Math 140B HW1, due Wednesday Apr 8 at the end of class

HW1-#1. (a) Prove the following fact. If \(\lim_{x \to 0} h(x) = 0 \) and \(|k(x)| \leq 1 \), then \(\lim_{x \to 0} h(x) k(x) = 0 \).

(b) Prove that if \(\lim_{x \to 0} h(x) = 0 \), then \(\lim_{x \to 0} |h(x)| = 0 \).

HW1-#2. Prove that if \(\lim_{x \to 0} h(x) \) exists and is nonzero, then \(\lim_{x \to 0} h(x) \cos \frac{1}{x} \) does not exist.

HW1-#3. (Compare with #1 on p. 114.) Let \(f \) be defined for all real \(x \), and suppose that

\[
|f(x) - f(y)| \leq |x - y|^{1+\alpha}
\]

for all real \(x \) and \(y \), where \(\alpha > 0 \). Prove that \(f \) is constant.

HW1-#4. (a) Let \(g : \mathbb{R} \to \mathbb{R} \) be a differentiable function satisfying \(g'(x) > 0 \) for all \(x \neq 0 \). Prove that \(g \) is one-to-one.

(b) (Compare with #3 on p. 114.) Let \(f : \mathbb{R} \to \mathbb{R} \) be a differentiable function satisfying \(|f'(x)| \leq Mx^2 \), where \(M \) is a positive constant. Prove for \(\varepsilon \in \mathbb{R} \) sufficiently small (how small depends on \(M \)) that the function

\[
f_\varepsilon(x) = x^3 + \varepsilon f(x)
\]

is one-to-one.

HW1-#5. (#7 on p. 114.) Let \(f : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \). Let \(x \in \mathbb{R} \). Suppose \(f'(x) \), \(g'(x) \) exist, \(g'(x) \neq 0 \), and \(f(x) = g(x) = 0 \). Prove that

\[
\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.
\]

HW1-#6. (Part of #8 on pp. 114–115.) Suppose \(f' \) is continuous on \([a, b]\) and \(\varepsilon > 0 \). Prove that there exists \(\delta > 0 \) such that

\[
\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \varepsilon
\]

whenever \(0 < |t - x| < \delta \), \(a \leq x \leq b \), \(a \leq t \leq b \).