Heine–Borel Theorem

Theorem 2.41. Let $E \subset \mathbb{R}^k$. The following are equivalent:

(a) E is closed and bounded.

(b) E is compact.

(c) Every infinite subset of E has a limit point in E.

Proof. We shall show that (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a).

(a) \Rightarrow (b). Let $E \subset \mathbb{R}^k$ be a closed and bounded subset. Since E is bounded, there exists a k-cell K such that $E \subset K$. Since E is a closed subset of a compact set, E is compact.

(b) \Rightarrow (c) [Theorem 2.37]. Let E be a compact set and let S be an infinite subset of E. Suppose that S has no limit points in E. Then for each $p \in E$ there exists $r(p) > 0$ such that $B_{r(p)}(p) \cap S \subset \{p\}$. Now $\{B_{r(p)}(p)\}_{p \in E}$ is an open cover of the compact set E. Since E is compact, there exists a finite subcover $\{B_{r(p_i)}(p_i)\}_{i=1}^k$ for E. Since $S \subset E$, we thus have

$$S \subset \bigcup_{i=1}^k (B_{r(p_i)}(p_i) \cap S) \subset \bigcup_{i=1}^k \{p_i\},$$

which implies that S is finite, a contradiction.

(c) \Rightarrow (a). Suppose that $E \subset \mathbb{R}^k$ is such that every infinite subset of E has a limit point in E.

(i). E is bounded. Suppose that E is not bounded. Then for each $n \in \mathbb{Z}^+$ there exists $x_n \in E$ such that $|x_n| > n$. It is easy to see that the infinite set $S = \bigcup_{i=1}^{\infty} \{x_n\} \subset E$ does not have a limit point (exercise: prove this). This contradiction implies that E is bounded.

(ii). E is closed. Suppose that E is not closed. Then there exists $x_0 \in E^c$ that is a limit point of E. Hence for each $n \in \mathbb{Z}^+$ there exists $x_n \in E$ such that $|x_n - x_0| < \frac{1}{n}$. Let $S = \bigcup_{n \in \mathbb{Z}^+} \{x_n\}$ (exercise: show that S is infinite).

Suppose that S has a limit point $y_0 \in E$. Let $n_0 \in \mathbb{Z}^+$ be such that $|y_0 - x_0| > \frac{2}{n_0}$. Since y_0 is a limit point of S, there exist $n_1 \geq n_0$ such that $|x_{n_1} - y_0| < \frac{1}{n_0}$. We conclude that

$$|y_0 - x_0| \leq |x_{n_1} - y_0| + |x_{n_1} - x_0| < \frac{1}{n_0} + \frac{1}{n_1} \leq \frac{2}{n_0}.$$

This contradicts $|y_0 - x_0| > \frac{2}{n_0}$. Hence S has no limit points in E. Since S is infinite, this contradicts the assumption that every infinite subset of E has a limit point in E. Therefore E is closed. □

Corollary 1 (Theorem 2.42 Weierstrass). Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k.

Proof. Let E be a bounded infinite subset of \mathbb{R}^k. Then there exists a k-cell K such that $E \subset K$. Since K is compact and since $E \subset K$ is infinite, by Theorem 2.41 E has a limit point in K. □
Corollary 2. Any bounded sequence \(\{x_n\}_{n \in \mathbb{Z}^+} \) in \(\mathbb{R}^k \) has a convergent subsequence.

Proof. Let \(S = \bigcup_{n \in \mathbb{Z}^+} \{x_n\} \).

Case 1. \(S \) is finite. Then \(S = \{y_1, \ldots, y_k\} \). Let \(Z_i = \{n \mid x_n = y_i\} \) for \(i = 1, \ldots, k \). Then \(\bigcup_{i=1}^k Z_i = \mathbb{Z} \). Hence there exists \(i \) such that \(Z_i \) is infinite. Thus \(Z_i = \bigcup_{j \in \mathbb{Z}^+} \{n_j\} \), where \(n_1 < n_2 < \cdots \). We have \(x_n_j = y_i \) for all \(j \in \mathbb{Z}^+ \). So of course \(\lim_{j \to \infty} x_{n_j} = y_i \).

Case 2. \(S \) is infinite. Since the sequence \(\{x_n\}_{n \in \mathbb{Z}^+} \) is bounded, so is the set \(S \). By Theorem 2.42, \(S \) has a limit point \(x_0 \) in \(\mathbb{R}^k \). Let \(n_1 = 1 \). By induction suppose that we have defined \(n_1 < n_2 < \cdots < n_k \), where \(k \geq 1 \). Let \(T = \bigcup_{n > n_k} \{x_n\} \). Then \(x_0 \) is a limit point of \(T \) (exercise: prove this). Hence there exists an integer \(n_{k+1} > n_k \) such that \(|x_{n_{k+1}} - x_0| < \frac{1}{k+1} \). Then \(\{x_{n_k}\}_{k \in \mathbb{Z}^+} \) is a subsequence of \(\{x_n\}_{n \in \mathbb{Z}^+} \) satisfying \(|x_{n_k} - x_0| < \frac{1}{k} \) for all \(k \geq 2 \). Therefore \(\lim_{k \to \infty} x_{n_k} = x_0 \). \(\square \)