Injections

Definition 9.1.1. We say that a function \(f : X \to Y \) is an injection if

\[
\text{If } x_1, x_2 \in X \text{ are such that } x_1 \neq x_2, \text{ then } f(x_1) \neq f(x_2).
\]

I.e., different inputs have different outputs. The (equivalent) contrapositive way to say this is:

\[
\text{If } x_1, x_2 \in X \text{ are such that } f(x_1) = f(x_2), \text{ then } x_1 = x_2.
\]

Exercise 9.4. Suppose that \(f : X \to Y \) and \(g : Y \to Z \) are injections. Prove that \(g \circ f : X \to Z \) is an injection.

Solution. Let \(x_1, x_2 \in X \) be such that \((g \circ f)(x_1) = (g \circ f)(x_2)\). Then \(g(f(x_1)) = g(f(x_2))\). Since \(g \) is an injection, this implies that \(f(x_1) = f(x_2)\). Now, since \(f \) is an injection, this implies \(x_1 = x_2 \). We have proved that \(g \circ f : X \to Z \) is an injection. \(\square \)

The following discussion about a ‘universal property’ of injections is more advanced. It is not necessary to understand this for Problem 19, but it is related.

‘Dual’ to Problem 19 on p. 118. Let \(f : X \to Y \) be a function. Prove that there exists a function \(g : Y \to X \) such that \(g \circ f = I_X \) if and only if \(f \) is an injection. (\(g \) is called a left inverse of \(f \).)

Solution. This statement is an ‘if and only if’ statement, i.e., a ‘\(\iff \)’ statement.

(Proof of \(\Rightarrow \)). Suppose there exists a function \(f : Y \to X \) such that \(g \circ f = I_X \). Suppose \(x_1, x_2 \in X \) are such that \(f(x_1) = f(x_2) \). Then \(g(f(x_1)) = g(f(x_2)) \) (just because \(g \) is a function). Since \(g \circ f = I_X \), this says that \(x_1 = x_2 \).

(Proof of \(\Leftarrow \)). Suppose \(f \) is an injection. We need to define \(g \). Let \(y \in Y \).

Case 1. \(y \in \text{Im } f \). Since \(f \) is an injection, there exists a unique \(x \in X \) such that \(f(x) = y \). Define \(g(y) = x \).

Details: (i) Existence. Such an \(x \) exists by the definition of \(y \in \text{Im } f \).
(ii) Uniqueness. Suppose \(x' \in X \) is also such that \(f(x') = y \). Then \(f(x') = f(x) \) (since \(f \) is an injection, \(x' = x \).

Case 2. \(y \notin \text{Im } f \). Choose any \(x \in X \) and define \(g(y) = x \).

Now that we have defined \(g \), we prove \(g \circ f = I_X \).

Let \(x \in X \). Then since \(f(x) \in \text{Im } f \), we have \(g(f(x)) = x \). This proves \(g \circ f = I_X \). \(\square \)