Homework assignment 5, due in class on Wednesday February 11

Page 44, #15.

(1) Let \(K_n = (0, \frac{1}{n}) \). Each \(K_n \) is bounded (but not closed). We have that the intersection of any finite subcollection of the collection \(\{K_n\}_{n=1}^{\infty} \) is nonempty. Indeed, \(K_{n_1} \cap \cdots \cap K_{n_k} = K_m \neq \emptyset \), where \(m = \min\{n_1, \ldots, n_k\} \). However, \(\bigcap_{n=1}^{\infty} K_n = \emptyset \). To prove this last statement, let \(x \in \bigcap_{n=1}^{\infty} K_n \). Then \(x \in (0,1) = K_1 \). By the archimedean property, there exists \(n_x \in \mathbb{N} \) such that \(\frac{1}{n_x} < x \). This implies \(x \notin K_{n_x} \), which is a contradiction. Therefore \(\bigcap_{n=1}^{\infty} K_n = \emptyset \).

(2) Let \(K_n = [n, \infty) \). Each \(K_n \) is closed (but not bounded). We have that the intersection of any finite subcollection of the collection \(\{K_n\}_{n=1}^{\infty} \) is nonempty. Indeed, \(K_{n_1} \cap \cdots \cap K_{n_k} = K_M \neq \emptyset \), where \(M = \max\{n_1, \ldots, n_k\} \). However, \(\bigcap_{n=1}^{\infty} K_n = \emptyset \). To prove this last statement, let \(x \in \bigcap_{n=1}^{\infty} K_n \). Since \(x \in \mathbb{R} \), by the archimedean property there exists \(n_x \in \mathbb{N} \) such that \(n_x > x \). This implies \(x \notin K_{n_x} \), which is a contradiction. Therefore \(\bigcap_{n=1}^{\infty} K_n = \emptyset \). \(\Box \)

Page 44, #19. Two subsets \(A \) and \(B \) of a metric space \(X \) are said to be separated if both \(A \cap \overline{B} \) and \(\overline{A} \cap B \) are empty.

(a) Let \(A \) and \(B \) be disjoint closed sets in \(X \). Then \(\overline{A} = A \) and \(\overline{B} = B \). Thus
\[
A \cap \overline{B} = A \cap B = \emptyset, \\
\overline{A} \cap B = A \cap B = \emptyset.
\]

Hence \(A \) and \(B \) are separated.

(b) Let \(A \) and \(B \) be disjoint open sets in \(X \). Then \(A \subset B^c \). Since \(B^c \) is closed, we have \(\overline{A} \subset B^c \) by Theorem 2.27(c). Similarly, one proves that \(\overline{B} \subset A^c \). We conclude that
\[
\overline{A} \cap B = \emptyset, \\
A \cap \overline{B} = \emptyset.
\]

Hence \(A \) and \(B \) are separated.

(c) We have \(A = \{ q \in X : d(q, p) < \delta \} = N_{\delta}(p) \) and \(B = \{ q \in X : d(q, p) > \delta \} \). Then \(A \) and \(B \) are disjoint open sets in \(X \). That \(B \) is open was proved in earlier notes. Hence we may apply (b) to conclude that \(A \) and \(B \) are separated.

(d) Choose \(p \in X \) and \(q \in X \) with \(p \neq q \). Then \(r = d(p, q) > 0 \). Let \(\delta \in (0, r) \) and define \(A \) and \(B \) as in part (c). Then \(A \) and \(B \) are separated. \(A \) and \(B \) are also nonempty since \(p \in A \) and \(q \in B \). Since \(X \) is connected, \(A \cup B \neq X \). Thus there exists \(x_\delta \in X \) with \(x_\delta \notin A \) and \(x_\delta \notin B \). This implies that \(d(x_\delta, p) = \delta \). We have proved that for each \(\delta \in (0, r) \) there exists \(x_\delta \in X \) with \(d(x_\delta, p) = \delta \). Moreover, since we choose only one point for each \(\delta \in (0, r) \), we have the property that if \(x_\delta = x_\delta' \), then \(\delta = \delta' \). This implies that since the set of real numbers \(\delta \in (0, r) \) is uncountable, the set of \(x_\delta \in X \) is uncountable. Hence \(X \) is uncountable. \(\Box \)

HW5.1. By following the proof of Theorem 2.40 in the book, prove that every closed interval \(I = [a, b] \subset \mathbb{R} \), where \(a < b \), is compact. In particular, you may start with the following (or you can start your own way):

Let \(\delta = |b - a| > 0 \). Suppose there exists an open cover \(\{G_\alpha\}_{\alpha \in A} \) of \(I \) which contains no finite subcover. Let \(c = \frac{a+b}{2} \), which is the midpoint of the \(I \). We have \(I = [a, c] \cup [c, b] \). Then, for \(I_1 = [a, c] \) or \(I_1 = [c, b] \), no finite subcollection of \(\{G_\alpha\}_{\alpha \in A} \) covers \(I_1 \). Write \(I_1 = [a_1, b_1] \), where \(|b_1 - a_1| = \frac{\delta}{2} \). Let \(c_1 = \frac{a_1 + b_1}{2} \). Then, for \(I_2 = [a_1, c_1] \) or \(I_2 = [c_1, b_1] \), no finite subcollection of \(\{G_\alpha\}_{\alpha \in A} \) covers \(I_2 = [a_2, b_2] \).

Since \(c_1 \) is the midpoint of \(I_1 \), we have \(|b_2 - a_2| = \frac{\delta}{2} \). Continuing in this way, we obtain a nested sequence of closed intervals \(\{I_n\}_{n=1}^{\infty} \), where \(I_n = [a_n, b_n] \) with \(|b_n - a_n| = 2^{-n} \delta \) and the following properties:

1. \(I \supset I_1 \supset I_2 \supset I_3 \supset \cdots \);
2. for each \(n \in \mathbb{N} \) we have that \(I_n \) is not covered by any finite subcollection of \(\{G_\alpha\}_{\alpha \in A} \).

Since each interval is compact, by Theorem 2.39 there exists \(x^* \in \bigcap_{n=1}^{\infty} I_n \). On the other hand, \(x^* \in G_\beta \) for some \(\beta \in A \). Since \(G_\beta \) is open, there exists \(r > 0 \) such that \((x^* - r, x^* + r) \subset G_\beta \). Now choose \(n \in \mathbb{N} \) so that \(2^{-n}\delta < r \) (this is equivalent to \(n > \frac{\ln \delta}{\ln 2} - \frac{\ln r}{\ln 2} \)). Since \(x^* \in I_n = [a_n, b_n] \) and since \(|b_n - a_n| = 2^{-n}\delta \), we
We conclude that \(I_n \subset G_\beta \). This contradicts property (2). We conclude that any open cover \(\{G_\alpha\}_{\alpha \in A} \) of \(I \) must contain a finite subcover. \(\square \)

HW5.2. Prove that if \(X \) is the disjoint union of two open sets, then \(X \) is not connected.

Hint. Read: http://www.math.ucsd.edu/~benchow/140A-connected.pdf

Let \(X = A \cup B \), where \(A \) and \(B \) are open and \(A \cap B = \emptyset \). Then \(A = \overline{B}^c \) and \(B = \overline{A}^c \), so that \(A \) and \(B \) are closed. Thus \(\emptyset \neq A \cap \overline{B} = \overline{B} \cap A = \overline{A} \cap B \), so that \(A \) and \(B \) are separated. We conclude that \(X \) is not connected. \(\square \)

HW5.3. Definition. We say that a subset \(K \subset X \) is **sequentially compact** if every sequence \(\{x_i\}_{i=1}^\infty \) of points in \(K \) has a subsequence that converges to a point \(x_\infty \) in \(K \).

Prove the following (see **Theorem 3.6(a)**, but write the proof in your own words):

If \(K \) is a compact set in a metric space \(X \), then \(K \) is sequentially compact.

Let \(\{x_i\}_{i=1}^\infty \) be a sequence of points in \(K \). Let \(E = \{x_i : i \in \mathbb{N}\} \) be the range of \(\{x_i\}_{i=1}^\infty \).

Case 1. \(E \) is finite. This implies there exists \(x_\infty \in E \) and \(i_1 < i_2 < \cdots < i_n \) such that \(x_{i_k} = x_\infty \) for \(k \in \mathbb{N} \). Clearly, \(x_{i_k} \to x_\infty \).

Case 2. \(E \) is infinite. Since \(K \) is compact, by Theorem 2.37 there exists a limit point \(x_\infty \in K \). Since \(x_\infty \) is a limit point of the set \(\{x_i : i \in \mathbb{N}\} \), we have the following. There exist \(i_1 \in \mathbb{N} \) such that \(x_{i_1} \in N_1(x) \).

Having chosen \(i_1, \ldots, i_{k-1} \), we can choose \(i_k > i_{k-1} \) such that \(x_{i_k} \in N_{i_k}(x) \). Because of this, \(x_{i_k} \to x_\infty \).

We have proved that every sequence \(\{x_i\}_{i=1}^\infty \) of points in \(K \) has a subsequence that converges to a point \(x_\infty \) in \(K \). \(\square \)

Remark: The proof uses **Theorem 2.37**. If \(E \) is an infinite subset of a compact set \(K \), then \(E \) has a limit point in \(K \).

HW5.4. Definition. A set \(T \subset X \) is **totally bounded** if for any \(\varepsilon > 0 \) there exists a finite number of points \(x_1, \ldots, x_k \) such that \(T \subset \bigcup_{i=1}^k N_\varepsilon(x_i) \).

Prove that: Every sequentially compact subset of a metric space is totally bounded.

Hint. See p. 27 (Lemma 11) of:

http://www.econ.brown.edu/fac/Mark_Dean/Maths_RA5_10.pdf

Let \(K \subset X \) be a sequentially compact subset. Suppose that \(K \) is not totally bounded. Then there exist \(\varepsilon > 0 \) such that there do NOT exist a finite number of points \(x_1, \ldots, x_k \) such that \(K \subset \bigcup_{i=1}^k N_\varepsilon(x_i) \). Let \(x_1 \in K \). Having chosen \(x_1, \ldots, x_{k-1} \), since \(K \not\subset \bigcup_{i=1}^{k-1} N_\varepsilon(x_i) \), there exists a point \(x_k \in K - \bigcup_{i=1}^{k-1} N_\varepsilon(x_i) \).

We have constructed an infinite sequence of distinct points \(\{x_i\}_{i=1}^\infty \) in \(K \) with this property. In particular, for each \(k, \ell \in \mathbb{N} \) with \(k > \ell \) we have \(d(x_k, x_\ell) \geq \varepsilon \). Indeed, this is true because \(x_k \in K - \bigcup_{i=1}^{k-1} N_\varepsilon(x_i) \) implies that \(x_k \notin N_\varepsilon(x_\ell) \) since \(\ell \leq k - 1 \). Any subsequence of \(\{x_k\}_{k=1}^\infty \) also has this property (\(d(x_k, x_j) \geq \varepsilon \) for all \(k < j \)), which implies that any subsequence is not Cauchy and hence does not converge (any convergent sequence is Cauchy by **Theorem 3.11(a)**). \(\square \)