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0

Basic Probability Facts / Conditional Expectations

0.1 Course Notation

1. (Ω,P ) will denote a probability spaces and S will denote a set which is
called state space.

2. If S is a discrete set, i.e. finite or countable and X : Ω → S we let

ρX (s) := P (X = s) .

More generally if Xi : Ω → Si for 1 ≤ i ≤ n we let

ρX1,...,Xn (s) := P (X1 = s1, . . . , Xn = sn)

for all s = (s1, . . . , sn) ∈ S1 × · · · × Sn.
3. If S is R or Rn and X : Ω → S is a continuous random variable, we let
ρX (x) be the operability density function of X, namely,

E [f (X)] =

∫
S

f (x) ρX (x) dx.

4. Given random variables X and Y we let;

a) µX := EX be the mean of X.

b) Var (X) := E
[
(X − µX)

2
]

= EX2 − µ2
X be the variance of X.

c) σX = σ (X) :=
√

Var (X) be the standard deviation of X.
d) Cov (X,Y ) := E [(X − µX) (Y − µY )] = E [XY ]− µXµY be the covari-

ance of X and Y.
e) Corr (X,Y ) := Cov (X,Y ) / (σXσY ) be the correlation of X and Y.

0.2 Some Discrete Distributions

Definition 0.1 (Generating Function). Suppose that N : Ω → N0 is an
integer valued random variable on a probability space, (Ω,B, P ) . The generating
function associated to N is defined by

GN (z) := E
[
zN
]

=

∞∑
n=0

P (N = n) zn for |z| ≤ 1. (0.1)

By Corollary ??, it follows that P (N = n) = 1
n!G

(n)
N (0) so that GN can be

used to completely recover the distribution of N.

Proposition 0.2 (Generating Functions). The generating function satis-
fies,

G
(k)
N (z) = E

[
N (N − 1) . . . (N − k + 1) zN−k

]
for |z| < 1

and
G(k) (1) = lim

z↑1
G(k) (z) = E [N (N − 1) . . . (N − k + 1)] ,

where it is possible that one and hence both sides of this equation are infinite.
In particular, G′ (1) := limz↑1G

′ (z) = EN and if EN2 <∞,

Var (N) = G′′ (1) +G′ (1)− [G′ (1)]
2
. (0.2)

Proof. By Corollary ?? for |z| < 1,

G
(k)
N (z) =

∞∑
n=0

P (N = n) · n (n− 1) . . . (n− k + 1) zn−k

= E
[
N (N − 1) . . . (N − k + 1) zN−k

]
. (0.3)

Since, for z ∈ (0, 1) ,

0 ≤ N (N − 1) . . . (N − k + 1) zN−k ↑ N (N − 1) . . . (N − k + 1) as z ↑ 1,

we may apply the MCT to pass to the limit as z ↑ 1 in Eq. (0.3) to find,

G(k) (1) = lim
z↑1

G(k) (z) = E [N (N − 1) . . . (N − k + 1)] .

Exercise 0.1 (Some Discrete Distributions). Let p ∈ (0, 1] and λ > 0. In
the four parts below, the distribution of N will be described. You should work
out the generating function, GN (z) , in each case and use it to verify the given
formulas for EN and Var (N) .

1. Bernoulli(p) : P (N = 1) = p and P (N = 0) = 1 − p. You should find
EN = p and Var (N) = p− p2.
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2. Binomial(n, p) : P (N = k) =
(
n
k

)
pk (1− p)n−k for k = 0, 1, . . . , n.

(P (N = k) is the probability of k successes in a sequence of n indepen-
dent yes/no experiments with probability of success being p.) You should
find EN = np and Var (N) = n

(
p− p2

)
.

3. Geometric(p) : P (N = k) = p (1− p)k−1
for k ∈ N. (P (N = k) is the

probability that the kth – trial is the first time of success out a sequence
of independent trials with probability of success being p.) You should find
EN = 1/p and Var (N) = 1−p

p2 .

4. Poisson(λ) : P (N = k) = λk

k! e
−λ for all k ∈ N0. You should find EN = λ =

Var (N) .

Solution to Exercise (0.1).

1. GN (z) = pz1+(1− p) z0 = pz+1−p. Therefore,G′N (z) = p andG′′N (z) = 0
so that EN = p and Var (N) = 0 + p− p2.

2. GN (z) =
∑n
k=0 z

k
(
n
k

)
pk (1− p)n−k = (pz + (1− p))n . Therefore,

G′N (z) = n (pz + (1− p))n−1
p,

G′′N (z) = n (n− 1) (pz + (1− p))n−2
p2

and

EN = np and Var (N) = n (n− 1) p2 + np− (np)
2

= n
(
p− p2

)
.

3. For the geometric distribution,

GN (z) = E
[
zN
]

=

∞∑
k=1

zkp (1− p)k−1
=

zp

1− z (1− p)
for |z| < (1− p)−1

.

Differentiating this equation in z implies,

E
[
NzN−1

]
= G′N (z) =

p [1− z (1− p)] + (1− p) pz
(1− z (1− p))2

=
p

(1− z (1− p))2 and

E
[
N (N − 1) zN−2

]
= G′′N (z) =

2 (1− p) p
(1− z (1− p))3 .

Therefore,
EN = G′N (1) = 1/p,

E [N (N − 1)] =
2 (1− p) p

p3
=

2 (1− p) p
p2

,

and

Var (N) = 2
1− p
p2

+
1

p
− 1

p2
=

1

p2
− 1

p
=

1− p
p2

.

Alternative method. Starting with
∑∞
n=0 z

n = 1
1−z for |z| < 1 we learn

that

1

(1− z)2 =
d

dz

1

1− z
=

∞∑
n=0

nzn−1 =

∞∑
n=1

nzn−1 and

∞∑
n=0

n2zn−1 =
d

dz

z

(1− z)2 =
(1− z)2

+ 2z (1− z)
(1− z)4 =

1 + z

(1− z)3 .

Taking z = 1− p in these formulas shows,

EN = p

∞∑
n=1

n (1− p)n−1
= p

1

p2
=

1

p

and

EN2 = p

∞∑
n=1

n2 (1− p)n−1
= p · 2− p

p3
=

2− p
p2

and therefore,

Var (N) =
2− p
p2
− 1

p2
=

1− p
p2

.

4. In the Poisson case,

GN (z) = E
[
zN
]

=

∞∑
k=0

zk
λk

k!
e−λ = e−λeλz = eλ(z−1)

and G
(k)
N (z) = λkeλ(z−1). Therefore, EN = λ and E [N · (N − 1)] = λ2 so

that Var (N) = λ2 + λ− λ2 = λ.

Remark 0.3 (Memoryless property of the geometric distribution). Suppose
that {Xi} are i.i.d. Bernoulli random variables with P (Xi = 1) = p and
P (Xi = 0) = 1 − p and N = inf {i ≥ 1 : Xi = 1} . Then P (N = k) =

P (X1 = 0, . . . , Xk−1 = 0, Xk = 1) = (1− p)k−1
p, so that N is geometric with

parameter p. Using this representation we easily and intuitively see that

P (N = n+ k|N > n) =
P (X1 = 0, . . . , Xn+k−1 = 0, Xn+k = 1)

P (X1 = 0, . . . , Xn = 0)

= P (Xn+1 = 0, . . . , Xn+k−1 = 0, Xn+k = 1)

= P (X1 = 0, . . . , Xk−1 = 0, Xk = 1) = P (N = k) .
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This can be verified by first principles as well;

P (N = n+ k|N > n) =
P (N = n+ k)

P (N > n)
=

p (1− p)n+k−1∑
k>n p (1− p)k−1

=
p (1− p)n+k−1∑∞
j=0 p (1− p)n+j

=
(1− p)n+k−1

(1− p)n
∑∞
j=0 (1− p)j

=
(1− p)k−1

1
1−(1−p)

= p (1− p)k−1
= P (N = k) .

Exercise 0.2. Let Sn,p
d
= Binomial(n, p) , k ∈ N, pn = λn/n where λn → λ > 0

as n→∞. Show that

lim
n→∞

P (Sn,pn = k) =
λk

k!
e−λ = P (Poisson (λ) = k) .

Thus we see that for p = O (1/n) and k not too large relative to n that for large
n,

P (Binomial (n, p) = k) ∼= P (Poisson (pn) = k) =
(pn)

k

k!
e−pn.

(We will come back to the Poisson distribution and the related Poisson process
later on.)

Solution to Exercise (0.2). We have,

P (Sn,pn = k) =

(
n

k

)
(λn/n)

k
(1− λn/n)

n−k

=
λkn
k!

n (n− 1) . . . (n− k + 1)

nk
(1− λn/n)

n−k
.

The result now follows since,

lim
n→∞

n (n− 1) . . . (n− k + 1)

nk
= 1

and

lim
n→∞

ln (1− λn/n)
n−k

= lim
n→∞

(n− k) ln (1− λn/n)

= − lim
n→∞

[(n− k)λn/n] = −λ.





1

Course Overview and Plan

This course is an introduction to some basic topics in the theory of stochas-
tic processes. After finishing the discussion of multivariate distributions and
conditional probabilities initiated in Math 180A, we will study Markov chains
in discrete time. We then begin our investigation of stochastic processes in con-
tinuous time with a detailed discussion of the Poisson process. These two topics
will be combined in Math 180C when we study Markov chains in continuous
time and renewal processes.

In the next two quarters we will study some aspects of Stochastic Pro-
cesses. Stochastic (from the Greek στ óχoξ for aim or guess) means random. A
stochastic process is one whose behavior is non-deterministic, in that a system’s
subsequent state is determined both by the process’s predictable actions and
by a random element. However, according to M. Kac1 and E. Nelson2, any kind
of time development (be it deterministic or essentially probabilistic) which is
analyzable in terms of probability deserves the name of stochastic process.

Mathematically we will be interested in collection of random variables or
vectors {Xt}t∈T with Xt : Ω → S (S is the state space) on some probability
space, (Ω,P ) . Here T is typically in R+ or Z+ but not always.

Example 1.1. 1. Xt is the value of a spinner at times t ∈ Z+.
2. Xt denotes the prices of a stock (or stocks) on the stock market.
3. Xt denotes the value of your portfolio at time t.
4. Xt is the position of a dust particle like in Brownian motion.
5. XA is the number of stars in a region A contained in space or the number

of raisins in a region of a cake, etc.
6. Xn ∈ S = Perm ({1, . . . , 52}) is the ordering of cards in a deck of cards

after the nth shuffle.

Our goal in this course is to introduce and analyze models for such random
objects. This is clearly going to require that we make assumptions on {Xt}
which will typically be some sort of dependency structures. This is where we
will begin our study – namely heading towards conditional expectations and
related topics.

1 M. Kac & J. Logan, in Fluctuation Phenomena, eds. E.W. Montroll & J.L.
Lebowitz, North-Holland, Amsterdam, 1976.

2 E. Nelson, Quantum Fluctuations, Princeton University Press, Princeton, 1985.

1.1 180B Course Topics:

1. Review the linear algebra of orthogonal projections in the context of least
squares approximations in the context of Probability Theory.

2. Use the least squares theory to interpret covariance and correlations.
3. Review of conditional probabilities for discrete random variables.
4. Introduce conditional expectations as least square approximations.
5. Develop conditional expectation relative to discrete random variables.
6. Give a short introduction to martingale theory.
7. Study in some detail discrete time Markov chains.
8. Review of conditional probability densities for continuous random variables.
9. Develop conditional expectations relative to continuous random variables.

10. Begin our study of the Poisson process.

The bulk of this quarter will involve the study of Markov chains and pro-
cesses. These are processes for which the past and future are independent given
the present. This is a typical example of a dependency structure that we will
consider in this course. For an example of such a process, let S = Z and place a
coin at each site of S (perhaps the coins are biased with different probabilities
of heads at each site of S.) Let X0 = s0 be some point in S be fixed and then
flip the coin at s0 and move to the right on step if the result is heads and to
left one step if the result is tails. Repeat this process to determine the position
Xn+1 from the position Xn along with a flip of the coin at Xn. This is a typical
example of a Markov process.

Before going into these and other processes in more detail we are going
to develop the extremely important concept of conditional expectation.
The idea is as follows. Suppose that X and Y are two random variables with
E |Y |2 <∞. We wish to find the function h such that h (X) is the minimizer of

E (Y − f (X))
2

over all functions f such that E
[
f (X)

2
]
<∞, that is h (X) is

a least squares approximation to Y among random variables of the form f (X) ,
i.e.

E (Y − h (X))
2

= min
f

E (Y − f (X))
2
. (1.1)

Fact: a minimizing function h always exist and is “essentially unique.” We
denote h (X) as E [Y |X] and call it the conditional expectation of Y given



X. We are going to spend a fair amount of time filling in the details of this
construction and becoming familiar with this concept.

As a warm up to conditional expectation, we are going to consider a simpler
problem of best linear approximations. The goal now is to find a0, b0 ∈ R such
that

E (Y − a0X + b0)
2

= min
a,b∈R

E (Y − aX + b)
2
. (1.2)

This is the same sort of problem as finding conditional expectations except we
now only allow consider functions of the form f (x) = ax + b. (You should be
able to find a0 and b0 using the first derivative test from calculus! We will carry
this out using linear algebra ideas below.) It turns out the answer to finding
(a0, b0) solving Eq. (1.2) only requires knowing the first and second moments
of X and Y and E [XY ] . On the other hand finding h (X) solving Eq. (1.1)
require full knowledge of the joint distribution of (X,Y ) .

By the way, you are asked to show on your first homework that
minc∈R E (Y − c)2

= Var (Y ) which occurs for c = EY. Thus EY is the least
squares approximation to Y by a constant function and Var (Y ) is the least
square error associated with this problem.



2

Covariance and Correlation

Suppose that (Ω,P ) is a probability space. We say that X : Ω → R is in-

tegrable if E |X| <∞ and X is square integrable if E |X|2 <∞. We denote
the set of integrable random variables by L1 (P ) and the square integrable ran-
dom variables by L2 (P ) . When X is integrable we let µX := EX be the mean
of X. If Ω is a finite set, then

E [|X|p] =
∑
ω∈Ω
|X (ω)|p P (({ω})) <∞

for any 0 < p < ∞. So when the sample space is finite requiring integrability
or square integrability is no restriction at all. On the other hand when Ω is
infinite life can become a little more complicated.

Example 2.1. Suppose that N is a geometric with parameter p so that
P (N = k) = p (1− p)k−1

for k ∈ N = {1, 2, 3, . . . } . If X = f (N) for some
function f : N→ R, then

E [f (N)] =

∞∑
k=1

p (1− p)k−1
f (k)

when the sum makes sense. So if Xλ = λN for some λ > 0 we have

E
[
X2
λ

]
=

∞∑
k=1

p (1− p)k−1
λ2k = pλ2

∞∑
k=1

[
(1− p)λ2

]k−1
<∞

iff (1− p)λ2 < 1, i.e. λ < 1/
√

1− p. Thus we see that Xλ ∈ L2 (P ) iff λ <
1/
√

1− p.

Lemma 2.2. L2 (P ) is a subspace of the vector space of random variables on
(Ω,P ) . Moreover if X,Y ∈ L2 (P ) , then XY ∈ L1 (P ) and in particular (take
Y = 1) it follows that L2 (P ) ⊂ L1 (P ) .

Proof. If X,Y ∈ L2 (P ) and c ∈ R then E |cX|2 = c2E |X|2 < ∞ so that
cX ∈ L2 (P ) . Since

0 ≤ (|X| − |Y |)2
= |X|2 + |Y |2 − 2 |X| |Y | ,

it follows that

|XY | ≤ 1

2
|X|2 +

1

2
|Y |2 ∈ L1 (P ) .

Moreover,

(X + Y )
2

= X2 + Y 2 + 2XY ≤ X2 + Y 2 + 2 |XY | ≤ 2
(
X2 + Y 2

)
from which it follows that E (X + Y )

2
<∞, i.e. X + Y ∈ L2 (P ) .

Definition 2.3. The covariance, Cov (X,Y ) , of two square integrable random
variables, X and Y, is defined by

Cov (X,Y ) = E [(X − µX) (Y − µY )] = E [XY ]− EX · EY

where µX := EX and µY := EY. The variance of X,

Var (X) = Cov (X,X) = E
[
X2
]
− (EX)

2
(2.1)

= E
[
(X − µX)

2
]

(2.2)

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] =
EX · EY. More generally we say {Xk}nk=1 ⊂ L2 (P ) are uncorrelated iff
Cov (Xi, Xj) = 0 for all i 6= j.

Definition 2.4 (Correlation). Given two non-constant random variables we

define Corr (X,Y ) := Cov(X,Y )
σ(X)·σ(Y ) to be the correlation of X and Y.

It follows from Eqs. (2.1) and (2.2) that

0 ≤ Var (X) ≤ E
[
X2
]

for all X ∈ L2 (P ) . (2.3)

Exercise 2.1. Let X,Y be two random variables on (Ω,B, P );

1. Show that X and Y are independent iff Cov (f (X) , g (Y )) = 0 (i.e. f (X)
and g (Y ) are uncorrelated) for bounded measurable functions, f, g : R→
R. (In this setting X and Y may take values in some arbitrary state space,
S.)

2. If X,Y ∈ L2 (P ) and X and Y are independent, then Cov (X,Y ) = 0.
Note well: we will see in examples below that Cov (X,Y ) = 0 does not
necessarily imply that X and Y are independent.
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Solution to Exercise (2.1). (Only roughly sketched the proof of this in
class.)

1. Since

Cov (f (X) , g (Y )) = E [f (X) g (Y )]− E [f (X)]E [g (Y )]

it follows that Cov (f (X) , g (Y )) = 0 iff

E [f (X) g (Y )] = E [f (X)]E [g (Y )]

from which item 1. easily follows.
2. Let fM (x) = x1|x|≤M , then by independence,

E [fM (X) gM (Y )] = E [fM (X)]E [gM (Y )] . (2.4)

Since

|fM (X) gM (Y )| ≤ |XY | ≤ 1

2

(
X2 + Y 2

)
∈ L1 (P ) ,

|fM (X)| ≤ |X| ≤ 1

2

(
1 +X2

)
∈ L1 (P ) , and

|gM (Y )| ≤ |Y | ≤ 1

2

(
1 + Y 2

)
∈ L1 (P ) ,

we may use the DCT three times to pass to the limit as M →∞ in Eq. (2.4) to
learn that E [XY ] = E [X]E [Y ], i.e. Cov (X,Y ) = 0. (These technical details
were omitted in class.)

End of 1/3/2011 Lecture.

Example 2.5. Suppose that P (X ∈ dx, Y ∈ dy) = e−y10<x<ydxdy. Recall that∫ ∞
0

yke−λydy =

(
− d

dλ

)k ∫ ∞
0

e−λydy =

(
− d

dλ

)k
1

λ
= k!

1

λk+1
.

Therefore,

EY =

∫ ∫
ye−y10<x<ydxdy =

∫ ∞
0

y2e−ydy = 2,

EY 2 =

∫ ∫
y2e−y10<x<ydxdy =

∫ ∞
0

y3e−ydy = 3! = 6

EX =

∫ ∫
xe−y10<x<ydxdy =

1

2

∫ ∞
0

y2e−ydy = 1,

EX2 =

∫ ∫
x2e−y10<x<ydxdy =

1

3

∫ ∞
0

y3e−ydy =
1

3
3! = 2

and

E [XY ] =

∫ ∫
xye−y10<x<ydxdy =

1

2

∫ ∞
0

y3e−ydy =
3!

2
= 3.

Therefore Cov (X,Y ) = 3− 2 · 1 = 1, σ2 (X) = 2− 12 = 1, σ2 (Y ) = 6− 22 = 2,

Corr (X,Y ) =
1√
2
.

Lemma 2.6. The covariance function, Cov (X,Y ) is bilinear in X and Y and
Cov (X,Y ) = 0 if either X or Y is constant. For any constant k, Var (X + k) =
Var (X) and Var (kX) = k2 Var (X) . If {Xk}nk=1 are uncorrelated L2 (P ) –
random variables, then

Var (Sn) =

n∑
k=1

Var (Xk) .

Proof. We leave most of this simple proof to the reader. As an example of
the type of argument involved, let us prove Var (X + k) = Var (X) ;

Var (X + k) = Cov (X + k,X + k) = Cov (X + k,X) + Cov (X + k, k)

= Cov (X + k,X) = Cov (X,X) + Cov (k,X)

= Cov (X,X) = Var (X) ,

wherein we have used the bilinearity of Cov (·, ·) and the property that
Cov (Y, k) = 0 whenever k is a constant.
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Example 2.7. Suppose that X and Y are distributed as follows;

ρY 1/4 1
2 1/4

ρX X\Y −1 0 1
1/4 1 0 1/4 0
3/4 0 1/4 1/4 1/4

so that ρX,Y (1,−1) = P (X = 1, Y = −1) = 0, ρX,Y (1, 0) =
P (X = 1, Y = 0) = 1/4, etc. In this case XY = 0 a.s. so that E [XY ] = 0 while

E [X] = 1 · 1

4
+ 0 · 3

4
=

1

4
, and

EY = (−1) 1/4 + 0
1

2
+ 1

1

4
= 0

so that Cov (X,Y ) = 0− 1
4 · 0 = 0. Again X and Y are not independent since

ρX,Y (x, y) 6= ρX (x) ρY (y) .

Example 2.8. Let X have an even distribution and let Y = X2, then

Cov (X,Y ) = E
[
X3
]
− E

[
X2
]
· EX = 0

since,

E
[
X2k+1

]
=

∫ ∞
−∞

x2k+1ρ (x) dx = 0 for all k ∈ N.

On the other hand Cov
(
Y,X2

)
= Cov (Y, Y ) = Var (Y ) 6= 0 in general so that

Y is not independent of X.

Example 2.9 (Not done in class.). Let X and Z be independent with
P (Z = ±1) = 1

2 and take Y = XZ. Then EZ = 0 and

Cov (X,Y ) = E
[
X2Z

]
− E [X]E [XZ]

= E
[
X2
]
· EZ − E [X]E [X]EZ = 0.

On the other hand it should be intuitively clear that X and Y are not inde-
pendent since knowledge of X typically will give some information about Y. To
verify this assertion let us suppose that X is a discrete random variable with
P (X = 0) = 0. Then

P (X = x, Y = y) = P (X = x, xZ = y) = P (X = x) · P (X = y/x)

while
P (X = x)P (Y = y) = P (X = x) · P (XZ = y) .

Thus for X and Y to be independent we would have to have,

P (xX = y) = P (XZ = y) for all x, y.

This is clearly not going to be true in general. For example, suppose that
P (X = 1) = 1

2 = P (X = 0) . Taking x = y = 1 in the previously displayed
equation would imply

1

2
= P (X = 1) = P (XZ = 1) = P (X = 1, Z = 1) = P (X = 1)P (Z = 1) =

1

4

which is false.

Presumably you saw the following exercise in Math 180A.

Exercise 2.2 (A Weak Law of Large Numbers). Assume {Xn}∞n=1 is a se-
quence if uncorrelated square integrable random variables which are identically

distributed, i.e. Xn
d
= Xm for all m,n ∈ N. Let Sn :=

∑n
k=1Xk, µ := EXk and

σ2 := Var (Xk) (these are independent of k). Show;

E
[
Sn
n

]
= µ,

E
(
Sn
n
− µ

)2

= Var

(
Sn
n

)
=
σ2

n
, and

P

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
≤ σ2

nε2

for all ε > 0 and n ∈ N.
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3

Geometric aspects of L2 (P )

Definition 3.1 (Inner Product). For X,Y ∈ L2 (P ) , let (X,Y ) := E [XY ]
and ‖X‖ :=

√
(X,X) =

√
E |X2|.

Example 3.2 (This was already mentioned in Lecture 1 with N = 4.). Suppose
that Ω = {1, . . . , N} and P ({i}) = 1

N for 1 ≤ i ≤ N. Then

(X,Y ) = E [XY ] =
1

N

N∑
i=1

X (i)Y (i) =
1

N
X ·Y

where

X :=


X (1)
X (2)

...
X (N)

 and Y :=


Y (1)
Y (2)

...
Y (N)

 .
Thus the inner product we have defined in this case is essentially the dot product
that you studied in math 20F.

Remark 3.3. The inner product on H := L2 (P ) satisfies,

1. (aX + bY, Z) = a(X,Z) + b(Y,Z) i.e. X → (X,Z) is linear.
2. (X,Y ) = (Y,X) (symmetry).
3. ‖X‖2 := (X,X) ≥ 0 with ‖X‖2 = 0 iff X = 0.

Notice that combining properties (1) and (2) that X → (Z,X) is linear for
fixed Z ∈ H, i.e.

(Z, aX + bY ) = a(Z,X) + b(Z, Y ).

The following identity will be used frequently in the sequel without further
mention,

‖X + Y ‖2 = (X + Y,X + Y ) = ‖X‖2 + ‖Y ‖2 + (X,Y ) + (Y,X)

= ‖X‖2 + ‖Y ‖2 + 2(X,Y ). (3.1)

Theorem 3.4 (Schwarz Inequality). Let (H, (·, ·)) be an inner product space,
then for all X,Y ∈ H

|(X,Y )| ≤ ‖X‖‖Y ‖

and equality holds iff X and Y are linearly dependent. Applying this result to
|X| and |Y | shows,

E [|XY |] ≤ ‖X‖ · ‖Y ‖ .

Proof. If Y = 0, the result holds trivially. So assume that Y 6= 0 and
observe; if X = αY for some α ∈ C, then (X,Y ) = α ‖Y ‖2 and hence

|(X,Y )| = |α| ‖Y ‖2 = ‖X‖‖Y ‖.

Now suppose that X ∈ H is arbitrary, let Z := X − ‖Y ‖−2(X,Y )Y. (So
‖Y ‖−2(X,Y )Y is the “orthogonal projection” of X along Y, see Figure 3.1.)

Fig. 3.1. The picture behind the proof of the Schwarz inequality.

Then

0 ≤ ‖Z‖2 =

∥∥∥∥X − (X,Y )

‖Y ‖2
Y

∥∥∥∥2

= ‖X‖2 +
|(X|Y )|2

‖Y ‖4
‖Y ‖2 − 2(X| (X|Y )

‖Y ‖2
Y )

= ‖X‖2 − |(X|Y )|2

‖Y ‖2

from which it follows that 0 ≤ ‖Y ‖2‖X‖2 − |(X|Y )|2 with equality iff Z = 0 or
equivalently iff X = ‖Y ‖−2(X|Y )Y.

Alternative argument: Let c ∈ R and Z := X − cY, then

0 ≤ ‖Z‖2 = ‖X − cY ‖2 = ‖X‖2 − 2c (X,Y ) + c2 ‖Y ‖2 .
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The right side of this equation is minimized at c = (X,Y ) / ‖Y ‖2 and for this
valued of c we find,

0 ≤ ‖X − cY ‖2 = ‖X‖2 − (X,Y )
2
/ ‖Y ‖2

with equality iff X = cY. Solving this last inequality for |(X,Y )| gives the result.

Corollary 3.5. The norm, ‖ · ‖, satisfies the triangle inequality and (·, ·) is
continuous on H ×H.

Proof. If X,Y ∈ H, then, using Schwarz’s inequality,

‖X + Y ‖2 = ‖X‖2 + ‖Y ‖2 + 2(X,Y )

≤ ‖X‖2 + ‖Y ‖2 + 2‖X‖‖Y ‖ = (‖X‖+ ‖Y ‖)2.

Taking the square root of this inequality shows ‖·‖ satisfies the triangle inequal-
ity. (The rest of this proof may be skipped.)

Checking that ‖·‖ satisfies the remaining axioms of a norm is now routine
and will be left to the reader. If X,Y,∆X,∆Y ∈ H, then

|(X +∆X,Y +∆Y )− (X,Y )| = |(X,∆Y ) + (∆X,Y ) + (∆X,∆Y )|
≤ ‖X‖‖∆Y ‖+ ‖Y ‖‖∆X‖+ ‖∆X‖‖∆Y ‖
→ 0 as ∆X,∆Y → 0,

from which it follows that (·, ·) is continuous.

Definition 3.6. Let (H, (·, ·)) be an inner product space, we say X,Y ∈ H are
orthogonal and write X ⊥ Y iff (X,Y ) = 0. More generally if A ⊂ H is a set,
X ∈ H is orthogonal to A (write X ⊥ A) iff (X,Y ) = 0 for all Y ∈ A. Let
A⊥ = {X ∈ H : X ⊥ A} be the set of vectors orthogonal to A. A subset S ⊂ H
is an orthogonal set if X ⊥ Y for all distinct elements X,Y ∈ S. If S further
satisfies, ‖X‖ = 1 for all X ∈ S, then S is said to be an orthonormal set.

Proposition 3.7. Let (H, (·, ·)) be an inner product space then

1. (Pythagorean Theorem) If S ⊂⊂ H is a finite orthogonal set, then∥∥∥∥∥∑
X∈S

X

∥∥∥∥∥
2

=
∑
X∈S
‖X‖2. (3.2)

2. (Parallelogram Law) (Skip this one.) For all X,Y ∈ H,

‖X + Y ‖2 + ‖X − Y ‖2 = 2‖X‖2 + 2‖Y ‖2 (3.3)

Proof. Items 1. and 2. are proved by the following elementary computa-
tions;and ∥∥∥∥∥∑

X∈S
X

∥∥∥∥∥
2

= (
∑
X∈S

X,
∑
Y ∈S

Y ) =
∑

X,Y ∈S
(X,Y )

=
∑
X∈S

(X,X) =
∑
X∈S
‖X‖2

and

‖X + Y ‖2 + ‖X − Y ‖2

= ‖X‖2 + ‖Y ‖2 + 2(X,Y ) + ‖X‖2 + ‖Y ‖2 − 2(X,Y )

= 2‖X‖2 + 2‖Y ‖2.

Theorem 3.8 (Least Squares Approximation Theorem). Suppose that V
is a subspace of H := L2 (P ) , X ∈ V, and Y ∈ L2 (P ) . Then the following are
equivalent;

1. ‖Y −X‖ ≥ ‖Y − Z‖ for all Z ∈ V (i.e. X is a least squares approximation
to Y by an element from V ) and

2. (Y −X) ⊥ V.

Moreover there is “essentially” at most one X ∈ V satisfying 1. or equiva-
lently 2. We denote random variable by QV Y and call it orthogonal projec-
tion of Y along V.

Proof. 1 =⇒ 2. If 1. holds then f (t) := ‖Y − (X + tZ)‖2 has a minimum
at t = 0 and therefore ḟ (0) = 0. Since

f (t) := ‖Y −X − tZ‖2 = ‖Y −X‖2 + t2 ‖Z‖2 − 2t (Y −X,Z) ,

we may conclude that

0 = ḟ (0) = −2 (Y −X,Z) .

As Z ∈ V was arbitrary we may conclude that (Y −X) ⊥ V.
2 =⇒ 1. Now suppose that (Y −X) ⊥ V and Z ∈ V, then (Y −X) ⊥

(X − Z) and so

‖Y − Z‖2 = ‖Y −X +X − Z‖2 = ‖Y −X‖2+‖X − Z‖2 ≥ ‖Y −X‖2 . (3.4)

Moreover if Z is another best approximation to Y then ‖Y − Z‖2 = ‖Y −X‖2
which happens according to Eq. (3.4) iff

‖X − Z‖2 = E (X − Z)
2

= 0,

i.e. iff X = Z a.s.
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Corollary 3.9 (Orthogonal Projection Formula). Suppose that V is a sub-

space of H := L2 (P ) and {Xi}Ni=1 is an orthogonal basis for V. Then

QV Y =

N∑
i=1

(Y,Xi)

‖Xi‖2
Xi for all Y ∈ H.

Proof. The best approximation X ∈ V to Y is of the form X =
∑N
i=1 ciXi

where ci ∈ R need to be chosen so that (Y −X) ⊥ V. Equivalently put we must
have

0 = (Y −X,Xj) = (Y,Xj)− (X,Xj) for 1 ≤ j ≤ N.

Since

(X,Xj) =

N∑
i=1

ci (Xi, Xj) = cj ‖Xj‖2 ,

we see that cj = (Y,Xj) / ‖Xj‖2 , i.e.

QV Y = X =

N∑
i=1

(Y,Xi)

‖Xi‖2
Xi.

Example 3.10. Given Y ∈ L2 (P ) the best approximation to Y by a constant
function c is given by

c =
E [Y 1]

E12
1 = EY.

You already proved this on your first homework by a direct calculus exercise.





4

Linear prediction and a canonical form

Corollary 4.1 (Correlation Bounds). For all square integrable random vari-
ables, X and Y,

|Cov (X,Y )| ≤ σ (X) · σ (Y )

or equivalently,
|Corr (X,Y )| ≤ 1.

.

Proof. This is a simply application of Schwarz’s inequality (Theorem 3.4);

|Cov (X,Y )| = |E [(X − µX) (Y − µY )]| ≤ ‖X − µX‖·‖Y − µY ‖ = σ (X)·σ (Y ) .

Since Corr (X,Y ) > 0 iff Cov (X,Y ) > 0 iff E [(X − µX) (Y − µY )] > 0, we
see that X and Y are positively correlated iff X −µX and Y −µY tend to have
the same sign more often than not. While X and Y are negatively correlated
iff X − µX and Y − µY tend to have opposite signs more often than not. This
description is of course rather crude given that it ignores size of X − µX and
Y −µY but should however give the reader a little intuition into the meaning of
correlation. (See Corollary 4.4 below for the special case where Corr (X,Y ) = 1
or Corr (X,Y ) = −1.)

Theorem 4.2 (Linear Prediction Theorem). Let X and Y be two square
integrable random variables, then

σ (Y )
√

1− Corr2 (X,Y ) = min
a,b∈R

‖Y − (aX + b)‖ = ‖Y −W‖ (4.1)

where

W = µY +
Cov (X,Y )

Var (X)
(X − µX) =

Cov (X,Y )

Var (X)
X +

(
EY − µX

Cov (X,Y )

Var (X)

)
.

Proof. Let µ = EX and X̄ = X −µ. Then
{

1, X̄
}

is an orthogonal set and

V := span {1, X} = span
{

1, X̄
}
. Thus best approximation of Y by random

variable of the form aX + b is given by

W = (Y, 1) 1 +

(
Y, X̄

)∥∥X̄∥∥2 X̄ = EY +
Cov (X,Y )

Var (X)
(X − µX) .

The root mean square error of this approximation is

‖Y −W‖2 =

∥∥∥∥Ȳ − Cov (X,Y )

Var (X)
X̄

∥∥∥∥2

= σ2 (Y )− Cov2 (X,Y )

σ2 (X)

= σ2 (Y )
(
1− Corr2 (X,Y )

)
,

so that
‖Y −W‖ = σ (Y )

√
1− Corr2 (X,Y ).

Example 4.3. Suppose that P (X ∈ dx, Y ∈ dy) = e−y10<x<ydxdy. Recall from
Example 2.5 that

EX = 1, EY = 2,

EX2 = 2, EY 2 = 6

σ (X) = 1, σ (Y ) =
√

2,

Cov (X,Y ) = 1, and Corr (X,Y ) =
1√
2
.

So in this case

W = 2 +
1

1
(X − 1) = X + 1

is the best linear predictor of Y and the root mean square error in this prediction
is

‖Y −W‖ =
√

2

√
1− 1

2
= 1.

Corollary 4.4. If Corr (X,Y ) = ±1, then

Y = µY ±
σ (Y )

σ (X)
(X − µX) ,

i.e. Y − µY is a positive (negative) multiple of X − µX if Corr (X,Y ) = 1
(Corr (X,Y ) = −1) .
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Proof. According to Eq. (4.1) of Theorem 4.2, if Corr (X,Y ) = ±1 then

Y = µY +
Cov (X,Y )

Var (X)
(X − µX)

= µY ±
σXσY
σ2
X

(X − µX) = µY ±
σY
σX

(X − µX) ,

wherein we have used Cov (X,Y ) = Cov (X,Y )σXσY = ±1σXσY .

Theorem 4.5 (Canonical form). If X,Y ∈ L2 (P ) , then there are two mean
zero uncorrelated Random variables {Z1, Z2} such that ‖Z1‖ = ‖Z2‖ = 1 and

X = µX + σ (X)Z1, and

Y = µY + σ (Y ) [cos θ · Z1 + sin θ · Z2] ,

where 0 ≤ θ ≤ π is chosen such that cos θ := Corr (X,Y ) .

Proof. (Just sketch the main ideal in class!). The proof amounts to apply-
ing the Gram-Schmidt procedure to

{
X̄ := X − µX , Ȳ := Y − µY

}
to find Z1

and Z2 followed by expressing X and Y in uniquely in terms of the linearly
independent set, {1, Z1, Z2} . The details follow.

Performing Gram-Schmidt on
{
X̄, Ȳ

}
gives Z1 = X̄/σ (X) and

Z̃2 = Ȳ −
(
Ȳ , X̄

)
σ (X)

2 X̄.

To get Z2 we need to normalize Z̃2 using;

EZ̃2
2 = σ (Y )

2 − 2

(
Ȳ , X̄

)
σ (X)

2

(
X̄, Ȳ

)
+

(
Ȳ , X̄

)2
σ (X)

4 σ (X)
2

= σ (Y )
2 −

(
X̄, Ȳ

)2
σ (X)

2 = σ (Y )
2 (

1− Corr2 (X,Y )
)

= σ (Y )
2

sin2 θ.

Therefore Z1 = X̄/σ (X) and

Z2 :=
Z̃2∥∥∥Z̃2

∥∥∥ =
Ȳ − (Ȳ ,X̄)

σ(X)2
X̄

σ (Y ) sin θ
=
Ȳ − σ(X)σ(Y )Corr(X,Y )

σ(X)2
X̄

σ (Y ) sin θ

=
Ȳ − σ(Y )

σ(X) cos θ · X̄
σ (Y ) sin θ

=
Ȳ − σ (Y ) cos θ · Z1

σ (Y ) sin θ

Solving for X̄ and Ȳ shows,

X̄ = σ (X)Z1 and Ȳ = σ (Y ) [sin θ · Z2 + cos θ · Z1]

which is equivalent to the desired result.

Remark 4.6. It is easy to give a second proof of Corollary 4.4 based on Theorem

4.5. Indeed, if Corr (X,Y ) = 1, then θ = 0 and Ȳ = σ (Y )Z1 = σ(Y )
σ(X)X̄ while if

Corr (X,Y ) = −1, then θ = π and therefore Ȳ = −σ (Y )Z1 = − σ(Y )
σ(X)X̄.

Exercise 4.1 (A correlation inequality). Suppose that X is a random vari-
able and f, g : R→ R are two increasing functions such that both f (X)

and g (X) are square integrable, i.e. E |f (X)|2 + E |g (X)|2 < ∞. Show
Cov (f (X) , g (X)) ≥ 0. Hint: let Y be another random variable which has
the same law as X and is independent of X. Then consider

E [(f (Y )− f (X)) · (g (Y )− g (X))] .
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Conditional Expectation

Notation 5.1 (Conditional Expectation 1) Given Y ∈ L1 (P ) and A ⊂ Ω
let

E [Y : A] := E [1AY ]

and

E [Y |A] =

{
E [Y : A] /P (A) if P (A) > 0

0 if P (A) = 0
. (5.1)

(In point of fact, when P (A) = 0 we could set E [Y |A] to be any real number.
We choose 0 for definiteness and so that Y → E [Y |A] is always linear.)

Example 5.2 (Conditioning for the uniform distribution). Suppose that Ω is a
finite set and P is the uniform distribution on P so that P ({ω}) = 1

#(Ω) for

all ω ∈ W. Then for non-empty any subset A ⊂ Ω and Y : Ω → R we have
E [Y |A] is the expectation of Y restricted to A under the uniform distribution
on A. Indeed,

E [Y |A] =
1

P (A)
E [Y : A] =

1

P (A)

∑
ω∈A

Y (ω)P ({ω})

=
1

# (A) /# (Ω)

∑
ω∈A

Y (ω)
1

# (Ω)
=

1

# (A)

∑
ω∈A

Y (ω) .

Lemma 5.3. If P (A) > 0 then E [Y |A] = EP (·|A)Y for all Y ∈ L1 (P ) .

Proof. I will only prove this lemma when Y is a discrete random variable,
although the result does hold in general. So suppose that Y : Ω → S where S
is a finite or countable subset of R. Then taking expectation relative to P (·|A)
of the identity, Y =

∑
y∈S y1Y=y, gives

EP (·|A)Y = EP (·|A)

∑
y∈S

y1Y=y =
∑
y∈S

yEP (·|A)1Y=y =
∑
y∈S

yP (Y = y|A)

=
∑
y∈S

yP (Y = y|A) =
∑
y∈S

y
P (Y = y,A)

P (A)
=

1

P (A)

∑
y∈S

yE [1A1Y=y]

=
1

P (A)
E

1A
∑
y∈S

y1Y=y

 =
1

P (A)
E [1AY ] = E [Y |A] .

Lemma 5.4. No matter whether P (A) > 0 or P (A) = 0 we always have,

|E [Y |A]| ≤ E [|Y | |A] ≤
√
E
[
|Y |2 |A

]
. (5.2)

Proof. If P (A) = 0 then all terms in Eq. (5.2) are zero and so the inequali-
ties hold. For P (A) > 0 we have, using the Schwarz inequality in Theorem 3.4),
that

|E [Y |A]| =
∣∣EP (·|A)Y

∣∣ ≤ EP (·|A) |Y | ≤
√
EP (·|A) |Y |

2 · EP (·|A)1 =

√
EP (·|A) |Y |

2
.

This completes that proof as EP (·|A) |Y | = E [|Y | |A] and EP (·|A) |Y |
2

=

E
[
|Y |2 |A

]
.

Notation 5.5 Let S be a set (often S = R or S = RN ) and suppose that
X : Ω → S is a function. (So X is a random variable if S = R and a random
vector when S = RN .) Further let VX denote those random variables Z ∈ L2 (P )
which may be written as Z = f (X) for some function f : S → R. (This is a
subspace of L2 (P ) and we let FX :=

{
f : S → R : f (X) ∈ L2 (P )

}
.)

Definition 5.6 (Conditional Expectation 2). Given a function X : Ω →
S and Y ∈ L2 (P ) , we define E [Y |X] := QVXY where QVX is orthogonal
projection onto VX . (Fact: QVXY always exists. The proof requires technical
details beyond the scope of this course.)

Remark 5.7. By definition, E [Y |X] = h (X) where h ∈ FX is chosen so that
[Y − h (X)] ⊥ VX , i.e. E [Y |X] = h (X) iff (Y − h (X) , f (X)) = 0 for all f ∈
FX . So in summary, E [Y |X] = h (X) iff

E [Y f (X)] = E [h (X) f (X)] for all f ∈ FX . (5.3)

Corollary 5.8 (Law of total expectation). For all random variables Y ∈
L2 (P ) , we have EY = E(E(Y |X)).

Proof. Take f = 1 in Eq. (5.3).
This notion of conditional expectation is rather abstract. It is now time to

see how to explicitly compute conditional expectations. (In general this can be
quite tricky to carry out in concrete examples!)
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5.1 Conditional Expectation for Discrete Random
Variables

Recall that if A and B are events with P (A) > 0, then we define P (B|A) :=
P (B∩A)
P (A) . By convention we will set P (B|A) = 0 if P (A) = 0.

Example 5.9. If Ω is a finite set with N elements, P is the uniform distribution
on Ω, and A is a non-empty subset of Ω, then P (·|A) restricted to events
contained in A is the uniform distribution on A. Indeed, a = # (A) and B ⊂ A,
we have

P (B|A) =
P (B ∩A)

P (A)
=
P (B)

P (A)
=

# (B) /N

# (A) /N
=

# (B)

# (A)
=

# (B)

a
.

Theorem 5.10. Suppose that S is a finite or countable set and X : Ω → S,
then E [Y |X] = h (X) where h (s) := E [Y |X = s] for all s ∈ S.

Proof. First Proof. Our goal is to find h (s) such that

E [Y f (X)] = E [h (X) f (X)] for all bounded f.

Let S′ = {s ∈ S : P (X = s) > 0} , then

E [Y f (X)] =
∑
s∈S

E [Y f (X) : X = s] =
∑
s∈S′

E [Y f (X) : X = s]

=
∑
s∈S′

f (s)E [Y |X = s] · P (X = s)

=
∑
s∈S′

f (s)h (s) · P (X = s)

=
∑
s∈S

f (s)h (s) · P (X = s) = E [h (X) f (X)]

where h (s) := E [Y |X = s] .
Second Proof. If S is a finite set, such that P (X = s) > 0 for all s ∈ S.

Then
f (X) =

∑
s∈S

f (s) 1X=s

which shows that VX = span {1X=s : s ∈ S} . As {1X=s}s∈S is an orthogonal
set, we may compute

E [Y |X] =
∑
s∈S

(Y, 1X=s)

‖1X=s‖2
1X=s =

∑
s∈S

E [Y : X = s]

P (X = s)
1X=s

=
∑
s∈S

E [Y |X = s] · 1X=s = h (X) .

Example 5.11. Suppose that X and Y are discrete random variables with joint
distribution given as;

ρY 1/4 1
2 1/4

ρX X\Y −1 0 1
1/4 1 0 1/4 0
3/4 0 1/4 1/4 1/4

.

We then have

E [Y |X = 1] =
1

1/4

(
−1 · 0 + 0 · 1

4
+ 1 · 0

)
= 0 and

E [Y |X = 0] =
1

3/4

(
−1 · 1/4 + 0 · 1

4
+ 1 · 1/4

)
= 0

and therefore E [Y |X] = 0. On the other hand,

E [X|Y = −1] =
1

1/4

(
1 · 0 + 0 · 1

4

)
= 0,

E [X|Y = 0] =
1

1/2

(
1 · 1/4 + 0 · 1

4

)
=

1

2
, and

E [X|Y = 1] =
1

1/4

(
1 · 0 + 0 · 1

4

)
= 0.

Therefore

E [X|Y ] =
1

2
1Y=0.

Example 5.12. Let X and Y be discrete random variables with values in {1, 2, 3}
whose joint distribution and marginals are given by

ρX .3 .35 .35
ρY Y \X 1 2 3
.6 1 .1 .2 .3
.3 2 .15 .15 0
.1 3 .05 0 .05

.

Then

ρX|Y (1, 3) = P (X = 1|Y = 3) =
.05

.1
=

1

2
,

ρX|Y (2, 3) = P (X = 2|Y = 3) =
0

.1
= 0, and

ρX|Y (3, 3) = P (X = 3|Y = 3) =
.05

.1
=

1

2
.

Therefore,
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E [X|Y = 3] = 1 · 1

2
+ 2 · 0 + 3 · 1

2
= 2

or

h (3) := E [X|Y = 3] =
1

.1
(1 · .05 + 2 · 0 + 3 · .05) = 2

Similarly,

h (1) := E [X|Y = 1] =
1

.6
(1 · .1 + 2 · .2 + 3 · .3) = 2

1

3
,

h (2) := E [X|Y = 2] =
1

.3
(1 · .15 + 2 · .15 + 3 · 0) = 1.5

and so

E [X|Y ] = h (Y ) = 2
1

3
· 1Y=1 + 1.5 · 1Y=2 + 2 · 1Y=3.

Example 5.13 (Number of girls in a family). Suppose the number of children
in a family is a random variable X with mean µ, and given X = n forn ≥ 1,
each of the n children in the family is a girl with probability p and a boy with
probability 1− p. Problem. What is the expected number of girls in a family?

Solution. Intuitively, the answer should be pµ. To show this is correct let G
be the random number of girls in a family. Then,

E [G|X = n] = p · n

as G = 1A1 + · · · + 1An on X = n where Ai is the event the ith – child
is a girl. We are given P (Ai|X = n) = p so that E [1Ai |X = n] = p and so
E [G|X = n] = p · n. Therefore, E [G|X] = p ·X and

E [G] = EE [G|X] = E [p ·X] = pµ.

Example 5.14. Suppose that X and Y are i.i.d. random variables with the geo-
metric distribution,

P (X = k) = P (Y = k) = (1− p)k−1
p for k ∈ N.

We compute, for n > m,

P (X = m|X + Y = n) =
P (X = m,X + Y = n)

P (X + Y = n)

=
P (X = m,Y = n−m)∑
k+l=n P (X = k, Y = l)

where

P (X = m,Y = n−m) = p2 (1− p)m−1
(1− p)n−m−1

= p2 (1− p)n−2

and ∑
k+l=n

P (X = k, Y = l) =
∑
k+l=n

(1− p)k−1
p (1− p)l−1

p

=
∑
k+l=n

p2 (1− p)n−2
= p2 (1− p)n−2

n−1∑
k=1

1.

Thus we have shown,

P (X = m|X + Y = n) =
1

n− 1
for 1 ≤ m < n.

From this it follows that

E [f (X) |X + Y = n] =
1

n− 1

n−1∑
m=1

f (m)

and so

E [f (X) |X + Y ] =
1

X + Y − 1

X+Y−1∑
m=1

f (m) .

As a check if f (m) = m we have

E [X|X + Y ] =
1

X + Y − 1

X+Y−1∑
m=1

m

=
1

X + Y − 1

1

2
(X + Y − 1) (X + Y − 1 + 1)

=
1

2
(X + Y )

as we will see hold in fair generality, see Example 5.24 below.

Example 5.15 (Durrett Example 4.6.2, p. 205). Suppose we want to determine
the expected value of

Y = # of rolls to complete one game of craps.

Let X be the sum we obtain on the first roll. In this game, if;

X ∈ {2, 3, 12} =: L =⇒ game ends and you loose,

X ∈ {7, 11} =: W =⇒ game ends and you win,and

X ∈ {4, 5, 6, 8, 9, 10} =: P =⇒ X is your “point.”
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22 5 Conditional Expectation

In the last case, you roll your dice again and again until you either throw until
you get X (your point) or 7. (If you hit X before the 7 then you win.) We are
going to compute EY as E [E [Y |X]] .

Clearly if x ∈ L ∪ W then E [Y |X = x] = 1 while if x ∈ P, then
E [Y |X = x] = 1 + ENx where Nx is the number of rolls need to hit either
x or 7. This is a geometric random variable with parameter px (probability of
rolling an x or a 7) and so ENx = 1

px
. For example if x = 4, then px = 3+6

36 = 9
36

(3 is the number of ways to roll a 4 and 6 is the number of ways to roll as 7) and
hence 1 + ENx = 1 + 4 = 5. Similar calculations gives us the following table;

x ∈ {2, 3, 7, 11, 12} {4, 10} {5, 9} {6, 8}
E [Y |X = x] 1 45

9
46
10

47
11

P (set) 12
36

6
36

8
36

10
36

.

(For example, there are 5 ways to get a 6 and 6 ways to get a 7 so when
x = 6 we are waiting for an event with probability 11/36 and the mean of this
geometric random variables is 36/11 and adding the first roll to this implies,
E [Y |X = 6] = 47/11. Similarly for x = 8 and P (X = 6 or 8) = (5 + 5) /36.)
Putting the pieces together and using the law of total expectation gives,

EY = E [E [Y |X]] = 1 · 12

36
+

45

9
· 6

36
+

46

10
· 8

36
+

47

11
· 10

36

=
557

165
∼= 3.376 rolls.

The following two facts are often helpful when computing conditional ex-
pectations.

Proposition 5.16 (Bayes formula). Suppose that A ⊂ Ω and {Ai} is a par-
tition of A, then

E [Y |A] =
1

P (A)

∑
i

E [Y |Ai]P (Ai) =

∑
i E [Y |Ai]P (Ai)∑

i P (Ai)
.

If we further assume that E [Y |Ai] = c independent of i, then E [Y |A] = c.

The proof of this proposition is straight forward and is left to the reader.

Proposition 5.17. Suppose that Xi : Ω → Si for 1 ≤ i ≤ n are independent
random functions with each Si being discrete. Then for any Ti ⊂ Si we have,

E [u (X1, . . . , Xn) |X1 ∈ T1, . . . , Xn ∈ Tn] = E [u (Y1, . . . , Yn)]

where Yi : Ω → Ti for 1 ≤ i ≤ n are independent random functions such that
P (Yi = t) = P (Xi = t|Xi ∈ Ti) for all t ∈ Ti.

Proof. The proof is contained in the following computation,

E [u (X1, . . . , Xn) |X1 ∈ T1, . . . , Xn ∈ Tn]

=
E [u (X1, . . . , Xn) : X1 ∈ T1, . . . , Xn ∈ Tn]

P (X1 ∈ T1, . . . , Xn ∈ Tn)

=
1

P (X1 ∈ T1, . . . , Xn ∈ Tn)

∑
ti∈Ti

u (t1, . . . , tn)P (X1 = t1, . . . , Xn = tn)

=
1∏

i P (Xi ∈ Ti)
∑

(t1,...,tn)∈T1×···×Tn

u (t1, . . . , tn)
∏
i

P (Xi ∈ ti)

=
∑

(t1,...,tn)∈T1×···×Tn

u (t1, . . . , tn)
∏
i

P (Xi ∈ ti)
P (Xi ∈ Ti)

=
∑

(t1,...,tn)∈T1×···×Tn

u (t1, . . . , tn)
∏
i

P (Xi = t|Xi ∈ Ti)

=
∑

(t1,...,tn)∈T1×···×Tn

u (t1, . . . , tn)P (Y1 = t1, . . . , Yn = tn)

= E [u (Y1, . . . , Yn)] .

Here is an example of how to use these two propositions.

Example 5.18. Suppose we roll a die n – times with results {Xi}ni=1 where Xi ∈
{1, 2, 3, 4, 5, 6} for each i. Let

Y =

n∑
i=1

1{1,3,5} (Xi) = number of odd rolls and

Z =

n∑
i=1

1{3,4,6} (Xi)

= number of times 3, 4, or 6 are rolled.

We wish to compute E [Z|Y ] . So let 0 ≤ y ≤ n be given and let A be the event
where Xi is odd for 1 ≤ i ≤ y and Xi is even for y < i ≤ n. Then

E [Z|A] = y
1

3
+ (n− y) · 2

3

where 1
3 = P (X1 ∈ {3, 4, 6} |X1 is odd) and 2

3 = P (X1 ∈ {3, 4, 6} |X1 is even) .
Now it is clear that {Y = y} can be partitioned into events like the one above
being labeled by which of the y – slots are even and the results are the same for
all such choices by symmetry, therefore by Proposition 5.16 we may conclude
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E [Z|Y = y] = y
1

3
+ (n− y) · 2

3

and therefore,

E [Z|Y ] = Y
1

3
+ (n− Y ) · 2

3
.

As a check notice that

EE [Z|Y ] = EY
1

3
+ (n− EY ) · 2

3
=
n

2

1

3
+
(
n− n

2

)
· 2

3

=
n

6
+
n

3
=

1

2
n = EZ.

The next lemma generalizes this result.

Lemma 5.19. Suppose that Xi : Ω → S for 1 ≤ i ≤ n are i.i.d. random
functions into a discrete set S. Given a subset A ⊂ S let

ZA :=

n∑
i=1

1A (Xi) = # ({i : Xi ∈ A}) .

If B is another subset of S, then

E [ZA|ZB ] = ZB · P (X1 ∈ A|X1 ∈ B) + (n− ZB) · P (X1 ∈ A|X1 /∈ B) . (5.4)

Proof. Intuitively, for a typical trial there are ZB of the Xi in B and for
these i we have E [1A (Xi) |Xi ∈ B] = P (X1 ∈ A|X1 ∈ B) . Likewise there are
n − ZB of the Xi in S \ B and for these i we have E [1A (Xi) |Xi /∈ B] =
P (X1 ∈ A|X1 /∈ B) . On these grounds we are quickly lead to Eq. (5.4).

To prove Eq. (5.4) rigorously we will compute E [ZA|ZB = m] by partitioning
{ZB = m} as ∪QΛ where Λ runs through subsets of k elements of S and

QΛ = (∩i∈Λ {Xi ∈ B}) ∩ (∩i∈Λc {Xi /∈ B}) .

Then according to Proposition 5.17,

E [ZA|QΛ] = E

[
n∑
i=1

1A (Yi)

]

where {Yi} are independent and

P (Yi = s) = P (Xi = s|Xi ∈ B) = P (X1 = s|X1 ∈ B) for i ∈ Λ

and

P (Yi = s) = P (Xi = s|Xi /∈ B) = P (X1 = s|X1 /∈ B) for i /∈ Λ.

Therefore,

E [ZA|QΛ] = E

[
n∑
i=1

1A (Yi)

]
=

n∑
i=1

E1A (Yi)

=
∑
i∈Λ

P (X1 ∈ A|X1 ∈ B) +
∑
i/∈Λ

P (X1 ∈ A|X1 /∈ B)

= m · P (X1 ∈ A|X1 ∈ B) + (n−m) · P (X1 ∈ A|X1 /∈ B) .

As the result is independent of the choice of Λ with #(Λ) = m we may use
Proposition 5.16 to conclude that

E [ZA|ZB = m] = m · P (X1 ∈ A|X1 ∈ B) + (n−m) · P (X1 ∈ A|X1 /∈ B) .

As 0 ≤ m ≤ n is arbitrary Eq. (5.4) follows.
As a check notice that EZA = n · P (X1 ∈ A) while

EE [ZA|ZB ] =EZB · P (X1 ∈ A|X1 ∈ B) + E (n− ZB) · P (X1 ∈ A|X1 /∈ B)

=n · P (X1 ∈ B) · P (X1 ∈ A|X1 ∈ B)

+ (n− n · P (X1 ∈ B)) · P (X1 ∈ A|X1 /∈ B)

=n ·
[

P (X1 ∈ B) · P (X1 ∈ A|X1 ∈ B)
+ (1− P (X1 ∈ B)) · P (X1 ∈ A|X1 /∈ B)

]
=n · [P (X1 ∈ A|X1 ∈ B)P (X1 ∈ B) + P (X1 ∈ A|X1 /∈ B)P (X1 /∈ B)]

=n · [P (X1 ∈ A,X1 ∈ B) + P (X1 ∈ A,X1 /∈ B)]

=n · P (X1 ∈ A) = EZA.

5.2 General Properties of Conditional Expectation

Let us pause for a moment to record a few basic general properties of conditional
expectations.

Proposition 5.20 (Contraction Property). For all Y ∈ L2 (P ) , we have
E |E [Y |X]| ≤ E |Y | . Moreover if Y ≥ 0 then E [Y |X] ≥ 0 (a.s.).

Proof. Let E [Y |X] = h (X) (with h : S → R) and then define

f (x) =

{
1 if h (x) ≥ 0
−1 if h (x) < 0

.

Since h (x) f (x) = |h (x)| , it follows from Eq. (5.3) that
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E [|h (X)|] = E [Y f (X)] = |E [Y f (X)]| ≤ E [|Y f (X)|] = E |Y | .

For the second assertion take f (x) = 1h(x)<0 in Eq. (5.3) in order to learn

E
[
h (X) 1h(X)<0

]
= E

[
Y 1h(X)<0

]
≥ 0.

As h (X) 1h(X)<0 ≤ 0 we may conclude that h (X) 1h(X)<0 = 0 a.s.
Because of this proposition we may extend the notion of conditional expec-

tation to Y ∈ L1 (P ) as stated in the following theorem which we do not bother
to prove here.

Theorem 5.21. Given X : Ω → S and Y ∈ L1 (P ) , there exists an “essentially
unique” function h : S → R such that Eq. (5.3) holds for all bounded functions,
f : S → R. (As above we write E [Y |X] for h (X) .) Moreover the contraction
property, E |E [Y |X]| ≤ E |Y | , still holds.

Theorem 5.22 (Basic properties). Let Y, Y1, and Y2 be integrable random
variables and X : Ω → S be given. Then:

1. E(Y1 + Y2|X) = E(Y1|X) + E(Y2|X).
2. E(aY |X) = aE(Y |X) for all constants a.
3. E(g(X)Y |X) = g(X)E(Y |X) for all bounded functions g.
4. E(E(Y |X)) = EY. (Law of total expectation.)
5. If Y and X are independent then E(Y |X) = EY.

Proof. 1. Let hi (X) = E [Yi|X] , then for all bounded f,

E [Y1f (X)] = E [h1 (X) f (X)] and

E [Y2f (X)] = E [h2 (X) f (X)]

and therefore adding these two equations together implies

E [(Y1 + Y2) f (X)] = E [(h1 (X) + h2 (X)) f (X)]

= E [(h1 + h2) (X) f (X)]

E [Y2f (X)] = E [h2 (X) f (X)]

for all bounded f . Therefore we may conclude that

E(Y1 + Y2|X) = (h1 + h2) (X) = h1 (X) + h2 (X) = E(Y1|X) + E(Y2|X).

2. The proof is similar to 1 but easier and so is omitted.
3. Let h (X) = E [Y |X] , then E [Y f (X)] = E [h (X) f (X)] for all bounded

functions f. Replacing f by g · f implies

E [Y g (X) f (X)] = E [h (X) g (X) f (X)] = E [(h · g) (X) f (X)]

for all bounded functions f. Therefore we may conclude that

E [Y g (X) |X] = (h · g) (X) = h (X) g (X) = g (X)E(Y |X).

4. Take f ≡ 1 in Eq. (5.3).
5. If X and Y are independent and µ := E [Y ] , then

E [Y f (X)] = E [Y ]E [f (X)] = µE [f (X)] = E [µf (X)]

from which it follows that E [Y |X] = µ as desired.
The next theorem says that conditional expectations essentially only de-

pends on the distribution of (X,Y ) and nothing else.

Theorem 5.23. Suppose that (X,Y ) and
(
X̃, Ỹ

)
are random vectors such

that (X,Y )
d
=
(
X̃, Ỹ

)
, i.e. E [f (X,Y )] = E

[
f
(
X̃, Ỹ

)]
for all bounded (or

non-negative) functions f. If h (X) = E [u (X,Y ) |X] , then E
[
u
(
X̃, Ỹ

)
|X̃
]

=

h
(
X̃
)
.

Proof. By assumption we know that

E [u (X,Y ) f (X)] = E [h (X) f (X)] for all bounded f.

Since (X,Y )
d
=
(
X̃, Ỹ

)
, this is equivalent to

E
[
u
(
X̃, Ỹ

)
f
(
X̃
)]

= E
[
h
(
X̃
)
f
(
X̃
)]

for all bounded f

which is equivalent to E
[
u
(
X̃, Ỹ

)
|X̃
]

= h
(
X̃
)
.

Example 5.24. Let {Xi}∞i=1 be i.i.d. random variables with E |Xi| <∞ for all i
and let Sm := X1 + · · ·+Xm for m = 1, 2, . . . . We wish to show,

E [Sm|Sn] =
m

n
Sn for all m ≤ n.

for all m ≤ n. To prove this first observe by symmetry1 that

E (Xi|Sn) = h (Sn) independent of i.

Therefore

Sn = E (Sn|Sn) =

n∑
i=1

E (Xi|Sn) =

n∑
i=1

h (Sn) = n · h (Sn) .

1 Apply Theorem 5.23 using (X 1, Sn)
d
= (Xi, Sn) for 1 ≤ i ≤ n.
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Thus we see that

E (Xi|Sn) =
1

n
Sn

and therefore

E (Sm|Sn) =

m∑
i=1

E (Xi|Sn) =

m∑
i=1

1

n
Sn =

m

n
Sn.

If m > n, then Sm = Sn +Xn+1 + · · ·+Xm. Since Xi is independent of Sn
for i > n, it follows that

E (Sm|Sn) = E (Sn +Xn+1 + · · ·+Xm|Sn)

= E (Sn|Sn) + E (Xn+1|Sn) + · · ·+ E (Xm|Sn)

= Sn + (m− n)µ if m ≥ n

where µ = EXi.

Example 5.25 (See Durrett, #8, p. 213). Suppose that X and Y are two inte-
grable random variables such that

E [X|Y ] = 18− 3

5
Y and E [Y |X] = 10− 1

3
X.

We would like to find EX and EY. To do this we use the law of total expectation
to find,

EX = EE [X|Y ] = E
(

18− 3

5
Y

)
= 18− 3

5
EY and

EY = EE [Y |X] = E
(

10− 1

3
X

)
= 10− 1

3
EX.

Solving this pair of linear equations shows EX = 15 and EY = 5.

5.3 Conditional Expectation for Continuous Random
Variables

(This section will be covered later in the course when first needed.)
Suppose that Y and X are continuous random variables which have a joint

density, ρ(Y,X) (y, x) . Then by definition of ρ(Y,X), we have, for all bounded or
non-negative, U, that

E [U (Y,X)] =

∫ ∫
U (y, x) ρ(Y,X) (y, x) dydx. (5.5)

The marginal density associated to X is then given by

ρX (x) :=

∫
ρ(Y,X) (y, x) dy (5.6)

and recall from Math 180A that the conditional density ρ(Y |X) (y, x) is defined
by

ρ(Y |X) (y, x) =

{
ρ(Y,X)(y,x)

ρX(x) if ρX (x) > 0

0 if ρX (x) = 0
. (5.7)

Observe that if ρ(Y,X) (y, x) is continuous, then

ρ(Y,X) (y, x) = ρ(Y |X) (y, x) ρX (x) for all (x, y) . (5.8)

Indeed, if ρX (x) = 0, then

0 = ρX (x) =

∫
ρ(Y,X) (y, x) dy

from which it follows that ρ(Y,X) (y, x) = 0 for all y. If ρ(Y,X) is not continuous,
Eq. (5.8) still holds for “a.e.” (x, y) which is good enough.

Lemma 5.26. In the notation above,

ρ (x, y) = ρ(Y |X) (y, x) ρX (x) for a.e. (x, y) . (5.9)

Proof. By definition Eq. (5.9) holds when ρX (x) > 0 and ρ (x, y) ≥
ρ(Y |X) (y, x) ρX (x) for all (x, y) . Moreover,∫ ∫

ρ(Y |X) (y, x) ρX (x) dxdy =

∫ ∫
ρ(Y |X) (y, x) ρX (x) 1ρX(x)>0dxdy

=

∫ ∫
ρ (x, y) 1ρX(x)>0dxdy

=

∫
ρX (x) 1ρX(x)>0dx =

∫
ρX (x) dx

= 1 =

∫ ∫
ρ (x, y) dxdy,

or equivalently, ∫ ∫ [
ρ (x, y)− ρ(Y |X) (y, x) ρX (x)

]
dxdy = 0

which implies the result.
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Theorem 5.27. Keeping the notation above,for all or all bounded or non-
negative, U, we have E [U (Y,X) |X] = h (X) where

h (x) =

∫
U (y, x) ρ(Y |X) (y, x) dy (5.10)

=


∫
U(y,x)ρ(Y,X)(y,x)dy∫

ρ(Y,X)(y,x)dy
if

∫
ρ(Y,X) (y, x) dy > 0

0 otherwise
. (5.11)

In the future we will usually denote h (x) informally by E [U (Y, x) |X = x],2 so
that

E [U (Y, x) |X = x] :=

∫
U (y, x) ρ(Y |X) (y, x) dy. (5.12)

Proof. We are looking for h : S → R such that

E [U (Y,X) f (X)] = E [h (X) f (X)] for all bounded f.

Using Lemma 5.26, we find

E [U (Y,X) f (X)] =

∫ ∫
U (y, x) f (x) ρ(Y,X) (y, x) dydx

=

∫ ∫
U (y, x) f (x) ρ(Y |X) (y, x) ρX (x) dydx

=

∫ [∫
U (y, x) ρ(Y |X) (y, x) dy

]
f (x) ρX (x) dx

=

∫
h (x) f (x) ρX (x) dx

= E [h (X) f (X)]

where h is given as in Eq. (5.10).

Example 5.28 (Durrett 8.15, p. 145). Suppose that X and Y have joint density
ρ (x, y) = 8xy · 10<y<x<1. We wish to compute E [u (X,Y ) |Y ] . To this end we
compute

ρY (y) =

∫
R

8xy · 10<y<x<1dx = 8y

∫ x=1

x=y

x · dx = 8y · x
2

2
|1y = 4y ·

(
1− y2

)
.

Therefore,

2 Warning: this is not consistent with Eq. (5.1) as P (X = x) = 0 for continuous
distributions.

ρX|Y (x, y) =
ρ (x, y)

ρY (y)
=

8xy · 10<y<x<1

4y · (1− y2)
=

2x · 10<y<x<1

(1− y2)

and so

E [u (X,Y ) |Y = y] =

∫
R

2x · 10<y<x<1

(1− y2)
u (x, y) dx = 2

10<y<1

1− y2

∫ 1

y

u (x, y) xdx

and so

E [u (X,Y ) |Y ] = 2
1

1− Y 2

∫ 1

Y

u (x, Y )xdx.

is the best approximation to u (X,Y ) be a function of Y alone.

Proposition 5.29. Suppose that X,Y are independent random functions, then

E [U (Y,X) |X] = h (X)

where
h (x) := E [U (Y, x)] .

Proof. I will prove this in the continuous distribution case and leave the
discrete case to the reader. (The theorem is true in general but requires measure
theory in order to prove it in full generality.) The independence assumption is
equivalent to ρ(Y,X) (y, x) = ρY (y) ρX (x) . Therefore,

ρ(Y |X) (y, x) =

{
ρY (y) if ρX (x) > 0

0 if ρX (x) = 0

and therefore E [U (Y,X) |X] = h0 (X) where

h0 (x) =

∫
U (y, x) ρ(Y |X) (y, x) dy

= 1ρX(x)>0

∫
U (y, x) ρY (y) dy = 1ρX(x)>0E [U (Y, x)]

= 1ρX(x)>0h (x) .

If f is a bounded function of x, then

E [h0 (X) f (X)] =

∫
h0 (x) f (x) ρX (x) dx =

∫
{x:ρX(x)>0}

h0 (x) f (x) ρX (x) dx

=

∫
{x:ρX(x)>0}

h (x) f (x) ρX (x) dx =

∫
h (x) f (x) ρX (x) dx

= E [h (X) f (X)] .

So for all practical purposes, h (X) = h0 (X) , i.e. h (X) = h0 (X) – a.s. (In-
deed, take f (x) = sgn(h (x) − h0 (x)) in the above equation to learn that
E |h (X)− h0 (X)| = 0.
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5.4 Conditional Variances

Definition 5.30 (Conditional Variance). Suppose that Y ∈ L2 (P ) and X :
Ω → S are given. We define

Var (Y |X) = E
[
Y 2|X

]
− (E [Y |X])

2
(5.13)

= E
[
(Y − E [Y |X])

2 |X
]

(5.14)

to be the conditional variance of Y given X.

Theorem 5.31. Suppose that Y ∈ L2 (P ) and X : Ω → S are given, then

Var (Y ) = E [Var (Y |X)] + Var (E [Y |X]) .

Proof. Taking expectations of Eq. (5.13) implies,

E [Var (Y |X)] = EE
[
Y 2|X

]
− E (E [Y |X])

2

= EY 2 − E (E [Y |X])
2

= Var (Y ) + (EY )
2 − E (E [Y |X])

2
.

The result follows from this identity and the fact that

Var (E [Y |X]) = E (E [Y |X])
2 − (EE [Y |X])

2
= E (E [Y |X])

2 − (EY )
2
.

5.5 Summary on Conditional Expectation Properties

Let Y and X be random variables such that EY 2 <∞ and h be function from
the range of X to R. Then the following are equivalent:

1. h(X) = E(Y |X), i.e. h(X) is the conditional expectation of Y given X.
2. E(Y − h(X))2 ≤ E(Y − g(X))2 for all functions g, i.e. h(X) is the best

approximation to Y among functions of X.
3. E(Y ·g(X)) = E(h(X) ·g(X)) for all functions g, i.e. Y −h(X) is orthogonal

to all functions of X. Moreover, this condition uniquely determines h(X).

The methods for computing E(Y |X) are given in the next two propositions.

Proposition 5.32 (Discrete Case). Suppose that Y and X are discrete ran-
dom variables and p(y, x) := P (Y = y,X = x). Then E(Y |X) = h(X), where

h(x) = E(Y |X = x) =
E(Y : X = x)

P (X = x)
=

1

pX(x)

∑
y

yp(y, x) (5.15)

and pX(x) = P (X = x) is the marginal distribution of X which may be com-
puted as pX(x) =

∑
y p(y, x).

Proposition 5.33 (Continuous Case). Suppose that Y and X are random
variables which have a joint probability density ρ(y, x) (i.e. P (Y ∈ dy,X ∈
dx) = ρ(y, x)dydx). Then E(Y |X) = h(X), where

h(x) = E(Y |X = x) :=
1

ρX(x)

∫ ∞
−∞

yρ(y, x)dy (5.16)

and ρX(x) is the marginal density of X which may be computed as

ρX(x) =

∫ ∞
−∞

ρ(y, x)dy.

Intuitively, in all cases, E(Y |X) on the set {X = x} is E(Y |X = x). This
intuitions should help motivate some of the basic properties of E(Y |X) sum-
marized in the next theorem.

Theorem 5.34. Let Y, Y1, Y2 and X be random variables. Then:

1. E(Y1 + Y2|X) = E(Y1|X) + E(Y2|X).
2. E(aY |X) = aE(Y |X) for all constants a.
3. E(f(X)Y |X) = f(X)E(Y |X) for all functions f.
4. E(E(Y |X)) = EY.
5. If Y and X are independent then E(Y |X) = EY.
6. If Y ≥ 0 then E(Y |X) ≥ 0.

Remark 5.35. Property 4 in Theorem 5.34 turns out to be a very powerful
method for computing expectations. I will finish this summary by writing out
Property 4 in the discrete and continuous cases:

EY =
∑
x

E(Y |X = x)pX(x) (Discrete Case)

where

E(Y |X = x) =

{
E(Y 1X=x)
P (X=x) if P (X = x) > 0

0 otherwise

E [U (Y,X)] =

∫
E(U (Y,X) |X = x)ρX(x)dx, (Continuous Case)

where

E [U (Y, x) |X = x] :=

∫
U (y, x) ρ(Y |X) (y, x) dy

and

ρ(Y |X) (y, x) =

{
ρ(Y,X)(y,x)

ρX(x) if ρX (x) > 0

0 if ρX (x) = 0
.
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6

Random Sums

Suppose that {Xi}∞i=1 is a collection of random variables and let

Sn :=

{
X1 + · · ·+Xn if n ≥ 1

0 if n = 0
.

Given a Z+ – valued random variable, N, we wish to consider the random sum;

SN = X1 + · · ·+XN .

We are now going to suppose for the rest of this subsection that N is indepen-
dent of {Xi}∞i=1 and for f ≥ 0 we let

Tf (n) := E [f (Sn)] for all n ∈ N0.

Theorem 6.1. Suppose that N is independent of {Xi}∞i=1 as above. Then for
any positive function f, we have,

E [f (SN )] = E [Tf (N)] .

Moreover this formula holds for any f such that

E [|f (SN )|] = E [T |f | (N)] <∞.

Proof. If f ≥ 0 we have,

E [f (SN )] =

∞∑
n=0

E [f (SN ) : SN = n] =

∞∑
n=0

E [f (Sn) : SN = n]

=

∞∑
n=0

E [f (Sn)]P (SN = n) =

∞∑
n=0

(Tf) (n)P (SN = n)

= E [Tf (N)] .

The moreover part follows from general non-sense not really covered in this
course.

Theorem 6.2. Suppose that {Xi}∞i=1 are uncorrelated L2 (P ) – random vari-
ables with µ = EXi and σ2 = Var (Xi) independent of i. Assuming that
N ∈ L2 (P ) is independent of the {Xi} , then

E [SN ] = µ · EN (6.1)

and
Var (SN ) = σ2E [N ] + µ2 Var (N) . (6.2)

Proof. Taking f (x) = x in Theorem 6.1 using Tf (n) = E [Sn] = n · µ we
find,

E [SN ] = E [µ ·N ] = µ · EN
as claimed. Next take f (x) = x2 in Theorem 6.1 using

Tf (n) = E
[
S2
n

]
= Var (Sn) + (ESn)

2
= σ2n+ (n · µ)

2
,

we find that

E
[
S2
N

]
= E

[
σ2N + µ2N2

]
= σ2E [N ] + µ2E

[
N2
]
.

Combining these results shows,

Var (SN ) = σ2E [N ] + µ2E
[
N2
]
− µ2 (EN)

2

= σ2E [N ] + µ2 Var (N) .

Example 6.3 (Karlin and Taylor E.3.1. p77). A six-sided die is rolled, and the
number N on the uppermost face is recorded. Then a fair coin is tossed N
times, and the total number Z of heads to appear is observed. Determine the
mean and variance of Z by viewing Z as a random sum of N Bernoulli random
variables. Determine the probability mass function of Z, and use it to find the
mean and variance of Z.

We have Z = SN = X1 + · · · + XN where Xi = 1 if heads on the ith toss
and zero otherwise. In this case

EX1 =
1

2
,

Var (X1) =
1

2
−
(

1

2

)2

=
1

4
,

EN =
1

6
(1 + · · ·+ 6) =

1

6

7 · 6
2

=
7

2
,

EN2 =
1

6

(
12 + 22 + 32 + 42 + 52 + 62

)
=

91

6

Var (N) =
91

6
−
(

7

2

)2

=
35

12
.
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Therefore,

EZ = EX1 · EN =
1

2
· 7

2
=

7

4

Var (Z) =
1

4
· 7

2
+

(
1

2

)2

· 35

12
=

77

48
= 1.604 2.

Alternatively, we have

P (Z = k) =

6∑
n=1

P (Z = k|N = n)P (N = n)

=
1

6

6∑
n=k∨1

P (Z = k|N = n)

=
1

6

6∑
n=k∨1

(
n

k

)(
1

2

)n
.

where

EZ =

6∑
k=0

kP (Z = k) =

6∑
k=1

kP (Z = k)

=

6∑
k=1

k
1

6

6∑
n=k

(
n

k

)(
1

2

)n
=

7

4

and

EZ2 =

6∑
k=0

k2P (Z = k) =

6∑
k=1

k2 1

6

6∑
n=k

(
n

k

)(
1

2

)n
=

14

3

so that

Var (Z) =
14

3
−
(

7

4

)2

=
77

48
.

We have,

P (Z = 0) =
1

6

6∑
n=1

(
n

0

)(
1

2

)n
=

21

128

P (Z = 1) =
1

6

6∑
n=1

(
n

1

)(
1

2

)n
=

5

16

P (Z = 2) =
1

6

6∑
n=2

(
n

2

)(
1

2

)n
=

33

128

P (Z = 3) =
1

6

6∑
n=3

(
n

3

)(
1

2

)n
=

1

6

P (Z = 4) =
1

6

6∑
n=4

(
n

4

)(
1

2

)n
=

29

384

P (Z = 5) =
1

6

6∑
n=5

(
n

5

)(
1

2

)n
=

1

48

P (Z = 6) =
1

6

6∑
n=6

(
n

6

)(
1

2

)n
=

1

384
.

Remark 6.4. If the {Xi} are i.i.d., we may work out the moment generating
function, mgfSN (t) := E

[
etSN

]
as follows. Conditioning on N = n shows,

E
[
etSN |N = n

]
= E

[
etSn |N = n

]
= E

[
etSn

]
=
[
EetX1

]n
= [mgfX1 (t)]

n

so that
E
[
etSN |N

]
= [mgfX1 (t)]

N
= eN ln(mgfX1

(t)).

Taking expectations of this equation using the law of total expectation gives,

mgfSN (t) = mgfN (ln (mgfX1
(t))) .

Exercise 6.1 (Karlin and Taylor II.3.P2). For each given p, let Z have
a binomial distribution with parameters p and N. Suppose that N is itself
binomially distributed with parameters q and M. Formulate Z as a random
sum and show that Z has a binomial distribution with parameters pq and M.

Solution to Exercise (Karlin and Taylor II.3.P2). Let {Xi}∞i=1 be i.i.d.
Bernoulli random variables with P (Xi = 1) = p and P (Xi = 0) = 1− p. Then

Z
d
= X1 + · · ·+XN . We now compute
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P (Z = k) =

M∑
n=k

P (Z = k|N = n)P (N = n)

=

M−k∑
l=0

P (Z = k|N = k + l)P (N = k + l)

=

M−k∑
l=0

P (Z = k|N = k + l)P (N = k + l)

=

M−k∑
l=0

pk (1− p)k+l−k
(
k + l

k

)
·
(
M

k + l

)
qk+l (1− q)M−(k+l)

= (pq)
k
M−k∑
l=0

(1− p)l M !

k!l! (M − k − l)!
ql (1− q)M−k−l

=

(
M

k

)
(pq)

k
M−k∑
l=0

(M − k)!

l! (M − k − l)!
[(1− p) q]l (1− q)M−k−l

=

(
M

k

)
(pq)

k
M−k∑
l=0

(
M − k
l

)
[(1− p) q]l (1− q)M−k−l

=

(
M

k

)
(pq)

k
[(1− p) q + (1− q)]M−k

=

(
M

k

)
(pq)

k
[1− pq]M−k

as claimed. See page 58-59 of the notes where this is carried out.
Alternatively. Let {ξi} be i.i.d. Bernoulli random variables with parameter

q and {ηi} be i.i.d. Bernoulli random variables with parameter p independent
of the {ξi} . Then let N = η1 + · · · + ηM and Z = ξ1η1 + · · · + ξMηM . Notice

that {ξiηi}Mi=1 are Bernoulli random variables with parameter pq so that Z is
Binomial with parameters pq and M. Further N is binomial with parameters p
and M. Let B (i1, . . . , in) be the event where ηi1 = ηi2 = · · · = ηin = 1 with all
others being zero, then

{N = n} = ∪i1<···<inB (i1, . . . , in)

so that

P (Z = k|N = n) =

∑
i1<···<in P ({Z = k} ∩B (i1, . . . , in))∑

i1<···<in P (B (i1, . . . , in))

=

∑
i1<···<in P (Z = k|B (i1, . . . , in))P (B (i1, . . . , in))∑

i1<···<in P (B (i1, . . . , in))

=

∑
i1<···<in

(
n
k

)
qk (1− q)n−k P (B (i1, . . . , in))∑

i1<···<in P (B (i1, . . . , in))

=

(
n

k

)
qk (1− q)n−k

and this gives another more intuitive proof of the result.
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Markov Chains Basics

For this chapter, let S be a finite or at most countable state space and
p : S × S → [0, 1] be a Markov kernel, i.e.∑

y∈S
p (x, y) = 1 for all i ∈ S. (7.1)

A probability on S is a function, π : S → [0, 1] such that
∑
x∈S π (x) = 1.

Further, let N0 = N∪{0} ,

Ω := SN0 = {ω = (s0, s1, . . . ) : sj ∈ S} ,

and for each n ∈ N0, let Xn : Ω → S be given by

Xn (s0, s1, . . . ) = sn.

Notation 7.1 We will denote (X0, X1, X2, . . . ) by X.

Definition 7.2 (Markov probabilities). A (time homogeneous) Markov
probability1, P, on Ω with transition kernel, p, is probability on Ω such that

P (Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn)

= P (Xn+1 = xn+1|Xn = xn) = p (xn, xn+1) (7.2)

where {xj}n+1
j=1 are allowed to range over S and n over N0. The iden-

tity in Eq. (7.2) is only to be checked on for those xj ∈ S such that
P (X0 = x0, X1 = x1, . . . , Xn = xn) > 0. (Poetically, a Markov chain does not
remember its past, its future moves are determined only by its present location
and not how it got there.)

1 The set Ω is sufficiently big that it is no longer so easy to give a rigorous definition
of a probability on Ω. For the purposes of this class, a probability on Ω should
be taken to mean an assignment, P (A) ∈ [0, 1] for all subsets, A ⊂ Ω, such that
P (∅) = 0, P (Ω) = 1, and

P (A) =

∞∑
n=1

P (An)

whenever A = ∪∞n=1An with An ∩ Am = ∅ for all m 6= n. (There are technical
problems with this definition which are addressed in a course on “measure theory.”
We may safely ignore these problems here.)

If a Markov probability P is given we will often refer to {Xn}∞n=0 as a
Markov chain. The condition in Eq. (7.2) may also be written as,

E[f(Xn+1) | X0, X1, . . . , Xn] = E[f(Xn+1) | Xn] =
∑
y∈S

p (Xn, y) f (y) (7.3)

for all n ∈ N0 and any bounded function, f : S → R.

Proposition 7.3 (Markov joint distributions). If P is a Markov probability
as in Definition 7.2 and π (x) := P (X0 = x) , then for all n ∈ N0 and {xj} ⊂ S,

P (X0 = x0, . . . , Xn = xn) = π (x0) p (x0, x1) . . . p (xn−1, xn) . (7.4)

Conversely if π : S → [0, 1] is a probability and {Xn}∞n=0 is a sequence of
random variables satisfying Eq. (7.4) for all n and {xj} ⊂ S, then ({Xn} , P, p)
satisfies Definition 7.2.

Proof. ( =⇒ ) This formal proof is by induction on n. I will do the case
n = 1 and n = 2 here. For n = 1, if π (x0) = P (X0 = x0) = 0 then both sides
of Eq. (7.4) are zero and there is nothing to prove. If π (x0) = P (X0 = x0) > 0,
then

P (X0 = x0, X1 = x1) = P (X1 = x1|X0 = x0)P (X0 = x0)

= π (x0) · p (x0, x1) .

Now for the case n = 2. Let p := P (X0 = x0, X1 = x1) = π (x0) · p (x0, x1) . If
p = 0 then again both sides of Eq. (7.4) while if p > 0 we have by assumption
and the case n = 1 that

P (X0 = x0, X1 = x1, X2 = x2)

= P (X2 = x2|X0 = x0, X1 = x1, ) · P (X0 = x0, X1 = x1)

= P (X2 = x2|X1 = x1) · P (X0 = x0, X1 = x1)

= p (x1, x2) · π (x0) p (x0, x1) = π (x0) p (x0, x1) p (x1, x2) .

The formal induction argument is now left to the reader.
(⇐=) If

π (x0) p (x0, x1) . . . p (xn−1, xn) = P (X0 = x0, . . . , Xn = xn) > 0,
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then by Eq. (7.4) and the definition of conditional probabilities we find,

P (Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn)

=
P (X0 = x0, X1 = x1, . . . , Xn = xn, Xn+1 = xn+1)

P (X0 = x0, . . . , Xn = xn)

=
π (x0) p (x0, x1) . . . p (xn−1, xn) p (xn, xn+1)

π (x0) p (x0, x1) . . . p (xn−1, xn)
= p (xn, xn+1)

as desired.

Fact 7.4 To each probability π on S there is a unique Markov probability, Pπ,
on Ω such that Pπ (X0 = x) = π (x) for all x ∈ X. Moreover, Pπ is uniquely
determined by Eq. (7.4).

Notation 7.5 We will abbreviate the expectation (EPπ ) with respect to Pπ by
Eπ. Moreover if

π (y) = δx (y) :=

{
1 if x = y
0 if x 6= y

, (7.5)

we will write Px for Pπ = Pδx and Ex for Eδx

For a general probability, π, on S, it follows from Proposition 7.3 and Corol-
lary 7.6 that

Pπ =
∑
x∈S

π (x)Px and Eπ =
∑
x∈S

π (x)Ex. (7.6)

Corollary 7.6. If π is a probability on S and u : Sn+1 → R is a bounded or
non-negative function, then

Eπ [u (X0, . . . , Xn)] =
∑

x0,...,xn∈S
u (x0, . . . , xn)π (x0) p (x0, x1) . . . p (xn−1, xn) .

Definition 7.7 (Matrix multiplication). If q : S × S → [0, 1] is another
Markov kernel we let p · q : S × S → [0, 1] be defined by

(p · q) (x, y) :=
∑
z∈S

p (x, z) q (z, y) . (!) (7.7)

We also let

pn :=

n - times︷ ︸︸ ︷
p · p · · · · · p.

If π : S → [0, 1] is a probability we let (π · q) : S → [0, 1] be defined by

(π · q) (y) :=
∑
x∈S

π (x) q (x, y) .

As the definition suggests, p · q is the multiplication of matrices and π · q is
the multiplication of a row vector π with a matrix q. It is easy to check that π ·q
is still a probability and p · q and pn are Markov kernels. A key point to keep in
mind is that a Markov process is completely specified by its transition kernel,
p : S × S → [0, 1] . For example we have the following method for computing
Px (Xn = y) .

Lemma 7.8. Keeping the above notation, Px (Xn = y) = pn (x, y) and more
generally,

Pπ (Xn = y) =
∑
x∈S

π (x) pn (x, y) = (π · pn) (y) .

Proof. We have from Eq. (7.4) that

Px (Xn = y) =
∑

x0,...,xn−1∈S
Px (X0 = x0, X1 = x1, . . . , Xn−1 = xn−1, Xn = y)

=
∑

x0,...,xn−1∈S
δx (x0) p (x0, x1) . . . p (xn−2, xn−1) p (xn−1, y)

=
∑

x1,...,xn−1∈S
p (x, x1) . . . p (xn−2, xn−1) p (xn−1, y) = pn (x, y) .

The formula for Pπ (Xn = y) easily follows from this formula.
To get a feeling for Markov chains, I suggest the reader play around with

the simulation provided by Stefan Waner and Steven R. Costenoble at www.

zweigmedia.com/RealWorld/markov/markov.html – see Figure 7.1 below.

Fig. 7.1. See www.zweigmedia.com/RealWorld/markov/markov.html for a Markov
chain simulator for chains with a state space of 4 elements or less. The user describes
the chain by filling in the transition matrix P.
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7.1 Examples

Notation 7.9 Associated to a transition kernel, p, is a jump graph (or jump
diagram) gotten by taking S as the set of vertices and then for x, y ∈ S, draw
an arrow from x to y if p (x, y) > 0 and label this arrow by the value p (x, y) .

Example 7.10. The transition matrix,

P =

1 2 31/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

1
2
3

is represented by the jump diagram in Figure 7.2.

1 2

3

1/2

1/3

1/2

1/2

1/3

1/4

1/4

0

1/3

1 2

3

1/2

1/3

1/2

1/2

1/3

1/4

Fig. 7.2. A simple 3 state jump diagram. We typically abbreviate the jump diagram
on the left by the one on the right. That is we infer by conservation of probability
there has to be probability 1/4 of staying at 1, 1/3 of staying at 3 and 0 probability
of staying at 2.

Example 7.11. The jump diagram for

P =

1 2 31/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

1
2
3

is shown in Figure 7.3.

Example 7.12. Suppose that S = {1, 2, 3} , then

1
1
4

��

1
2

##

2
1
2

��

1
2oo

3

1
3

YY

1
3

EE

Fig. 7.3. In the above diagram there are jumps from 1 to 1 with probability 1/4 and
jumps from 3 to 3 with probability 1/3 which are not explicitly shown but must be
inferred by conservation of probability.

P =

1 2 3 0 1 0
1/2 0 1/2
1 0 0

 1
2
3

has the jump graph given by 7.2.

1

1
,,

2

1
2yy

1
2

ll

3

1

YY

Fig. 7.4. A simple 3 state jump diagram.

Example 7.13 (Ehrenfest Urn Model). Let a beaker filled with a particle fluid
mixture be divided into two parts A and B by a semipermeable membrane. Let
Xn = (# of particles in A) which we assume evolves by choosing a particle at
random from A ∪ B and then replacing this particle in the opposite bin from
which it was found. Modeling {Xn} as a Markov process we find,

P (Xn+1 = j | Xn = i) =


0 if j /∈ {i− 1, i+ 1}
i
N if j = i− 1
N−i
N if j = i+ 1

=: q (i, j)

As these probabilities do not depend on n, {Xn} is a time homogeneous Markov
chain.
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Exercise 7.1. Consider a rat in a maze consisting of 7 rooms which is laid out
as in the following figure. 1 2 3

4 5 6
7


In this figure rooms are connected by either vertical or horizontal adjacent
passages only, so that 1 is connected to 2 and 4 but not to 5 and 7 is only
connected to 4. At each time t ∈ N0 the rat moves from her current room to
one of the adjacent rooms with equal probability (the rat always changes rooms
at each time step). Find the one step 7 × 7 transition matrix, q, with entries
given by Pij := P (Xn+1 = j|Xn = i) , where Xn denotes the room the rat is
in at time n.

Solution to Exercise (7.1). The rat moves to an adjacent room from nearest
neighbor locations probability being 1/D where D is the number of doors in
the room where the rat is currently located. The transition matrix is therefore,

P =

1 2 3 4 5 6 7

0 1/2 0 1/2 0 0 0
1/3 0 1/3 0 1/3 0 0
0 1/2 0 0 0 1/2 0

1/3 0 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0
0 0 0 1 0 0 0



1
2
3
4
5
6
7

. (7.8)

and the corresponding jump diagram is given in Figure 7.5.

1

1/2

��

1/2
++

2

1/3
++

1/3

��

1/3

kk 3

1/2

��

1/2

kk

4

1/3

SS

1/3

��

1/3
++

5
1/3

kk

1/3
++

1/3

SS

6

1/2

SS

1/2

kk

7

1

SS

Fig. 7.5. The jump diagram for our rat in the maze.

Exercise 7.2 (2 - step MC). Consider the following simple (i.e. no-brainer)
two state “game” consisting of moving between two sites labeled 1 and 2. At
each site you find a coin with sides labeled 1 and 2. The probability of flipping a
2 at site 1 is a ∈ (0, 1) and a 1 at site 2 is b ∈ (0, 1). If you are at site i at time n,
then you flip the coin at this site and move or stay at the current site as indicated
by coin toss. We summarize this scheme by the “jump diagram” of Figure ??.
It is reasonable to suppose that your location, Xn, at time n is modeled by a

11−a
22

a
++

2
b

kk 1−b
ll

Fig. 7.6. The generic jump diagram for a two state Markov chain.

Markov process with state space, S = {1, 2} . Explain (briefly) why this is a
time homogeneous chain and find the one step transition probabilities,

p (i, j) = P (Xn+1 = j|Xn = i) for i, j ∈ S.

Use your result and basic linear (matrix) algebra to compute,
limn→∞ P (Xn = 1) . Your answer should be independent of the possible
starting distributions, π = (π1, π2) for X0 where πi := P (X0 = i) .

Example 7.14. As we will see in concrete examples (see the homework and the
text), many Markov chains arise in the following general fashion. Let S and
T be discrete sets, α : S × T → S be a function, {ξn}∞n=1 be i.i.d. random
functions with values in T. Then given a random function, X0 independent of
the {ξn}∞n=1 with values in S define Xn inductively by Xn+1 = α (Xn, ξn+1) for
n = 0, 1, 2, . . . . We will see that {Xn}∞n=0 satisfies the Markov property with

p (x, y) = P ({α (x, ξ) = y})

where ξ
d
= ξn. To verify this is a Markov process first observe that notice that

ξn+1 is independent of {Xk}nk=0 as Xk depends on (X0, ξ1, . . . , ξk) for all k.
Therefore

P [Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn]

= P [α (Xn, ξn+1) = xn+1 | X0 = x0, . . . , Xn = xn]

= P [α (xn, ξn+1) = xn+1 | X0 = x0, . . . , Xn = xn]

= P (α (xn, ξn+1) = xn+1) = p (xn, xn+1) .

Example 7.15 (Random Walks on the line). Suppose we have a walk on the line
with probability of jumping to the right (left) is p (q = 1− p). In this case we
have
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P =

. . . −1 0 1 2 . . .

. . .
. . .

. . . 0 p
q 0 p
q 0 p

q 0
. . .

. . .
. . .



...
−1
0
1
2
...

,

i.e.

Pij =

p if j = i+ 1
q if j = i− 1
0 otherwise

The jump diagram for such a walk is given in Figure 7.7.This fits into Exam-

. . .

p
**
−2

p
++

q

ii −1

p
((

q

jj 0

p
''

q
kk 1

p
''

q

gg 2

p

''

q

gg . . .
q

hh

Fig. 7.7. The jump diagram for a possibly biassed simple random walk on the line.

ple 7.14 by taking S = Z, T = {±1} , F (s, t) = s + t, and ξn
d
= ξ where

P (ξ = +1) = p and P (ξ = −1) = q = 1− p.

Example 7.16 (See III.3.1 of Karlin and Taylor). Let ξn denote the demand of
a commodity during the nth – period. We will assume that {ξn}∞n=1 are i.i.d.
with P (ξn = k) = ak for k ∈ N0. Let Xn denote the quantity of stock on hand
at the end of the nth – period which is subject to the following replacement
policy. We choose s, S ∈ N0 with s < S, if Xn ≤ s we immediately replace the
stock to have S on hand at the beginning of the next period while if Xn > s
we do not add any stock. Thus,

Xn+1 =

{
Xn − ξn+1 if s < Xn ≤ S
S − ξn+1 if Xn ≤ s,

see Figure 3.1 on p. 106 of the book (also repeated below). Notice that we allow
the stock to go negative indicating the demand is not met. It now follows that

P (Xn+1 = y|Xn = x) =

{
P (ξn+1 = x− y) if s < x ≤ S
P (ξn+1 = S − y) if x ≤ s

=

{
ax−y if s < x ≤ S
aS−y if x ≤ s

Example 7.17 (Discrete queueing model). Let Xn = # of people in line at time
n, {ξn} be i.i.d. be the number of customers arriving for service in a period and
assume one person is served if there are people in the queue (think of a taxi
stand). Therefore, Xn+1 = (Xn − 1)+ + ξn and assuming that P (ξn = k) = ak
for all k ∈ N0 we have,

P (Xn+1 = j | Xn = i) =


0 if j < i− 1

P (ξn = 0) = a0 if j = i− 1

P (ξn = j − (i− 1)) = aj−i+1 if j ≥ i

P =

0 1 2 3 4 · · ·
a0 a1 a2 a3 · · · · · ·
a0 a1 a2 · · · · · · · · ·
0 a0 a1 a2 · · · · · ·
0 0 a0 a1 a2 · · ·
...

...
. . .

. . .
...


0
1
2
3
...

.

Remark 7.18 (Memoryless property of the geometric distribution). Suppose
that {Xi} are i.i.d. Bernoulli random variables with P (Xi = 1) = p and
P (Xi = 0) = 1 − p and N = inf {i ≥ 1 : Xi = 1} . Then P (N = k) =

P (X1 = 0, . . . , Xk−1 = 0, Xk = 1) = (1− p)k−1
p, so that N is geometric with

parameter p. Using this representation we easily and intuitively see that

P (N = n+ k|N > n) =
P (X1 = 0, . . . , Xn+k−1 = 0, Xn+k = 1)

P (X1 = 0, . . . , Xn = 0)

= P (Xn+1 = 0, . . . , Xn+k−1 = 0, Xn+k = 1)

= P (X1 = 0, . . . , Xk−1 = 0, Xk = 1) = P (N = k) .
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This can be verified by first principles as well;

P (N = n+ k|N > n) =
P (N = n+ k)

P (N > n)
=

p (1− p)n+k−1∑
k>n p (1− p)k−1

=
p (1− p)n+k−1∑∞
j=0 p (1− p)n+j

=
(1− p)n+k−1

(1− p)n
∑∞
j=0 (1− p)j

=
(1− p)k−1

1
1−(1−p)

= p (1− p)k−1
= P (N = k) .

Exercise 7.3 (III.3.P4. (Queueing model)). Consider the queueing model
of Section 3.4. of Karlin and Taylor. Now suppose that at most a single customer
arrives during a single period, but that the service time of a customer is a
random variable Z with the geometric probability distribution

P (Z = k) = α (1− α)
k−1

for k ∈ N.

Specify the transition probabilities for the Markov chain whose state is the
number of customers waiting for service or being served at the start of each
period. Assume that the probability that a customer arrives in a period is β
and that no customer arrives with probability 1− β.

Solution to Exercise (III.3.P4). Notice that the probability that the service
of customer currently being served is finished at the end of the current period
is α = P (Z = m+ 1|Z > m); this is the memoryless property of the geometric
distribution. A k → k transition can happen in two ways: (i) a new customer
arrives and the customer being served finishes, or (ii) no new customer arrives
and the customer in service does not finish. The total probability of a k → k
transition is therefore

β · α+ (1− β)(1− α) = 1− α− β + 2αβ.

(If k = 0 this formula must be emended; the probability of a 0→ 0 transition is
simply 1− β.) A k → k + 1 transition occurs if a new customer arrives but the
customer in service does not finish; this has probability (1 − α)β (β if k = 0).
Finally, for k ≥ 1, the probability of a k → k − 1 transition is α(1 − β), see
Figure 7.8 for the jump diagram.

Proposition 7.19 (Historical MC). Suppose that {Xn}∞n=0 is a Markov
chain with transition probabilities, p (x, y) for x, y ∈ S. Then for any m ∈ N,

Yn := (Xn, Xn+1, . . . , Xn+m)

is a Markov chain with values in Sm+1 whose transition kernel, q, is given by

q ((a0, . . . , am) , (b0, . . . , bm)) = δ (b0, a1) . . . δ (bm−1, am) p (am, bm) .

10 kk − 1 k + 1
β

(1− β)α

β(1− α)

(1− β)α

β(1− α)

(1− β)α

Fig. 7.8. A jump diagram for a simple queueing model.

Proof. Let me give the proof for m = 2 only as this should suffice to explain
the ideas. We have,

P (Yn+1 = (b0, b1, b2) |Yn = (a0, a1, a2) , Yn−1 = ∗, . . . , Y0 = ∗) =

= P

(
(Xn+1, Xn+2, Xn+3) = (b0, b1, b2)

∣∣∣∣ (Xn, Xn+1, Xn+2) = (a0, a1, a2)
Yn−1 = ∗, . . . , Y0 = ∗

)
= P

(
(Xn+1, Xn+2, Xn+3) = (b0, b1, b2)

∣∣∣∣ (Xn, Xn+1, Xn+2) = (a0, a1, a2)
Xn−1 = ∗, . . . , X0 = ∗

)
= P

(
(a1, a2, Xn+3) = (b0, b1, b2)

∣∣∣∣ (Xn, Xn+1, Xn+2) = (a0, a1, a2)
Xn−1 = ∗, . . . , X0 = ∗

)
= δ (b0, a1) δ (b1, a2)P (Xn+3 = b2|Xn+2 = a2, Xn+1 = ∗, . . . , X0 = ∗)
= δ (a0, b1) δ (a2, b1) p (a2, b2) .

Example 7.20. Suppose we flip a fair coin repeatedly and would like to find
the first time the pattern HHT appears. To do this we will later examine
the Markov chain, Yn = (Xn, Xn+1, Xn+2) where {Xn}∞n=0 is the sequence of
unbiased independent coin flips with values in {H,T} . The state space for Yn
is

S =
{
TTT THT TTH THH HHH HTT HTH HHT

}
.

The transition matrix for recording three flips in a row of a fair coin is

P =
1

2



TTT THT TTH THH HHH HTT HTH HHT
TTT 1 0 1 0 0 0 0 0
THT 0 0 0 0 0 1 1 0
TTH 0 1 0 1 0 0 0 0
THH 0 0 0 0 1 0 0 1
HHH 0 0 0 0 1 0 0 1
HTT 1 0 1 0 0 0 0 0
HTH 0 1 0 1 0 0 0 0
HHT 0 0 0 0 0 1 1 0


.

7.2 Hitting Times

Skip this section. It is redone better later
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We assume the {Xn}∞n=0 is a Markov chain with values in S and transition
kernel P. I will often write p (x, y) for Pxy. We are going to further assume that
B ⊂ S is non-empty proper subset of S and A = S \B.

Definition 7.21 (Hitting times). Given a subset B ⊂ S we let TB be the
first time {Xn} hits B, i.e.

TB = min {n : Xn ∈ B}

with the convention that TB = ∞ if {n : Xn ∈ B} = ∅. We call TB the first
hitting time of B by X = {Xn}n .

Observe that

{TB = n} = {X0 /∈ B, . . . ,Xn−1 /∈ B,Xn ∈ B}
= {X0 ∈ A, . . . ,Xn−1 ∈ A,Xn ∈ B}

and
{TB > n} = {X0 ∈ A, . . . ,Xn−1 ∈ A,Xn ∈ A}

so that {TB = n} and {TB > n} only depends on (X0, . . . , Xn) . A random time,
T : Ω → N∪{0,∞} , with either of these properties is called a stopping time.

Lemma 7.22. For any random time T : Ω → N∪{0,∞} we have

P (T =∞) = lim
n→∞

P (T > n) and ET =

∞∑
k=0

P (T > k) .

Proof. The first equality is a consequence of the continuity of P and the
fact that

{T > n} ↓ {T =∞} .

The second equality is proved as follows;

ET =
∑
m>0

mP (T = m) =
∑

0<k≤m<∞

P (T = m)

=

∞∑
k=1

P (T ≥ k) =

∞∑
k=0

P (T > k) .

Notation 7.23 Let Q be P restricted to A, i.e. Qx,y = Px,y for all x, y ∈ A.
In particular we have

QN
x,y :=

∑
x1,...,xN−1∈A

Qx,x1
Qx1,x2

. . . QxN−1,y for all x, y ∈ A.

Corollary 7.24. Continuing the notation introduced above, for any x ∈ A we
have

Px (TB =∞) = lim
N→∞

∑
y∈A

QN
x,y

and

Ex [TB ] =

∞∑
N=0

∑
y∈A

QN
x,y

with the convention that

Q0
x,y = δx,y =

{
1 if x = y
0 if x 6= y

.

Proof. The results follow from Lemma 7.22 after observing that

Px (TB > N) = Px (X0 ∈ A, . . . ,XN ∈ A)

=
∑

x1,...,xN∈A
p (x, x1) p (x1, x2) . . .p (xN−1, xN ) =

∑
y∈A

QN
x,y. (7.9)

Proposition 7.25. Suppose that B ⊂ S is non-empty proper subset of S and
A = S \ B. Further suppose there is some α < 1 such that Px (TB =∞) ≤ α
for all x ∈ A, then Px (TB =∞) = 0 for all x ∈ A. [In words; if there is a
“uniform” chance that X hits B starting from any site, then X will surely hit
B.]

Proof. Taking N = m+ n in Eq. (7.9) shows

Px (TB > m+ n) =
∑
y,z∈A

Qm
x,yQ

n
y,z =

∑
y∈A

Qm
x,yPy (TB > n) . (7.10)

Letting n→∞ (using D.C.T.) in this equation shows,

Px (TB =∞) =
∑
y∈A

Qm
x,yPy (TB =∞)

≤ α
∑
y∈A

Qm
x,y = αPx (TB > n) .

Finally letting n → ∞ shows Px (TB =∞) ≤ αPx (TB =∞) , i.e.
Px (TB =∞) = 0 for all x ∈ A.

We will see in examples later that it is possible for Px (TB =∞) = 0 while
ExTB =∞. The next theorem gives a criteria which avoids this scenario.
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Theorem 7.26. Suppose that B ⊂ S is non-empty proper subset of S and A =
S \B. Further suppose there is some α < 1 and n <∞ such that Px (TB > n) ≤
α for all x ∈ A, then

Ex (TB) ≤ n

1− α
<∞

for all x ∈ A. [In words; if there is a “uniform” chance that X hits B starting
from any site within a fixed number of steps, then the expected hitting time of
B is finite and bounded independent of the starting point.]

Proof. From Eq. (7.10) for any m ∈ N we have

Px (TB > m+ n) =
∑
y∈A

Qm
x,yPy (TB > n) ≤ α

∑
y∈A

Qm
x,y = αPx (TB > m) .

One easily uses this relationship to show inductively that

Px (TB > kn) ≤ αk for all k = 0, 1, 2 . . . .

We then have,

ExTB =

∞∑
k=0

P (TB > k) ≤
∞∑
k=0

nP (TB > kn)

≤
∞∑
k=0

nαk =
n

1− α
<∞,

wherein we have used,

P (TB > kn+m) ≤ P (TB > kn) for m = 0, . . . , n− 1.

Corollary 7.27. If A = S \ B is a finite set and Px (TB =∞) < 1 for all
x ∈ A, then ExTB <∞ for all x ∈ A.

Proof. Let α0 = maxx∈A Px (T =∞) < 1. Now fix α ∈ (α0, 1) . Using

α0 ≥ Px (T =∞) =↓ lim
n→∞

Px (T > n)

we will have Px (T > m) ≤ α for m ≥ Nx for some Nx < ∞. Taking n :=
max {Nx : x ∈ A} < ∞ (A is a finite set), we will have Px (T > n) ≤ α for all
x ∈ A and we may now apply Theorem 7.26.

Definition 7.28 (First return time). For any x ∈ S, let Rx :=
min {n ≥ 1 : Xn = x} where the minimum of the empty set is defined to
be ∞.

On the event {X0 6= x} we have Rx = Tx := min {n ≥ 0 : Xn = x} – the
first hitting time of x. So Rx is really manufactured for the case where X0 = x
in which case Tx = 0 while Rx is the first return time to x.

Exercise 7.4. Let x ∈ X. Show;

a) for all n ∈ N0,

Px (Rx > n+ 1) ≤
∑
y 6=x

p (x, y)Py (Tx > n) . (7.11)

b) Use Eq. (7.11) to conclude that if Py (Tx =∞) = 0 for all y 6= x then
Px (Rx =∞) = 0, i.e. {Xn} will return to x when started at x.

c) Sum Eq. (7.11) on n ∈ N0 to show

Ex [Rx] ≤ Px (Rx > 0) +
∑
y 6=x

p (x, y)Ey [Tx] . (7.12)

d) Now suppose that S is a finite set and Py (Tx =∞) < 1 for all y 6= x, i.e.
there is a positive chance of hitting x from any y 6= x in S. Explain how
Eq. (7.12) combined with Corollary 7.27 shows that Ex [Rx] <∞.

Solution to Exercise (7.4). a) Using the first step analysis we have,

Px (Rx > n+ 1) = Ex [1Rx>n+1] = Ep(x,·)
[
1Rx(x,X)>n+1

]
= p (x, x)Ex

[
1Rx(x,X)>n+1

]
+
∑
y 6=x

p (x, y)Ey
[
1Rx(x,X)>n+1

]
.

On the event X0 = x we have Rx (x,X) = 1 which is not greater than n + 1
so that Ex

[
1Rx(x,X)>n+1

]
= 0 while on the event X0 6= x we have Rx (x,X) =

Tx (X) + 1 so that for y 6= x,

Ey
[
1Rx(x,X)>n+1

]
= Ey

[
1Tx(X)+1>n+1

]
= Py (Tx > n) .

Putting these comments together prove Eq. (7.11).
b) Let n→∞ in Eq. (7.11) using DCT in order to conclude,

Px (Rx =∞) ≤
∑
y 6=x

p (x, y)Py (Tx =∞) = 0.

c) Using Lemma2 7.22 twice along with Fubini’s theorem for sums we have,

2 That is ET =
∑∞

k=0 P (T > k) .
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Ex [Rx] = Px (Rx > 0) +

∞∑
n=0

Px (Rx > n+ 1)

≤ Px (Rx > 0) +

∞∑
n=0

∑
y 6=x

p (x, y)Py (Tx > n)

= Px (Rx > 0) +
∑
y 6=x

p (x, y)

∞∑
n=0

Py (Tx > n)

= Px (Rx > 0) +
∑
y 6=x

p (x, y)Ey [Tx] .

d) From Corollary 7.27 with B = {x} , we know that Ey [Tx] < ∞ for all
y 6= x. Thus the right side of Eq. (7.12) is a finite sum of finite terms and
therefore is finite. This then implies ExRx <∞.





8

Markov Conditioning

We assume the {Xn}∞n=0 is a Markov chain with values in S and transition
kernel P and π : S → [0, 1] is a probability on S. As usual we write Pπ for the
unique probability satisfying Eq. (7.4) and we will often write p (x, y) for Pxy.

Theorem 8.1 (Markov conditioning). Let π be a probability on S, F (X) =
F (X0, X1, . . . ) be a random variable1 depending on X. Then for each m ∈ N
we have

Eπ [F (X0, X1, . . . )] = Eπ
[
E(Y )
Xm

F (X0, X1, . . . Xm−1, Y0, Y1, . . . )
]

(8.1)

where E(Y )
x denotes the expectation with respect to an independent copy, Y, of

the chain X which starts at x ∈ S. To be more explicit,

Eπ [F (X0, X1, . . . )] = Eπ [h (X0, . . . , Xm)]

where for all x0, . . . , xm ∈ S,

h (x0, . . . , xm) := Exm [F (x0, . . . , xm−1, X0, X1, . . . )] .

[In words, given X0, . . . , Xm, (Xm, Xm+1, . . . ) has the same distribution as in-
dependent copy (Y0, Y1, . . . ) of the chain X where Y required to start at Xm.]

Alternatively stated: if x0, x1, . . . , xm ∈ S with Pπ (X0 = x0, . . . , Xm = xm) >
0, then

Eπ [F (X0, X1, . . . ) |X0 = x0, . . . , Xm = xm]

= Exm [F (x0, x1, . . . , xm−1, X0, X1, . . . )] (8.2)

or equivalently put,

Eπ ([F (X0, X1, . . . ) |X0, . . . , Xm]) = E(Y )
Xm

[F (X0, X1, . . . , Xm−1, Y0, Y1, . . . )] .
(8.3)

Proof. Fact: by “limiting” arguments beyond the scope of this course it
suffices to prove Eq. (8.1) for F (X) of the form, F (X) = F (X0, X1, . . . , XN )
with N <∞. Now for such a function we have,

1 In this theorem we assume that F is either bounded or non-negative.

Eπ [F (X0, X1, . . . , XN ) : X0 = x0, . . . , Xm = xm]

=
∑

xm+1,...,xN∈S
F (x0, . . . , xm, xm+1, . . . , xN )

[
π (x0) p (x0, x1) . . . p (xm−1, xm) ·
p (xm, xm+1) . . . p (xN−1, xN )

]
= Pπ (X0 = x0, . . . , Xm = xm) ·

·
∑

xm+1,...,xN∈S
F (x0, . . . , xm, xm+1, . . . , xN ) p (xm, xm+1) . . . p (xN−1, xN )

= Pπ (X0 = x0, . . . , Xm = xm)

·
∑

y1,...,yN−m∈S
F (x0, . . . , xm, y1, y2, . . . , yN−m) p (xm, y1) . . . p (yN−m−1, yN−m)

= Pπ (X0 = x0, . . . , Xm = xm)h (x0, . . . , xm) . (8.4)

Summing this equation on x0, . . . , xm in S gives Eq. (8.1) and dividing this
equation by Pπ (X0 = x0, . . . , Xm = xm) proves Eq. (8.2).

To help cement the ideas above, let me pause to write out the above argu-
ment in the special case where m = 2 and N = 5. In this case we have;

Eπ [F (X0, X1, . . . , X5) : X0 = x0, X1 = x1, X2 = x2]

=
∑

x3,x4,x5∈S
F (x0, x1, x2, x3, x4, x5)

[
π (x0) p (x0, x1) p (x1, x2) ·
p (x2, x3) p (x3, x4) p (x4, x5)

]
= Pπ (X0 = x0, X1 = x1, X2 = x2) ·

·
∑

x3,x4,x5∈S
F (x0, x1, x2, x3, x4, x5) [p (x2, x3) p (x3, x4) p (x4, x5)]

= Pπ (X0 = x0, X1 = x1, X2 = x2)

·
∑

y1,y2,y3∈S
F (x0, x1, x2, y1, y2, y3) [p (x2, y1) p (y1, y2) p (y2, y3)]

= Pπ (X0 = x0, X1 = x1, X2 = x2) · E(Y )
x2

[F (x0, x1, Y0, Y1, Y2, Y3)] .
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8.1 Hitting Time Estiamtes

We assume the {Xn}∞n=0 is a Markov chain with values in S and transition
kernel P. I will often write p (x, y) for Pxy. We are going to further assume that
B ⊂ S is non-empty proper subset of S and A = S \B.

Definition 8.2 (Hitting times). Given a subset B ⊂ S we let TB be the first
time {Xn} hits B, i.e.

TB = min {n : Xn ∈ B}
with the convention that TB = ∞ if {n : Xn ∈ B} = ∅. We call TB the first
hitting time of B by X = {Xn}n .

Observe that

{TB = n} = {X0 /∈ B, . . . ,Xn−1 /∈ B,Xn ∈ B}
= {X0 ∈ A, . . . ,Xn−1 ∈ A,Xn ∈ B}

and
{TB > n} = {X0 ∈ A, . . . ,Xn−1 ∈ A,Xn ∈ A}

so that {TB = n} and {TB > n} only depends on (X0, . . . , Xn) . A random time,
T : Ω → N∪{0,∞} , with either of these properties is called a stopping time.

Lemma 8.3. For any random time T : Ω → N∪{0,∞} we have

P (T =∞) = lim
n→∞

P (T > n) and ET =

∞∑
k=0

P (T > k) .

Proof. The first equality is a consequence of the continuity of P and the
fact that

{T > n} ↓ {T =∞} .
The second equality is proved as follows;

ET =
∑
m>0

mP (T = m) =
∑

0<k≤m<∞

P (T = m)

=

∞∑
k=1

P (T ≥ k) =

∞∑
k=0

P (T > k) .

Let us now use Theorem 8.1 to give variants of the proofs of our hitting
time results above. In what follows π will denote a probability on S.

Corollary 8.4. Let B ⊂ S and TB be as above, then for n,m ∈ N we have

Pπ (TB > m+ n) = Eπ [1TB>mPXm [TB > n]] . (8.5)

Proof. Using Theorem 8.1,

Pπ (TB > m+ n) = Eπ
[
1TB(X)>m+n

]
= Eπ

[
E(Y )
Xm

[
1TB(X0,...,Xm−1,Y0,Y1,... )>m+n

]]
= Eπ

[
E(Y )
Xm

[
1TB(X)>m · 1TB(Y )>n

]]
= Eπ

[
1TB(X)>mE(Y )

Xm

[
1TB(Y )>n

]]
= Eπ [1TB>mPXm [TB > n]] .

Corollary 8.5. Suppose that B ⊂ S is non-empty proper subset of S and A =
S \B. Further suppose there is some α < 1 such that Px (TB =∞) ≤ α for all
x ∈ A, then Pπ (TB =∞) = 0. [In words; if there is a “uniform” chance that
X hits B starting from any site, then X will surely hit B from any point in A.]

Proof. Since TB = 0 on {X0 ∈ B} we in fact have Px (TB =∞) ≤ α for all
x ∈ S. Letting n→∞ in Eq. (8.5) shows,

Pπ (TB =∞) = Eπ [1TB>mPXm [TB =∞]] ≤ Eπ [1TB>mα] = αPπ (TB > m) .

Now letting m → ∞ in this equation shows Pπ (TB =∞) ≤ αPπ (TB =∞)
from which it follows that Pπ (TB =∞) = 0.

Corollary 8.6. Suppose that B ⊂ S is non-empty proper subset of S and A =
S \B. Further suppose there is some α < 1 and n <∞ such that Px (TB > n) ≤
α for all x ∈ A, then

Eπ (TB) ≤ n

1− α
<∞

for all x ∈ A. [In words; if there is a “uniform” chance that X hits B starting
from any site within a fixed number of steps, then the expected hitting time of
B is finite and bounded independent of the starting distribution.]

Proof. Again using TB = 0 on {X0 ∈ B} we may conclude that
Px (TB > n) ≤ α for all x ∈ S. Letting m = kn in Eq. (8.5) shows

Pπ (TB > kn+ n) = Eπ [1TB>knPXm [TB > n]] ≤ Eπ [1TB>kn · α] = αPπ (TB > kn) .

Iterating this equation using the fact that Pπ (TB > 0) ≤ 1 shows
Pπ (TB > kn) ≤ αk for all k ∈ N0. Therefore with the aid of Lemma 8.3
and the observation,

P (TB > kn+m) ≤ P (TB > kn) for m = 0, . . . , n− 1,

we find,
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ExTB =

∞∑
k=0

P (TB > k) ≤
∞∑
k=0

nP (TB > kn)

≤
∞∑
k=0

nαk =
n

1− α
<∞.

Corollary 8.7. If A = S \B is a finite set and Px (TB =∞) < 1 for all x ∈ A,
then EπTB <∞.

Proof. Since

Px (T > m) ↓ Px (T =∞) < 1 for all x ∈ A

we can findMx <∞ such that Px (T > Mx) < 1. Using the fact that A is a finite
set we let n := maxx∈AMx < ∞ and then take α := maxx∈A Px (T > n) < 1.
Corollary 8.6 now applies to complete the proof.

8.2 First Step Analysis

The next theorem (which is a special case of Theorem 8.1) is the basis of the
first step analysis developed in this section.

Theorem 8.8 (First step analysis). Let F (X) = F (X0, X1, . . . ) be some
function of the paths (X0, X1, . . . ) of our Markov chain, then for all x, y ∈ S
with p (x, y) > 0 we have

Ex [F (X0, X1, . . . ) |X1 = y] = Ey [F (x,X0, X1, . . . )] (8.6)

and

Ex [F (X0, X1, . . . )] = Ep(x,·) [F (x,X0, X1, . . . )]

=
∑
y∈S

p (x, y)Ey [F (x,X0, X1, . . . )] . (8.7)

Proof. Equation (8.6) follows directly from Theorem 8.1,

Ex [F (X0, X1, . . . ) |X1 = y] = Ex [F (X0, X1, . . . ) |X0 = x,X1 = y]

= Ey [F (x,X0, X1, . . . )] .

Equation (8.7) now follows from Eq. (8.6), the law of total expectation, and the
fact that Px (X1 = y) = p (x, y) .

Let us now suppose for until further notice that B is a non-empty proper
subset of S, A = S \B, and TB = TB (X) is the first hitting time of B by X.

Notation 8.9 Given a transition matrix P = (p (x, y))x,y∈S we let Q=
(p (x, y))x,y∈A and R := (p (x, y))x∈A,y∈B so that, schematically,

P =

A B[
Q R
∗ ∗

]
A
B
.

Remark 8.10. To construct the matrix Q and R from P, let P′ be P with the
rows corresponding to B omitted. To form Q from P′, remove the columns
of P′ corresponding to B and to form R from P′, remove the columns of P′

corresponding to A.

Example 8.11. If S = {1, 2, 3, 4, 5, 6, 7} , A = {1, 2, 4, 5, 6} , B = {3, 7} , and

P =

1 2 3 4 5 6 7

0 1/2 0 1/2 0 0 0
1/3 0 1/3 0 1/3 0 0
0 1/2 0 0 0 1/2 0

1/3 0 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0
0 0 0 0 0 0 1



1
2
3
4
5
6
7

,

then

P′ =

1 2 3 4 5 6 7
0 1/2 0 1/2 0 0 0

1/3 0 1/3 0 1/3 0 0
1/3 0 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0


1
2
4
5
6

.

Deleting the 3 and 7 columns of P′ gives

Q = PA,A =

1 2 4 5 6
0 1/2 1/2 0 0

1/3 0 0 1/3 0
1/3 0 0 1/3 0
0 1/3 1/3 0 1/3
0 0 0 1/2 0


1
2
4
5
6

and deleting the 1, 2, 4, 5, and 6 columns of P′ gives
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R = PA,B =

3 7
0 0

1/3 0
0 1/3
0 0

1/2 0


1
2
4
5
6

.

Before continuing on you may wish to first visit Example 8.14 below.

Theorem 8.12 (Hitting distributions). Let h : B → R be a bounded or
non-negative function and let u : S → R be defined by

u (x) := Ex [h (XTB ) : TB <∞] for x ∈ A.

Then u = h on B and

u (x) =
∑
y∈A

p (x, y)u (y) +
∑
y∈B

p (x, y)h (y) for all x ∈ A. (8.8)

In matrix notation this becomes

u = Qu+ Rh =⇒ u = (I −Q)
−1

Rh,

i.e.
Ex [h (XTB ) : TB <∞] =

[
(I −Q)

−1
Rh
]
x

for all x ∈ A. (8.9)

As a special case if h (s) = δy (s) for some y ∈ B, then Eq. (8.9) becomes,

Px (XTB = y : TB <∞) =
[
(I −Q)

−1
R
]
x,y

. (8.10)

Proof. To shorten the notation we will use the convention that h (XTB ) = 0
if TB =∞ so that we may simply write u (x) := Ex [h (XTB )] . Let

F (X0, X1, . . . ) = h
(
XTB(X)

)
= h

(
XTB(X)

)
1TB(X)<∞,

then for x ∈ A we have F (x,X0, X1, . . . ) = F (X0, X1, . . . ) . Therefore by the
first step analysis (Theorem 8.8) we learn

u (x) = Exh
(
XTB(X)

)
= ExF (x,X1, . . . ) =

∑
y∈S

p (x, y)EyF (x,X0, X1, . . . )

=
∑
y∈S

p (x, y)EyF (X0, X1, . . . ) =
∑
y∈S

p (x, y)Ey
[
h
(
XTB(X)

)]
=
∑
y∈A

p (x, y)Ey
[
h
(
XTB(X)

)]
+
∑
y∈B

p (x, y)h (y)

=
∑
y∈A

p (x, y)u (y) +
∑
y∈B

p (x, y)h (y) .

Theorem 8.13 (Travel averages). Given g : A → [0,∞] , let w (x) :=
Ex
[∑

n<TB
g (Xn)

]
. Then w (x) satisfies

w (x) =
∑
y∈A

p (x, y)w (y) + g (x) for all x ∈ A. (8.11)

In matrix notation this becomes,

w = Qw + g =⇒ w = (I −Q)
−1

g

so that

Ex

[ ∑
n<TB

g (Xn)

]
=
[
(I −Q)

−1
g
]
x
.

The following two special cases are of most interest;

1. Suppose g (x) = δy (x) for some y ∈ A, then
∑
n<TB

g (Xn) =∑
n<TB

δy (Xn) is the number of visits of the chain to y and

Ex (# visits to y before hitting B)

= Ex

[ ∑
n<TB

δy (Xn)

]
= (I −Q)

−1
x,y .

2. Suppose that g (x) = 1, then
∑
n<TB

g (Xn) = TB and we may conclude that

Ex [TB ] =
[
(I −Q)

−1
1
]
x

where 1 is the column vector consisting of all ones.

Proof. Let F (X0, X1, . . . ) =
∑
n<TB(X0,X1,... )

g (Xn) be the sum of the
values of g along the chain before its first exit from A, i.e. entrance into B.
With this interpretation in mind, if x ∈ A, it is easy to see that

F (x,X0, X1, . . . ) =

{
g (x) if X0 ∈ B

g (x) + F (X0, X1, . . . ) if X0 ∈ A
= g (x) + 1X0∈A · F (X0, X1, . . . ) .

Therefore by the first step analysis (Theorem 8.8) it follows that

w (x) = ExF (X0, X1, . . . ) =
∑
y∈S

p (x, y)EyF (x,X0, X1, . . . )

=
∑
y∈S

p (x, y)Ey [g (x) + 1X0∈A · F (X0, X1, . . . )]

= g (x) +
∑
y∈A

p (x, y)Ey [F (X0, X1, . . . )]

= g (x) +
∑
y∈A

p (x, y)w (y) .
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8.3 Finite state space examples

Example 8.14. Consider the Markov chain determined by

P =


1 2 3 4
0 1/3 1/3 1/3

3/4 1/8 1/8 0
0 0 1 0
0 0 0 1


1
2
3
4

whose hitting diagram is given in Figure 8.1.Notice that 3 and 4 are absorb-

1 2

4
1/8

3/4

3

1/3

1/3

1/3

1/8

Fig. 8.1. For this chain the states 3 and 4 are absorbing.

ing states. Let hi = Pi (Xn hits 3) = P (Xn hits 3 before 4) for i = 1, 2, 3, 4.
Clearly h3 = 1 while h4 = 0 and by the first step analysis we have

hi = Pi (Xn hits 3) =

4∑
j=1

Pi (Xn hits 3|X1 = j) p (i, j) =

4∑
j=1

p (i, j)hj ,

and hence

h1 =
1

3
h2 +

1

3
h3 +

1

3
h4 =

1

3
h2 +

1

3

h2 =
3

4
h1 +

1

8
h2 +

1

8
h3 =

3

4
h1 +

1

8
h2 +

1

8
. (8.12)

Solving

h1 =
1

3
h2 +

1

3
and h2 =

3

4
h1 +

1

8
h2 +

1

8

for h1 and h2 shows,

P1 (Xn hits 3) = h1 =
8

15
∼= 0.533 33

P2 (Xn hits 3) = h2 =
3

5
.

Similarly if we let hi = Pi (Xn hits 4) instead, from Eqs. (?? with h3 = 0 and
h4 = 1, we find

h1 =
1

3
h2 +

1

3

h2 =
3

4
h1 +

1

8
h2

which has solutions,

P1 (Xn hits 4) = h1 =
7

15
= 0.466 67 and

P2 (Xn hits 4) = h2 =
2

5
= 0.4.

Of course we did not really need to compute these, since

P1 (Xn hits 3) + P1 (Xn hits 4) = 1 and

P2 (Xn hits 3) + P2 (Xn hits 4) = 1.

Similarly, if T = T{3,4} is the first hitting time of {3, 4} and ui := EiT, we
have,

ui =
4∑
j=1

Ei [T |X1 = j] p (i, j)

where

Ei [T |X1 = j] =

{
1 if j ∈ {3, 4}

1 + EjT = 1 + uj if j ∈ {1, 2} .

Therefore it follows that

ui =

4∑
j=1

1p (i, j) +

2∑
j=1

p (i, j)uj = 1 +

2∑
j=1

p (i, j)uj

and this leads to the equations,

u1 = 1 +
1

3
u2

u2 = 1 +
3

4
u1 +

1

8
u2

which has solutions
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E1 [T ] = u1 =
29

15
and

E2 [T ] = u2 =
14

5
.

Example 8.15 (Example 8.14 revisited). We may also consider Example 8.14
using the matrix formalism. For this we have

1 2 3 4

P′ =

[
0 1/3 1/3 1/3

3/4 1/8 1/8 0

]
1
2
,

1 2

Q =

[
0 1/3

3/4 1/8

]
1
2
, and

3 4

R =

[
1/3 1/3
1/8 0

]
1
2
.

Matrix manipulations now show,

Ei (# visits to j before hitting {3, 4}) = (I −Q)
−1

=

i\j
1
2

1 2[
7
5

8
15

6
5

8
5

]
=

[
1.4 0.53333
1.2 1.6

]
,

EiT{3,4} = (I −Q)
−1

[
1
1

]
=

i

1
2

[
29
15
14
5

]
=

[
1.933 3

2.8

]
and

Pi
(
XT{3,4} = j

)
= (I −Q)

−1
R =

i\j
1
2

3 4[
8
15

7
15

3
5

2
5

]
.

The output of one simulation from www.zweigmedia.com/RealWorld/

markov/markov.html is in Figure 8.2 below.

Example 8.16. Let us continue the rat in the maze Exercise 7.1 and now suppose
that room 3 contains food while room 7 contains a mouse trap. 1 2 3 (food)

4 5 6
7 (trap)

 .
Recall that the transition matrix for this chain with sites 3 and 7 absorbing is
given by,

P =

1 2 3 4 5 6 7

0 1/2 0 1/2 0 0 0
1/3 0 1/3 0 1/3 0 0
0 0 1 0 0 0 0

1/3 0 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0
0 0 0 0 0 0 1



1
2
3
4
5
6
7

,

Fig. 8.2. In this run, rather than making sites 3 and 4 absorbing, we have made
them transition back to 1. I claim now to get an approximate value for P1 (Xn hits 3)
we should compute: (State 3 Hits)/(State 3 Hits + State 4 Hits). In this example we
will get 171/(171 + 154) = 0.526 15 which is a little lower than the predicted value of
0.533 . You can try your own runs of this simulator.

see Figure ?? for the corresponding jump diagram for this chain.

1

1/2

��

1/2
++

2

1/3
,,

1/3

��

1/3

kk
3

food

4

1/3

SS

1/3

��

1/3
++

5
1/3

kk

1/3
++

1/3

SS

6

1/2

RR

1/2

kk

7
trap

Fig. 8.3. The jump diagram for our proverbial rat in the maze. Here we assume the
rat is “absorbed” at sites 3 and 7
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We would like to compute the probability that the rat reaches the food before
he is trapped. To answer this question we let A = {1, 2, 4, 5, 6} , B = {3, 7} ,
and T := TB be the first hitting time of B. Then deleting the 3 and 7 rows of
P leaves the matrix,

P′ =

1 2 3 4 5 6 7
0 1/2 0 1/2 0 0 0

1/3 0 1/3 0 1/3 0 0
1/3 0 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0


1
2
4
5
6

.

Deleting the 3 and 7 columns of P′ gives

Q = PA,A =

1 2 4 5 6
0 1/2 1/2 0 0

1/3 0 0 1/3 0
1/3 0 0 1/3 0
0 1/3 1/3 0 1/3
0 0 0 1/2 0


1
2
4
5
6

and deleting the 1, 2, 4, 5, and 6 columns of P′ gives

R = PA,B =

3 7
0 0

1/3 0
0 1/3
0 0

1/2 0


1
2
4
5
6

.

Therefore,

I −Q =


1 − 1

2 −
1
2 0 0

− 1
3 1 0 − 1

3 0
− 1

3 0 1 − 1
3 0

0 − 1
3 −

1
3 1 − 1

3
0 0 0 − 1

2 1

 ,
and using a computer algebra package we find

Ei [# visits to j before hitting {3, 7}] = (I −Q)
−1

=

1 2 4 5 6 j
11
6

5
4

5
4 1 1

3
5
6

7
4

3
4 1 1

3
5
6

3
4

7
4 1 1

3
2
3 1 1 2 2

3
1
3

1
2

1
2 1 4

3


i

1
2
4
5
6

.

In particular we may conclude,
E1T
E2T
E4T
E5T
E6T

 = (I −Q)
−1

1 =


17
3
14
3
14
3
16
3
11
3

 ,
and


P1 (XT = 3) P1 (XT = 7)
P2 (XT = 3) P2 (XT = 3)
P4 (XT = 3) P4 (XT = 3)
P5 (XT = 3) P5 (XT = 3)
P6 (XT = 3) P6 (XT = 7)

 = (I −Q)
−1

R =

3 7
7
12

5
12

3
4

1
4

5
12

7
12

2
3

1
3

5
6

1
6


1
2
4
5
6

.

.

Since the event of hitting 3 before 7 is the same as the event {XT = 3} , the
desired hitting probabilities are

P1 (XT = 3)
P2 (XT = 3)
P4 (XT = 3)
P5 (XT = 3)
P6 (XT = 3)

 =


7
12
3
4
5
12
2
3
5
6

 .
We can also derive these hitting probabilities from scratch using the first

step analysis. In order to do this let

hi = Pi (XT = 3) = Pi (Xn hits 3 (food) before 7(trapped)) .

By the first step analysis we will have,

hi =
∑
j

Pi (XT = 3|X1 = j)Pi (X1 = j)

=
∑
j

p (i, j)Pi (XT = 3|X1 = j)

=
∑
j

p (i, j)Pj (XT = 3)

=
∑
j

p (i, j)hj

where h3 = 1 and h7 = 0. Looking at the jump diagram in Figure ?? we easily
find
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h1 =
1

2
(h2 + h4)

h2 =
1

3
(h1 + h3 + h5) =

1

3
(h1 + 1 + h5)

h4 =
1

3
(h1 + h5 + h7) =

1

3
(h1 + h5)

h5 =
1

3
(h2 + h4 + h6)

h6 =
1

2
(h3 + h5) =

1

2
(1 + h5)

and the solutions to these equations are (as seen before) given by[
h1 =

7

12
, h2 =

3

4
, h4 =

5

12
, h5 =

2

3
, h6 =

5

6

]
. (8.13)

Similarly, if

ki := Pi (XT = 7) = Pi (Xn is trapped before dinner) ,

we need only use the above equations with h replaced by k and now taking
k3 = 0 and k7 = 1 to find,

k1 =
1

2
(k2 + k4)

k2 =
1

3
(k1 + k5)

k4 =
1

3
(k1 + k5 + 1)

k5 =
1

3
(k2 + k4 + k6)

k6 =
1

2
k5

and then solve to find,[
k1 =

5

12
, k2 =

1

4
, k4 =

7

12
, k5 =

1

3
, k6 =

1

6

]
. (8.14)

Notice that the sum of the hitting probabilities in Eqs. (8.13) and (8.14) add
up to 1 as they should.

Example 8.17 (A modified rat maze). Here is the modified maze, 1 2 3(food)
4 5

6(trap)

 .

The transition matrix with 3 and 6 made into absorbing states2 is:

P =

1 2 3 4 5 6
0 1/2 0 1/2 0 0

1/3 0 1/3 0 1/3 0
0 0 1 0 0 0

1/3 0 0 0 1/3 1/3
0 1/2 0 1/2 0 0
0 0 0 0 0 1


1
2
3
4
5
6

,

Q =

1 2 4 5
0 1/2 1/2 0

1/3 0 0 1/3
1/3 0 0 1/3
0 1/2 1/2 0


1
2
4
5

, R =

3 6
0 0

1/3 0
0 1/3
0 0


1
2
4
5

(I4 −Q)
−1

=

1 2 4 5
2 3

2
3
2 1

1 2 1 1
1 1 2 1
1 3

2
3
2 2


1
2
4
5

,

(I4 −Q)
−1

R =

3 6
1
2

1
2

2
3

1
3

1
3

2
3

1
2

1
2


1
2
4
5

,

(I4 −Q)
−1


1
1
1
1

 =


6
5
5
6


1
2
4
5

.

So for example, P4(XT = 3(food)) = 1/3, E4(Number of visits to 1) = 1,
E5(Number of visits to 2) = 3/2 and E1T = E5T = 6 and E2T = E4T = 5.

For practice let us compute hi = Pi (Xn hits 3 before 6) = Pi(XT =
3(food)). By the first step analysis we have,

2 It is not necessary to make states 3 and 6 absorbing. In fact it does matter at all
what the transition probabilities are for the chain for leaving either of the states
3 or 6 since we are going to stop when we hit these states. This is reflected in the
fact that the first thing we will do in the first step analysis is to delete rows 3 and
6 from P. Making 3 and 6 absorbing simply saves a little ink.
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h6 = 0

h3 = 1

h5 =
1

2
(h2 + h4)

h4 =
1

3
(h1 + h5 + h6)

h2 =
1

3
(h1 + h3 + h5)

h1 =
1

2
(h2 + h4)

which have solutions[
h1 =

1

2
, h2 =

2

3
, h3 = 1, h4 =

1

3
, h5 =

1

2
, h6 = 0

]
. (8.15)

Similarly if hi = Pi (Xn hits 6 before 3) = Pi (XT = 6) we have

h6 = 1

h3 = 0

h5 =
1

2
(h2 + h4)

h4 =
1

3
(h1 + h5 + h6)

h2 =
1

3
(h1 + h3 + h5)

h1 =
1

2
(h2 + h4)

which have solutions[
h1 =

1

2
, h2 =

1

3
, h3 = 0, h4 =

2

3
, h5 =

1

2
, h6 = 1

]
. (8.16)

Notice that the sum of the hitting probabilities in Eqs. (8.15) and (8.16) add
up to 1 as they should. These results are in agreement with our previous results
using the matrix method as well.

Exercise 8.1 (III.4.P11 on p.132). An urn contains two red and two green
balls. The balls are chosen at random, one by one, and removed from the urn.
The selection process continues until all of the green balls have been removed
from the urn. What is the probability that a single red ball is in the urn at the
time that the last green ball is chosen?

Solution to Exercise (III.4.P11 on p.132). Let’s choose the states to be
(G,R) = (i, j) with i, j = 0, 1, 2 so that (1, 2) implies that there is one green
ball and two red balls in the urn. Let B = {(0, 0), (0, 1), (0, 2} ,

T = TB = min{n ≥ 0 : Xn = (0, 0) or (0, 1) or (0, 2)}.

We wish to compute P (XT = (0, 1)|X0 = (2, 2)). The transition matrix for this
chain is given by;

P =



(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0
0 0 1/3 0 2/3 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 2/3 0 1/3 0 0
0 0 0 0 0 1/2 0 1/2 0



(0, 0)
(0, 1)
(0, 2)
(1, 0)
(1, 1)
(1, 2)
(2, 0)
(2, 1)
(2, 2)

.

Using the matrix method. First we remove the {(0, 0), (0, 1), (0, 2)} - row of P;

P′ =



(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)
1 0 0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0
0 0 1/3 0 2/3 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 2/3 0 1/3 0 0
0 0 0 0 0 1/2 0 1/2 0


(1, 0)
(1, 1)
(1, 2)
(2, 0)
(2, 1)
(2, 2)

and now form Q by removing the {(0, 0), (0, 1), (0, 2)} columns of P′ and R by
keeping the {(0, 0), (0, 1), (0, 2)} columns of P′;
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Q =



(1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)
0 0 0 0 0 0

1/2 0 0 0 0 0
0 2/3 0 0 0 0
1 0 0 0 0 0
0 2/3 0 1/3 0 0
0 0 1/2 0 1/2 0


(1, 0)
(1, 1)
(1, 2)
(2, 0)
(2, 1)
(2, 2)

R =



(0, 0) (0, 1) (0, 2)
(1, 0) 1 0 0
(1, 1) 0 1/2 0
(1, 2) 0 0 1/3
(2, 0) 0 0 0
(2, 1) 0 0 0
(2, 2) 0 0 0


.

So

P(a,b) [XTB = (c, d)] = (I −Q)−1R =

(a, b) \ (c, d)
(1, 0)
(1, 1)
(1, 2)
(2, 0)
(2, 1)
(2, 2)

(0, 0) (0, 1) (0, 2)
1 0 0
1
2

1
2 0

1
3

1
3

1
3

1 0 0
2
3

1
3 0

1
2

1
3

1
6


and therefore,

P(2,2)(XT = (0, 1)) = P (XT = (0, 1)|X0 = (2, 2)) = 1/3.

Theorem 8.18. Let h : B → [0,∞] and g : A→ [0,∞] be given and for x ∈ S
let3

u (x) = uh (x) = Ex [h (XTB ) : TB <∞] and

w (x) = Ex

[
h (XTB ) ·

∑
n<TB

g (Xn) : TB <∞

]
.

We further have w = 0 on B and w satisfies,

3 Recall from Theorem 8.12 that uh = (I −Q)−1 Rh, i.e. u = h on B and u satisfies

u (x) =
∑
y∈A

p (x, y)u (y) +
∑
y∈B

p (x, y)h (y) for all x ∈ A.

w (x) =
∑
y∈B

p (x, y)w (y) + gh (x) for x ∈ A (8.17)

where

gh (x) = g (x) · uh (x) = g (x)Ex [h (XTB ) : TB <∞] for x ∈ A.

Thus
w = (I −Q)

−1
gh where gh= g ∗ uh,

where [a ∗ b]x := ax · bx – the entry by entry product of column vectors.

Proof. Let

H (X) := h (XTB ) 1TB<∞ and G (X) :=
∑
n<TB

g (Xn) .

Now observe that

H (x, Y ) =

{
H (Y ) if x ∈ A
h (x) if x ∈ B and

G (x, Y ) = g (x) +G (Y )

and so by the first step analysis we find,

w (x) = Ex [H (X)G (X)] = Ep(x,·) [H (x, Y )G (x, Y )]

= Ep(x,·) [H (x, Y ) (g (x) +G (Y ))]

= g (x)Ep(x,·) [H (x, Y )] + Ep(x,·) [H (x, Y )G (Y )]

and
Ex [h (XTB ) 1TB<∞] = Ex [H (X)] = Ep(x,·) [H (x, Y )] .

Since G (Y ) = 0 if Y0 ∈ B and H (x, Y ) = H (Y ) if Y0 ∈ A we find,

Ep(x,·) [H (x, Y )G (Y )] =
∑
x∈S

p (x, y)Ey [H (x, Y )G (Y )]

=
∑
x∈A

p (x, y)Ey [H (x, Y )G (Y )]

=
∑
x∈A

p (x, y)Ey [H (Y )G (Y )]

=
∑
x∈A

p (x, y)w (y) .
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Example 8.19 (A possible carnival game). Suppose that B is the disjoint union
of L and W and suppose that you win

∑
n<TB

g (Xn) if you end in W and win
nothing when you end in L. What is the least we can expect to have to pay to
play this game and where in A := S \B should we choose to start the game. To
answer these questions we should compute our expected winnings (w (x)) for
each starting point x ∈ A;

w (x) = Ex

[
1W (XTB )

∑
n<TB

g (Xn)

]
.

Once we find w we should expect to pay at least C := maxx∈A w (x) and we
should start at a location x0 ∈ A where w (x0) = maxx∈A w (x) = C. As an
application of Theorem 8.18 we know that

w (x) =
[
(I−Q)

−1
gh

]
x

where4

gh (x) = g (x)Ex [1W (XTB )] = g (x)Px (XTB ∈W ) .

Let us now specialize these results to the chain in Example 8.14 where

P =


1 2 3 4
0 1/3 1/3 1/3

3/4 1/8 1/8 0
0 0 1 0
0 0 0 1


1
2
3
4

Let us make 4 the winning state and 3 the losing state (i.e. h (3) = 0 and
h (4) = 1) and let g = (g (1) , g (2)) be the payoff function. We have already
seen that [

uh (1)
uh (2)

]
=

[
P1 (XTB = 4)
P2 (XTB = 4)

]
=

[
7
15
2
5

]
so that g ∗ uh =

[
7
15g1
2
5g2

]
and therefore

[
w (1)
w (2)

]
= (I −Q)

−1

[
7
15g1
2
5g2

]
=

[
7
5

8
15

6
5

8
5

] [
7
15g1
2
5g2

]
=

[
49
75g1 + 16

75g2
14
25g1 + 16

25g2

]
.

Let us examine a few different choices for g.

4 Intuitively, the effective pay off for a visit to site x is g (x) · Px ( we win) + 0 ·
Px (we loose) .

1. When g (1) = 32 and g (2) = 7, we have[
w (1)
w (2)

]
=

[
7
5

8
15

6
5

8
5

] [
7
1532
2
57

]
=

[
112
5

112
5

]
=

[
22.4
22.4

]
and so it does not matter where we start and we are going to have to pay
at least $22.40 to play.

2. When g (1) = 10 = g (2) , then[
w (1)
w (2)

]
=

[
7
5

8
15

6
5

8
5

] [
7
1510
2
510

]
=

[
26
3

12

]
=

[
8. 666 7

12.0

]
and we should enter the game at site 2. We are going to have to pay at least
$12 to play.

3. If g (1) = 20 and g (2) = 7,[
w (1)
w (2)

]
=

[
7
5

8
15

6
5

8
5

] [
7
1520
2
57

]
=

[
364
25
392
25

]
=

[
14.56
15.68

]
and again we should enter the game at site 2. We are going to have to pay
at least $15.68 to play.

8.4 Random Walk Exercises

Exercise 8.2 (Uniqueness of solutions to 2nd order recurrence rela-
tions). Let a, b, c be real numbers with a 6= 0 6= c, α, β ∈ Z∪{±∞} with
α < β, and suppose {u (x) : x ∈ [α, β] ∩ Z} solves the second order homoge-
neous recurrence relation:

au (x+ 1) + bu (x) + cu (x− 1) = 0 (8.18)

for α < x < β. Show; if u and w both satisfy Eq. (8.18) and u = w on two
consecutive points in (α, β) ∩ Z, then u (x) = w (x) for all x ∈ [α, β] ∩ Z.

Exercise 8.3 (General solutions to 2nd order recurrence relations).
Let a, b, c be real numbers with a 6= 0 6= c, α, β ∈ Z∪{±∞} with α < β, and
suppose {u (x) : x ∈ [α, β] ∩ Z} solves the second order homogeneous recurrence
relation:for α < x < β. Show:

1. for any λ ∈ C,
aλx+1 + bλx + cλx−1 = λx−1p (λ) (8.19)

where p (λ) = aλ2 + bλ + c is the characteristic polynomial associated
to Eq. (8.18).
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Let λ± = −b±
√
b2−4ac

2a be the roots of p (λ) and suppose for the moment
that b2− 4ac 6= 0. From Eq. (8.18) it follows that for any choice of A± ∈ R,
the function,

w (x) := A+λ
x
+ +A−λ

x
−,

solves Eq. (8.18) for all x ∈ Z.
2. Show there is a unique choice of constants, A± ∈ R, such that the function
u (x) is given by

u (x) := A+λ
x
+ +A−λ

x
− for all α ≤ x ≤ β.

3. Now suppose that b2 = 4ac and λ0 := −b/ (2a) is the double root of p (λ) .
Show for any choice of A0 and A1 in R that

w (x) := (A0 +A1x)λx0

solves Eq. (8.18) for all x ∈ Z. Hint: Differentiate Eq. (8.19) with respect
to λ and then set λ = λ0.

4. Again show that any function u solving Eq. (8.18) is of the form u (x) =
(A0 +A1x)λx0 for α ≤ x ≤ β for some unique choice of constants A0, A1 ∈
R.

In the next couple of exercises you are going to use first step analysis to show
that a simple unbiased random walk on Z is null recurrent. We let {Xn}∞n=0 be
the Markov chain with values in Z with transition probabilities given by

P (Xn+1 = x± 1|Xn = x) = 1/2 for all n ∈ N0 and x ∈ Z.

Further let a, b ∈ Z with a < 0 < b and

Ta,b := min {n : Xn ∈ {a, b}} and Tb := inf {n : Xn = b} .

We know by Corollary 8.7 that E0 [Ta,b] < ∞ from which it follows that
P (Ta,b <∞) = 1 for all a < 0 < b.

Exercise 8.4. Let wx := Px
(
XTa,b = b

)
:= P

(
XTa,b = b|X0 = x

)
.

1. Use first step analysis to show for a < x < b that

wx =
1

2
(wx+1 + wx−1) (8.20)

provided we define wa = 0 and wb = 1.
2. Use the results of Exercises 8.2 and 8.3 to show

Px
(
XTa,b = b

)
= wx =

1

b− a
(x− a) . (8.21)

3. Let

Tb :=

{
min {n : Xn = b} if {Xn} hits b

∞ otherwise

be the first time {Xn} hits b. Explain why,
{
XTa,b = b

}
⊂ {Tb <∞} and

use this along with Eq. (8.21) to conclude that Px (Tb <∞) = 1 for all
x < b. (By symmetry this result holds true for all x ∈ Z.)

Exercise 8.5. The goal of this exercise is to give a second proof of the fact that
Px (Tb <∞) = 1. Here is the outline:

1. Let wx := Px (Tb <∞) . Again use first step analysis to show that wx
satisfies Eq. (8.20) for all x with wb = 1.

2. Use Exercises 8.2 and 8.3 to show that there is a constant, c, such that

wx = c (x− b) + 1 for all x ∈ Z.

3. Explain why c must be zero to again show that Px (Tb <∞) = 1 for all
x ∈ Z.

Exercise 8.6. Let T = Ta,b and ux := ExT := E [T |X0 = x] .

1. Use first step analysis to show for a < x < b that

ux =
1

2
(ux+1 + ux−1) + 1 (8.22)

with the convention that ua = 0 = ub.
2. Show that

ux = A0 +A1x− x2 (8.23)

solves Eq. (8.22) for any choice of constants A0 and A1.
3. Choose A0 and A1 so that ux satisfies the boundary conditions, ua = 0 = ub.

Use this to conclude that

ExTa,b = −ab+ (b+ a)x− x2 = −a (b− x) + bx− x2. (8.24)

Remark 8.20. Notice that Ta,b ↑ Tb = inf {n : Xn = b} as a ↓ −∞, and so
passing to the limit as a ↓ −∞ in Eq. (8.24) shows

ExTb =∞ for all x < b.

Combining the last couple of exercises together shows that {Xn} is “null -
recurrent.”

Exercise 8.7. Let T = Tb. The goal of this exercise is to give a second proof
of the fact and ux := ExT = ∞ for all x 6= b. Here is the outline. Let ux :=
ExT ∈ [0,∞] = [0,∞) ∪ {∞} .
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1. Note that ub = 0 and, by a first step analysis, that ux satisfies Eq. (8.22) for
all x 6= b – allowing for the possibility that some of the ux may be infinite.

2. Argue, using Eq. (8.22), that if ux <∞ for some x < b then uy <∞ for all
y < b. Similarly, if ux <∞ for some x > b then uy <∞ for all y > b.

3. If ux <∞ for all x > b then ux must be of the form in Eq. (8.23) for some A0

and A1 in R such that ub = 0. However, this would imply, ux = ExT → −∞
as x → ∞ which is impossible since ExT ≥ 0 for all x. Thus we must
conclude that ExT = ux = ∞ for all x > b. (A similar argument works if
we assume that ux <∞ for all x < b.)

Exercise 8.8 (Biased random walks I). Let p ∈ (1/2, 1) and consider the
biased random walk {Xn}n≥0 on the S = Z where Xn = ξ0 + ξ1 + · · · + ξn,

{ξi}∞i=1 are i.i.d. with P (ξi = 1) = p ∈ (0, 1) and P (ξi = −1) = q := 1 − p,
and ξ0 = x for some x ∈ Z. Let T = T{0} be the first hitting time of {0} and
u (x) := Px (T <∞) .

Example 8.21. a) Use the first step analysis to show

u (x) = pu (x+ 1) + qu (x− 1) for x 6= 0 and u (0) = 1. (8.25)

b) Use Eq. (8.25) along with Exercises 8.2 and 8.3 to show for some a± ∈ R
that

u (x) = (1− a+) + a+ (q/p)
x

for x ≥ 0 and (8.26)

u (x) = (1− a−) + a− (q/p)
x

for x ≤ 0. (8.27)

c) By considering the limit as x→ −∞ conclude that a− = 0 and u (x) = 1 for
all x < 0, i.e. Px (T0 <∞) = 1 for all x ≤ 0.

Exercise 8.9 (Biased random walks II). The goal of this exercise is to
evaluate Px (T0 <∞) for x ≥ 0. To do this let Bn := {0, n} and Tn := T{0,n}.
Let h (x) := Px (XTn = 0) where {XTn = 0} is the event of hitting 0 before n.

a) Use the first step analysis to show

h (x) = ph (x+ 1) + qh (x− 1) with h (0) = 1 and h (n) = 0.

b) Show the unique solution to this equation is given by

Px (XTn = 0) = h (x) =
(q/p)

x − (q/p)
n

1− (q/p)
n .

c) Argue that

Px (T <∞) = lim
n→∞

Px ({XTn = 0}) = (q/p)
x
< 1 for all x > 0.

Example 8.22 (Biased random walks II). Continue the notation in Exercise 8.8.
Let us start to compute ExT. Since Px (T =∞) > 0 for x > 0 we already know
that ExT = ∞ for all x > 0. Nevertheless we will deduce this fact again here.
Letting u (x) = ExT it follows by the first step analysis that, for x 6= 0,

u (x) = p [1 + u (x+ 1)] + q [1 + u (x− 1)]

= pu (x+ 1) + qu (x− 1) + 1 (8.28)

with u (0) = 0. Notice u (x) =∞ is a solution to this equation while if u (n) <∞
for some n 6= 0 then Eq. (8.28) implies that u (x) < ∞ for all x 6= 0 with the
same sign as n. A particular solution to this equation may be found by trying
u (x) = αx to learn,

αx = pα (x+ 1) + qα (x− 1) + 1 = αx+ α (p− q) + 1

which is valid for all x provided α = (q − p)−1
. The general finite solution to

Eq. (8.28) is therefore,

u (x) = (q − p)−1
x+ a+ b (q/p)

x
. (8.29)

Using the boundary condition, u (0) = 0 allows us to conclude that a + b = 0
and therefore,

u (x) = ua (x) = (q − p)−1
x+ a [1− (q/p)

x
] . (8.30)

Notice that ua (x)→ −∞ as x→ +∞ no matter how a is chosen and therefore
we must conclude that the desired solution to Eq. (8.28) is u (x) =∞ for x > 0
as we already mentioned. In the next exercise you will compute ExT for x < 0.

Exercise 8.10 (Biased random walks II). Continue the notation in Exam-
ple 8.22. Using the outline below, show

ExT =
|x|
p− q

for x ≤ 0. (8.31)

In the following outline n is a negative integer, Tn is the first hitting time of
n so that T{n,0} = Tn ∧ T = min {T, Tn} is the first hitting time of {n, 0} . By

Corollary 8.7 we know that u (x) := Ex
[
T{n,0}

]
< ∞ for all n ≤ x ≤ 0 and by

a first step analysis one sees that u (x) still satisfies Eq. (8.28) for n < x < 0
and has boundary conditions u (n) = 0 = u (0) .

a) From Eq. (8.30) we know that

Ex
[
T{n,0}

]
= ua (x) = (q − p)−1

x+ a [1− (q/p)
x
] .

Use u (n) = 0 in order to show
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a = an =
n

(1− (q/p)
n
) (p− q)

and therefore,

Ex
[
T{n,0}

]
=

1

p− q

[
|x|+ n

1− (q/p)
x

1− (q/p)
n

]
for n ≤ x ≤ 0.

b) Argue that ExT = limn→−∞ Ex [Tn ∧ T ] and use this and part a) to prove
Eq. (8.31).

8.5 Computations avoiding the first step analysis

You may (SHOULD) skip the rest of this
chapter!!

Theorem 8.23. Let n denote a non-negative integer. If h : B → R is measur-
able and either bounded or non-negative, then

Ex [h (Xn) : TB = n] =
(
Qn−1
A Q [1Bh]

)
(x)

and

Ex [h (XTB ) : TB <∞] =

( ∞∑
n=0

QnAQ [1Bh]

)
(x) . (8.32)

If g : A→ R+ is a measurable function, then for all x ∈ A and n ∈ N0,

Ex [g (Xn) 1n<TB ] = (QnAg) (x) .

In particular we have

Ex

[ ∑
n<TB

g (Xn)

]
=

∞∑
n=0

(QnAg) (x) =: u (x) , (8.33)

where by convention,
∑
n<TB

g (Xn) = 0 when TB = 0.

Proof. Let x ∈ A. In computing each of these quantities we will use;

{TB > n} = {Xi ∈ A for 0 ≤ i ≤ n} and

{TB = n} = {Xi ∈ A for 0 ≤ i ≤ n− 1} ∩ {Xn ∈ B} .

From the second identity above it follows that for

Ex [h (Xn) : TB = n] = Ex
[
h (Xn) : (X1, . . . , Xn−1) ∈ An−1, Xn ∈ B

]
=

∞∑
n=1

∫
An−1×B

n∏
j=1

Q (xj−1, dxj)h (xn)

=
(
Qn−1
A Q [1Bh]

)
(x)

and therefore

Ex [h (XTB ) : TB <∞] =

∞∑
n=1

Ex [h (Xn) : TB = n]

=

∞∑
n=1

Qn−1
A Q [1Bh] =

∞∑
n=0

QnAQ [1Bh] .

Similarly,

Ex [g (Xn) 1n<TB ] =

∫
An

Q (x, dx1)Q (x1, dx2) . . . Q (xn−1, dxn) g (xn)

= (QnAg) (x)

and therefore,

Ex

[ ∞∑
n=0

g (Xn) 1n<TB

]
=

∞∑
n=0

Ex [g (Xn) 1n<TB ]

=

∞∑
n=0

(QnAg) (x) .

In practice it is not so easy to sum the series in Eqs. (8.32) and (8.33). Thus
we would like to have another way to compute these quantities. Since

∑∞
n=0Q

n
A

is a geometric series, we expect that

∞∑
n=0

QnA = (I −QA)
−1

which is basically correct at least when (I −QA) is invertible. This suggests
that if u (x) = Ex [h (XTB ) : TB <∞] , then (see Eq. (8.32))

u = QAu+Q [1Bh] on A, (8.34)

and if u (x) = Ex
[∑

n<TB
g (Xn)

]
, then (see Eq. (8.33))

u = QAu+ g on A. (8.35)

That these equations are valid was the content of Corollaries ?? and 8.13 above.
below which we will prove using the “first step” analysis in the next theorem.
We will give another direct proof in Theorem 8.28 below as well.
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Lemma 8.24. Keeping the notation above we have

ExT =

∞∑
n=0

∑
y∈A

Qn (x, y) for all x ∈ A, (8.36)

where ExT =∞ is possible.

Proof. By definition of T we have for x ∈ A and n ∈ N0 that,

Px (T > n) = Px (X1, . . . , Xn ∈ A)

=
∑

x1,...,xn∈A
p (x, x1) p (x1, x2) . . . p (xn−1, xn)

=
∑
y∈A

Qn (x, y) . (8.37)

Therefore Eq. (8.36) now follows from Lemma 8.3 and Eq. (8.37).

Proposition 8.25. Let us continue the notation above and let us further as-
sume that A is a finite set and

Px (T <∞) = P (Xn ∈ B for some n) > 0 ∀ x ∈ A. (8.38)

Under these assumptions, ExT < ∞ for all x ∈ A and in particular
Px (T <∞) = 1 for all x ∈ A. In this case we may may write Eq. (8.36)
as

(ExT )x∈A = (I −Q)
−1

1 (8.39)

where 1 (x) = 1 for all x ∈ A.

Proof. Since {T > n} ↓ {T =∞} and Px (T =∞) < 1 for all x ∈ A it
follows that there exists an m ∈ N and 0 ≤ α < 1 such that Px (T > m) ≤ α
for all x ∈ A. Since Px (T > m) =

∑
y∈AQ

m (x, y) it follows that the row sums
of Qm are all less than α < 1. Further observe that∑

y∈A
Q2m (x, y) =

∑
y,z∈A

Qm (x, z)Qm (z, y) =
∑
z∈A

Qm (x, z)
∑
y∈A

Qm (z, y)

≤
∑
z∈A

Qm (x, z)α ≤ α2.

Similarly one may show that
∑
y∈AQ

km (x, y) ≤ αk for all k ∈ N. Therefore

from Eq. (8.37) with m replaced by km, we learn that Px (T > km) ≤ αk for
all k ∈ N which then implies that∑

y∈A
Qn (x, y) = Px (T > n) ≤ αb

n
k c for all n ∈ N,

where btc = m ∈ N0 if m ≤ t < m+ 1, i.e. btc is the nearest integer to t which
is smaller than t. Therefore, we have

ExT =
∞∑
n=0

∑
y∈A

Qn (x, y) ≤
∞∑
n=0

αb
n
mc ≤ m ·

∞∑
l=0

αl = m
1

1− α
<∞.

So it only remains to prove Eq. (8.39). From the above computations we see
that

∑∞
n=0Q

n is convergent. Moreover,

(I −Q)

∞∑
n=0

Qn =

∞∑
n=0

Qn −
∞∑
n=0

Qn+1 = I

and therefore (I −Q) is invertible and
∑∞
n=0Q

n = (I −Q)
−1
. Finally,

(I −Q)
−1

1 =

∞∑
n=0

Qn1 =

 ∞∑
n=0

∑
y∈A

Qn (x, y)


x∈A

= (ExT )x∈A

as claimed.

Remark 8.26. Let {Xn}∞n=0 denote the fair random walk on {0, 1, 2, . . . } with 0
being an absorbing state. Using the first homework problems, see Remark ??,
we learn that EiT = ∞ for all i > 0. This shows that we can not in general
drop the assumption that A (A = {1, 2, . . . } in this example) is a finite set the
statement of Proposition 8.25.

8.5.1 General facts about sub-probability kernels

Definition 8.27. Suppose (A,A) is a measurable space. A sub-probability
kernel on (A,A) is a function ρ : A ×A → [0, 1] such that ρ (·, C) is A/BR –
measurable for all C ∈ A and ρ (x, ·) : A → [0, 1] is a measure for all x ∈ A.

As with probability kernels we will identify ρ with the linear map, ρ : Ab →
Ab given by

(ρf) (x) = ρ (x, f) =

∫
A

f (y) ρ (x, dy) .

Of course we have in mind that A = SA and ρ = QA. In the following lemma
let ‖g‖∞ := supx∈A |g (x)| for all g ∈ Ab.

Theorem 8.28. Let ρ be a sub-probability kernel on a measurable space (A,A)
and define un (x) := (ρn1) (x) for all x ∈ A and n ∈ N0. Then;

1. un is a decreasing sequence so that u := limn→∞ un exists and is in Ab.
(When ρ = QA, un (x) = Px (TB > n) ↓ u (x) = P (TB =∞) as n→∞.)
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2. The function u satisfies ρu = u.
3. If w ∈ Ab and ρw = w then |w| ≤ ‖w‖∞ u. In particular the equation,
ρw = w, has a non-zero solution w ∈ Ab iff u 6= 0.

4. If u = 0 and g ∈ Ab, then there is at most one w ∈ Ab such that w = ρw+g.
5. Let

U :=

∞∑
n=0

un =

∞∑
n=0

ρn1 : A→ [0,∞] (8.40)

and suppose that U (x) <∞ for all x ∈ A. Then for each g ∈ Sb,

w =

∞∑
n=0

ρng (8.41)

is absolutely convergent,
|w| ≤ ‖g‖∞ U, (8.42)

ρ (x, |w|) < ∞ for all x ∈ A, and w solves w = ρw + g. Moreover if v also
solves v = ρv + g and |v| ≤ CU for some C <∞ then v = w.
Observe that when ρ = QA,

U (x) =

∞∑
n=0

Px (TB > n) =

∞∑
n=0

Ex (1TB>n) = Ex

( ∞∑
n=0

1TB>n

)
= Ex [TB ] .

6. If g : A→ [0,∞] is any measurable function then

w :=

∞∑
n=0

ρng : A→ [0,∞]

is a solution to w = ρw + g. (It may be that w ≡ ∞ though!) Moreover if
v : A → [0,∞] satisfies v = ρv + g then w ≤ v. Thus w is the minimal
non-negative solution to v = ρv + g.

7. If there exists α < 1 such that u ≤ α on A then u = 0. (When ρ = QA, this
states that Px (TB =∞) ≤ α for all x ∈ A implies Px (TA =∞) = 0 for all
x ∈ A.)

8. If there exists an α < 1 and an n ∈ N such that un = ρn1 ≤ α on A, then
there exists C <∞ such that

uk (x) =
(
ρk1
)

(x) ≤ Cβk for all x ∈ A and k ∈ N0

where β := α1/n < 1. In particular, U ≤ C (1− β)
−1

and u = 0 under this
assumption.
(When ρ = QA this assertion states; if Px (TB > n) ≤ α for all α ∈ A, then

Px (TB > k) ≤ Cβk and ExTB ≤ C (1− β)
−1

for all k ∈ N0.)

Proof. We will prove each item in turn.

1. First observe that u1 (x) = ρ (x,A) ≤ 1 = u0 (x) and therefore,

un+1 = ρn+11 = ρnu1 ≤ ρn1 = un.

We now let u := limn→∞ un so that u : A→ [0, 1] .
2. Using DCT we may let n→∞ in the identity, ρun = un+1 in order to show
ρu = u.

3. If w ∈ Ab with ρw = w, then

|w| = |ρnw| ≤ ρn |w| ≤ ‖w‖∞ ρn1 = ‖w‖∞ · un.

Letting n→∞ shows that |w| ≤ ‖w‖∞ u.
4. If wi ∈ Ab solves wi = ρwi + g for i = 1, 2 then w := w2 − w1 satisfies
w = ρw and therefore |w| ≤ Cu = 0.

5. Let U :=
∑∞
n=0 un =

∑∞
n=0 ρ

n1 : A → [0,∞] and suppose U (x) < ∞ for
all x ∈ A. Then un (x)→ 0 as n→∞ and so bounded solutions to ρu = u
are necessarily zero. Moreover we have, for all k ∈ N0, that

ρkU =

∞∑
n=0

ρkun =

∞∑
n=0

un+k =

∞∑
n=k

un ≤ U. (8.43)

Since the tails of convergent series tend to zero it follows that limk→∞ ρkU =
0.
Now if g ∈ Sb, we have

∞∑
n=0

|ρng| ≤
∞∑
n=0

ρn |g| ≤
∞∑
n=0

ρn ‖g‖∞ = ‖g‖∞ · U <∞ (8.44)

and therefore
∑∞
n=0 ρ

ng is absolutely convergent. Making use of Eqs. (8.43)
and (8.44) we see that

∞∑
n=1

ρ |ρng| ≤ ‖g‖∞ · ρU ≤ ‖g‖∞ U <∞

and therefore (using DCT),

w =

∞∑
n=0

ρng = g +

∞∑
n=1

ρng

= g + ρ

∞∑
n=1

ρn−1g = g + ρw,
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i.e. w solves w = g + ρw.
If v : A → R is measurable such that |v| ≤ CU and v = g + ρv, then
y := w − v solves y = ρy with |y| ≤ (C + ‖g‖∞)U. It follows that

|y| = |ρny| ≤ (C + ‖g‖∞) ρnU → 0 as n→∞,

i.e. 0 = y = w − v.
6. If g ≥ 0 we may always define w by Eq. (8.41) allowing for w (x) = ∞ for

some or even all x ∈ A. As in the proof of the previous item (with DCT
being replaced by MCT), it follows that w = ρw + g. If v ≥ 0 also solves
v = g + ρv, then

v = g + ρ (g + ρv) = g + ρg + ρ2v

and more generally by induction we have

v =

n∑
k=0

ρkg + ρn+1v ≥
n∑
k=0

ρkg.

Letting n→∞ in this last equation shows that v ≥ w.
7. If u ≤ α < 1 on A, then by item 3. with w = u we find that

u ≤ ‖u‖∞ · u ≤ αu

which clearly implies u = 0.
8. If un ≤ α < 1, then for any m ∈ N we have,

un+m = ρmun ≤ αρm1 = αum.

Taking m = kn in this inequality shows, u(k+1)n ≤ αukn. Thus a simple

induction argument shows ukn ≤ αk for all k ∈ N0. For general l ∈ N0 we
write l = kn+ r with 0 ≤ r < n. We then have,

ul = ukn+r ≤ ukn ≤ αk = α
l−r
n = Cαl/n

where C = α−
n−1
n .

Corollary 8.29. If h : B → [0,∞] is measurable, then u (x) :=
Ex [h (XTB ) : TB <∞] is the unique minimal non-negative solution to Eq.
(8.34) while if g : A → [0,∞] is measurable, then u (x) = Ex

[∑
n<TB

g (Xn)
]

is the unique minimal non-negative solution to Eq. (8.35).

Exercise 8.11. Keeping the notation of Exercise 8.8 and 8.10. Use Corollary
8.29 to show again that Px (TB <∞) = (q/p)

x
for all x > 0 and ExT0 =

x/ (q − p) for x < 0. You should do so without making use of the extraneous
hitting times, Tn for n 6= 0.

Solution to Exercise (8.11). From Eq. (8.25) of Exercise 8.8 we have seen
for x > 1 that

Px (T0 <∞) = a+ (1− a) (q/p)
x

for some a ∈ [0, 1] . Since

d

da
[a+ (1− a) (q/p)

x
] = 1− (q/p)

x
> 0,

the right side will be smallest when a = 0 and therefore we may (Corollary
8.29) conclude that

Px (T0 <∞) = (q/p)
x

for all x > 0.

Similarly from Eq. (8.30) of Exercise 8.10 we have seen that if ExT0 < ∞
for some and hence all x < 0 then

ExT0 = (q − p)−1
x+ a [1− (q/p)

x
]

for some a ≤ 0. Since the right side of this equation is minimized by taking
a = 0 we again have by Corollary 8.29 that

ExT0 = (q − p)−1
x for all x < 0.

Corollary 8.30. If Px (TB =∞) = 0 for all x ∈ A and h : B → R is a bounded
measurable function, then u (x) := Ex [h (XTB )] is the unique solution to Eq.
(8.34).

Corollary 8.31. Suppose now that A = Bc is a finite subset of S such that
Px (TB =∞) < 1 for all x ∈ A. Then there exists C < ∞ and β ∈ (0, 1) such
that Px (TB > n) ≤ Cβn and in particular ExTB <∞ for all x ∈ A.

Proof. Let α0 = maxx∈A Px (TB =∞) < 1. We know that

lim
n→∞

Px (TB > n) = Px (TB =∞) ≤ α0 for all x ∈ A.

Therefore if α ∈ (α0, 1) , using the fact that A is a finite set, there exists an
n sufficiently large such that Px (TB > n) ≤ α for all x ∈ A. The result now
follows from item 8. of Theorem 8.28.
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