Quiz #1 Math 20D January 16 SOLUTIONS

1. (§2.1, #30. 10 points) Find the value of y_0 for which the solution of the initial value problem

$$y' - y = 1 + 3\sin t, \quad y(0) = y_0$$

remains finite as $t \to \infty$.

ANSWER:

(1) $p(t) = -1$

(2) $\mu(t) = e^{\int p(t)\,dt} = e^{-t}$ (some students will be able to figure this out directly, that is OK)

(3) Thus

$$y(t) = \frac{1}{\mu(t)} \left(\int g(t)\mu(t)\,dt + C \right)$$

$$= e^t \left(\int e^{-t} (1 + 3\sin t)\,dt + C \right)$$

$$= e^t \left(-e^{-t} + 3 \int e^{-t} \sin t\,dt + C \right)$$

(Give say 7 points if students get to here correctly.)

(4) Compute $\int e^{-t} \sin t\,dt$ by integration by parts twice. In particular: Let

$$u = \sin t, \quad dv = e^{-t}\,dt,$$

$$du = \cos t\,dt, \quad v = -e^{-t}.$$

Then

$$\int e^{-t} \sin t\,dt = -e^{-t} \sin t + \int e^{-t} \cos t\,dt.$$

Now let

$$u = \cos t, \quad dv = e^{-t}\,dt,$$

$$du = -\sin t\,dt, \quad v = -e^{-t}.$$

Then

$$\int e^{-t} \cos t\,dt = -e^{-t} \cos t - \int e^{-t} \sin t\,dt.$$

Hence

$$\int e^{-t} \sin t\,dt = -e^{-t} \sin t - e^{-t} \cos t - \int e^{-t} \sin t\,dt,$$

so that

$$\int e^{-t} \sin t\,dt = -\frac{1}{2} e^{-t} (\sin t + \cos t).$$

So

$$y(t) = e^t \left(-e^{-t} + 3 \int e^{-t} \sin t\,dt + C \right)$$

$$= -1 - \frac{3}{2} (\sin t + \cos t) + Ce^t.$$

Now $y(0) = y_0$, so that

$$y_0 = y(0) = -1 - \frac{3}{2} + C = -\frac{5}{2} + C.$$

Therefore

$$y(t) = -1 - \frac{3}{2} (\sin t + \cos t) + \left(y_0 + \frac{5}{2} \right) e^t.$$
The only way this can be bound is if

\[y_0 + \frac{5}{2} = 0, \]

that is

\[y_0 = -\frac{5}{2}. \]

2. (§2.2, #24. 10 points) Solve the initial value problem

\[y' = \frac{2 - e^x}{3 + 2y}, \quad y(0) = 0 \]

and determine where the solution attains its maximum value.

ANSWER: This is a separable equation:

\[(3 + 2y) \, dy = (2 - e^x) \, dx, \]

so (integrate)

\[3y + y^2 = 2x - e^x + C. \]

Since \(y(0) = 0 \), we have

\[0 = -1 + C, \]

so that \(C = 1 \). We get

\[2x - e^x + 1 = 3y + y^2 = \left(y + \frac{3}{2}\right)^2 - \frac{9}{4}, \]

so that

\[\left(y + \frac{3}{2}\right)^2 = 2x - e^x + \frac{13}{4}. \]

We take the positive square root to get:

\[y = -\frac{3}{2} + \sqrt{2x - e^x + \frac{13}{4}}. \]

The \(x \) value where \(y \) attains its maximum is where

\[2x - e^x + \frac{13}{4} \]

attains its maximum. Setting the derivative to be zero, we get

\[0 = \frac{d}{dx} \left(2x - e^x + \frac{13}{4}\right) = 2 - e^x. \]

So it is where \(e^x = 2 \), that is,

\[x = \ln 2. \]