Definition 3.13. A sequence \(\{ s_n \} \) of real numbers is said to be

1. increasing if \(s_{n+1} \geq s_n \) for \(n \geq 1 \);
2. decreasing if \(s_{n+1} \leq s_n \) for \(n \geq 1 \).

If \(\{ s_n \} \) is increasing or decreasing, we say that \(\{ s_n \} \) is monotonic.

Theorem 3.14. Let \(\{ s_n \} \) be a monotonic sequence. Then \(\{ s_n \} \) converges if and only if \(\{ s_n \} \) is bounded.

Proof. See p. 55 of Rudin. We shall just prove the following statement:

If \(\{ s_n \} \) is increasing and bounded, then \(\{ s_n \} \) converges to \(\sup E \), where \(E = \{ s_n : n \in \mathbb{N} \} \) is the range of \(\{ s_n \} \).

Let \(\{ s_n \} \) be an increasing and bounded sequence. Since \(E \) is bounded and nonempty, by the least upper bound property we have that \(\sup E \in \mathbb{R} \) exists. Since \(\sup E \) is an upper bound for \(E \), we have \(s_n \leq \sup E \) for all \(n \geq 1 \). Since \(\sup E \) is the least upper bound for \(E \), for any \(\varepsilon > 0 \), \(\sup E - \varepsilon \) is not an upper bound. Hence there exists \(N \geq 1 \) such that \(s_N > \sup E - \varepsilon \). Since \(\{ s_n \} \) is increasing, this implies \(s_n > \sup E - \varepsilon \) for \(n \geq N \). So we have

\[
\sup E - \varepsilon < s_n \leq \sup E \quad \text{for } n \geq N.
\]

This implies \(| s_n - \sup E | < \varepsilon \) for \(n \geq N \). We have proved that \(\{ s_n \} \) converges to \(\sup E \). \(\square \)

Definition 3.15. We say that \(\{ s_n \} \to +\infty \) (also written \(\lim_{n \to \infty} s_n = +\infty \)) if for each \(M \in \mathbb{R} \) there exists \(N \in \mathbb{N} \) such that \(s_n \geq M \) for \(n \geq N \).

Similarly, we say that \(\{ s_n \} \to -\infty \) (also written \(\lim_{n \to \infty} s_n = -\infty \)) if for each \(M \in \mathbb{R} \) there exists \(N \in \mathbb{N} \) such that \(s_n \leq M \) for \(n \geq N \).

If \(\{ s_n \} \) converges, \(\{ s_n \} \to +\infty \), or \(\{ s_n \} \to -\infty \), then we say that \(\{ s_n \} \) converges to an extended real number.

Remark. The set of extended real numbers is defined to be \(\bar{\mathbb{R}} = \mathbb{R} \cup \{ +\infty, -\infty \} \). The usual order on \(\mathbb{R} \) is extended to \(\bar{\mathbb{R}} \) by defining \(-\infty < x \) and \(x < +\infty \) for all \(x \in \mathbb{R} \) and \(-\infty < +\infty \).

Lemma. Let \(\{ s_n \} \) be a sequence of real numbers. Let \(S \subset \bar{\mathbb{R}} \) be the set of extended real number subsequential limits of \(\{ s_n \} \). Then \(S \) is nonempty.

Proof. Case 1. \(\{ s_n \} \) is bounded. Then Theorem 3.6(b) implies that there exists a convergent subsequence (converging to a real number).

Case 2. \(\{ s_n \} \) is unbounded. Then there a subsequence which converges either to \(+\infty \) or to \(-\infty \). (Exercise: Prove this.)

Again, let \(S \subset \bar{\mathbb{R}} \) denote the set of extended real number subsequential limits of a sequence \(\{ s_n \} \).

Define

\[
s^* = \sup S, \\
\ell_n = \inf S
\]

to be the upper limit and lower limit of \(\{ s_n \} \), respectively.
We use the notation:

\[s^* = \limsup_{n \to \infty} s_n, \]
\[s_* = \liminf_{n \to \infty} s_n. \]

Recall that \(S \subset \mathbb{R} \) is the set of extended real number subsequential limits of \(\{s_n\} \).

Theorem 3.17.

(a) \(s^* \in S \) and \(s_* \in S \).

(b) For each \(x > s^* \) there exists \(N \in \mathbb{N} \) such that \(s_n < x \) for \(n \geq N \). For each \(x < s_* \) there exists \(N \in \mathbb{N} \) such that \(s_n > x \) for \(n \geq N \).

Moreover, \(s^* \) and \(s_* \) are the only numbers with properties (a) and (b).

Proof. See p. 56 of Rudin.

Example 3.18(a). Let \(\{s_n\} \) be a sequence of real numbers whose range \(E \) contains all rational numbers. In other words, for each \(q \in \mathbb{Q} \) there exists \(n \geq 1 \) such that \(s_n = q \).

Exercise: (1) Prove that for each \(x \in \mathbb{R} \), there exists a subsequence of \(\{s_n\} \) converging to \(x \).

Solution. Let \(x \in \mathbb{R} \). Choose \(q_1 \in \mathbb{Q} \) such that \(q_1 \in (x, x + 1) \). Since \(\{s_n\} \) contains all rational numbers, there exists \(n_1 \in \mathbb{N} \) such that \(q_1 = s_{n_1} \). Now assume that we have chosen \(n_1, \ldots, n_{k-1} \in \mathbb{N} \). Choose \(q_k \in \mathbb{Q} \) such that \(q_k \in (x, x + \frac{1}{k}) \). Since \(\{s_n\} \) contains all rational numbers and since the interval \((x, x + \frac{1}{k}) \) contains an infinite number of rationals, there exists \(n_k > n_{k-1} \) such that \(q_k = s_{n_k} \).

Then \(n_1 < n_2 < \cdots \) and \(|s_{n_k} - x| < \frac{1}{k} \) for each \(k \geq 1 \). Hence the subsequence \(\{s_{n_k}\} \) converges to \(x \).

(2) Prove that \(\limsup_{n \to \infty} s_n = +\infty \) and (similarly) \(\liminf_{n \to \infty} s_n = -\infty \).

Theorem 3.20(c).

\[\lim_{n \to \infty} \sqrt[n]{n} = 1. \]

Proof. See p. 58 of Rudin.

Let \(e \) be **Euler’s number**.

Theorem 3.31.

\[\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e. \]

Proof. See p. 64 of Rudin.

Here \(e \) is defined by the series sum \(e = \sum_{n=0}^{\infty} \frac{1}{n!} \); (infinite) **series** is a topic we consider next.