Let \(X \) be a complete metric space and \(Y \) be its closed subset. Assume that for any \(\epsilon \), \(Y \) has a finite \(\epsilon \)-net. Then \(Y \) is compact.

Proof: Argument by contradiction. Let \(U \) be an open covering and \(\{y_1^n, y_2^n, \ldots, y_k^n\} \) be a finite \(2^{-n} \)-net of \(Y \).

Assume \(Y \) cannot be covered by any finite open sets of \(U \). Because \(Y \subset \bigcup B_{1/2}(y_i^1) \), which is finite, without loss of generality, we may assume the first one \(B_{1/2}(y_1^1) \) cannot be covered by any finite open sets. By the assumption, there are finite many balls so that \(B_{1/2}(y_1^1) \subset \bigcup B_{1/4}(y_i^2) \). Among the balls satisfying \(B_{1/4}(y_2^2) \cap B_{1/2}(y_1^1) \neq \phi \), there must be one, we may assume \(B_{1/4}(y_2^2) \) cannot be covered by any finite open sets.

Repeating this process, we get a sequence of balls \(B_{2^{-n}}(y_1^n) \), each of which cannot be covered by any finite open sets of \(U \). By the triangle inequalities we know that \(d(y_1^n, y_m^n) < 2/2^n \) for any \(n < m \), so \(\{y_i^n\} \) is a Cauchy sequence and it has a limit \(y \in Y \).

\(\exists U \in U \) such that \(y \in U \). There is an \(r \) small enough so that \(B_r(y) \subset U \). On the other hand, since \(d(y, y_1^n) \leq 2/2^n \), we know that \(B_{2^{-n}}(y_1^n) \subset B_r(y) \) when \(2^{-n} < \frac{r}{4} \), . Therefore \(B_{2^{-n}}(y_1^n) \subset U \). But this is impossible by its construction.