HW #1 SOLUTIONS

1. Let $f : [a, b] \to \mathbb{R}$ and let $v : I \to \mathbb{R}$, where I is an interval containing $f([a, b])$. Suppose that f is continuous at $x \in [a, b]$. Suppose that $\lim_{x \to f(x)} v(s) = v(f(x))$. Using the $\epsilon - \delta$ definition of limit, prove that $\lim_{t \to x} v(f(t)) = v(f(x))$.

Solution.

Take an $\epsilon > 0$. Since $\lim_{x \to f(x)} v(s) = v(f(x))$, there exists $\epsilon_1 > 0$ such that if $s \in I$ and $|s - f(x)| < \epsilon_1$ then $|v(s) - v(f(x))| < \epsilon$. Now, f is continuous at x, so there exists $\delta > 0$ such that if $t \in [a, b]$ is such that $|t - x| < \delta$ then $|f(t) - f(x)| < \epsilon_1$. Since I contains $f([a, b])$, we automatically have $f(t) \in I$, and also $|f(t) - f(x)| < \epsilon_1$ from above, so $|v(f(t)) - v(f(x))| < \epsilon$ as desired. This shows that $\lim_{t \to x} v(f(t)) = v(f(x))$, i.e. that the composition $v \circ f$ is continuous at x.

2. Let $g : I \to \mathbb{R}$ be a function, where I is an interval containing 0 in its interior. Suppose $\lim_{x \to 0} \frac{g(x)}{x} = 0$. Define

$$f(x) = \begin{cases} g(x) \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

Prove that $f'(0) = 0$.

Solution.

By definition, $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{g(x) \sin \frac{1}{x}}{x}$. We have the inequalities $0 \leq \left| \frac{g(x) \sin \frac{1}{x}}{x} \right| \leq \left| \frac{g(x)}{x} \right|$ for $x \neq 0$, since $|\sin y| \leq 1$ for all $y \in \mathbb{R}$, in particular for $y = \frac{1}{x}$. Since we are given that $\lim_{x \to 0} \frac{g(x)}{x} = 0$, we also have $\lim_{x \to 0} \left| \frac{g(x)}{x} \right| = 0$. Of course, $\lim_{x \to 0} 0 = 0$, so by the Squeeze Theorem, $\lim_{x \to 0} \frac{g(x) \sin \frac{1}{x}}{x} = 0$, or $\lim_{x \to 0} \frac{g(x) \sin \frac{1}{x}}{x} = 0$.

Remark. We’re using the easy-to-check fact that for a function $h : (a, b) \to \mathbb{R}$ and $t \in (a, b)$, $\lim_{x \to t} h(x) = 0$ if and only if $\lim_{x \to t} |h(x)| = 0$. To see this, we need only unravel the definition of limit in this context: $\lim_{x \to t} h(x) = 0$ says that for all $\epsilon > 0$, there exists $\delta > 0$ such that if $|x - t| < \delta$ then $|h(x) - 0| < \epsilon$, whereas $\lim_{x \to t} |h(x)| = 0$ says that for all $\epsilon > 0$, there exists $\delta > 0$ such that if $|x - t| < \delta$ then $||h(x)| - 0| < \epsilon$. Note however that $||h(x)| - 0| = |h(x)| = |h(x) - 0|$ so the two statements are saying the same thing.

3. Let $f, g : \mathbb{R} \to \mathbb{R}$ be differentiable functions satisfying $f'(x) > g'(x)$ for all $x \in \mathbb{R}$ and $f(0) = g(0)$. Prove that $f(x) > g(x)$ for $x > 0$ and $f(x) < g(x)$ for $x < 0$.

Solution.

Let $h : \mathbb{R} \to \mathbb{R}$ be defined by $h(x) = f(x) - g(x)$ for $x \in \mathbb{R}$. Then $h(0) = f(0) - g(0) = 0$ and $h'(x) = f'(x) - g'(x)$.
\(f'(x) - g'(x) > 0 \) if \(x \in \mathbb{R} \). If \(x > 0 \), then by the Mean Value Theorem, \(h(x) = h(x) - h(0) = h'(c)(x - 0) \) for some \(c \) between 0 and \(x \). But then \(h'(c) = f'(c) - g'(c) > 0 \), so \(h(x) = h'(c)x > 0 \).

If \(x < 0 \), then the same computation \(h(x) = h'(c)x \) for some \(c \) between 0 and \(x \) shows that \(h(x) < 0 \) because \(h'(c) > 0 \) and \(x < 0 \).

4. Rudin Ch 5. Exercise #7. Suppose \(f'(x), g'(x) \) exist, \(g'(x) \neq 0 \), and \(f(x) = g(x) = 0 \). Prove that

\[
\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.
\]

This holds also for complex functions.

Solution.

\[
\lim_{t \to x} \frac{f(t)}{g(t)} = \lim_{t \to x} \frac{f(t) - f(x)}{g(t) - g(x)} \cdot \frac{g(t) - g(x)}{t - x},
\]

and we are given that \(\lim_{t \to x} \frac{f(t) - f(x)}{t - x} = f'(x) \) and \(\lim_{t \to x} \frac{g(t) - g(x)}{t - x} = g'(x) \neq 0 \)

both exist, hence the ratio \(\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)} \) (note that we need \(g'(x) = 0 \)).

5. Rudin Ch 5. Exercise #13. Suppose \(a \) and \(c \) are real numbers, \(c > 0 \), and \(f \) is defined on \([-1, 1]\) by

\[
f(x) = \begin{cases}
|x|^a \sin(|x|^{-c}) & \text{(if } x \neq 0\text{),} \\
0 & \text{(if } x = 0\text{).}
\end{cases}
\]

Prove the following statements:

(a) \(f \) is continuous if and only if \(a > 0 \).
(b) \(f'(0) \) exists if and only if \(a > 1 \).
(c) \(f' \) is bounded if and only if \(a \geq 1 + c \).
(d) \(f' \) is continuous if and only if \(a > 1 + c \).
(e) \(f''(0) \) exists if and only if \(a > 2 + c \).
(f) \(f'' \) is bounded if and only if \(a > 2 + 2c \).
(g) \(f'' \) is continuous if and only if \(a > 2 + 2c \).

Solution.

(a) Suppose \(a \leq 0 \). Then for each positive integer \(k \), consider a real number \(x_k = \left(\frac{1}{2 + 2\pi k} \right)^{1/c} \in (0, 1) \subset [-1, 1] \).

Then, \(f(x_k) = |x_k|^a \sin(|x_k|^{-c}) = \left(\frac{1}{2 + 2\pi k} \right)^{a/c} \sin\left(\frac{\pi}{2} + 2\pi k \right) = \left(\frac{\pi}{2} + 2\pi k \right)^{-a/c} \). If \(a = 0 \), then \(\lim_{k \to \infty} f(x_k) = 1 \), whereas if \(a < 0 \) then \(\lim_{k \to \infty} f(x_k) = \infty \). In either case, we have \(\lim_{k \to \infty} f(x_k) \neq f(0) \), whereas \(\lim_{k \to \infty} x_k = 0 \) (\(c > 0 \)). Therefore \(f \) is not continuous at 0 (recall that a function \(f \) defined on a neighborhood of 0 is continuous at 0 if and only if \(\lim_{x \to 0} f(x) = f(0) \) for all sequences \(\{x_k\}_k \) such that \(\lim_{k \to \infty} x_k = 0 \)). In fact, we have shown that \(f \) has neither the left nor the right limit at 0.

Suppose now that \(a > 0 \). Then if \(x \neq 0 \), we have \(|f(x)| = |x|^a \sin(|x|^{-c}) \leq |x|^a \), and for \(x = 0 \) of course we have the same inequality (since \(a > 0 \), \(0^a = 0 \) is defined also of course). Since \(\lim_{x \to 0} |x|^a = 0 \), we have \(\lim_{x \to 0} |f(x)| = 0 \) by the Squeeze Theorem.
(b) \(f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \frac{|x|^{a-1} \sin(|x|^{-c})}{x} \) if the limit exists.

If \(a \leq 1 \), then \(\lim_{x \to 0^+} x^{a-1} \sin(|x|^{-c}) \) does not exist, as in part (a) by considering the sequence \(x_k = \left(\frac{1}{2 + \pi k} \right)^{1/c} \).

Therefore we need \(a > 1 \). In this case, \(\left| \frac{|x|^{a-1} \sin(|x|^{-c})}{x} \right| = |x|^{a-1} \sin(|x|^{-c}) \leq |x|^{a-1} \) and the latter tends to 0 as \(x \to 0 \), so \(f'(0) \) exists by the Squeeze Theorem and \(f'(0) = 0 \) in fact in this case.

(c) Note first that \(f(x) = f(-x) \) if \(x \in [-1, 1] \), i.e. \(f \) is an even function. For \(x \neq 0 \), \(f \) is certainly differentiable at \(x \) since \(f \) is given by the expression \(x^a \sin(x^{-c}) \) if \(x > 0 \) on a neighborhood of \(x \) not containing 0 and by \((-x)^a \sin((-x)^{-c}) \) on a neighborhood of \(x \) not containing 0 and both expressions are products of compositions of differentiable functions, hence differentiable. We assume that \(a > 1 \) from part (b) to discuss the existence of \(f' \) on \([-1, 1]\) in the first place.

For \(x > 0 \), \(f'(x) = ax^{a-1} \sin(x^{-c}) + x^a \cos(x^{-c})(-cx^{-c-1}) = ax^{a-1} \sin(x^{-c}) - cx^{a-1} \cos(x^{-c}) \) (recall the remark above that \(f \) is given by \(x \mapsto x^a \sin(x^{-c}) \) in a neighborhood of \(x \) in \([-1, 1]\) not containing 0). Also for \(a > 1 \), \(f'(0) \) exists and \(f'(0) = 0 \).

For \(x < 0 \), \(f \) is again differentiable at \(x \) because \(f(x) = f(-x) \) expresses \(f \) as a composition of the differentiable function \(f|_{(0,1]} \) (this is the restriction of \(f \) on \((0,1]\)) together with the differentiable function \(x \mapsto -x \) on a neighborhood of \(x \) not containing 0. Using the chain rule now, we have \(f'(x) = -f'(-x) \), so that

\[
f'(x) = \begin{cases}
ax^{a-1} \sin(x^{-c}) - cx^{a-1} \cos(x^{-c}) & \text{if } x > 0 \\
0 & \text{if } x = 0 \\
c|x|^{a-c-1} \cos(|x|^{-c}) - a|x|^{a-1} \sin(|x|^{-c}) & \text{if } x < 0
\end{cases}
\]

At any rate, we then need only analyze the boundedness of the expression \(ax^{a-1} \sin(x^{-c}) - cx^{a-1} \cos(x^{-c}) \) on \((0,1]\) (for \(0 < x \leq 1 \)). Since \(a > 1 \), the first term has absolute value \(|ax^{a-1} \sin(x^{-c})| \leq a|x|^{a-1} \), which tends to 0 as \(x \to 0^+ \) because \(a > 1 \). It is thus bounded. For the latter term, \(|cx^{a-1} \cos(x^{-c})| \leq cx^{a-1} \), and this tends to 0 as \(x \to 0^+ \) if \(a \geq 1 + c \). In the case \(a < 1 + c \), we take the sequence \(\{x_k\}_{k \geq 1} \) defined by \(x_k = (\frac{1}{2\pi})^{1/c} \in (0,1] \), which tends to 0 as \(k \to \infty \), and yet \(f(x_k) = -c(\frac{1}{2\pi})^{(a-c-1)/c} \to -\infty \) as \(k \to \infty \), showing that \(f \) is not bounded on \((0,1]\) if \(a < 1 + c \).

(d) We assume \(f' \) exists throughout \([-1,1] \), i.e. \(a > 1 \).

Assume first that \(a > 1 + c \), then from \(f'(x) = -f'(-x) \) again, we need only show that \(\lim_{x \to 0^+} f'(x) = f'(0) = 0 \) to check continuity of \(f' \) (it is continuous on \((0,1]\) because it is expressed on a neighborhood of a point in \((0,1]\) by a combination of products, addition, and composition of differentiable functions). \(\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} (ax^{a-1} \sin(x^{-c}) - cx^{a-1} \cos(x^{-c})) \), and the first term has limit \(\lim_{x \to 0^+} ax^{a-1} \sin(x^{-c}) = 0 \) since \(a > 1 \) (Squeeze Theorem yet again here). For the latter term, note that \(\lim_{x \to 0^+} -cx^{a-1} \cos(x^{-c}) = 0 \) again by the Squeeze Theorem because \(a > 1 + c \).

Assume now that \(f' \) is continuous on \([-1,1] \). Then \(f'(|-1,1]| \) is compact hence bounded, so part (c) implies that \(a \geq 1 + c \). We need only rule out the case \(a = 1 + c \) then to show that \(a > 1 + c \). So suppose \(a = 1 + c \). Then for \(x > 0 \), \(f'(x) = ax \sin(x^{-c}) - c \cos(x^{-c}) \). Now take the sequence \(x_k = (2\pi k)^{-1/c} \), which has the property that \(x_k \to 0^+ \) as \(k \to \infty \), and \(f'(x_k) = -c \) for all \(k \). That is, \(\lim_{k \to \infty} f'(x_k) = -c \neq 0 = f'(0) \), so \(f' \) is not continuous at 0.

(e) We assume here that \(f' \) is continuous throughout \([-1,1] \), i.e. \(a > 1 + c \) by part (d).

\[
f''(0) = \lim_{x \to 0} \frac{f''(x) - f''(0)}{x - 0}.
\]

For \(x < 0 \), \(\frac{f'(x) - f'(0)}{x - 0} = \frac{f'(x) - f'(0)}{x - 0} = \frac{f'(x)}{x} \), and for \(x > 0 \), \(\frac{f'(x) - f'(0)}{x - 0} = \frac{f'(x)}{x} \).

\[
f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x - 0}.
\]
Suppose \(a < 2 + c \). Then take the sequence \(x_k = (2\pi k)^{-1/c} \). Then \(x_k \to 0 \) as \(k \to \infty \) whereas \(g(x_k) = -c(2\pi k)(c+2-a)/c \), so that \(\lim_{k \to \infty} g(x_k) = -\infty \), so \(f''(0) \) does not exist.

Suppose \(a = 2 + c \). Then take \(x_k = (\pi k)^{-1/c} \), so \(g(x_k) = -c(-1)^k \), and \(\lim_{k \to \infty} g(x_k) \) does not exist.

Suppose \(a > 2 + c \). Then the first term \(|ax^{a-2} \sin(x^{-c})| \leq ax^{a-2} \) and this tends to 0 as \(x \to 0 \). For the second term, \(|cx^{a-c-2} \sin(x^{-c})| \leq cx^{a-c-2} \) and again this tends to 0 as \(x \to 0 \). So by the Squeeze Theorem, \(f''(0) \) exists.

(f) Assume now that \(a > 2 + c \). We know from the above computation in part (e) that \(f''(0) = 0 \). \(f' \) is expressed by differentiate function on \([-1, 0) \cup (0, 1]\), so \(f' \) is differentiable on it. Therefore with the assumption that \(a > 2 + c \), \(f' \) is differentiable on \([-1, 1]\). We have \(f'(x) = -f'(-x) \), so by the Chain Rule, \(f''(x) = f''(-x) \), i.e. \(f'' \) is an even function and it suffices to compute \(f''(x) \) for \(x > 0 \), i.e.

\[
\frac{d}{dx}(ax^{a-1} \sin(x^{-c}) - cx^{a-c-1} \cos(x^{-c})) = (a(a-1)x^{a-2} - c^2x^{a-2c-2}) \sin(x^{-c}) - (-2a + c + 1)x^{a-c-2} \cos(x^{-c}).
\]

Note that both \(a(a-1) > 0 \) and \((-2a + c + 1) > 0\) from \(a > 2 + c \) and \(c > 0 \). All the terms appearing here except for \(ax^{a-2c-2} \sin(x^{-c}) \) tends to 0 as \(x \to 0 \), so \(f'' \) is bounded on \([-1, 1]\) if and only if \(x^{a-2c-2} \sin(x^{-c}) \) is bounded on \((0, 1]\). By the same argument as in the previous parts, this happens exactly when \(a - 2c - 2 \geq 0 \), or when \(a > 2 + 2c \).

(g) Suppose \(f'' \) is continuous on \([-1, 1]\). Then \(f''([-1, 1]) \) is compact since \([-1, 1]\) is compact (closed and bounded, Heine-Borel). So by part (f), \(f'' \) is bounded on \([-1, 1]\) and thus \(a \geq 2 + 2c \). We rule out the case \(a = 2 + 2c \). If \(a = 2 + 2c \), we have for \(x > 0 \), \(f''(x) = (a(a-1)x^{a-2} - c^2x^{a-2c-2}) \sin(x^{-c}) - (-2a + c + 1)x^{a-2c-2} \cos(x^{-c}). \)

Set \(x_k = (\frac{a}{2} + 2\pi k)^{-1/c} \) as usual, then \(f''(x_k) = a(a-1)(\frac{a}{2} + 2\pi k)^{-(a-2)/c} - c^2 \), which does not tend to 0 as \(k \to \infty \). Since \(f''(0) = 0 \) and \(\lim_{k \to \infty} x_k = 0 \), \(f'' \) is not continuous at 0.

Suppose \(a > 2 + 2c \). Then all the terms in the expression above for \(f''(x) \) for \(x > 0 \) tends to 0 as \(x \to 0 \) by the Squeeze Theorem, so \(f'' \) is continuous at 0. It’s continuous everywhere else so \(f'' \) is continuous on \([-1, 1]\).

6. Rudin Ch 5. Exercise #14. Let \(f \) be a differentiable real function defined in \((a, b)\). Prove that \(f \) is convex if and only if \(f' \) is monotonically increasing. Assume next that \(f''(x) \) exists for every \(x \in (a, b) \), and prove that \(f \) is convex if and only if \(f''(x) \geq 0 \) for all \(x \in (a, b) \).

Solution.

Recall that a real function \(f \) defined on \((a, b)\) is convex if and only if for all \(x < y < z \) in \((a, b)\),

\[
f(y) - f(x) \leq \frac{f(z) - f(y)}{z-y} \cdot (y-x).
\]

We will prove this equivalence at the end of this solution.

Suppose that \(f \) is convex. Take \(x < y \) in \((a, b)\). Take sequences \(\{x_n\}_n \) and \(\{y_n\}_n \) such that \(x < x_n < y_n < y \) for all \(n \), \(\lim_{n \to \infty} x_n = x \) and \(\lim_{n \to \infty} y_n = y \). Since \(f \) is assumed to be differentiable, we then have \(f'(x) = \lim_{n \to \infty} a_n \) and \(f'(y) = \lim_{n \to \infty} b_n \) if \(a_n = \frac{f(x_n) - f(x)}{x_n - x} \) and \(b_n = \frac{f(y_n) - f(y)}{y_n - y} \). By the convexity, \(a_n = \frac{f(x_n) - f(x)}{x_n - x} \leq \frac{f(y_n) - f(x)}{y_n - x} \leq b_n \) for all \(n \geq 1 \). Therefore \(f'(x) = \lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n = f'(y) \). That is, \(f' \) is monotonically increasing.

Suppose now that \(f' \) is monotonically increasing. Take \(x < y < z \) in \((a, b)\). By the Mean Value Theorem,
\[\frac{f(y) - f(x)}{y - x} = f'(c) \text{ for some } c \in (x, y) \text{ and } \frac{f(z) - f(y)}{z - y} = f'(d) \text{ for some } d \in (y, z). \] Then \(x < c < y < d < z \), and in particular \(c < d \). Therefore \(f'(c) \leq f'(d) \), and so \(f \) is convex.

Assuming that \(f''(x) \) exists for all \(x \in (a, b) \), note only that \(f' \) is monotonically increasing if and only if \(f''(x) \geq 0 \) for all \(x \in (a, b) \) by the Mean Value Theorem. One direction follows from Theorem 5.11. Suppose that \(f' \) is monotonically increasing. Then fix \(y \in (a, b) \) and let \(h : [y, b) \to \mathbb{R} \) be defined by \(h(x) = f'(x) - f'(y) \). Then \(h(y) = 0, h \) is differentiable since \(f' \) is differentiable, and \(h(x) = h(x) - h(y) = h'(c)(x - y) \) for some \(c \in (y, x) \). But \(h'(c) = f''(c) \geq 0 \) (we’re fixing \(y \)), so that \(h(x) \geq 0 \). That is, \(f'(x) - f'(y) \geq 0 \), or \(f'(x) \geq f'(y) \). So \(f' \) is monotonically increasing.

Proof of equivalent definitions of convexity. We compare the two conditions on a function \(f : (a, b) \to \mathbb{R} \): i) For all \(t \in (0, 1) \) and \(x, y \in (a, b) \), \(f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) \) and ii) For all \(x, y, z \in (a, b) \) such that \(x \leq y < z \), \(\frac{f(y) - f(x)}{y - x} \leq \frac{f(z) - f(y)}{z - y} \).

i) implies ii). Take \(x < y < z \) in \((a, b) \). We take here \(t = \frac{z - y}{x - y} \), so that \(t \in (0, 1) \). Then \(y = tx + (1-t)y \), and so \(f(y) \leq tf(x)+(1-t)f(z) = \frac{z - y}{x - y}f(x) + \frac{y - z}{x - y}f(z) \). Rearranging this inequality gives precisely \(\frac{f(y) - f(x)}{y - x} \leq \frac{f(z) - f(y)}{z - y} \).

ii) implies i). If \(t \in (0, 1) \) and \(x < y \) in \((a, b) \), then \(x < tx + (1-t)y < y \). So using the condition ii), we have \(\frac{f(tx + (1-t)y) - f(x)}{tx + (1-t)y - x} \leq \frac{f(y) - f(tx + (1-t)y)}{y - (tx + (1-t)y)} \). Rearranging this inequality gives precisely that \(f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) \).

7. Rudin Ch 5, Exercise #15. Suppose \(a \in \mathbb{R}^1, f \) is twice-differentiable real function on \((a, \infty)\), and \(M_0, M_1, M_2 \) are the least upper bounds of \(|f(x)|, |f'(x)|, |f''(x)| \), respectively, on \((a, \infty)\). Prove that \(M_1^2 \leq 4M_0M_2 \). Does this hold for vector valued functions too?

Solution.

If \(x \in (a, \infty) \) and \(h > 0 \), then by the theorem of Taylor, there is \(\zeta \in (x, x + h) \) such that \(f(x + h) = f(x) + f'(x)h + \frac{f''(\zeta)}{2}h^2 \). Or \(f'(x)h = f(x + h) - f(x) - \frac{f''(\zeta)}{2}h^2 \). Therefore \(|f'(x)h| \leq M_0 + M_0 + \frac{M_2}{2}h^2 \).

We have so far that \(\frac{M_2}{2}h^2 = M_1h + 2M_0 \geq 0 \) for all \(h \in \mathbb{R} \). Considering the real valued function \(g(h) = \frac{M_2}{2}h^2 - M_1h + 2M_0 \) defined on \(\mathbb{R} \), a degree 2 polynomial, the fact that it is always nonnegative implies that it has at most 1 root, i.e. that its discriminant \(M_1^2 - 4\left(\frac{M_2}{2}\right)(2M_0) \leq 0 \), or \(M_1^2 \leq 4M_0M_2 \).

Let’s consider now a vector valued, twice differentiable function \(f : (a, \infty) \to \mathbb{R}^n \). We reduce the problem to the one-variable case by considering various projections of the curve \(f \) onto the 1-dimensional subspaces of \(\mathbb{R}^n \). To that end, take a direction \(u \in S^{n-1} = \{ (a_1, a_2, \ldots, a_n) \mid \sum_{i=1}^n a_i^2 = 1 \} \). We then consider the projection of the curve \(f \) onto the line spanned by \(u \), i.e. consider the function \(g : (a, \infty) \to \mathbb{R} \) by \(g(t) = u \cdot f(t) = |u||f(t)| \cos \theta \) where \(\theta \) is the “angle” between \(u \) and \(f(t) \).

Using the one-variable case, we have \(\sup_{t \in (a, \infty)} |g'(t)|^2 \leq 4 \sup_{t \in (a, \infty)} |g(t)| \sup_{t \in (a, \infty)} |g''(t)| \). Note that \(g'(t) = u \cdot f'(t) \) and \(g''(t) = u \cdot f''(t) \), so by the Cauchy-Schwartz inequality we have \(|g'(t)| \leq |u||f'(t)| = |f'(t)| \) and likewise \(|g''(t)| \leq |f''(t)| \).
We have thus shown that for all \(u \in \mathbb{S}^{n-1} \), \((\sup_{t \in (a, \infty)} |u \cdot f'(t)|)^2 \leq 4M_0M_2\). Note that \((\sup_{t \in (a, \infty)} |f'(t)|)^2 = \sup_{t \in (a, \infty)} |f'(t)|^2\). Now take any \(\epsilon > 0 \). Then there exists \(\zeta \in (a, \infty) \) such that \(\sup_{t \in (a, \infty)} |f'(t)| - \epsilon < |f'(\zeta)|\). We now then choose \(u \in \mathbb{S}^{n-1} \) to maximize the magnitude of the projection \(f'(\zeta) \) onto \(u \), i.e. take \(u = \frac{f'(\zeta)}{|f'(\zeta)|} \) in the direction parallel to \(f'(\zeta) \). Then we have the inequalities
\[
(\sup_{t \in (a, \infty)} |f'(t)| - \epsilon)^2 \leq |f'(\zeta)|^2 = |u \cdot f'(\zeta)|^2 \leq (\sup_{t \in (a, \infty)} |u \cdot f'(t)|)^2 \leq 4M_0M_2
\]
Since \(\epsilon > 0 \) was arbitrary, we have \(M_1^2 \leq 4M_0M_2\).

Now take
\[
f(x) = \begin{cases} 2x^2 - 1 & \text{if } -1 < x < 0 \\ \frac{x^2 - 1}{x^2 + 1} & \text{if } x \geq 0 \end{cases}
\]
We show that \(M_0 = 1 \), \(M_1 = 4 \), and \(M_2 = 4 \) for the above \(f \) defined on \((−1, \infty)\). It’s easy to verify the following:
\[
f'(x) = \begin{cases} 4x & \text{if } -1 < x < 0 \\ \frac{4x}{(x^2 + 1)^2} & \text{if } x \geq 0 \end{cases}
\]
\[
f''(x) = \begin{cases} 4 & \text{if } -1 < x < 0 \\ -\frac{12x^2 + 4}{(x^2 + 1)^3} & \text{if } x \geq 0 \end{cases}
\]
The only care one needs to take in differentiating the above \(f \) is at 0, but this is handled in a straightforward manner by comparing the right-hand and the left-hand limits at 0. Writing \(\frac{x^2 - 1}{x^2 + 1} = 1 - \frac{2}{x^2 + 1} \), it’s clear that \(M_0 = 1 \). Likewise for \(M_1 = 4 \) and \(M_2 = 4 \).

8. Rudin Ch 5, Exercise #18. Suppose \(f \) is a real function on \([a, b]\), \(n \) is a positive integer, and \(f^{(n-1)} \) exists for every \(t \in [a, b] \). Let \(\alpha, \beta, P \) be as in Taylor’s theorem (5.15). Define
\[
Q(t) = \frac{f(t) - f(\beta)}{t - \beta}
\]
for \(t \in [a, b] \), \(t \neq \beta \), differentiate
\[
f(t) - f(\beta) = (t - \beta)Q(t)
\]
n-1 times at \(t = \alpha \), and derive the following version of Taylor’s theorem:
\[
f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n.
\]

Solution.

We’ll verify the conclusion by induction on \(n \). Note that \(P(\beta) \) depends on \(n \), as \(P(\beta) = f(\alpha) + f'(\alpha)(\beta - \alpha) + \frac{f''(\alpha)}{2!}(\beta - \alpha)^2 + \cdots + \frac{f^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^{n-1} \).

If \(n = 1 \), then the conclusion reads \(f(\beta) = P(\beta) + Q(\alpha)(\beta - \alpha) = f(\alpha) + Q(\alpha)(\beta - \alpha) \), which just comes from the definition of \(Q(t) \) (and evaluating this at \(t = \alpha \)).
Before we proceed to the inductive step, we develop a formula for derivatives of \(f(t) - f(\beta) = (t-\beta)Q(t) \). Differentiating this once, we have \(f'(t) = Q(t) + (t-\beta)Q'(t) \), differentiating yet again, we have \(f''(t) = 2Q'(t) + (t-\beta)Q''(t) \). It’s easy to see by (yet another) induction that \(f^{(n)}(t) = nQ^{(n-1)}(t) + (t-\beta)Q^{(n)}(t) \) for \(n \geq 1 \). Plugging in \(t = \alpha \), we have \(f^{(n)}(\alpha) = nQ^{(n-1)}(\alpha) + (\alpha - \beta)Q^{(n)}(\alpha) \).

Now we resume the induction. Assuming that the conclusion holds for \(n \), we have \(f(\beta) = P(\beta) + \frac{Q^{(n)}(\alpha)}{n!}(\beta - \alpha)^n \). From here, one simply substitutes \(Q^{(n)}(\alpha) = \frac{(\alpha - \beta)^{n+1}}{(n+1)!} \) from the equation we derived in the previous paragraph.

9. Rudin Ch 5, Exercise #26. Suppose \(f \) is differentiable on \([a, b] \), \(f(a) = 0 \), and there is a real number \(A \) such that \(|f'(x)| \leq Af(x) \) on \([a, b] \). Prove that \(f(x) = 0 \) for all \(x \in [a, b] \).

Solution.

Note that we may as well assume that \(A > 0 \), for if \(A \leq 0 \) then \(0 \geq |f'(x)| \leq 0 \), or \(f'(x) = 0 \) for all \(x \in [a, b] \), in which case we have that for \(t \in [a, b] \), \(f(t) = f(t) - f(a) = f'(c)(t-a) \) for some \(c \in [a, t] \), and since \(f'(c) = 0 \) we have \(f(t) = 0 \), i.e. \(f(x) = 0 \) for all \(x \in [a, b] \).

Assuming now that \(A > 0 \), set \(\Delta = \frac{b-a}{n} \), where \(n \in \mathbb{Z}^+ \) is chosen such that \(\frac{b-a}{n} < \frac{1}{A} \) (note that we can arrange for this by the Archimedean property). For \(i \in \{0, 1, 2, \ldots, n\} \), set \(t_i = a + i\Delta \), so that \([a, b] = \bigcup_{i=1}^{n}[t_{i-1}, t_i] \).

We show by induction on \(i \) that \(f \) is 0 on \([t_{i-1}, t_i] \).

Base case is when \(i = 1 \), or showing that \(f \) is 0 on \([a, a+\Delta] \). Set \(M \) be the sup of the set \([-|f(x)| \mid x \in [a, a+\Delta] \]. Taking \(x \in [a, a+\Delta] \), we have by the Mean Value Theorem there exists \(c \in [a, x] \) such that \(|f(x)| = |f(x) - f(a)| = |f'(c)||x-a| \leq A|f(c)||x-a| \leq A \cdot \Delta \cdot M \). This being true for all \(x \in [a, a+\Delta] \), we have \(M \leq A \cdot \Delta \cdot M \). If \(M > 0 \), then dividing the inequality by \(M \), we have \(1 \leq A \cdot \Delta \), contradicting \(\Delta < \frac{1}{A} \). Therefore \(M = 0 \) and \(f(x) = 0 \) for all \(x \in [a, a+\Delta] \).

Assume now that \(f \) is 0 on \([t_0, t_1] \cup [t_1, t_2] \cup \ldots \cup [t_{i-1}, t_i] \). We now show that \(f \) is 0 on \([t_i, t_{i+1}] \). We know that \(f(t_i) = 0 \). The same argument applies: Let \(M \) be the sup of the set \([-|f(x)| \mid x \in [t_i, t_{i+1}] \]. For any \(x \in [t_i, t_{i+1}] \), we have \(|f(x)| = |f(x) - f(t_i)| = |f'(c)||x-t_i| \leq A|f(c)| \cdot \Delta \leq A \cdot \Delta \cdot M \), for some \(c \in [t_i, x] \). This being true for all \(x \in [t_i, t_{i+1}] \), we have \(M \leq A \cdot \Delta \cdot M \). Same argument as before, we must then have \(M = 0 \). Therefore \(f = 0 \) on \([t_i, t_{i+1}] \).

10. Rudin Ch 5, Exercise #27. Let \(\phi \) be a real function defined on a rectangle \(R \) in the plane, given by \(a \leq x \leq b, \alpha \leq y \leq \beta \). A solution of the initial-value problem

\[
y' = \phi(x, y), \quad y(a) = c \quad (\alpha \leq c \leq \beta)
\]

is, by definition, a differentiable function \(f \) on \([a, b] \) such that \(f(a) = c, \alpha \leq f(x) \leq \beta \), and

\[
f'(x) = \phi(x, f(x)) \quad (a \leq x \leq b).
\]
Prove that such a problem has at most one solution if there is a constant A such that
\[\phi(x, y_2) - \phi(x, y_1) \leq A|y_2 - y_1| \]
whenever $(x, y_1) \in R$ and $(x, y_2) \in R$.

Solution.

Suppose $g : [a, b] \to \mathbb{R}$ is yet another solution of the above initial-value problem. Consider a function $h : [a, b] \to \mathbb{R}$ defined by $h(x) = f(x) - g(x)$ for $x \in [a, b]$. Then for $x \in [a, b], |h'(x)| = |f'(x) - g'(x)| = |\phi(x, f(x)) - \phi(x, g(x))| \leq A|f(x) - g(x)| = A|h(x)|$. Also, $h(a) = f(a) - g(a) = c - c = 0$. By problem #26 then we have $h = 0$ on $[a, b]$.

We now classify all solutions to $y' = y^{1/2}, y(0) = 0$. Certainly zero function is a solution to this differential equation. Suppose now that f is a solution to the differential equation on an interval I containing 0. Certainly $f(x) \geq 0$ for all $x \in I$, so that $f'(x) = \sqrt{f(x)}$ implies that f is nondecreasing on I. For $x \in I$ and $x \leq 0$, we must thus have $0 \leq f(x) \leq f(0) = 0$, or $f(x) = 0$. We can then just (uniquely by monotonicity of f) extend f to all of $(-\infty, 0] \cup I$ by defining it to be 0 on $(-\infty, 0]$, therefore we assume that our function is defined $f : (-\infty, a] \to \mathbb{R}$, where $a \geq 0$. We can assume that $a > 0$ (if $a = 0$ the monotonicity argument above already implies that zero function is the only possible solution on $(-\infty, 0]$). Zero function defined on all of $(-\infty, \infty)$ is of course a solution to the differential equation. Since f is nondecreasing, if f is not the zero function then $f(a) = b > 0$.

Now let $c = \sup\{x \mid f(x) = 0\} = S$. Note that c exists because S has a as an upper bound and is nonempty because it contains 0. Then there is a sequence $\{x_n\}_{n \geq 1}$ in S such that $\lim_{n \to \infty} x_n = c$, and by continuity of f we must have $f(c) = 0$. We have $c < a$. Take a point l such that $c < l < a$, and note that $f(l) = s > 0$. Now let $K_n = [c + \frac{a-c}{n}, l + \frac{a-c}{n}]$ for $n \geq 2$. Then K_n is compact, f is defined on K_n and f is never zero on K_n. Therefore $f(K_n)$ is compact and does not contain 0. Considering the function $\phi(y) = y^{1/2}$ defined on K_n, we see that $\phi'(y) = \frac{1}{2} y^{-1/2}$ is defined and continuous on $f(K_n)$, so $\phi'(f(K_n))$ is compact, i.e. there is a real number A (may depend on n) such that for all $x \in f(K_n)$, $|\phi'(x)| \leq A$. Therefore if $q, w \in f(K_n)$ then by the Mean Value Theorem, $|\phi(q) - \phi(w)| = |\phi'(c)||q - w| \leq A|q - w|$, where c is between q and w. Also $f(K_n)$ is compact and connected in \mathbb{R}, so it is a closed interval (Theorem 2.47, say). If we use the rectangle R as in problem #27 as $K_n \times f(K_n)$, then $f'(x) = \phi(f(x))$ and $|\phi(y_1) - \phi(y_2)| \leq A|y_1 - y_2|$ for all $y_1, y_2 \in f(K_n)$, so the conditions of problem #27 are satisfied (note that $\phi(y)$ is independent of x here, an “autonomous” case). Therefore the solution to this differential equation with the initial condition $f(l) = s$ is unique, and it’s readily checked that the mapping $x \mapsto \frac{(x + 2\sqrt{\pi} - l)^2}{4}$ is a solution to this initial differential equation, so we must have $f(x) = \frac{(x + 2\sqrt{\pi} - l)^2}{4}$ on K_n.

Now we take $x_n = c + \frac{l-c}{n}$ for $n \geq 2$, so that $x_n \in K_n$ and $f(x_n) = \frac{(x_n + 2\sqrt{\pi} - l)^2}{4}$. Note that $\lim_{n \to \infty} x_n = c$, and so by continuity of f we must then have $0 = f(c) = \frac{(c + 2\sqrt{\pi} - l)^2}{4}$. $s = f(l)$, so we must have $c + 2\sqrt{f(l)} - l = 0$, or
\[f(l) = \frac{(l-c)^2}{4} \]
Therefore
\[f(x) = \begin{cases} 0 & \text{if } x \leq c \\ \frac{(l-c)^2}{4} & \text{if } x \geq c \end{cases} \]