Chapter 3 Exercise #20 on p. 82

You may start your answer as follows.

Let $\epsilon > 0$. Since $\{p_n\}$ is Cauchy, there exists $N \geq 1$ such that $d(p_n, p_m) < \frac{\epsilon}{2}$ for $n, m \geq N$.

Remark. In coming up with an answer, one has the choice of whether to start with "$\{p_n\}$ is Cauchy" or "some subsequence converges". I believe it is better to start with "$\{p_n\}$ is Cauchy" as above.
Chapter 3 Exercise #21 on p. 82

One approach is as follows.

For each n choose $x_n \in E_n$.

Using $E_n \supset E_{n+1}$ and $\lim_{n \to \infty} \text{diam } E_n = 0$, show that $\{x_n\}$ is a Cauchy sequence.

Show that its limit point (why does this exist?), call it x_0, is in $E = \bigcap_{n=1}^{\infty} E_n$.

Suppose that E contains two distinct points. Obtain a contradiction.
Chapter 3 Exercise #22 on p. 82

Since G_1 is nonempty and open, there exists $x_1 \in X$ and $r_1 > 0$ such that $E_1 \equiv B_{r_1}(x_1)$ satisfies $E_1 \subseteq G_1$.

Show that there exists $x_2 \in X$ and $r_2 \in (0, \frac{r_1}{2})$ such that $E_2 \equiv B_{r_2}(x_2)$ satisfies $E_2 \subseteq E_1$.

Explain how to continue, preferably by induction.

Define $E = \bigcap_{n=1}^{\infty} E_n$.

Explain how to use Exercise 21.
Chapter 3 Exercise #23 on p. 82
In the hint Rudin gives, which is very helpful, observe that one can switch \(n \) and \(m \). Explain what inequality this gives for the absolute value in the next display.
Chapter 3 Exercise #24 on p. 82

Let \(X \) be a metric space and let \(C \) be the set of Cauchy sequences. That is, a sequence \(p = \{p_n\} \) is in \(C \) if and only if \(p \) is Cauchy. In other words, a point \(p \) in \(C \) is the same as a Cauchy sequence \(\{p_n\} \) in \(X \).

Define the equivalence relation \(\sim \) on \(C \) by: Two Cauchy sequences \(p = \{p_n\} \) and \(q = \{q_n\} \) are equivalent, written \(p \sim q \), if \(\lim_{n \to \infty} d(p_n, q_n) = 0 \).

(a) Show that \(\sim \) is an equivalence relation on \(C \), i.e., the relation \(\sim \) is reflexive, symmetric, and transitive.

Hint for transitivity: Suppose \(p \sim q \) and \(q \sim r \). Use the triangle inequality. If \(\lim_{n \to \infty} d(p_n, r_n) \leq 0 \), then \(p \sim r \) (why?).

Given \(p \in C \), the equivalence class of \(p \) is \([p] = \{ q \in C \mid q \sim p \} \), i.e., the set of all Cauchy sequences equivalent to \(p \). Let \(X^* \) be the set of equivalence classes of Cauchy sequences. That is,

\[X^* = \{ P \mid P = [p] \text{ for some } p \in C \} \]

Given \(P, Q \in X^* \), define \(\Delta(P, Q) = \lim_{n \to \infty} d(p_n, q_n) \), where \(P = \{p_n\} \in P \) and \(Q = \{q_n\} \in Q \).

(b) (i) Show that the function \(\Delta : X^* \times X^* \to \mathbb{R}^\geq \), given by the formula above, is well defined. That is, the right-side \(\lim_{n \to \infty} d(p_n, q_n) \) is nonnegative and does not depend on the choices of \(p \in P \) and \(q \in Q \).

(ii) Suppose \(\Delta(P, Q) = 0 \). Show that \(P = Q \).

(iii) Show that the triangle inequality for \(\Delta \) follows from the triangle inequality for \(d \).

Remark on (b)(i). Suppose \(p, p' \in P \) and \(q, q' \in Q \), where \(p' = \{p'_n\} \) and \(q' = \{q'_n\} \). We need to show that \(\lim_{n \to \infty} d(p_n, q_n) = \lim_{n \to \infty} d(p'_n, q'_n) \). By hypothesis, \(\lim_{n \to \infty} d(p_n, p'_n) = 0 \) and \(\lim_{n \to \infty} d(q_n, q'_n) = 0 \). Use the triangle inequality.

(c) Show that \(X^* \) is complete. Let \(\{ P_i \} \) be a Cauchy sequence in \(X^* \). (Note that \(\{ P_i \} = \{ P_1, P_2, P_3, \ldots \} \), where each \(P_i \) is itself a Cauchy sequence. So \(\{ P_i \} \) is a Cauchy sequence of Cauchy sequences.)

Show that \(\{ P_i \} \) converges to some \(P \in X^* \). That is, there exists \(P \in X^* \) such that \(\Delta(P, P_i) \to 0 \) as \(i \to \infty \).

Hint: For each \(i \in \mathbb{Z}^+ \), we may write \(P_i = [p_i] \), where \(p_i = \{p_i(1), p_i(2), p_i(3), \ldots \} \) is a Cauchy sequence. Define \(P = [p] \), where \(p = \{p(1), p(2), p(3), \ldots \} \). That is, \(P \) is the equivalence class of the Cauchy sequence \(p \) whose \(n \)-th term is the same as the \(n \)-th term of \(p_n \).

(i) Show that \(p \) is a Cauchy sequence, so that \(P \in X^* \).

(ii) Show that \(\{ P_i \} \) converges to \(P \). That is, \(\Delta(P, P_i) \to 0 \). Note that, for each \(i \), \(\Delta(P_i, P) = \lim_{n \to \infty} d(p_i(n), p_n(n)) \).

Define \(\varphi : X \to X^* \) by \(\varphi(p) = P_p \), where \(P_p \upharpoonright \{p\} \) for \(p = \{p, p, \ldots \} \) the constant sequence.
(d) Show that for any $p, q \in X$, we have $\Delta(P_p, P_q) = d(p, q)$. Why does this imply that φ is an injection (a.k.a., one-to-one)?

(e) Show that $\varphi(X)$ is dense in X^*.

Hint: Let $P = \{p\} \in X^*$, where $p = \{p_n\}$. Define $p_n = \{p_n, p_n, p_n, \ldots\}$ the constant sequence. Let $P_n = \{p_n\} \in X^*$ Show that $\lim_{n \to \infty} \Delta(P_n, P) = 0$.

followup discussions for lingering questions and comments

Anonymous 16 hours ago
For (c), what does it mean by saying a sequence of equivalent classes converges to a specific equivalent class?

Bennett Chow 13 hours ago
I've edited the post to clarify this. See the third line of (c).

I corrected the hint for (e).

I've added a few other edits.