Math 109. Instructor: Chow

Homework #2. Due in class on Wednesday, Jan 23, 2013.

Remarks after problems are for your information and not meant for you to prove in this homework assignment.

Problem 1: Prove (directly) the following:

a. If n is an integer, then there exists an integer m such that

$$(3n + 1)^2 = 3m + 1.$$

b. If a is an integer, then there exists an integer b such that

$$(3a + 2)^2 = 3b + 1.$$

The above are elementary facts in the spirit of modular arithmetic (Part V of the book).

Problem 2: Prove that for any real numbers a, b, c, d,

$$(ac + bd)^2 \leq (a^2 + b^2)(c^2 + d^2).$$

Hint: a backwards proof (as in section 3.2) may be the easiest.

Remark: Given vectors $[x, y]$ and $[u, v]$, define $[x, y] \cdot [u, v] = xu + yv$. Define $||x, y||^2 = [x, y] \cdot [x, y]$. The above says that $(||a, b|| \cdot ||c, d||)^2 \leq ||[a, b] \cdot [c, d]||^2$, or equivalently, $||a, b|| \cdot ||c, d|| \leq ||a, b|| \cdot ||c, d||$.

Problem 3: Prove by induction on n that, for all positive integers n,

$$1^2 + 3^2 + \cdots + (2n - 1)^2 = \frac{n(2n - 1)(2n + 1)}{3}.$$

Problem 4: Prove by induction on n that, for all positive integers n,

$$1^3 + 3^3 + \cdots + (2n - 1)^3 = n^2(2n^2 - 1).$$

Problem 5: Let u_1, u_2, u_3, \ldots denote the Fibonacci numbers, defined by $u_1 = 1, u_2 = 1$ and $u_{k+1} = u_{k-1} + u_k$ for $k \geq 2$. Prove by induction on n that, for all positive integers n,

u_{4n} is divisible by 3.

Problem 6: Let x be a real number greater than -1. Prove by induction that for each nonnegative integer n,

$$(1 + x)^n \geq 1 + nx.$$

1
Problem 7: A rational number is any real number which can be expressed as the quotient p/q of two integers, where q is not equal to zero. Prove by contradiction that there does not exist a smallest positive rational number.

Problem 8: Assume that we know that for any positive real numbers $x_1, x_2, \ldots, x_{100}$ that

$$\frac{x_1 + x_2 + \cdots + x_{100}}{100} \geq (x_1 \cdot x_2 \cdots \cdot x_{100})^{\frac{1}{100}}.$$

Prove that for any positive real numbers x_1, x_2, \ldots, x_{99} that

$$\frac{x_1 + x_2 + \cdots + x_{99}}{99} \geq (x_1 \cdot x_2 \cdots \cdot x_{99})^{\frac{1}{99}}.$$

Hint: One way to prove this is to use the following idea: given x_1, x_2, \ldots, x_{99}, define $x_{100} = (x_1 \cdot x_2 \cdots \cdot x_{99})^{\frac{1}{99}}$.

Remark: the above represents an idea in part of the proof of the arithmetic-geometric mean inequality.