#1. Let \(f : [a, b] \to \mathbb{R} \) and let \(v : I \to \mathbb{R} \), where \(I \) is an interval containing \(f([a, b]) \). Suppose that \(f \) is continuous at \(x \in [a, b] \). Suppose that \(\lim_{s \to f(x)} v(s) = v(f(x)) \). Using the \(\varepsilon\)-\(\delta \) definition of limit, prove that \(\lim_{t \to x} v(f(t)) = v(f(x)) \).

#2. Let \(g : I \to \mathbb{R} \) be a function, where \(I \) is an interval containing 0 in its interior. Suppose \(\lim_{x \to 0} \frac{g(x)}{x} = 0 \). Define

\[
 f(x) = \begin{cases}
 g(x) \sin \frac{1}{x} & \text{if } x \neq 0, \\
 0 & \text{if } x = 0.
\end{cases}
\]

Prove that \(f'(0) = 0 \). HINT: Use the squeeze theorem.

#3. Let \(f, g : \mathbb{R} \to \mathbb{R} \) be differentiable functions satisfying \(f'(x) > g'(x) \) for all \(x \in \mathbb{R} \) and \(f(0) = g(0) \). Prove that \(f(x) > g(x) \) for \(x > 0 \) and \(f(x) < g(x) \) for \(x < 0 \).