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NONCONFORMING FINITE ELEMENT APPROXIMATION OF

CRYSTALLINE MICROSTRUCTURE

BO LI AND MITCHELL LUSKIN

Abstract. We consider a class of nonconforming finite element approxima-

tions of a simply laminated microstructure which minimizes the nonconvex

variational problem for the deformation of martensitic crystals which can un-

dergo either an orthorhombic to monoclinic (double well) or a cubic to tetrag-

onal (triple well) transformation. We first establish a series of error bounds

in terms of elastic energies for the L
2 approximation of derivatives of the de-

formation in the direction tangential to parallel layers of the laminate, for the
L

2 approximation of the deformation, for the weak approximation of the de-

formation gradient, for the approximation of volume fractions of deformation
gradients, and for the approximation of nonlinear integrals of the deformation
gradient. We then use these bounds to give corresponding convergence rates
for quasi-optimal finite element approximations.

1. Introduction

The nonconvex elastic energy used to model martensitic crystals is generally
minimized only by a microstructure [3, 4, 9, 19, 23, 26, 31]. A common example
of such a microstructure is a simple laminate in which the deformation gradient
oscillates on a fine or infinitesimal scale in parallel layers between two stress-free
homogeneous states.

Finite element approximations of energy-minimizing laminates necessarily have
a finite thickness. Although conforming finite element methods can be proven to
give convergent approximations to the microstructure [29, 28, 32, 31], they cannot
generally give a laminate which oscillates on the scale of the mesh size for arbitrarily
oriented meshes [11, 31].

Nonconforming finite element approximations are not required to be globally
continuous [10, 38], so it is reasonable to think that they would be able to give a
more accurate approximation to fine-scale microstructure [31]. The class of non-
conforming finite element methods analyzed in this paper were successfully used
to compute crystalline microstructure in [25]. These elements were first proposed,
tested, and analyzed in [39] for the Stokes problem. A short discussion on one of
these elements in the setting of the mixed finite element method can be found in [2].
This class of elements was analyzed for general second-order elliptic problems in
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[24]. In this paper, we prove the convergence of these nonconforming methods to an
energy-minimizing microstructure for the nonconvex elastic energies which model
martensitic crystals which can undergo either an orthorhombic to monoclinic trans-
formation (double well) or a cubic to tetragonal (triple well) transformation. The
results in this paper also hold for a general rotationally invariant, double well energy
density.

In the recently developed geometrically nonlinear theory of martensitic crystals,
the elastic energy density attains its minimum value (below the transformation
temperature) on a set

(1.1) SO(3)U1 ∪ · · · ∪ SO(3)UN ,

where SO(3) is the group of proper rotations defined by

SO(3) =
{

Q ∈ R
3×3 : QT = Q−1 and det Q = 1

}

,

and where the symmetry-related matrices, U1, · · · , UN , for N > 1, represent the
martensitic variants. The martensitic variants U1, · · · , UN are linear transforma-
tions which transform the lattice of the austenitic phase into the lattice of the
martensitic phase. In the above, R

3×3 is the set of all 3 × 3 real matrices.
A martensitic crystal which can undergo an orthorhombic to monoclinic trans-

formation has two symmetry-related martensitic variants, that is, N = 2, and hence
the elastic energy density has two wells [4, 31]. A more commonly observed marten-
sitic transformation is the cubic to tetragonal transformation [3, 4, 31]. In this case,
there are three associated symmetry-related martensitic variants, so N = 3, and
the elastic energy density has therefore three wells.

For certain boundary conditions, the elastic energy of the martensitic crystal
cannot be minimized by a deformation and can be lowered as much as possible only
by a sequence of deformations whose gradients oscillate so that the limiting volume
fraction is nonzero for more than one gradient [4, 31]. Based on the hypothesis
that the crystal structure is determined by the principle of energy minimization,
the geometrically nonlinear theory describes the crystalline microstructure as the
limiting configuration of energy-minimizing sequences of deformations [3, 4, 9, 19,
23, 26, 31].

Both of our nonconforming finite elements are defined on rectangular paral-
lelepipeds. The first one has its degrees of freedom given by the values at the
centers of the faces of the rectangular parallelepipeds. The second one has its
degrees of freedom given by the averages over the six faces of the rectangular par-
allelepipeds. To prove the convergence of this class of nonconforming finite element
methods for the nonconvex energies which model crystalline microstructure, we
prove some important properties of the nonconforming finite element deformations.
They include a discrete version of a slight variation of the divergence theorem, a
Poincaré type inequality which is more general than that in [24], and a discrete
version of the usual trace theorem in Sobolev spaces [1]. These properties will be
used as key technical tools in establishing various kinds of error bounds in terms of
the elastic energy.

Our analysis utilizes the theory of numerical analysis for the microstructure in
nonconvex variational problems that was developed in [13, 16], and extended in [6,
7, 8, 21, 34]. This theory was also used to analyze the finite element approximation
of microstructure in micromagnetics [33]. The approximation of relaxed variational
problems has been analyzed in [5, 20, 35, 37, 36, 40, 41]. A nonconforming finite
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element approximation for a nonconvex variational problem with not only an elastic
energy but also a non-physical penalty term was analyzed in [21].

An analysis of the finite element approximation for a physical, rotationally invari-
ant energy was first given in [32] for the orthorhombic to monoclinic transformation.
This analysis has been extended to the cubic to orthorhombic transformation [29],
to more general boundary conditions [27, 28], and to the method of reduced inte-
gration [12]. The estimates in these papers and in this paper show that all of the
local minima of the energy (restricted to the finite element space) which satisfy a
quasi-optimality condition give accurate approximations to the energy-minimizing
microstructure for the deformation, the volume fractions of the deformation gradi-
ents, and the nonlinear integrals of the deformation gradient.

In this paper, we further generalize the results in [29, 32] to the approximation
by the two nonconforming finite elements. Our results show that the approximation
errors due to the nonconformity of the employed nonconforming finite elements are
negligible compared with the errors of the approximation of microstructure which
are already present in the conforming approximation. Therefore, the asymptotic
rate of convergence that we obtain for the nonconforming methods is equal to the
rate found for the conforming methods.

We refer to [31] for an introduction to the modeling and computation of crys-
talline microstructure and for a more extensive survey of results and references.

We organize the rest of the paper as follows. In §2, we describe the underlying
continuum model for crystals which can undergo either an orthorhombic to mon-
oclinic or a cubic to tetragonal martensitic transformation. In §3, we review the
definition and basic properties of the class of nonconforming finite element spaces
that we analyze. Further properties of nonconforming finite element deformations
are given in §4. These properties are then used to establish a series of error bounds
in terms of the elastic energy for the nonconforming finite element approximations
in §5 – §7. Finally, in §8, we first prove the existence of finite element energy
minimizers and then derive the corresponding error estimates for quasi-optimal
nonconforming finite element approximations.

2. Multi-well Energy Minimization Problems

We first briefly review some basic definitions and properties of martensitic crys-
tals which can undergo either an orthorhombic to monoclinic or a cubic to tetragonal
phase transformation. For more details, we refer to [3, 4, 31].

The energy wells for an orthorhombic to monoclinic transformation are deter-
mined by the martensitic variants

U1 = (I + ηe2 ⊗ e1)D, U2 = (I − ηe2 ⊗ e1)D,

where I is the identity transformation from R
3 to R

3, η > 0 is a material parameter,
{e1, e2, e3} is an orthonormal basis for R

3, and D is a diagonal, positive definite,
linear transformation given by

D = d1e1 ⊗ e1 + d2e2 ⊗ e2 + d3e3 ⊗ e3

for some d1, d2, d3 > 0. We recall that the tensor a ⊗ n for a, n ∈ R
3 defines the

linear transformation (a ⊗ n)v = (n · v)a for v ∈ R
3.
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The energy wells for a cubic to tetragonal transformation are determined by the
martensitic variants

U1 = η1I + (η2 − η1)e1 ⊗ e1, U2 = η1I + (η2 − η1)e2 ⊗ e2,

U3 = η1I + (η2 − η1)e3 ⊗ e3,

where η1 > 0 and η2 > 0 are material parameters such that η1 6= η2, and {e1, e2, e3}
is again an orthonormal basis for R

3.
For convenience, we define the set of indices K to be K = {1, 2} for the or-

thorhombic to monoclinic transformation and K = {1, 2, 3} for the cubic to tetrag-
onal transformation. We also denote

Ui = SO(3)Ui, i ∈ K, and U = ∪{Ui : i ∈ K}.
The following lemma, proved in [3, 4, 31], serves as a key crystallographical basis
for our analysis.

Lemma 2.1. (1) For each i ∈ K there is no rank-one connection between Ui and
itself, that is, there do not exist F0, F1 ∈ Ui with F0 6= F1 such that

F1 = F0 + a ⊗ n

for some a ∈ R
3 and n ∈ R

3, |n| = 1.
(2) For any i, j ∈ K, i 6= j, there are exactly two rank-one connections between

Ui and Uj, that is, for any F0 ∈ Ui there are exactly two distinct F1 ∈ Uj such that

F1 = F0 + a ⊗ n

for some a ∈ R
3 and n ∈ R

3, |n| = 1. In this case, we have also for any λ ∈ (0, 1)
that

(1 − λ)F0 + λF1 /∈ U .

Moreover, we have for the orthorhombic to monoclinic transformation that

n ∈ {±e1, ±e2} ,

and for the cubic to tetragonal transformation that

n ∈
{

± 1√
2
(ei + ej),±

1√
2
(ei − ej)

}

.

We now consider a crystal that can undergo either an orthorhombic to mon-
oclinic or a cubic to tetragonal transformation. We denote by Ω the reference
configuration of the crystal which is taken to be the homogeneous austenitic phase
at the transformation temperature. We assume that Ω ⊂ R

3 is a bounded domain
with a Lipschitz continuous boundary. We denote deformations by y : Ω → R

3

and corresponding deformation gradients by ∇y : Ω → R
3×3. We denote the elastic

energy density at a fixed temperature below the transformation temperature by the
continuous function φ : R

3×3 → R. The elastic energy of a deformation y is then
given by

(2.1) E(y) ≡
∫

Ω

φ(∇y(x)) dx.

To model the underlying martensitic transformations, we assume that the energy
density φ is minimized on the energy wells Ui = SO(3)Ui, i ∈ K, so we assume (after
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adding a constant to the energy density) that

φ(F ) ≥ 0, ∀F ∈ R
3×3,

φ(F ) = 0 if and only if F ∈ U = ∪{Ui : i ∈ K}.
We shall also assume that the energy density φ grows quadratically away from the
energy wells, that is,

(2.2) φ(F ) ≥ κ‖F − π(F )‖2, ∀F ∈ R
3×3,

where κ > 0 is a constant and π : R
3×3 → U is a Borel measurable projection

defined by

‖F − π(F )‖ = min
G∈U

‖F − G‖, ∀F ∈ R
3×3.

In the above and in the following we use the matrix norm defined by

‖F‖2 = trace
(

FT F
)

=

3
∑

i,j=1

F 2
ij , ∀F = (Fij) ∈ R

3×3.

The projection π(F ) exists for any F ∈ R
3×3 since U is compact, although the

projection may not be unique. It is unique, however, if ‖F −π(F )‖ is small enough
[31].

Let F0, F1 ∈ U be rank-one connected so as to satisfy

(2.3) F1 = F0 + a ⊗ n

for some a, n ∈ R
3, |n| = 1. By Lemma 2.1, we may assume without loss of

generality that F0 ∈ U1 and F1 ∈ U2 and also that

n = e1

for the orthorhombic to monoclinic transformation and

(2.4) n =
1√
2
(e1 + e2)

for the cubic to tetragonal transformation. Let λ be a constant such that 0 < λ < 1
and let

Fλ = (1 − λ)F0 + λF1.

We define the set of admissible deformations which are compatible with the simple
laminate to be

W 1,∞
λ (Ω; R3) ≡

{

y ∈ W 1,∞(Ω; R3) : y(x) = Fλx,∀x ∈ ∂Ω
}

.

Our multi-well energy minimization problem is to minimize the elastic energy
(2.1) among all deformations y ∈ W 1,∞

λ (Ω; R3). Ball and James have shown that
there exist no energy minimizers for this minimization problem and that any energy
minimizing sequence will converge to a unique microstructure which is composed
of the gradient F0 with volume fraction 1 − λ and the gradient F1 with volume
fraction λ [4].

We note that the proofs given in this paper for the orthorhombic to monoclinic
transformation hold without modification for the more general problem with a
rotationally invariant, double well energy (that is, N=2, in (1.1)) if there exists a
rotation Q ∈ SO(3) and vectors a, n ∈ R

3, |n| = 1, such that

QU2 = U1 + a ⊗ n.
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3. Nonconforming Finite Elements

We will denote a generic point in R
3 by (x1, x2, x3). Our first finite element is

defined by the triple (Q, PQ,Σp
Q); where Q ≡ [α1 − l1, α1 + l1]× [α2 − l2, α2 + l2]×

[α3 − l3, α3 + l3] is a rectangular parallelepiped with its center at (α1, α2, α3) and
the lengths of its edges are 2l1, 2l2, and 2l3, where l1, l2, l3 > 0;

(3.1) PQ = span

{

1, x1, x2, x3,

(

x1

l1

)2

−
(

x2

l2

)2

,

(

x1

l1

)2

−
(

x3

l3

)2
}

;

and the set of degrees of freedom Σp
Q (the superscript p denotes point) are given by

Σp
Q = {q(cFi

) : i = 1, · · · , 6} ,

where cFi
, i = 1, · · · , 6, are the centers of the faces Fi, i = 1, · · · , 6, of the rectan-

gular parallelepiped Q. Our second element is defined to be the triple (Q, PQ,Σa
Q).

The polynomial space PQ is the same as defined in (3.1) and the set of degrees of
freedom Σa

Q (the superscript a denotes average) is defined by

Σa
Q =

{

1

|Fi|

∫

Fi

q dS : i = 1, · · · , 6

}

,

where Fi, i = 1, · · · , 6, are the faces of Q, and |Fi| is the area of the face Fi for
i = 1, · · · , 6.

In the sequel, we will restrict ourselves to considering rectangular domains with
faces parallel to coordinate planes. The results presented in this paper can be im-
mediately extended to domains which are the union of rectangular parallelepipeds.
However, we will assume for simplicity of exposition that Ω = (0, L1) × (0, L2) ×
(0, L3) for some Lk > 0, k = 1, 2, 3. To construct a rectangular partition τh of Ω,
we define the one-dimensional partitions of [0, Lk], for k = 1, 2, 3, by

0 = x0
k < x1

k < · · · < xmk

k = Lk,

where the mk are positive integers. We then define the rectangular parallelepipeds

Ri1,i2,i3 ≡ [xi1−1
1 , xi1

1 ] × [xi2−1
2 , xi2

2 ] × [xi3−1
3 , xi3

3 ]

for 1 ≤ i1 ≤ m1, 1 ≤ i2 ≤ m2, 1 ≤ i3 ≤ m3, and the rectangular partition

τh ≡ {Ri1,i2,i3 : 1 ≤ i1 ≤ m1, 1 ≤ i2 ≤ m2, 1 ≤ i3 ≤ m3}.

The mesh size parameter h is defined by h = max{hk : 1 ≤ k ≤ 3}, where hk ≡
max{xi

k−xi−1
k : 1 ≤ i ≤ mk} is the maximal discretization size in the kth coordinate

direction for k = 1, 2, 3. We will always assume that the rectangular partitions τh

are quasi-uniform, that is, there exists a constant σ > 0, independent of h, such
that

(3.2) min{xi
k − xi−1

k : i = 1, . . . ,mk, k = 1, 2, 3} ≥ σh.

For the first finite element, we define the set of nodal points Nh to be the set
of all centers cF of faces F of elements in τh. The finite element spaces over the
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partition τh are then defined respectively to be

V p
h ≡ {vh ∈ L2(Ω) : vh|R ∈ PR, ∀R ∈ τh; adjoining vh have the same

values at shared nodal points, that is, vh is continuous on Nh},
V a

h ≡ {vh ∈ L2(Ω) : vh|R ∈ PR, ∀R ∈ τh;
∫

F

vh|R′ dS =

∫

F

vh|R′′ dS, ∀ faces F = ∂R′ ∩ ∂R′′ 6= ∅, R′,R′′ ∈ τh }.

We denote by Ap
h the set of admissible finite element deformations yh : Ω → R

3

such that each component of yh belongs to V p
h and such that yh(cF ) = FλcF if cF

is the center of an element face F lying in ∂Ω. Similarly, we denote Aa
h to be the set

of admissible finite element deformations yh : Ω → R
3 such that each component

of yh belongs to V a
h and such that

∫

F

yh(x) dS =

∫

F

Fλx dS

for any element face F ⊂ ∂Ω. Note that the deformation yh(x) = Fλx, x ∈ Ω,
belongs to both Ap

h and Aa
h. We denote for convenience Vh = V p

h ∪ V a
h and Ah =

Ap
h ∪ Aa

h.
It is obvious that both of the spaces V p

h and V a
h are finite-dimensional affine

subspaces of L2(Ω). They are also affine finite element spaces [10]. For vh ∈ V p
h

or vh ∈ V a
h , we have in general that vh /∈ C(Ω̄) since vh is continuous only at

some points of the faces of adjacent elements. Thus, V p
h , V a

h 6⊆ C(Ω̄), and hence,

neither Ap
h nor Aa

h is contained in W 1,∞
λ (Ω; R3) which is a subset of C(Ω̄; R3) by

the embedding theorem [1]. Therefore, in view of minimizing the elastic energy

over W 1,∞
λ (Ω; R3) ⊂ W 1,∞(Ω; R3), the above finite elements are nonconforming.

We now denote the Lagrange interpolation operator Ih : C(Ω̄) → Vh to be either
Ip
h : C(Ω̄) → V p

h or Ia
h : C(Ω̄) → V a

h , which are defined respectively by Ip
hv ∈ V p

h

and Ia
hv ∈ V a

h , and

Ip
hv(cF ) = v(cF ), ∀cF ∈ Nh,
∫

F

Ia
hv dS =

∫

F

v dS, ∀ facesF ⊂ ∂R, ∀R ∈ τh,

for any v ∈ C(Ω̄). We will also use the same notation Ih, Ip
h and Ia

h to denote the
restrictions of these operators to an element of the partition τh.

For any element R ∈ τh and a face F ⊂ ∂R, we define the functional T p
F :

C(F) → R by T p
F (w) = w(cF ) for w ∈ C(F), where cF is the center of the face F ,

when considering the V p
h -approximation, and the functional T a

F : L2(F) → R by
T a
F (w) = (1/|F|)

∫

F w dS for w ∈ L2(F), when considering the V a
h -approximation.

Similar functionals of suitable deformations can be defined component-wise. With-
out confusion, the same notation T p

F or T a
F will be used for functionals defined on

both scalar functions and vectorial deformations.
We will use the letter C to denote a generic positive constant which is indepen-

dent of the mesh size h. For convenience, we also define for any integer k ≥ 0 and
p ∈ [1,∞] the space

W k,p
h (Ω) ≡ {v ∈ Lp(Ω) : v|R ∈ W k,p(R), ∀R ∈ τh},
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and we equip W k,p
h (Ω) with the following semi-norm and norm:

| · |k,p,h ≡







(

∑ | · |pk,p,R

)
1
p

, if 1 ≤ p < ∞,

maxR∈τh
| · |k,∞,R, if p = ∞;

‖ · ‖k,p,h ≡







(

∑ ‖ · ‖p
k,p,R

)
1
p

, if 1 ≤ p < ∞,

maxR∈τh
‖ · ‖k,∞,R, if p = ∞;

where, for R ∈ τh, | · |k,p,R and ‖ · ‖k,p,R are the usual semi-norm and norm on the

Sobolev space W k,p(R) [1]. If p = 2 we write Hk
h(Ω) for W k,p

h (Ω) and omit p in all

of the above semi-norm and norm expressions. We define the spaces W k,p
h (Ω; R3)

and Hk
h(Ω; R3) in a similar way and use the same notation | · |k,p,h, ‖ · ‖k,p,h, | · |k,h,

and ‖ · ‖k,h for the associated semi-norms and norms.
We now collect some useful properties of the finite element spaces V p

h and V a
h in

the following lemmas.

Lemma 3.1. For any vh ∈ Vh = V p
h ∪ V a

h restricted to any R ∈ τh, we have

(3.3)
∂vh

∂xk
∈ span {1, xk}, k = 1, 2, 3.

It follows that

vh(x̂1, x̂2, x̂3) − vh(x̂1, x2, x3) = vh(x1, x̂2, x̂3) − vh(x1, x2, x3),(3.4)

vh(x̂1, x̂2, x̂3) − vh(x1, x̂2, x3) = vh(x̂1, x2, x̂3) − vh(x1, x2, x3),(3.5)

vh(x̂1, x̂2, x̂3) − vh(x1, x2, x̂3) = vh(x̂1, x̂2, x3) − vh(x1, x2, x3).(3.6)

for any (x̂1, x̂2, x̂3) ∈ R and (x1, x2, x3) ∈ R.

Proof. The equation (3.3) follows directly from the definition of the finite element
polynomial space PQ (3.1). The result (3.4) follows from (3.3) since ∂vh/∂x1 is
independent of x2 and x3, so

vh(x̂1, x̂2, x̂3) − vh(x1, x̂2, x̂3) =

∫ x̂1

x1

∂vh

∂x1
(ξ, x̂2, x̂3) dξ

=

∫ x̂1

x1

∂vh

∂x1
(ξ, , x2, x3) dξ

= vh(x̂1, x2, x3) − vh(x1, x2, x3).

The results (3.5) and (3.6) follow similarly. �

Lemma 3.2. Let k and l be two integers such that 0 ≤ k ≤ l ≤ 2. We have the
following inverse inequalities for any R ∈ τh and any vh ∈ Vh = V p

h ∪ V a
h

|vh|l,R ≤ Chk−l|vh|k,R,(3.7)

|vh|l,h ≤ Chk−l|vh|k,h,(3.8)

|vh|l,∞,R ≤ Chk−l− 3
2 |vh|k,R,(3.9)

|vh|l,∞,h ≤ Chk−l− 3
2 |vh|k,h.(3.10)

Proof. Since both V p
h and V a

h are affine finite element spaces, the results of this
lemma can be proven by a standard argument via affine mappings [10]. �
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Lemma 3.3. We have for any R ∈ τh and any face F ⊂ ∂R that

(3.11)

∫

F

|v − T a
F (v)|2 dS ≤ Ch|v|21,R, ∀v ∈ H1(R).

We also have that

(3.12)

∫

F

|vh − T p
F (vh)|2 dS ≤ Ch|vh|21,R, ∀vh ∈ V p

h .

Proof. We will prove (3.11) and (3.12) on the reference domain R̂ = (0, 1)×(0, 1)×
(0, 1) with face F̂ = {0}× (0, 1)× (0, 1). We can then obtain the results (3.11) and
(3.12) on the element R ∈ τh and the face F ⊂ ∂R by an affine scaling.

For v ∈ C∞(R̂) we have that

v(0, x2, x3) −
∫ 1

0

∫ 1

0

v(0, x̂2, x̂3) dx̂2 dx̂3

= v(x1, x2, x3) −
∫ 1

0

∫ 1

0

v(x1, x̂2, x̂3) dx̂2 dx̂3

−
∫ x1

0

∂v

∂x1
(x̂1, x2, x3) dx̂1 +

∫ 1

0

∫ 1

0

∫ x1

0

∂v

∂x1
(x̂1, x̂2, x̂3) dx̂1 dx̂2 dx̂3

(3.13)

=

∫ 1

0

∫ 1

0

[v(x1, x2, x3) − v(x1, x̂2, x̂3)] dx̂2 dx̂3

−
∫ x1

0

∂v

∂x1
(x̂1, x2, x3) dx̂1 +

∫ 1

0

∫ 1

0

∫ x1

0

∂v

∂x1
(x̂1, x̂2, x̂3) dx̂1 dx̂2 dx̂3.

Now,

v(x1, x2, x3) − v(x1, x̂2, x̂3)

= [v(x1, x2, x3) − v(x1, x̂2, x3)] + [v(x1, x̂2, x3) − v(x1, x̂2, x̂3)](3.14)

=

∫ x2

x̂2

∂v

∂x2
(x1, x̌2, x3) dx̌2 +

∫ x3

x̂3

∂v

∂x3
(x1, x̂2, x̌3) dx̌3.

We obtain from substituting (3.14) into (3.13) that

v(0, x2, x3) −
∫ 1

0

∫ 1

0

v(0, x̂2, x̂3) dx̂2 dx̂3

=

∫ 1

0

∫ 1

0

∫ x2

x̂2

∂v

∂x2
(x1, x̌2, x3) dx̌2 dx̂2 dx̂3

+

∫ 1

0

∫ 1

0

∫ x3

x̂3

∂v

∂x3
(x1, x̂2, x̌3) dx̌3 dx̂2 dx̂3

(3.15)

−
∫ x1

0

∂v

∂x1
(x̂1, x2, x3) dx̂1 +

∫ 1

0

∫ 1

0

∫ x1

0

∂v

∂x1
(x̂1, x̂2, x̂3) dx̂1 dx̂2 dx̂3.

We can then obtain by squaring both sides of (3.15), integrating with respect to
(x1, x2, x3) over the domain (0, 1) × (0, 1) × (0, 1), and using the Cauchy-Schwarz
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inequality that

∫ 1

0

∫ 1

0

∣

∣

∣

∣

v(0, x2, x3) −
∫ 1

0

∫ 1

0

v(0, x̂2, x̂3) dx̂2 dx̂3

∣

∣

∣

∣

2

dx2 dx3

=

∫ 1

0

∫ 1

0

∫ 1

0

∣

∣

∣

∣

v(0, x2, x3) −
∫ 1

0

∫ 1

0

v(0, x̂2, x̂3) dx̂2 dx̂3

∣

∣

∣

∣

2

dx1 dx2 dx3(3.16)

≤ 8

∣

∣

∣

∣

∂v

∂x1

∣

∣

∣

∣

2

0,R̂

+ 4

∣

∣

∣

∣

∂v

∂x2

∣

∣

∣

∣

2

0,R̂

+ 4

∣

∣

∣

∣

∂v

∂x3

∣

∣

∣

∣

2

0,R̂

.

The inequality (3.11) for R̂ and F̂ now follows from the density of C∞(R̂) in H1(R̂)

and the continuous embedding H1(R̂) ↪→ L2(F̂) [1].
We note that we cannot prove the inequality (3.12) for all v ∈ H1(R) because

T p
F (v) = v(cF ) is not a well-defined operator on H1(R) since H1(R̂) is not continu-

ously embedded in C(R̂) [1]. To prove the inequality (3.12) with R and F replaced

by R̂ and F̂ , respectively, for vh ∈ PR̂, the finite element polynomial space (3.1),
we derive as above the identity

vh(0, x2, x3) − vh(0, 1/2, 1/2)

=

∫ x2

1/2

∂vh

∂x2
(x1, x̌2, x3) dx̌2 +

∫ x3

1/2

∂vh

∂x3
(x1, 1/2, x̌3) dx̌3(3.17)

−
∫ x1

0

∂vh

∂x1
(x̂1, x2, x3) dx̂1 +

∫ x1

0

∂vh

∂x1
(x̂1, 1/2, 1/2) dx̂1.

Since by Lemma 3.1, ∂vh/∂xk ∈ span {1, xk}, for k = 1, 2, 3, we have from (3.17)
that

vh(0, x2, x3) − vh(0, 1/2, 1/2)

=

∫ x2

1/2

∂vh

∂x2
(x1, x̌2, x3) dx̌2 +

∫ x3

1/2

∂vh

∂x3
(x1, x2, x̌3) dx̌3(3.18)

−
∫ x1

0

∂vh

∂x1
(x̂1, x2, x3) dx̂1 +

∫ x1

0

∂vh

∂x1
(x̂1, x2, x3) dx̂1.

We can then obtain by squaring both sides of (3.18), integrating with respect to
(x1, x2, x3) over the domain (0, 1) × (0, 1) × (0, 1), and using the Cauchy-Schwarz
inequality that

∫ 1

0

∫ 1

0

|vh(0, x2, x3) − vh(0, 1/2, 1/2)|2 dx2 dx3

≤ 8

∣

∣

∣

∣

∂vh

∂x1

∣

∣

∣

∣

2

0,R̂

+ 4

∣

∣

∣

∣

∂vh

∂x2

∣

∣

∣

∣

2

0,R̂

+ 4

∣

∣

∣

∣

∂vh

∂x3

∣

∣

∣

∣

2

0,R̂

.(3.19)

�

Lemma 3.4. We have

(3.20) ‖∇Ihv‖0,∞,h ≤ C‖∇v‖0,∞,Ω, ∀v ∈ W 1,∞(Ω).

Proof. The proof easily follows from the quasi-uniformity of the partition τh [10].
�
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4. Properties of Nonconforming Finite Element Deformations

In this section, we will give some further properties of the considered noncon-
forming finite element deformations. We first prove a discrete version of a slight
variation of the divergence theorem.

Theorem 4.1. We have for any yh ∈ Ah = Ap
h ∪ Aa

h that

(4.1)
∑

R∈τh

∫

R

∇yh(x) dx =
∑

R∈τh

∫

R

Fλ dx.

Proof. Applying the divergence theorem to each integral on R ∈ τh in the summa-
tion and noticing the cancellation of contributions from adjacent elements to their
common faces, we see by the definition of Aa

h that (4.1) holds if yh ∈ Aa
h.

For yh ∈ Ap
h, we set zh(x) = yh(x) − Fλx, x ∈ Ω. We also denote by cF the

center of a face F of an element in τh. Thus, by the definition of Ap
h, we have

zh(cF ) = 0 if F ⊂ ∂Ω. Moreover, we have

∑

R∈τh

∫

R

∇zh(x) dx =
∑

R∈τh

∫

∂R

zh(x) ⊗ ν dS

=
∑

R∈τh

∑

F⊂∂R

∫

F

[zh(x) − zh(cF )] ⊗ ν|F dS,(4.2)

where ν is the unit exterior normal to the underlying boundary.
Fix R = [α1 − l1, α1 + l1] × [α2 − l2, α2 + l2] × [α3 − l3, α3 + l3] ∈ τh. Set

F± = [α1 − l1, α1 + l1] × [α2 − l2, α2 + l2] × {α3 ± l3}. It follows from (3.6) that

zh(x1, x2, α3 + l3) − zh(α1, α2, α3 + l3) = zh(x1, x2, α3 − l3) − zh(α1, α2, α3 − l3).

Noting that ν|F+
= −ν|F−

= e3, we then have

∫

F+

[

zh(x) − zh(cF+
)
]

⊗ ν|F+
dS +

∫

F−

[

zh(x) − zh(cF−
)
]

⊗ ν|F−
dS

=

[
∫ α1+l1

α1−l1

∫ α2+l2

α2−l2

{[zh(x1, x2, α3 + l3) − zh(α1, α2, α3 + l3)]

− [zh(x1, x2, α3 − l3) − zh(α1, α2, α3 − l3)]} dx1 dx2

]

⊗ e3(4.3)

= 0.

The same argument applies to any other pair of faces F± ⊂ ∂R. Therefore,

(4.4)
∑

F⊂∂R

∫

F

[zh(x) − zh(cF )] ⊗ ν|F dS = 0.

The arbitrariness of R ∈ τh then implies that the sum in (4.2) is zero. This proves
(4.1) for yh ∈ Ap

h as well. �

We now prove a Poincaré type inequality for all of the finite element deformations
in Ah. This result is more general than that proven in [24].
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Theorem 4.2. There exists a constant C > 0 such that for all w ∈ R
3 with |w| = 1

and all yh ∈ Ah,
∫

Ω

|yh(x) − Fλx|2 dx

≤ C
∑

R∈τh

∫

R

{

| [∇yh(x) − Fλ] w|2 + h ‖∇yh(x) − Fλ‖2
}

dx.(4.5)

Proof. Fix an arbitrary w ∈ R
3 with |w| = 1. For yh ∈ Ah, set again zh(x) =

yh(x) − Fλx, x ∈ Ω. By integration by parts we obtain [44]
∫

Ω

|zh(x)|2 dx =
∑

R∈τh

∫

∂R

|zh(x)|2(w · x)(w · ν) dS

−
∑

R∈τh

∫

R

(

∇|zh(x)|2 · w
)

(w · x) dx(4.6)

≡ I1+I2.

We estimate the second term I2 by the Cauchy-Schwarz inequality to get

|I2| ≡
∣

∣

∣

∣

∣

∑

R∈τh

∫

R

(

∇|zh(x)|2 · w
)

(w · x) dx

∣

∣

∣

∣

∣

≤ 2max
x∈Ω̄

|w · x|
(

∑

R∈τh

∫

R

|∇zh(x)w|2 dx

)
1
2 (∫

Ω

|zh(x)|2 dx

)
1
2

(4.7)

≤ 1

2

∫

Ω

|zh(x)|2 dx + C
∑

R∈τh

∫

R

|∇zh(x)w|2 dx.

To estimate I1, we first consider the Aa
h-approximation. So, we fix yh ∈ Aa

h.
Observing that T a

F (zh) = 0 for any element face F ⊂ ∂Ω, we obtain by the definition
of Aa

h that

I1 ≡
∑

R∈τh

∫

∂R

|zh(x)|2(w · x)(w · ν) dS

=
∑

R∈τh

∑

F⊂∂R

∫

F

|[zh(x) − T a
F (zh)] + T a

F (zh)|2 (w · x)(w · ν|F ) dS

=
∑

R∈τh

∑

F⊂∂R

∫

F

|zh(x) − T a
F (zh)|2 (w · x)(w · ν|F ) dS

+
∑

R∈τh

∑

F⊂∂R

∫

F

|T a
F (zh)|2 (w · x)(w · ν|F ) dS(4.8)

+
∑

R∈τh

∑

F⊂∂R

∫

F

2T a
F (zh) · [zh(x) − T a

F (zh)] (w · x)(w · ν|F ) dS

=
∑

R∈τh

∑

F⊂∂R

∫

F

|zh(x) − T a
F (zh)|2 (w · x)(w · ν|F ) dS

+ 2
∑

R∈τh

∑

F⊂∂R

∫

F

T a
F (zh) · [zh(x) − T a

F (zh)] (w · x)(w · ν|F ) dS
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≡ Ja
1 + 2Ja

2 ,

where we combined adjacent elements and canceled their contributions to the com-
mon face to obtain that one summed term is equal to zero. It follows directly from
(3.11) that

|Ja
1 | ≡

∣

∣

∣

∣

∣

∑

R∈τh

∑

F⊂∂R

∫

F

|zh(x) − T a
F (zh)|2 (w · x)(w · ν|F ) dS

∣

∣

∣

∣

∣

≤ Ch‖∇zh‖2
0,h.(4.9)

Setting gν(x) = (w · x)(w · ν), we have

Ja
2 ≡

∑

R∈τh

∑

F⊂∂R

∫

F

T a
F (zh) · [zh(x) − T a

F (zh)] gν(x) dS

=
∑

R∈τh

∑

F⊂∂R

∫

F

T a
F (zh) · [zh(x) − T a

F (zh)] [gν(x) − T a
F (gν)] dS.(4.10)

For a fixed face F ⊂ ∂R of some element R ∈ τh, we have by the inverse estimate
(3.9) that

|T a
F (zh)| ≤ ‖zh‖0,∞,R ≤ Ch− 3

2 ‖zh‖0,R.

We also have by (3.11) that
∫

F

|zh(x) − T a
F (zh)|2 dS ≤ Ch‖∇zh‖2

0,R

and
∫

F

|gν(x) − T a
F (gν)|2 dS ≤ Ch‖∇gν‖2

0,R ≤ Ch4.

Consequently,

|Ja
2 | ≤

∑

R∈τh

∑

F⊂∂R

|T a
F (zh)|

(
∫

F

|zh(x) − T a
F (zh)|2 dS

)
1
2

·
(
∫

F

|gν(x) − T a
F (gν)|2 dS

)
1
2

≤ Ch
∑

R∈τh

‖zh‖0,R‖∇zh‖0,R(4.11)

≤ Ch ‖zh‖0,Ω ‖∇zh‖0,h

≤ 1

8
‖zh‖2

0,Ω + Ch2‖∇zh‖2
0,h.

Now we consider the Ap
h-approximation. Fix yh ∈ Ap

h. We have as above that
T p
F (zh) = 0 for any element face F ⊂ ∂Ω, so (cf. (4.8) )

I1 ≡
∑

R∈τh

∫

∂R

|zh(x) − T p
F (zh)|2(w · x)(w · ν) dS

+ 2
∑

R∈τh

∑

F⊂∂R

∫

F

T p
F (zh) · [zh(x) − T p

F (zh)] (w · x)(w · ν|F ) dS(4.12)

≡ Jp
1 + 2Jp

2 .
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It similarly follows from (3.12) that

|Jp
1 | ≡

∣

∣

∣

∣

∣

∑

R∈τh

∑

F⊂∂R

∫

F

|zh(x) − T p
F (zh)|2 (w · x)(w · ν|F ) dS

∣

∣

∣

∣

∣

≤ Ch‖∇zh‖2
0,h.(4.13)

Let us fix again R = [α1 − l1, α1 + l1]× [α2 − l2, α2 + l2]× [α3 − l3, α3 + l3] ∈ τh

and a pair of its faces F± = [α1 − l1, α1 + l1] × [α2 − l2, α2 + l2] × {α3 ± l3}. We
have that gν(x) = ±g(x) on F±, where g(x) = (w · e3)(w ·x). We also have by (3.6)
that

zh(x1, x2, α3 + l3) − zh(α1, α2, α3 + l3) = zh(x1, x2, α3 − l3) − zh(α1, α2, α3 − l3).

It then follows from the above identity, the inverse inequality (3.9), and (3.12) that
∣

∣

∣

∣

∣

∫

F+

zh(cF+
) · [zh(x) − zh(cF+

)]g(x) dS

−
∫

F−

zh(cF−
) · [zh(x) − zh(cF−

)]g(x) dS

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ α1+l1

α1−l1

∫ α+l2

α2−l2

[zh(x1, x2, α3 + l3) − zh(α1, α2, α3 + l3)]

· [g(x1, x2, α3 + l3)zh(α1, α2, α3 + l3)

− g(x1, x2, α3 − l3)zh(α1, α2, α3 − l3)] dx1 dx2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ α1+l1

α1−l1

∫ α2+l2

α2−l2

{

[zh(x1, x2, α3 + l3) − zh(α1, α2, α3 + l3)]

[

∫ α3+l3

α3−l3

∂

∂x3
(g(x)zh(α1, α2, x3)) dx3

]

}

dx1 dx2

∣

∣

∣

∣

∣

(4.14)

≤ Ch‖zh‖1,∞,R

∫

F+

∣

∣zh(x) − zh(cF+
)
∣

∣ dS

≤ Ch2‖zh‖1,∞,R

(

∫

F+

|zh(x) − zh(cF+
)|2dS

)
1
2

≤ Ch
(

‖zh‖0,R‖∇zh‖0,R + ‖∇zh‖2
0,R

)

.

This argument also applies to other pairs of faces of R ∈ τh. Hence, we can also
conclude in this case that

|Jp
2 | ≤ Ch‖zh‖0,Ω‖∇zh‖0,h + Ch‖∇zh‖2

0,h

≤ 1

8

∫

Ω

|zh(x)|2 dx + Ch‖∇zh‖2
0,h.(4.15)

The assertion of the theorem now follows from (4.6) – (4.15). �

A local trace inequality was used in [21] to derive estimates for a nonconform-
ing finite element approximation of a variational problem. But even an improved
version of such a local result (cf. Lemma 3.4 in [24]) cannot be applied here to our
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situation. We thus give a global version of a discrete trace theorem for our finite
element deformations.

Theorem 4.3. There exists a constant C > 0 such that for any rectangular paral-
lelepiped ω ⊂ Ω̄ which is a union of elements R of a rectangular mesh τh,

∑

R⊂ω,∂R∩∂ω 6=∅

∑

F⊂∂R∩∂ω

h2 |yh(cF ) − FλcF |2 ≤ C

Λ(ω)

∫

ω

|yh(x) − Fλx|2 dx

+ C

(
∫

ω

|yh(x) − Fλx|2 dx

)
1
2

(

∑

R⊂ω

∫

R

‖∇yh(x) − Fλ‖2
dx

)
1
2

(4.16)

for all yh ∈ Ap
h, and

∑

R⊂ω,∂R∩∂ω 6=∅

∑

F⊂∂R∩∂ω

∫

F

|yh(x) − Fλx|2 dS

≤ C

Λ(ω)

∫

ω

|yh(x) − Fλx|2 dx + Ch
∑

R⊂ω

∫

R

‖∇yh(x) − Fλ‖2
dx

(4.17)

+ C

(
∫

ω

|yh(x) − Fλx|2 dx

)
1
2

(

∑

R⊂ω

∫

R

‖∇yh(x) − Fλ‖2
dx

)
1
2

for all yh ∈ Aa
h, where Λ(ω) is the length of the shortest edge of ω.

Proof. Assume that ω = [ω−
1 , ω+

1 ] × [ω−
2 , ω+

2 ] × [ω−
3 , ω+

3 ]. Fix yh ∈ Ah and set
zh(x) = yh(x) − Fλx, x ∈ Ω. Also, fix an arbitrary element face F0 ⊂ ∂ω of an
element R ⊂ ω. Assume without loss of generality that the corresponding unit
exterior normal at F0 with respect to ∂ω is ν = ν|F0

= −e1. Denote by

S0 = {x + y : x ∈ F0 and y = se1 where s ∈ [0, ω+
1 − ω−

1 ]} ⊂ ω

the cylinder composed of elements of τh with generating line parallel to e1, one
base F0 ⊂ ω, and the other base also on ∂ω. We denote the corresponding height
(the length of the generating line segment) of the cylinder S0 by Λ1 = ω+

1 − ω−
1 .

Notice that Λ1 is in fact the length of one edge of the rectangular parallelepiped
ω. Suppose further that the element faces which are in the cylinder S0 and are
parallel to F0 are given by Fi, i = 0, · · · , k, and that these faces lie respectively in

the planes x1 = α
(i)
1 , for some ω−

1 = α
(0)
1 < · · · < α

(k)
1 = ω+

1 .
Case 1: yh ∈ Ap

h. Denoting by cFi
the center of the face Fi for i = 0, · · · , k, we

have by the fact Λ1 = α
(k)
1 − α

(0)
1 that

k−1
∑

i=0

[(

α
(k)
1 − α

(i+1)
1

)

∣

∣zh(cFi+1
)
∣

∣

2 −
(

α
(k)
1 − α

(i)
1

)

|zh(cFi
)|2
]

= −Λ1 |zh(cF0
)|2 .(4.18)
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If 0 ≤ i ≤ k − 1, then

∣

∣

∣

(

α
(k)
1 − α

(i+1)
1

)

∣

∣zh(cFi+1
)
∣

∣

2 −
(

α
(k)
1 − α

(i)
1

)

|zh(cFi
)|2
∣

∣

∣

=
∣

∣

∣

(

α
(k)
1 − α

(i)
1

) [

∣

∣zh(cFi+1
)
∣

∣

2 − |zh(cFi
)|2
]

+
(

α
(i)
1 − α

(i+1)
1

)

∣

∣zh(cFi+1
)
∣

∣

2
∣

∣

∣

≤ Λ1

∣

∣

[

zh(cFi+1
) − zh(cFi

)
]

·
[

zh(cFi+1
) + zh(cFi

)
]
∣

∣+ h
∣

∣zh(cFi+1
)
∣

∣

2
.

This, together with (4.18) and the inverse inequality (3.9), leads to

h2 |zh(cF0
)|2 ≤ h3

∑

R⊂S0

[

‖∇zh‖0,∞,R ‖zh‖0,∞,R +
1

Λ1
‖zh‖2

0,∞,R

]

≤ C
∑

R⊂S0

[

‖∇zh‖0,R ‖zh‖0,R +
1

Λ(ω)
‖zh‖2

0,R

]

.(4.19)

Case 2: yh ∈ Aa
h. Noting that α

(k)
1 − α

(0)
1 = Λ1, we have

∑

R⊂S0

∫

R

∂

∂x1

[(

α
(k)
1 − x1

)

|zh(x)|2
]

dx

=
∑

R⊂S0

∫

∂R

(

α
(k)
1 − x1

)

|zh(x)|2 (ν · e1) dS

= −Λ1

∫

F0

|zh(x)|2 dS +

k−1
∑

i=1

(

α
(k)
1 − α

(i)
1

)

∫

Fi

[

∣

∣z+
h (x)

∣

∣

2 −
∣

∣z−h (x)
∣

∣

2
]

dS,

where for a fixed face Fi, 1 ≤ i ≤ k− 1, we denote by z±h the restriction of zh to Fi

for zh defined on the adjacent element sharing the common face Fi such that the
corresponding unit exterior normal of the element boundary ν satisfies ν|Fi

= ±e1.
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Consequently, we have that
∫

F0

|zh(x)|2 dS

≤
∑

R⊂S0

∫

R

[

1

Λ1
|zh(x)|2 + 2|zh(x)|‖∇zh(x)‖

]

dx

+

k−1
∑

i=1

∣

∣

∣

∣

∫

Fi

[

∣

∣z+
h (x)

∣

∣

2 −
∣

∣z−h (x)
∣

∣

2
]

dS

∣

∣

∣

∣

=
∑

R⊂S0

(

1

Λ1
‖zh‖2

0,R + 2 ‖zh‖0,R ‖∇zh‖0,R

)

+

k−1
∑

i=1

∣

∣

∣

∣

∫

Fi

[

∣

∣z+
h (x) − T a

Fi
(zh) + T a

Fi
(zh)

∣

∣

2
(4.20)

−
∣

∣z−h (x) − T a
Fi

(zh) + T a
Fi

(zh)
∣

∣

2
]

dS

∣

∣

∣

∣

=
∑

R⊂S0

(

1

Λ1
‖zh‖2

0,R + 2 ‖zh‖0,R ‖∇zh‖2
0,R

)

+

k−1
∑

i=1

∣

∣

∣

∣

∫

Fi

[

∣

∣z+
h (x) − T a

Fi
(zh)

∣

∣

2 −
∣

∣z−h (x) − T a
Fi

(zh)
∣

∣

2
]

dS

∣

∣

∣

∣

≤ C
∑

R⊂S0

[

1

Λ(ω)
‖zh‖2

0,R + ‖zh‖0,R ‖∇zh‖0,R + h ‖∇zh‖2
0,R

]

,

where in the last step we used (3.12).
Since every such cylinder S0 ⊂ ω will only be used twice corresponding to its

two bases on ∂ω, we therefore obtain (4.16) and (4.17) from (4.19) and (4.20),
respectively, by summing over all boundary faces F0 ⊂ ∂ω of elements R ⊂ ω such
that ∂R∩ ∂ω 6= ∅. �

Remark 4.4. We can generalize the above theorem to cover more general closed
subdomains ω ⊂ Ω̄ which are still unions of rectangular elements of τh. For such
an ω we denote by Λ(ω) the smallest height of all cylinders S0 ⊂ ω composed of
elements of τh which have generating lines parallel to the coordinate axes and for
which both bases lie in the boundary ∂ω. Both of the inequalities (4.16) and (4.17)
remain valid.

5. Approximation of Limiting Macroscopic Deformations

We define

Eh(yh) =
∑

R∈τh

∫

R

φ(∇yh(x)) dx, ∀yh ∈ Ah.

The following result which will be frequently used is a direct consequence of the
quadratic growth rate of the energy density around the energy wells (2.2).

Lemma 5.1. We have
∑

R∈τh

∫

R

‖∇yh(x) − π(∇yh(x))‖2dx ≤ κ−1Eh(yh), ∀yh ∈ Ah.
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In the following lemma, we recall that we have assumed that

(5.1) F1 = F0 + a ⊗ n,

and that we have assumed without loss of generality in the cubic to tetragonal case
by Lemma 2.1 that

(5.2) n =
1√
2
(e1 + e2).

Lemma 5.2. For any w ∈ R
3 satisfying w · n = 0, there exists a constant C > 0

such that

(5.3)
∑

R∈τh

∫

R

|[π(∇yh(x)) − Fλ] w|2 dx ≤ CEh(yh)
1
2 , ∀yh ∈ Ah.

Proof. We first consider the orthorhombic to monoclinic transformation. In this
case we have

π(F ) ∈ SO(3)F0 ∪ SO(3)F1, ∀F ∈ R
3×3.

Consequently, we have by the rank-one connection (5.1) and by the identity

Fλ = (1 − λ)F0 + λF1 = F0 + λa ⊗ n

that

(5.4) |π(F )w| = |F0w| = |F1w| = |Fλw| , ∀F ∈ R
3×3,

for any w ∈ R
3 such that w ·n = 0. It then follows from Theorem 4.1, the Cauchy-

Schwarz inequality, the identity (5.4), and (2.2) that for any yh ∈ Ah,
∑

R∈τh

∫

R

|[π(∇yh(x)) − Fλ] w|2 dx

= 2Fλw ·
∑

R∈τh

∫

R

[Fλ − π(∇yh(x))] w dx

= 2Fλw ·
∑

R∈τh

∫

R

[∇yh(x) − π(∇yh(x))] w dx

≤ 2|Fλw|(meas Ω)1/2

[

∑

R∈τh

∫

R

‖∇yh(x) − π(∇yh(x))‖2
dx

]
1
2

(5.5)

≤ 2|F0w|(meas Ω)1/2κ−1/2Eh(yh)
1
2 ,

which implies (5.3) for the orthorhombic to monoclinic transformation.
Now we consider the cubic to tetragonal transformation. Set

w1 = e1 − e2 + e3 and w2 = e1 − e2 − e3.

It is easy to check that
w1 · n = w2 · n = 0,

and

|Uiwj | =
√

2η2
1 + η2

2 , i = 1, 2, 3, j = 1, 2.

Consequently, we can obtain (5.4) and hence (5.5) again for w = w1 and w = w2,
respectively. Thus, (5.3) is also proved for the cubic to tetragonal transformation
since {w1, w2} is an orthonormal basis for the two-dimensional subspace {w ∈ R

3 :
w · n = 0}. �
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The following theorem is a direct consequence of the above two lemmas. It gives
error bounds for the approximation of directional derivatives of deformations to
the limiting macroscopic deformation gradient Fλ in the direction tangential to the
parallel layers of the laminate. It will play a key role in establishing all of the other
error bounds.

Theorem 5.3. For any w ∈ R
3 satisfying w · n = 0, there exists a constant C > 0

such that
∑

R∈τh

∫

R

|[∇yh(x) − Fλ] w|2 dx ≤ C
[

Eh(yh)
1
2 + Eh(yh)

]

, ∀yh ∈ Ah.

We now give error bounds for the strong L2 approximation of deformations to
the limiting macroscopic homogeneous deformation Fλx, x ∈ Ω.

Theorem 5.4. There is a constant C > 0 such that
∫

Ω

|yh(x) − Fλx|2 dx ≤ C
[

Eh(yh)
1
2 + Eh(yh) + h

]

, ∀yh ∈ Ah.

Proof. For any yh ∈ Ah, we have by Lemma 5.1 that

∑

R∈τh

∫

R

‖∇yh(x) − Fλ‖2
dx

≤ 2
∑

R∈τh

∫

R

‖∇yh(x) − π(∇yh(x))‖2
dx + 2

∑

R∈τh

∫

R

‖π(∇yh(x)) − Fλ‖2
dx(5.6)

≤ CEh(yh) + C,

which together with Theorem 4.2 implies the desired inequality. �

We now establish error bounds for the weak approximation of deformation gra-
dients to the limiting macroscopic deformation gradient Fλ.

Theorem 5.5. For any rectangular parallelepiped ω ⊂ Ω̄ whose boundary ∂ω is
composed of faces parallel to the coordinate planes, there exists a constant C =
C(ω) > 0 such that for all yh ∈ Ah

(5.7)

∥

∥

∥

∥

∥

∑

R∈τh

∫

ω∩R

[∇yh(x) − Fλ] dx

∥

∥

∥

∥

∥

≤ C
[

Eh(yh)
1
8 + Eh(yh)

1
2 + h

1
4

]

.

Proof. Denoting

ωh =
⋃

{R ∈ τh : R ⊂ ω},
we have for any yh ∈ Ah that

∑

R∈τh

∫

ω∩R

[∇yh(x) − Fλ] dx

=
∑

R∈τh,R⊂ωh

∫

R

[∇yh(x) − Fλ] dx +
∑

R∈τh

∫

(ω−ωh)∩R

[∇yh(x) − Fλ] dx(5.8)

≡ K1 + K2.

Since

meas (ω − ωh) ≤ Ch,
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we can estimate K2 by virtue of the triangle inequality, the Cauchy-Schwarz in-
equality, and Lemma 5.1 to get

‖K2‖ ≡
∥

∥

∥

∥

∥

∑

R∈τh

∫

(ω−ωh)∩R

[∇yh(x) − Fλ] dx

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∑

R∈τh

∫

(ω−ωh)∩R

[∇yh(x) − π(∇yh(x))] dx

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∑

R∈τh

∫

(ω−ωh)∩R

[π(∇yh(x)) − Fλ] dx

∥

∥

∥

∥

∥

(5.9)

≤ Ch
1
2

[

∑

R∈τh

∫

R

‖∇yh(x) − π(∇yh(x))‖2
dx

]
1
2

+ Ch

≤ Ch
1
2 Eh(yh)

1
2 + Ch.

To estimate K1 we first assume that yh ∈ Aa
h. It then follows from the divergence

theorem and the definition of the Aa
h-approximation that

K1 ≡
∑

R∈τh,R⊂ωh

∫

R

[∇yh(x) − Fλ] dx

=
∑

R∈τh,R⊂ωh

∫

∂R

[yh(x) − Fλx] ⊗ ν dS

=
∑

R⊂ωh,∂R∩∂ωh 6=∅

∑

F⊂∂R∩∂ωh

∫

F

[yh(x) − Fλx] ⊗ ν dS.

Since ωh ⊂ Ω̄ is a rectangular parallelepiped which is a union of elements in τh, we
have by the Cauchy-Schwarz inequality and (4.17) that

‖K1‖ ≤
∑

R⊂ωh,∂R∩∂ωh 6=∅

∑

F⊂∂R∩∂ωh

∫

F

|yh(x) − Fλx| dS

≤ (meas ∂ωh)
1
2





∑

R⊂ωh,∂R∩∂ωh 6=∅

∑

F⊂∂R∩∂ωh

∫

F

|yh(x) − Fλx|2 dS





1
2

≤ C (meas ∂ω)
1
2

{

1

Λ(ωh)

∫

ωh

|yh(x) − Fλx|2 dx + h
∑

R⊂ωh

∫

R

‖∇yh(x) − Fλ‖2
dx

+

(
∫

ωh

|yh(x) − Fλx|2 dx

)
1
2

(

∑

R⊂ωh

∫

R

‖∇yh(x) − Fλ‖2
dx

)
1
2} 1

2

,

≤ C

{

1

Λ(ωh)

∫

Ω

|yh(x) − Fλx|2 dx + h
∑

R∈τh

∫

R

‖∇yh(x) − Fλ‖2
dx

+

(
∫

Ω

|yh(x) − Fλx|2 dx

)
1
2

(

∑

R∈τh

∫

R

‖∇yh(x) − Fλ‖2
dx

)
1
2} 1

2

,
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since Λ(ω) ≤ CΛ(ωh). This, together with (5.6) and Theorem (5.4), implies that

(5.10) ‖K1‖ ≤ C
[

Eh(yh)
1
8 + Eh(yh)

1
2 + h

1
4

]

.

Now let us assume that yh ∈ Ap
h. By the same argument as in the proof of

Theorem 4.1, cf. (4.3) and (4.4), we have

K1 ≡
∑

R∈τh,R⊂ωh

∫

R

[∇yh(x) − Fλ] dx

=
∑

R∈τh,R⊂ωh

∫

∂R

[yh(x) − Fλx] ⊗ ν dS

=
∑

R∈τh,R⊂ωh

∑

F⊂∂R

∫

F

{[yh(x) − Fλx] − [yh(cF ) − FλcF ]} ⊗ ν dS

+
∑

R∈τh,R⊂ωh

∑

F⊂∂R

∫

F

[yh(cF ) − FλcF ] ⊗ ν dS

=
∑

R∈τh,R⊂ωh

∑

F⊂∂R

∫

F

[yh(cF ) − FλcF ] ⊗ ν dS

=
∑

R⊂ωh,∂R∩∂ωh 6=∅

∑

F⊂∂R∩∂ωh

∫

F

[yh(cF ) − FλcF ] ⊗ ν dS.

Using a similar argument to that for yh ∈ Aa
h, we can obtain (5.10) again for

yh ∈ Ap
h by (4.16), (5.6), and Theorem 5.4.

Finally, (5.7) follows from (5.8), (5.9), and (5.10). �

6. Approximation of Martensitic Variants

Let us now define the projection operator π12 : R
3×3 → U1

⋃U2 by

‖F − π12(F )‖ = min
G∈U1∪U2

‖F − G‖, ∀F ∈ R
3×3.

For the orthorhombic to monoclinic transformation, we note that π12 = π. The
next lemma gives an estimate for π12−π for the cubic to tetragonal transformation
by showing that the measure of the set of points in which the gradient of energy
minimizing sequences of deformations is near U3 converges to zero. Thus, the next
lemma reduces the three-well problem for the cubic to tetragonal transformation
to a two-well problem.

Lemma 6.1. For the cubic to tetragonal transformation, there exists a constant
C > 0 such that

(6.1)
∑

R∈τh

∫

R

‖π(∇yh(x)) − π12(∇yh(x))‖2
dx ≤ CEh(yh)

1
2 , ∀y ∈ Ah.

Proof. We have by a simple calculation that

inf
F∈U3

|[F − Fλ] e3| ≥ |η2 − η1|.

Denoting

Ω3 =
⋃

R∈τh

{x ∈ R : π(∇yh(x)) ∈ U3}
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for yh ∈ Ah, we have by Lemma 5.2 that

meas Ω3 =
∑

R∈τh

meas {x ∈ R : π(∇yh(x)) ∈ U3}

≤ |η2 − η1|−2
∑

R∈τh

∫

R

|[π(∇yh(x)) − Fλ] e3|2 dx(6.2)

≤ CEh(yh)
1
2 ,

since e3 · n = 0 (recall that n = 2−1/2(e1 + e2)). The result (6.1) then follows from
the inequality

∑

R∈τh

∫

R

∥

∥π(∇y(x)) − π12(∇yh(x))
∥

∥

2
dx

=
∑

R∈τh

∫

R
T

Ω3

∥

∥π(∇y(x)) − π12(∇yh(x))
∥

∥

2
dx

≤ 4(2η2
1 + η2

2)meas Ω3

≤ CEh(yh)
1
2 ,

since ‖π(F )‖ = ‖π12(F )‖ =
√

2η2
1 + η2

2 for all F ∈ R
3×3. �

We next define the operators Θ : R
3×3 → SO(3) and Π : R

3×3 → {F0, F1} by
the relation

(6.3) π12(F ) = Θ(F )Π(F ), ∀F ∈ R
3×3.

The following theorem gives an error bound for the convergence of deformation
gradients to the set of variants {F0, F1}.

Theorem 6.2. There exists a constant C > 0 such that

∑

R∈τh

∫

R

‖∇yh(x) − Π(∇yh(x))‖2
dx ≤ C

[

Eh(yh)
1
2 + Eh(yh)

]

, ∀yh ∈ Ah.

Proof. For any w ∈ R
3 such that w · n = 0, we have

Π(F )w = F0w = F1w = Fλw, ∀F ∈ R
3×3.

Thus, it follows from (6.3) that

[Θ (F ) − I]F0w = [Θ (F ) − I] Π(F )w = [π12 (F ) − Fλ] w

= [π12 (F ) − π(F )] w + [π(F ) − Fλ] w, ∀F ∈ R
3×3.

We can then apply the triangle inequality to the above identity with F = ∇yh(x),
x ∈ R, for any yh ∈ Ah and any element R ∈ τh, and estimate the corresponding
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two terms by Lemma 6.1 and Lemma 5.2 to obtain for w · n = 0 that

∑

R∈τh

∫

R

|[Θ (∇yh(x)) − I]F0w|2 dx

≤ 2
∑

R∈τh

∫

R

|[π12(∇yh(x)) − π (∇yh(x))] w|2 dx

+ 2
∑

R∈τh

∫

R

| [π (∇yh(x)) − Fλ]w|2dx(6.4)

≤ CEh(yh)
1
2 .

Choose w1 ∈ R
3 and w2 ∈ R

3 so that w1 ·n = w2 ·n = 0 and w1, w2 are linearly
independent. Set m = F0w1 × F0w2. Since

Qm = QF0w1 × QF0w2, ∀Q ∈ SO(3),

we have for all F ∈ R
3×3 that

[Θ(F ) − I] m = {Θ(F ) F0w1 × Θ(F )F0w2} − {F0w1 × F0w2}
= {[Θ (F ) − I]F0w1 × Θ(F ) F0w2} − {F0w1 × [I − Θ(F )] F0w2} .

This together with (6.4) implies that

(6.5)
∑

R∈τh

∫

R

|[Θ (∇yh(x)) − I]m|2 dx ≤ CEh(yh)
1
2 .

Now {F0w1, F0w2, m} is a basis for R
3, so we can conclude from (6.4) and (6.5)

that for all yh ∈ Ah

(6.6)
∑

R∈τh

∫

R

‖[Θ (∇yh(x)) − I]‖2
dx ≤ C

[

Eh(yh)
1
2 + Eh(yh)

]

.

We complete the proof by applying the triangle inequality to the identity

F − Π(F ) = [F − π(F )] + [π(F ) − π12(F )] + [π12(F ) − Π(F )]

= [F − π(F )] + [π(F ) − π12(F )] + [Θ(F ) − I] Π(F ), ∀F ∈ R
3×3,

with F = ∇yh(x) for any yh ∈ Ah, x ∈ R, and R ∈ τh, and by estimating the three
terms by Lemma 5.1, Lemma 6.1, and (6.6). �

7. Approximation of Simply Laminated Microstructure

For any subset ω ⊂ Ω, ρ > 0, and yh ∈ Ah, we define the sets

ω0
ρ(yh) =

⋃

R∈τh
{x ∈ ω ∩R : Π(∇yh(x)) = F0 and ‖∇yh(x) − F0‖ < ρ} ,

ω1
ρ(yh) =

⋃

R∈τh
{x ∈ ω ∩R : Π(∇yh(x)) = F1 and ‖∇yh(x) − F1‖ < ρ} .

The following theorem states that for any rectangular parallelepiped ω ⊂ Ω̄ and
for any energy minimizing sequence {yh} the volume fraction that the piecewise
defined gradient ∇yh is near F0 converges to 1 − λ and the volume fraction that
∇yh is near F1 converges to λ.
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Theorem 7.1. For any rectangular parallelepiped ω ⊂ Ω whose faces are parallel
to the coordinate planes, and any ρ > 0, there exists a constant C = C(ω, ρ) > 0
such that for all yh ∈ Ah,

∣

∣

∣

∣

∣

measω0
ρ(yh)

measω
− (1 − λ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

measω1
ρ(yh)

measω
− λ

∣

∣

∣

∣

∣

≤ C
[

Eh(yh)
1
8 + Eh(yh)

1
2 + h

1
4

]

.(7.1)

Proof. Fix yh ∈ Ah. It follows from the definition of ω0
ρ ≡ ω0

ρ(yh) and ω1
ρ ≡ ω1

ρ(yh)
that

[

meas ω0
ρ − (1 − λ)meas ω

]

F0 +
[

meas ω1
ρ − λmeas ω

]

F1

=
∑

R∈τh

∫

ω∩R

[Π (∇yh(x)) − Fλ] dx(7.2)

−
∑

R∈τh

∫

(ω−{ω0
ρ∪ω1

ρ})∩R

Π(∇yh(x)) dx.

We have by Theorem 6.1 and Theorem 5.5 that
∥

∥

∥

∥

∑

R∈τh

∫

ω∩R

[Π (∇yh(x)) − Fλ] dx

∥

∥

∥

∥

≤
∥

∥

∥

∥

∑

R∈τh

∫

ω∩R

[Π (∇yh(x)) −∇yh(x)] dx

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

R∈τh

∫

ω∩R

[∇yh(x) − Fλ] dx

∥

∥

∥

∥

≤ (meas ω)
1
2

[

∑

R∈τh

∫

R

‖Π(∇yh(x)) −∇yh(x)‖2
dx

]
1
2

(7.3)

+

∥

∥

∥

∥

∑

R∈τh

∫

ω∩R

[∇yh(x) − Fλ] dx

∥

∥

∥

∥

≤ C
[

Eh(yh)
1
8 + Eh(yh)

1
2 + h

1
4

]

.

Since ‖Π(F )‖ =
√

2η2
1 + η2

2 for all F ∈ R
3×3, we can conclude by the definition of

ω0
ρ and ω1

ρ and by Theorem 6.2 that
∥

∥

∥

∥

∑

R∈τh

∫

(ω−{ω0
ρ∪ω1

ρ})∩R

Π(∇yh(x)) dx

∥

∥

∥

∥

≤ Cmeas
(

ω − {ω0
ρ ∪ ω1

ρ}
)

≤ C

ρ

∑

R∈τh

∫

(ω−{ω0
ρ∪ω1

ρ})∩R

‖Π(∇yh(x)) −∇yh(x)‖ dx(7.4)

≤ C(meas ω)
1
2

ρ

[

∑

R∈τh

∫

R

‖Π(∇yh(x)) −∇yh(x)‖2
dx

]
1
2

≤ C
[

Eh(yh)
1
4 + Eh(yh)

1
2

]

.
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Therefore, we have by (7.3) and (7.4) that
∥

∥

[

meas ω0
ρ − (1 − λ)meas ω

]

F0 +
[

meas ω1
ρ − λmeas ω

]

F1

∥

∥

≤ C
[

Eh(yh)
1
8 + Eh(yh)

1
2 + h

1
4

]

,

which implies (7.1) because F0 and F1 are linearly independent. �

We now denote by V the Sobolev space of all measurable functions f(x, F ) :
Ω × R

3×3 → R such that

‖f‖2
V =

∫

Ω

[

ess sup
F∈R3×3

‖∇F f(x, F )‖
]2

dx + ‖Gf‖2
1,Ω < ∞,

where
Gf (x) = f(x, F1) − f(x, F0), x ∈ Ω.

The following theorem gives error bounds for the approximation of nonlinear inte-
grals of deformation gradients which represent macroscopic thermodynamic densi-
ties.

Theorem 7.2. There exists a constant C > 0 such that
∣

∣

∣

∣

∣

∑

R∈τh

∫

R

{f ((x,∇yh(x)) − [(1 − λ)f(x, F0) + λf(x, F1)]} dx

∣

∣

∣

∣

∣

≤ C‖f‖V
[

Eh(yh)
1
4 + Eh(yh)

1
2 + h

1
2

]

, ∀f ∈ V, ∀yh ∈ Ah.

Proof. We have
∑

R∈τh

∫

R

{f ((x,∇yh(x)) − [(1 − λ)f(x, F0) + λf(x, F1)]} dx

=
∑

R∈τh

∫

R

[f (x,∇yh(x)) − f (x,Π(∇yh(x)))] dx

+
∑

R∈τh

∫

R

{f (x,Π(∇yh(x))) − [(1 − λ)f(x, F0) + λf(x, F1)]} dx(7.5)

= M1 + M2.

The first term M1 can be easily estimated by the Cauchy-Schwarz inequality and
Theorem 6.2 to give

|M1| ≤
∑

R∈τh

∫

R

[

ess sup
F∈R3×3

‖∇F f(x, F )‖
]

‖∇yh(x) − Π(∇yh(x))‖ dx

≤
{

∑

R∈τh

∫

R

[

ess sup
F∈R3×3

‖∇F f(x, F )‖
]2

dx

}
1
2

·
{

∑

R∈τh

∫

R

‖∇yh(x) − Π(∇yh(x))‖2
dx

}
1
2

(7.6)

≤ C‖f‖V
[

Eh(yh)
1
4 + Eh(yh)

1
2

]

.

To estimate the second term M2, we use the identity

f (x,Π(F )) − [(1 − λ)f(x, F0) + λf(x, F1)]
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=
1

|a|2 {a · [Π(F ) − Fλ] n}Gf (x), ∀F ∈ R
3×3,

to show that

M2 ≡
∑

R∈τh

∫

R

{f (x,Π(∇yh(x))) − [(1 − λ)f(x, F0) + λf(x, F1)]} dx

=
∑

R∈τh

∫

R

1

|a|2
{a · [Π(∇yh(x)) −∇yh(x)] n}Gf (x) dx

+
∑

R∈τh

∫

R

1

|a|2
{a · [∇yh(x) − Fλ] n}Gf (x) dx

=
∑

R∈τh

∫

R

1

|a|2
{a · [Π(∇yh(x)) −∇yh(x)] n}Gf (x) dx(7.7)

+
∑

R∈τh

∫

∂R

1

|a|2
{a · [yh(x) − Fλx]} (n · ν)Gf (x) dS

−
∑

R∈τh

∫

R

1

|a|2
{a · [yh(x) − Fλx]} [∇Gf (x) · n] dx

≡ P1 + P2 + P3.

We can estimate P1 and P3 by the Cauchy-Schwarz inequality, Theorem 6.2, and
Theorem 5.4 by

|P1| ≤ C

(
∫

Ω

|Gf (x)|2 dx

)
1
2 [

Eh(yh)
1
4 + Eh(yh)

1
2

]

,(7.8)

|P3| ≤ C

(
∫

Ω

|∇Gf (x)n|2 dx

)
1
2 [

Eh(yh)
1
4 + Eh(yh)

1
2 + h

1
2

]

.(7.9)

To estimate P2, we denote again zh(x) = yh(x) − Fλx, x ∈ Ω. We rewrite P2 as

P2 ≡
∑

R∈τh

∑

F⊂∂R

∫

F

1

|a|2
[a · zh(x)] Gf (x)(n · ν) dS

=
∑

R∈τh

∑

F⊂∂R

∫

F

1

|a|2
{a · [zh(x) − T a

F (zh)]} [Gf (x) − T a
F (Gf )] (n · ν) dS

for yh ∈ Aa
h by the definition of Aa

h and

P2 ≡
∑

R∈τh

∑

F⊂∂R

∫

F

1

|a|2
[a · zh(x)] Gf (x)(n · ν) dS

=
∑

R∈τh

∑

F⊂∂R

∫

F

1

|a|2
{a · [zh(x) − zh (cF )]}Gf (x)(n · ν) dS

for yh ∈ Ap
h by the definition of Ap

h. By the same argument as for estimating Ja
2

and Jp
2 in the proof of Theorem 4.2 (cf. (4.10), (4.11), (4.14), and (4.15)) and by
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Lemma 3.3 and (5.6), we have

|P2| ≤ Ch

[

∑

R∈τh

∫

R

‖∇yh(x) − Fλ‖2
dx

]
1
2 [∫

Ω

|∇Gf (x)|2 dx

]
1
2

≤ Ch
[

Eh(yh)
1
2 + 1

]

‖∇Gf‖0,Ω .(7.10)

Finally, the assertion of the theorem follows from (7.5)–(7.10). �

8. Error Estimates for Quasi-optimal Deformations

We first establish the existence of finite element energy minimizers as well as the
error bound for the corresponding minimum energy.

Theorem 8.1. There exist a constant C > 0 and yh ∈ Ah such that

Eh(yh) = min
uh∈Ah

Eh(uh) ≤ Ch
1
2 .

Proof. Fix a mesh τh. We have by the inverse inequality (3.8), Lemma 5.1, and
Theorem 5.4 that

‖uh‖1,∞,h ≤ Ch− 3
2 ‖uh‖1,h

≤ Ch− 3
2

[

Eh(uh)
1
4 + Eh(uh)

1
2 + 1

]

, ∀uh ∈ Ah.(8.1)

Moreover, the continuity of the energy density φ implies the continuity of the energy
functional Eh on the finite-dimensional affine space Ah. Therefore, the bound (8.1)
implies the existence of a finite element energy minimizer by compactness.

To finish the proof, we need to construct a finite element deformation yh ∈ Ah

such that

Eh(yh) ≤ Ch
1
2 .

This can be demonstrated by an argument similar to that in [8, 32, 31] since the
space of our finite element polynomials (3.1) contains all linear polynomials and
since the interpolation operator Ih : C(Ω̄) → Vh satisfies the inequality (3.20). �

The number of local minima of the energy functional Eh on Ah grows arbitrarily
large as the mesh size h → 0 [31]. Many of these local minima are approximations
on different length scales to the same optimal microstructure [31]. Thus, it is rea-
sonable to give error estimates for finite element approximations yh ∈ Ah satisfying
the quasi-optimality condition

(8.2) Eh(yh) ≤ γ inf
uh∈Ah

E(uh)

for some constant γ > 1 independent of h. Our estimates show that all of the local
minima of Eh on Ah which satisfy the quasi-optimality condition give accurate
approximations to the energy-minimizing microstructure for the deformation, the
volume fractions of the deformation gradients, and the nonlinear integrals of the
deformation gradient.

It follows directly from the above theorem and all of the error bounds established
in §5, §6, and §7 that we can obtain the following error estimates for all quasi-
optimal finite element deformations yh ∈ Ah and for any family of rectangular
meshes τh satisfying the quasi-uniformity condition (3.2).
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Corollary 8.2. For any w ∈ R
3 satisfying w ·n = 0, there exists a constant C > 0

such that
∑

R∈τh

∫

R

|[∇yh(x) − Fλ] w|2 dx ≤ Ch
1
4

for any yh ∈ Ah which satisfies the quasi-optimality condition (8.2).

Corollary 8.3. There exists a constant C > 0 such that
∑

R∈τh

∫

R

|yh(x) − Fλx|2dx ≤ Ch
1
4

for any yh ∈ Ah which satisfies the quasi-optimality condition (8.2).

Corollary 8.4. If ω ⊂ Ω̄ is a rectangular parallelepiped whose faces are parallel to
the coordinate planes, then there exists a constant C = C(ω) > 0 such that

∥

∥

∥

∥

∥

∑

R∈τh

∫

ω∩R

[∇yh(x) − Fλ] dx

∥

∥

∥

∥

∥

≤ Ch
1
16

for any yh ∈ Ah which satisfies the quasi-optimality condition (8.2).

Corollary 8.5. There exists a constant C > 0 such that
∑

R∈τh

∫

R

‖∇yh(x) − Π(∇yh(x))‖2
dx ≤ Ch

1
4

for any yh ∈ Ah which satisfies the quasi-optimality condition (8.2).

Corollary 8.6. If ω ⊂ Ω̄ is a rectangular parallelepiped whose faces are parallel to
the coordinate planes and ρ > 0, then there exists a constant C = C(ω, ρ) > 0 such
that

∣

∣

∣

∣

∣

measω0
ρ(yh)

measω
− (1 − λ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

measω1
ρ(yh)

measω
− λ

∣

∣

∣

∣

∣

≤ Ch
1
16

for any yh ∈ Ah which satisfies the quasi-optimality condition (8.2).

Corollary 8.7. There exists a constant C > 0 such that
∣

∣

∣

∣

∣

∑

R∈τh

∫

R

{f (x,∇yh(x)) − [(1 − λ)f(x, F0) + λf(x, F1)]} dx

∣

∣

∣

∣

∣

≤ C‖f‖Vh
1
8

for any f ∈ V and any yh ∈ Ah which satisfies the quasi-optimality condition (8.2).
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[5] Carsten Carstensen and Petr Plecháč, Numerical solution of the scalar double-well problem

allowing microstructure, Math. Comp. (1997).

[6] Michel Chipot, Numerical analysis of oscillations in nonconvex problems, Numer. Math. 59

(1991), 747–767.
[7] Michel Chipot and Charles Collins, Numerical approximations in variational problems with

potential wells, SIAM J. Numer. Anal. 29 (1992), 1002–1019.



NONCONFORMING APPROXIMATION OF MICROSTRUCTURE 29

[8] Michel Chipot, Charles Collins, and David Kinderlehrer, Numerical analysis of oscillations

in multiple well problems, Numer. Math. 70 (1995), 259–282.

[9] Michel Chipot and David Kinderlehrer, Equilibrium configurations for crystals, Arch. Rat.

Mech. Anal. 103 (1988), 237–277.

[10] Philippe Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam,

1978.

[11] Charles Collins, Computation of twinning, Microstructure and Phase Transitions (Jerald

Ericksen, Richard James, David Kinderlehrer, and Mitchel Luskin, eds.), Springer-Verlag,

1993, IMA Volumes in Mathematics and Its Applications, vol. 54, pp. 39–50.

[12] , Convergence of a reduced integration method for computing microstructures, SIAM

J. Numer. Anal. (to appear).

[13] Charles Collins, David Kinderlehrer, and Mitchell Luskin, Numerical approximation of the

solution of a variational problem with a double well potential, SIAM J. Numer. Anal. 28

(1991), 321–332.

[14] Charles Collins and Mitchell Luskin, The computation of the austenitic-martensitic phase

transition, Partial Differential Equations and Continuum Models of Phase Transitions (Michel
Rascle, Denis Serre, and Marshall Slemrod, eds.), Springer-Verlag, 1989, Lecture Notes in
Physics, vol. 344, pp. 34–50.

[15] , Numerical modeling of the microstructure of crystals with symmetry-related vari-

ants, Proceedings of the US-Japan Workshop on Smart/Intelligent Materials and Systems
(Lancaster, Pennsylvania) (I. Ahmad, , M. Aizawa, A. Crowson, and C. Rogers, eds.), Tech-

nomic Publishing Co., 1990, pp. 309–318.
[16] , Optimal order estimates for the finite element approximation of the solution of a

nonconvex variational problem, Math. Comp. 57 (1991), 621–637.

[17] Charles Collins, Mitchell Luskin, and James Riordan, Computational images of crystalline

microstructure, Computing Optimal Geometries (Jean Taylor, ed.), Amer. Math. Soc., 1991,
AMS Special Lectures in Mathematics and AMS Videotape Library, pp. 16–18.

[18] , Computational results for a two-dimensional model of crystalline microstructure,
Microstructure and Phase Transitions (Jerald Ericksen, Richard James, David Kinderlehrer,

and Mitchell Luskin, eds.), Springer-Verlag, 1993, IMA Volumes in Mathematics and Its
Applications, vol. 54, pp. 51–56.

[19] Jerald Ericksen, Constitutive theory for some constrained elastic crystals, Int. J. Solids and
Structures 22 (1986), 951–964.

[20] Donald French, On the convergence of finite element approximations of a relaxed variational

problem, SIAM J. Numer. Anal. 28 (1991), 419–436.

[21] Pierre Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid

phase transitions, SIAM J. Numer. Anal. 31 (1994), 111–127.

[22] , Numerical optimization and quasiconvexity, Euro. J. of Applied Mathematics 6

(1995), 69–82.

[23] Richard James and David Kinderlehrer, Theory of diffusionless phase transitions, Partial

differential equations and continuum models of phase transitions (M. Rascle, D. Serre, and
M. Slemrod, eds.), Springer-Verlag, 1989, Lecture Notes in Physics, vol. 344, pp. 51–84.
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