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Ligand-Receptor Binding/Unbinding

§ Binding affinity – thermodynamics, free 
energy, binding sites, and stability.

§ Binding/unbinding kinetics – fast/slow, 
residence time, etc. 

§ Role of water – fluctuations, dry-wet 
transitions, and polarization.

§ Application in rational drug design.  
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Biomolecular Modeling: Explicit vs. Implicit

MD simulations
Statistical mechanics

mi!!ri = −∇ri
V (r1,…, rN )

A =
1
Z

A(p, r)∫∫ e−βH ( p,r )dpdr= A
time

Our approach
§ Variational Implicit-Solvent Model (VISM)
§ The string method for transition paths
§ Brownian dynamics (BD) and Fokker-Planck equation 

(FPE) with multi-state fluctuations
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Dzubiella, Swanson, & McCammon, PRL and JCP, 2006. 
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Variational Implicit-Solvent Model (VISM)
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water region

Γ :  solute-solvent interfaces

Poisson-Boltzmann (PB) theory
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The Level-Set Method

Relaxation Tight initial Loose initial 

Normal velocity (i.e., boundary force)
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PMF:  Level-set (circles)  vs. MD (solid line). 
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MD: Paschek, JCP 2004. Koishi et al. PRL 2004; JCP 2005.

Two xenon atoms Two paraffin plates

Estimation of Solvation Free Energies
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BphC

Stochastic level-set VISM 
for dewetting transition

p53/MDM2

Martini-VISM: Barstar-barnase
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Binding/Unbinding: 
A Model System

Outline
§ Dry and wet states, PMF
§ Transition paths, energy 

barriers, and kinetic rates
§ BD simulations and FPE 

calculations

z
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(A) Solvation free energies. (B) The total PMF.
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The String Method
(E, Run, & Vander-Eijnden, 2000s)

MEP: minimum energy path

VISM-(Simplified) String Method

is a Lagrange multiplier.

Discretization 

Iteration

! is the normalized arc length and !
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Two MEPs connecting “1s-dry", “2s-dry”, and “2s-wet" at z = 6      
with axi-asymmetric (II) and axisymmetric (III) transition states. 
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Transition energy barriers used to define the transition rates:
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Brownian dynamics (without dry-wet fluctuations)

: effective diffusion coefficient;
outside and              inside the pocket. 

:  ligand position at time    . 

Constraint:

For binding simulation: reset

For unbinding simulation: reset 

The mean first passage time (MFPT): Average over many simulations.
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A Continuous Time Markov Chain (CTMC) Model for the
Brownian Dynamics with Pocket Dry-Wet Fluctuations

Constraint:

: equilibrium distribution

Pocket dry-wet fluctuations
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FPE without dry-wet fluctuations

: Density of probability of the ligand 
at position z at time t

Boundary conditions

MFPT

FPE with dry-wet Fluctuation
: PDF of probability of the ligand at location z
at time t with the system being in the i-th state. 

Boundary conditions

Pocket dry-wet fluctuations
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The MFPT for: (A) the binding of ligand that starts from z and 
reaches the pocket at −4 Å; and (B) the unbinding of ligand that 
starts from z and reaches 15.5 Å. 

Note: The time unit in (B) is ns while that in (A) is ps. 



§ Level-set VISM for equilibrium states and PMFs.
§ Level-set VISM-string method for transition paths and rates.
§ A CTMC model and FPE for the stochastic dynamics with the dry-

wet fluctuation. 
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§ PMF and MFPT (for binding) agreeing with MD simulations.
§ The dry-wet fluctuation is crucial to the binding/unbinding kinetics: 

decelerates binding but accelerates unbinding. 

A new and efficient approach to the binding/unbinding kinetics.

Conclusions

Our studies have predicted

No tracking of individual water molecules!



Current and Future Work
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§ Coupling solute molecular mechanics with coarse-grained VISM. 
§ Fast algorithms and advanced Monte Carlo sampling. Numerical 

energy landscapes. Convergence. 
§ Real systems, e.g., beta-cyclodextrin, p53/MDM2, etc. More 

general reaction coordinates.



Thank You!
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