
Bo Li*

May 26, 2010

In the proof of Theorem 2.1 in Section 4, Jensen’s inequality was used incorrectly, cf. the first inequality in line 7 on page 2550. To correct this, we define \(K := \{ u \in H^1(\Omega) : u = \psi_0 \text{ on } \partial \Omega \} \) and define \(J : K \to \mathbb{R} \cup \{ +\infty \} \) as in line 11 on page 2550. By the second paragraph of page 2550, the functional \(J[\cdot] \) has a minimizer \(v \in K \). We now prove \(v \) is bounded on \(\Omega \). Hence \(\chi_{\Omega_s} B \left(v + G - \hat{\psi}_0 / 2 \right) \in L^2(\Omega_s) \). After this, the rest of the proof, starting from the third paragraph on page 2550, remains the same.

Let \(\lambda > \| \psi_0 \|_{L^\infty(\Omega)} \). Define \(v_\lambda : \Omega \to \mathbb{R} \) by \(v_\lambda(x) = v(x) \) if \(|v(x)| \leq \lambda \), \(v_\lambda(x) = \lambda \) if \(v(x) > \lambda \), and \(v_\lambda(x) = -\lambda \) if \(v(x) < -\lambda \), where \(x \in \Omega \). Clearly \(v_\lambda \in K \) and thus \(J[v] \leq J[v_\lambda] \). Consequently, since \(|\nabla v_\lambda| \leq |\nabla v| \) a.e. \(\Omega \),

\[
\int_{\Omega_s} B \left(v(x) + G(x) - \hat{\psi}_0(x) / 2 \right) dx \leq \int_{\Omega_s} B \left(v_\lambda(x) + G(x) - \hat{\psi}_0(x) / 2 \right) dx. \tag{1}
\]

The definition of \(B : \mathbb{R} \to \mathbb{R} \) is given in (1.14) on page 2540. For the case of point ions, \(B \) is clearly convex and \(B'(s) \to \pm\infty \) as \(s \to \pm\infty \). For the case of finite-size ions, we have

\[
B'(s) = -\frac{\sum_{j=1}^{M} c_j \infty q_j e^{-\beta q_j s}}{1 + a^3 \sum_{j=1}^{M} c_j \infty e^{-\beta q_j s}}
\]

\[
\left(1 + a^3 \sum_{j=1}^{M} c_j \infty e^{-\beta q_j s} \right)^2 B''(s) = \beta \sum_{j=1}^{M} c_j \infty q_j^2 e^{-\beta q_j s}
\]

\[
+ \beta a^3 \left[\left(\sum_{j=1}^{M} c_j \infty q_j^2 e^{-\beta q_j s} \right) \left(\sum_{j=1}^{M} c_j \infty e^{-\beta q_j s} \right) - \left(\sum_{j=1}^{M} c_j \infty q_j e^{-\beta q_j s} \right)^2 \right].
\]

*Department of Mathematics and the NSF Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, Mail code: 0112. La Jolla, CA 92093-0112, USA. E-mail: bli@math.ucsd.edu.
The Cauchy–Schwarz inequality implies that $B''(s) > 0$. Hence B is also convex. Moreover, using the electrostatic neutrality condition $\sum_{j=1}^{M} c_{j}q_{j} = 0$, we have
\[
\lim_{s \to \infty} B'(s) = -a^{-3} \min_{1 \leq j \leq M} q_{j} > 0 \quad \text{and} \quad \lim_{s \to -\infty} B'(s) = -a^{-3} \max_{1 \leq j \leq M} q_{j} < 0.
\]

It then follows from (1) of this note, the definition of v_{λ}, and the fact that both G and $\hat{\psi}$ are bounded on Ω_{s} that there exists $\alpha > 0$ such that for $\lambda > 0$ enough,
\[
0 \geq \int_{\{x \in \Omega_{s} : v(x) > \lambda\}} \left[B \left(v(x) + G(x) - \frac{\hat{\psi}(x)}{2} \right) - B \left(\lambda + G(x) - \frac{\hat{\psi}(x)}{2} \right) \right] dx \\
+ \int_{\{x \in \Omega_{s} : v(x) < -\lambda\}} \left[B \left(v(x) + G(x) - \frac{\hat{\psi}(x)}{2} \right) - B \left(-\lambda + G(x) - \frac{\hat{\psi}(x)}{2} \right) \right] dx \\
\geq \int_{\{x \in \Omega_{s} : v(x) > \lambda\}} B' \left(\lambda + G(x) - \frac{\hat{\psi}(x)}{2} \right) [v(x) - \lambda] dx \\
+ \int_{\{x \in \Omega_{s} : v(x) < -\lambda\}} B' \left(-\lambda + G(x) - \frac{\hat{\psi}(x)}{2} \right) [v(x) + \lambda] dx \\
\geq \alpha \int_{\{x \in \Omega_{s} : v(x) > \lambda\}} [v(x) - \lambda] dx - \alpha \int_{\{x \in \Omega_{s} : v(x) < -\lambda\}} [v(x) + \lambda] dx \\
= \alpha \int_{\{x \in \Omega_{s} : |v(x)| > \lambda\}} [|v(x)| - \lambda] dx \\
\geq 0.
\]
Hence the last integral is 0. This implies that the measure of the set $\{x \in \Omega_{s} : |v(x)| > \lambda\}$ is 0. Therefore $|v| \leq \lambda$ a.e. Ω_{s}.

Remark. By Theorem 2.4 and Theorem 2.5, there exists a unique set of equilibrium ionic concentrations $c = (c_{1}, \ldots, c_{M})$ for both the case of point ions and that of finite-size ions. These concentrations are bounded and are related to the corresponding electrostatic potential ψ by the Boltzmann distributions (1.9). The potential ψ is bounded in Ω_{s}, cf. (3.11). It is a solution to the underlying boundary-value problem of Poisson–Boltzmann equation, cf. (1.4), (1.8) and (1.9). This provides a different but indirect proof of the existence of a bounded solution to the boundary-value problem of the Poisson–Boltzmann equation.

Acknowledgment. The author thanks Jehanzeb Hameed Chaudhry for pointing out the mistake in the proof of Theorem 2.1.