Coupling Monte Carlo, Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular Binding

Bo Li Department of Mathematics UC San Diego

MiA2021: Modeling and Analysis in Molecular Biology and Electrophysiology June 10-13, 2021

Main Collaborators

Zirui (Ray) Zhang – UCSD Clarisse Ricci – UCSD & D. E. Shaw Li-Tien Cheng – UCSD Shenggao Zhou – Shanghai Jiao Tong Univ., China Zhongming Wang – Florida International Univ. John Che – GNF & Cancer Center Harvard Med. School Joachim Dzubiella – Berlin & Freiberg, Germany J. Andrew McCammon – UCSD

Funding: CNSF, DFG, ERC, NIH, NSF

Outline

- Background
- A Variational Approach
- Fast Level-Set Monte Carlo Simulations
- Conclusions

Biomolecular Binding and Unbinding

- Binding affinity thermodynamics, free energy, and stability.
- Binding/unbinding kinetics fast/slow, residence time, etc.
- Binding modes: Lock-and-key?
 Conformational selection? Induced fit?
- Role of water polarization, fluctuations, dry-wet transitions, etc.
- **Application** in rational drug design.

Biomolecular Modeling: Explicit vs. Implicit

Explicit-water MD simulations

Born's model (1920)

$$\Delta G = -\frac{q^2}{8\pi\varepsilon_0 R} \left(\frac{1}{\varepsilon_m} - \frac{1}{\varepsilon_w}\right)$$

Solute-solvent interface or dielectric boundary

- Protein-water interface
 vaper-liquid interface
- Abrupt change of dielectric environment

Hasted, Ritson, & Collie, JCP 1948.

Dielectric-boundary based Implicit-solvent models

FIG. 1. Plot of dielectric constants ϵ_r , ϵ_θ against distance r in angstroms from an ion.

The Radius of an Ion (Fan-Li-White, SIAP 2021)

<u>Variational Implicit-Solvent Model (VISM)</u>

Dzubiella, Swanson, & McCammon, PRL and JCP, 2006.

Theorem. Minimizers exist. (Dai-Li-Lu, ARMA 2018)

Level-set numerical method

Loose initial

Relaxation

Martini-VISM: Barstar-barnase

Predict the kinetics by VISM-string method-BD simulations

(Zhou, et al, PNAS 2019)

A Model System

9

Monte Carlo-VISM-Level Set for Binding

(Zhang, Ricci, et al. JCTC 2021)

The total interaction free energy

$$G_{\text{total}} = G_{\text{vdW,sol-sol}} + G_{\text{elec,sol-sol}} + G_{\text{solvation}}$$

$$G_{\text{vdW,sol-sol}} = \sum_{i=1}^{M} \sum_{j=1}^{N} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{|\mathbf{r}_{i}^{A} - \mathbf{r}_{j}^{B}|} \right)^{12} - \left(\frac{\sigma_{ij}}{|\mathbf{r}_{i}^{A} - \mathbf{r}_{j}^{B}|} \right)^{6} \right]$$

$$G_{\text{elec,sol-sol}} = \frac{1}{4\pi\varepsilon_{0}\varepsilon_{w}} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{Q_{i}^{A}Q_{j}^{B}}{|\mathbf{r}_{i}^{A} - \mathbf{r}_{j}^{B}|}$$

$$G_{\text{solvation}} = \min_{\Gamma} G_{\text{VISM}}[\Gamma]$$

$$CFA: G_{\text{elec}}[\Gamma] = \frac{1}{32\pi^{2}\varepsilon_{0}} \left(\frac{1}{\varepsilon_{w}} - \frac{1}{\varepsilon_{m}} \right) \int_{\mathbb{R}^{3}\setminus\Omega_{m}} \left| \sum_{i=1}^{L} \frac{Q_{i}(\mathbf{r} - \mathbf{r}_{i})}{|\mathbf{r} - \mathbf{r}_{i}|^{3}} \right|^{2} dV_{\mathbf{r}}$$

Rigid-body Monte Carlo simulations

- Fix Molecule A.
- Random move of the center of Molecule B.
- Calculate the change of the binding free energy
- Accept or reject the move by the Metropolis criterion

Т	298	K
ρ_w	0.0333	Å-3
γo	0.174	$k_{\rm B}T/{\rm \AA}^2$
$\varepsilon_{\rm m}$	1	
<i>e</i> w	80	

A Fast Binary Level-Set Method (BLSM)

- Kernel based expression of area
- Area is approximated as the volume difference with respect to an overlapped infinitesimally thin layer
- Binary level set function: 1 (solvent) and
 -1 (solute)
- Flipping grid boxes: $1 \rightarrow -1$ or $-1 \rightarrow 1$
- Fast evaluation of energy changes

Area
$$(\Gamma) = C(\delta) \int_{\mathbf{x}\in\Omega_m} \int_{\mathbf{y}\in\Omega_w} K\left(\frac{\mathbf{x}-\mathbf{y}}{\delta}\right) d\mathbf{y} d\mathbf{x} + O(\delta^2)$$

 $C(\delta) = \left(\delta^4 \int_0^1 a_0(s) ds\right)^{-1} \text{ and } a_0(s) = \int_{B_1(\mathbf{0})\cap\{y_3>s\}} K(\mathbf{y}) d\mathbf{y}$
 $K(\mathbf{x}) = \begin{cases} \sin^2(\pi |\mathbf{x}|) & \text{if } |\mathbf{x}| \le 1\\ 0 & \text{otherwise} \end{cases}$
 $\delta \sim \sqrt{h}$

BLSM: Accuracy and Efficiency

Table 3. Solvation Free Energy (in k_BT) for Each of the Single Ions K⁺, Na⁺, Cl⁻, and F⁻: The Level-Set VISM Calculations vs Experiment⁸³

ions	$\varepsilon \left(k_{\mathrm{B}}T ight)$	σ (Å)	experiment	continuous level- set	binary level- set
K ⁺	0.008	3.85	-117.5	-112.3	-103.1
Na^+	0.008	3.49	-145.4	-131.1	-123.1
Cl ⁻	0.21	3.78	-135.4	-126.7	-113.4
F ⁻	0.219	3.3	-185.2	-171.9	-158.7

Table 4. Solvation Free Energy (k_BT) and Computation Time (s) for Different Grid Numbers with $Q = 0^a$

	surface energy		vdW energy		time	
grid no.	cont	binary	cont	binary	cont	binary
25 ³	21.46	20.64	-2.86	-3.31	1.10	0.01
50 ³	20.87	20.45	-2.78	-3.02	11.97	0.10
100 ³	20.68	20.28	-2.76	-2.66	186.44	1.15
200 ³	20.80	20.37	-2.91	-2.68	5032.03	21.21

^aHere, cont stands for the continuous level-set method, and binary stands for the binary level-set method.

Binary vs. Cont. LSM for Dry-Wet States of p53-MDM2

continuous loose

BLSM-VISM Solvation Free Energy of p53-MDM2

14

Rigid-Body MC Simulations of p53-MDM2

Superposition of productive encounters

- Red asterisks: initial configurations
- Red circles: final configurations
- Blue to yellow: configurations sampled throughout simulations
- Small window: productive encounters

Figure 8. Scatterplot of individual energy components of the total binding energy versus the binding distance for all MC-VISM simulations. Initial (randomly generated) configurations are marked by red circles, and configurations sampled throughout the simulations are colored from blue to yellow.

Observations (so far)

- VISM-binary level set predicts dry and wet states
- The binary level set method is fast enough for MC simulations
- Rigid-body MC-VISM simulations are fast but provide only approximate bound states
- Models are not flexible and difficult to overcome energy barriers

MD simulations from the approximate MC-VISM bound states quickly reach the final bound state!

Conclusions

- Development of a variational solvation approach, capturing dry and wet states
- VISM-string method predicts transition paths, energy barriers, and the binding/unbinding kinetics
- Construction of a hybrid modeling framework: MC-VISM-LS for binding simulations
- Design, implement, and test of a fast binary level-set method
- Rigid-body VISM MC simulations provide approximate bound states that can be used for fast MD simulations

Current and future studies

- Electrostatics
- Parameter optimization
- Improving sampling techniques
- Binding pathways
- More flexibilities
- More applications: binding, folding, etc.

Thank You!