
(a) Prove by induction on \(n \) that, for all integers \(n \geq 2 \),

\[
1^2 + 3^2 + \cdots + (2n - 3)^2 = \frac{(2n - 1)(2n - 2)(2n - 3)}{6}.
\]

Ans: Base case: \(n = 2 \):

\[
1^2 = 1 = \frac{3 \cdot 2 \cdot 1}{6} = \frac{(4 - 1)(4 - 2)(4 - 3)}{6}.
\]

Inductive step: Suppose

\[
1^2 + 3^2 + \cdots + (2n - 3)^2 = \frac{(2n - 1)(2n - 2)(2n - 3)}{6}
\]

for some \(n \geq 2 \). Then

\[
1^2 + 3^2 + \cdots + (2n - 3)^2 + (2(n + 1) - 3)^2
= \frac{(2n - 1)(2n - 2)(2n - 3)}{6} + (2n - 1)^2
= \frac{(2n - 1)}{6}((2n - 2)(2n - 3) + 6(2n - 1)).
\]

We compute

\[
(2n - 2)(2n - 3) + 6(2n - 1) = 4n^2 - 10n + 6 + 12n - 6
= 4n^2 + 2n
= .
\]

Hence

\[
1^2 + 3^2 + \cdots + (2n - 3)^2 + (2(n + 1) - 3)^2
= \frac{(2n - 1)2n(2n + 1)}{6}
= \frac{(2(n + 1) - 1)(2(n + 1) - 2)(2(n + 1) - 3)}{6}.
\]

By Mathematical Induction, we are done.

13. Quantifiers.

(a) Prove that for each negative real number \(x \) there exists a negative real number \(y \) such that \(xy - y > 100 \).

Ans: Let \(x < 0 \). The inequality is equivalent to

\[
y(x - 1) > 100
\]
Since \(x - 1 < 0 \), this is equivalent to
\[
y < \frac{100}{x - 1}.
\]
So define
\[
y = \frac{100}{x - 1} - 1
\]
to get
\[
y < \frac{100}{x - 1} \quad \text{and} \quad y < 0.
\]
(b) Prove that for each negative real number \(x \), there does not exist a real number \(y \) such that \(y^2 x > 101 \).

Ans: Let \(x < 0 \) and \(y \in \mathbb{R} \). Since \(x < 0 \) and \(y^2 \geq 0 \), we have \(y^2 x \leq 0 < 101 \). Hence \(y^2 x \not> 101 \).

14. Let \(X \) and \(Y \) be disjoint sets.

(a) Prove that: If \(C \subseteq Y \), then \(C \cap X = \emptyset \).

Ans: Since \(C \subseteq Y \) and \(Y \cap X = \emptyset \), we have \(C \cap X \subseteq Y \cap X = \emptyset \). Since the only subset of the empty set is the empty set, we conclude that \(C \cap X = \emptyset \).

(b) Prove that: If \(B \subseteq X \) and \(C \subseteq Y \), then \((B \cup C) \cap X = B \).

Ans: Using (a), we have
\[
(B \cup C) \cap X = (B \cap X) \cup (C \cap X) = (B \cap X) \cup \emptyset = B \cap X = B,
\]
with the last equality since \(B \subseteq X \).

(c) Define the map \(f : \mathcal{P}(X \cup Y) \to \mathcal{P}(X) \times \mathcal{P}(Y) \) by \(f(A) = (A \cap X, A \cap Y) \). Prove that \(f \) is surjective (i.e., onto).

Ans: Let \((B, C) \in \mathcal{P}(X) \times \mathcal{P}(Y) \). Then \(B \subseteq X \) and \(C \subseteq Y \). Hence \(B \cup C \subseteq X \cup Y \), i.e., \(B \cup C \in \mathcal{P}(X \cup Y) \). We have
\[
f(B \cup C) = ((B \cup C) \cap X, (B \cup C) \cap Y) = (B, C)
\]
by (b) and the analogous fact: If \(B \subseteq X \) and \(C \subseteq Y \), then \((B \cup C) \cap Y = C \). Hence \(f \) is surjective.

16. **Complete the following direct proof** (this is essentially a special case of the Division Theorem, so you are not allowed to use the Division Theorem).

Proposition. For any \(a \in \mathbb{Z}^+ \) there exist integers \(q \) and \(r \) such that
\[
a = 23q + r \quad \text{and} \quad 23 \leq r < 46.
\]

Proof. Define the set
\[
S = \{ a - 23\bar{q} \mid \bar{q} \in \mathbb{Z} \text{ and } a - 23\bar{q} \geq 23 \}.
\]
By the well-ordering principle, \(S \) contains a minimum (i.e., least) element.

Finish the proof in the space below.
Ans: The above facts at the beginning of the proof are assumed (you do not need to prove them). Let $a - 23q$ be the least element of S and define $r \div a - 23q$. Then

$$a = 23q + r.$$

Since $r \in S$, by the definition of S we have

$$r \geq 23.$$

Since r is the least element of S, $r - 23 = a - 23(q + 1) \notin S$, Hence, by the definition of S,

$$a - 23(q + 1) < 23.$$

This implies $a - 23q - 23 < 23$, so that $r = a - 23q < 46$. We are done.

18. Suppose $a, b, c \in \mathbb{Z}^+$ and $m, n \in \mathbb{Z}$ are such that $am + bn = 2$ and a is even.

(a) Prove that: If a divides bc, then $\frac{a}{2}$ divides c.

Ans: Multiply $am + bn = 2$ by c to get

$$acm + bcn = 2c.$$

Since a divides bc, we have a divides bcn. Of course, a divides acm. So a divides the sum $acm + bcn = 2c$. Since a divides $2c$, we conclude that $\frac{a}{2}$ divides c.

(b) Is the statement in part (a) still true if we assume that $am + bn = 4$ instead of $am + bn = 2$ (with the remaining hypotheses the same)?

If so, explain why. **If not,** give a counterexample.

Ans: Suppose $am + bn = 4$, a is even, and a divides bc. The argument no longer works, so we look for a counterexample. Let $a = 4$, $b = 4$, and $c = 1$. To get $am + bn = 4$ we choose $m = 2$ and $n = -1$. Clearly $a = 4$ divides $bc = 4$. But $\frac{a}{2} = 2$ does not divide $c = 1$.

3