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A level-set method is developed for numerically capturing the equilibrium solute-solvent interface
that is defined by the recently proposed variational implicit solvent model �Dzubiella, Swanson, and
McCammon, Phys. Rev. Lett. 104, 527 �2006�; J. Chem. Phys. 124, 084905 �2006��. In the level-set
method, a possible solute-solvent interface is represented by the zero level set �i.e., the zero level
surface� of a level-set function and is eventually evolved into the equilibrium solute-solvent
interface. The evolution law is determined by minimization of a solvation free energy functional that
couples both the interfacial energy and the van der Waals type solute-solvent interaction energy. The
surface evolution is thus an energy minimizing process, and the equilibrium solute-solvent interface
is an output of this process. The method is implemented and applied to the solvation of nonpolar
molecules such as two xenon atoms, two parallel paraffin plates, helical alkane chains, and a single
fullerence C60. The level-set solutions show good agreement for the solvation energies when
compared to available molecular dynamics simulations. In particular, the method captures solvent
dewetting �nanobubble formation� and quantitatively describes the interaction in the strongly
hydrophobic plate system. © 2007 American Institute of Physics. �DOI: 10.1063/1.2757169�

I. INTRODUCTION

The correct description of solvation free energies and
detailed solution structures of biomolecules is crucial to our
understanding of molecular processes in biological systems.
Efficient theoretical approaches to such descriptions are typi-
cally given by so-called implicit �or continuum� solvent
models of the aqueous environment.1,2 In those models, the
solvent molecules and ions �e.g., as in physiological electro-
lyte solutions� are treated implicitly and their effects are
coarse grained. In particular, the description of the solvent is
reduced to that of the continuum solute-solvent interface and
related macroscopic quantities, such as the surface tension
and the position-dependent dielectric constant serving as in-
put or fitting parameters.

Most of the existing implicit solvent models are built
upon the concept of solvent accessible surface area �SASA�

defined in several ways.3,4 In these models, the solvation-free
energy is proportional to the SASA for the nonpolar contri-
bution, complemented by the Poisson-Boltzmann5–7 �PB� or
generalized Born8,9 description of electrostatics, i.e., the po-
lar contribution. Although successful in many cases, the gen-
eral applicability of these rather empirical models with many
system-dependent, adjustable parameters �e.g., individual
atomic surface tensions� is often questionable, when com-
pared to more accurate but computationally expensive ex-
plicit molecular dynamics �MD� simulations or experimental
results. It is believed that the key issues here are the decou-
pling and separate analysis of surface area, dispersion and
polar parts of the free energy, and the inaccurate free energy
estimation due to a predefined solvent-solute interface, an ad
hoc input. It is additionally well established by now that
cavitation free energies do not scale with surface area for
high curvatures,10,11 a fact of critical importance in the im-
plicit modeling of hydrophobic interactions in biomolecular
systems.12

Recently, Dzubiella et al.13,14 have developed a varia-
tional implicit solvent model. The basic idea of this approach
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is to introduce a free energy functional of all possible solute-
solvent interfaces, coupling both the nonpolar and polar con-
tributions of the system and allowing for curvature correc-
tion of the surface tension to approximate the length-scale
dependence of molecular hydration. Minimizing the func-
tional leads to a partial differential equation whose solution
determines the equilibrium solute-solvent interface and the
minimum free energy of the solvated system. This stable
solute-solvent interface is an output of the theory. It results
automatically from balancing the different contributions of
the free energy. First applications of this approach to simple,
highly symmetrical solutes showed promising results when
compared to MD simulations.13,14

In this work, we develop a level-set method for numeri-
cally capturing arbitrarily shaped solute-solvent interfaces
determined by the solvation free energy functional in the
variational implicit solvent model. In our method, a possible
solute-solvent interface is represented by the zero level set
�i.e., the zero level surface� of a level-set function and an
initial surface is evolved eventually into an equilibrium
solute-solvent interface. The level-set method is a general
technique for numerically tracking moving fronts with pos-
sible topological changes such as interface merging and
breakups.15–17 Previous applications include two-phase fluid
flow, crystal growth, materials modeling, shape optimization,
imaging process and graphics, etc.; see Refs. 16 and 17 for
related references. Recently, Can et al.18 used the level-set
method for imaging a large biomolecular surface based on a
SASA-type model. Our work is quite different: we not only
represent molecular surfaces using level sets, but further de-
velop an evolution algorithm that numerically determines the
stable equilibrium solute-solvent interface based on physical
rationale.

Our new level-set techniques include two efficient and
stable methods. One is a careful treatment of singularities
formed during the level-set evolution based on certain geo-
metrical motion of the molecular surface. The other is a two-
grid numerical method for the calculation of the free energy
using a Lennard-Jones-type potential which changes dra-
matically for short range interactions.

We apply our method to the solvation of nonpolar mol-
ecules such as two xenon atoms, two paraffin plates, model
helical alkane chains, and a single C60 molecule. Our exten-
sive numerical results show good agreement with MD calcu-
lations. In particular, our method is able to capture the sol-
vent dewetting phenomenon, i.e., the formation of a
nanobubble within the strong hydrophobic confinement
caused by the paraffin plate arrangement. Furthermore, we
demonstrate that topological changes, such as the rupture of
a nanobubble and the fusion/breakup of the surface of two
molecules, are captured by our level-set method.

The rest of the paper is organized as follows: In Sec. II,
we review the variational implicit solvent model. This is fol-
lowed by a description of our level-set method in Sec. III. In
Sec. IV, we report the numerical results of our level-set cal-
culation of several nonpolar systems. Finally, in Sec. V, we
conclude and give an outlook to further necessary extensions
of our approach.

II. VARIATIONAL IMPLICIT SOLVENT APPROACH

In the following, we briefly summarize, with a few re-
marks, the variational implicit solvent approach that has been
recently proposed by Dzubiella et al.13,14

A. Geometry

Consider the system of an assembly of solutes with ar-
bitrary shape and composition surrounded by a solvent. Let
us denote by W the region of the entire system that includes
both the solute and solvent regions. Let us denote by V the
region of solutes, or the cavity region, which is empty of
solvent. We identify the solute-solvent interface to be the
boundary of the solute region V and denote it by �=�V. We
assume that the surface � consists of possibly many con-
nected components, each of which is closed and continuous.

For the cavity region V, we assign a volume exclusion
function,

v�r� = �0, for r � V
1, else.

�
Mathematically, this is the characteristic function of the sol-
vent region W \V which is the set of points in W but not in
V. The volume Vol �V� of the solute region V and the surface
area Area ��� of the interface � can then be expressed as
functionals of the volume exclusion function v�r� via

Vol �V� = �
V

d3r = �
W

�1 − v�r��d3r ,

Area ��� = �
�

dS = �
W

��v�r��d3r ,

where �	�r is the usual gradient operator with respect to
the position vector r and ��v�r�� is the � function concen-
trated on the boundary �=�V of the cavity region V. The
expression dS	��v�r��d3r can thus be identified as the in-
finitesimal surface element. We remark that, within the
framework of the variational implicit solvent model,13,14 ei-
ther the volume exclusion function v of the cavity or its
boundary � can be used as the ultimate, direct variable of the
solvation free energy of an underlying system.

We assume that the position of each solute atom ri and
the solute conformation are fixed. Thus, the solutes can be
considered as an external potential to the solvent without any
degrees of freedom. In this continuum solvent model, the
solvent density distribution is simply ��r�=�0v�r�, where �0

is the bulk density of the solvent. This means that we use a
sharp interface approximation.

B. Free energy functional

For a given solvation system characterized by the cavity
region V with its boundary �, the solute-solvent interface,
the following ansatz of the Gibbs free energy was proposed
in Refs. 13 and 14 as a functional of the volume exclusion
function v�r� or its boundary �:
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G�v� = Gvol�v� + Gsur�v� + GvdW�v� + Gele�v�

= P�
W

�1 − v�r��d3r + �
W

��r,����v�r��d3r

+ �0�
W

U�r�v�r�d3r + Gele�v� . �1�

The first term,

Gvol�v� = P�
W

�1 − v�r��d3r = P Vol�V� , �2�

proportional to the volume of V, is the energy of creating a
cavity in the solvent against the difference in bulk pressure P
between the liquid and vapor phase, P= Pl− Pv. In water at
normal conditions or any fluid close to phase coexistence,
this pressure difference is small and can often be neglected
for solutes of microscopic size �
nm�.

The second term,

Gsur�v� = �
W

��r,����v�r��d3r = �
�

��r,��dS , �3�

describes the energetic cost due to the solvent rearrangement
around the cavity, i.e., near the solute-solvent interface �, in
terms of a function ��r ,�� with dimensions of free energy/
surface area. This surface energy penalty is thought to be the
main driving force behind hydrophobic phenomena.11 It is a
solvent specific quantity that also depends on the particular
topology of the solute-solvent interface and varies locally in
space.19

The exact form of ��r ,�� is not known. The following
approximation based on a first-order curvature correction
from scaled-particle theory20 was made in Refs. 13 and 14:

��r,�� = �0�1 − 2�H�r�� , �4�

where �0 is the constant solvent liquid-vapor surface tension
for a planar interface, � is a positive constant often called the
Tolman length,21 and

H�r� =
1

2
��1�r� + �2�r��

is the local mean curvature in which �1�r� and �2�r� are the
local principal curvatures of the interface �.

It has been shown in MD simulations that the surface
tension �0 is the asymptotic value of the solvation free en-
ergy per unit surface area for hard spherical cavities in water
in the limit of large radii.10,22 In this system the Tolman
length has been estimated to be of molecular size and has
values of 0.7–0.9 Å. As its exact value is not known, the
Tolman length may serve as the only fitting parameter in the
variational continuum solvent model. The mean curvature H
is defined only on the solute-solvent interface �. We have
chosen the convention in which the curvatures are positive
for convex surfaces �e.g., a spherical cavity� and negative for
concave surfaces �e.g., a spherical droplet�.

We remark that, by the Hadwiger theorem in differential
geometry,23 the geometrical part of the energy as a valuation
of the closed surface � should have all the terms in Gvol

+Gsur �volume, surface area, and surface integral of the mean
curvature� plus an additional term of the surface integral of
the Gaussian curvature

K�r� = �1�r��2�r� .

But, by the Gauss-Bonnet theorem,24 the Gaussian curvature
is an intrinsic geometric property of the surface �, and its
contribution to the free energy is an additive constant. There-
fore, it does not change our energy minimization process. We
note that the Hadwiger theorem was used in a generalization
of the classical theory of capillarity25 and recently in a mor-
phometric approach to solvation.26,27

The third term,

GvdW�v� = �0�
W

U�r�v�r�d3r = �0�
W\V

U�r�d3r , �5�

is the total energy of the nonelectrostatic, van der Waals
type, solute-solvent interaction given a solvent density distri-
bution �0v�r�. The potential

U�r� = �
i=1

N

Ui��r − ri�� �6�

is the sum of Ui that describes the interaction of the ith solute
atom �with N total atoms� centered at ri with the surrounding
solvent. Each term Ui includes the short-ranged repulsive
exclusion and the long-ranged attractive dispersion interac-
tion between each solute atom i at position ri and a solvent
molecule at r. Classical solvation studies typically represent
the interaction Ui as an isotropic Lennard-Jones �LJ� poten-
tial,

ULJ�r� = 4��
�

r
�12

− 
�

r
�6� , �7�

with an energy scale �, length scale �, and center-to-center
distance r.

The last term Gele�v� is the electrostatic energy due to
charges possibly carried by solute atoms and the ions in the
solvent. In this work, we only consider nonpolar solutes.
Therefore, we shall neglect this term in what follows and
refer to Refs. 6, 7, 14, and 28 and our forthcoming work29 for
details. With this and considerations �1�–�6�, we find for the
final form of the nonpolar free energy functional,

G�v� = P Vol �V� + �
�

�0�1 − 2�H�r��dS

+ �0�
i=1

N �
W\V

Ui��r − ri��d3r , �8�

where each interaction potential Ui �1	 i	N� has the form
of Eq. �7�.

C. Free energy minimization

Let vmin�r� with its boundary �min be the exclusion func-
tion which minimizes functional �8�. Then, the resulting
Gibbs free energy of the system is given by G�vmin�. The
solvation free energy 
G is the reversible work to solvate the
solute and is given by
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G = G�vmin� − G0,

where G0 is a constant reference energy which can refer to
the pure solvent state and an unsolvated solute. The solvent-
mediated potential of mean force along a given reaction co-
ordinate x �e.g., the distance between two solute centers of
mass� is given, up to an additive constant, by w�x�
=G�vmin�, where vmin�r� must be evaluated for every x.

A necessary condition for � to be an energy minimizing
solute-solvent interface is that the first variation of the free
energy functional �Eq. �8�� vanishes at the corresponding
volume exclusion function v, i.e.,

�G�v�
�v

= 0, �9�

at every point of the boundary �. This energy variation can
be identified as a distribution over the interface � and is
given by13,14

�G�v�
�v

= P + 2�0�H�r� − �K�r�� − �0U�r� . �10�

The partial differential equation determined by Eqs. �9� and
�10� for the optimal exclusion function vmin�r�, or equiva-
lently the optimal solute-solvent interface �min, is expressed
in terms of pressure, curvatures, short-range repulsion, and
dispersion, all of which have dimensions of energy density. It
can be interpreted as a mechanical balance between the
forces per surface area generated by each of the particular
contributions. A similar expression without the dispersion
term was derived by Boruvka and Neumann within a gener-
alization of classical capillarity.25

III. THE LEVEL-SET METHOD

A. Basics

The starting point of the level-set method is to identify a
surface � in three-dimensional space as the zero level set of
a function �=��r�,15–17

� = �r:��r� = 0� .

This means that the surface consists exactly of those points r
at which the function � vanishes. This is in contrast with a
parametric description of the surface �: r=r�� ,
� with � ,

the parameters. The function �=��r� is called a level-set
function of the surface �. Clearly, the level-set function
whose zero level set represents the surface � is vastly nonu-
nique.

The level-set function � can be used to calculate many
important geometrical quantities of the surface �. For in-
stance, the unit normal vector n at the interface �, the mean
curvature H, and the Gaussian curvature K can all be ex-
pressed in terms of the level-set function �,

n =
��

����
, H =

1

2
� · n, K = n · adj�He����n , �11�

where He��� is the 3�3 Hessian matrix of the function �
whose entries are all the second order partial derivatives �ij

2 �
of the level-set function �, and adj�He���� is the adjoint
matrix of the Hessian He���.

Consider now a moving surface �=��t� at time t. Let
�=��r , t� be a level-set function that represents the surface
��t� at time t. The basic idea is now to track the motion of
the moving surface ��t� by evolving the level-set function
��r , t� and its zero level set at each time t. The level-set
function is determined by the so-called level-set equation,

�t� + vn���� = 0, �12�

where vn is the normal velocity at the point r on the surface
��t�. This normal velocity vn=vn�r�t�� of each point r=r�t�
on the surface �=��t� at time t is defined by

vn = vn�r�t�� =
dr�t�

dt
· n . �13�

The velocity is usually extended away from the surface so
that the level-set equation �Eq. �12�� can be solved in a finite
computational box.

One of the major advantages of the level-set method is
its easy handling of topological changes of surfaces during
the surface evolution. For instance, the merge or break of
bubbles can be captured by level-set calculations. This
method is thus a perfect choice for capturing different kinds
of stable solute-solvent interface structures.

B. Normal velocity

We apply the level-set method to evolve an initial inter-
face to an equilibrium solute-solvent interface. This means
that our level-set evolution is an optimization process rather
than the real dynamics of the solvation system. We need to
choose the governing normal velocity of the interface in such
a way that it will decrease the free energy during the surface
evolution. As in common practice, we define the normal ve-
locity of level set to be the negative of the first variation of
the Gibbs free energy,

vn = −
�G�v�

�v
. �14�

By Eq. �10�, the normal velocity is a function defined on �
and is given by

vn = − P − 2�0�H�r� − �K�r�� + �0U�r� . �15�

Here, we choose the unit normal n at � to point from the
solute to the solvent region.

Notice that the interface �=��t�, the volume exclusion
function v=v�t�, and the normal velocity vn=vn�t� all depend
on the time t. This is not the time in the real dynamics but
rather represents the state of optimization iteration. In par-
ticular, the normal velocity does not represent that of the
interface evolution in real dynamics of the system, and hence
can have nonphysical units. It follows from the chain rule
and the definition of the normal velocity �Eq. �13�� that the
time derivative of the Gibbs free energy G�v�t�� is
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d

dt
G�v�t�� = �

��t�

�G�v�t��
�v

�dr�t�
dt

· n�dS

= − �
��t�
��G�v�t��

�v
�2

dS 	 0.

This shows that the normal velocity defined by Eq. �14� de-
creases the energy.

With a given initial surface, we solve the level-set equa-
tion �Eq. �12�� at each time step with the normal velocity
given by Eq. �15� until a steady state is reached. The steady-
state solution gives a stable, energy minimizing, solute-
solvent interface.

C. Implementation

Our level-set algorithm consists of the following steps:
Step 1. Input parameters and initialize an interface. The

physical parameters include the pressure difference P, the
macroscopic surface tension �0, the Tolman length �, the
water density �0, the LJ energy and length parameters �i and
�i, and the coordinates of centers ri of all the fixed solute
atoms i. An initial interface is defined by its level-set func-
tion.

Step 2. Calculate the unit normal n, the mean curvature
H, and the Gaussian curvature K by Eq. �11�. Calculate the
free energy using formula �8�.

Step 3. Calculate the normal velocity vn using formula
�15� and extend the normal velocity vn to the entire compu-
tational domain;

Step 4. Solve the level-set equation �Eq. �12��. As usual,
this equation needs to be solved only locally near the inter-
face �, since the value of � away from � will not affect the
location of �.

Step 5. Reinitialize the level-set function �. The gradient
of a solution to the level-set equation �Eq. �12�� at a certain
time t can be sometimes too large or too small. This can lead
to an inaccurate approximation of the normal n, the mean
curvature H, and the Gaussian curvature K by Eq. �11�. The
reinitialization process uses the solution of the level-set
equation �Eq. �12�� to obtain a new level-set function � that
has the same zero level set, i.e., the location � is not
changed, and that keeps the gradient ���� away from 0 or
from being too large.

Step 6. Locate the interface � by the level-set function
obtained in the previous step. Update the time step and go
back to step 2.

There are two sources of instability in our level-set cal-
culations. One is the Gaussian curvature term in the normal
velocity �Eq. �15��. Elementary calculations show that the
motion by the combination of the mean and Gaussian curva-
tures, the H and K terms in Eq. �15�, results in a parabolic
equation of degenerate type in certain parameter regimes.
Specifically, one or two of the three eigenvalues of a matrix
that defines the type of differential equations can become 0
or even negative. In such a case, we add a small positive
constant to such eigenvalues so that the evolution is regular-
ized. Such a regularization does not affect the final equilib-
rium solution.

The other is the rapid change of values of the Lennard-
Jones potential �Eq. �7�� when the distance is small. This can
easily lead to large errors in the calculation of the free en-
ergy. To deal with this instability, we have developed a two-
grid algorithm. Our idea is to evolve the level-set function on
a coarse grid and to calculate the energy on a fine grid. In
doing so, we use interpolation and projection techniques to
pass along information between the two grids. Numerical
results show that this treatment works very well.

IV. APPLICATIONS

In this section, we report on our level-set calculations of
four nonpolar systems and compare the results to available
MD simulations using the SPC/E water model.30 The four
systems are two xenon atoms, two helical alkane chains, a
single fullerene C60, and two paraffin plates.

In all of our calculations, we focus on water close to
normal conditions �T=298 K and P=1 bar� so that the pres-
sure term in the free energy can be neglected. The other
parameters are the macroscopic surface tension �0, the Tol-
man length �, and the water density �0. The surface tension
for SPC/E water has been calculated to be �0=72 mN/m in
agreement with the value of real water.31 The density is �0

=0.033 Å−3. The Tolman length has been estimated roughly
for SPC/E to be �=0.9 Å �Ref. 22� and will serve as our only
fitting parameter. All solutes are modeled by assemblies of
identical and uncharged spheres interacting with the LJ po-
tential �Eq. �7�� with energy and length parameters � and �
as summarized in Table I. These solutes are assumed to be in
fixed configurations and have no degrees of freedom.

For the helical alkanes and the C60, we perform addi-
tional MD simulations to provide data for the solvation free
energy that is not available in literature. The simulations are
done using the MD simulation package DLPOLY �Ref. 32�
in the NPT ensemble with up to N=800 SPC/E water mol-
ecules. The solvation free energy is calculated using standard
thermodynamic integration33 procedures. Here, at least 15
simulation runs for different integration parameters �
� �0,1� per system are considered with 100 ps equilibration
time and 1 ns for gathering statistics, where � corresponds to
the scaled LJ length. The obtained ensemble averages were
interpolated by an Akima spline and the resulting curve in-
tegrated to get the solvation free energy.

In the level-set method, we usually start with a large
spherical surface in a cubic box that encloses all the fixed
solute atoms and then evolve the surface to minimize the
nonpolar solvation energy. The box length is between
15–25 Å and a grid size of 503 or 1003 bins is used depend-

TABLE I. Investigated system LJ parameters: the atom-water LJ energy
parameter � is in units of the thermal energy kBT and the atom-water LJ
length � is in Å.

System � �kBT� � �Å�

Xenon 0.431 3.57
Helix �CH2� 0.265 3.54
C60 �C� 0.158 3.19
Plate �CH2� 0.265 3.54
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ing on the solute size and desired computational speed and
accuracy. Finite-size corrections to the dispersion part of the
energy are considered by integrating the long-ranged LJ in-
teractions over a homogeneous water distribution beyond the
box up to infinity. The computational time of a single level-
set minimization takes several hours on a single-processor
computer but significantly depends on the choice of the ini-
tial configuration. Independent of the latter, we find that the
system always converges to a stable configuration corre-
sponding to an energy minimum. We have not investigated
whether the systems exhibit multiple energy minima and
postpone this rather complex issue to a future study.

A. Two xenon atoms

In this example, we investigate the performance of our
method for a simple system of microscopic nonpolar solutes
that consists of two xenon �Xe� atoms. For this, we fix the
Xe atoms in a center-to-center distance d and calculate the
solvent-mediated interaction w�d� between them, which is
basically the solvation energy dependent on the coordinate d.
The total potential of mean force �pmf� W�d� is the sum of
the solvent-mediated part and the intrinsic Xe–Xe vacuum
interaction which can be modeled also by an LJ interaction.
The water-xenon LJ interactions we use for our level-set cal-
culations are taken from Paschek34 who accurately calculated
the pmf in MD simulations. For our comparison, we find that
Tolman lengths between �=0.9 and 1.0 Å give reasonable
agreement when compared to the MD results, close to the
value of 0.9 Å estimated by previous MD simulations.

In Fig. 1, we plot the solvent-mediated part w�d� and the
total pmf W�d� of our level-set calculation compared to the
MD simulation reported by Paschek34 for a Tolman length
�=0.95 Å. Also plotted are interface images from the level-
set solution at three selected distances. For small separations
d�4.5 Å, the solution gives two overlapping spheres and
the solvent-mediated interaction is attractive in agreement
with the MD simulations. The attraction comes from a
smaller water-accessible surface due to the overlap of
spheres and the gain of resulting interfacial energy. At sepa-
rations d�5.5 Å, a maximum of about 1kBT in height occurs
in both MD and level-set calculations, also in good agree-

ment with each other. In the continuum approach, this des-
olvation barrier is implicitly accounted for by the unfavor-
able LJ interaction when replacing water molecules adjacent
to the first Xe atom by the second Xe atom. For separations
d�6 Å, the interface breaks �water penetrates� and the
stable level-set solution corresponds to two isolated spheres.
The shallow oscillations in the MD curve for d�7.5 Å are
due to explicit water structuring around the Xe atoms and are
not captured by our continuum method. Overall, however,
we can judge that the agreement is good and the dominant
features of the pmf are well described by our macroscopic
method using just one fit parameter which is close to previ-
ous estimates.

B. Helical alkane chains

In order to check how our level-set method performs for
larger and more complex shaped molecules, we study model
helical alkane chains that are assembled by CH2 atoms mod-
eled by the OPLS-AA force field;35 see Table I. We investi-
gate the solvation of two different configurations, one more
loosely packed involving 32 atoms �alkane A� and the other
one more tightly packed using 22 atoms with hardly room
for water in the helical core �alkane B�.

The results are plotted in Fig. 2 which include a com-
parison of our level-set calculation and a typical SASA-type
surface constructed by taking the envelope of all the LJ
spheres. Though they look quite similar, our level-set result
leads to a much smoother solute-solvent interface, a result
from the minimization of interface area based on the energy
functional.

From our MD simulations, we estimate solvation free
energies of 
G�6kBT and 
G�7kBT for alkanes A and B,
respectively. The energies are positive and small and have
the same order of magnitude as the solvation energy of small
alkanes.36,37 These relatively small free energies are a well-
known consequence of enthalpy-entropy compensation in the
solvation of nonpolar solutes.36,37 It has been shown that 
G
can be decomposed in solute-solvent enthalpy 
Uuv and
solute-solvent entropy T
Suv, while the solvent-solvent en-
thalpy and entropy exactly cancel each other.36,37 For nonpo-
lar solutes the enthalpic part is the �ensemble-averaged� total
solute-solvent LJ interaction which we estimate by our MD
simulations to be a large 
Uuv�−107kBT and −55kBT for
alkanes A and B, respectively, indicating solute-solvent en-
tropies of the same order of magnitude.

In the level-set method, we can reproduce the total sol-
vation free energy for both alkanes within 5% by using a
Tolman length of �=1.3 Å. In our implicit model, we can
identify the solute-solvent enthalpic part 
Uuv by the LJ term
GvdWªGvdW�vmin� and the entropic part −T
Suv by the in-
terfacial term GsurªGsur�vmin� in the free energy functional;
we find large values of GvdW=−95kBT and Gsur=101kBT for
helix A and GvdW=−48kBT and Gsur=55kBT for helix B,
close to the values obtained by the MD simulations. We note
that small variations of the Tolman length � have a negligible
effect on the enthalpic part of the free energy while its influ-
ence on the entropic �interfacial� part is noticeable. For ex-
ample, we find Gsur=63kBT for helix B when using �

FIG. 1. Comparison of the interaction between two xenon atoms from level-
set and MD calculations. The solid line and dotted line with symbols
�circles� are the solvent-mediated interaction w�d� by the MD and level-set
calculations, respectively. The inset displays the full pmf w�d� where the
vacuum Xe–Xe LJ interaction is added to the solvent-mediated part.
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=1.1 Å instead of Gsur=55kBT for �=1.3 Å. As the total sol-
vation free energy is a difference of two large quantities, the
interfacial part of the free energy functional �Eq. �1��, in
particular, the curvature correction, has to be reconsidered
carefully.

In Fig. 3, we show the same two helical chains but using
a color code that indicates the value of mean curvature at

each point of the solute-solvent interface. The curvature var-
ies between positive and negative values, showing concave
parts as well �blue�. The highest positive curvature �deep red�
is roughly given by the inverse of the length � of one LJ
sphere. Note that the concave parts of the loosely packed
helix are within the helical core in contrast to the convex
outer parts. This qualitatively different hydration of the helix
depending on the local �convex or concave� geometry is in
line with structural studies of water at protein-water
interfaces.38

These examples show that complex shapes with varying
interface curvature, typical in protein structures, can be effi-
ciently tackled by the variational implicit solvent model in
conjunction with the level-set method. The solute-solvent in-
terface and the resulting energies seem to be well described
by our methods, in particular, when regarding the fact that
the solvation free energy is a difference of large entropic and
enthalpic contributions which often leads to a large error in
the calculation of the total solvation free energy.

FIG. 2. �Color online� A comparison of the level-set �left� and SASA �right� description of helical polymer chain A with 32 atoms �above� and B with 22 atoms
�below�, respectively.

FIG. 3. �Color� Level-set calculations of helical molecules. Color represents
mean curvature. The units of mean curvature are in Å−1.
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C. A single molecule of fullerenes C60

Another interesting molecule which can be reasonably
modeled as a nonpolar entity is the C60 molecule, the bucky-
ball. The C-atom-water LJ parameters are taken from Ref. 39
and are also shown in Table I. The experimental solvation
free energy in water is typically close to zero40 in agreement
with our MD simulations which yield 
G�−1kBT. Previ-
ously more empirical implicit solvent studies show that the
large interfacial energy penalty is more than compensated by
the strong dispersion attraction between the water and the
tightly packed carbon shell resulting in a small and negative
total solvation free energy.40 A related unusual repulsive
solvent-mediated interaction between two C60 molecules has
been observed in MD simulations.41

Our level-set result for the equilibrium interface is
shown in Fig. 4, featuring a smooth soccer-like surface. Us-
ing a Tolman length of �=1.3 Å, we can reproduce the MD
solvation energy within 5%. A separate analysis of the inter-
facial energy part and the dispersion part shows that a large

GvdW=−49kBT is gained from dispersion attraction while

Gsur=48kBT surface energy is paid. Our MD simulations
confirm this cancellation of energy contributions quantita-
tively by showing enthalpic and entropic contributions of
�−50kBT and �49kBT, respectively.

In Fig. 5, we show the same C60 molecule obtained by
our level-set calculation with a color code that indicates the
value of mean curvature of the interface. In contrast to the
helical molecules, we find only convex curvatures varying
from zero to roughly the inverse of the LJ size of one C
atom. The curvature distribution displays the typical five-
and sixfold structure of the C60 molecule.

As in the previous case of the two helical alkanes, this
example demonstrates that the subtle balance between inter-
face �entropic� and dispersion �enthalpic� terms and thus the
correct interface location and curvature are crucial for an
accurate description of solvation free energies and are well
captured by our methods.

D. Two parallel nanometer-sized paraffin plates

In our last example, we consider the strongly hydropho-
bic system of two parallel paraffin plates as investigated in
the explicit water MD simulations by Koishi et al.42 Each
plate consists of 6�6 fixed CH2 atoms with atom-water LJ
parameters from the OPLS-AA force field, see Table I and
has a square length of 
3 nm. The two plates are placed in a
center-to-center distance d and different separations are in-
vestigated. Koishi et al. observed a clear dewetting transition
�vapor bubble or “nanobubble” formation� for distances d
�15 Å accompanied by a strong attractive interaction en-
ergy of the order of tens of kBT. The pmf is shown in Fig. 6
together with the solution of our variational implicit solvent
model and level-set snapshots of the equilibrium interface at
selected distances.

As can be seen in Fig. 6, we have almost perfect agree-
ment with the MD simulation results. We find that the curve
hardly depends on the particular choice of the Tolman length
��=0.9 Å here�. The reason is that the average radius of
mean curvature for this large-scale example is much bigger
than the typical value of the Tolman length and the theory
basically becomes fit parameter free. As another important

FIG. 4. �Color online� A comparison of the level-set �left� and a SASA-type �right� description of a C60 buckyball.

FIG. 5. �Color� The level-set calculation of the C60 molecule with color
indicating the value of mean curvature. The units of mean curvature are in
Å−1.
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result, our variational implicit solvent model captures the
nanobubble formation, see the interface snapshots in Fig. 6
for d�15 Å, a consequence of the energetic desire of the
system to minimize the total interface area. For larger dis-
tances the interface breaks, i.e., the bubble ruptures and the
equilibrium interface is given by two isolated plates having
almost no mutual interaction.

We note here that, for distances d�15 Å where bubble
formation takes place, the free energy of the system might
have a second, local minimum corresponding to the wetted
case with two isolated plates.10 The existence of two local
minima shows the possibility of hysteresis in bubble forma-
tion as observed in the MD simulations.42

V. CONCLUSIONS AND OUTLOOK

We have developed a level-set method for numerically
capturing stable solute-solvent interfaces for complex shaped
nonpolar molecules in three dimensions based on a recently
developed variational implicit solvent model. This method
evolves an arbitrary initial surface to decrease the solvation
free energy until a stable equilibrium solute-solvent interface
is reached.

In implementing our numerical method, we have devel-
oped a regularizing technique to stabilize the surface evolu-
tion governed geometrically by a combination of both the
mean curvature and Gaussian curvature. We have addition-
ally developed a stable, two-grid method for the calculation
of the total free energy.

We have applied our method to several nonpolar sys-
tems. Our numerical results show good agreement with MD
simulations with reasonable interface shapes and curvatures.
In particular, due to the numerical robustness and ability of
handling topological changes, our method captures the vol-
ume fusion/break and nanobubble formation/rupture in the
two xenon system and the strongly hydrophobic two-plate
system, respectively.

A comment is needed for the treatment of large concave
curvatures which can occur locally in microscopic systems.
In the two Xe atom example immediatley before breakup, a
singularity near the neck of the two spheres develops and can
artificially increase the energy. We find that the energy is
lowered if we renormalize the Tolman length for very large

mean curvatures. Mathematically, it is known that even the
motion of surface solely by mean curvature can induce the
neck-pinch singularity that we see in our level-set
calculations.43 Therefore, it remains to be further investi-
gated how the singularity should be treated in the free energy
definition and level-set calculation.

We emphasize that our level-set implicit solvent calcula-
tions are one or two orders of magnitude faster than explicit
MD simulations. Our method does require the solution of the
level-set equation �Eq. �12�� with the normal velocity �Eq.
�15�� in each time step. Compared with a SASA-type ap-
proach, this is “extra” work, but can be done efficiently. For
instance, if we start with an initial surface that is close to an
equilibrium one, our calculations can be much more effi-
cient. With a good initial guess and a reasonable grid size,
we need about 15–20 min to run our code for the calculation
of a helical polymer chain. When the level-set method is
applied to real dynamics calculations using continuum mod-
els, the relaxation of the surface to a complete equilibrium is
not necessary, and only a few iterations are enough to update
an interface. Therefore, in such a case, the level-set calcula-
tion can be compatible with a SASA-type method in terms of
efficiency.

Our level-set method can be used for the force calcula-
tion of an underlying solvation system. In principle, forces
are obtained by the gradient of the free energy with respect
to some spatial coordinates. One such coordinate is the geo-
metrical location of an equilibrium solute-solvent interface.
Our artificial or optimization normal velocity is exactly the
effective force with respect to such a coordinate. This re-
places the calculation of surface area in a SASA-type
method. Within the framework of level-set method, we can
also evaluate forces between the solute atoms that can be
used as input to Brownian dynamics computer simulations.
This is an important issue that we are still investigating in
detail.

Finally, let us comment on further developments which
will be crucial for a complete implicit solvation description
of large biomolecules by our method. We are currently de-
veloping a level-set method for capturing numerically stable
solute-solvent interfaces using the Gibbs free energy �Eq.
�1�� that includes the electrostatic contribution of the polar
groups of the solutes. This method couples the presented
level-set method to a finite-difference based solver for the
Poisson-Boltzmann �PB� equation, a typical approach for the
implicit treatment of electrostatics in solvated molecular
systems.6,7 In Ref. 29, we derive the variation of the free
energy �Eq. �1�� including electrostatics on the PB level with
respect to the change of the interface �. This will be used to
define the normal velocity vn similar to that in Eq. �14� but
extended to local electrostatic pressures. Currently we are
also developing fast and optimized level-set methods for the
handling of large systems that can have a few thousand at-
oms in solutes and that can allow solute atoms to freely
move around in the optimization process. Another challenge
is to extend the level-set treatment to predict the correct dy-
namics of evolution of the interface44 and account for inter-
face fluctuations.

FIG. 6. Comparison of the pmf from level-set �circles� and MD calculations
�dashed line� for the two-plate system. Three level-set interfaces of the
system are shown at their respective separations.
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