1. Chapter 3, p. 82 #20. Suppose \(\{p_n\} \) is a Cauchy sequence in a metric space \(X \), and some subsequence \(\{p_{n_i}\} \) converges to a point \(p \in X \). Prove that the full sequence \(\{p_n\} \) converges to \(p \).

Solution.

Take any \(\epsilon > 0 \). Since \(\{p_n\} \) is Cauchy, there exists \(N \in \mathbb{Z}^+ \) such that if \(n, m \geq N \) then \(d(p_n, p_m) < \frac{\epsilon}{2} \).

Also, because \(p_{n_j} \) converges to \(p \), there exists \(J \in \mathbb{Z}^+ \) such that if \(j \geq J \) then \(d(p_{n_j}, p) < \frac{\epsilon}{2} \). Now take any \(j \geq \max(J, N) \). Then \(n_j \geq j \geq J \) (since \(n_1 < n_2 < \ldots \)), so that \(d(p_{n_j}, p) < \frac{\epsilon}{2} \). If \(n \geq N \), then

\[
d(p_n, p) \leq d(p_n, p_{n_j}) + d(p_{n_j}, p) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,
\]

where the inequality \(d(p_n, p_{n_j}) < \frac{\epsilon}{2} \) is used and follows from \(n_j \geq j \geq N \).

2. Chapter 3, p. 82 #21. Prove the following analogue of Theorem 3.10(b): If \(\{E_n\} \) is a sequence of closed nonempty and bounded sets in a complete metric space \(X \), if \(E_n \supseteq E_{n+1} \), and if \(\lim_{n \to \infty} \text{diam } E_n = 0 \), then \(\bigcap_{n=1}^{\infty} E_n \) consists of exactly one point.

Solution.

Since \(E_n \) is nonempty for any positive integer \(n \), take any \(x_n \in E_n \). This creates a sequence \(x_1, x_2, \ldots \) in \(X \). First we show that this sequence is Cauchy. Take any \(\epsilon > 0 \). Then since \(\lim_{n \to \infty} \text{diam } E_n = 0 \), there exists \(N \in \mathbb{Z}^+ \) such that if \(n \geq N \) then \(\text{diam } E_n < \epsilon \). If \(n, m \geq N \), then \(x_n, x_m \) are both in \(E_N \), so \(d(x_n, x_m) \leq \text{diam } E_N < \epsilon \).

Since \(X \) is complete, there exists \(x \in X \) such that \(\lim_{n \to \infty} x_n = x \). If for some positive integer \(m \), \(x \notin E_m \), then because \(E_m \) is closed there exists \(r > 0 \) such that \(B_r(x) \cap E_m = \emptyset \). Since \(x_n \) converges to \(x \), there exists \(N \in \mathbb{Z}^+ \) such that if \(m \geq N \) then \(x_n \in B_r(x) \). If we take \(n = \max(N, m) \), then \(x_n \in B_r(x) \cap E_n \), and \(E_n \subseteq E_m \), so \(x_n \in B_r(x) \cap E_m \), contradiction. Therefore \(x \in E_m \) for all positive integers \(m \), so \(x \in \bigcap_{n=1}^{\infty} E_n \). That is, \(\bigcap_{n=1}^{\infty} E_n \) is nonempty.

Now suppose that \(y \in \bigcap_{n=1}^{\infty} E_n \). Then for all positive integers \(n \), \(0 \leq d(y, x) \leq \text{diam } E_n \). Since \(\lim_{n \to \infty} \text{diam } E_n = 0 \), we have \(d(y, x) = 0 \) hence \(y = x \).

Remark. To justify the last sentence from the above paragraph, we can proceed as follows: Take any \(\epsilon > 0 \). Then there exists \(N \in \mathbb{Z}^+ \) such that \(\text{diam } E_n < \epsilon \) if \(n \geq N \). Since \(x, y \in E_N \), \(0 \leq d(y, x) \leq \text{diam } E_N < \epsilon \). So we’re in the situation where for all \(\epsilon > 0 \), \(0 \leq d(y, x) < \epsilon \). If \(d(y, x) \neq 0 \), then taking \(\epsilon = d(y, x) \) contradicts this condition on \(d(y, x) \).

3. Chapter 3, p. 82 #22. Suppose \(X \) is a nonempty complete metric space, and \(\{G_n\} \) is a sequence of dense open subsets of \(X \). Prove Baire’s theorem, namely, that \(\bigcap_{n=1}^{\infty} G_n \) is not empty.

Solution.
Since X is nonempty, each G_n is nonempty (otherwise G_n would also be an empty set, contradicting density of G_n). First take $x_1 \in G_1$. Since G_1 is open, there exists $r > 0$ such that $B_r(x_1) \subset G_1$. Taking $r_1 = \min(\frac{1}{2}, r)$, we have $B_{r_1}(x_1) \subset G_1$. Now we note that the closure of $B_{r_1/2}(x_1)$ is contained in $B_r(x_1)$. To see this, if $y \notin B_{r_1}(x_1)$, then $d(y, x_1) \geq r_1$, so that $B_{r_1/2}(y) \cap B_{r_1/2}(x_1)$ is empty, therefore $y \notin B_{r_1/2}(x_1)$. Note that $B_{r_1/2}(y) \cap B_{r_1/2}(x_1)$ is empty because if $z \in B_{r_1/2}(y) \cap B_{r_1/2}(x_1)$ then by the triangle inequality, $d(x, y) \leq d(x, z) + d(z, y) < \frac{r_1}{2} + \frac{r_1}{2} = r_1$, contradicting $d(x, y) \geq r_1$. Note also that $r_1 < 1$.

Take E_1 to be the closure of $B_{r_1/2}(x_1)$. Now since G_2 is dense in X, $B_{r_1/2}(x_1) \cap G_2$ is also nonempty, so take a point $x_2 \in B_{r_1/2}(x_1) \cap G_2$. Since a finite intersection of open sets is again open, we can find $r > 0$ such that $B_r(x_2) \subset B_{r_1/2}(x_1) \cap G_2$. Take $r_2 = \min(r, \frac{1}{2r})$. As before, the closure of $B_{r_2}(x_1)$ is contained in $B_r(x_2)$. We let E_2 to be this closure of $B_{r_2}(x_2)$.

Inductively then build E_n as the closure of $B_{r_n}(x_n)$ where $r_n = \min(r, \frac{1}{2r})$ and where $B_r(x_n) \subset B_{r_{n-1}/2}(x_{n-1}) \cap G_n$ and where $x_n \in B_{r_{n-1}/2}(x_{n-1}) \cap G_n$ can be taken by denseness of G_n.

We have thus a nested sequenced of nonempty closed sets $E_1 \supset E_2 \supset E_3 \supset \cdots$ such that $E_n \subset G_n$ for all n. Also, $\operatorname{diam}(E_n) \leq \frac{1}{n}$ and X is complete, so we’re in the situation of problem #21, pg. 82 of Rudin. Therefore $\bigcap_{n=1}^{\infty} E_n$ is nonempty, and $\bigcap_{n=1}^{\infty} E_n \subset \bigcap_{n=1}^{\infty} G_n$, so the latter is also nonempty.

4. Chapter 3, p. 82 #23. Suppose $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences in a metric space X. Show that the sequence $\{d(p_n, q_n)\}$ converges.

Solution.

For any m, n, we have $d(p_n, q_n) \leq d(p_n, p_m) + d(p_m, q_n) \leq d(p_n, p_m) + d(p_m, q_m) + d(q_m, q_n)$. Likewise, $d(p_m, q_m) \leq d(p_m, p_n) + d(p_n, q_n) \leq d(p_m, p_n) + d(p_n, q_m) + d(q_m, q_n)$. Therefore $d(p_n, q_n) - d(p_m, q_n) \leq d(p_n, p_m) + d(q_m, q_n)$ and also $d(p_m, q_m) - d(p_n, q_n) \leq d(p_m, p_n) + d(q_n, q_m)$. More succintly, $|d(p_n, q_n) - d(p_m, q_n)| \leq d(p_n, p_m) + d(q_n, q_m)$.

Given any $\epsilon > 0$, there exist positive integers N_0, N_1 such that if $n, m \geq N_0$ then $d(p_n, p_m) < \frac{1}{2} \epsilon$ and if $n, m \geq N_1$ then $d(q_n, q_m) < \frac{1}{2} \epsilon$. Taking $N = \max(N_0, N_1)$, we see (using the above inequality) that if $n, m \geq N$ then $|d(p_n, q_n) - d(p_m, q_n)| \leq d(p_n, p_m) + d(q_n, q_m) < \frac{1}{2} \epsilon + \frac{1}{2} \epsilon = \epsilon$. Therefore $\{d(p_n, q_n)\}$ is a Cauchy sequence in \mathbb{R}, and since \mathbb{R} is a complete metric space (with the standard metric $d(x, y) = |x - y|$ for x, y in \mathbb{R}), the sequence converges.

5. Chapter 3, p. 82 #24. Let X be a metric space.
(a) Call two Cauchy sequences $\{p_n\}$, $\{q_n\}$ in X equivalent if $\lim_{n \to \infty} d(p_n, q_n) = 0$. Prove that this is an equivalence relation.
(b) Let X^* be the set of all equivalence classes so obtained. If $P \in X^*$, $Q \in X^*$, $\{p_n\} \in P$, $\{q_n\} \in Q$, define $\Delta(P, Q) = \lim_{n \to \infty} d(p_n, q_n)$; by Exercise 23, this limit exists. Show that the number $\Delta(P, Q)$ is unchanged if $\{p_n\}$ and $\{q_n\}$ are replaced by equivalent sequences, and hence that Δ is a distance function in X^*.
(c) Prove that the resulting metric space X^* is complete.
(d) For each $p \in X$, there is a Cauchy sequence all of whose terms are p; let P_p be the element of X^* which
contains this sequence. Prove that $\Delta(P_p, P_q) = d(p, q)$ for all $p, q \in X$. In other words, the mapping φ defined by $\varphi(p) = P_p$ is an isometry (i.e., a distance-preserving mapping) of X into X^*.

(c) Prove that $\varphi(X)$ is dense in X^*, and that $\varphi(X) = X^*$ if X is complete. By (d), we may identify X and $\varphi(X)$ and thus regard X as embedded in the complete metric space X^*. We call X^* the completion of X.

Solution.

(a) Reflexive. $\lim_{n \to \infty} d(p_n, p_n) = \lim_{n \to \infty} 0 = 0$, so $\{p_n\}$ is equivalent to itself.

Symmetry. $\lim_{n \to \infty} d(p_n, q_n) = \lim_{n \to \infty} d(q_n, p_n)$, so done here.

Transitivity. Suppose $\lim_{n \to \infty} d(p_n, q_n) = 0$ and $\lim_{n \to \infty} d(q_n, h_n) = 0$, where $\{h_n\}$ is also a Cauchy sequence in X. Given any $\epsilon > 0$, there exist N_0, N_1 positive integers such that if $n \geq N_0$ then $d(p_n, q_n) < \frac{\epsilon}{2}$ and if $n \geq N_1$ then $d(q_n, h_n) < \frac{\epsilon}{2}$, so that taking $N = \max(N_0, N_1)$, we see that if $n \geq N$ then $d(p_n, h_n) \leq d(p_n, q_n) + d(q_n, h_n) < \epsilon$.

So $\lim_{n \to \infty} d(p_n, h_n) = 0$.

(b) Suppose $\{p_n\}$ is equivalent to $\{h_n\}$ and $\{q_n\}$ is equivalent to $\{s_n\}$. Note that $d(p_n, q_n) \leq d(q_n, s_n) + d(s_n, h_n) + d(p_n, h_n)$ and so $d(p_n, q_n) - d(s_n, h_n) \leq d(q_n, s_n) + d(p_n, h_n)$. Likewise, $d(s_n, h_n) - d(p_n, q_n) \leq d(q_n, s_n) + d(p_n, h_n)$. Therefore $|d(p_n, q_n) - d(s_n, h_n)| \leq d(q_n, s_n) + d(p_n, h_n)$.

Let $L_1 = \lim_{n \to \infty} d(p_n, q_n)$ and $L_2 = \lim_{n \to \infty} d(s_n, h_n)$. Take any $\epsilon > 0$. Then there exist positive integers N_1, N_2, N_3, N_4 such that if $n \geq N_1$ then $|L_1 - d(p_n, q_n)| < \frac{\epsilon}{4}$, if $n \geq N_2$ then $|L_2 - d(s_n, h_n)| < \frac{\epsilon}{4}$, if $n \geq N_3$ then $d(q_n, s_n) < \frac{\epsilon}{4}$, and if $n \geq N_4$ then $d(p_n, h_n) < \frac{\epsilon}{4}$. Take $n = \max(N_1, N_2, N_3, N_4)$. Then, $|L_1 - L_2| \leq |L_1 - d(p_n, q_n)| + |d(p_n, q_n) - L_2| \leq |L_1 - d(p_n, q_n)| + |d(p_n, q_n) - d(s_n, h_n)| + |d(s_n, h_n) - L_2| \leq |L_1 - d(p_n, q_n)| + |L_2 - d(s_n, h_n)| + d(q_n, s_n) + d(p_n, h_n) < \epsilon$. This being true for all $\epsilon > 0$, $L_1 = L_2$.

Reflexivity and symmetry of Δ follows trivially. For transitivity, note that if $\{h_n\}$ is another Cauchy sequence then from $d(p_n, q_n) \leq d(p_n, h_n) + d(h_n, q_n)$, we have $\lim_{n \to \infty} d(p_n, q_n) \leq \lim_{n \to \infty} d(p_n, h_n) + \lim_{n \to \infty} d(h_n, q_n)$, or $\Delta(P, Q) \leq \Delta(P, H) + \Delta(H, Q)$, where $H \in X^*$ is represented by $\{h_n\}$.

(c) [Solution in piazza by our Professor Chow]

(d) This simply follows from $\lim_{n \to \infty} d(p_n, q) = d(p, q)$.

(e) Take $P \in X^*$, which is represented by a Cauchy sequence $\{p_n\}$. Take $\epsilon > 0$. Then there exists a positive integer N such that if $n, m \geq N$ then $d(p_n, p_m) < \frac{\epsilon}{2}$. Take $p = p_N$. We claim that $\Delta(\varphi(p_N), P) < \epsilon$.

Let $L = \Delta(\varphi(p_N), P) = \lim_{n \to \infty} d(p_N, p_n)$, which exists by problem #23. There exists N' a positive integer such that if $n \geq N'$ then $|L - d(p_N, p_n)| < \frac{\epsilon}{2}$. Taking $n = \max(N, N')$, we have $L = |L| \leq |L - d(p_N, p_n)| + |d(p_N, p_n)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. So the claim has been proven.

So $\varphi(X)$ is dense in X^*.

Suppose now that X is complete. Then there is $p \in X$ such that $\lim_{n \to \infty} p_n = p$. Then $\Delta(\varphi(p), P) = \lim_{n \to \infty} d(p, p_n) = 0$.
