Math 140B HW1, due Wednesday Apr 8 at the end of class

HW1-#1. (a) Prove the following fact. If \(\lim_{x\to0} h(x) = 0 \) and \(|k(x)| \leq 1 \), then
\[
\lim_{x\to0} h(x)k(x) = 0.
\]

(b) Prove that if \(\lim_{x\to0} h(x) = 0 \), then \(\lim_{x\to0} |h(x)| = 0 \).

Solution to #1. (a) Let \(\epsilon > 0 \). Since \(\lim_{x\to0} h(x) = 0 \) there exist \(\delta > 0 \) such that if \(0 < |x - 0| < \delta \), then \(|h(x) - 0| < \epsilon \). Hence, if \(0 < |x - 0| < \delta \), then using \(|k(x)| \leq 1 \) we obtain
\[
|h(x)k(x) - 0| = |h(x)| |k(x)| \leq |h(x)| < \epsilon
\]
This proves \(\lim_{x\to0} h(x)k(x) = 0 \). \(\square \)

(b) Define \(k(x) = \text{sign}(h(x)) \), which is 1, 0, -1 depending on whether \(h(x) \) is positive, zero, negative, respectively. Then \(|k(x)| \leq 1 \) and \(h(x)k(x) = |h(x)| \) so we may apply part (a). \(\square \)

Remark. This is a version of the squeeze theorem.

HW1-#2. Prove that if \(\lim_{x\to0} h(x) \) exists and is nonzero, then \(\lim_{x\to0} h(x) \cos \frac{1}{x} \) does not exist.

Solution to #2. Let \(L = \lim_{x\to0} h(x) \).

(1) Let \(a_n = \frac{1}{2\pi n} \), so that \(a_n \to 0 \). Since \(\cos(2\pi n) = 1 \), we have
\[
\lim_{n\to\infty} h(a_n) \cos \frac{1}{a_n} = \lim_{n\to\infty} h(a_n) = L.
\]

(2) Let \(b_n = \frac{1}{(2n+1)\pi} \), so that \(b_n \to 0 \). Since \(\cos((2n+1)\pi) = -1 \), we have
\[
\lim_{n\to\infty} h(b_n) \cos \frac{1}{b_n} = -\lim_{n\to\infty} h(b_n) = -L.
\]
Since \(L \neq 0 \), we conclude that \(\lim_{x\to0} h(x) \cos \frac{1}{x} \) does not exist. \(\square \)

Remark 1. One can choose other sequences such as \(c_n = \frac{1}{2\pi n + \frac{\pi}{2}} \). We just need two subsequential limits to be different.

Remark 2. The following statements are true (you may have used them implicitly in solving #2):

Lemma. Suppose \(L = \lim_{x\to a} f(x) \) exists. Then for any sequence \(\{a_n\} \) such that \(a_n \to a \) we have \(\lim_{n\to\infty} f(a_n) = L \).

Corollary. Suppose there exist \(a_n \to a \) and \(a'_n \to a \) such that \(\lim_{n\to\infty} f(a_n) \neq \lim_{n\to\infty} f(a'_n) \). Then \(\lim_{x\to a} f(x) \) does not exist.

HW1-#3. (Compare with #1 on p. 114.) Let \(f \) be defined for all real \(x \), and suppose that
\[
|f(x) - f(y)| \leq |x - y|^{1+\alpha}
\]
for all real \(x \) and \(y \), where \(\alpha > 0 \). Prove that \(f \) is constant.

Solution to #3. We have
\[
\left| \frac{f(x) - f(y)}{x - y} \right| = \frac{|f(x) - f(y)|}{|x - y|} \leq |x - y|^\alpha
\]
for \(x \neq y \). Since \(\lim_{x \to y} |x - y|^\alpha = 0 \) (from \(\alpha > 0 \)), by the squeeze theorem we conclude that

\[
f'(y) = \lim_{x \to y} \frac{f(x) - f(y)}{x - y} = 0.
\]

Since this true for all \(y \in \mathbb{R} \), we conclude from Theorem 5.11(b) that \(f \) is constant. \(\square \)

Remark. To prove that \(\lim_{x \to y} |x - y|^\alpha = 0 \), just observe the following. Given \(\epsilon > 0 \), let \(\delta = \epsilon^{1/\alpha} \). If \(|x - y| < \delta \), then \(|x - y|^\alpha - 0 = |x - y|^\alpha < \delta^\alpha = \epsilon \).

HW1-#4. (a) Let \(g : \mathbb{R} \to \mathbb{R} \) be a differentiable function satisfying \(g'(x) > 0 \) for all \(x \neq 0 \). Prove that \(g \) is one-to-one.

(b) (Compare with #3 on p. 114.) Let \(f : \mathbb{R} \to \mathbb{R} \) be a differentiable function satisfying \(|f'(x)| \leq Mx^2 \), where \(M \) is a positive constant. Prove for \(\epsilon \in \mathbb{R} \) sufficiently small (how small depends on \(M \)) that the function

\[
f_\epsilon(x) = x^3 + \epsilon f(x)
\]

is one-to-one.

Solution to #4. (a) The proof is similar to that for Theorem 5.11(a), except we have \(> \) (except at 0) instead of \(\geq \). Let \(x_1, x_2 \in \mathbb{R} \) with \(x_1 < x_2 \). By Theorem 5.10, there exists \(c \in (x_1, x_2) \) such that

\[
g(x_2) - g(x_1) = (x_2 - x_1) g'(c).
\]

Case 1. \(0 \notin (x_1, x_2) \). Then \(g'(c) > 0 \), which implies \(g(x_2) - g(x_1) > 0 \).

Case 2. \(0 \in (x_1, x_2) \). We apply Theorem 5.10 on the intervals \([x_1, 0]\) and \([0, x_2]\) to conclude that:

(i) there exists \(c_1 \in (x_1, 0) \) such that

\[
g(0) - g(x_1) = (0 - x_1) g'(c_1) > 0.
\]

(ii) there exists \(c_2 \in (0, x_2) \) such that

\[
g(x_2) - g(0) = (x_2 - 0) g'(c_2) = 0.
\]

Thus \(g(x_2) - g(x_1) = g(x_2) - g(0) + g(0) - g(x_1) > 0 \).

Hence, not only is \(g \) one-to-one, it is strictly increasing. \(\square \)

(b) Since

\[
f_\epsilon'(x) = 3x^2 + \epsilon f'(x)
\]

and \(|f'(x)| \leq Mx^2 \) (for all \(x \) and where \(M > 0 \)), we have

\[
f_\epsilon'(x) \geq 3x^2 - \epsilon Mx^2.
\]

Choose \(\epsilon \in (0, \frac{3}{M}) \). Then \(f_\epsilon'(x) \geq ax^2 \), where \(a = 3 - \epsilon M > 0 \). So \(f_\epsilon'(x) > 0 \) for \(x \neq 0 \). We may now apply part (a) to conclude that \(f_\epsilon \) is one-to-one. \(\square \)

HW1-#5. (#7 on p. 114.) Let \(f : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \). Let \(x \in \mathbb{R} \). Suppose \(f'(x) \), \(g'(x) \) exist, \(g'(x) \neq 0 \), and \(f(x) = g(x) = 0 \). Prove that

\[
\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.
\]
Solution to #5. First of all, we can’t simply say that by l’Hospital’s rule:
\[
\lim_{t \to x} \frac{f(t)}{g(t)} = \lim_{t \to x} \frac{f'(t)}{g'(t)} = \frac{f'(x)}{g'(x)}
\]
because we don’t know that \(f'\) and \(g'\) are continuous at \(x\).

Since \(f(x) = g(x) = 0\) (justifying the first equality below), we have
\[
\lim_{t \to x} \frac{f(t)}{g(t)} = \lim_{t \to x} \frac{f(t) - f(x)}{g(t) - g(x)} = \frac{\lim_{t \to x} \frac{f(t) - f(x)}{t - x}}{\lim_{t \to x} \frac{g(t) - g(x)}{t - x}} = \frac{f'(x)}{g'(x)}
\]
where the second equality is a limit law (true since both top and bottom limits exist) and the third equality is by definition of derivative and since it is defined by \(g'(x) \neq 0\). □

HW1-#6. (Part of #8 on pp. 114–115.) Suppose \(f'\) is continuous on \([a, b]\) and \(\varepsilon > 0\). Prove that there exists \(\delta > 0\) such that
\[
\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \varepsilon
\]
whenever \(0 < |t - x| < \delta, a \leq x \leq b, a \leq t \leq b\).

Solution to #6. Let \(\varepsilon > 0\). Since \(f'\) is continuous on \([a, b]\) and since \([a, b]\) is compact, by Theorem 4.19 \(f'\) is uniformly continuous. Then there exists \(\delta > 0\) such that
\[
|f'(y) - f'(x)| < \varepsilon \quad \text{whenever} \quad |y - x| < \delta.
\]
Let \(a \leq x, t \leq b\). Then there exists \(c\) between \(x\) and \(t\) such that
\[
\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| = |f'(c) - f'(x)|.
\]
Hence, if \(0 < |t - x| < \delta\), then \(|c - x| < \delta\), which implies \(|f'(c) - f'(x)| < \varepsilon\). □