#1. Suppose \(\alpha \) increases on \([a, b]\), \(a \leq x_0 \leq b\), \(\alpha \) is continuous at \(x_0\), \(f(x_0) = 1 \), and \(f(x) = 0 \) if \(x \neq x_0 \). Prove that \(f \in \mathcal{R}(\alpha) \) and that \(\int f \, d\alpha = 0 \).

Commentary. One can start the proof as follows. Let \(\varepsilon > 0 \). Since \(\alpha \) is continuous at \(x_0 \) there exists \(\delta > 0 \) such that

\[
\text{If } |t - x_0| \leq \delta, \text{ then } |\alpha(t) - \alpha(x_0)| < \frac{\varepsilon}{2}.
\] (1)

Choose a partition \(P = \{t_0 \leq t_1 \leq t_2 \leq t_3\} \) such that ...

Some things you may want to think about:

1. Certainly \(t_0 = a \) and \(t_3 = b \). What properties should \(t_1 \) and \(t_2 \) satisfy? Its length should be less than what? Where’s \(x_0 \)? What about when \(x_0 \) is \(a \) or \(b \)?

2. It’s easy to show that \(L(P, f, \alpha) = 0 \). Why?

3. Show that \(U(P, f, \alpha) < \varepsilon \).

4. Why are we now done?

#2. Suppose \(f \geq 0 \), \(f \) is continuous on \([a, b]\), and \(\int_a^b f(x) \, dx = 0 \). Prove that \(f(x) = 0 \) for all \(x \in [a, b] \). (Compare this with Exercise 1.)

Commentary. One can start the proof as follows. Suppose there exists \(x_0 \in [a, b] \) such that \(f(x_0) > 0 \). Since \(f \) is continuous, there exists \(\delta \in (0, \frac{b-a}{2}) \) such that if \(|t - x_0| \leq \delta \), then \(f(t) > \frac{1}{2} f(x_0) > 0 \). Choose a partition \(P = \{t_0 \leq t_1 \leq t_2 \leq t_3\} \) such that \(t_0 = a \), \(t_3 = b \), and \([t_1, t_2] = [a, b] \cap [x_0 - \delta, x_0 + \delta] \).

Some things you may want to think about:

1. Why is \(t_2 > t_1 \)?

2. What is \(L(P, f) \)?

3. Why do we have a contradiction?

#4. Define \(f : \mathbb{R} \to \mathbb{R} \) by

\[
f(x) = \begin{cases}
0 & \text{if } x \text{ is irrational}, \\
1 & \text{if } x \text{ is rational}.
\end{cases}
\]

Prove that \(f \notin \mathcal{R} \) on \([a, b]\) for any \(a < b \).

Commentary. Should be easy.

#5. Let \(f : [a, b] \to \mathbb{R} \) be a bounded function with \(f^2 \in \mathcal{R} \) on \([a, b]\), where \(a < b \).

(a) Does it follow that \(f \in \mathcal{R} \)?

(b) Does the answer change if we assume that \(f^3 \in \mathcal{R} \)?

Commentary. Cooke does a good job explaining this.
#7. Commentary. (a) One can start by: Let $c \in (0, 1]$. By Theorem 6.12(c) we have $f \in R$ on $[0, c]$ and
\[\int_0^1 f(x) \, dx - \int_c^1 f(x) \, dx = \int_0^c f(x) \, dx. \]
So it suffices to show that $\lim_{c \to 0} \int_0^c f(x) \, dx = 0$.

(b) One can start by (this is a bit general): Let $\{a_n\}$ be a strictly decreasing sequence with $a_1 = 1$ and $a_n \to 0$ as $n \to \infty$. Define $f : (0, 1] \to \mathbb{R}$ by $f(x) = (-1)^n \frac{1}{n(a_n-a_{n+1})}$ for $x \in (a_{n+1}, a_n)$. Then $\int_{a_{n+1}}^{a_n} f(x) \, dx = (-1)^n \frac{1}{n}$ and $\int_{a_{n+1}}^{a_n} |f(x)| \, dx = \frac{1}{n}$.

Remark: If we choose say $a_n = \frac{1}{n}$, then
\[\frac{1}{n(a_n-a_{n+1})} = \frac{1}{n\left(\frac{1}{n}-\frac{1}{n+1}\right)} = n + 1. \]
Compare with Cooke’s solution.

#8. Commentary. Loosely speaking, the infinite series can be both an upper sum and a lower sum for $\int_1^\infty f(x) \, dx$.
