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From mean-field theory to Monte Carlo simulations
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Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-
included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy
functional of ionic concentrations, constrained by Poisson’s equation, is numerically minimized by an augmented
Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the
Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a
low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing
studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the
counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species.
The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species
with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular,
the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to
charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic
systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a
better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on
the ionic size effect with application to large-scale biomolecular modeling.
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I. INTRODUCTION

Electrostatic interactions play an important role in many
complex systems, such as biological processes, soft matter ma-
terial, nanofluids, and electrochemical devices [1–8]. Accurate
and efficient modeling and computations of such interactions
have been challenging due to the inhomogeneity, complicated
geometry, multiple scales, and the nature of the many-body
interaction of an underlying charged system.

A common scenario of electrostatic interactions is a mixture
of crowded mobile ions of multiple species with different
valences and sizes in an electrolyte surrounding an external
charged surface. Excluded-volume effects or size effects of
such mobile ions, in particular effects of different ionic sizes,
contribute significantly to the electrostatic free energy and
forces, which in turn determine the structure and stability of an
underlying system. For instance, the size of monovalent cations
can influence the stability of RNA tertiary structures [9],
and differences in ionic sizes can also affect how mobile
ions bind to nucleic acids [10,11]. Concentrations of ions
in an ion channel can reach as high as dozens of mol/L
(about 30 mol/L in calcium and sodium channels), and the
ionic sizes can affect the ion transport and channel selectivity
[12]. Detailed density-functional theory calculations, Monte
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Carlo simulations, and integral equations calculations confirm
some of these experimentally observed properties due to the
nonuniformity of ionic sizes [13–17].

Historically, many theoretical studies of electrostatic in-
teractions have been based on the classical, mean-field,
Poisson-Boltzmann (PB) theory [18–21]. In particular, such a
theory has been successfully applied in biomolecular modeling
and colloidal science (see [1,3,8,22,23] and the references
therein). In the PB theory, electrolytes are treated as ideal
ionic gases, and the ionic concentrations are related to the
electrostatic potential by the Boltzmann distributions. This
theory, often very efficient, thus works well for monovalent
ions, low surface charge densities, and high solvent dielectric
coefficients. The mathematical form of the PB theory is
the PB equation, which is Poisson’s equation for the elec-
trostatic potential with the equilibrium ionic concentrations
given by the Boltzmann distributions via the potential. In a
variational setting, such distributions result from the equi-
librium conditions for a mean-field electrostatic free-energy
functional of ionic concentrations where the potential is
determined by Poisson’s equation [24–28]. Despite its success
in many applications, the classical PB theory is known
to fail in capturing the ion-ion correlations and ionic size
effects, particularly for highly charged systems at molecular
scales [29,30].

For years, attempts have been made to include ionic size
effects, particularly nonuniform ionic size effects, into a
PB-like efficient approach [26,31–37] (see also [38–45]). One
of the key ideas has been to introduce the local concentration
of solvent molecules, in addition to those of ions of multiple
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species and to incorporate all the ionic and solvent molecular
volumes in the entropic part of a mean-field electrostatic
free-energy functional. If all linear sizes (including that of
solvent molecules) are the same, such a free-energy functional
can be derived using a lattice-gas model [32,35,36]. More-
over, there are explicit formulas, the generalized Boltzmann
distributions, relating equilibrium ionic concentrations and
the corresponding electrostatic potential. These distributions,
together with Poisson’s equation, lead to the generalized PB
equation for the case of a uniform ionic size [26,27,46]. For
a system of three ionic species with two different ionic sizes,
Chu et al. [34] derived a different size-modified PB equation
from a similar lattice-gas model and applied this equation to
study the ionic size effect in the binding of ions to DNA. For a
general system, Tresset [36] derived an expression of the free
energy with an effective volume fraction of free space, under
the assumption that the ionic excluded volumes are dispersed
from each other to a reasonable extent.

For the general case of multiple ionic species with different
valences and sizes, Li [26] proposed and analyzed a semiphe-
nomenological free-energy functional of ionic concentrations
with Poisson’s equation as a constraint for the electrostatic
potential. This functional is obtained simply by using different
individual ionic sizes instead of a uniform size in the previous
functional derived from a lattice-gas model. Equilibrium
conditions for the new and general free-energy functional are
nonlinear algebraic equations for the equilibrium concentra-
tions. It is shown that such conditions determine completely
the dependence of equilibrium ionic concentrations on the
corresponding electrostatic potential [26]. Explicit formulas
of such dependence and hence Boltzmann-like distributions
for the equilibrium concentrations, however, seem unavail-
able. Therefore, there is no explicit PB-like equation of the
electrostatic potential in the general case.

Nevertheless, Zhou et al. [37] developed a robust nu-
merical method for minimizing such a functional to obtain
the equilibrium ionic concentrations and the corresponding
electrostatic potential. The starting point there is to refor-
mulate the variational problem as a constrained optimization
problem [47,48]. An augmented Lagrange multiplier method
is then constructed and implemented to solve this constrained
optimization problem. Extensive numerical results reported
in [37] demonstrate that the new mean-field, size-effect-
included model can describe many detailed properties of ionic
concentrations, including the stratification of concentrations,
that have been predicted by other refined models but not by
the classical PB theory (cf. [33,36]). In particular, it is found
that the ionic valence-to-volume ratio is the key parameter in
the stratification [37].

In this work, we study the ionic size or excluded-volume
effect to the structure of electrical double layer in the vicinity
of a highly charged surface, using both the mean-field model
and Monte Carlo (MC) simulations. Our goal is twofold. First,
we would like to understand how counterions with different
valences and sizes compete in the adsorption to the charged
surface and how the ionic valence-to-volume ratio affects the
ordering of ion packing near such a surface. Second, we
would like to examine the validity of the mean-field theory
with nonuniform size effects by comparing it with the MC
simulations.

The adsorption of counterions to a charged surface is
determined by the competition between the entropic and the
energetic contributions of an underlying system of electrolyte.
The ionic size effect is quite significant in such adsorption,
since the excluded volume of crowded ions reduces the mixed
entropy, and thus increases the Helmholtz free energy of the
total system. Concentrations of counterions can reach maximal
values at the charged surface controlled by the ionic sizes. The
competition of entropy and energy results in a stratification
of counterions of different species in the electrical double
layer, as revealed in both experimental investigations [49]
and theoretical predictions [36,37,50,51]. For a low surface
charge density, the electrostatic interaction dominates and the
ions with higher valence are most likely to stay closest to
the charged surface. For a highly charged surface, smaller
counterions are stronger in competition to form the first
layer of the stratification [16,51]. Our mean-field numerical
computations and MC simulations reproduce these results. In
particular, our MC simulations validate the prediction by the
mean-field theory of the role of ionic valence-to-volume ratios
in the counterion stratification.

MC simulations treat an underlying system of electrolyte as
a set of discrete particles and provide equilibrium properties of
the system with statistical averages [52,53]. Such simulations
have been a standard tool in the study of structures of electrical
double layer, if the geometry of the charged surface is not
too complicated [16,51,54,55]. In MC simulations, ionic size
and correlation effects are automatically included, and image
charge effects can also be included [56–60]. Therefore, the
correlation-induced phenomena, such as charge inversion and
like-charge attraction, can be described by MC simulations
[29,55].

Our simulation system consists of a spherical macroion
immersed centrally in an electrolyte system. There are counte-
rions of multiple species in the electrolyte. The entire system
is assumed to be neutral in charge. The parameters of the
system include the linear size of the simulation box, the
radius and constant surface charge density of the macroion,
and the valence, volume, and total number of each species
of (micro) mobile ions. The same set of parameters is used
in our MC simulations and mean-field computations. We use
unrestrictive primitive models of ionic system, treating ions
as hard spheres. Based on such a model, we use canonical
ensemble MC simulations with Metropolis criterion. We plot
the radial particle density function for each species of mobile
ions. Such functions are compared with the corresponding
equilibrium ionic concentrations predicted by our mean-field
theory.

The rest of this paper is organized as follows: In Sec. II,
we introduce the mean-field theory and numerical method
for nonuniform ionic size effects. In Sec. III, we describe
our method of MC simulations. In Sec. IV, we present and
discuss the results of our MC simulations and mean-field
computations. Finally, in Sec. V, we draw conclusions.

II. MEAN-FIELD THEORY AND METHOD

We consider an electrolyte with M species of ions. For
each i (1 � i � M), we denote by zi the valence and vi the
volume of an ion of the ith species. We also denote by Ni the
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total number of ions of the ith species. The total number of
all ions is N = ∑M

i=1 Ni . We assume that there is a spherical
colloidal particle—a charged macroion—of radius R inside
the electrolyte solution and that its charge effect is described
effectively by a constant surface charge density, denoted σ. We
assume the system charge neutrality

z e +
M∑
i=1

Nizie = 0, (2.1)

where z = 4πR2σ/e is the valence of the macroion and e is
the elementary charge.

We assume that the entire system occupies the cubi-
cal region (−L/2,L/2)3 with the linear size L > 2R and
that the macroion occupies the spherical region BR of
radius R centered at the origin. Therefore, all the ions are
in the region � = (−L/2,L/2)3 \ BR. We denote by � = ∂BR

the boundary of the sphere BR , that is, the spherical surface of
the macroion.

A. A mean-field theory with nonuniform size effects

For each i (1 � i � M), we denote by ci(r) the local
concentration at a spatial point r ∈ � of ions of the ith species.
The charge density of solution is then given by

∑M
i=1 zieci(r)

(r ∈ �). All the concentrations ci(r) are constrained by∫
�

ci dV = Ni, i = 1, . . . ,M. (2.2)

We also denote by v0 the volume of a solvent molecule.
The local concentration c0 = c0(r) of the solvent molecules
is defined by

c0(r) = v−1
0

[
1 −

M∑
i=1

vici(r)

]
for all r ∈ �.

For a given set of ionic concentrations c = (c1, . . . ,cM ), a
mean-field approximation of the electrostatic free energy is
given by

F [c] = Fpot[c] + Fent[c]. (2.3)

The first part Fpot[c] is the electrostatic potential energy,
defined by

Fpot[c] =
∫

�

1

2

(
M∑
i=1

zieci

)
�dV +

∫
�

1

2
σ�dS, (2.4)

where � is the electrostatic potential. It is determined by
Poisson’s equation,

∇ · εε0∇� = −
M∑
i=1

zieci in �, (2.5)

together with the boundary condition

εε0
∂�

∂n
=

{
σ on �,

0 on �box,
(2.6)

where ε0 is the vacuum permittivity, ε is the relative permittiv-
ity or dielectric coefficient of the solution, and n is the exterior
unit normal at the boundary of � that consists of the spherical
surface � and the boundary, �box, of the box (−L/2,L/2)3. We

shall assume that ε is a constant in the entire solution region �.

Notice that � is not an independent variable of the functional
F [c].

The second part Fent[c] is the entropic contribution. It is
given by [26,37]

Fent[c] = kBT

M∑
i=0

∫
�

ci[ln(vici) − 1]dV, (2.7)

where kB is the Boltzmann constant and T is the absolute
temperature. Notice that the summation index starts from i =
0. Notice also that in the variational approach to the classical
PB equation, the solvent entropy is not included and all the
ionic linear sizes v

1/3
i are replaced by the de Broglie wave

length [24,25,27].
The set of equilibrium ionic concentrations c =

(c1, . . . ,cM ) is defined to minimize the free-energy functional
(2.3), subject to the constraint (2.2). The equilibrium electro-
static potential is determined by the corresponding equilibrium
ionic concentrations through Poisson’s equation (2.5) and the
boundary condition (2.6).

Alternatively, we can introduce for each i the chemical
potential μi for ions of the ith species, and add the term

−
M∑
i=1

∫
�

μici dV (2.8)

to the free energy F [c] in (2.3). The chemical potentials μi (i =
1, . . . ,M) can be regarded as Lagrange multipliers accounting
for the constraint (2.2). With these chemical potentials, one
minimizes the new, total electrostatic free-energy functional
that now consists of all the integral terms in Eqs. (2.4), (2.7),
and (2.8), without the constraint (2.2).

Taking the variational derivative with respect to each
concentration field ci(r) of the new, total free energy and
setting it to 0, we obtain with suitable boundary conditions
for Poisson’s equation (2.5) the conditions for equilibrium
concentrations c1, . . . ,cM [26]

vi

v0
ln (v0c0(r)) − ln (vici(r)) = 1

kBT
[zie�(r) − μi]

(2.9)
for all r ∈ �, i = 1, . . . ,M.

In the special case that v0 = v1 = · · · = vM , one can solve
this system of nonlinear algebraic equations to obtain explicit
formulas of ci(r) = ci(�(r))(i = 1, . . . ,M). These are the
generalized Boltzmann distributions. For the general case,
it is known that the conditions (2.9) determine uniquely
ci(r) = ci(�(r)) (i = 1, . . . ,M); but explicit formulas for such
dependence seem unavailable (see Refs. [26,27]).

B. A constrained optimization method

By integration by parts, Poisson’s equation (2.5), and the
boundary conditions (2.6), we can rewrite the free-energy
functional (2.3), which is the sum of Fpot[c] given in Eq. (2.4)
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and Fent[c] given in Eq. (2.7), as

F [�,c] =
∫

�

{
εε0

2
|∇�|2 + kBT

M∑
i=0

ci[ln(vici) − 1]

}
dV,

where � solves the boundary-value problem of Poisson’s
equation (2.5) and (2.6). Notice that the dependence of F on
� is now explicitly indicated. One can verify mathematically
that the minimization of F [c] defined in (2.3) over all c subject
to (2.2) is equivalent to that of F [�,c] over all (�,c) subject
to (2.2), (2.5), and (2.6).

Introduce the Bjerrum length lB = e2/(4πεε0kBT ). De-
fine �′ = e�/(kBT ),c′

i = 4πlBci and v′
i = (4πlB)−1vi (0 �

i � M), N ′
i = 4πlBNi (1 � i � M), σ ′ = 4πlBσ/e, and

ω′ = (4πlB)−1/3ω for ω = �, �box, or �. Then F [�,c] =
εε0(kBT /e)2F ′[�′,c′], where

F ′[�′,c′]=
∫

�′

{
1

2
|∇�′|2+

M∑
i=0

c′
i[ln(v′

ic
′
i)−1]

}
dV, (2.10)

and c′
0 is defined similarly using the primed quantities. The

constraint (2.2), Poisson’s equation (2.5), and the boundary
condition (2.6) become now∫

�′
c′
i dV = N ′

i , (2.11)


�′ = −
M∑
i=1

zic
′
i in �′, (2.12)

∂�′

∂n′ =
{

σ ′ on �′,

0 on �′
box,

(2.13)

respectively, where n′ is the unit exterior normal at the
boundary of �′.

For simplicity, we drop all the primes in what follows.
We apply an augmented Lagrange multiplier method

[61,62] to numerically minimize the functional F [�,c] defined
in (2.10) subject to (2.11)–(2.13) (with all the primes dropped).
Our method is an improved version of that developed in
our previous work [37] for minimizing numerically a similar
functional formulated using (E,c) instead of (�,c), where
E = −∇� is the electric field. In the augmented Lagrange
multiplier formulation, we solve the corresponding saddle-
point problem,

min
(�,c)

max
(�,�)

L̂(�,c,�,�,s), (2.14)

where � = (λ1, . . . ,λM ) ∈ RM , s = (s1, . . . ,sM ) ∈ RM with
each si � 0, and

L̂(�,c,�,�,s) = F [�,c] +
∫

�

�

(

� +

M∑
i=1

zici

)
dV +

M∑
i=1

λi

( ∫
�

ci dV − Ni

)
+

M∑
i=1

si

2

( ∫
�

ci dV − Ni

)2

=
∫

�

{
1

2
|∇�|2 +

M∑
i=0

ci[ln(vici) − 1]

}
dV +

∫
�

�

(

� +

M∑
i=1

zici

)
dV

+
M∑
i=1

λi

(∫
�

ci dV − Ni

)
+

M∑
i=1

si

2

(∫
�

ci dV − Ni

)2

.

The function � is the Lagrange multiplier for Poisson’s equation (2.5). It satisfies the same boundary conditions as for �

[cf. (2.13) (no primes)]. The numbers λ1, . . . ,λM are the Lagrange multipliers for the constraint (2.11) (no primes). The last
summation term is a penalty term. It is added to stabilize and accelerate our numerical iterations.

The solution (�,c,�,�,s) to the saddle-point problem (2.14) is determined by the following equations:

∂L̂

∂�
= −
(� − �) = 0 in �, (2.15)

∂L̂

∂�
= 
� +

M∑
i=1

zici = 0 in �, (2.16)

∂L̂

∂ci

= ln(vici) − vi

v0
ln

(
v0

(
1 −

M∑
j=1

vj cj

))
+ zi� + λi + si

( ∫
�

ci dV − Ni

)
= 0 in �, i = 1, . . . ,M, (2.17)

∂L̂

∂λi

=
∫

�

ci dV − Ni = 0, i = 1, . . . ,M. (2.18)

Since both � and � satisfy the same boundary conditions,
Eq. (2.15) implies that they differ by an additive constant. We
may choose this constant to be 0 and assume that � = � in �.

Notice that Eq. (2.16) is Poisson’s equation (2.12) (no primes)

and Eq. (2.18) is the constraint (2.11) (no primes). As pointed
out before, the nonlinear system of algebraic equations (2.17)
has a unique solution c = (c1, . . . ,cM ) but its explicit solution
formulas seem unavailable [26].
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The entire system of equations is equivalent now to the
three sets of Eqs. (2.16)–(2.18) with � in (2.17) replaced with
�. We solve these equations by the following algorithm.

Step 0. Distribute the total surface charge 4πR2σ uniformly
on the spherical surface by interpolation onto the nearest
grids [37,47]. Initialize �(0), c(0) = (c(0)

1 , . . . ,c
(0)
M ), �(0) =

(λ(0)
1 , . . . ,λ

(0)
M ), and s(0) = (s(0)

1 , . . . ,s
(0)
M ). Choose a parameter

γ > 1. Set l = 0.

Step 1. Solve Eq. (2.16) with ci replaced with c
(l)
i , together

with the boundary condition (2.13), to obtain the solution
�(l+1).

Step 2. Use Newton’s method to solve Eq. (2.17) (where
� is replaced with �) with �, �, and s replaced with �(l+1),
�(l), and s(l), respectively, to obtain the solution c(l+1).

Step 3. Update the Lagrange multipliers

λ
(l+1)
i = λ

(l)
i + s

(l)
i

(∫
�

c
(l+1)
i dV − Ni

)
, i = 1, . . . ,M.

Update the penalty parameters s
(l+1)
i = γ s

(l)
i (i = 1, . . . ,M).

Step 4. Test convergence. If not, set l ← l + 1 and go to
Step 1.

The parameter γ > 1 is used only for updating si (i =
1, . . . ,M). Various kinds of approximations can be used to
solve the boundary-value problem of Poisson’s equation. For
instance, we can use the periodic boundary condition instead,
and apply the fast Fourier transform. In this case, we have
the linear complexity in terms of the number of unknowns of
resulting system of linear equations. We note that the matrix-
vector multiplication can be avoided in Newton’s iteration
scheme for solving the system (2.17) (with � replaced by
�), since the exact formula of the inverse of related Jacobian
matrix can be obtained. See Ref. [37] for more details.

III. MONTE CARLO SIMULATIONS

We consider the same system described in the previous
section: A macroion occupying the sphere BR of radius R

centered at the origin, with a constant surface charge density
σ , is immersed in an electrolyte in the box (−L/2,L/2)3.
There are M species of (micro) ions in the region � =
(−L/2,L/2)3 \ BR . For each i (1 � i � M), an ion of the
ith species has valence zi and volume vi. The number of
ions of the ith species is Ni ; and the total number of all
(micro) ions is N = ∑M

i=1 Ni. We use an unrestricted primitive
model for our underlying electrolyte system and apply the
canonical ensemble MC simulations with the Metropolis
criterion [50,52,63–66].

In a primitive model of electrolytes, the mobile ions are
represented by charged hard spheres and the solvent is modeled
through its dielectric permittivity ε. We label all the (micro)
ions by k = 1, . . . ,N . We denote by ẑk and R̂k the valence and
radius of the kth ion. If the kth ion is of the ith type (1 � i �
M), then its valence is ẑk = zi and its volume is 4πR̂3

k/3 = vi .
For convenience, we label the spherical macroion by 0 and
denote R̂0 = R, the radius of the macroion. We also denote its
valence by ẑ0 = z = 4πR2σ/e.

For a given configuration of the system, the Hamiltonian
is defined to be the work needed to bring all the ions
from infinity to their current positions. It is the sum of all

pairwise interaction energies between all the ions, including
the macroion. We only consider the hard-sphere contribution
and the Coulomb interaction. Therefore, we define the total
potential energy of the system to be

U =
∑

0�j<k�N

ujk,

where

βujk =
{

lB ẑj ẑk

rjk
if rjk � R̂j + R̂k,

∞ if rjk < R̂j + R̂k.
(3.1)

Here, β = (kBT )−1, lB = e2β/(4πεε0) is the Bjerrum length,
and rjk is the center-center distance between the j th and
kth ions. Notice that, in the case rjk � R̂j + R̂k,ujk is just
the Coulomb interaction energy between the j th and kth
ions in the solvent with the relative dielectric permittivity ε.

We consider the water solvent at room-temperature and thus
take lB = 7 Å.

Our MC simulations consist of a sequence of single-particle
moves with the periodical boundary condition. In each move,
we randomly select an individual particle (i.e., mobile ion). Let
us assume that the selected particle is centered at p. We then
randomly generate a positive number, denoted a, from the
interval [0,
max] for some parameter 
max > 0. We finally
place the (center of) selected particle randomly on the sphere
of radius a centered at p. We use the L-periodical boundary
condition in each direction, so that all the ions remain in
the region � of electrolyte. The parameter 
max can change
during the MC moves. The acceptance or rejection of the move
is determined by the Metropolis criterion. We calculate the
difference 
U = Unew − Uold of the energies of the previous
(old) and current (new) configurations. If 
U � 0, the move
is accepted. Otherwise, it is accepted if exp (−β
U ) is greater
than a randomly generated number in [0,1].

The entire sequence of our MC moves are divided into three
parts: acceleration, equilibration, and statistics. Typically, our
simulation system consists of M = 3 or 4 ionic species; and
the number of ions in each of these species can vary from 25
to 50 and to 200. With these parameters, we usually perform
12 × 105N MC moves in total, with the first 105N moves
for acceleration, the next 105N moves for equilibrating the
system, and the last 106N moves for statistics, where N is the
total number of mobile ions.

We introduce a parameter l̃B to replace lB in the definition
of interaction (3.1) and dynamically change l̃B in the first part
of the moves, a total of 105N of them, to speed up the thermal
equilibration of the crowded system of particles. We generate
a geometrical sequence of 105N terms with the first and last
terms being 1 and lB = 7 Å, respectively. In the mth MC move
with m � 105N , the parameter l̃B is taken to be the mth term
in the geometrical sequence. After the first 105N moves, we
fix l̃B = lB for all of the rest MC moves. We run another 105N

moves so that the system can reach an equilibrium.
Throughout the entire simulation, we keep the percentage of

acceptance of MC moves between 20% and 50% by adaptively
adjusting the value of the maximum length 
max. Initially, we
set 
max = 2 Å. We then change it after every 100 moves. If
the acceptance rate is larger than 50% in current 100 moves,
we increase 
max by multiplying it by 1.05 but always keep
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the new value of 
max to be less than or equal to l̃B. If the
acceptance rate is smaller than 20% in current 100 moves, we
decease 
max by multiplying it by 0.95, and we keep the new

max to be greater than 0.001 l̃B.

In the last part of the MC moves, a total of 106N of them, we
derive the production statistics and calculate the local radial
particle density (RPD) for each ionic species. The RPD of the
ith ionic species is defined by

ρi(r) = 〈Ni(r,r + 
r)〉
4
3π [(r + 
r)3 − r3]

, (3.2)

where Ni(r,r + 
r) is the number of ions of the ith species
whose centers are in the spherical shell between r and r + 
r ,
and the bracket 〈· · ·〉 represents an ensemble average over the
shell. Notice that the denominator in the definition (3.2) is
the volume of the shell. We choose 
r to be 1 Å. In our
implementation, we approximate 〈Ni(r,r + 
r)〉 in (3.2) by
the total number of ions of the ith species that move (in the last
part of moves for statistics) into the shell between r and r +

r , multiplied by the total number Ni of ions of ith species,
divided by the total number of moves (in the last part of moves)
in which an ion of ith species is displaced.

We remark that the use of periodic boundary condition
effectively introduces a spatial cutoff of the underlying system
region. In principle, this can affect the accuracy of the
calculation of electrostatic interactions. However, we have
tried simulations on boxes with different linear sizes and found
almost no differences in the results. In fact, we find that on
average only in one of 10 000 moves does an ion have to
“leave” through one side of the box and “come back” to the
box through the opposite side. The reason for this is that most
of the ions are crowded around the charged sphere, away from
the boundary of simulation box.

In Fig. 1, we display our typical MC simulations results for
two systems: one without salt and one with salt. Notice that

the counterions with smaller valence-to-volume ratios have
less possibility to be adsorbed to the charged surface.

IV. RESULTS AND DISCUSSION

We set the linear size of our computational box
(−L/2,L/2)3 to be L = 150 Å and the radius of the spherical
colloidal particle (the macroion) to be R = 15 Å. The Bjerrum
length is set to be lB = 7 Å. The surface charge density σ

ranges from −0.05 to −0.21 e/Å
2
. In our simulations, we

investigate mixed solutions of three types of counterions, with
their valences (z1,z2,z3) = (+1,+2,+3). We choose their radii
to range from 1 Å to 4 Å. These are within the interval of
physical interest. For example, the hydrated radii of mono-
valent hydrogen, sodium, and potassium, divalent magnesium
and calcium, and trivalent aluminum ions are 4.5, 2.25, 1.5,
4.0, 3.0, and 4.5 Å, respectively [67]. For salt electrolytes, we
choose monovalent or divalent coions with radius 2 Å.

One of the main objectives of our study is to understand the
competitive adsorption of counterions with different valences
and sizes. Such property has been already investigated pre-
viously (see Refs. [16,17,50,51,63,64,68] and the references
therein). Most of these studies found that the valence of
counterion determines the competition in adsorption to a
charged surface with a low surface charge density and that
smaller ions are stronger in such competition for a high
surface charge density. These conclusions result naturally
from the competition between electrostatic attraction and
entropic repulsion expressed in the free-energy functional
(2.3), where the electrostatics dominates the free energy for
the low surface charge density, and the entropy dominates
otherwise. It has been recently found in our previous work [37]
using the mean-field model described in the last section that
the competition between different ions in adsorption to a
charged surface can be, in fact, characterized by the ionic
valence-to-volume ratios. Here, we use MC simulations to
further explore this characterization and compare our results

FIG. 1. (Color online) Typical MC simulations of ions surrounding a highly charged macroion. (a) A salt free system composed of
monovalent (black), divalent (red, or dark gray in print version), and trivalent (green, or light gray in print version) counterions, with radii 3 Å,
2.5 Å, and 3.5 Å, respectively. (b) A system of salt solvent with coions (blue, or dark in print version), and counterions of valences and radii
+1 and 2 Å (black), +2 and 3 Å (red, or dark gray in print version), and +3 and 4 Å (green, or light gray in print version), respectively.
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FIG. 2. (Color online) The radial densities by MC simulations (a), (b), and (c) and by mean-field computations (d), (e), and (f) of the three
species of counterions in Group 1: (z1,z2,z3) = (+1, + 2, + 3), (R1,R2,R3) = (3.0,2.5,3.5) in Å, and α+1/α+2/α+3 = 1/3.5/1.9. All three
species have the same number of ions. This number is 100 in (a) and (d), 50 in (b) and (e), and 25 in (c) and (f). Hence, the constant surface
charge density decreases from (a) and (d) to (b) and (e) and to (c) and (f).

with those from mean-field calculations. In particular, we study
a system with a crowded ionic population near a highly charged
surface, as shown in Fig. 1.

In what follows, for an ion of the ith species (1 � i � M),
we denote by Ri its radius and by

αi = zi

vi

= 3zi

4πR3
i

its valence-to-volume ratio.

A. Crucial factors in the competition between counterions

We first study salt-free systems with monovalent, divalent,
and trivalent counterions: z1 = +1, z2 = +2, and z3 = +3.
We investigate three different groups of such counterions with
the following order of valence-to-volume ratios: α+2 > α+3 >

α+1; α+3 > α+1 > α+2; and α+1 > α+2 > α+3. Here and
below, we use α+i to denote the valence-to-volume ratio of the
counterion with valence +i. We use the following parameters:

Group 1 : (R1,R2,R3) = (3.0,2.5,3.5) in Å,

α+1/α+2/α+3 = 1/3.5/1.9;

Group 2 : (R1,R2,R3) = (2.5,3.5,3.0) in Å,

α+1/α+2/α+3 = 1.4/1/2.4;

Group 3 : (R1,R2,R3) = (2.0,3.0,4.0) in Å,

α+1/α+2/α+3 = 2.7/1.6/1.

For each group, we choose the same number of ions for each
of the three different species: N1 = N2 = N3. Moreover,

we select three different surface charge densities by setting
N1 = N2 = N3 = 100, 50, and 25, respectively, and by
using the charge neutrality (2.1). The corresponding surface
charge densities of the macroions are −0.212, −0.106, and
−0.053 e/Å

2
, all in the regime of strong surface charge.

To report our MC simulations, we use bar plots, with each
bar representing the radial density ρi(r) for the ith ionic species
(1 � i � M) as defined in (3.2). We choose the thickness of
the spherical shell to be 
r = 1 Å. We also convert the units
number/volume to mol/L, which is abbreviated M . To show
our results of mean-field computations, we plot smooth curves
of radial densities ci(r) for the ith ionic species (1 � i � M)
that are just the ionic concentrations in the radial direction. For
each i the two quantities ρi(r) and ci(r) should be close to each
other, in particular, if the shell size 
r is very small. However,
since the solvent molecules are not explicitly included in our
MC simulations but the concentration of solvent molecules is
included in our mean-field model, the two quantities ρi(r) and
ci(r) are not exactly the same.

The quantitative results of our MC simulations are illus-
trated in Figs. 2–4, where in Fig. 2 we also show our results of
mean-field computations for comparison. Results in Fig. 2 are
obtained using Group 1 parameters, while those in Fig. 3 and
Fig. 4 are obtained using Group 2 and Group 3 parameters,
respectively. We observe clearly that counterions are adsorbed
tightly to the highly charged surface, and near the surface
layers of counterions of different species form, leading to the
remarkable structure of stratification. Moreover, we find that
the order of layering depends on the valence-to-volume ratio,
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R
ad

ia
l
d
en

si
ty

ρ
i(

r)
(M

)

z
1
=+1, R

1
=2.5, N

1
=50

z
2
=+2, R

2
=3.5, N

2
=50

z
3
=+3, R

3
=3.0, N

3
=50

(b )

0 5 10 15
0

5

10

15

20

25

30

35

40

Distance to the charged surface (Å)
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FIG. 3. (Color online) The radial densities obtained by MC simulations of the three species of counterions in Group 2: (z1,z2,z3) =
(+1, + 2, + 3), (R1,R2,R3) = (2.5,3.5,3.0) in Å, and α+1/α+2/α+3 = 1.4/1/2.4. All three species have the same number of ions. This
number is 100 (a), 50 (b), and 25 (c), respectively. Hence, the constant surface charge density decreases from (a) to (b) and to (c).

instead of the valence or the size independently. Counterions
with the largest valence-to-volume ratio form the first layer
closest to the charged surface, those with the second largest
such ratio form the second layer, and so on. When the surface
charge density σ becomes smaller, the role of valence is
more important in determining which ionic species form a
layer closest to the surface. These results demonstrate that
the selective adsorption and layer ordering in the stratification
depend on the competition between energetics and entropy,
and that the valence-to-volume ratio is an important param-
eter in such adsorption and layering for a highly charged
surface.

In Fig. 2, we find a qualitative agreement of our size-effect-
included mean-field theory with the MC simulations. We note
that the peaks of ionic densities close to the surface predicted
by the MC simulations have a larger magnitude and are closer
to the surface than those predicted by the mean-field theory.

We now investigate the sensitivity of the ionic sizes with
respect to the ionic structure in the vicinity of a charged surface.
We fix the surface charge density to be σ = −0.22 e/Å

2
. We

consider three species of counterions with valences zi = +i

(i = 1,2,3) and number of ions N1 = N2 = N3 = 100. In
Fig. 5, we plot the ionic densities for various combinations
of the ionic radii R1, R2, and R3. The radius of the trivalent

counterion is decreased from 4 Å in Fig. 5(a) to 3.5 Å
in Fig. 5(b) so that the divalent and trivalent species have
almost the same valence-to-volume ratio. The radius of the
monovalent ion is decreased from 2 Å in Fig. 5(b) to 1.5 Å
in Fig. 5(c). In both cases, the species with the highest
valence-to-volume ratio, that is, the monovalent ionic species,
remains the strongest in the competition to form the first layer
closest to the charged surface. This indicates that the ionic
competitive ability in adsorption is greatly improved by a
slight decrease of its radius, which weakens the ionic entropic
repulsion. From Fig. 5(b), we also find that when two species
of counterions have close values of valence-to-volume ratios,
the species with a higher valence will have a stronger ability
of adsorption.

Figure 5(c) also illustrates an interesting phenomenon.
With the decrease of the radius of monovalent ions, the
concentration of the divalent ions, which have the second
largest of the three valence-to-volume ratios, is increased.
The trivalent ions which have the smallest valence-to-volume
ratio are depleted in the vicinity of the surface. This can be
interpreted that the more tightly binding of the monovalent
ions to the surface decreases more the electrostatic energy
contributed by divalent and trivalent ions. The effect of the
valence-to-volume ratio is strengthened in the competition
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R
ad

ia
l
d
en

si
ty

ρ
i(

r)
(M

)

z
1
=+1, R

1
=2.0, N

1
=100

z
2
=+2, R

2
=3.0, N

2
=100

z
3
=+3, R

3
=4.0, N

3
=100

(a )

0 5 10 15
0

5

10

15

20

25

30

Distance to the charged surface (Å)
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FIG. 4. (Color online) The radial densities obtained by MC simulations of the three species of counterions in Group 3: (z1,z2,z3) =
(+1, + 2, + 3), (R1,R2,R3) = (2.0,3.0,4.0) in Å, and α+1/α+2/α+3 = 2.7/1.6/1. All three species have the same number of ions. This
number is 100 in (a), 50 in (b), and 25 in (c). Hence, the constant surface charge density decreases from (a) to (b) and to (c).
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R
ad

ia
l
d
en

si
ty

ρ
i(

r)
(M

)

z
1
=+1, R

1
=2.0, N

1
=100

z
2
=+2, R

2
=3.0, N

2
=100

z
3
=+3, R

3
=4.0, N

3
=100

(a)

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50

Distance to the charged surface (Å)

R
ad

ia
l
d
en

si
ty

ρ
i(

r)
(M

)

z
1
=+1, R

1
=2.0, N

1
=100

z
2
=+2, R

2
=3.0, N

2
=100

z
3
=+3, R

3
=3.5, N

3
=100

(b)

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50

Distance to the charged surface (Å)
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FIG. 5. (Color online) MC simulations of the layering structure of ionic radial densities of three counterion species with the valences z1 = 1,
z2 = 2, and z3 = 3, and numbers of ions in each species N1 = N2 = N3 = 100. The set of radii (R1,R2,R3) is different in the three plots. The
corresponding valence-to-volume ratios are (a) α+1/α+2/α+3 = 2.7/1.6/1; (b) α+1/α+2/α+3 = 1.8/1.1/1; (c) α+1/α+2/α+3 = 6.3/1.6/1.

between the latter two species. This result demonstrates that
the nonuniform ionic size effect plays a very important role in
determining the properties of electrolyte solutions.

We now fix the numbers of ions N1 = N2 = N3 = 100,
the surface charge density σ = −0.21e/Å

2
, the ratios of radii

R1/R2/R3 = 2/3/4, and the order of valence-to-volume ratios
α+1 > α+2 > α+3. We vary simultaneously the ionic radii
of the three species of counterions by changing a common
multiplier. We use three different sets with the radii of
monovalent ions being 1.2, 2.0, and 2.4 Å, respectively. We
study how the different ionic sizes affect the layering structure
of counterions and how the competition in ionic adsorption is
changed with the change of entropy. The corresponding results
are plotted in Fig. 6. It can be found that, with the increase
of the ionic radii, the entropic contribution to the electrostatic
free energy is increased, leading to the enhancement of the
counterion repulsion. Moreover, the particle numbers of all
the three ionic species in the layers closest to the surface are
diminished. In the meantime, when ionic sizes are increased
from small to large, the entropic contribution to the free energy
becomes more significant. Hence, the valence-to-volume ratios
give a clear characterization of stratification. In fact, the
monovalent counterions, which have the smallest value of
valence but the largest valence-to-volume ratio, always forms

the first layer closest to the surface. It is a further evidence that
the competition between electrostatic energetics and entropy
leads to the following limits: At the limit of the electrostatics
domination the valence is the main indicator of the ordering
of layers, while at the limit of the entropy domination
the valence-to-volume ratio is the main indicator of layer
ordering.

B. Systems with the presence of coions

We now add coions in the system and study the effect of
coions to the competitive adsorption and order of packing
of counterions, in comparison with the salt-free systems. We
consider two cases. In the first case, we add monovalent coions
to the system. We assume that the radius of such a coion is
R4 = 2 Å and that the total number of coions is N4 = 204.

In the second case, we add divalent coions to the system.
We assume that the radius of such a divalent coion is R4 = 2
Å and that the total number of such coions is N4 = 102. In
both cases, we still have the monovalent, divalent, and trivalent
counterions, with now their radii 2, 3, and 4 Å, respectively, and
their total numbers N1 = N2 = N3 = 134. We also assume
a high surface charge density σ = −0.21 e/Å

2
. The charge

neutrality (2.1) is now satisfied with M = 4 species of

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50

Distance to the charged surface (Å)
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FIG. 6. (Color online) MC simulations of radial densities of three species of counterions with the valences z1 = 1, z2 = 2, and z3 = 3, and
numbers of ions in each species N1 = N2 = N3 = 100. The radii R1,R2,R3 in the three plots differ by a common factor. (a) Small ionic radii.
(b) Medium ionic radii. (c) Large ionic radii.
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FIG. 7. (Color online) MC simulations of counterion and coion radial densities. (a),(b) Systems with monovalent coions. (c),(d) Systems
with divalent coions.

counterions and coions. The system will have an averaged
100 mM concentration of monovalent coions in the first case
and 50 mM concentration of divalent coions in the second
case.

For these two systems with coions, we plot the radial
densities of counterions and coions obtained by our MC
simulations in Fig. 7 and those obtained by our mean-
field numerical computations in Fig. 8. In comparison with
those salt free systems, we find that the addition of coions
slightly enhances the layering effect. The densities of all three
counterions are increased. This has a minor influence to their
layering order. It is clear that a qualitative agreement between
mean-field calculations and MC simulations is reached on the
competition of counterion adsorption.

We observe from Fig. 7(b) and 7(d) that the coion density
predicted by MC simulations is nonmonotonic, while from
Figs. 8(b) and 8(d) that the coion density predicted by the
mean-field theory is monotonic. In Fig. 9, we plot the total
ionic charge density for each of the two systems obtained
by our MC simulations. We find the overcharging of the
system; that is, the total charge density is above zero, which
corresponds to the charge neutrality [29,69]. Interestingly,
the overcharging of the monovalent-coion system is stronger

than that in the divalent-coion system: The inverted charges
of the monovalent-coion system and divalent-coion system
are 1.86e and 0.15e, respectively. This is mainly due to the
fact that it is easier to form anion-cation binding pairs in the
divalent-coion system than in the monovalent-coion system.
Thus, the density of free counterions is decreased. In contrast,
the mean-field theory can only produce a monotonic profile
of the total charge density as proved mathematically in [26].
Therefore, the mean-field theory with the nonuniform size
effect still fails in predicting the charge inversion.

V. CONCLUSIONS

In this work, we study the competition of multiple coun-
terions of different valences and different sizes in binding
to the surface of a spherical colloidal particle by both a
mean-field theory and MC simulations. The parameters of
the underlying system of electrolyte include the valences zi ,
radii Ri (or volumes vi), and numbers Ni of ions of ith
species with i = 1, . . . ,M , the radius R0 of a solvent molecule,
the constant dielectric coefficient ε of the electrolyte, and
the surface charge density σ . The entire system is assumed
to be in charge neutrality. In the mean-field approach, we
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FIG. 8. (Color online) Counterion and coion radial densities from numerical computations based on the mean-field theory with the ionic size
effect. (a) Radial densities of counterions for the system with monovalent coions. (b) Radial density of coions for the system with monovalent
coions. (c) Radial densities of counterions for the system with divalent coions. (d) Radial density of coions for the system with divalent coions.

minimize a semiphenomenological electrostatic free-energy
functional of ionic concentrations constrained by Poisson’s
equation. The electrostatic potential is not an independent
variable of the functional. The different ionic sizes are
described through the entropic contributions of ions and
solvent molecules. The constrained free-energy minimization
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FIG. 9. (Color online) MC simulations of the total charge density
for the system with monovalent coions (marked −1) and that with
divalent coions (marked −2).

is realized numerically by an augmented Lagrange multiplier
method. We also use an unrestricted primitive model and
canonical ensemble MC simulations with the Metropolis
criterion to predict the ionic distributions around the charged
surface.

Through our extensive MC simulations and mean-field
computations, we have found the following.

(1) For a low surface charge density, the adsorption of
counterions with a higher valence is preferable. This agrees
with previous studies in the existing literature. For a highly
charged surface, both of the mean-field theory and MC
simulations show that the counterions bind tightly around
the charged surface, forming stratification or layering of
counterions of different species.

(2) The ionic valence-to-volume ratios, instead of ionic
valences alone, are the key parameters that determine the
binding of counterions to the charged surface. Due to the ionic
size effect, counterions with the largest valence-to-volume
ratio form the first layer of stratification, while those with the
second largest valence-to-volume ratio form the second layer,
and so on. We call this the “criterion of valence-to-volume
rations” in ionic stratification. Our MC simulations confirm
the validity of this criterion that was discovered in our previous
mean-field calculations [37].

041406-11



JIAYI WEN, SHENGGAO ZHOU, ZHENLI XU, AND BO LI PHYSICAL REVIEW E 85, 041406 (2012)

(3) Our MC simulations predict the charge inversion for
ionic systems with salt. Moreover, we find that the overcharg-
ing is more significant for a system with monovalent coions
than for a system with divalent coions. The mean-field theory,
however, fails in predicting the charge inversion, since it does
not include the ion-ion correlation.

In our mean-field computations, we have never found a case
where our criterion of valence-to-volume ratios fails for the
prediction of stratification of multiple counterions for highly
charged surfaces. For MC simulations, we sometimes find the
criterion does not work when those ratios are too close and the
surface charge is too low. In fact, the MC simulation reported
in Fig. 6(b) of Ref. [51] for a low surface charge density
contradicts our criterion.

While our mean-field theory and MC simulations have both
predicted the stratification of counterions near a highly charged
surface and the crucial role of the ionic valence-to-volume
ratios in such stratification, we have neglected several effects
in our theory and methods.

First, in our MC simulations, we treat ions as hard
spheres to describe the short-range repulsion in the van der
Waals interactions between different kinds of ions of multiple
valences and different sizes, and between the ions and the
charged macroion. We have neglected the long-range attraction
in such interactions that can contribute largely to the ion-ion
correlations. For highly charged surfaces, counterions are
crowded near the surface; and the van der Waals attraction
may not be as strong as the corresponding repulsion. While
we have taken a rather common approach in MC simulations,
we understand that including the attraction part of the van der
Waals interactions is practically quite possible. We include
such interaction in our subsequence works.

Second, in both of our mean-field treatment and MC
simulations, we use a uniform dielectric coefficient for the
ionic solution. This is only an approximation in the description
of the dielectric properties of solvent, as the water in the
proximity of a highly charged surface is not expected to behave
like bulk solvent. In fact, the dielectric coefficient can depend

on the ionic concentrations [13,70,71]. Such dependence is
experimentally known to be continuous and linear (cf. Eq. (1)
and Table I in Ref. [72]). Near the charged surface the
dielectric coefficient is locally close to a constant; and the
ion-ion interactions in such a region can be still modeled
well by our interaction energy (3.1) but with a dielectric
coefficient different from that in the bulk. We thus do not expect
that this will significantly affect the competition of different
counterions in the stratification. To further explore the detailed
consequences of the concentration dependent dielectrics, we
are currently extending our work to such dielectric systems.

Third, the size effect of solvent molecules is not directly
included in our MC simulations. This makes our comparison
between the mean-field theory and MC simulations only
qualitative. There is clearly a need to develop models and
algorithms to include the solvent molecular size effect in MC
simulations of electrolyte systems.

We are currently working to improve our theory and meth-
ods to include some of these effects. In the future, it is desirable
to apply our efficient theory and methods to large-scale mod-
eling of biomolecular systems in which nonuniform ionic size
effects can be sometimes very important. On the theoretical
development, it is also necessary to derive from statistical
mechanics theory our mean-field, electrostatic free-energy
functional that includes the nonuniform ionic size effect.
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