Math 109. Summer Session I, 2016. Final. (12 points each question; 108 points total)

Instructions:
(1) On blue book: Name, PID, and Section number.
(2) Write clearly and give a reasonable amount of explanation.
(3) \(\mathbb{Z} \) is the set of integers. \(\mathbb{Z}^+ \) is the set of positive integers. \(\mathbb{R} \) is the set of real numbers. \(\mathcal{P}(X) \) denotes the power set of \(X \).

1. Prove by induction that \(n! > 5^n \) for all integers \(n \geq 12 \). You may use that \(12! = 479001600 \) and \(5^{12} = 244140625 \). **Ans:** Base case: We have
 \[
 12! = 479001600 > 5^{12} = 244140625.
 \]

 Inductive step: Suppose \(k \geq 12 \) is such that \(k! > 5^k \). Then
 \[
 (k + 1)! = (k + 1) \cdot k! > (k + 1) \cdot 5^k > 5 \cdot 5^k = 5^{k+1}
 \]
 since \(k + 1 > 5 \) follows from \(k \geq 12 \). By induction, we are done.

2. **Universal and existential quantifiers and inequalities.**

 (a) (6 points) Prove: \(\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \sqrt{y} > |x| \) and \(y < x^2 + 1 \). **Ans:** Let \(y = x^2 + \frac{1}{2} \). Then
 \[
 \sqrt{y} = \sqrt{x^2 + \frac{1}{2}} > \sqrt{x^2} = |x| \quad \text{and} \quad y = x^2 + \frac{1}{2} < x^2 + 1.
 \]

 (b) (6 points) Prove: \(\exists x \in \mathbb{R}, x > -\frac{1}{2} \) and \(\forall y \in \mathbb{R}, y^4 - y^2 > x \). **Ans:** Let \(x = -\frac{3}{8} \). Then
 \[
 x = -\frac{3}{8} > -\frac{1}{2}. \quad \text{Let } y \in \mathbb{R}. \quad \text{Then } y^4 - y^2 = (y^2 - \frac{1}{2})^2 - \frac{1}{4} \geq -\frac{1}{4} > -\frac{3}{8} = x.
 \]

3. Let \(X \) and \(Y \) be nonempty disjoint sets. Define \(f : \mathcal{P}(X) \times \mathcal{P}(Y) \rightarrow \mathcal{P}(X \cup Y) \) by \(f(A, B) = A \cup B \) for \(A \in \mathcal{P}(X) \) and \(B \in \mathcal{P}(Y) \).

 (a) (6 points) Prove that \(f \) is a surjection. **Ans:** Let \(C \in \mathcal{P}(X \cup Y) \). Then \(C \subseteq X \cup Y \). Define \(A = C \cap X \) and \(B = C \cap Y \). Then
 \[
 f(A, B) = A \cup B = (C \cap X) \cup (C \cap Y) = C \cap (X \cup Y) = C.
 \]
 Hence \(f \) is a surjection.

 (b) (6 points) Prove that \(f \) is an injection. **Ans:** Suppose that \(A_1, A_2 \in \mathcal{P}(X) \) and \(B_1, B_2 \in \mathcal{P}(Y) \) are such that \(f(A_1, B_1) = f(A_2, B_2) \). Then \(A_1 \cup B_1 = A_2 \cup B_2 \). Hence
 \[
 A_1 = X \cap (A_1 \cup B_1) = X \cap (A_2 \cup B_2) = A_2.
 \]
 Here we used that \(A_1, A_2 \subseteq X, B_1, B_2 \subseteq Y \), and \(X \cap Y = \emptyset \), which implies
 \[
 X \cap (A_1 \cup B_1) = (X \cap A_1) \cup (X \cap B_1) = A_1 \cup \emptyset = A_1
 \]
 and similarly, \(X \cap (A_2 \cup B_2) = A_2 \). Similarly, we have
 \[
 B_1 = Y \cap (A_1 \cup B_1) = Y \cap (A_2 \cup B_2) = B_2.
 \]

4. Let \(A, B, \) and \(C \) be sets. Define \(A \Delta B = \{ x \mid x \in A \cup B \text{ and } x \notin A \cap B \} \).
(a) (6 points) Prove that if \(x \in A \cap (B \Delta C) \), then \(x \in (A \cap B) \Delta (A \cap C) \).
Ans: Let \(x \in A \cap (B \Delta C) \). Then
\[
x \in A \text{ and } x \in B \cup C \text{ and } x \notin B \cap C.
\]
So
\[
x \in A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
\]
and
\[
x \notin A \cap (B \cap C) = (A \cap B) \cap (A \cap C).
\]
That is,
\[
x \in (A \cap B) \Delta (A \cap C).
\]
(b) (6 points) Prove that if \(x \in (A \cap B) \Delta (A \cap C) \), then \(x \in A \cap (B \Delta C) \).
Ans: Let \(x \in (A \cap B) \Delta (A \cap C) \). Then
\[
x \in (A \cap B) \cup (A \cap C) = A \cap (B \cup C)
\]
and
\[
x \notin (A \cap B) \cap (A \cap C) = A \cap (B \cap C).
\]
Thus
\[
x \in A \text{ and } x \in B \cup C \text{ and } x \notin A \cap (B \cap C).
\]
Since \(x \in A \), the last part of the statement is equivalent to \(x \notin B \cap C \). We conclude that \(x \in A \cap (B \Delta C) \).

5. Recall the following fact (do not prove): If \(x, y, z \) are positive integers such that \(x \) divides \(yz \) and \(\gcd(x, y) = 1 \), then \(x \) divides \(z \).

(a) (6 points) Suppose that \(a \) is a positive integer such that \(9 \) divides \(6a \). Prove that \(3 \) divides \(a \).
Ans: Since \(9 \) divides \(6a \), we have \(3 \) divides \(2a \). Since \(\gcd(3, 2) = 1 \), by the result above, this implies \(3 \) divides \(a \).

(b) (6 points) Prove that if \(a \) is a positive integer such that \(2 \) divides \(a \) and \(3 \) divides \(a \), then \(6 \) divides \(a \).
Ans:

6. **Using the fact stated at the beginning of Problem 5.**

(a) (6 points) Prove that if a prime \(p \) divides \(a^2 \), where \(a \) is a positive integer, then \(p \) divides \(a \).
Ans: Since \(p \) is a prime, \(\gcd(p, a) = 1 \) or \(\gcd(p, a) = p \). If \(\gcd(p, a) = p \), then \(p \) divides \(a \) and we are done. If \(\gcd(p, a) = 1 \), then by the result of \#5 and \(p \) divides \(a \cdot a \), we conclude that \(p \) divides \(a \).

(b) (6 points) Suppose that \(a \) is a positive integer such that \(\gcd(a, 3) = 1 \). Prove that \(\sqrt{3a} \) is irrational.
Ans: Suppose that \(\sqrt{3a} \) is rational. Then there exists integers \(m \) and \(n \) with \(3a = \frac{m^2}{n^2} \), where \(\gcd(m, n) = 1 \). So \(3an^2 = m^2 \), which implies \(3 \) divides \(m^2 \). Since \(3 \) is prime, this implies \(3 \) divides \(m \). Hence there exists an integer \(k \) such that \(m = 3k \). Thus \(3(3k^2) = 3an^2 \), that is, \(3k^2 = an^2 \). Since \(\gcd(a, 3) = 1 \) and \(3 \) divides \(an^2 \), we conclude that \(3 \) divides \(n^2 \). Thus \(\gcd(m, n) \geq 3 \), a contradiction.

7. **Linear congruences.**
(a) (6 points) Find a complete set of solutions to \(12x \equiv 18 \mod 27\) that are distinct modulo 27. If the set of solutions is empty, explain why. **Ans:** Since \(\gcd(6, 27) = 1\), the congruence equation is equivalent to \(2x \equiv 3 \mod 9\). This is equivalent to \(2x \equiv 12 \mod 9\), which is equivalent to \(x \equiv 6 \mod 9\). A complete set of solutions that are distinct modulo 27 is 6, 15, 24.

(b) (6 points) Find a complete set of solutions to \(21x \equiv 17 \mod 35\) that are distinct modulo 35. If the set of solutions is empty, explain why. **Ans:** There are no solutions because \(\gcd(21, 35) = 3\) does not divide 17.

(a) (10 points) Prove that for any integer \(n\), we have that \(n^3\) is not congruent to 2 modulo 4, i.e., \(n^3 \not\equiv 2 \mod 4\). **Hint:** Use the division theorem for dividing by 4 and use basic properties of congruence. **Ans:** Let \(n \in \mathbb{Z}\). By the division theorem, there exists \(k, \ell \in \mathbb{Z}\) such that one of the following is true:

\[
\begin{align*}
\text{(i)} & \quad n^3 = (4k)^3 \equiv 0 \mod 4, \\
\text{(ii)} & \quad n^3 = (4k + 1)^3 \equiv 1 \mod 4, \\
\text{(iii)} & \quad n^3 = (4k + 2)^3 \equiv 2^3 \equiv 0 \mod 4, \\
\text{(iv)} & \quad n^3 = (4k + 3)^3 \equiv 27 \equiv 3 \mod 4.
\end{align*}
\]

Hence \(n^3\) is congruent to 0, 1, or 3 mod 4. In particular, \(n^3 \not\equiv 2 \mod 4\).

(b) (2 points) Use part (a) to show that 8888890 is not the cube of an integer. **Ans:**

\[
8888890 = 1111110 \cdot 8 + 2,
\]

so 8888890 \(\equiv 2 \mod 4\), which implies that 8888890 is not the cube of an integer by part (a).

9. Let \(m\) be a positive integer. Let the universal set be the set of integers \(\mathbb{Z}\).

(a) (6 points) Prove (directly) that if \(a_1 \equiv a_2 \mod m\) and \(b_1 \equiv b_2 \mod m\), then \(a_1 - b_1 \equiv a_2 - b_2 \mod m\). **Ans:** Suppose \(a_1 \equiv a_2 \mod m\) and \(b_1 \equiv b_2 \mod m\). Then there exist integers \(k, \ell \in \mathbb{Z}\) such that

\[
\begin{align*}
a_1 - a_2 &= km, \\
b_1 - b_2 &= \ell m.
\end{align*}
\]

Thus

\[
(a_1 - b_1) - (a_2 - b_2) = (a_1 - a_2) - (b_1 - b_2) = (k - \ell) m.
\]

This proves \(a_1 - b_1 \equiv a_2 - b_2 \mod m\).

(b) (6 points) Given \(a \in \mathbb{Z}\), let \([a]_m = \{x \in \mathbb{Z} | x \equiv a \mod m\}\) denote the congruence class of \(a\) modulo \(m\). Prove that if \(a, b \in \mathbb{Z}\) are such that \([a]_m \cap [b]_m \neq \emptyset\), then \(a \equiv b \mod m\). **Ans:** Suppose that \(a, b \in \mathbb{Z}\) are such that \([a]_m \cap [b]_m \neq \emptyset\). Then there exists \(c \in [a]_m \cap [b]_m\), so that there exist integers \(k, \ell \in \mathbb{Z}\) such that

\[
c - a = km, \quad c - b = \ell m.
\]

Thus

\[
a - b = c - km - c + \ell m = (\ell - k) m.
\]

This proves \(a \equiv b \mod m\).