Test #1 Review Material

Definition 30.1. If \(T(x) = Ax \) is a linear transformation from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) then

\[
\text{Nul}(T) = \{ \mathbf{x} \in \mathbb{R}^n : T(\mathbf{x}) = 0 \} = \text{Nul}(A)
\]

\[
\text{Ran}(T) = \{ Ax \in \mathbb{R}^m : \mathbf{x} \in \mathbb{R}^n \}
\]

\[
= \{ b \in \mathbb{R}^m : Ax = b \text{ has a solution} \}.
\]

We refer to \(\text{Nul}(T) \) as the null space of \(T \) and \(\text{Ran}(T) \) and the range of \(T \).
We further say:
1. \(T \) is one to one if \(T(x) = T(y) \) implies \(x = y \) or equivalently, for all \(b \in \mathbb{R}^m \) there is at most one solution to \(T(x) = b \).
2. \(T \) is onto if \(\text{Ran}(T) = \mathbb{R}^m \) or equivalently put for every \(b \in \mathbb{R}^m \) there is at least one solution to \(T(x) = b \).

30.1 Things you should know;

1. Linear systems like

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{align*}
\]

are equivalent to the matrix equation \(Ax = b \) where

\[
A = [a_1|\ldots|a_n] = \begin{bmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \ldots & a_{mn}
\end{bmatrix} = m \times n \text{ - coefficient matrix},
\]

\[
x = \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

and

\[
b = \begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{bmatrix}.
\]

2. \(Ax \) is a linear combination of the columns of \(A \)

\[
Ax = \sum_{i=1}^{n} x_ia_i.
\]

and \(T(x) := Ax \) defines a linear transformation from \(\mathbb{R}^n \to \mathbb{R}^m \), i.e. \(T \) preserves vector addition and scalar multiplication.

3. \(\text{span} \{a_1, \ldots, a_n\} = \{ b \in \mathbb{R}^m : Ax = b \text{ has a solution} \}
\]

\[
= \{ b \in \mathbb{R}^m : Ax = b \text{ is consistent} \}
\]

\[
= \text{Ran}(A) = \{ b = Ax : x \in \mathbb{R}^n \}.
\]

4. \(\text{Nul}(A) := \{ x \in \mathbb{R}^n : Ax = 0 \} = \{ \text{all solutions to the homogeneous equation:} \}
\]

\[
Ax = 0
\]

5. Theorem: If \(Ap = b \) then the general solution to \(Ax = b \) is of the form \(x = p + v_h \) where \(v_h \) is a generic solution to \(Av_h = 0 \), i.e. \(x = p + v_h \) with \(v_h \in \text{Nul}(A) \).

6. You should know the definition of linear independence (dependence), i.e. \(\Gamma := \{a_1, \ldots, a_n\} \subset \mathbb{R}^m \) are linearly independent iff the only solution to \(\sum_{i=1}^{n} x_ia_i = 0 \) is \(x = 0 \). Equivalently put,

\[
\Gamma := \{a_1, \ldots, a_n\} \subset \mathbb{R}^m \text{ are L.I.} \iff \text{Nul}(A) = \{0\}
\]

\(\iff Ax = 0 \) has only the trivial solution.

7. You should know to perform row reduction in order to put a matrix into its reduced row echelon form.

8. You should be able to write down the general solution to the equation \(Ax = b \) and find equation that \(b \) must satisfy so that \(Ax = b \) is consistent.

9. You should be able to find the eigenvalues of \(2 \times 2 \) matrices, i.e. those \(\lambda \) such that \(\text{Nul}(A - \lambda I) \neq 0 \).

10. Theorem: Let \(A \) be a \(m \times n \) matrix and \(U := \text{ref}(A) \). Then;
a) $Ax = b$ has a solution iff $\text{rref}(\begin{bmatrix} A & b \end{bmatrix})$ does not have a pivot in the last column.

b) $Ax = b$ has a solution for every $b \in \mathbb{R}^m$ iff $\text{span}\{a_1, \ldots, a_n\} = \text{Ran}(A) = \mathbb{R}^m$ iff $U := \text{rref}(A)$ has a pivot in every row, i.e. U does not contain a row of zeros.

c) If $m > n$ (i.e. there are more equations than unknowns), then $Ax = b$ will be inconsistent for some $b \in \mathbb{R}^m$. This is because there can be at most n - pivots and since $m > n$ there must be a row of zeros in $\text{rref}(A)$.

d) $Ax = b$ has at most one solution iff $\text{Nul}(A) = 0$ iff $Ax = 0$ has only the trivial solution iff $\{a_1, \ldots, a_n\}$ are linearly independent, iff $\text{rref}(A)$ has no free variables – i.e. there is a pivot in every column.

e) If $m < n$ (i.e. there are fewer equation than unknowns) then $Ax = 0$ will always have a non-trivial solution or equivalently put the columns of A are necessarily linearly dependent. This is because there can be at most m pivots and so at least one column does not have pivot and there is at least one free variable.
Test #2 Review Material

Things to know;

1. The notion of a vector space and the fact that \(\mathbb{R}^m \) and \(V (\mathbb{D}) = \) functions from \(\mathbb{D} \) to \(\mathbb{R} \) form a subspace.
2. How to determine if \(H \subset V \) is a subspace or not.
3. The notions of linear independence and span of vectors in a vector space.
4. The notions of a basis, dimension, and coordinates relative to a basis.
5. Be able to check if vectors in \(\mathbb{R}^m \) are a basis or not by putting the vectors in the columns of a matrix and row reducing. In particular you should know that \(n \) vectors in \(\mathbb{R}^m \) are always linearly dependent if \(n > m \) and that they do not span \(\mathbb{R}^m \) is \(n < m \).
6. Matrix operations. How to compute \(AB, A + B, ABC = (AB)C \) or \(A (BC) \). You should understand when these operations make sense.
7. The notion of a linear transformation, \(T : V \rightarrow W \).
 a) If \(V = \mathbb{R}^n \) and \(W = \mathbb{R}^m \) then \(T (x) = Ax \) where \(A = [T (e_1) | \ldots | T (e_n)] \).
 b) The derivative and integration operations are linear.
 c) Other examples of linear transformations from the homework, e.g. \(T : \mathcal{P}_2 \rightarrow \mathbb{R}^3 \) with
 \[
 T (p) := \begin{bmatrix}
 p (1) \\
 p (-1) \\
 p (2)
 \end{bmatrix}
 \]
 is linear.
8. \(\text{Nul} (T) = \{ v \in V : T (v) = 0 \} \) – all vectors in the domain which are sent to zero.
 a) \(T \) is one to one iff \(\text{Nul} (T) = \{ 0 \} \).
 b) be able to find a basis for \(\text{Nul} (A) \subset \mathbb{R}^n \) when \(A \) is a \(m \times n \) matrix.
9. \(\text{Ran} (T) = \{ T (v) \in W : v \in V \} \) – the range of \(T \). Equivalently, \(w \in \text{Ran} (T) \) iff there exists a solution, \(v \in V \), to \(T (v) = w \).
 a) Know how to find a basis for \(\text{col} (A) = \text{Ran} (A) \).
 b) Know how to find a basis for \(\text{row} (A) \).
 c) Know that \(\text{dim} \text{row} (A) = \text{dim col} (A) = \text{dim Ran} (A) = \text{rank} (A) \).
10. You should understand the rank-nullity theorem – see Theorem 14 on p. 265.
11. **Theorem.** If \(A \) is not a square matrix then \(A \) is not invertible!
12. **Theorem.** If \(A \) is a \(n \times n \) matrix then the following are equivalent:
 a) \(A \) is invertible.
 b) \(\text{col} (A) = \text{Ran} (A) = \mathbb{R}^n \iff \text{dim Ran} (A) = n = \text{dim row} (A) \)
 c) \(\text{row} (A) = \mathbb{R}^n \)
 d) \(\text{Nul} (A) = \{ 0 \} \iff \text{dim Nul} (A) = 0 \).
 e) \(\text{det} (A) \neq 0 \).
 f) \(\text{rref}(A) = I \).
13. Be able to find \(A^{-1} \) using \([A|I] \sim [A^{-1}|I]\) when \(A \) is invertible.
14. Now that \(Ax = b \) has solution given by \(x = A^{-1}b \) when \(A \) is invertible.
15. Understand how to compute determinants of matrices. You should also know the determinants behavior under row and column operations.
16. For an \(n \times n \) – matrix, \(A \), the following are equivalent:
 a) \(A^{-1} \) does not exist,
 b) \(\text{Nul} (A) \neq \{ 0 \} \),
 c) \(\text{Ran} (A) \neq \mathbb{R}^n \),
 d) \(\text{det} A = 0 \).
Things you should know:

1. You should understand the definition of **Eigenvalues** and **Eigenvectors** for linear transformations and especially for matrices. This includes being able to test if a vector is an eigenvector or not for a given linear transformation.

2. If $T : V \rightarrow V$ is a linear transformation and $\{v_1, \ldots, v_n\}$ are eigenvectors of T such that $T(v_i) = \lambda_i v_i$ with all the eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$ being distinct, then $\{v_1, \ldots, v_n\}$ is a linearly independent set.

3. The **characteristic polynomial** of a $n \times n$ matrix, A, is

 $$ p(\lambda) := \det (A - \lambda I). $$

 You should know:
 a) how to compute $p(\lambda)$ for a given matrix A using the standard methods of evaluating determinants.
 b) The roots $\{\lambda_1, \ldots, \lambda_n\}$ (with possible repetitions) are all of the eigenvalues of A.
 c) The matrix A is diagonalizable if all of the roots of $p(\lambda)$ is distinct, i.e. there will be n -distinct eigenvectors in this case. If there are repeated roots A may or may not be diagonalizable.

4. After finding an eigenvalue, λ_i, of A you should be able to find a basis of the corresponding eigenvectors to this eigenvalue, i.e. find a basis for Nul $(A - \lambda_i I)$.

5. An $n \times n$ matrix A is diagonalizable (i.e. may be written as $A = PDP^{-1}$ where D is a diagonal matrix and P is an invertible matrix) An $n \times n$ matrix A is diagonalizable iff A has a basis (B) of eigenvectors. Moreover if $B = \{v_1, \ldots, v_n\}$, with $Av_i = \lambda_i v_i$, and

 $$ P = [v_1 \ldots | v_n] \text{ and } D = \begin{bmatrix}
 \lambda_1 & 0 & \cdots & 0 \\
 0 & \lambda_2 & \cdots & 0 \\
 \vdots & \ddots & \ddots & \vdots \\
 0 & \cdots & 0 & \lambda_n
\end{bmatrix}, $$

 then $A = PDP^{-1}$.

6. If $A = PDP^{-1}$ as above then $A^k = PD^kP^{-1}$ where

 $$ D^k = \begin{bmatrix}
 \lambda_1^k & 0 & \cdots & 0 \\
 0 & \lambda_2^k & \cdots & 0 \\
 \vdots & \ddots & \ddots & \vdots \\
 0 & \cdots & 0 & \lambda_n^k
\end{bmatrix}. $$

7. The basic definition of the dot product on \mathbb{R}^n;

 $$ u \cdot v = \sum_{i=1}^{n} u_i v_i = u^T v = v^T u $$

 and its associated norm or length function, $\|u\| := \sqrt{u \cdot u}$ and know that the distance between u and v is

 $$ \text{dist} (u, v) := \|u - v\| = \sqrt{\sum_{i=1}^{n} |u_i - v_i|^2}.$$

8. The meaning of **orthogonal sets, orthonormal sets, orthogonal bases**, and **orthonormal bases**. Moreover you should know;
 a) If $B = \{u_1, \ldots, u_n\}$ is an orthogonal basis for a subspace, $W \subset \mathbb{R}^m$, then

 $$ \text{proj}_{\text{span}(B)} v = \sum_{i=1}^{n} \frac{v \cdot u_i}{\|u_i\|^2} u_i $$

 is the orthogonal projection of v onto W. The vector $\text{proj}_{\text{span}(B)} v$ is the unique vector in W closest to v and also is the unique vector $w \in W$ such that $v - w$ is perpendicular to W, i.e. $(v - w) \cdot w' = 0$ for all $w' \in W$.
 b) If $B = \{u_1, \ldots, u_n\}$ is an orthogonal basis for \mathbb{R}^n then

 $$ v = \sum_{i=1}^{n} \frac{v \cdot u_i}{\|u_i\|^2} u_i \text{ for all } v \in \mathbb{R}^n,$$

 i.e.
\[
[v]_B = \begin{bmatrix}
\frac{v \cdot u_1}{\|u_1\|^2} \\
\frac{v \cdot u_2}{\|u_2\|^2} \\
\vdots \\
\frac{v \cdot u_n}{\|u_n\|^2}
\end{bmatrix}
\]

c) If \(U = [u_1 \ldots u_n] \) is a \(n \times n \) matrix, then the following are equivalent:
 i. \(U \) is an orthogonal matrix, i.e. \(U^T U = I = UU^T \) or equivalently put \(U^{-1} = U^T \).
 ii. The columns \(\{u_1, \ldots, u_n\} \) of \(U \) form an orthonormal basis for \(\mathbb{R}^n \).

d) You should be able to carry out the Gram–Schmidt process in order to make an orthonormal basis for a subspace \(W \) out of an arbitrary basis for \(W \).

9. If \(A \) is a \(m \times n \) matrix you should know that \(A^T \) is the unique \(n \times m \) matrix such that
\[
A x \cdot y = x \cdot A^T y \quad \text{for all } x \in \mathbb{R}^n \text{ and } y \in \mathbb{R}^m.
\]

10. You should be able to find all least squares solutions to an inconsistent matrix equation, \(Ax = b \) (i.e. \(b \notin \text{Ran}(A) \)) by solving the \textbf{normal equations}, \(A^T Ax = A^T b \). Recall the Least squares theorem states that \(x \in \mathbb{R}^n \) is a minimizer of \(\|Ax - b\| \) iff \(x \) satisfies \(A^T Ax = A^T b \).

11. You should know and be able to show that if \(A \) is a symmetric matrix and \(u \) and \(v \) are eigenvectors of \(A \) with distinct eigenvalues, then \(u \cdot v = 0 \).

12. The \textbf{spectral theorem}; every symmetric \(n \times n \) matrix \(A \) has an orthonormal basis of eigenvectors. Equivalently put \(A \) may be written as \(A = UDU^T \) where \(U \) is an orthogonal matrix and \(D \) is a diagonal matrix. In particular every symmetric matrix may be diagonalized.

13. Given a symmetric matrix \(A \) you should be able to find \(U = [u_1 \ldots u_n] \) as described in the spectral theorem. The method is to find (using the Gram–Schmidt process if necessary) an orthonormal basis of eigenvectors \(\{u_1, \ldots, u_n\} \) of \(A \) and then we take \(U = [u_1 \ldots u_n] \).