Part IV. Chapter 17. Consequences of the Euclidean algorithm

An important consequence of the Euclidean algorithm is that the greatest common divisor of integers a and b can be written as an ‘integral linear combination’ of a and b, i.e., as a linear combination of a and b using integer coefficients.

Theorem 1 (Eccles 17.1.1) If $a, b \in \mathbb{Z}$, where at least one of them is nonzero, then there exist $m, n \in \mathbb{Z}$ such that

$$\gcd(a, b) = am + bn.$$

The idea of the proof is to apply the Euclidean algorithm to a and b to find their gcd. Then reversing the algorithm, we may express $\gcd(a, b)$ as an integral linear combination of a and b. We do not discuss the rigorous proof in this course.

Example. $a = 4199$ and $b = 1748$. Here, $\gcd(4199, 1748) = 19$ and we saw that

$$19 = 5 \cdot 4199 + (-12) \cdot 1748.$$

Definition 2 (Eccles 11.3.2) Integers a and b, not both zero, are **coprime** if $\gcd(a, b) = 1$.

An important consequence of Theorem 17.1.1 is:

Proposition 3 (Eccles 17.3.1) Nonzero integers a and b, are coprime if and only if 1 can be written as an integral linear combination of a and b.

In other words,

Equivalent Proposition Nonzero integers a and b satisfy $\gcd(a, b) = 1$ if and only if there exist $m, n \in \mathbb{Z}$ such that $1 = am + bn$.

Proof. (\Rightarrow) This is the statement:

If $\gcd(a, b) = 1$, then there exist $m, n \in \mathbb{Z}$ such that $1 = am + bn$.

This is a special case of Theorem 17.1.1.

(\Leftarrow) This is the statement:
If there exist $m, n \in \mathbb{Z}$ such that $1 = am + bn$, then $\gcd(a, b) = 1$.

Suppose there exist $m, n \in \mathbb{Z}$ such that $1 = am + bn$. Let c be any positive common divisor of a and b. Since c divides a and b, we have c divides $am + bn$. This and $am + bn = 1$ implies c divides 1. This and $c > 0$ implies $c = 1$. Since any positive common divisor of a and b equals 1, we conclude that $\gcd(a, b) = 1$. ■

Example. Euclidean algorithm applet:

http://people.math.sc.edu/sumner/numbertheory/euclidean/euclidean.html

gcd(17, 83) = 1 and

$$1 = (-39) \cdot 17 + 8 \cdot 83.$$

Theorem 4 (Eccles 17.3.2) Suppose $a, b, c \in \mathbb{Z}^+$ and a and b are coprime. If a divides bc, then a divides c.

Intuitively the statement says that if a goes completely into the product of b and c while a has nothing to do with b, then a must go completely into c.

On the other hand, if as above but a has something to do with b, such as $a = 6$ and $b = 15$ (here, a and b are not coprime). Then we can take for example $c = 14$ (an even number) and we get that

$$a = 6 \text{ divides } b \cdot c = 15 \cdot 14 = 210$$

but $a = 6$ does not divide $c = 14$. What happens is that part of 6 (namely 3) goes into $b = 15$ whereas the other part of 6 (namely 2) goes into $c = 14$.

Proof. The idea is to use a and b are coprime. By Proposition 17.3.1, there exist $m, n \in \mathbb{Z}$ such that

$$1 = am + bn.$$

The key is to link this to c. The idea is simply to multiply this equation by c to get

$$c = cam + cbn.$$

Now a clearly divides cam since $a \cdot cm = cam$. On the other hand, since a divides bc by hypothesis, we have that a divides cbn since $cbn = bc \cdot n$. Hence a divides the sum $cam + cbn$. Since $cam + cbn = c$, we conclude that a divides c. ■

This is an elegant and important proof.