Math 109 HW 4. Due date: Friday October 28 at 3 pm

Exercises: # 11.3, 11.4, 12.5, 12.6
Problems III: # 5, 12, 13, 15.

Hints

Problems III #5. Prove that a finite non-empty set of real numbers has a minimum element. [This is the part of the proof of Proposition 11.2.3 left as an exercise.]

Hint. Mimic the proof by induction on p. 140 of Eccles that a finite non-empty set of real numbers has a maximum element.

Formally, \(P(n) \), where \(n \in \mathbb{Z}^+ \), is the statement that any finite set with cardinality \(n \) has a minimum element.

Problems III #12. Suppose that there is an injection \(f : \mathbb{Z}^+ \rightarrow X \). Prove by contradiction that \(X \) is an infinite set. [Use Corollary 11.1.1 noting that, for any \(n \geq 1 \), \(f \) restricts to give an injection \(\mathbb{N}_{n+1} \rightarrow X \).]

Hint. Corollary 11.1.1 says: Suppose \(X \) and \(Y \) are non-empty finite sets. If there exists an injection \(f : X \rightarrow Y \), then \(|X| \leq |Y| \).

Suppose \(X \) is a finite set. Then there exists \(n_0 \in \mathbb{Z}^+ \) and an injection \(g : X \rightarrow \mathbb{N}_{n_0} \). Use the book hint and compose two functions.

Problems III #13. Find all the divisors of 126 and 180 and hence find the greatest common divisor (126, 180).

Hint. 126 = 2 \cdot 3^2 \cdot 7 and 180 = 2^2 \cdot 3^2 \cdot 5.

Problems III #15. Prove the induction principle from the well-ordering principle (see Example 11.2.2(c)). [Prove the induction principle in the form of Axiom 7.5.1 by contradiction.]

Hint. Axiom 7.5.1 says: Suppose that \(A \) is a subset of \(\mathbb{Z}^+ \). Then \(A = \mathbb{Z}^+ \) if

(i) \(1 \in A \), and
(ii) \(\forall k \in \mathbb{Z}^+ (k \in A \Rightarrow k + 1 \in A) \).

The well-ordering principle says: Any non-empty set of positive integers has a minimum element.

Let \(S = A^c = \mathbb{Z}^+ - A \). Suppose that \(S \) is non-empty. Etc.

Exercise #11.3. Easy.

Exercise #11.4. Prove that, if \(a \) and \(b \) are non-zero integers with \(\gcd(a, b) = d \), then the integers \(a/d \) and \(b/d \) are coprime.

Hint. See the solution at the back of Eccles.

Exercise #12.5. By equating coefficients of \(x^n \) in \((1+x)^2n = (1+x)^n(1+x)^n \) prove that \(\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i}^2 \).

Hint. We have \((1+x)^n = \sum_{i=0}^{n} a_i x^i \), where \(a_i = \binom{n}{i} \). So
\[(1 + x)^n(1 + x)^n = \sum_{i=0}^{n} a_i x^i \cdot \sum_{j=0}^{n} a_j x^j = \sum_{k=0}^{2n} \sum_{i+j=k} a_i a_j x^k, \text{ where } i, j \geq 0 \text{ in the last sum.}\]

We may rewrite this as \[\sum_{k=0}^{2n} \left(\sum_{i=0}^{k} a_i a_{k-i} \right) x^k.\]

On the other hand, \[(1 + x)^{2n} = \sum_{k=0}^{2n} \binom{2n}{k} x^k.\]

Equate the \(k = n\) coefficient in the expansions for \((1 + x)^{2n}\) and \((1 + x)^n(1 + x)^n\).

Exercise #12.6. Prove that the product of any \(n\) consecutive positive integers is divisible by \(n!\)

Hint. Let \(p\) be the product of any \(n\) consecutive positive integers. Then there exists \(k \in \mathbb{Z}^+\) such that \(n = (k + 1) \cdots (k + n)\). Then \(n = \frac{(k+n)!}{k!}\). Etc.