Integration of Vector-Valued Functions

Theorem 6.25. If \(f : [a, b] \to \mathbb{R}^k \) and if \(f \in \mathcal{R}(\alpha) \), then \(|f| \in \mathcal{R}(\alpha) \) and

\[
\left| \int_a^b f \, d\alpha \right| \leq \int_a^b |f| \, d\alpha.
\]

Proof. By definition, since \(f = (f_1, \ldots, f_k) \in \mathcal{R}(\alpha) \), we have each \(f_i \in \mathcal{R}(\alpha) \). Hence \(f_i^2 \in \mathcal{R}(\alpha) \) (by Theorem 6.11), so that

\[
|f|^2 = \sum_{i=1}^k f_i^2 \in \mathcal{R}(\alpha).
\]

Since \(\sqrt{ \cdot } : [0, \infty) \to [0, \infty) \) is continuous and \(|f|^2 \in \mathcal{R}(\alpha) \), by Theorem 6.11, we have \(|f| = \sqrt{|f|^2} \in \mathcal{R}(\alpha) \).

Next, let \(y = \int_a^b f \, d\alpha \), that is, \(y = (y_1, \ldots, y_k) \), where \(y_i = \int_a^b f_i \, d\alpha \). We have

\[
\left| \int_a^b f \, d\alpha \right|^2 = y \cdot \int_a^b f \, d\alpha = \int_a^b y \cdot f \, d\alpha \leq \int_a^b |y||f| \, d\alpha = \left(\int_a^b f \, d\alpha \right) \left(\int_a^b |f| \, d\alpha \right),
\]

where we used the Schwarz inequality. If \(\left| \int_a^b f \, d\alpha \right| = 0 \), then we are done. Otherwise, we are also done since we get

\[
\left| \int_a^b f \, d\alpha \right| \leq \int_a^b |f| \, d\alpha. \quad \square
\]

Rectifiable Curves

Definition. A curve in \(\mathbb{R}^k \) is a continuous mapping \(\gamma : [a, b] \to \mathbb{R}^k \).

Given a partition \(P = \{x_0, \ldots, x_n\} \) of \([a, b]\), define

\[
\Lambda(P, \gamma) = \sum_{i=1}^n |\gamma(x_i) - \gamma(x_{i-1})|.
\]

Define the length of \(\gamma \) to be

\[
\Lambda(\gamma) = \sup_P \Lambda(P, \gamma).
\]

If the length of \(\gamma \) is finite, then we say that \(\gamma \) is rectifiable.

Theorem 6.27. If \(\gamma' \) is continuous on \([a, b]\), then \(\gamma \) is rectifiable and

\[
\Lambda(\gamma) = \int_a^b |\gamma'(t)| \, dt \equiv L(\gamma).
\]

Proof. \((\leq)\) Let \(P = \{x_0, \ldots, x_n\} \) be a partition of \([a, b]\). Since \(\gamma' \) is continuous, by Theorem 6.24 (i.e., Theorem 6.21 applied to each component), we have

\[
\gamma(x_i) - \gamma(x_{i-1}) = \int_{x_{i-1}}^{x_i} \gamma'(t) \, dt.
\]
So, by Theorem 6.25,

\[|\gamma(x_i) - \gamma(x_{i-1})| = \left| \int_{x_{i-1}}^{x_i} \gamma'(t) \, dt \right| \leq \int_{x_{i-1}}^{x_i} |\gamma'(t)| \, dt \]

This implies

\[\Lambda(P, \gamma) = \sum_{i=1}^{n} |\gamma(x_i) - \gamma(x_{i-1})| \leq \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} |\gamma'(t)| \, dt = \int_{a}^{b} |\gamma'(t)| \, dt = L(\gamma). \]

Since this is true for each partition \(P \), we have

\[\Lambda(\gamma) = \sup_{P} \Lambda(P, \gamma) \leq \int_{a}^{b} |\gamma'(t)| \, dt. \]

(≥) Let \(\varepsilon > 0 \). Since \(\gamma' \) is continuous on \([a, b]\) and \([a, b]\) is compact, \(\gamma' \) is uniformly continuous on \([a, b]\). So there exists \(\delta > 0 \) such that

\[|\gamma'(s) - \gamma'(t)| < \varepsilon \quad \text{if} \quad |s - t| \leq \delta. \]

Let \(P \) be a partition with \(\Delta x_i < \delta \) for all \(i \). If \(t \in [x_{i-1}, x_i] \), then

\[|\gamma'(x_i) - \gamma'(t)| < \varepsilon, \]

so that

\[|\gamma'(t)| \leq |\gamma'(x_i)| + \varepsilon. \]

Thus

\[\int_{x_{i-1}}^{x_i} |\gamma'(t)| \, dt \leq \int_{x_{i-1}}^{x_i} (|\gamma'(x_i)| + \varepsilon) \, dt = |\gamma'(x_i)| \Delta x_i + \varepsilon \Delta x_i. \]

On the other hand,

\[|\gamma'(x_i)| \Delta x_i = \left| \int_{x_{i-1}}^{x_i} (\gamma'(x_i) - \gamma'(t) + \gamma'(t)) \, dt \right| \]

\[\leq \left| \int_{x_{i-1}}^{x_i} (\gamma'(x_i) - \gamma'(t)) \, dt \right| + \left| \int_{x_{i-1}}^{x_i} \gamma'(t) \, dt \right| \]

\[\leq \int_{x_{i-1}}^{x_i} |\gamma'(x_i) - \gamma'(t)| \, dt + |\gamma(x_i) - \gamma(x_{i-1})| \]

\[\leq \varepsilon \Delta x_i + |\gamma(x_i) - \gamma(x_{i-1})|. \]

Combining the above two inequalities implies

\[\int_{x_{i-1}}^{x_i} |\gamma'(t)| \, dt \leq |\gamma(x_i) - \gamma(x_{i-1})| + 2\varepsilon \Delta x_i. \]

Then summing over \(i \) yields

\[\int_{a}^{b} |\gamma'(t)| \, dt \leq \sum_{i=1}^{n} |\gamma(x_i) - \gamma(x_{i-1})| + \sum_{i=1}^{n} 2\varepsilon \Delta x_i \]

\[= \Lambda(P, \gamma) + 2\varepsilon (b - a) \]

\[\leq \Lambda(\gamma) + 2\varepsilon (b - a). \]

Since \(\varepsilon > 0 \) is arbitrary, we conclude that

\[\Lambda(\gamma) \geq \int_{a}^{b} |\gamma'(t)| \, dt. \quad \square \]