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Course Notation List

1. (Ω,P ) will denote a probability spaces and S will denote a set which is
called state space.

2. If S is a discrete set, i.e. finite or countable and X : Ω → S we let

ρX (s) := P (X = s) .

More generally if Xi : Ω → Si for 1 ≤ i ≤ n we let

ρX1,...,Xn (s) := P (X1 = s1, . . . , Xn = sn)

for all s = (s1, . . . , sn) ∈ S1 × · · · × Sn.
3. If S is R or Rn and X : Ω → S is a continuous random variable, we let
ρX (x) be the operability density function of X, namely,

E [f (X)] =

∫
S

f (x) ρX (x) dx.

4. Given random variables X and Y we let;

a) µX := EX be the mean of X.

b) Var (X) := E
[
(X − µX)

2
]

= EX2 − µ2
X be the variance of X.

c) σX = σ (X) :=
√

Var (X) be the standard deviation of X.
d) Cov (X,Y ) := E [(X − µX) (Y − µY )] = E [XY ]− µXµY be the covari-

ance of X and Y.
e) Corr (X,Y ) := Cov (X,Y ) / (σXσY ) be the correlation of X and Y.
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Course Overview and Plan

This course is an introduction to some basic topics in the theory of stochas-
tic processes. After finishing the discussion of multivariate distributions and
conditional probabilities initiated in Math 180A, we will study Markov chains
in discrete time. We then begin our investigation of stochastic processes in con-
tinuous time with a detailed discussion of the Poisson process. These two topics
will be combined in Math 180C when we study Markov chains in continuous
time and renewal processes.

In the next two quarters we will study some aspects of Stochastic Pro-
cesses. Stochastic (from the Greek στ óχoξ for aim or guess) means random. A
stochastic process is one whose behavior is non-deterministic, in that a system’s
subsequent state is determined both by the process’s predictable actions and
by a random element. However, according to M. Kac1 and E. Nelson2, any kind
of time development (be it deterministic or essentially probabilistic) which is
analyzable in terms of probability deserves the name of stochastic process.

Mathematically we will be interested in collection of random variables or
vectors {Xt}t∈T with Xt : Ω → S (S is the state space) on some probability
space, (Ω,P ) . Here T is typically in R+ or Z+ but not always.

Example 1.1. 1. Xt is the value of a spinner at times t ∈ Z+.
2. Xt denotes the prices of a stock (or stocks) on the stock market.
3. Xt denotes the value of your portfolio at time t.
4. Xt is the position of a dust particle like in Brownian motion.
5. XA is the number of stars in a region A contained in space or the number

of raisins in a region of a cake, etc.
6. Xn ∈ S = Perm ({1, . . . , 52}) is the ordering of cards in a deck of cards

after the nth shuffle.

Our goal in this course is to introduce and analyze models for such random
objects. This is clearly going to require that we make assumptions on {Xt}
which will typically be some sort of dependency structures. This is where we
will begin our study – namely heading towards conditional expectations and
related topics.

1 M. Kac & J. Logan, in Fluctuation Phenomena, eds. E.W. Montroll & J.L.
Lebowitz, North-Holland, Amsterdam, 1976.

2 E. Nelson, Quantum Fluctuations, Princeton University Press, Princeton, 1985.

1.1 180B Course Topics:

1. Review the linear algebra of orthogonal projections in the context of least
squares approximations in the context of Probability Theory.

2. Use the least squares theory to interpret covariance and correlations.
3. Review of conditional probabilities for discrete random variables.
4. Introduce conditional expectations as least square approximations.
5. Develop conditional expectation relative to discrete random variables.
6. Give a short introduction to martingale theory.
7. Study in some detail discrete time Markov chains.
8. Review of conditional probability densities for continuous random variables.
9. Develop conditional expectations relative to continuous random variables.

10. Begin our study of the Poisson process.

The bulk of this quarter will involve the study of Markov chains and pro-
cesses. These are processes for which the past and future are independent given
the present. This is a typical example of a dependency structure that we will
consider in this course. For an example of such a process, let S = Z and place a
coin at each site of S (perhaps the coins are biased with different probabilities
of heads at each site of S.) Let X0 = s0 be some point in S be fixed and then
flip the coin at s0 and move to the right on step if the result is heads and to
left one step if the result is tails. Repeat this process to determine the position
Xn+1 from the position Xn along with a flip of the coin at Xn. This is a typical
example of a Markov process.

Before going into these and other processes in more detail we are going
to develop the extremely important concept of conditional expectation.
The idea is as follows. Suppose that X and Y are two random variables with
E |Y |2 <∞. We wish to find the function h such that h (X) is the minimizer of

E (Y − f (X))
2

over all functions f such that E
[
f (X)

2
]
<∞, that is h (X) is

a least squares approximation to Y among random variables of the form f (X) ,
i.e.

E (Y − h (X))
2

= min
f

E (Y − f (X))
2
. (1.1)

Fact: a minimizing function h always exist and is “essentially unique.” We
denote h (X) as E [Y |X] and call it the conditional expectation of Y given



X. We are going to spend a fair amount of time filling in the details of this
construction and becoming familiar with this concept.

As a warm up to conditional expectation, we are going to consider a simpler
problem of best linear approximations. The goal now is to find a0, b0 ∈ R such
that

E (Y − a0X + b0)
2

= min
a,b∈R

E (Y − aX + b)
2
. (1.2)

This is the same sort of problem as finding conditional expectations except we
now only allow consider functions of the form f (x) = ax + b. (You should be
able to find a0 and b0 using the first derivative test from calculus! We will carry
this out using linear algebra ideas below.) It turns out the answer to finding
(a0, b0) solving Eq. (1.2) only requires knowing the first and second moments
of X and Y and E [XY ] . On the other hand finding h (X) solving Eq. (1.1)
require full knowledge of the joint distribution of (X,Y ) .

By the way, you are asked to show on your first homework that
minc∈R E (Y − c)2

= Var (Y ) which occurs for c = EY. Thus EY is the least
squares approximation to Y by a constant function and Var (Y ) is the least
square error associated with this problem.
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Covariance and Correlation

Suppose that (Ω,P ) is a probability space. We say that X : Ω → R is in-

tegrable if E |X| <∞ and X is square integrable if E |X|2 <∞. We denote
the set of integrable random variables by L1 (P ) and the square integrable ran-
dom variables by L2 (P ) . When X is integrable we let µX := EX be the mean
of X. If Ω is a finite set, then

E [|X|p] =
∑
ω∈Ω
|X (ω)|p P (({ω})) <∞

for any 0 < p < ∞. So when the sample space is finite requiring integrability
or square integrability is no restriction at all. On the other hand when Ω is
infinite life can become a little more complicated.

Example 2.1. Suppose that N is a geometric with parameter p so that
P (N = k) = p (1− p)k−1

for k ∈ N = {1, 2, 3, . . . } . If X = f (N) for some
function f : N→ R, then

E [f (N)] =

∞∑
k=1

p (1− p)k−1
f (k)

when the sum makes sense. So if Xλ = λN for some λ > 0 we have

E
[
X2
λ

]
=

∞∑
k=1

p (1− p)k−1
λ2k = pλ2

∞∑
k=1

[
(1− p)λ2

]k−1
<∞

iff (1− p)λ2 < 1, i.e. λ < 1/
√

1− p. Thus we see that Xλ ∈ L2 (P ) iff λ <
1/
√

1− p.

Lemma 2.2. L2 (P ) is a subspace of the vector space of random variables on
(Ω,P ) . Moreover if X,Y ∈ L2 (P ) , then XY ∈ L1 (P ) and in particular (take
Y = 1) it follows that L2 (P ) ⊂ L1 (P ) .

Proof. If X,Y ∈ L2 (P ) and c ∈ R then E |cX|2 = c2E |X|2 < ∞ so that
cX ∈ L2 (P ) . Since

0 ≤ (|X| − |Y |)2
= |X|2 + |Y |2 − 2 |X| |Y | ,

it follows that

|XY | ≤ 1

2
|X|2 +

1

2
|Y |2 ∈ L1 (P ) .

Moreover,

(X + Y )
2

= X2 + Y 2 + 2XY ≤ X2 + Y 2 + 2 |XY | ≤ 2
(
X2 + Y 2

)
from which it follows that E (X + Y )

2
<∞, i.e. X + Y ∈ L2 (P ) .

Definition 2.3. The covariance, Cov (X,Y ) , of two square integrable random
variables, X and Y, is defined by

Cov (X,Y ) = E [(X − µX) (Y − µY )] = E [XY ]− EX · EY

where µX := EX and µY := EY. The variance of X,

Var (X) = Cov (X,X) = E
[
X2
]
− (EX)

2
(2.1)

= E
[
(X − µX)

2
]

(2.2)

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] =
EX · EY. More generally we say {Xk}nk=1 ⊂ L2 (P ) are uncorrelated iff
Cov (Xi, Xj) = 0 for all i 6= j.

Definition 2.4 (Correlation). Given two non-constant random variables we

define Corr (X,Y ) := Cov(X,Y )
σ(X)·σ(Y ) to be the correlation of X and Y.

It follows from Eqs. (2.1) and (2.2) that

0 ≤ Var (X) ≤ E
[
X2
]

for all X ∈ L2 (P ) . (2.3)

Exercise 2.1. Let X,Y be two random variables on (Ω,B, P );

1. Show that X and Y are independent iff Cov (f (X) , g (Y )) = 0 (i.e. f (X)
and g (Y ) are uncorrelated) for bounded measurable functions, f, g : R→
R. (In this setting X and Y may take values in some arbitrary state space,
S.)

2. If X,Y ∈ L2 (P ) and X and Y are independent, then Cov (X,Y ) = 0.
Note well: we will see in examples below that Cov (X,Y ) = 0 does not
necessarily imply that X and Y are independent.
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Solution to Exercise (2.1). (Only roughly sketched the proof of this in
class.)

1. Since

Cov (f (X) , g (Y )) = E [f (X) g (Y )]− E [f (X)]E [g (Y )]

it follows that Cov (f (X) , g (Y )) = 0 iff

E [f (X) g (Y )] = E [f (X)]E [g (Y )]

from which item 1. easily follows.
2. Let fM (x) = x1|x|≤M , then by independence,

E [fM (X) gM (Y )] = E [fM (X)]E [gM (Y )] . (2.4)

Since

|fM (X) gM (Y )| ≤ |XY | ≤ 1

2

(
X2 + Y 2

)
∈ L1 (P ) ,

|fM (X)| ≤ |X| ≤ 1

2

(
1 +X2

)
∈ L1 (P ) , and

|gM (Y )| ≤ |Y | ≤ 1

2

(
1 + Y 2

)
∈ L1 (P ) ,

we may use the DCT three times to pass to the limit as M →∞ in Eq. (2.4) to
learn that E [XY ] = E [X]E [Y ], i.e. Cov (X,Y ) = 0. (These technical details
were omitted in class.)

End of 1/3/2011 Lecture.

Example 2.5. Suppose that P (X ∈ dx, Y ∈ dy) = e−y10<x<ydxdy. Recall that∫ ∞
0

yke−λydy =

(
− d

dλ

)k ∫ ∞
0

e−λydy =

(
− d

dλ

)k
1

λ
= k!

1

λk+1
.

Therefore,

EY =

∫ ∫
ye−y10<x<ydxdy =

∫ ∞
0

y2e−ydy = 2,

EY 2 =

∫ ∫
y2e−y10<x<ydxdy =

∫ ∞
0

y3e−ydy = 3! = 6

EX =

∫ ∫
xe−y10<x<ydxdy =

1

2

∫ ∞
0

y2e−ydy = 1,

EX2 =

∫ ∫
x2e−y10<x<ydxdy =

1

3

∫ ∞
0

y3e−ydy =
1

3
3! = 2

and

E [XY ] =

∫ ∫
xye−y10<x<ydxdy =

1

2

∫ ∞
0

y3e−ydy =
3!

2
= 3.

Therefore Cov (X,Y ) = 3− 2 · 1 = 1, σ2 (X) = 2− 12 = 1, σ2 (Y ) = 6− 22 = 2,

Corr (X,Y ) =
1√
2
.

Lemma 2.6. The covariance function, Cov (X,Y ) is bilinear in X and Y and
Cov (X,Y ) = 0 if either X or Y is constant. For any constant k, Var (X + k) =
Var (X) and Var (kX) = k2 Var (X) . If {Xk}nk=1 are uncorrelated L2 (P ) –
random variables, then

Var (Sn) =

n∑
k=1

Var (Xk) .

Proof. We leave most of this simple proof to the reader. As an example of
the type of argument involved, let us prove Var (X + k) = Var (X) ;

Var (X + k) = Cov (X + k,X + k) = Cov (X + k,X) + Cov (X + k, k)

= Cov (X + k,X) = Cov (X,X) + Cov (k,X)

= Cov (X,X) = Var (X) ,

wherein we have used the bilinearity of Cov (·, ·) and the property that
Cov (Y, k) = 0 whenever k is a constant.

Page: 8 job: 180Lec macro: svmonob.cls date/time: 11-Jan-2011/8:37
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Example 2.7. Suppose that X and Y are distributed as follows;

ρY 1/4 1
2 1/4

ρX X\Y −1 0 1
1/4 1 0 1/4 0
3/4 0 1/4 1/4 1/4

so that ρX,Y (1,−1) = P (X = 1, Y = −1) = 0, ρX,Y (1, 0) =
P (X = 1, Y = 0) = 1/4, etc. In this case XY = 0 a.s. so that E [XY ] = 0 while

E [X] = 1 · 1

4
+ 0 · 3

4
=

1

4
, and

EY = (−1) 1/4 + 0
1

2
+ 1

1

4
= 0

so that Cov (X,Y ) = 0− 1
4 · 0 = 0. Again X and Y are not independent since

ρX,Y (x, y) 6= ρX (x) ρY (y) .

Example 2.8. Let X have an even distribution and let Y = X2, then

Cov (X,Y ) = E
[
X3
]
− E

[
X2
]
· EX = 0

since,

E
[
X2k+1

]
=

∫ ∞
−∞

x2k+1ρ (x) dx = 0 for all k ∈ N.

On the other hand Cov
(
Y,X2

)
= Cov (Y, Y ) = Var (Y ) 6= 0 in general so that

Y is not independent of X.

Example 2.9 (Not done in class.). Let X and Z be independent with
P (Z = ±1) = 1

2 and take Y = XZ. Then EZ = 0 and

Cov (X,Y ) = E
[
X2Z

]
− E [X]E [XZ]

= E
[
X2
]
· EZ − E [X]E [X]EZ = 0.

On the other hand it should be intuitively clear that X and Y are not inde-
pendent since knowledge of X typically will give some information about Y. To
verify this assertion let us suppose that X is a discrete random variable with
P (X = 0) = 0. Then

P (X = x, Y = y) = P (X = x, xZ = y) = P (X = x) · P (X = y/x)

while
P (X = x)P (Y = y) = P (X = x) · P (XZ = y) .

Thus for X and Y to be independent we would have to have,

P (xX = y) = P (XZ = y) for all x, y.

This is clearly not going to be true in general. For example, suppose that
P (X = 1) = 1

2 = P (X = 0) . Taking x = y = 1 in the previously displayed
equation would imply

1

2
= P (X = 1) = P (XZ = 1) = P (X = 1, Z = 1) = P (X = 1)P (Z = 1) =

1

4

which is false.

Presumably you saw the following exercise in Math 180A.

Exercise 2.2 (A Weak Law of Large Numbers). Assume {Xn}∞n=1 is a se-
quence if uncorrelated square integrable random variables which are identically

distributed, i.e. Xn
d
= Xm for all m,n ∈ N. Let Sn :=

∑n
k=1Xk, µ := EXk and

σ2 := Var (Xk) (these are independent of k). Show;

E
[
Sn
n

]
= µ,

E
(
Sn
n
− µ

)2

= Var

(
Sn
n

)
=
σ2

n
, and

P

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
≤ σ2

nε2

for all ε > 0 and n ∈ N.

Page: 9 job: 180Lec macro: svmonob.cls date/time: 11-Jan-2011/8:37
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Geometric aspects of L2 (P )

Definition 3.1 (Inner Product). For X,Y ∈ L2 (P ) , let (X,Y ) := E [XY ]
and ‖X‖ :=

√
(X,X) =

√
E |X2|.

Example 3.2 (This was already mentioned in Lecture 1 with N = 4.). Suppose
that Ω = {1, . . . , N} and P ({i}) = 1

N for 1 ≤ i ≤ N. Then

(X,Y ) = E [XY ] =
1

N

N∑
i=1

X (i)Y (i) =
1

N
X ·Y

where

X :=


X (1)
X (2)

...
X (N)

 and Y :=


Y (1)
Y (2)

...
Y (N)

 .
Thus the inner product we have defined in this case is essentially the dot product
that you studied in math 20F.

Remark 3.3. The inner product on H := L2 (P ) satisfies,

1. (aX + bY, Z) = a(X,Z) + b(Y,Z) i.e. X → (X,Z) is linear.
2. (X,Y ) = (Y,X) (symmetry).
3. ‖X‖2 := (X,X) ≥ 0 with ‖X‖2 = 0 iff X = 0.

Notice that combining properties (1) and (2) that X → (Z,X) is linear for
fixed Z ∈ H, i.e.

(Z, aX + bY ) = ā(Z,X) + b̄(Z, Y ).

The following identity will be used frequently in the sequel without further
mention,

‖X + Y ‖2 = (X + Y,X + Y ) = ‖X‖2 + ‖Y ‖2 + (X,Y ) + (Y,X)

= ‖X‖2 + ‖Y ‖2 + 2(X,Y ). (3.1)

Theorem 3.4 (Schwarz Inequality). Let (H, (·, ·)) be an inner product space,
then for all X,Y ∈ H

|(X,Y )| ≤ ‖X‖‖Y ‖

and equality holds iff X and Y are linearly dependent. Applying this result to
|X| and |Y | shows,

E [|XY |] ≤ ‖X‖ · ‖Y ‖ .

Proof. If Y = 0, the result holds trivially. So assume that Y 6= 0 and
observe; if X = αY for some α ∈ C, then (X,Y ) = α ‖Y ‖2 and hence

|(X,Y )| = |α| ‖Y ‖2 = ‖X‖‖Y ‖.

Now suppose that X ∈ H is arbitrary, let Z := X − ‖Y ‖−2(X,Y )Y. (So
‖Y ‖−2(X,Y )Y is the “orthogonal projection” of X along Y, see Figure 3.1.)

Fig. 3.1. The picture behind the proof of the Schwarz inequality.

Then

0 ≤ ‖Z‖2 =

∥∥∥∥X − (X,Y )

‖Y ‖2
Y

∥∥∥∥2

= ‖X‖2 +
|(X|Y )|2

‖Y ‖4
‖Y ‖2 − 2(X| (X|Y )

‖Y ‖2
Y )

= ‖X‖2 − |(X|Y )|2

‖Y ‖2

from which it follows that 0 ≤ ‖Y ‖2‖X‖2 − |(X|Y )|2 with equality iff Z = 0 or
equivalently iff X = ‖Y ‖−2(X|Y )Y.

Alternative argument: Let c ∈ R and Z := X − cY, then

0 ≤ ‖Z‖2 = ‖X − cY ‖2 = ‖X‖2 − 2c (X,Y ) + c2 ‖Y ‖2 .
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The right side of this equation is minimized at c = (X,Y ) / ‖Y ‖2 and for this
valued of c we find,

0 ≤ ‖X − cY ‖2 = ‖X‖2 − (X,Y )
2
/ ‖Y ‖2

with equality iff X = cY. Solving this last inequality for |(X,Y )| gives the result.

Corollary 3.5. The norm, ‖ · ‖, satisfies the triangle inequality and (·, ·) is
continuous on H ×H.

Proof. If X,Y ∈ H, then, using Schwarz’s inequality,

‖X + Y ‖2 = ‖X‖2 + ‖Y ‖2 + 2(X,Y )

≤ ‖X‖2 + ‖Y ‖2 + 2‖X‖‖Y ‖ = (‖X‖+ ‖Y ‖)2.

Taking the square root of this inequality shows ‖·‖ satisfies the triangle inequal-
ity. (The rest of this proof may be skipped.)

Checking that ‖·‖ satisfies the remaining axioms of a norm is now routine
and will be left to the reader. If X,Y,∆X,∆Y ∈ H, then

|(X +∆X,Y +∆Y )− (X,Y )| = |(X,∆Y ) + (∆X,Y ) + (∆X,∆Y )|
≤ ‖X‖‖∆Y ‖+ ‖Y ‖‖∆X‖+ ‖∆X‖‖∆Y ‖
→ 0 as ∆X,∆Y → 0,

from which it follows that (·, ·) is continuous.

Definition 3.6. Let (H, (·, ·)) be an inner product space, we say X,Y ∈ H are
orthogonal and write X ⊥ Y iff (X,Y ) = 0. More generally if A ⊂ H is a set,
X ∈ H is orthogonal to A (write X ⊥ A) iff (X,Y ) = 0 for all Y ∈ A. Let
A⊥ = {X ∈ H : X ⊥ A} be the set of vectors orthogonal to A. A subset S ⊂ H
is an orthogonal set if X ⊥ Y for all distinct elements X,Y ∈ S. If S further
satisfies, ‖X‖ = 1 for all X ∈ S, then S is said to be an orthonormal set.

Proposition 3.7. Let (H, (·, ·)) be an inner product space then

1. (Pythagorean Theorem) If S ⊂⊂ H is a finite orthogonal set, then∥∥∥∥∥∑
X∈S

X

∥∥∥∥∥
2

=
∑
X∈S
‖X‖2. (3.2)

2. (Parallelogram Law) (Skip this one.) For all X,Y ∈ H,

‖X + Y ‖2 + ‖X − Y ‖2 = 2‖X‖2 + 2‖Y ‖2 (3.3)

Proof. Items 1. and 2. are proved by the following elementary computa-
tions;and ∥∥∥∥∥∑

X∈S
X

∥∥∥∥∥
2

= (
∑
X∈S

X,
∑
Y ∈S

Y ) =
∑

X,Y ∈S
(X,Y )

=
∑
X∈S

(X,X) =
∑
X∈S
‖X‖2

and

‖X + Y ‖2 + ‖X − Y ‖2

= ‖X‖2 + ‖Y ‖2 + 2(X,Y ) + ‖X‖2 + ‖Y ‖2 − 2(X,Y )

= 2‖X‖2 + 2‖Y ‖2.

Theorem 3.8 (Least Squares Approximation Theorem). Suppose that V
is a subspace of H := L2 (P ) , X ∈ V, and Y ∈ L2 (P ) . Then the following are
equivalent;

1. ‖Y −X‖ ≥ ‖Y − Z‖ for all Z ∈ V (i.e. X is a least squares approximation
to Y by an element from V ) and

2. (Y −X) ⊥ V.

Moreover there is “essentially” at most one X ∈ V satisfying 1. or equiva-
lently 2. We denote random variable by QV Y and call it orthogonal projec-
tion of Y along V.

Proof. 1 =⇒ 2. If 1. holds then f (t) := ‖Y − (X + tZ)‖2 has a minimum
at t = 0 and therefore ḟ (0) = 0. Since

f (t) := ‖Y −X − tZ‖2 = ‖Y −X‖2 + t2 ‖Z‖2 − 2t (Y −X,Z) ,

we may conclude that

0 = ḟ (0) = −2 (Y −X,Z) .

As Z ∈ V was arbitrary we may conclude that (Y −X) ⊥ V.
2 =⇒ 1. Now suppose that (Y −X) ⊥ V and Z ∈ V, then (Y −X) ⊥

(X − Z) and so

‖Y − Z‖2 = ‖Y −X +X − Z‖2 = ‖Y −X‖2+‖X − Z‖2 ≥ ‖Y −X‖2 . (3.4)

Moreover if Z is another best approximation to Y then ‖Y − Z‖2 = ‖Y −X‖2
which happens according to Eq. (3.4) iff

‖X − Z‖2 = E (X − Z)
2

= 0,

i.e. iff X = Z a.s.
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Corollary 3.9 (Orthogonal Projection Formula). Suppose that V is a sub-

space of H := L2 (P ) and {Xi}Ni=1 is an orthogonal basis for V. Then

QV Y =

N∑
i=1

(Y,Xi)

‖Xi‖2
Xi for all Y ∈ H.

Proof. The best approximation X ∈ V to Y is of the form X =
∑N
i=1 ciXi

where ci ∈ R need to be chosen so that (Y −X) ⊥ V. Equivalently put we must
have

0 = (Y −X,Xj) = (Y,Xj)− (X,Xj) for 1 ≤ j ≤ N.

Since

(X,Xj) =

N∑
i=1

ci (Xi, Xj) = cj ‖Xj‖2 ,

we see that cj = (Y,Xj) / ‖Xj‖2 , i.e.

QV Y = X =

N∑
i=1

(Y,Xi)

‖Xi‖2
Xi.

Example 3.10. Given Y ∈ L2 (P ) the best approximation to Y by a constant
function c is given by

c =
E [Y 1]

E12
1 = EY.

You already proved this on your first homework by a direct calculus exercise.
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Linear prediction and a canonical form

Theorem 4.1 (Linear Prediction Theorem). Let X and Y be two square
integrable random variables, then

σ (Y )
√

1− Corr2 (X,Y ) = min
a,b∈R

‖Y − (aX + b)‖ = ‖Y −W‖

where

W = µY +
Cov (X,Y )

Var (X)
(X − µX) =

Cov (X,Y )

Var (X)
X +

(
EY − µX

Cov (X,Y )

Var (X)

)
.

Proof. Let µ = EX and X̄ = X −µ. Then
{

1, X̄
}

is an orthogonal set and

V := span {1, X} = span
{

1, X̄
}
. Thus best approximation of Y by random

variable of the form aX + b is given by

W = (Y, 1) 1 +

(
Y, X̄

)∥∥X̄∥∥2 X̄ = EY +
Cov (X,Y )

Var (X)
(X − µX) .

The root mean square error of this approximation is

‖Y −W‖2 =

∥∥∥∥Ȳ − Cov (X,Y )

Var (X)
X̄

∥∥∥∥2

= σ2 (Y )− Cov2 (X,Y )

σ2 (X)

= σ2 (Y )
(
1− Corr2 (X,Y )

)
,

so that
‖Y −W‖ = σ (Y )

√
1− Corr2 (X,Y ).

Example 4.2. Suppose that P (X ∈ dx, Y ∈ dy) = e−y10<x<ydxdy. Recall from
Example 2.5 that

EX = 1, EY = 2,

EX2 = 2, EY 2 = 6

σ (X) = 1, σ (Y ) =
√

2,

Cov (X,Y ) = 1, and Corr (X,Y ) =
1√
2
.

So in this case

W = 2 +
1

1
(X − 1) = X + 1

is the best linear predictor of Y and the root mean square error in this prediction
is

‖Y −W‖ =
√

2

√
1− 1

2
= 1.

Corollary 4.3 (Correlation Bounds). For all square integrable random vari-
ables, X and Y,

|Cov (X,Y )| ≤ σ (X) · σ (Y )

or equivalently,
|Corr (X,Y )| ≤ 1.

.

Proof. This is a simply application of Schwarz’s inequality (Theorem 3.4);

|Cov (X,Y )| = |E [(X − µX) (Y − µY )]| ≤ ‖X − µX‖·‖Y − µY ‖ = σ (X)·σ (Y ) .

Theorem 4.4 (Canonical form). If X,Y ∈ L2 (P ) , then there are two mean
zero uncorrelated Random variables {Z1, Z2} such that ‖Z1‖ = ‖Z2‖ = 1 and

X = µX + σ (X)Z1, and

Y = µY + σ (Y ) [cos θ · Z1 + sin θ · Z2] ,

where 0 ≤ θ ≤ π is chosen such that cos θ := Corr (X,Y ) .

Proof. (Just sketch the main ideal in class!). The proof amounts to apply-
ing the Gram-Schmidt procedure to

{
X̄ := X − µX , Ȳ := Y − µY

}
to find Z1

and Z2 followed by expressing X and Y in uniquely in terms of the linearly
independent set, {1, Z1, Z2} . The details follow.

Performing Gram-Schmidt on
{
X̄, Ȳ

}
gives Z1 = X̄/σ (X) and

Z̃2 = Ȳ −
(
Ȳ , X̄

)
σ (X)

2 X̄.



To get Z2 we need to normalize Z̃2 using;

EZ̃2
2 = σ (Y )

2 − 2

(
Ȳ , X̄

)
σ (X)

2

(
X̄, Ȳ

)
+

(
Ȳ , X̄

)2
σ (X)

4 σ (X)
2

= σ (Y )
2 −

(
X̄, Ȳ

)2
σ (X)

2 = σ (Y )
2 (

1− Corr2 (X,Y )
)

= σ (Y )
2

sin2 θ.

Therefore Z1 = X̄/σ (X) and

Z2 :=
Z̃2∥∥∥Z̃2

∥∥∥ =
Ȳ − (Ȳ ,X̄)

σ(X)2
X̄

σ (Y ) sin θ
=
Ȳ − σ(X)σ(Y )Corr(X,Y )

σ(X)2
X̄

σ (Y ) sin θ

=
Ȳ − σ(Y )

σ(X) cos θ · X̄
σ (Y ) sin θ

=
Ȳ − σ (Y ) cos θ · Z1

σ (Y ) sin θ

Solving for X̄ and Ȳ shows,

X̄ = σ (X)Z1 and Ȳ = σ (Y ) [sin θ · Z2 + cos θ · Z1]

which is equivalent to the desired result.

Corollary 4.5. If Corr (X,Y ) = 1, then

Ȳ = σ (Y )Z1 =
σ (Y )

σ (X)
X̄.

If Corr (X,Y ) = −1 then

Ȳ = −σ (Y )Z1 = − σ (Y )

σ (X)
X̄.

Exercise 4.1 (A correlation inequality). Suppose that X is a random vari-
able and f, g : R→ R are two increasing functions such that both f (X)

and g (X) are square integrable, i.e. E |f (X)|2 + E |g (X)|2 < ∞. Show
Cov (f (X) , g (X)) ≥ 0. Hint: let Y be another random variable which has
the same law as X and is independent of X. Then consider

E [(f (Y )− f (X)) · (g (Y )− g (X))] .
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Conditional Expectation

Notation 5.1 (Conditional Expectation 1) Given Y ∈ L1 (P ) and A ⊂ Ω
let

E [Y : A] := E [1AY ]

and

E [Y |A] =

{
E [Y : A] /P (A) if P (A) > 0

0 if P (A) = 0
. (5.1)

(In point of fact, when P (A) = 0 we could set E [Y |A] to be any real number.
We choose 0 for definiteness and so that Y → E [Y |A] is always linear.)

Lemma 5.2. If P (A) > 0 then E [Y |A] = EP (·|A)Y for all Y ∈ L1 (P ) .

Proof. I will only prove E [Y |A] = EP (·|A)Y when Y is discrete although
the result does hold in general. In the discrete case,

EP (·|A)Y = EP (·|A)

∑
y∈R

y1Y=y =
∑
y∈R

yEP (·|A)1Y=y =
∑
y∈R

yP (Y = y|A)

=
∑
y∈R

yP (Y = y|A) =
∑
y∈R

y
P (Y = y,A)

P (A)
=

1

P (A)

∑
y∈R

yE [1A1Y=y]

=
1

P (A)
E

1A
∑
y∈R

y1Y=y

 =
1

P (A)
E [1AY ] = E [Y |A] .

Lemma 5.3. No matter whether P (A) > 0 or P (A) = 0 we always have,

|E [Y |A]| ≤ E [|Y | |A] ≤
√
E
[
|Y |2 |A

]
. (5.2)

Proof. If P (A) = 0 then all terms in Eq. (5.2) are zero and so the inequali-
ties hold. For P (A) > 0 we have, using the Schwarz inequality in Theorem 3.4),
that

|E [Y |A]| =
∣∣EP (·|A)Y

∣∣ ≤ EP (·|A) |Y | ≤
√
EP (·|A) |Y |

2 · EP (·|A)1 =

√
EP (·|A) |Y |

2
.

This completes that proof as EP (·|A) |Y | = E [|Y | |A] and EP (·|A) |Y |
2

=

E
[
|Y |2 |A

]
.

Notation 5.4 Let S be a set (often S = R or S = RN ) and suppose that
X : Ω → S is a function. (So X is a random variable if S = R and a random
vector when S = RN .) Further let VX denote those random variables Z ∈ L2 (P )
which may be written as Z = f (X) for some function f : S → R. (This is a
subspace of L2 (P ) and we let FX :=

{
f : S → R : f (X) ∈ L2 (P )

}
.)

Definition 5.5 (Conditional Expectation 2). Given a function X : Ω →
S and Y ∈ L2 (P ) , we define E [Y |X] := QVX

Y where QVX
is orthogonal

projection onto VX . (Fact: QVX
Y always exists. The proof requires technical

details beyond the scope of this course.)

Remark 5.6. By definition, E [Y |X] = h (X) where h ∈ FX is chosen so that
[Y − h (X)] ⊥ VX , i.e. E [Y |X] = h (X) iff (Y − h (X) , f (X)) = 0 for all f ∈
FX . So in summary, E [Y |X] = h (X) iff

E [Y f (X)] = E [h (X) f (X)] for all f ∈ FX . (5.3)

Corollary 5.7 (Law of total expectation). For all random variables Y ∈
L2 (P ) , we have EY = E(E(Y |X)).

Proof. Take f = 1 in Eq. (5.3).
This notion of conditional expectation is rather abstract. It is now time to

see how to explicitly compute conditional expectations. (In general this can be
quite tricky to carry out in concrete examples!)

5.1 Conditional Expectation for Discrete Random
Variables

Recall that if A and B are events with P (A) > 0, then we define P (B|A) :=
P (B∩A)
P (A) . By convention we will set P (B|A) = 0 if P (A) = 0.

Example 5.8. If Ω is a finite set with N elements, P is the uniform distribution
on Ω, and A is a non-empty subset of Ω, then P (·|A) restricted to events
contained in A is the uniform distribution on A. Indeed, a = # (A) and B ⊂ A,
we have

P (B|A) =
P (B ∩A)

P (A)
=
P (B)

P (A)
=

# (B) /N

# (A) /N
=

# (B)

# (A)
=

# (B)

a
.
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Theorem 5.9. Suppose that S is a finite or countable set and X : Ω → S, then
E [Y |X] = h (X) where h (s) := E [Y |X = s] for all s ∈ S.

Proof. First Proof. Our goal is to find h (s) such that

E [Y f (X)] = E [h (X) f (X)] for all bounded f.

Let S′ = {s ∈ S : P (X = s) > 0} , then

E [Y f (X)] =
∑
s∈S

E [Y f (X) : X = s] =
∑
s∈S′

E [Y f (X) : X = s]

=
∑
s∈S′

f (s)E [Y |X = s] · P (X = s)

=
∑
s∈S′

f (s)h (s) · P (X = s)

=
∑
s∈S

f (s)h (s) · P (X = s) = E [h (X) f (X)]

where h (s) := E [Y |X = s] .
Second Proof. If S is a finite set, such that P (X = s) > 0 for all s ∈ S.

Then
f (X) =

∑
s∈S

f (s) 1X=s

which shows that VX = span {1X=s : s ∈ S} . As {1X=s}s∈S is an orthogonal
set, we may compute

E [Y |X] =
∑
s∈S

(Y, 1X=s)

‖1X=s‖2
1X=s =

∑
s∈S

E [Y : X = s]

P (X = s)
1X=s

=
∑
s∈S

E [Y |X = s] · 1X=s = h (X) .

Example 5.10. Suppose that X and Y are discrete random variables with joint
distribution given as;

ρY 1/4 1
2 1/4

ρX X\Y −1 0 1
1/4 1 0 1/4 0
3/4 0 1/4 1/4 1/4

.

We then have

E [Y |X = 1] =
1

1/4

(
−1 · 0 + 0 · 1

4
+ 1 · 0

)
= 0 and

E [Y |X = 0] =
1

3/4

(
−1 · 1/4 + 0 · 1

4
+ 1 · 1/4

)
= 0

and therefore E [Y |X] = 0. On the other hand,

E [X|Y = −1] =
1

1/4

(
1 · 0 + 0 · 1

4

)
= 0,

E [X|Y = 0] =
1

1/2

(
1 · 1/4 + 0 · 1

4

)
=

1

2
, and

E [X|Y = 1] =
1

1/4

(
1 · 0 + 0 · 1

4

)
= 0.

Therefore

E [X|Y ] =
1

2
1Y=0.

Example 5.11. Let X and Y be discrete random variables with values in {1, 2, 3}
whose joint distribution and marginals are given by

ρX .3 .35 .35
ρY Y \X 1 2 3
.6 1 .1 .2 .3
.3 2 .15 .15 0
.1 3 .05 0 .05

.

Then

ρX|Y (1, 3) = P (X = 1|Y = 3) =
.05

.1
=

1

2
,

ρX|Y (2, 3) = P (X = 2|Y = 3) =
0

.1
= 0, and

ρX|Y (3, 3) = P (X = 3|Y = 3) =
.05

.1
=

1

2
.

Therefore,

E [X|Y = 3] = 1 · 1

2
+ 2 · 0 + 3 · 1

2
= 2

or

h (3) := E [X|Y = 3] =
1

.1
(1 · .05 + 2 · 0 + 3 · .05) = 2

Similarly,

h (1) := E [X|Y = 1] =
1

.6
(1 · .1 + 2 · .2 + 3 · .3) = 2

1

3
,

h (2) := E [X|Y = 2] =
1

.3
(1 · .15 + 2 · .15 + 3 · 0) = 1.5

and so

E [X|Y ] = h (Y ) = 2
1

3
· 1Y=1 + 1.5 · 1Y=2 + 2 · 1Y=3.
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Example 5.12 (Number of girls in a family). Suppose the number of children
in a family is a random variable X with mean µ, and given X = n forn ≥ 1,
each of the n children in the family is a girl with probability p and a boy with
probability 1− p. Problem. What is the expected number of girls in a family?

Solution. Intuitively, the answer should be pµ. To show this is correct let G
be the random number of girls in a family. Then,

E [G|X = n] = p · n

as G = 1A1 + · · · + 1An on X = n where Ai is the event the ith – child
is a girl. We are given P (Ai|X = n) = p so that E [1Ai

|X = n] = p and so
E [G|X = n] = p · n. Therefore, E [G|X] = p ·X and

E [G] = EE [G|X] = E [p ·X] = pµ.

EY = E [E [Y |X]] = 1 · 12

36
+

45

9
· 6

36
+

46

10
· 8

36
+

47

11
· 10

36

=
557

165
∼= 3.376 rolls.

Example 5.13. Suppose that X and Y are i.i.d. random variables with the geo-
metric distribution,

P (X = k) = P (Y = k) = (1− p)k−1
p for k ∈ N.

We compute, for n > m,

P (X = m|X + Y = n) =
P (X = m,X + Y = n)

P (X + Y = n)

=
P (X = m,Y = n−m)∑
k+l=n P (X = k, Y = l)

where

P (X = m,Y = n−m) = p2 (1− p)m−1
(1− p)n−m−1

= p2 (1− p)n−2

and ∑
k+l=n

P (X = k, Y = l) =
∑
k+l=n

(1− p)k−1
p (1− p)l−1

p

=
∑
k+l=n

p2 (1− p)n−2
= p2 (1− p)n−2

n−1∑
k=1

1.

Thus we have shown,

P (X = m|X + Y = n) =
1

n− 1
for 1 ≤ m < n.

From this it follows that

E [f (X) |X + Y = n] =
1

n− 1

n−1∑
m=1

f (m)

and so

E [f (X) |X + Y ] =
1

X + Y − 1

X+Y−1∑
m=1

f (m) .

As a check if f (m) = m we have

E [X|X + Y ] =
1

X + Y − 1

X+Y−1∑
m=1

m

=
1

X + Y − 1

1

2
(X + Y − 1) (X + Y − 1 + 1)

=
1

2
(X + Y )

as we will see hold in fair generality, see Example 5.19 below.

Example 5.14 (Durrett Example 4.6.2, p. 205). Suppose we want to determine
the expected value of Y = the number of rolls it takes to complete a game of
craps. (In this game, if the sum of the dice is 2, 3, or 12 on his first roll, he
loses; if the sum is 7 or 11, he wins; if the sum is 4, 5, 6, 8, 9, or 10, this number
becomes his “point” and he wins if he “makes his point,” i.e., his number comes
up again before he throws a 7.)

Let X be the sum we obtain on the first roll. If X = 2, 3, 7, 11, 12, then the
outcome is determined by the first roll so in these cases E (Y |X = x) = 1. If
X = 4 then the game is completed when a 4 or a 7 appears. So we are waiting for
an event with probability 9/36 and the formula for the mean of the geometric
tells us that the expected number of rolls is 36/9 = 4. Adding the first roll we
have E [Y |X = 4] = 45/9 = 5. Similar calculations give us

x ∈ {2, 3, 7, 11, 12} {4, 10} {5, 9} {6, 8}
E [Y |X = x] 1 45

9
46
10

47
11

probability 12
36

6
36

8
36

10
36

.

(For example, there are 5 ways to get a 6 and 6 ways to get a 7 so when
X = 6 we are waiting for an event with probability 11/36 and the mean of this
geometric random variables is 36/11 and adding the first roll to this implies,
E [Y |X = 6] = 47/11. Similarly for x = 8 and P (X = 6 or 8) = (5 + 5) /36.)
Putting the pieces together and using the law of total expectation gives,
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5.2 General Properties of Conditional Expectation

Let us pause for a moment to record a few basic general properties of conditional
expectations.

Proposition 5.15 (Contraction Property). For all Y ∈ L2 (P ) , we have
E |E [Y |X]| ≤ E |Y | . Moreover if Y ≥ 0 then E [Y |X] ≥ 0 (a.s.).

Proof. Let E [Y |X] = h (X) (with h : S → R) and then define

f (x) =

{
1 if h (x) ≥ 0
−1 if h (x) < 0

.

Since h (x) f (x) = |h (x)| , it follows from Eq. (5.3) that

E [|h (X)|] = E [Y f (X)] = |E [Y f (X)]| ≤ E [|Y f (X)|] = E |Y | .

For the second assertion take f (x) = 1h(x)<0 in Eq. (5.3) in order to learn

E
[
h (X) 1h(X)<0

]
= E

[
Y 1h(X)<0

]
≥ 0.

As h (X) 1h(X)<0 ≤ 0 we may conclude that h (X) 1h(X)<0 = 0 a.s.
Because of this proposition we may extend the notion of conditional expec-

tation to Y ∈ L1 (P ) as stated in the following theorem which we do not bother
to prove here.

Theorem 5.16. Given X : Ω → S and Y ∈ L1 (P ) , there exists an “essentially
unique” function h : S → R such that Eq. (5.3) holds for all bounded functions,
f : S → R. (As above we write E [Y |X] for h (X) .) Moreover the contraction
property, E |E [Y |X]| ≤ E |Y | , still holds.

Theorem 5.17 (Basic properties). Let Y, Y1, and Y2 be integrable random
variables and X : Ω → S be given. Then:

1. E(Y1 + Y2|X) = E(Y1|X) + E(Y2|X).
2. E(aY |X) = aE(Y |X) for all constants a.
3. E(g(X)Y |X) = g(X)E(Y |X) for all bounded functions g.
4. E(E(Y |X)) = EY. (Law of total expectation.)
5. If Y and X are independent then E(Y |X) = EY.

Proof. 1. Let hi (X) = E [Yi|X] , then for all bounded f,

E [Y1f (X)] = E [h1 (X) f (X)] and

E [Y2f (X)] = E [h2 (X) f (X)]

and therefore adding these two equations together implies

E [(Y1 + Y2) f (X)] = E [(h1 (X) + h2 (X)) f (X)]

= E [(h1 + h2) (X) f (X)]

E [Y2f (X)] = E [h2 (X) f (X)]

for all bounded f . Therefore we may conclude that

E(Y1 + Y2|X) = (h1 + h2) (X) = h1 (X) + h2 (X) = E(Y1|X) + E(Y2|X).

2. The proof is similar to 1 but easier and so is omitted.
3. Let h (X) = E [Y |X] , then E [Y f (X)] = E [h (X) f (X)] for all bounded

functions f. Replacing f by g · f implies

E [Y g (X) f (X)] = E [h (X) g (X) f (X)] = E [(h · g) (X) f (X)]

for all bounded functions f. Therefore we may conclude that

E [Y g (X) |X] = (h · g) (X) = h (X) g (X) = g (X)E(Y |X).

4. Take f ≡ 1 in Eq. (5.3).
5. If X and Y are independent and µ := E [Y ] , then

E [Y f (X)] = E [Y ]E [f (X)] = µE [f (X)] = E [µf (X)]

from which it follows that E [Y |X] = µ as desired.
The next theorem says that conditional expectations essentially only de-

pends on the distribution of (X,Y ) and nothing else.

Theorem 5.18. Suppose that (X,Y ) and
(
X̃, Ỹ

)
are random vectors such

that (X,Y )
d
=
(
X̃, Ỹ

)
, i.e. E [f (X,Y )] = E

[
f
(
X̃, Ỹ

)]
for all bounded (or

non-negative) functions f. If h (X) = E [u (X,Y ) |X] , then E
[
u
(
X̃, Ỹ

)
|X̃
]

=

h
(
X̃
)
.

Proof. By assumption we know that

E [u (X,Y ) f (X)] = E [h (X) f (X)] for all bounded f.

Since (X,Y )
d
=
(
X̃, Ỹ

)
, this is equivalent to

E
[
u
(
X̃, Ỹ

)
f
(
X̃
)]

= E
[
h
(
X̃
)
f
(
X̃
)]

for all bounded f

which is equivalent to E
[
u
(
X̃, Ỹ

)
|X̃
]

= h
(
X̃
)
.
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5.3 Conditional Expectation for Continuous Random Variables 21

Example 5.19. Let {Xi}∞i=1 be i.i.d. random variables with E |Xi| <∞ for all i
and let Sm := X1 + · · ·+Xm for m = 1, 2, . . . . We wish to show,

E [Sm|Sn] =
m

n
Sn for all m ≤ n.

for all m ≤ n. To prove this first observe by symmetry1 that

E (Xi|Sn) = h (Sn) independent of i.

Therefore

Sn = E (Sn|Sn) =

n∑
i=1

E (Xi|Sn) =

n∑
i=1

h (Sn) = n · h (Sn) .

Thus we see that

E (Xi|Sn) =
1

n
Sn

and therefore

E (Sm|Sn) =

m∑
i=1

E (Xi|Sn) =

m∑
i=1

1

n
Sn =

m

n
Sn.

If m > n, then Sm = Sn +Xn+1 + · · ·+Xm. Since Xi is independent of Sn
for i > n, it follows that

E (Sm|Sn) = E (Sn +Xn+1 + · · ·+Xm|Sn)

= E (Sn|Sn) + E (Xn+1|Sn) + · · ·+ E (Xm|Sn)

= Sn + (m− n)µ if m ≥ n

where µ = EXi.

Example 5.20 (See Durrett, #8, p. 213). Suppose that X and Y are two inte-
grable random variables such that

E [X|Y ] = 18− 3

5
Y and E [Y |X] = 10− 1

3
X.

We would like to find EX and EY. To do this we use the law of total expectation
to find,

EX = EE [X|Y ] = E
(

18− 3

5
Y

)
= 18− 3

5
EY and

EY = EE [Y |X] = E
(

10− 1

3
X

)
= 10− 1

3
EX.

Solving this pair or linear equations shows EX = 15 and EY = 5.

1 Apply Theorem 5.18 using (X 1, Sn)
d
= (Xi, Sn) for 1 ≤ i ≤ n.

5.3 Conditional Expectation for Continuous Random
Variables

(This section will be covered later in the course when first needed.)
Suppose that Y and X are continuous random variables which have a joint

density, ρ(Y,X) (y, x) . Then by definition of ρ(Y,X), we have, for all bounded or
non-negative, U, that

E [U (Y,X)] =

∫ ∫
U (y, x) ρ(Y,X) (y, x) dydx. (5.4)

The marginal density associated to X is then given by

ρX (x) :=

∫
ρ(Y,X) (y, x) dy (5.5)

and recall from Math 180A that the conditional density ρ(Y |X) (y, x) is defined
by

ρ(Y |X) (y, x) =

{
ρ(Y,X)(y,x)

ρX(x) if ρX (x) > 0

0 if ρX (x) = 0
.

Observe that if ρ(Y,X) (y, x) is continuous, then

ρ(Y,X) (y, x) = ρ(Y |X) (y, x) ρX (x) for all (x, y) . (5.6)

Indeed, if ρX (x) = 0, then

0 = ρX (x) =

∫
ρ(Y,X) (y, x) dy

from which it follows that ρ(Y,X) (y, x) = 0 for all y. If ρ(Y,X) is not continuous,
Eq. (5.6) still holds for “a.e.” (x, y) which is good enough.

Lemma 5.21. In the notation above,

ρ (x, y) = ρ(Y |X) (y, x) ρX (x) for a.e. (x, y) . (5.7)

Proof. By definition Eq. (5.7) holds when ρX (x) > 0 and ρ (x, y) ≥
ρ(Y |X) (y, x) ρX (x) for all (x, y) . Moreover,∫ ∫

ρ(Y |X) (y, x) ρX (x) dxdy =

∫ ∫
ρ(Y |X) (y, x) ρX (x) 1ρX(x)>0dxdy

=

∫ ∫
ρ (x, y) 1ρX(x)>0dxdy

=

∫
ρX (x) 1ρX(x)>0dx =

∫
ρX (x) dx

= 1 =

∫ ∫
ρ (x, y) dxdy,
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22 5 Conditional Expectation

or equivalently, ∫ ∫ [
ρ (x, y)− ρ(Y |X) (y, x) ρX (x)

]
dxdy = 0

which implies the result.

Theorem 5.22. Keeping the notation above,for all or all bounded or non-
negative, U, we have E [U (Y,X) |X] = h (X) where

h (x) =

∫
U (y, x) ρ(Y |X) (y, x) dy (5.8)

=


∫
U(y,x)ρ(Y,X)(y,x)dy∫

ρ(Y,X)(y,x)dy
if

∫
ρ(Y,X) (y, x) dy > 0

0 otherwise
. (5.9)

In the future we will usually denote h (x) informally by E [U (Y, x) |X = x],2 so
that

E [U (Y, x) |X = x] :=

∫
U (y, x) ρ(Y |X) (y, x) dy. (5.10)

Proof. We are looking for h : S → R such that

E [U (Y,X) f (X)] = E [h (X) f (X)] for all bounded f.

Using Lemma 5.21, we find

E [U (Y,X) f (X)] =

∫ ∫
U (y, x) f (x) ρ(Y,X) (y, x) dydx

=

∫ ∫
U (y, x) f (x) ρ(Y |X) (y, x) ρX (x) dydx

=

∫ [∫
U (y, x) ρ(Y |X) (y, x) dy

]
f (x) ρX (x) dx

=

∫
h (x) f (x) ρX (x) dx

= E [h (X) f (X)]

where h is given as in Eq. (5.8).

Example 5.23 (Durrett 8.15, p. 145). Suppose that X and Y have joint density
ρ (x, y) = 8xy · 10<y<x<1. We wish to compute E [u (X,Y ) |Y ] . To this end we
compute

2 Warning: this is not consistent with Eq. (5.1) as P (X = x) = 0 for continuous
distributions.

ρY (y) =

∫
R

8xy · 10<y<x<1dx = 8y

∫ x=1

x=y

x · dx = 8y · x
2

2
|1y = 4y ·

(
1− y2

)
.

Therefore,

ρX|Y (x, y) =
ρ (x, y)

ρY (y)
=

8xy · 10<y<x<1

4y · (1− y2)
=

2x · 10<y<x<1

(1− y2)

and so

E [u (X,Y ) |Y = y] =

∫
R

2x · 10<y<x<1

(1− y2)
u (x, y) dx = 2

10<y<1

1− y2

∫ 1

y

u (x, y) xdx

and so

E [u (X,Y ) |Y ] = 2
1

1− Y 2

∫ 1

Y

u (x, Y )xdx.

is the best approximation to u (X,Y ) be a function of Y alone.

Proposition 5.24. Suppose that X,Y are independent random functions, then

E [U (Y,X) |X] = h (X)

where
h (x) := E [U (Y, x)] .

Proof. I will prove this in the continuous distribution case and leave the
discrete case to the reader. (The theorem is true in general but requires measure
theory in order to prove it in full generality.) The independence assumption is
equivalent to ρ(Y,X) (y, x) = ρY (y) ρX (x) . Therefore,

ρ(Y |X) (y, x) =

{
ρY (y) if ρX (x) > 0

0 if ρX (x) = 0

and therefore E [U (Y,X) |X] = h0 (X) where

h0 (x) =

∫
U (y, x) ρ(Y |X) (y, x) dy

= 1ρX(x)>0

∫
U (y, x) ρY (y) dy = 1ρX(x)>0E [U (Y, x)]

= 1ρX(x)>0h (x) .

If f is a bounded function of x, then

E [h0 (X) f (X)] =

∫
h0 (x) f (x) ρX (x) dx =

∫
{x:ρX(x)>0}

h0 (x) f (x) ρX (x) dx

=

∫
{x:ρX(x)>0}

h (x) f (x) ρX (x) dx =

∫
h (x) f (x) ρX (x) dx

= E [h (X) f (X)] .
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5.5 Random Sums 23

So for all practical purposes, h (X) = h0 (X) , i.e. h (X) = h0 (X) – a.s. (In-
deed, take f (x) = sgn(h (x) − h0 (x)) in the above equation to learn that
E |h (X)− h0 (X)| = 0.

5.4 Conditional Variances

Definition 5.25 (Conditional Variance). Suppose that Y ∈ L2 (P ) and X :
Ω → S are given. We define

Var (Y |X) = E
[
Y 2|X

]
− (E [Y |X])

2
(5.11)

= E
[
(Y − E [Y |X])

2 |X
]

(5.12)

to be the conditional variance of Y given X.

Theorem 5.26. Suppose that Y ∈ L2 (P ) and X : Ω → S are given, then

Var (Y ) = E [Var (Y |X)] + Var (E [Y |X]) .

Proof. Taking expectations of Eq. (5.11) implies,

E [Var (Y |X)] = EE
[
Y 2|X

]
− E (E [Y |X])

2

= EY 2 − E (E [Y |X])
2

= Var (Y ) + (EY )
2 − E (E [Y |X])

2
.

The result follows from this identity and the fact that

Var (E [Y |X]) = E (E [Y |X])
2 − (EE [Y |X])

2
= E (E [Y |X])

2 − (EY )
2
.

5.5 Random Sums

Suppose that {Xi}∞i=1 is a collection of random variables and let

Sn :=

{
X1 + · · ·+Xn if n ≥ 1

0 if n = 0
.

Given a Z+ – valued random variable, N, we wish to consider the random sum;

SN = X1 + · · ·+XN .

We are now going to suppose for the rest of this subsection that N is indepen-
dent of {Xi}∞i=1 and for f ≥ 0 we let

Tf (n) := E [f (Sn)] for all n ∈ N0.

Theorem 5.27. Suppose that N is independent of {Xi}∞i=1 as above. Then for
any positive function f, we have,

E [f (SN )] = E [Tf (N)] .

Moreover this formula holds for any f such that

E [|f (SN )|] = E [T |f | (N)] <∞.

Proof. If f ≥ 0 we have,

E [f (SN )] =

∞∑
n=0

E [f (SN ) : SN = n] =

∞∑
n=0

E [f (Sn) : SN = n]

=

∞∑
n=0

E [f (Sn)]P (SN = n) =

∞∑
n=0

(Tf) (n)P (SN = n)

= E [Tf (N)] .

The moreover part follows from general non-sense not really covered in this
course.

Theorem 5.28. Suppose that {Xi}∞i=1 are uncorrelated L2 (P ) – random vari-
ables with µ = EXi and σ2 = Var (Xi) independent of i. Assuming that
N ∈ L2 (P ) is independent of the {Xi} , then

E [SN ] = µ · EN (5.13)

and
Var (SN ) = σ2E [N ] + µ2 Var (N) . (5.14)

Proof. Taking f (x) = x in Theorem 5.27 using Tf (n) = E [Sn] = n · µ we
find,

E [SN ] = E [µ ·N ] = µ · EN
as claimed. Next take f (x) = x2 in Theorem 5.27 using

Tf (n) = E
[
S2
n

]
= Var (Sn) + (ESn)

2
= σ2n+ (n · µ)

2
,

we find that

E
[
S2
N

]
= E

[
σ2N + µ2N2

]
= σ2E [N ] + µ2E

[
N2
]
.

Combining these results shows,

Var (SN ) = σ2E [N ] + µ2E
[
N2
]
− µ2 (EN)

2

= σ2E [N ] + µ2 Var (N) .
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24 5 Conditional Expectation

Example 5.29 (Karlin and Taylor E.3.1. p77). A six-sided die is rolled, and the
number N on the uppermost face is recorded. Then a fair coin is tossed N
times, and the total number Z of heads to appear is observed. Determine the
mean and variance of Z by viewing Z as a random sum of N Bernoulli random
variables. Determine the probability mass function of Z, and use it to find the
mean and variance of Z.

We have Z = SN = X1 + · · · + XN where Xi = 1 if heads on the ith toss
and zero otherwise. In this case

EX1 =
1

2
,

Var (X1) =
1

2
−
(

1

2

)2

=
1

4
,

EN =
1

6
(1 + · · ·+ 6) =

1

6

7 · 6
2

=
7

2
,

EN2 =
1

6

(
12 + 22 + 32 + 42 + 52 + 62

)
=

91

6

Var (N) =
91

6
−
(

7

2

)2

=
35

12
.

Therefore,

EZ = EX1 · EN =
1

2
· 7

2
=

7

4

Var (Z) =
1

4
· 7

2
+

(
1

2

)2

· 35

12
=

77

48
= 1.604 2.

Alternatively, we have

P (Z = k) =

6∑
n=1

P (Z = k|N = n)P (N = n)

=
1

6

6∑
n=k∨1

P (Z = k|N = n)

=
1

6

6∑
n=k∨1

(
n

k

)(
1

2

)n
.

where

EZ =

6∑
k=0

kP (Z = k) =

6∑
k=1

kP (Z = k)

=

6∑
k=1

k
1

6

6∑
n=k

(
n

k

)(
1

2

)n
=

7

4

and

EZ2 =

6∑
k=0

k2P (Z = k) =

6∑
k=1

k2 1

6

6∑
n=k

(
n

k

)(
1

2

)n
=

14

3

so that

Var (Z) =
14

3
−
(

7

4

)2

=
77

48
.

We have,

P (Z = 0) =
1

6

6∑
n=1

(
n

0

)(
1

2

)n
=

21

128

P (Z = 1) =
1

6

6∑
n=1

(
n

1

)(
1

2

)n
=

5

16

P (Z = 2) =
1

6

6∑
n=2

(
n

2

)(
1

2

)n
=

33

128

P (Z = 3) =
1

6

6∑
n=3

(
n

3

)(
1

2

)n
=

1

6

P (Z = 4) =
1

6

6∑
n=4

(
n

4

)(
1

2

)n
=

29

384

P (Z = 5) =
1

6

6∑
n=5

(
n

5

)(
1

2

)n
=

1

48

P (Z = 6) =
1

6

6∑
n=6

(
n

6

)(
1

2

)n
=

1

384
.

Remark 5.30. If the {Xi} are i.i.d., we may work out the moment generating
function, mgfSN

(t) := E
[
etSN

]
as follows. Conditioning on N = n shows,

E
[
etSN |N = n

]
= E

[
etSn |N = n

]
= E

[
etSn

]
=
[
EetX1

]n
= [mgfX1

(t)]
n

so that
E
[
etSN |N

]
= [mgfX1

(t)]
N

= eN ln(mgfX1
(t)).

Taking expectations of this equation using the law of total expectation gives,

mgfSN
(t) = mgfN (ln (mgfX1 (t))) .
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5.6 Summary on Conditional Expectation Properties 25

5.6 Summary on Conditional Expectation Properties

Let Y and X be random variables such that EY 2 <∞ and h be function from
the range of X to R. Then the following are equivalent:

1. h(X) = E(Y |X), i.e. h(X) is the conditional expectation of Y given X.
2. E(Y − h(X))2 ≤ E(Y − g(X))2 for all functions g, i.e. h(X) is the best

approximation to Y among functions of X.
3. E(Y ·g(X)) = E(h(X) ·g(X)) for all functions g, i.e. Y −h(X) is orthogonal

to all functions of X. Moreover, this condition uniquely determines h(X).

The methods for computing E(Y |X) are given in the next two propositions.

Proposition 5.31 (Discrete Case). Suppose that Y and X are discrete ran-
dom variables and p(y, x) := P (Y = y,X = x). Then E(Y |X) = h(X), where

h(x) = E(Y |X = x) =
E(Y : X = x)

P (X = x)
=

1

pX(x)

∑
y

yp(y, x) (5.15)

and pX(x) = P (X = x) is the marginal distribution of X which may be com-
puted as pX(x) =

∑
y p(y, x).

Proposition 5.32 (Continuous Case). Suppose that Y and X are random
variables which have a joint probability density ρ(y, x) (i.e. P (Y ∈ dy,X ∈
dx) = ρ(y, x)dydx). Then E(Y |X) = h(X), where

h(x) = E(Y |X = x) :=
1

ρX(x)

∫ ∞
−∞

yρ(y, x)dy (5.16)

and ρX(x) is the marginal density of X which may be computed as

ρX(x) =

∫ ∞
−∞

ρ(y, x)dy.

Intuitively, in all cases, E(Y |X) on the set {X = x} is E(Y |X = x). This
intuitions should help motivate some of the basic properties of E(Y |X) sum-
marized in the next theorem.

Theorem 5.33. Let Y, Y1, Y2 and X be random variables. Then:

1. E(Y1 + Y2|X) = E(Y1|X) + E(Y2|X).
2. E(aY |X) = aE(Y |X) for all constants a.
3. E(f(X)Y |X) = f(X)E(Y |X) for all functions f.
4. E(E(Y |X)) = EY.
5. If Y and X are independent then E(Y |X) = EY.
6. If Y ≥ 0 then E(Y |X) ≥ 0.

Remark 5.34. Property 4 in Theorem 5.33 turns out to be a very powerful
method for computing expectations. I will finish this summary by writing out
Property 4 in the discrete and continuous cases:

EY =
∑
x

E(Y |X = x)pX(x) (Discrete Case)

where E(Y |X = x) is defined in Eq. (5.15)

EU (Y,X) =

∫
E(U (Y,X) |X = x)ρX(x)dx, (Continuous Case)

where E(U (Y,X) |X = x) is now defined as in Eq. (5.10).
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