Review of Limit Points

Definition 2.18.

(b) p is a limit point of E if for every $r > 0$ there exists a point $q \neq p$ such that $q \in E \cap N_r(p)$.

(c) If $p \in E$ and p is not a limit point of E, then p is called an isolated point of E.

If p is an isolated point of E, then there exists $r > 0$ such that no point $q \neq p$ satisfies $q \in E \cap N_r(p)$. That is, $E \cap N_r(p) = \{p\}$.

Limits of Functions

A major area in mathematics studies functions on subsets of \mathbb{R}^k satisfying partial differential equations. It is natural and important to first study continuous functions and limits of functions.

Definition 4.1. Let $f : X \to Y$ and let p be a limit point of X.

\[\lim_{x \to p} f(x) = q \text{ if for every } \varepsilon > 0 \text{ there exists } \delta > 0 \text{ such that } d_Y(f(x), q) < \varepsilon \]

if $0 < d_X(x, p) < \delta$.

Another way to say the condition on the right is: $\forall \varepsilon > 0 \text{ there exists } \delta > 0 \text{ such that if } x \in N_\delta(p) - \{p\}, \text{ then } f(x) \in N_\varepsilon(q)$.

The left side may be thought of as: $f(x)$ approaches q as x approaches p.

Theorem 4.2. $\lim_{x \to p} f(x) = q$ if and only if for every sequence $\{p_n\}$ with $p_n \to p$ and $p_n \neq p$ for all n we have $\lim_{n \to \infty} f(p_n) = q$.

Proof. (\Rightarrow) Let $\{p_n\}$ be a sequence with $p_n \to p$ and $p_n \neq p$ for all n. We want to show that $\lim_{n \to \infty} f(p_n) = q$. So let $\varepsilon > 0$. Since $\lim_{x \to p} f(x) = q$, there exist $\delta > 0$ such that if $0 < d_X(x, p) < \delta$, then $d_Y(f(x), q) < \varepsilon$. On the other hand, since $p_n \to p$, there exists $N \in \mathbb{N}$ such that $d_X(p_n, p) < \delta$ for $n \geq N$. Moreover, since $p_n \neq p$, $d_X(p_n, p) > 0$. Combining the above, we obtain for $n \geq N$ that $d_Y(f(p_n), q) < \varepsilon$. Summarizing, we have proved that for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $d_Y(f(p_n), q) < \varepsilon$ for $n \geq N$. Therefore $\lim_{n \to \infty} f(p_n) = q$.

(\Leftarrow) Suppose that $\lim_{x \to p} f(x) = q$ is false. We shall show that the condition on the right is false. By assumption, there exists $\varepsilon > 0$ such that for every $\delta > 0$ there exists x with $0 < d_X(x, p) < \delta$ and $d_Y(f(x), q) \geq \varepsilon$. In particular, by taking $\delta = \frac{1}{n}$ and calling the corresponding x to be p_n, we have that for each $n \in \mathbb{N}$ there exists p_n with $0 < d_X(p_n, p) < \delta$ and $d_Y(f(p_n), q) \geq \varepsilon$. This implies that $p_n \to p$, but $f(p_n)$ does not converge to q. So the condition on the right is false. \(\square\)

The right side of Theorem 4.2 says: For any sequence p_n in $X - \{p\}$ limiting to p we have $f(p_n)$ limits to q.

Corollary. If f has a limit at p, this limit is unique.

Proof. Recall that Theorem 3.2(b) says: If $p \in X$, $p' \in X$, and if $\{p_n\}$ converges to p and to p', then $p = p'$. Now supposed that $\lim_{x \to p} f(x) = q$ and
\[\lim_{x \to p} f(x) = q'. \] By assumption, \(p \) is not an isolated point of \(X \). Choose any sequence \(\{p_n\} \) with \(p_n \to p \) and \(p_n \neq p \) for all \(n \). By Theorem 4.2 we have \(\lim_{n \to \infty} f(p_n) = q \) and \(\lim_{n \to \infty} f(p_n) = q' \). Applying Theorem 3.2(b), we conclude that \(q = q' \). \(\square \)

Definition 4.3 and **Theorem 4.4** are basic properties of functions and limits. See p. 85 of Rudin for these.

We discussed when the inputs limit to a point in the domain and the corresponding outputs limit to a point in the codomain.

Continuous Functions

Definition 4.5. \(f : X \to Y \) is continuous at \(p \) if for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(d_Y(f(x), f(p)) < \varepsilon \) for all \(x \) such that \(d_X(x, p) < \delta \).

In other words, for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(f(x) \in N_\varepsilon(f(p)) \) for all \(x \in N_\delta(p) \).

If \(f \) is continuous at every point of \(E \), then \(f \) is called **continuous on** \(E \).

Lemma. If \(p \) is an isolated point of \(X \), then \(f \) is continuous at \(p \).

Proof. Let \(\varepsilon > 0 \). Since \(p \) is isolated, there exists \(\delta > 0 \) such that \(N_\varepsilon(p) = X \cap N_\delta(p) = \{p\} \). Hence, if \(d_X(x, p) < \delta \), then \(x = p \), so that \(d_Y(f(x), f(p)) = 0 < \varepsilon \). \(\square \)

Theorem 4.6. Let \(p \) be a limit point of \(X \). Then \(f \) is continuous at \(p \) if and only if \(\lim_{x \to p} f(x) = f(p) \).

Proof (much ado about nothing). By definition, \(\lim_{x \to p} f(x) = f(p) \) if and only if for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(d_Y(f(x), f(p)) < \varepsilon \) if \(0 < d_X(x, p) < \delta \). Since \(d_Y(f(p), f(p)) = 0 < \varepsilon \), the condition on the right is equivalent to: For every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(d_Y(f(x), f(p)) < \varepsilon \) if \(d_X(x, p) < \delta \). By definition, this is equivalent to \(f \) being continuous at \(p \). \(\square \)

Theorem 4.7. Suppose that \(f : X \to Y \) and \(g : Y \to Z \). If \(f \) is continuous at \(p \) and if \(g \) is continuous at \(f(p) \), then \(g \circ f \) is continuous at \(p \).

Proof. See p. 86 of Rudin.

Definition. The **inverse image of a set** \(V \) by a function \(f \) is

\[f^{-1}(V) = \{x \in X : f(x) \in V\}. \]

Theorem 4.8. \(f : X \to Y \) is continuous if and only if \(f^{-1}(V) \) is open in \(X \) for every open subset \(V \) of \(Y \).

Proof. \((\Rightarrow)\) Suppose \(f : X \to Y \) is continuous. Let \(V \subset Y \) be open. Let \(p \in f^{-1}(V) \). Then \(f(p) \in V \). Since \(V \) is open, there exists \(\varepsilon > 0 \) such that \(N_\varepsilon(f(p)) \subset V \). Since \(f \) is continuous at \(p \), there exists \(\delta > 0 \) such that \(f(x) \in N_\varepsilon(f(p)) \) for all \(x \in N_\delta(p) \). Thus \(N_\delta(p) \subset f^{-1}(N_\varepsilon(f(p))) \subset f^{-1}(V) \). We have proved that for any \(p \in f^{-1}(V) \) there exists \(\delta > 0 \) such that \(N_\delta(p) \subset f^{-1}(V) \). Therefore \(f^{-1}(V) \) is open.
Suppose \(f^{-1}(V) \) is open in \(X \) for every open subset \(V \) of \(Y \). Let \(p \in X \) and let \(\varepsilon > 0 \). We have \(f^{-1}(N_\varepsilon(f(p))) \) is open and \(p \in f^{-1}(N_\varepsilon(f(p))) \) since \(f(p) \in N_\varepsilon(f(p)) \). Therefore there exists \(\delta > 0 \) such that \(N_\delta(p) \subset f^{-1}(N_\varepsilon(f(p))) \). That is, if \(x \in N_\delta(p) \), then \(f(x) \in N_\varepsilon(f(p)) \). This proves that \(f \) is continuous at \(p \). Since \(p \) is arbitrary, \(f \) is continuous. \(\square \)

In topology, the right side of Theorem 4.8 is the definition of continuous function.

Theorem 4.9. Let \(f \) and \(g \) be complex continuous functions on a metric space \(C \). Then \(f + g \), \(fg \), and \(f/g \) are continuous on \(X \).

Proof. See p.87 of Rudin.

Corollary. Polynomials of several real or complex variables are continuous.

The image of a function is defined by \(f(X) = \{ f(x) : x \in X \} \).

Theorem 4.10 is about \(\mathbb{R}^k \)-valued functions.

Theorem 4.14. If \(f: X \to Y \) is continuous and \(X \) is compact, then the image \(f(X) \) is compact.

Proof. Let \(\{ V_\alpha \}_{\alpha \in A} \) be an open cover of \(f(X) \). Let \(x \in X \). Then \(f(x) \in V_\alpha \) for some \(\alpha \in A \). Hence \(x \in f^{-1}(V_\alpha) \). Thus \(\{ f^{-1}(V_\alpha) \}_{\alpha \in A} \) is a cover of \(X \). By Theorem 4.8, since \(V_\alpha \) is open, \(f^{-1}(V_\alpha) \) is open for every \(\alpha \in A \). Since \(X \) is compact, there exists a finite subcover \(\{ f^{-1}(V_{\alpha_1}), \ldots, f^{-1}(V_{\alpha_k}) \} \) of \(X \). Since \(\{ f^{-1}(V_{\alpha_1}), \ldots, f^{-1}(V_{\alpha_k}) \} \) covers \(X \), we conclude that \(\{ V_{\alpha_1}, \ldots, V_{\alpha_k} \} \) covers \(f(X) \). \(\square \)

Example. One can ask what happens for \(f^{-1} \). We have the following example. Define the continuous function \(f: \mathbb{R} \to [0, 1] \) by \(f(x) = e^{-x^2} \). Note that \(f(\mathbb{R}) = (0, 1] \). So \(f^{-1}([0, 1]) = \mathbb{R} \). So if \(Y \) is compact, \(f^{-1}(Y) \) need not be compact.

By Theorem 2.41 we immediately have:

Corollary (Theorem 4.15). If \(f: X \to \mathbb{R}^k \) is continuous and \(X \) is compact, then the image \(f(X) \) is a closed and bounded set.

By applying Theorem 2.28 (If \(E \subset \mathbb{R} \) is nonempty, closed and bounded above (below), then \(\sup E \in E \) (\(\inf E \in E \)).) to the set \(f(X) \), we obtain:

Corollary (Theorem 4.16). If \(f: X \to \mathbb{R} \) is continuous and \(X \) is compact, then

1. There exists \(p \in X \) such that \(f(p) = \sup f(X) \).
2. There exists \(q \in X \) such that \(f(q) = \inf f(X) \).

Theorem 4.17. Suppose \(f: X \to Y \) is a continuous bijection and \(X \) is compact. Then \(f^{-1}: Y \to X \) is continuous.

Proof. Since \((f^{-1})^{-1} = f \), by Theorem 4.8 it suffices to prove that \(f(V) \) is open for every open subset \(V \) of \(X \). Let \(V \subset X \) be open. Then \(V^c \) is closed. Since \(X \) is compact, by Theorem 2.35 \(V^c \) is compact. Then, by Theorem 4.14, \(f(V^c) \) is compact. By Theorem 2.34, \(f(V^c) \) is closed. Hence \(f(V^c)^c = f(V) \) is open. \(\square \)