In class today, one of the arguments I gave was not correct. It regards the following claim. I used a limit argument which is not complete. Here is a corrected version.

Let \(E = \{x^2 \mid 0 < x < 2\} \subseteq \mathbb{R} \).

You may assume 4 is an upper bound of \(E \).

We want to show that 4 is the least upper bound of \(E \). It suffices to show:

Claim. If \(u \in (0, 4) \), then \(u \) is not an upper bound of \(E \).

Correct proof. For any \(\epsilon \in (0, 1) \) we have \(4 - 4\epsilon < 4 - 4\epsilon + \epsilon^2 = (2 - \epsilon)^2 \in E \).

Define \(\epsilon \) so that \(4 - 4\epsilon = u \). Then \(\epsilon = \frac{4 - u}{4} \in (0, 1) \) and \(u = 4 - 4\epsilon < (2 - \epsilon)^2 \in E \).

Hence \(u \) is not an upper bound of \(E \).