Math 31BH HW2, due Friday January 22 at the beginning of class

HW2, #1.
(1) What is the closure of \(B_r(\vec{x}) \subset \mathbb{R}^n \)?
(2) What is the closure of \(X = \{ (x,0) \mid x > 0 \} \subset \mathbb{R}^2 \)?
(3) What is the interior of \(Y = \{ (x,y) \mid x \text{ and } y \text{ are rational numbers} \} \)?

HW2, #2. Let \(A \subset \mathbb{R}^n \) and let \(\overline{A} \) denote the closure of \(A \). Let \(x \in \mathbb{R}^n \) and \(r > 0 \). Prove that if \(B_r(x) \cap A = \emptyset \), then \(B_r(x) \cap \overline{A} = \emptyset \).

HW2, #3. Prove that if \(A \subset \mathbb{R}^n \) is closed, then \(\overline{A} = A \).

HW2, #4. Using #3, show that if \(A \subset \mathbb{R}^n \) is a closed set and \(\vec{x}_m \) is a sequence of points in \(A \) such that \(\vec{x}_m \to \vec{x}_0 \) for some \(\vec{x}_0 \in \mathbb{R}^n \), then \(\vec{x}_0 \in A \).

HW2, #5. Suppose that \(A \subset \mathbb{R}^n \) has the property that for any sequence \(\vec{x}_m \) of points in \(A \) with \(\vec{x}_m \to \vec{x}_0 \) for some \(\vec{x}_0 \in \mathbb{R}^n \), \(\vec{x}_0 \in A \). Prove by contradiction that if \(\vec{x} \in A^c \), then there exists \(r > 0 \) such that \(B_r(\vec{x}) \subset A^c \).

HW2, #6. Let \(X \subset \mathbb{R}^n \) and let \(f : X \to \mathbb{R}^m \). Suppose that \(f \) is not continuous at \(\vec{x}_0 \in X \). Prove that there exists a sequence \(\vec{x}_m \in X \) with \(\vec{x}_m \to \vec{x}_0 \) such that \(\lim_{m \to \infty} f(\vec{x}_m) \neq f(\vec{x}_0) \), i.e., either \(\lim_{m \to \infty} f(\vec{x}_m) \) does not exist, or if it exists, it is not equal to \(f(\vec{x}_0) \).

HW2, #7. Consider the sequence \(\{(−1)^m\}_{m \geq 1} \). Give a necessary and sufficient condition for a subsequence \(\{(−1)^{i(m)}\}_{m \geq 1} \) to converge.

HW2, #8. Let \(C \subset \mathbb{R}^n \) be a compact set and let \(f : C \to \mathbb{R} \) be a continuous function. Suppose that for each positive integer \(m \) there exists \(\vec{x}_m \in C \) such that \(|f(\vec{x}_m)| \geq m \).
(1) Prove that there exists a subsequence \(\vec{x}_{i(m)} \) which converges to some point \(\vec{x}_0 \in C \).
(2) Prove that there exists \(M \) such that \(|f(\vec{x}_{i(m)}) − f(\vec{x}_0)| < 1 \) for all \(m \geq M \).
(3) Derive a contradiction.

HW2, #9. Let \(\{a_m\}_{m \geq 1} \) and \(\{b_m\}_{m \geq 1} \) be sequences of real numbers such that \(|a_m − b_m| \to 0 \) as \(m \to \infty \). Prove that \(\{a_m\}_{m \geq 1} \) converges if and only if \(\{b_m\}_{m \geq 1} \) converges.