure P̃s is a Gaussian measure living on a certain completion, Ā, of A.
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2
HHaar)rφ ∈ L2 (K, dH → F ∈ HphysicalFφFF

Δ [φ ◦ // ] = Δ F = F = (Δ φ) ◦ // .ΔA /1] ΔAFFφFF FΔFF φ ΔKφ /1.ΔK

A Realization of Ā as W
(
k
)

• W (k) := {ω ∈ C ([0, 1] → k) : ω(0) = 0}
• W (K) := {g ∈ C([0, 1] → K : g(0) = e ∈ K}
• H(k) := {h ∈ W (k) :

∫ 1

0
|h′ (s)|2 ds <∞}

• Note that ∂θ : H(k) → A = L2
(
S1; k

)
is isometric.

• Define Ā := ∂θW (k).

• P̃s → Ps – Wiener measure on W (k) with variance s.

• //θ(A) → //θ(a) where for a ∈ W (k),

d//θ(a) + a′ (θ) //θ(a) = 0 with //0(a) = id ∈ K.

• The action of gauge group, A→ Ag goes over to

a→ ags =

∫ s

0

(
g−1 (σ) da (σ) g (σ) + g−1 (σ) dg (σ)

)
.
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Completed Connection Forms

Gross’ Ergodicity Theorem

The following theorem is a stochastic version of the Loop Variable Theorem, item 2. of
Theorem 9.

Theorem 12 ([Gross, 1993]). Let

H
s
physical :=

[
L2 (W (k) , Ps)

]G0
=
{
F ∈ L2 (W (k) , Ps) : F (ag) = F (a) for Ps a.e. a

}
.

Then
H
s
physical =

{
F = f (//1) : f ∈ L2 (K, ps(x)dx)

}
.

where
ps(x)dx = Ps–Law(//1).

Remark 13. The action, F (a) → F (ag) is not unitary except in the limit as s→ 0. The
unitarized action has no non-trivial fixed elements in L2 (W (k) , Ps) , see
[Driver & Hall, 2000] for a proof using the Fourier Wiener transform. Hence it would be a
BAD idea to unitarize this action.

Corollary 14. The function, ps, is the convolution heat kernel on K. Since
lims→∞ ps(x) = 1,

lim
s→∞

H
s
physical

∼= L2(K, dx).
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An Explanation for Eq. (6)

Recall Eq. (6) states ΔA[φ ◦ //1] = (ΔKφ) ◦ //1

• If we let S0 be an orthonormal basis of H(k) and

ΔH(k) =
∑
h∈S0

∂2h, (7)

then the assertion in Eq. (6) becomes:

ΔH(k) (φ ◦ //1) ?
= (ΔKφ) ◦ //1. (8)

Proof: (Heursitic explanation.)

• Use 〈·, ·〉 on k to construct a bi-invariant metric on TK.

• Let H (K) be the space of finite energy paths on K starting at e ∈ K.

• Equip H (K) with the right invariant metric induced from the metric on

H (k) := Lie (H (K)) .
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Then it is a fact that the “Cartan Rolling Map, ψ : H (k) → H (K) defined by

ψ (a) := //· (a)

is an isometric isomorphism of Riemannian manifolds. Consequently we may “conclude”
that ψ intertwines the Laplacian, ΔH(k) on H (k) with the Laplacian, ΔH(K) on H (K) ,
i.e.

ΔH(k) (f ◦ ψ) = (
ΔH(K)f

) ◦ ψ. (9)

When f (g) = ϕ (g (1)) , one can show

ΔH(K)f (g) = (ΔKϕ) (g (1))

and therefore Eq. (9) implies,

ΔH(k) (φ ◦ //1) = (ΔKφ) ◦ //1.

Q.E.D.
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isometric isomorphism of Riemannian manifolds.

ψ (a) := // (a)/·

ψ : H (kk) → H (K)

Why is this Explanation not Satisfactory

• The operator ΔH(k) makes sense on smooth cylinder functions.

• However, φ ◦ //1 is not a cylinder function.

• Problematic Theorem: The densely defined operator ΔH(k) on L2(W (k), Ps) is not
closable.

Proof. Consider the case k =R and s = 1, so that μ = P1 is standard Wiener measure.
Let

f (a) = 2

∫ 1

0

aθdaθ = a21 − 1

a cylinder function. One computes

ΔH(k)f (a) =
∑
h∈S0

2h21 = 2.

On the other hand, we have f (a) = lim|P|→0 fP(a) where fP(a) is the cylinder
function

fP(a) = 2
∑
si∈P

asi(asi+1 − asi).
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Explanation not Satisfactory

makes sense on smooth cylinder functions.ΔΔH(kk)

is not a cylinder function.φ ◦ ///1

But
ΔH(k)fP(a) = 0!

(Compare with the harmonic function

(x1 + x2 + · · · + xn)xn+1 on R
n+1.)

Therefore lim|P|→0 fP = f while

0 = lim
|P|→0

ΔH(k)fP(a) �= ΔH(k)f = 2.
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0 = lim Δ f (a) �= Δ�� f = 2.ΔH(kk)ffPff ΔH(kk)f|P|→→0



Segal - Bargmann Theory

• Let kC = k + ik be the complexification of k

• KC = the complexification of K, e.g. SU(2)C = SL(2,C).

• For s > t/2, let Ms,t be the Gaussian measure on W (kC),

Ms,t = Law
(√

s− t/2 α + i
√
t/2 β

)
where α and β are independent standard (k, 〈·, ·〉k) – valued Brownian motions.

Theorem 15 (Segal- Bargmann). There exists an isometry

St : L
2(W (k), Ps) → L2(W (kC),Ms,t)

such that

(Stf )(c) =

∫
fC(c + a)dPt(a) = (e

t
2�H(k)f )C(c).

For all polynomial cylinder functions f . Moreover Ran (St) = closure of Holomorphic
cylinder functions.

Bruce Driver 29 Cornell, July 19 - 30, 2010

Proof: Apply our generalized Segal-Bargmann theorem with

μ := Ps−t/2 = Law
(√

s− t/2α
)

ν := Pt/2 = Law
(√

t/2β
)

so that

St = Pt ∗ (·) = ν2 ∗ (·) ,
μ× ν =Ms,t, and

μ ∗ ν = Law
(√

s− t/2α +
√
t/2β

)
= Ps.

Q.E.D.

Theorem 16 (Stochastic Representation Theorem). St is also characterized by

St

∫
�n

〈α(τ ), da⊗n

(τ )〉 =
∫
�n

〈αC(τ ), dc⊗n

(τ )〉

where α : Δn → k is a deterministic function.
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Proof: Suppose that
α(τ ) = 1J1×J2×···×Jn(τ )η

with η ∈ k⊗n and Ji = (si, ti] are intervals such that Ji < Jk for all i < k, i.e. ti < sk.
Let a (Ji) := ati − asi and

f (a) =

∫
�n

〈α(τ ), da⊗n

(τ )〉 = 〈η, a(J1)⊗ · · · ⊗ a(Jn)〉

then

fC(c) =

∫
�n

〈α(τ ), dc⊗n

(τ )〉 = 〈η, c(J1)⊗ · · · ⊗ c(Jn)〉,

where c (Ji) := cti − csi. Q.E.D.

Bruce Driver 31 Cornell, July 19 - 30, 2010

Since a→ 〈η, (c(J1) + a(J1))⊗ · · · ⊗ (c(Jn) + a(Jn))〉 is a Harmonic polynomial of a;

Stf (c) :=

∫
W (k)

fC(c + a)dPt(a)

=

∫
W (k)

〈η, (c(J1) + a(J1))⊗ · · · ⊗ (c(Jn) + a(Jn))〉dPt(a)
= 〈η, c(J1)⊗ · · · ⊗ c(Jn)〉
= fC(c)

By a limiting argument one then shows in geneal that

St

⎛
⎜⎝∫

�n

〈αC(τ ), d(c + a)⊗
n

(τ )〉

⎞
⎟⎠ =

∫
�n

〈αC(τ ), dc⊗n

(τ )〉.
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The Main Theorem
Theorem 17 ([Gross & Malliavin, 1996, Driver & Hall, 1999]). Let

d//θ + daθ ◦ //θ = 0 with //0 = Id.

relative to Ps and
d//Cθ + dcθ ◦ //Cθ = 0 with //C0 = Id.

relative to Ms,t. Then for all f ∈ L2(K, dx),

Stf (//1) = F (//C1 )

where F is the unique Holomorphic function on KC such that

F |K = e
t
2�Kf.

Morally speaking:
StH = (e

t
2�H(k)H)C ∈ HL2 (W (kC))

(e
t
2�H(k)f (//1))C = (e

t
2�Kf )C(//

C
1 )

so on “restricting” to W (k)

e
t
2�H(k)f (//1) = (e

t
2�Kf )(//1)

which we interpret as a rigorous version of the statement that

�H(k) [f (//1)] = (�Kf ) (//1).
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CC)/1/StSS f (//1) = F (//C1

�FF | = e f.�K|K 2
t
2

� �e )f (// ) = (e f )(// )�K�H(k) /1) /1)2
t
2 2

t
2

� [f (// )] = ((� f ) (// ).�H(kk) /1) �K /1)

The generators of //θ ∈ K & //C
θ

∈ K
C

Proposition 18. Let

• {Xk : k = 1, . . . , dim k} be an orthonormal basis for k

• Yk = JXk, where J is the complex structure on kC.

Then

1. The generator of the diffusion, //θ ∈ K, is

ΔK =
∑

X2
k.

2. The generator of the diffusion, //Cθ ∈ KC, is

As,t = (s− t/2)
∑

X2
k +

t

2

∑
Y 2
k
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Corollary: Hall’s Transform

Let ρs(dx) = Law(//1) and ms,t(dg) = Law(//C1 ), i.e.

ρs(x) =
(
esΔK/2δe

)
(x) for x ∈ K &

ms,t(g) =
(
eAs,t/2δe

)
(g) for g ∈ KC.

Corollary 19 (A One Parameter family of Hall’s Transforms). The map

L2(K, ρs) 	 f → (
etΔK/2f

)
C
∈ HL2(KC,ms,t)

is unitary.

This theorem interpolates between the two previous versions of Hall’s transform
corresponding to s = ∞ and s = t

2. (END)
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(A One Parameter family of Hall’s Transforms)

This theorem interpolates between the two previous versions of Hall’s transform
tcorresponding to ands = ∞ s = t .2

Proof Sketch of Main Theorem 17.

For the proof we will need the following notation and facts:

• {Xk : k = 1, . . . , dim k} be an orthonormal basis for k

• Yk = JXk, where J is the complex structure on kC.

• Let ΔK be the generator of //θ, ΔK =
∑

X2
k .

• Let As,t be the generator of //Cθ ,

As,t = (s− t/2)
∑

X2
k +

t

2

∑
Y 2
k

• Notice that if Φ is a holomorphic function, then YkΦ = iXkΦ so that

As,tΦ = (s− t)ΔKΦ.

• The Xk and Yk commute with ΔK.
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A Φ = (s− t)Δ Φ.As,tΦ ΔKΦ



Proof. (Proof of Main Theorem 17.) Let Φ =
(
etΔK/2f

)
C

denote the analytic continuation

of etΔK/2f to KC. Using [ΔK,Xk] = 0 and the Veretennikov and Krylov formula,

f (//1) =

∞∑
n=0

∫
Δn

〈αn, da⊗n(τ )〉

where αn =
(
DnesΔK/2f

)
(e). Therefore

St [f (//1)] =

∞∑
n=0

∫
Δn

〈(αn)C , dc⊗n(τ )〉.

Similarly,

Φ(//C1 ) =

∞∑
n=0

∫
Δn

〈βn, dc⊗n(τ )〉
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Veretennikov and Krylov formula,

(
f
)

sΔ /2α =
(
Dnes 2f

)
(e).ΔKαn

where

βn =
(
DneAs,t/2Φ

)
(e) =

(
Dne(s−t)ΔK/2Φ

)
(e)

=
(
Dne(s−t)ΔK/2

(
etΔK/2f

)
C

)
(e)

=
[
Dn

(
esΔK/2f

)
C
(e)
]
C
= (αn)C .

This shows,

St [f (//1)] = Φ(//C1 ) =
(
etΔK/2f

)
C

(
//C1

)
as was to be shown.

Remark 20. See Dimock 1996, and Landsman and Wren ( ∼= 1998) for other approaches
to “canonical quantization” of YM2.

(END NOW FOR SURE!)
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( )
A /2β =

(
DneA 2Φ

)
(e)As,t/βn

= (α ) .αn))C

Related and Further Reading

Here are some references of related along with some more recent developments.

More references: [Gordina, 2002, Gordina, 2000b, Gordina, 2000a], [Driver, 1997b,
Driver, 1997a, Driver, 1995, Driver & Gordina, 2007b, Driver & Gordina, 2007a,
Driver & Gordina, 2007c, Driver & Gordina, 2009b, Driver & Gordina, 2009a,
Driver & Gordina, 2008, Driver & Gross, 1997, Driver et al., 2010, Driver et al., 2009a,
Driver et al., 2009b, Driver & Hall, 2000, Driver & Hall, 1999]
[Cecil, 2009, Cecil, 2008, Cecil & Driver, 2008]
[Hall, 2001, Hall, 1994, Hall, 2008a, Hall, 2008b, Hall, 2002,
Hall & Lewkeeratiyutkul, 2004, Hall & Mitchell, 2008, Hall & Sengupta, 1998]
[Malliavin & Malliavin, 1990, Malliavin, 1990] [Melcher, 2009]
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Extension to the Path Space

Now let ρ̃t := //∗Pt = the law of // relative to Pt.

Theorem 21. There exists an isometry

Bt : L
2(W (K),Law(//)) → L2(W (KC),Law(//

C))

such that for all cylinder functions f ∈ L2(W (K), Ps), Btf is a Holomorphic cylinder
function on W (KC) such that

(Btf )(y) = “
(
e

t
2ΔH(K)f

)
(y) ” =

∫
f (xy)ρ̃t(dx) ∀ y ∈ H(K).

Moreover, Ran (Bt)) is the closure of the holomorphic cylinder functions and the
following diagram commutes

L2(W (k), Ps)
St−→ HL2(W (kC),Ms,t)

� // � � //C
L2(W (K), //∗Ps)

Bt−→ HL2(W (KC), //
C
∗Ms,t)

i.e.
St(f ◦ //) = (Btf ) ◦ //C
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Path Space Result Explanation

Proof. (An explanation rather than a proof.) Let y ∈ H(K) and consider∫
W (K)

f (xy)ρ̃t(dx) =

∫
W (k)

f (//(a) · y)Pt(da).

Notice that

//−1(z) =

∫ ·

0

z−1δz. (Inverse of the Itô Map.)

so that

//−1 (//(a)y) =

∫
(//(a)y)−1 δ (//(a)y)

=

∫
y−1//(a)−1δ (//(a)y)

=

∫
Ady−1δa +

∫
y−1δy

=

∫
Ady−1δa + //−1(y).
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Therefore,

//(a)y = //

(∫
Ady−1da + //−1(y)

)
.

Noting that

Law

(∫
Ady−1da

)
= Law (a) ,

we learn that

(Btf )(y) =

∫
W (K)

f (xy)ρ̃t(dx) =

∫
W (k)

f (//(a) · y)Pt(da)

=

∫
W (k)

f (//

(∫
Ady−1da + //−1(y)

)
)Pt(da)

=

∫
W (k)

f (//
(
a + //−1(y)

)
)Pt(da)

= St (f ◦ //) (//−1(y)
)
.

Now replace y → // (a) in the above identity to find

(Btf )(// (a)) = St (f ◦ //) (a) ,
i.e.

(Btf ) ◦ // = St (f ◦ //) .
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Isometry Property

By the way one checks the isometry property from this result as follows. On one hand

∫
W (k)

∣∣∣∣∣∣∣
∫
�n

〈α(τ ), da⊗n

(τ )〉

∣∣∣∣∣∣∣
2

dPs(a) = sn
∫
�n

|α(τ )|2dτ,

while on the other

∫
W (kC)

∣∣∣∣∣∣∣
∫
�n

〈αC(τ ), dc⊗n〉

∣∣∣∣∣∣∣
2

dMs,t(c) = sn
∫
�n

|α(τ )|2dτ.
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To prove this last assertion, consider the expectation of the stochastic integral:

E

∣∣∣∣
∫ β

α

f (τ )dc(τ )

∣∣∣∣
2

= E

∣∣∣∣
∫ β

α

f (τ )da(τ ) + i f (τ )db(τ )

∣∣∣∣
2

= E

∫ β

α

|f (τ )|2dτ (s− t

2
) +

t

2
E

∫ β

α

|f (τ )|2dτ

= s

∫ β

α

|f (τ )|2dτ,

where f (τ ) is assumed to be adapted. Hence the result follows by writing
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〈αC(τ ), dc⊗n〉 as an iterated integral. For example if n = 2,

E

∣∣∣∣∣∣∣
∫
�2

〈αC(τ ), dc⊗2〉

∣∣∣∣∣∣∣
2

= E

∣∣∣∣
∫
0≤τ1≤τ2≤1

〈αC(τ1, τ2), dc(τ1)⊗ dc(τ )〉
∣∣∣∣2

=

∫ 1

0

dτ2
∑
ξ

sE

∫
0≤τ1≤τ2

|〈αC(τ1, τ2), dc(τ1)⊗ ξ〉|2

=

∫ 1

0

dτ2
∑
ξ,η

s2
∫
0≤τ1≤τ2

dτ1 |〈αC(τ1, τ2), η ⊗ ξ〉|2

= s2
∫
0≤τ1≤τ2≤1

|αC(τ1, τ2)|2 dτ1dτ2

= s2
∫
�2

|αC(τ1, τ2)|2 dτ1dτ2

where ξ and η in the above expression is running over an orthonormal basis of k.
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A gradient computation

We would like to compute the gradient of V (A) where

V (A) :=
1

2

∫
Rd

∑
1≤j<k≤d

|FA
j,k(x)|2dx.

To this end, we recall that FA
j,k(x) = ∂jAk − ∂kAj + [Aj,Ak] and therefore,

∂BF
A
j,k (x) = ∂jBk − ∂kBj + [Bj,Ak] + [Aj,Bk]

= ∇A
j Bk −∇A

k Bj
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and hence

∂BV (A) =

∫
Rd

∑
1≤j<k≤d

〈
FA
j,k(x), ∂BF

A
j,k (x)

〉
dx

=
1

2

∫
Rd

∑
1≤j,k≤d

〈
FA
j,k(x), ∂BF

A
j,k (x)

〉
dx

=
1

2

∫
Rd

∑
1≤j,k≤d

〈
FA
j,k,∇A

j Bk −∇A
k Bj

〉
dx

=
1

2

∫
Rd

∑
1≤j,k≤d

(〈−∇A
j F

A
j,k, Bk

〉
+
〈∇A

k F
A
j,k, Bj

〉)
dx

= −
∫
Rd

∑
1≤j,k≤d

〈∇A
j F

A
j,k, Bk

〉
dx.

Therefore we learn that

[gradV (A)]k (x) = −
d∑
j=1

∇A
j F

A
j,k

as claimed.
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