NOTES ON CAUCHY SEQUENCES

Definition 3.8. A sequence \(\{p_n\} \) in a metric space \(X \) is called a **Cauchy sequence** if for every \(\varepsilon > 0 \) there exists \(N \in \mathbb{N} \) such that for all \(m, n \geq N \) we have \(d(p_m, p_n) < \varepsilon \).

Lemma. Cauchy sequences are bounded.

Proof. Let \(\{p_n\} \) be a Cauchy sequence in \(X \). Then there exists \(N \in \mathbb{N} \) such that for all \(m, n \geq N \) we have \(d(p_m, p_n) < 1 \). Then for all \(n \in \mathbb{N} \) we have

\[
d(p_n, p_N) < 1 + \max\{d(p_1, p_N), d(p_2, p_N), \ldots, d(p_{N-1}, p_N)\}.
\]

Theorem 3.11.

(a) In any metric space \(X \), every convergent sequence is a Cauchy sequence.

(b) If \(X \) is a compact metric space and if \(\{p_n\} \) is a Cauchy sequence in \(X \), then \(\{p_n\} \) converges to some point of \(X \).

(c) In \(\mathbb{R}^k \), every Cauchy sequence converges.

Proof. (a) Let \(\{p_n\} \) be a convergent sequence and let \(p \in X \) be the point to which it converges. Let \(\varepsilon > 0 \). Then there exists \(N \in \mathbb{N} \) such that if \(n \geq N \), then \(d(p_n, p) < \frac{\varepsilon}{2} \). Thus, if \(m, n \geq N \), then \(d(p_m, p) < \frac{\varepsilon}{2} \) and \(d(p_n, p) < \frac{\varepsilon}{2} \), so that

\[
d(p_m, p_n) \leq d(p_m, p) + d(p_n, p) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

We have proved that \(\{p_n\} \) is a Cauchy sequence.

(b) Let \(\{p_n\} \) be a Cauchy sequence in \(X \). Let \(E = \{p_1, p_2, p_3, \ldots\} \).

Case 1. \(E \) is finite. Let \(E = \{q_1, \ldots, q_k\} \). Let \(F_i = \{n \in \mathbb{N} : p_n = q_i\} \) for \(i = 1, \ldots, k \). Then \(\mathbb{N} = \bigcup_{i=1}^{k} F_i \). Hence there exists \(i \) such that \(F_i \) is infinite. Let \(F_i = \{n_1, n_2, \ldots\} \), where \(1 \leq n_1 < n_2 < \cdots \). Then \(p_{n_k} = q_i \) for \(k \in \mathbb{N} \). We shall show that \(\{p_n\} \) converges to \(q_i \).

Let \(\varepsilon > 0 \). Since \(\{p_n\} \) is a Cauchy sequence, there exists \(N \in \mathbb{N} \) such that for all \(m, n \geq N \) we have \(d(p_m, p_n) < \varepsilon \). Since \(F_i \) is infinite, there exists \(n_k \in F_i \) such that \(n_k \geq N \). Then, if \(n \geq N \), we then have

\[
d(p_n, q_i) = d(p_n, p_{n_k}) < \varepsilon
\]

since \(p_{n_k} = q_i \) and \(n_k \geq N \). This completes Case 1.

Case 2. \(E \) is infinite. Then by Theorem 2.37 there exists a limit point \(p \) of \(E \). We shall show that \(\{p_n\} \) converges to \(p \). Let \(\varepsilon > 0 \). Since \(p \) is a limit point of \(E \), there exist \(1 \leq n_1 < n_2 < \cdots \) such that \(d(p_{n_k}, p) < \frac{\varepsilon}{2} \) for \(k \geq 1 \). Since \(\{p_n\} \) is a Cauchy sequence, there exists \(N \in \mathbb{N} \) such that for all \(m, n \geq N \) we have \(d(p_m, p_n) < \frac{\varepsilon}{2} \). There exists \(k \geq 1 \) such that \(n_k \geq N \). Then, if \(n \geq N \), we then have (using the triangle inequality)

\[
d(p_n, p) \leq d(p_n, p_{n_k}) + d(p_{n_k}, p) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\]

since \(n, n_k \geq N \). This completes Case 2.

(c) Let \(\{p_n\} \) be a Cauchy sequence in \(\mathbb{R}^k \). Then \(\{p_n\} \) is bounded. This implies that there exists a \(k \)-cell \(I \) such that \(p_n \in I \) for all \(n \geq 1 \). Since \(I \) is compact and since \(\{p_n\} \) is a Cauchy sequence in \(I \), by part (b) we have that \(\{p_n\} \) converges to some point of \(I \subset \mathbb{R}^k \).