Section 3.5. ε-δ criterion for convergence

These are notes for the ε-δ definitions of continuity and uniform continuity. We prove that they are equivalent to the previous 'sequential limit' definitions of continuity and uniform continuity: Theorems 3.20 and 3.22 in §3.5.

Continuity

§3.1 Definition (A). $f : D \to \mathbb{R}$ is continuous at $x_0 \in D$ if for any sequence $\{x_n\}$ in D with $x_n \to x_0$, we have $f(x_n) \to f(x_0)$.

§3.5 Definition (B). $f : D \to \mathbb{R}$ is continuous at $x_0 \in D$ if for any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$x \in D \text{ and } |x-x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Theorem 3.20. These two definitions (A) and (B) of continuity are equivalent.

Proof. ((A) \Rightarrow (B), via the contrapositive) Suppose f does not satisfy (B). Then there exists $\varepsilon > 0$ such that for each $n \in \mathbb{N}$ there exists $x_n \in D$ with $|x_n-x_0| < \frac{1}{n}$ and $|f(x_n) - f(x_0)| \geq \varepsilon$. Then $x_n \to x_0$, whereas $f(x_n) \not\to f(x_0)$. Hence f does not satisfy (A).

((B) \Rightarrow (A)). Suppose f satisfies (B). Let $\{x_n\}$ in D, with $x_n \to x_0$. Let $\varepsilon > 0$. By (B), there exists $\delta > 0$ such that

$$x \in D \text{ and } |x-x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Since $x_n \to x_0$, there exists $N \in \mathbb{N}$ such that $|x_n-x_0| < \delta$ for all $n \geq N$. Hence $n \geq N$ implies $|f(x_n) - f(x_0)| < \varepsilon$. Thus $f(x_n) \to f(x_0)$. This proves that f satisfies (A). □
Uniform Continuity

§3.4 Definition (C). \(f : D \to \mathbb{R} \) is uniformly continuous if for any sequences \(\{u_n\} \) and \(\{v_n\} \) in \(D \) with \(u_n - v_n \to 0 \), we have \(f(u_n) - f(v_n) \to 0 \).

§3.5 Definition (D). \(f : D \to \mathbb{R} \) is uniformly continuous if for any \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that

\[
 u, v \in D \text{ and } |u - v| < \delta \quad \text{implies} \quad |f(u) - f(v)| < \varepsilon .
\]

Theorem 3.22. These two definitions (C) and (D) of uniform continuity are equivalent.

Proof. ((C) \(\Rightarrow \) (D), via the contrapositive) Suppose \(f \) does not satisfy (D). Then there exists \(\varepsilon > 0 \) such that for each \(n \in \mathbb{N} \) there exists \(u_n, v_n \in D \) with \(|u_n - v_n| < \frac{1}{n} \) and \(|f(u_n) - f(v_n)| \geq \varepsilon \). Then \(u_n - v_n \to 0 \), whereas \(f(u_n) - f(v_n) \not\to 0 \). Hence \(f \) does not satisfy (C).

((D) \(\Rightarrow \) (C)). Suppose \(f \) satisfies (D). Let \(\{u_n\} \) and \(\{v_n\} \) in \(D \) with \(u_n - v_n \to 0 \). Let \(\varepsilon > 0 \). By (D), there exists \(\delta > 0 \) such that

\[
 u, v \in D \text{ and } |u - v| < \delta \quad \text{implies} \quad |f(u) - f(v)| < \varepsilon .
\]

Since \(u_n - v_n \to 0 \), there exists \(N \in \mathbb{N} \) such that \(|u_n - v_n| < \delta \) for all \(n \geq N \). Hence \(n \geq N \) implies \(|f(u_n) - f(v_n)| < \varepsilon \). Thus \(f(u_n) - f(v_n) \to 0 \). This proves that \(f \) satisfies (C). \(\Box \)
Example. Show directly that the squaring function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ satisfies the ε-δ definition of continuity.

Solution. The nonlinearity of the function complicates things a bit, requiring a backward proof as the most motivated.

Let $x_0 \in \mathbb{R}$. We shall show that f is continuous at x_0. Let $\varepsilon > 0$. The inequality

$$\varepsilon > |f(x) - f(x_0)| = |x^2 - x_0^2|$$

is equivalent to

$$\varepsilon > |x - x_0||x + x_0|.$$

Let $\delta > 0$ (we need find δ that works for the given ε) and suppose $|x - x_0| < \delta$. Since

$$|x + x_0| = |x - x_0 + 2x_0| \leq |x - x_0| + 2|x_0| < \delta + 2|x_0|,$$

we have

$$|x - x_0||x + x_0| < \delta (\delta + 2|x_0|).$$

Claim. Given $\varepsilon > 0$ there exists $\delta > 0$ such that $\delta (\delta + 2|x_0|) \leq \varepsilon$.

Let $\delta > 0$ be as in the claim. If $|x - x_0| < \delta$, then $|x - x_0||x + x_0| < \delta (\delta + 2|x_0|) \leq \varepsilon$, that is,

$$|f(x) - f(x_0)| < \varepsilon.$$

Proof of the claim.

Case 1. If $x_0 = 0$, then choose $\delta = \sqrt{\varepsilon}$. If $|x - x_0| = |x| < \delta$, then

$$|f(x) - f(x_0)| = |x - x_0||x + x_0| = x^2 < \delta^2 = \varepsilon.$$

Case 2. If $x_0 \neq 0$, then choose $\delta = \min\{|x_0|, \frac{\varepsilon}{3|x_0|}\}$. Then $\delta (\delta + 2|x_0|) \leq \frac{\varepsilon}{3|x_0|} (|x_0| + 2|x_0|) = \varepsilon$. Hence

$$|f(x) - f(x_0)| = |x - x_0||x + x_0| < \delta (\delta + 2|x_0|) = \varepsilon.$$