Problem 1 (2.1.9). Prove that a length space is locally path-connected: every neighborhood of any point contains a smaller neighborhood which is path-connected.

Proof. Let X be a length space with length function L. The choice of path-connected neighborhood here is really easy: for some open neighborhood about a point $x \in X$, there is some η–ball $B(x, \eta)$ (in the topology of the length space) located inside the neighborhood. We claim this ball is path-connected.

Let $y \in B(x, \eta)$ and say $d_L(x, y) = \delta$ (recalling that d_L is the metric induced by L). Then let $0 < \epsilon < 2(\eta - \delta)$, and choose a path γ_ϵ from x to y such that $L(\gamma_\epsilon) < \delta + \epsilon$. We show that γ_ϵ lies entirely in $B(x, \eta)$ (hence showing $B(x, \eta)$ is path-connected). Assume for contradiction that γ_ϵ lies outside $B(x, \eta)$, that is, if γ_ϵ is defined on $[a, b]$ then there exists some $c \in (a, b)$ such that $\gamma_\epsilon(c) \notin B(x, \eta)$. Note that

$$L(\gamma_\epsilon) = L(\gamma_\epsilon |_ {[a, c]}) + L(\gamma_\epsilon |_ {[c, b]}),$$

and

$$L(\gamma_\epsilon |_ {[a, c]}) \geq d_L(x, \gamma_\epsilon(c)) \geq \eta \quad L(\gamma_\epsilon |_ {[c, b]}) \geq d_L(y, \gamma_\epsilon(c)) \geq \eta - \delta$$

by the metric structure of L.

Thus we conclude that $L(\gamma_\epsilon) \geq 2\eta - \delta$, but by assumption $L(\gamma_\epsilon) < 2\eta - \delta$, a contradiction. Thus we see that γ_ϵ must lie entirely inside $B(x, \eta)$, and as our choice of y was arbitrary this shows that $B(x, \eta)$ is path-connected. Hence X is locally path-connected. \hfill \Box