PRACTICE PROBLEMS FOR MATH 109 MIDTERM 2. You may work on these in addition to reviewing HW problems to help prepare for midterm 2.

1. Prove that if \(n \) is a perfect square, then \(n = 5q, n = 5q + 1, \) or \(n = 5q + 4 \) for some \(q \in \mathbb{Z} \).

HINT: See the proof of Proposition 15.2.1.

Ans. Suppose that \(n \) is a perfect square. Then there exists \(a \in \mathbb{Z} \) such that \(n = a^2 \). By the division theorem, there exists \(k \in \mathbb{Z} \) such that either:

- (a) \(a = 5k \), in which case \(n = 5(5k^2) \).
- (b) \(a = 5k + 1 \), in which case \(n = 5(5k^2 + 2k) + 1 \).
- (c) \(a = 5k + 2 \), in which case \(n = 5(5k^2 + 4k) + 4 \).
- (d) \(a = 5k + 3 \), in which case \(n = 5(5k^2 + 6k + 1) + 4 \).
- (e) \(a = 5k + 4 \), in which case \(n = 5(5k^2 + 8k + 3) + 1 \).

The result follows since the only remainders (after dividing by 5) are 0, 1, and 4.

2. Prove that if \(d = 6p + 2 \) for some \(p \in \mathbb{Z} \) or if \(d = 6q + 5 \) for some \(q \in \mathbb{Z} \), then \(d \) is not a perfect square.

Ans. Suppose that \(n \) is a perfect square. Then there exists \(a \in \mathbb{Z} \) such that \(n = a^2 \). By the division theorem, there exists \(k \in \mathbb{Z} \) such that either:

- (a) \(a = 6k \), in which case \(a^2 = 6(6k^2) \).
- (b) \(a = 6k + 1 \), in which case \(a^2 = 6(6k^2 + 2k) + 1 \).
- (c) \(a = 6k + 2 \), in which case \(a^2 = 6(6k^2 + 4k) + 4 \).
- (d) \(a = 6k + 3 \), in which case \(a^2 = 6(6k^2 + 6k + 1) + 3 \).
- (e) \(a = 6k + 4 \), in which case \(a^2 = 6(6k^2 + 8k + 2) + 4 \).
- (f) \(a = 6k + 5 \), in which case \(a^2 = 6(6k^2 + 10k + 4) + 1 \).

Hence the remainder of a perfect square modulo 6 is 0, 1, 3, or 4. Thus 2 and 5 cannot be remainders.

3. Let \(a \) be a positive integer and let \(p \) be a prime number. Prove that \(a^2 \) is divisible by \(p \) if and only if \(a \) is divisible by \(p \).

HINT: See Exercise 15.2. With this, you can also do Exercise 15.3.

Ans. This was done in class.

4. Let \(p \) be a prime number. Prove that \(\sqrt{p} \) is irrational.

HINT: Using the previous problem, the proof is the same as for proving that \(\sqrt{2} \) is irrational by contradiction.

Ans. Follow the hint.

5. Let \(a, q, r \in \mathbb{Z} \) and \(b \in \mathbb{Z}^+ \) be such that \(a = bq + r \). Prove that \(D(b, r) = D(a, b) \).

HINT: See Exercise 16.4.

Ans. Exercise 16.4 proves \(D(b, r) \subseteq D(a, b) \). But then the reverse containment follows from \(r = -bq + a \) by the same logic.

6. Let \(a, b \) and \(c \) be nonzero integers. Prove that if \(a \) and \(b \) are coprime and \(a \) divides \(bc \), then \(a \) divides \(c \).

HINT: See the proof of Theorem 17.3.2.

Ans. \(\exists m, n, ma + nb = 1, \) so \(cma + cnb = c \). Clearly \(a \mid cma \). Since \(a \mid bc, a \mid cnb \). So \(a \mid (cma + cnb), \) i.e., \(a \mid c \).
7. Let \(a, b\) and \(c\) be nonzero integers. Let \(g = \gcd(a, b)\). Prove that if \(a\) divides \(bc\), then \(\frac{a}{g}\) divides \(c\). HINT: Generalize the proof of the previous problem.

Ans. \(\exists m, n, ma+nb = g\), so \(cm\frac{a}{g} + n\frac{bc}{g} = c\). Clearly \(\frac{a}{g}\) divides \(cm\frac{a}{g}\). Since \(a|bc\), \(\frac{a}{g}\) divides \(n\frac{bc}{g}\). So \(\frac{a}{g}\) divides \(cm\frac{a}{g} + n\frac{bc}{g}\), i.e., \(\frac{a}{g}\) divides \(c\).

8. Find all integer solutions \((m, n)\) such that \(36m + 24n = 84\). In doing so, derive that this is the complete solution set (don’t just use a formula). HINT: See the proof of Proposition 18.4.1 and the solutions to Examples 18.3.1 and 18.4.2.

Ans. \(36m + 24n = 84 \iff 3m + 2n = 7\). One solution (by inspection) is \(m_0 = 1\) and \(n_0 = 2\). General solution is

\[
m = 1 + 2k, \quad n = 2 - 3k, \quad k \in \mathbb{Z}.
\]

9. Let \(m \in \mathbb{N}\). Prove: If \(a_1 \equiv a_2 \mod m\) and \(b_1 \equiv b_2 \mod m\), then

(a) \(a_1 + b_1 \equiv a_2 + b_2 \mod m\).

(b) \(a_1b_1 \equiv a_2b_2 \mod m\). HINT: See the proof of Proposition 19.1.3.

Ans. (b) was done in class.

10. Prove, using the definition of congruence and using properties of division, that \(15a \equiv 15b \mod 39\) if and only if \(a \equiv b \mod 13\). HINT: Apply Proposition 19.3.1.

Ans. \(15a \equiv 15b \mod 39 \iff a \equiv b \mod \frac{39}{\gcd(15,39)}\). Done, since \(\frac{39}{\gcd(15,39)} = 13\).

11. Find all solutions to the equation \(6x \equiv 21 \mod 15\). And, how many solutions are there modulo 15? HINT: See Example 19.3.4.

Ans. \(6x \equiv 21 \mod 15 \iff 2x \equiv 7 \mod 5 \iff 2x \equiv 12 \mod 5 \iff x \equiv 6 \mod 5\). Solution set \(= \{6 + 5k : k \in \mathbb{Z}\}\). 3 solutions modulo 15.

12. Let \(r_6 : \mathbb{Z} \to R_6\) be the remainder map. Prove that if \(a, b \in \mathbb{Z}\) satisfy \(r_6(a) = r_6(b)\), then \(r_6(a^2) = r_6(b^2)\). HINT: Use the equality \(a^2 - b^2 = (a + b)(a - b)\) and Proposition 19.2.4.

Ans. \(r_6(a) = r_6(b) \Rightarrow 6|a - b \Rightarrow 6|(a + b)(a - b) \Rightarrow 6|(a^2 - b^2) \Rightarrow r_6(a^2) = r_6(b^2)\).

13. Prove that if \(a \in \mathbb{Z}\), then there exists an integer \(c\) with \(0 \leq c < 6\) such that \(r_6(a) = r_6(c)\). HINT: Use the division theorem and Proposition 19.2.4.

Ans. Another hint: \(c\) is the remainder.

14. It is a fact that \(r_6(0^2) = 0\), \(r_6(1^2) = r_6(5^2) = 1\), \(r_6(2^2) = r_6(4^2) = 4\), \(r_6(3^2) = 3\). Using this, prove that if \(a \in \mathbb{Z}\), then \(r_6(a^2) \in \{0, 1, 3, 4\}\). REMARK: This is related to Problem 2 above.

Ans. The solution to Problem 2 yields the answer.

15. *In your own words, prove the following statement.* Two integers are congruent modulo 17 if and only if they have the same remainder after being divided by 17. HINT: This is a special case of Proposition 19.2.4.

Ans. \(a \equiv b \mod 17 \iff 17|(a - b) \iff 17|(r_{17}(a) - r_{17}(b)) \iff r_{17}(a) = r_{17}(b)\). The last \(\iff\) uses the fact that

\[-17 < r_{17}(a) - r_{17}(b) < 17,\]
which is true since $r_{17}(a) \geq 0$ and $r_{17}(b) < 17$ imply $r_{17}(a) - r_{17}(b) > -17$, whereas $r_{17}(a) < 17$ and $r_{17}(b) \geq 0$ imply $r_{17}(a) - r_{17}(b) < 17$. In particular, $17 \mid (r_{17}(a) - r_{17}(b)) \Rightarrow -1 < \frac{r_{17}(a) - r_{17}(b)}{17} < 1$ and $\frac{r_{17}(a) - r_{17}(b)}{17}$ is an integer. Hence $\frac{r_{17}(a) - r_{17}(b)}{17} = 0$.

16. Do all the homework problems for HW 5, HW 6, and HW 7.