Counting: Finite, Denumerable, Countable, and Uncountable Sets

Definitions 1. We say that two sets \(X \) and \(Y \) have the same cardinality if there exists a bijection \(f : X \to Y \). We write \(|X| = |Y| \).

Having the same cardinality is an equivalence relation on the ‘set of all sets’ (Russell paradox notwithstanding): (Reflexive) \(|X| = |X| \) for any set \(X \). (Symmetric) If \(|X| = |Y| \), then \(|Y| = |X| \). (Transitive) If \(|X| = |Y| \) and \(|Y| = |Z| \), then \(|X| = |Z| \).

Let \(\mathbb{N}_n = \{1, 2, \ldots, n\} \). Define the cardinality of \(\mathbb{N}_n \) to be \(n \), i.e., \(|\mathbb{N}_n| = n \). Thus \(|X| = n \) if and only if there exists a bijection \(f : \mathbb{N}_n \to X \). Define the cardinality of \(\emptyset \) to be 0, i.e., \(|\emptyset| = 0 \).

We say that \(X \) is finite if \(|X| = n \) for some \(n \in \mathbb{Z}^+ \).

We say that \(X \) is infinite if \(X \) is not finite.

We say that \(X \) is denumerable if \(X \) has the same cardinality as \(\mathbb{Z}^+ \).

It is easy to show that if \(X \) is denumerable, then \(X \) is infinite.

We have shown that \(\mathbb{Z} \) is denumerable.

We say that \(X \) is countable if \(X \) is finite or denumerable.

We say that \(X \) is uncountable if \(X \) is not countable.

Any set is exactly one of the following: finite, denumerable, or uncountable.

Any set is countable or uncountable (both not both).

Proposition 2. Let \(X \) be a finite set with \(|X| = n \), where \(n \in \mathbb{Z}^+ \). Then \(\mathcal{P}(X) \) is finite and \(|\mathcal{P}(X)| = 2^{\mathbb{P}(X)} = 2^n \).

Instead of giving a formal proof, we discuss less formally the reasons the proposition is true.

Given sets \(X \) and \(Y \), let \(\text{Fun}(X, Y) \) denote the set of all functions from \(X \) to \(Y \).

Lemma 3. For any finite set \(X \) there exists a bijection between \(\mathcal{P}(X) \) and \(\text{Fun}(X, \{0, 1\}) \).

Sketch of proof of Lemma 3. Define \(F : \mathcal{P}(X) \to \text{Fun}(X, \{0, 1\}) \) by \(F(A) = \chi_A \), where \(\chi_A \) is the characteristic function. Define \(G : \text{Fun}(X, \{0, 1\}) \to \mathcal{P}(X) \) by \(G(f) = \{ \{x \} \in X : f(x) = 1 \} \). One can show (exercise) that \(F \) and \(G \) are inverses of each other. \(\square \)

Let \(n \geq 2 \) be an integer and let \(X_1, X_2, \ldots, X_n \) be sets. Define their \(n \)-fold cartesian product by

\[
X_1 \times X_2 \times \cdots \times X_n = \{(x_1, x_2, \ldots, x_n) \mid x_i \in X_i \text{ for } i = 1, 2, \ldots, n\}.
\]

Define \(X^n \) to the \(n \)-fold cartesian product where \(X_i = X \) for each \(i = 1, 2, \ldots, n \).

Lemma 4. If \(X_1, X_2, \ldots, X_n \) are finite sets, then

\[
|X_1 \times X_2 \times \cdots \times X_n| = |X_1| \cdot |X_2| \cdots |X_n|.
\]

Sketch of proof of Lemma 4. We just prove it for \(n = 2 \). The general case can be proved by induction.

Let \(n_1 = |X_1| \) and \(n_2 = |X_2| \). Then there exist bijections \(f_1 : \mathbb{N}_{n_1} \to X_1 \) and \(f_2 : \mathbb{N}_{n_2} \to X_2 \).

Define \(f : \mathbb{N}_{n_1 n_2} \to X_1 \times X_2 \) by

\[
f(k_1 + (k_2 - 1)n_1) = (f_1(k_1), f_2(k_2)) \quad \text{for } k_1 \in \mathbb{N}_{n_1} \text{ and } k_2 \in \mathbb{N}_{n_2}.
\]

One can show that \(f \) is a bijection. \(\square \)
Lemma 5. For any finite set X there exists a bijection between $\text{Fun}(X, \{0,1\})$ and $\{0,1\}^{|X|}$.

Sketch of proof of Lemma 5. Let $n = |X|$ and write $X = \{x_1, x_2, \ldots, x_n\}$. Define $F : \text{Fun}(X, \{0,1\}) \to \{0,1\}^n$ by

$$F(f) = (f(x_1), f(x_2), \ldots, f(x_n)).$$

Define $G : \{0,1\}^n \to \text{Fun}(X, \{0,1\})$ by $G(y_1, y_2, \ldots, y_n) = f$, where $f(x_i) = y_i$ for $i = 1, 2, \ldots, n$. One can show that F and G are inverses of each other. □

Proof of Proposition 2. As a consequence of the above,

$$2^{|X|} = \left|\{0,1\}^{|X|}\right| = |\text{Fun}(X, \{0,1\})| = \mathcal{P}(X).$$

The binomial coefficients are defined by

$$\binom{n}{r} = |\mathcal{P}_r(\mathbb{N}_n)|.$$

This is equal to the number of r-element subsets of a set with n elements.

Proposition 6 (Proposition 12.2.8). For any integers $1 \leq r \leq n$ we have

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}.$$

Proof. Think of $\binom{n}{r}$ as the number of ways to choose a committee of r members out a group of n people. Call the n people $1, 2, \ldots, n$. Single out the (last) person n. There are two (mutually exclusive) types of committees: (1) Those that contain person n. (2) Those that do not contain person n.

The number of Type (1) committees is $\binom{n-1}{r-1}$ because knowing that n has to be on the committee, we have to choose $r-1$ people out the remaining $n-1$ people $1, 2, \ldots, n-1$. (A Type (1) committee consists of $r-1$ people, none which is person n, plus person n.)

The number of Type (2) committees is $\binom{n-1}{r}$ because knowing that n cannot be on the committee, we have to choose r people out the remaining $n-1$ people $1, 2, \ldots, n-1$. (A Type (2) committee consists of r people, none which is person n.) □

Proposition 7 (Theorem 12.2.10). For any integers $0 \leq r \leq n$ we have

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

Proof. The number of ordered r-person committees is $n(n-1) \cdots (n-r+1)$ because there are n choices for the first choice, $n-1$ choices for the second choice (one cannot choose the same person twice), ..., and $n-r+1$ choices for the rth choice. On the other hand, for each r-person committees there are $r!$ orderings. So the the number of unordered r-person committees is

$$\frac{n(n-1) \cdots (n-r+1)}{r!} = \frac{n!}{r!(n-r)!}.$$

2