Math 10B Section 9.2

Consider the infinite series

\[5 - 10 + 20 - 40 + 80 - . \]

Observe that there is a common ratio of a term divided by the previous term:

\[\frac{-2}{5} = \frac{-10}{20} = \frac{-40}{80} = \ldots. \]

So we call such an infinite series a geometric series. Because of this, we can rewrite the infinite series as:

\[5 + 5 (-2) + 5 (-2)^2 + 5 (-2)^3 + 5 (-2)^4 + \cdots \]

and by the distributive law, this is

\[5 \left(1 + (-2) + (-2)^2 + (-2)^3 + (-2)^4 + \cdots \right). \]

The general form of an infinite geometric series is

\[a + ax + ax^2 + ax^3 + \cdots = a \left(1 + x + x^2 + x^3 + \cdots \right). \]

In the example, \(a = 5 \) and \(x = -2. \)

Let \(n \) be a positive integer. We have the general formula for a finite geometric series (p. 500):

\[a + ax + ax^2 + \cdots + ax^{n-1} = \frac{a(1 - x^n)}{1 - x}. \]

If \(|x| < 1 \), then \(\lim_{n \to \infty} x^n = 0 \) and the sum limits to a number. We say that the series converges. Namely, the sum of the infinite geometric series is

\[a + ax + ax^2 + \cdots + ax^{n-1} + ax^n + \cdots = \frac{a}{1 - x}. \]

On the other hand, if \(|x| \geq 1 \), then the series does not converge. For example,

1. If \(x = 1 \), then we get

\[a + a + a + \cdots, \]

which keeps on getting larger in magnitude (the sum of the first \(n \) terms is \(na \)).

2. If \(x = -1 \), then we get

\[a - a + a - a + a - \cdots. \]

If \(n = 1, 3, 5, \ldots \) (odd), then the sum of the first \(n \) terms is \(a \). On the other hand, if \(n = 2, 4, 6, \ldots \) (even), then the sum of the first \(n \) terms is 0. So the finite sums oscillate between \(a \) and 0, and hence the infinite series does not converge.

3. When \(|x| > 1 \), the terms actually grow: \(ax^n \) gets larger and larger in magnitude. Hence the infinite series does not converge.
Example 1. Consider the infinite geometric series

\[5 + \frac{5}{-2} + \frac{5}{(-2)^2} + \frac{5}{(-2)^3} + \frac{5}{(-2)^4} + \cdots. \]

Here, \(a = 5 \) and \(x = -\frac{1}{2} \). So this series sums (converges) to

\[\frac{5}{1 - (-\frac{1}{2})} = \frac{5}{\frac{3}{2}} = \frac{10}{3}. \]

Example 2. On the other hand, the infinite series

\[5 + 5(-2) + 5(-2)^2 + 5(-2)^3 + 5(-2)^4 + \cdots \]

does not converge.

Example 3. For what values of \(z \) does the series

\[2 - 4z + 8z^2 - 16z^3 + \cdots \]

converge?

We rewrite the series as:

\[2 + 2(-2z) + 2(-2z)^2 + 2(-2z)^3 + \cdots. \]

So \(a = 2 \) and \(x = -2z \). The series converges when \(|x| < 1 \), that is, when \(1 > |-2z| = 2|z| \), that is, \(|z| < \frac{1}{2} \).

The series diverges when \(|x| \geq 1 \), that is, when \(1 \leq |-2z| = 2|z| \), that is, \(|z| \geq \frac{1}{2} \).