Homework assignment 6, due Friday, 2/20.

p.78 #1. Prove that convergence of \(\{s_n\} \) implies convergence of \(\{|s_n|\} \). Is the converse true?

Hint: For the first part, use an exercise from Chapter 1.

p.78 #7. Prove that the convergence of \(\sum a_n \) implies the convergence of \(\sum \frac{\sqrt{a_n}}{n} \) if \(a_n \geq 0 \).

Hint: Observe that \(0 \leq \sqrt{AB} \leq A + B \) for \(A, B \geq 0 \).

HW6.1. (a) Let \(\{x_n\} \) be a sequence in \(\mathbb{R} \) satisfying \(x_{n+1} - x_n \geq \frac{1}{n} \). Prove that \(x_n \to +\infty \).

(b) Let \(\{y_n\} \) be a sequence in \(\mathbb{R} \) satisfying \(y_{n+1} - y_n \leq -\frac{1}{n \ln n} \) for \(n \geq 2 \). Prove that \(y_n \to -\infty \).

HW6.3. (a) Let \(b \in (0, 1) \) and \(N \in \mathbb{N} \). Compute \(\sum_{n=N}^{\infty} b^n \).

(b) Let \(\{x_n\} \) be a sequence in \(\mathbb{R} \) satisfying \(|x_{n+1} - x_n| \leq b^n \) for \(n \geq N \), where \(b \in (0, 1) \) and \(N \in \mathbb{N} \). Prove that \(\{x_n\} \) converges.

Hint: For \(m > n \) we have \(x_m - x_n = \sum_{k=n}^{m-1} (x_{k+1} - x_k) \). You may also use the following fact: Given \(b \in (0, 1) \) and \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that \(\frac{b^N}{1-b} < \varepsilon \).

HW6.4. Define \(a^+ = \max \{a, 0\} \) and \(a^- = -\min \{a, 0\} = \max \{-a, 0\} \). Note that \(a^+, a^- \geq 0 \) and \(a = a^+ - a^- \).

Let \(\sum_{n=1}^{\infty} a_n \) be a series satisfying

(1) \(a_n \geq -2^{-n} \) for all \(n \geq 1 \).

(2) There exists \(C \in \mathbb{R} \) such that \(\sum_{n=1}^{N} a_n \leq C \) for all \(N \in \mathbb{N} \).

(a) Prove that \(\sum_{n=1}^{\infty} a_n^- \) converges. *Hint:* use (1).

(b) Prove that \(\sum_{n=1}^{\infty} a_n^+ \) converges. *Hint:* \(a_n^+ = a_n + a_n^- \).

(c) Prove that \(\sum_{n=1}^{\infty} |a_n| \) converges (that is, \(\sum_{n=1}^{\infty} a_n \) converges absolutely).