Developing Modern Mathematical
 Theories and Computational Tools for Complex Biological Systems

Bo Li
Math, UCSD

The Lattimers Fellowship Lecture Division of Physical Sciences, UCSD

December 16, 2020

Thank You, George and Carol!

molecular recognition

multiscale models

surfaces/interfaces

bacterial colony

stochastic models

soln's of diff. eqns

membranes/vesicles

simulations
2D Coupled Interface Method

fast algorithms

Spatiotemporal Dynamics of Bacterial Colony Growth with Cell-Cell Mechanical Interactions

- Explain experimental findings.
- Identify key parameters.
- Understand the genetic origins.

Collaboration with Hwa's group at UCSD and Sun's group at Cal State U - Long Beach. New NSF grant.

Fig. 2. Rates of increase in the diameters of Escherichia coli colonies on nutrient agar: (a) glucose, $1 \cdot 28 \mathrm{~g} . / \mathrm{l}$; (b) glucose, $5 \cdot 12 \mathrm{~g}$./l. Medium DMA; temperature 37°.

Aerobic (circle) and anaerobic (dots) growth.

Theory and simulations

Summary

Approach: A Two-Scale Model and Simulations

Cyan cells: large angles with the z-axis. Golden cells: smaller angles.

A cross section of the colony.

Bottom view of a central part.

Bottom view of a periphery part.

Vertical Growth: Orientation and Growth Zone

A 1D model for the nutrient penetration level and growth zone

$$
\begin{aligned}
& D_{+} C^{\prime \prime}(z)=\frac{\rho_{0} \lambda_{S}}{Y} \frac{C}{C+K_{S}} \quad \text { for } z>0 \\
& C(0)=C_{0} \quad \text { and } \quad C(\infty)=0
\end{aligned}
$$

In a non-dimensionalized form
$\tilde{C}(\tilde{z}) \leq e^{-\sqrt{2 / 3}\left(\tilde{z}-\tilde{z}_{0}\right)} \quad \forall \tilde{z} \geq \tilde{z}_{0}$
$\left(\sqrt{\tilde{C}_{0}}-\frac{1}{\sqrt{2}} \tilde{z}\right)^{2} \leq \tilde{C}(\tilde{z}) \leq\left(\sqrt{\tilde{C}_{0}}-\sqrt{\frac{\ln (e / 2)}{2}} \tilde{z}\right)^{2}$

Fig. 3D simulations (green *) and 1D prediction (line or circle): semi-log plots.

Linear vertical growth: $V_{H} \propto H_{S} \lambda_{S}$.

A disk of thickness H_{S}
Vertical ascending speed $\boldsymbol{V}_{\boldsymbol{H}} \propto \boldsymbol{H}_{S} \boldsymbol{\lambda}_{S}$

Radial Growth: Only cells in a ring at the edge grow radially.

top view: xy projection; $t=0.1$

side view: $x z$ projection; $t=0.1$

top view, all cells: $x y$ projection; $t=0.1$

Modeling and Simulations of Molecular Interactions

 (with J. A. MaCammon, L.-T. Cheng, J. Dzubiella, etc.)Variational Implicit-Solvent Model (VISM)
Free-energy functional

$$
\begin{aligned}
& G[\Gamma]=P \operatorname{vol}\left(\Omega_{m}\right)+\gamma_{0} \int_{\Gamma}(1-2 \tau H) d S \\
& \quad+\rho_{w} \int_{\Omega_{w}} \sum_{i} U_{L J, i}\left(\left|\vec{r}-\vec{r}_{i}\right|\right) d V+G_{\text {elec }}[\Gamma]
\end{aligned}
$$

The level-set method

BphC

Stochastic level-set VISM for dewetting transition

Two charged paraffin plates

Left: no charges.
Middle: partial charges (0.2 e, 0.2 e). Right: partial charges (0.2 e, -0.2 e). Color represents mean curvature.

Martini-VISM: Barstar-barnase

Identifying binding sites

Left: VISM pockets (primary: red; secondary: blue; tertiary green; etc.) Right: A primary pocket in a hydrophilic region aligned with a cocrystalized ligand.

grid size $(\AA$ ®	grid number	LSM: rel. error	B-LSM: rel. error	LSM: time	B-LSM: time (s)
0.64	$25 \times 25 \times 25$	0.0412	0.0298	1.10	0.01
0.32	$50 \times 50 \times 50$	0.0124	0.0245	11.97	0.10
0.16	$100 \times 100 \times 100$	0.0026	0.0136	186.44	1.41
0.08	$200 \times 200 \times 200$	0.0015	0.0099	5032.03	26.11

Table 1. Comparison of the level-set method (LSM) and the fast binary level-set method (B-LSM).

Thank You!

