Part IV. Chapter 15. The division theorem

We take the universal set to be the integers \mathbb{Z}. Let \mathbb{Z}^\geq denote the set of nonnegative integers.

When we divide 277 by 5 and obtain a remainder of 2, we really mean that

$$277 = 5 \cdot 55 + 2.$$

We chose the factor 55 because this is the unique integer that produces a remainder $r = 2$ with $0 \leq r < 5$.

In general, we may divide any integer a by any positive integer b to obtain a remainder r with $0 \leq r < b$. The division theorem says:

Theorem 1 (Eccles 15.1.1) Let a be an integer and let b be a positive integer. Then there are unique integers q and r such that

$$a = bq + r \quad \text{and} \quad 0 \leq r < b \quad (1)$$

Proof in the case where $a \geq 0$. Note that if $a = bq + r$, then $r = a - bq$.

Existence. Consider the set S of all nonnegative remainders, that is, the set

$$S = \{a - bq \mid q \in \mathbb{Z}\} \cap \mathbb{Z}^\geq.$$

(1) Since $0 \leq a = a - b \cdot 0$, we have $a \in S$, so that S is nonempty.

(2) Since $S \subseteq \mathbb{Z}^\geq$ and $S \neq \emptyset$, there exists a smallest element of S, which we call r. Since $r \in S$, there exists $q \in \mathbb{Z}$ such that

$$r = a - bq, \quad \text{i.e.,} \quad a = bq + r.$$

Since $r \in S \subseteq \mathbb{Z}^\geq$ implies $r \geq 0$, we just need to show that $r < b$.

Observe that $r - b$ can be written as

$$r - b = (a - bq) - b = a - b(q + 1)$$

and $q + 1 \in \mathbb{Z}$. On the other hand, since $r - b < r$ and since r is the smallest element of S, we must have $r - b \notin S$. By the definition of S, this implies $r - b < 0$, i.e., $r < b$.\(^1\) This completes the proof of the existence of q and r satisfying (1).

\(^1\)To wit, $r - b$ is a remainder smaller than r (the smallest nonnegative remainder), so it must be negative.
Uniqueness. Suppose that \(q, r \) and \(\tilde{q}, \tilde{r} \) are integers such that both

\[
a = bq + r \quad \text{and} \quad 0 \leq r < b
\]

and

\[
a = b\tilde{q} + \tilde{r} \quad \text{and} \quad 0 \leq \tilde{r} < b.
\]

Then \(bq + r = b\tilde{q} + \tilde{r} \) and hence

\[
\tilde{r} - r = b(q - \tilde{q}).
\]

Since \(-b < \tilde{r} - r < b \), we have

\[
-b < b(q - \tilde{q}) < b, \quad \text{i.e.,} \quad -1 < q - \tilde{q} < 1.
\]

Since \(q - \tilde{q} \) is an integer, we conclude that

\[
q - \tilde{q} = 0,
\]

which in turn by \(\tilde{r} - r = b(q - \tilde{q}) \) implies that

\[
\tilde{r} - r = 0.
\]

This completes the proof of both uniqueness and the division theorem. \(\square \)